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A B S T R A C T

This paper presents a novel approach for detection and diagnosis of the rotor imbalance types pitch misalign-
ment, yaw misalignment and mass imbalance by monitoring the drivetrain vibration response. Traditionally,
only SCADA signals including nacelle accelerations, rotor speed and electrical power are utilized for this
purpose, while drivetrain condition monitoring signals are mainly used for fault detection in gears and bearings.
A diagnostic method is proposed using statistical change detection methods for fault detection, phase angle
estimation for localizing the faulty blade, and physics-based decision criteria for fault classification. The
proposed method is tested in a numerical case study with aeroelastic and drivetrain multi-body models of
the 10 MW DTU reference wind turbine. The results suggest that drivetrain condition monitoring signals are
particularly beneficial for detecting and diagnosing pitch misalignment, since this fault type uniquely induces
periodic out-of-plane bending moments that excite drivetrain bending modes. Drivetrain signals improved the
detection rate of a 1◦ pitch error from 19% to near 100% and reduced the standard error in locating the
faulty blade from 71.5◦ to 11.2◦. In addition, by using drivetrain vibration amplitudes as a decision criterion,
all considered pitch error cases are correctly distinguished from other fault types.
1. Introduction

Recent market trends show an increase in offshore wind turbine in-
stallations driven by higher energy yields and fewer land displacement
and noise issues compared to onshore sites [1]. However, offshore wind
turbines are faced with additional reliability challenges. Replacement
and repair of components is expensive and time-consuming due to diffi-
culties accessing the site and dependency on good weather conditions.
Thus, unscheduled downtimes as a result of component failure can lead
to high operational and maintenance expenditures (O&M). For offshore
wind turbines the O&M expenditures can reach 34% of the levelised
cost of energy (LCOE) [2]. A major contributor to O&M expenditures is
the rotor system consisting of blades, hub, pitch actuators and bearings
with frequent failures and long downtimes [3]. Imbalances in the rotor
system are considerably harmful, as they not only reduce the electrical
power output [4,5], but also increase fatigue loads on the blades and
the tower [6].

The term imbalance refers in this article to physical disturbances
of the rotor system and is not to be confused with class imbalance,
which describes the uneven distribution of training data in data-driven
fault diagnosis methods. Rotor imbalances are generally categorized as
aerodynamic imbalances, which include pitch and yaw misalignment,
and mass imbalances. Pitch misalignment refers to the incorrect angular
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positioning of one or multiple blades and can be caused by manufactur-
ing errors, installation errors or failures of pitch sensors and actuators.
Certification guidelines (GL Standards, 2010, Sect. 4.3.4.1, pp. 4–20)
require relatively small pitch misalignment of ±0.3◦ [7]. Nonetheless,
a recent measurement campaign of 1100 turbines revealed that 38%
of operating turbines do not meet these requirements [8]. Yaw mis-
alignment, the misalignment of rotor axis and wind direction, occurs
to a degree in most operating wind turbines, since yaw control systems
activate only when the yaw angle exceeds a certain threshold in order
to reduce duty cycles [9]. In addition to operational yaw misalignment,
the inaccuracy of wind wanes due to wake turbulence, poor calibration
or errors on the control side can cause static or dynamic misalignment.
Residual mass imbalance can occur due to imperfect manufacturing and
installation of the blades, which is generally alleviated before commis-
sioning of the turbine, where the rotor is rebalanced by technicians
according to ISO 21940-11:2016 [10] by adding compensating masses.
During operation, however, accretion of dirt, moisture or ice can cause
additional mass imbalance [11].

Research on wind turbine faults generally falls into to the areas of
fault diagnosis, fault prognosis and resilient control. Fault diagnosis
refers to the detection and classification of different failure modes,
fault prognosis describes the prediction of the fault progression and
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remaining useful life, and resilient control is a technique to minimize
the effects of faulty components on the wind turbine operation [12].
This paper, like most publications on rotor imbalance, is exclusively
concerned with fault diagnosis.

Effective techniques for rotor imbalance detection are frequency-
domain methods, which monitor the once per revolution (1P) frequency
peak. This is based on the knowledge that in the case of rotor imbal-
ance faults the aerodynamic, gravitational or inertial forces are not in
balance, such that the turbine is excited with additional periodic loads
at the rotor frequency 1P. The SCADA signals rotor speed and side-
side nacelle accelerations are the state-of-the-art for rotor imbalance
detection according to Hyers et al. [13]. Studies have also demonstrated
the possibility of rotor imbalance detection with electrical signatures
of the generator [14,15] or by direct measurement of blade loads with
strain gauges [9,11].

While rotor imbalance detection is straightforward, more research
is required for diagnostics, which includes the classification of different
rotor imbalance types and the estimation of the fault severity, e.g the
pitch or yaw angle. Niebsch et al. [16] developed a method for simul-
taneous estimation of mass and aerodynamic imbalances, which entails
physical modelling of rotor imbalances and wind turbine dynamics,
and solving the inverse problem. Kusnick et al. [11] argue that pitch
misalignment decreases the power output contrary to mass imbalance
and advocate for the mean power as a simple diagnostic criterion. In-
vestigations concerned exclusively on detection and diagnosis of pitch
misalignment are found in [7,17,18]. Bertele et al. propose a method
for pitch misalignment detection and correction that linearly correlates
the error in pitch angle with the amplitude of nacelle accelerations at
1P [7]. Cacciola et al. as well as Cho et al. use neural networks to
quantify pitch misalignment severity and identify the faulty blade [17,
19]. Kusiak et al. apply data mining algorithms and predictive machine
learning models to diagnose pitch misalignment [18]. Many studies are
devoted to indirectly estimating the yaw angle and thus circumventing
the inaccuracy of wind vanes [9,20,21]. Botasso et al. estimate yaw
misalignment and wind shear by observation of blade root bending
moments [9]. Choi et al. apply machine learning methods to estimate
yaw misalignment from SCADA data [20]. Jing et al. estimate yaw
misalignment based on the reduction in electrical power output [21].

Diagnostic methods reported in literature can be broadly classi-
fied as physics-based [7,9,16], data-driven [15,17–21] and knowledge-
based approaches [11], each with their own limitations. Physics-based
methods require accurate aeroelastic models, which are challenging to
construct and validate without full knowledge on turbine specifications
and system parameters such as stiffness values. The added uncertainty
from model assumptions and simplifications invariably increases the
uncertainty in diagnosis. Data-driven methods on the other hand are
shown to perform with high accuracy, but the challenge lies in obtain-
ing sufficient training data of faulty conditions. Field measurements
of naturally occurring faults are generally sparse and may require
additional, expensive equipment such as LIDAR [20] to determine
the ground truth. Knowledge-based methods rely on theoretical and
practical expertise of fault causes and effects. The main difficulties lie
in the acquisition and management of domain knowledge. This paper
presents a knowledge-based approach to detection and diagnosis of
rotor imbalance faults, summarized as follows:

1. Knowledge-based expert system
2. Classification of pitch misalignment, yaw misalignment and

mass imbalances
3. Leveraging drivetrain CMS data
4. Stochastic approach that accounts for turbulence induced vari-

ance

A knowledge-based expert system is proposed, which is comprised
of heuristic ‘if-then’ decision rules. The expert system is developed
on the basis of domain knowledge acquired from literature review,
71

first principles reasoning and analysis of aeroelastic simulation results.
Neither physical modelling nor training data of faulty conditions are
required for the method implementation.

Secondly, the proposed diagnostic method aims at distinguishing
the three types of rotor imbalances pitch misalignment, yaw misalign-
ment and mass imbalance, while earlier works have mainly focused
on one fault type or the distinction of pitch misalignment and mass
imbalance.

Thirdly, the proposed method incorporates drivetrain condition
monitoring system (CMS) signals, while the state-of-the-art are SCADA
signals characterizing global turbine dynamics such as nacelle acceler-
ations and rotor speed. Drivetrain CMS vibration signals can provide
further insight into the dynamics of the closely coupled rotor and
drivetrain systems and the impact of rotor imbalances in a holistic
perspective. In addition, CMS sensors are cost-effective and available
in most modern offshore wind turbines.

Lastly, the proposed method explicitly accounts for the volatility
of environmental conditions and the measurement noise of sensors.
Statistical methods of change detection are employed here, which
are proven to be robust methods for fault detection under noise and
unknown disturbances and have found application in the detection of
main bearing faults in earlier works [22].

The remainder of this paper is organized as follows: Section 2
presents in detail the methodology of fault detection and diagnosis, as
well as the high-fidelity simulation models to evaluate the proposed
method. The following Section 3 discusses dynamic system responses
to rotor imbalances both qualitatively and with simulation results; and
assesses the detection and diagnostic performances against a bench-
mark machine learning classifier. Concluding remarks are provided in
Section 4.

2. Methodology

The proposed method for rotor imbalance diagnosis based on driv-
etrain condition monitoring is formalized in the following sections.
Simulations are conducted with high-fidelity models of the global wind
turbine and the drivetrain for different rotor imbalance cases and vary-
ing environmental conditions (Section 2.1). Several simulated signals
are selected to emulate SCADA and drivetrain CMS signals, and are
postprocessed to extract frequency- and time-domain statistical features
that are indicative of rotor imbalances (Section 2.2). Statistical methods
of change detection are then applied to derive test statistics for fault
detection (Section 2.3.1). Classification of the rotor imbalance type
uses domain knowledge formalized as an expert system (Section 2.3.2).
Identification of the faulty blade is based on maximum likelihood
estimates of the phase angle (Section 2.3.3). The detection and diag-
nostic performance of the proposed method is evaluated on simulated
sensor samples of different fault and environmental conditions against
a benchmark machine learning classifier (Section 2.4).

2.1. Simulation

High-fidelity dynamic simulation models based on the DTU 10 MW
reference wind turbine [23] mounted on the Nautilus semisubmersible
floating platform [24] are used in this study. Selected specifications
of the reference turbine are listed in Table 1. The decoupled analysis
approach is employed with two separate models for simulation of the
global wind turbine response and the drivetrain response, respectively.
The global model is implemented in the aero-servo-elastic simulation
tool OpenFAST [25]. Rotor imbalances of pitch misalignment, mass
imbalance and yaw misalignment are introduced in the global model.
The simulated rotor hub loads and nacelle motions in six degrees of
freedom obtained from the global model are imposed as boundary con-
ditions on the higher-fidelity drivetrain model. The drivetrain model
is implemented in the multi-body simulation software SIMPACK [26],

which allows for detailed analysis of internal drivetrain dynamics [27].
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Table 1
DTU 10MW reference turbine specifications [23].
Wind turbine type 3 blade, upwind horizontal axis
Controller type pitch regulated, variable speed
Drivetrain type 3 stage, medium speed
Cut-in wind speed [m/s] 4
Cut-out wind speed [m/s] 25
Rated wind speed [m/s] 11.4
Rated power [MW] 10
Rotor diameter [m] 178.3
Rotor mass [kg] 229 000
Blade mass [kg] 41 000
Hub Height [m] 119.0
Gearbox ratio [–] 1:50.039
Minimum rotor speed [rpm] 6.0
Maximum rotor speed [rpm] 9.8

Table 2
Fault cases (FC). Mass imbalances are expressed in the quality grade G of ISO
21940-11:2016 [10]. Faults are constant over the entire simulation period of 4000 s.

h m1 m2 m3 p1 p2 p3 y1 y2 y3

Mass [–] 0 G32 G48 G64 0 0 0 0 0 0
Pitch [deg] 0 0 0 0 1 2 3 0 0 0
Yaw [deg] 0 0 0 0 0 0 0 5 10 15

Table 3
Environmental conditions (EC) with wave height 𝐻𝑠, wave period 𝑇𝑝, wind speed 𝑈
and turbulence intensity 𝐼 .
Source: Adopted from Nejad et al. [28].

EC1 EC2 EC3 EC4 EC5 EC6

𝐻𝑠 [m] 2.0 4.5 5.0 5.0 4.0 5.5
𝑇𝑝 [s] 8.0 12.0 14.0 12.0 10.0 14.0
𝑈 [m/s] 4.0 7.0 10.0 12.0 14.0 20.0
𝐼 [–] 0.26 0.19 0.16 0.15 0.14 0.12
# seeds 6 6 6 6 6 6

Several fault cases are simulated, as specified in Table 2. Three cases
f pitch misalignment (p1, p2, p3), mass imbalances (m1, m2, m3)
nd yaw misalignment (y1, y2, y3), as well as one reference case of
ealthy conditions (h) are considered. The selection of realistic pitch
isalignment values is based on the findings of Saathoff et al. [8],
ho report that pitch misalignment of 0.6◦–2.0◦ occurred in 35.3% and
igher cases of > 2◦ occurred only in 2.6% of investigated operat-
ng wind turbines. Only positive misalignment (towards feather) and
nly misalignment of a single blade is considered in this study. Pitch
isalignment is implemented by increasing the structural twist of one

lade in the aeroelastic model.
The mass imbalance cases are expressed in the imbalance quality

cale G of standard ISO 21940-11:2016 [10] in accordance to Kusnick
t al. [11]. The standard recommends permissible residual imbalance
evels 𝑈𝑝𝑒𝑟 for different applications, rotor speeds 𝑁 and weight 𝑊 ,
xpressed by Eq. (1)

𝑝𝑒𝑟[g mm] = 9549⋅𝐺[−]
𝑊 [kg]
𝑁[rpm]

. (1)

ind turbine rotors are generally rebalanced to a residual imbalance
f G16 before commissioning [11]. Guided from this classification,
he levels of G32, G48 and G64 are selected as low to severe mass
mbalances in operating turbines caused for example by ice accretion.
he mass imbalance faults are implemented in the global simulation
odel by increasing the mass density of one blade by 0.58%, 0.88%

nd 1.17% respectively. It should be noted that ice accretion in reality
lso affect the aerodynamic properties of the blades, which may cause
erodynamic imbalances and reduce the electrical power output. These
ffects are not considered in this numerical study; the faults are rather
odelled as pure inertial imbalances. The yaw misalignment cases

f 5◦, 10◦ and 15◦ are selected based on comparable works on yaw
isalignment simulation [9,29].
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The ten fault cases are simulated under six different environmental
onditions (EC) adopted from Nejad et al. [28], where EC1 to EC3
re below and EC4 to EC6 are above rated wind speed of 11.4 m/s
Table 3). Each combination of FC and EC is simulated for a time
eriod of 4000 s for 6 seeds of turbulent wind fields complying with
EC 61400-3. The numerical step size is 0.025 s for the aeroelastic
imulations and 0.005 s for the drivetrain simulations. The first 400
of simulated time series are disregarded due to simulation start-up

ransients and the remaining 3600 s are partitioned into 60 s sections
or further signal processing. This concludes to a total number of 360
ata points for each FC and EC combination.

.2. Signal and feature selection

Synthetic SCADA and drivetrain CMS signals are generated by sim-
lation of the aeroelastic and the drivetrain model respectively. White
aussian noise (WGN) is added to each simulated signal to represent
easurement noise. The signal-to-noise-ratio (𝑆𝑁𝑅 = 𝜎2𝑠𝑖𝑔𝑛𝑎𝑙∕𝜎

2
𝑊𝐺𝑁 )

is set to a relatively conservative value of 10 based on data sheets
of commercial CMS vibration sensors and typical amplitudes under
normal operation. The following SCADA signals, which are tradition-
ally used for rotor imbalance detection, are included in the analysis:
rotor speed 𝜔𝑟𝑜𝑡, side-side nacelle accelerations 𝑎𝑁𝑎𝑐,𝑌 and electrical
power output 𝑃𝑒𝑙. Drivetrain CMS signals are selected based on ISO
10816-21 [30], which recommends the placement of piezo-resistive
or capacitive accelerometers on the housing of the main bearings, the
gearbox and the generator for condition monitoring. ISO 10816-21[30]
furthermore recommends the use of velocity signals by integration of
measured accelerations for monitoring faults with low characteristic
frequencies in the range of 0.1 to 10 Hz. The MBS drivetrain model
is capable of simulating gearbox housing velocities, but is limited
with regard to main bearing and generator housing vibrations, since
the respective housings are not specifically implemented but rather
considered part of the bedplate. The subsequent analysis focuses on
gearbox housing velocities, as these represent the most realistic CMS
vibration signals. The velocities are extracted in all three coordinate
directions (axial 𝑣𝑋 side-side 𝑣𝑌 , vertical 𝑣𝑍 ), since ISO 10816-21[30]
ecommends both axial and radial measurements.

Statistical features or health indicators (HI) are generally extracted
or condition monitoring, which should ideally be sensitive to faults
nd increase monotonically with fault progression to facilitate fault di-
gnosis by trend analysis [31]. According to ISO 10816-21[30], the rec-
mmended feature for general drivetrain CMS is the root mean square,
owever other time-domain statistical variables including mean, kur-
osis, skewness, peak value, crest factor are also applied [31]. In this
pecific case, however, the once per revolution (1P) vibration ampli-
ude and phase are reported to be much more effective features to
etect rotor imbalance faults, and show a linear correlation with the
agnitude and the location of the fault under idealized conditions [7].
he 1P-amplitude and the 1P-phase of vibration signals describe the
ynamic turbine response to the imbalance loads, which are typically
inusoidal with a frequency of 1P. Discrete Fourier transform (DFT)
an be applied to calculate these features, however, the variability
f the rotor speed must be taken into consideration, which leads to
mearing of the 1P-peak in the frequency spectrum and may intro-
uce errors in the amplitude estimates. For this reason, computed
rder tracking (COT) is applied, which is commonly used in rotating
achinery to eliminate the influence of shaft speed variations when

xtracting characteristic bearing and gear fault frequencies [32]. COT
s a resampling and interpolation technique that transforms a discrete
ignal from the time domain to the angular domain using shaft speed
easurements. The signal 𝑥 measured at constant time intervals given

y the sampling frequency 𝑓𝑠 = 1∕𝛥𝑡 is resampled in the angular
omain with equidistant angular increments 𝛥𝛼

(𝑖𝛥𝑡) ↦ 𝑥∗(𝑛𝛥𝛼). (2)
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Fig. 1. Proposed knowledge-based expert system for diagnosis of rotor imbalance faults using SCADA and CMS measurements. 𝑎𝑁𝑎𝑐,𝑌 : Nacelle side-side acceleration amplitudes,
𝑣𝐺𝐵,𝑌 : CMS vibration amplitudes at the gearbox housing, 𝜔𝑅𝑜𝑡: Rotor speed amplitudes.
The 1P-amplitude 𝑥 and 1P-phase ∠𝑥 are then calculated in the angular
domain by DFT [33]

𝑥 =
√

�̂�21 + �̂�22,

∠𝑥 = arctan
(

−�̂�2
�̂�1

)

.
(3)

where

�̂�1 =
2
𝑁

𝑁
∑

𝑛=0
𝑥∗(𝑛𝛥𝛼)⋅ cos(𝑛𝛥𝛼),

�̂�2 =
2
𝑁

𝑁
∑

𝑛=0
𝑥∗(𝑛𝛥𝛼)⋅ sin(𝑛𝛥𝛼).

(4)

The 1P-amplitude and phase are selected as statistical feature for
all SCADA and CMS vibration signals that indicate the wind turbine
dynamic response. For the electrical power signals the mean value is
chosen, as it is reported that both pitch and yaw misalignment decrease
the power production [4,21].

2.3. Proposed fault diagnosis strategy

The proposed diagnostic method for rotor imbalances comprises
the three steps detection, classification and localization, as depicted in
Fig. 1. Fault detection is realized with methods of statistical change
detection from normal behaviour (Section 2.3.1). Classification of the
rotor imbalance type uses domain knowledge formalized as an expert
system (Section 2.3.2). Identification of the faulty blade is based on
maximum likelihood estimates of the phase angle (Section 2.3.3).

2.3.1. Fault detection by statistical change detection
Statistical change detection is a robust methodology for fault de-

tection under noise and unknown disturbances [22]. It provides a
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framework to identify statistically significant changes to the normal
behaviour, which captures the naturally occurring variation of mea-
surements from turbulence, wakes and other environmental influences.
In statistical change detection the null-hypothesis 𝐻0 and the alterna-
tive hypothesis 𝐻1 are defined [33], representing in this case healthy
and faulty behaviour. A sequence of independent random variables
𝑥[𝑛], 𝑛 = 1, 2...𝑁 is sampled in order to test for each hypothesis. Under
healthy conditions 𝐻0 the samples 𝑥[𝑛] are assumed to be normally
distributed with mean 𝜇0 and standard deviation 𝜎0. Under faulty
conditions the dynamic response deviates from its normal behaviour,
which entails a change in the distribution parameters of 𝑥[𝑛]. The mean
value 𝜇1 under 𝐻1 is assumed to increase, while the standard deviation
𝜎1 is considered invariant. The assumptions of normal distributions
and constant standard deviation is supported by the simulation results
(Section 3.3). It is found that the signal variance is primarily a result of
wind turbulence and insensitive to the fault case. The problem at hand
is referred to as a binary hypothesis testing problem and expressed by
Eq. (5)

𝐻0 ∶ 𝑥[𝑛] ∼ 𝑁(𝜇0, 𝜎0),

𝐻1 ∶ 𝑥[𝑛] ∼ 𝑁(𝜇1, 𝜎1), 𝜇1 > 𝜇0, 𝜎1 = 𝜎0.
(5)

It is feasible that the operator has acquired knowledge of the distribu-
tion parameters under 𝐻0, known as the normal behaviour model, from
historical measurements. However, the behaviour under any rotor fault
given by 𝜇1, 𝜎1 is considered unknown. In this scenario the generalized
likelihood ratio test (GLRT) provides the optimal decision criterion or
test statistic. The GLRT decides for the hypothesis 𝐻1, if the likelihood
ratio 𝐿(𝑥), given by Eq. (6), exceeds a threshold 𝛾 [33]

𝐿(𝑥) =
𝑝(𝑥; �̂�1, 𝜎1,𝐻1)

𝑝(𝑥;𝐻0)
> 𝛾. (6)

The unknown mean 𝜇1 is replaced by its maximum likelihood estimate
(MLE) �̂� given by the sample mean �̄� (Eq. (7)), while the unknown
1
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variance 𝜎21 is assumed to be identical to the variance of healthy
conditions 𝜎20

̂1 = �̄� = 1
𝑁

𝑁−1
∑

𝑛=0
𝑥[𝑛], �̂�1 = 𝜎0. (7)

By inserting the Gaussian probability density functions and substituting
the MLE (Eq. (7)) in the likelihood ratio (Eq. (6)), the test statistic 𝑇 (𝑥)
an be derived as the scaled square of the sample mean, as shown in
q. (8)

(𝑥) = 𝑁�̄�2

𝜎20
> 𝛾 ′. (8)

Under the assumption of normally distributed variables 𝑥[𝑛] (Eq. (5)),
the test statistic follows a Chi-squared distribution with degrees of free-
dom 𝜈 and non-centrality parameter 𝜆. With this information, adequate
thresholds 𝛾 ′ can be set such that a maximum probability of false alarm
𝐹𝐴 is met, as shown in Eq. (9), where 𝐹−1 expresses the inverse
umulative density function of the non-central Chi-squared distribution

′ = 𝐹−1(1 − 𝑃𝐹𝐴; 𝜈 = 1, 𝜆 =
𝑁𝜇2

0

𝜎20
). (9)

The probability of false alarm serves as a parameter to balance false
positive and false negative rates [33]. Frequent false positives are
disruptive to the wind turbine operation and detrimental to the pro-
ductivity, while the missed detection of a fault (false negative) is
potentially harmful and may lead to critical failures. The reported value
of 𝑃𝐹𝐴 in comparable publications on statistical fault detection in wind
turbines ranges widely from 10−2 to 10−12 [34,35]. In this study 𝑃𝐹𝐴
is set to 10−4.

2.3.2. Knowledge-based fault classification: Expert system
Wind turbine operators may not have sufficient training data to

construct data-driven models or quantitative domain knowledge to
formulate accurate aeroelastic models for model-based diagnosis, but
instead have acquired heuristic expertise in the form of qualitative
system behaviour, conditional statements or causal relations of faults
and effects. Knowledge-based methods exhibit high flexibility in data
representation and thus take full advantage of such heuristic domain
knowledge. In this paper, a knowledge-based expert system is proposed,
which is developed with qualitative knowledge of rotor imbalance
effects. For comparison, a classical data-driven approach is presented in
Section 2.4 using a Linear Discriminant Analysis (LDA) classifier, which
is constructed by regression on training data of faulty conditions.

Expert systems are knowledge-based methods that can find applica-
tion in drivetrain condition monitoring [36,37]. Kusnick et al. [11] also
presented an expert system for pitch misalignment and mass imbalance
diagnosis. Expert systems are predictive models that map observations
to fault types by recursive application of decision rules and thus mimic
and automate human reasoning in the process of problem solving [38].
The decision rules and hierarchical structure of expert systems are
formulated with the knowledge-base, a collection of domain-knowledge
maintained by experienced professionals. The main advantages of ex-
pert systems are the high transparency of the decision process, which
positively affects the trust of stakeholders in the diagnosis, and low
requirements of quantitative domain knowledge for implementation.
Limitations of expert systems are the high uncertainties in the thresh-
olds of decision rules, which are commonly addressed with fuzzy logic
or probabilistic methods.

The proposed expert system, depicted in Fig. 1, distinguishes be-
tween the four classes Healthy, Mass imbalance, Yaw misalignment and
Pitch misalignment with three binary decision rules. Statistical change
detection methodology is adopted to formulate the decision rules. Each
node is considered a binary hypothesis testing problem, specifically
a mean-shifted Gauss problem (Eq. (5)). The decision rules are then
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given by the test statistic in Eq. (8) and respective thresholds, which
are a function of the normal behaviour model 𝜇0, 𝜎0 and the parameter
𝑃𝐹𝐴 (Eq. (9)). Since the normal behaviour is strongly influenced by
environmental conditions, measurements of current wind speed 𝑈𝑤𝑖𝑛𝑑
are necessary to set appropriate thresholds. The first node represents
fault detection by testing for increased side-side nacelle acceleration
amplitudes 𝑎𝑁𝑎𝑐,𝑌 caused by periodical shear forces. Both aeroelastic
simulations in this study (Section 3.3) and literature suggest that 𝑎𝑁𝑎𝑐,𝑌
is a universal indicator of any rotor imbalance type. In the second
node pitch misalignment is isolated by testing for increased lateral
gearbox housing vibrations at 1P (𝑣𝐺𝐵,𝑌 ), which indicate periodic
out-of-plane bending moments that are characteristic for pitch mis-
alignment (Section 3.3). Lastly, mass imbalance is distinguished from
yaw misalignment by its characteristic oscillation in rotor speed (𝜔𝑅𝑜𝑡)
induced by gravitational imbalances (Section 3.3). The probability of
false alarm is set to a relatively low value of 𝑃𝐹𝐴 = 10−4 in all three
nodes, which correspond to high detection thresholds 𝛾𝑖.

2.3.3. Fault localization by phase angle estimation
In addition to the classification of the rotor imbalance type, it is

necessary to localize the fault, i.e. identify the blade with deviating
mass or pitch angle, in order to perform corrective measures. The fault
location is defined as the angle 𝜃 in the rotor plane, where 𝜃 = 0 refers
to blade 1, 𝜃 = 2𝜋∕3 to blade 2 and 𝜃 = −2𝜋∕3 to blade 3. It can
be derived analytically that the phase of the 1P harmonic of nacelle
accelerations is directly related to the fault location in the rotor [7].
The fault location is obtained by correcting the 1P-phase estimate ∠𝑥
(Eq. (3) with the current rotor azimuth angle 𝜙. The rotor azimuth
angle is commonly measured with encoders on the main shaft and
logged in the SCADA system

�̂� = ∠𝑥 − 𝜙. (10)

Lastly, the estimated fault location �̂� is associated with the blade
number using the boundaries 𝜋∕3 and −𝜋∕3 (Fig. 1).

2.4. Reference fault diagnosis method: Linear discriminant analysis

A Linear Discriminant Analysis (LDA) classifier is selected as a
benchmark to evaluate the proposed diagnostic method. LDA is a
supervised machine learning method used for classification [39]. The
prerequisites for LDA are similar to those of the statistical change
detection method, in that (a) each class 𝑘 follows multivariate Gaussian
distributions and (b) shares a common covariance matrix �⃗�, which are
valid assumptions according to the simulation results (Section 3.3)

𝐻𝑘 ∶ �⃗� ∼ 𝑁(𝜇𝑘, �⃗�), �⃗�𝑘 = �⃗�∀𝑘. (11)

LDA distinguishes between classes 𝑘, in this context fault types, by
imposing a sample vector �⃗� of different predictors (here sensor signals)
on linear discriminant functions 𝛿𝑘. The class 𝐺 is predicted, whose
mean vector 𝜇𝑘 is most closely aligned with the sample vector �⃗� and
thus maximizes the respective linear discriminant function (Eq. (12))

𝐺(�⃗�) = argmax𝑘(𝛿𝑘)

= argmax𝑘
(

�⃗�𝑇 �⃗�−1𝜇𝑘 −
1
2
𝜇𝑇
𝑘 �⃗�

−1𝜇𝑘 + ln𝜋𝑘
)

,
(12)

where

𝜇𝑘 = 1
𝑁𝑘

𝑁𝑘
∑

𝑘
�⃗�𝑘,

�⃗� = �⃗�1 =
1

𝑁𝑘 − 1

𝑁𝑘
∑

𝑘
(�⃗�𝑘 − 𝜇1)(�⃗�𝑘 − 𝜇1)𝑇 .

(13)

The distribution parameters 𝜇𝑘, �⃗� and class priors 𝜋𝑘 are not known
beforehand and must be estimated with labelled training data. The class
priors of each class are identical, since an equal number of simulations
are conducted for each FC, and can thus be omitted in Eq. (12). The
mean vector and covariance matrix are determined by their maximum

likelihood estimate (Eq. (13)).
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Table 4
First principles analysis of rotor imbalances and induced drivetrain responses.
Fault type Mass imbalance Pitch misalignment Yaw misalignment

Imbalance forces 𝐹𝐺 = 𝑐𝑜𝑛𝑠𝑡 𝐹𝐶 = 𝑐𝑜𝑛𝑠𝑡 𝛥𝐹𝑁 = 𝑐𝑜𝑛𝑠𝑡 𝛥𝐹𝑡 = 𝑐𝑜𝑛𝑠𝑡 𝛥𝐹𝑁 (𝜔𝑡) 𝛥𝐹𝑡(𝜔𝑡)
⇓ ⇓ ⇓ ⇓ ⇓ ⇓

Rotating frame 𝑀𝑥(𝜔𝑡) 𝐹𝑧 = 𝑐𝑜𝑛𝑠𝑡 𝑀𝑦 = 𝑐𝑜𝑛𝑠𝑡 𝐹𝑦 = 𝑐𝑜𝑛𝑠𝑡 N/A
⇓ ⇓ ⇓ ⇓ ⇓

Fixed frame 𝑀𝑋 (𝜔𝑡) 𝐹𝑌 ,𝑍 (𝜔𝑡) 𝑀𝑌 ,𝑍 (𝜔𝑡) 𝐹𝑌 ,𝑍 (𝜔𝑡) 𝐹𝑌 (𝜔𝑡)
⇓ ⇓ ⇓ ⇓ ⇓

Structural response – 𝑌 (𝑡) – 𝑌 (𝑡) 𝑌 (𝑡)

Drivetrain response �̇�(𝑡) – 𝑌 (𝑡) – –
Fig. 2. Imbalance forces in rotating (𝑥, 𝑦, 𝑧) and fixed coordinate frame (𝑋, 𝑌 ,𝑍) for different rotor imbalances.
3. Results and discussion

3.1. Analysis based on first principles

For the development of robust, physics-based diagnostic methods, it
is crucial to understand the physical relationship of faults and dynamic
system responses. In this section a short elaboration on the effect of
rotor imbalance faults on main shaft loads in the rotating and fixed
frame and their corresponding dynamic responses in the wind turbine
structure and drivetrain is presented and summarized in Table 4. An
idealized case without turbulence, wind shear, rotor axis tilt and tower
shadow effects is considered to better isolate the primary effects of rotor
imbalances.

Mass imbalance can be represented by a point mass 𝑚 with distance
𝑟 from the rotor axis that entails imbalance forces in the form of grav-
itational 𝐹𝐺 and centrifugal forces 𝐹𝐶 (Fig. 2). Centrifugal imbalance
forces cause constant main shaft loads in the radial direction of the
rotating frame (𝐹𝑧), which translate to periodical shear forces in the
fixed frame (𝐹𝑌 , 𝐹𝑍 ). Shear forces primarily excite transverse bending
modes of the tower. Gravitational imbalance forces are constant in the
fixed frame, but cause torque oscillations (𝑀𝑥,𝑀𝑋) due to periodical
changes of lever length (𝛥𝑌 ), which excite torsional modes of the
drivetrain.

A pitch misalignment of 𝛥𝜃 leads to discrepancies of lift forces 𝐹𝐿
and drag forces 𝐹𝐷 between faulty and healthy blades, which in turn
can be represented as differences in thrust 𝛥𝐹𝑁 and tangential forces
𝛥𝐹𝑡. Thrust imbalances translate to constant bending moments in the
rotating frame (𝑀𝑦) and periodical yaw and tilting moments in the
fixed frame (𝑀𝑌 ,𝑀𝑍 ). Imbalances in tangential forces correspond to
constant circumferential forces in the rotating frame (𝐹𝑦) and peri-
odical shear forces in the fixed frame (𝐹𝑋 , 𝐹𝑌 ). The combination of
shear forces and bending moments has an impact on both structural
and drivetrain responses. Shear forces pass through the main bearings
into the structure due to the high radial bearing stiffness and excite
transverse tower bending modes, while out-of-plane bending moments
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primarily excite bending modes of the main shaft, which further impact
the dynamics of downwind gear stages.

In the case of yaw misalignment, the effective angle of attack varies
periodically as a function of the blade azimuth angle; it is increased in
the upper half of the rotor disk and decreased in the lower half com-
pared to non-yawed conditions. As a result the thrust and tangential
forces of each blade oscillate in the rotating frame (𝐹𝑡(𝜔𝑡), 𝐹𝑁 (𝜔𝑡)). The
load effects of yaw misalignment on the tower and the drivetrain are
highly complex and can exhibit both upwards and downwards trends
depending on the operational region and the yaw angle sign [29,40].
Dynamic responses to yaw misalignment are reportedly increased tower
sway and platform roll motions due to shear force excitations [41].

3.2. Main shaft loads

The qualitative analysis of rotor imbalance dynamics in Section 3.1
is underlined with aeroelastic simulation results of the global wind
turbine model. The analysis is limited to the amplitudes of the once per
revolution (1P) oscillatory load component, where the effect imbalance
faults is observable. Shown in Fig. 3 are the 1P-amplitudes of main
shaft loads averaged over 6 realizations of one hour simulations for
each FC–EC combination. The loads are extracted at the rotor hub in
the fixed reference frame, where X is aligned with the rotor axis. First,
a significant influence of environmental conditions can be observed.
Shear forces (𝐹𝑌 ) and out-of-plane bending moments (𝑀𝑌 ,𝑀𝑍 ) show
a positive trend with increasing wind speeds due to higher aerodynamic
loads. Thrust (𝐹𝑋) and torque (𝑀𝑋) on the other hand level off or
decrease above rated wind speed, which can be attributed to the pitch
control system limiting the aerodynamic torque. Furthermore, there is a
discernible peak in the thrust excitations at EC3 (𝑈 = 10 m∕s), which is
slightly below rated wind speed. Similar results are reported by Nejad
et al. [42], where the highest axial damage equivalent loads (DEL) in
floating offshore wind turbines are simulated at 𝑈 = 11 m∕s. Nejad
et al. argue that the frequent activation and deactivation of the pitch
control system in the region close to rated wind speed is the causes of
increased axial DEL.
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Fig. 3. 1P-amplitude �̃� (Eq. (3)) of main shaft loads averaged over 6 seeds of one hour simulations for different rotor imbalances and environmental conditions.
Fig. 4. 1P-amplitude (Eq. (3)) of global and drivetrain signals averaged over 6 seeds of one hour simulations of for different rotor imbalances and environmental conditions.
The effect of different rotor imbalances is indicated in Fig. 3 by
the change relative to healthy conditions (h). It is apparent that mass
imbalances (m1, m2, m3) cause significant excitations in shear (𝐹𝑌 )
and vertical forces (𝐹𝑍 ) due to centrifugal forces (𝐹𝐶 , Table 4), as well
as torsional excitations (𝑀𝑋) from gravitational forces (𝐹𝐺, Table 4).
Torsional excitations are only noticeable at lower wind speeds (EC1,
EC2), where gravitational forces are more significant compared to aero-
dynamic forces. At EC1 the torque amplitudes due to mass imbalance
reach 135 kN m, which amounts to 22% of the mean aerodynamic
torque of 616 kN m. For reference, at EC6 the torque amplitudes of 55
kN m are insignificant compared to the rated aerodynamic torque of
10,000 kN m. Yaw misalignment (y1, y2, y3) appears to consistently
increase amplitudes of shear forces (𝐹𝑌 ) for all EC, while the effect
other load components is insignificant. Similar results are reported by
Cardaun et al. [29]. Pitch misalignment (p1, p2, p3) results in high
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excitations in shear (𝐹𝑌 ), vertical forces (𝐹𝑍 ) from circumferential
force imbalances (𝛥𝐹𝑡, Table 4) and out-of-plane bending moments
(𝑀𝑌 ,𝑀𝑍 ), which can directly be attributed to thrust imbalances (𝛥𝐹𝑁 ,
Table 4). In this regard pitch misalignment is unique, as it is the only
rotor imbalance fault that causes 1P excitation with bending moments.

3.3. Dynamic structural and drivetrain responses

Dynamic responses in the wind turbine structure and the drive-
train to the periodic imbalance forces discussed in Section 3.2 are
characterized with a selection of simulated SCADA and drivetrain
CMS signals, shown in Fig. 4. Indicative of structural dynamics are
nacelle accelerations 𝑎𝑁𝑎𝑐 in fore-aft (X), side-side (Y) and vertical (Z)
direction. Gearbox housing velocities 𝑣𝐺𝐵 , as well as rotor speed 𝜔𝑅𝑜𝑡
and electrical power output 𝑃 are shown to illustrate the lateral and
𝑒𝑙
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torsional drivetrain response. The vibration signals at the main bearings
and the generator exhibit similar behaviour to the gearbox housing
signals and are omitted for brevity. The respective statistical features
1P-amplitude or mean are calculated for each signals and averaged over
6 seeds of one hour simulations for each FC–EC combination. Central to
this discussion is the signal sensitivity towards faults, which is required
for robust fault detection. The signal sensitivity is formally quantified
by the change in mean value relative to the signal variance (𝑆 = 𝜇1−𝜇0

𝜎0
)

nd is indicated in Fig. 4 by the slope with respect to increasing fault
everity.

Mass imbalances appear to increase side-side nacelle motion as a
esult of periodic shear forces, as well as increase torsional vibration in
he drivetrain due to torque imbalances. Increased torsional vibrations
re unique to mass imbalance faults, however the signal sensitivity
s relatively low except at cut-in wind speeds (EC1). This is likely a
esult of the high aerodynamic torque that overshadows any torque
mplitudes from mass imbalances (Section 3.2). The effect of yaw
isalignment can primarily be observed in an increase of nacelle

ide-side acceleration amplitudes, which show a high sensitivity. The
rivetrain torsional dynamics are affected by yaw misalignment as
ell, however a consistent upwards or downwards trend cannot be
bserved. Furthermore, it is evident that yaw misalignment reduces
he mean electrical power by reducing the effective inflow wind speed,
s stated in many references, however the environmental influences
eem to dominate over effects of yaw misalignment. Unique dynamic
esponses to pitch misalignment can be observed in the drivetrain
ibration signals that show increased velocity amplitudes in side-side
nd vertical direction, which are likely a result of periodic out-of-plane
ending moments. In addition, pitch misalignment increases nacelle
ide-side motion with shear force excitation similar to the other rotor
mbalance faults. A minor reduction in power output is also observed
ue to reduced lift forces at the faulty blade.

In conclusion, the following characteristic traits of each rotor imbal-
nce are identified, which are leveraged as heuristic domain knowledge
or the proposed diagnostic method:

• Increased side-side nacelle acceleration amplitudes as a result of
periodical shear forces may be used universally for detection of
any type of rotor imbalance.

• Pitch misalignment may be isolated from other fault types by
increased lateral drivetrain vibration amplitudes caused by out-
of-plane bending moments.

• Mass imbalance may be identified at lower wind speeds by in-
creased rotor speed oscillations due to torque excitations.

.4. Fault detection by means of drivetrain CMS signals

Focus of this section is to assess the capabilities of drivetrain CMS
ignals relative to traditionally used SCADA signals for fault detection.
ccording to statistical change detection theory [33], the probability
f detection is primarily affected by three factors: the signal sensitivity
𝑆 = 𝜇1−𝜇0

𝜎0
), the sample size 𝑁 and the probability of false alarm 𝑃𝐹𝐴.

he signal sensitivity towards faults is discussed for different signals in
ection 3.3. Increased sample sizes 𝑁 effectively reduce the variance
f the test statistic and thus improve the confidence in fault detection.
wo test scenarios with sample lengths of 10 and 60 min (𝑁 = [10, 60])
re considered here to analyse the influence of 𝑁 and to give an
ndication of expected detection times. The parameter 𝑃𝐹𝐴 regulates the
xpected false positive rate by increasing or decreasing the detection
hreshold. In field operation 𝑃𝐹𝐴 must be set appropriately to balance
osts of false positives and detection rates. In this study a relatively low
alue of 𝑃𝐹𝐴 = 10−4 is assumed.

The test statistic 𝑇 (𝑥) (Eq. (8)) is applied on samples of simulated
rivetrain CMS and SCADA signals in order to quantitatively assess
ault detection performances. The detection thresholds (Eq. (9)) are set
or each signal and EC based on training data of healthy behaviour only.
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f

The testing data set consists of 360 realizations of the statistical features
mean and 1P-amplitude extracted from 1 min intervals for each FC–EC
combination. The resulting true positive rates (TPR) aggregated for all
environmental conditions are shown in Tables 5, 6 for sample lengths
of 10 and 60 min respectively.

The electrical power signal 𝑃𝑒𝑙, shows underwhelming performance
with TPR of less than 10% for the severe pitch and yaw misalignment
cases p3, y3. The signal sensitivity appears to be insufficient to reliably
detect pitch and yaw misalignment based a one hour observation.
Side-side nacelle acceleration amplitudes 𝑎𝑁𝑎𝑐,𝑌 show a response for
very rotor imbalance type. The highest TPR (> 0.95) are calculated
or yaw misalignment, even for short time frames of 10 min. The
ignal is less sensitive to pitch misalignment and mass imbalance with
aximum TPR of 0.64 and 0.61 for one hour observations. Hence,
acelle accelerations may be utilized as a universal detector for rotor
mbalances, however larger sample sizes are necessary for robust de-
ection of all fault types. Rotor speed amplitudes 𝜔𝑅𝑜𝑡 can be used in
rinciple for mass imbalance detection, however with a maximum TPR
f 0.22 the detection performance is inferior to nacelle accelerations.
earbox housing vibration signals show a significant response to pitch
isalignment, predominantly in side-side direction 𝑣𝐺𝐵,𝑌 , which results

n TPR near 1 for a 10 min sample. Similar results are obtained for
ibration signals at the main bearings and the generator housing, which
re omitted for brevity.

It is concluded that drivetrain vibration signals are particularly
eneficial for the detection of pitch errors, since they show much higher
ensitivity than classical nacelle acceleration signals.

.5. Classification performance

The proposed knowledge-based expert system and the reference
DA classifier are trained and tested on the simulated SCADA and
MS signals 𝑎𝑁𝑎𝑐,𝑌 , 𝑣𝐺𝐵,𝑌 , 𝜔𝑅𝑜𝑡 using 6-fold cross validation. The expert
ystem is trained exclusively on data of healthy conditions to determine
he normal behaviour model (𝜇0, 𝜎0) and set the thresholds 𝛾𝑖 (Eq. (9)),
hile LDA classifier is trained on the entire dataset to estimate dis-

ribution parameters 𝜇𝑘, 𝛴𝑘 (Eq. (13)) of each fault case. Each EC is
rained and tested separately to factor out influences of wind speed,
hich would be available from measurements in field operation.

The results for the expert system are shown in Fig. 5 as confusion
atrices. Confusion matrices relate the predicted values of a classifier
ith the actual values and are commonly used for performance assess-
ent in machine learning. The diagonal elements denote the number of

nstances, where a class is correctly predicted, whereas the off-diagonal
lements represent misclassifications between classes. The individual
ault severity levels (eg. m1, m2, m3) are aggregated into a single class
m), since the method is unable to estimate these. First, it is observed
hat all healthy cases with one exception are correctly classified as a
esult of the relatively low value of 𝑃𝐹𝐴 = 10−4 and corresponding
igh detection thresholds. In addition, all pitch misalignment cases are
orrectly identified regardless of the environmental conditions, which
uggests that the gearbox housing vibration signal 𝑣𝐺𝐵,𝑌 is effective at
solating this fault type. Yaw misalignment is correctly predicted in the
ajority of cases using nacelle accelerations 𝑎𝑁𝑎𝑐,𝑌 with the exception

f three misclassifications as mass imbalance. Mass imbalance is identi-
ied in 10 out of 18 cases at cut-in wind speeds (EC1) using rotor speed
mplitudes 𝜔𝑅𝑜𝑡. At higher wind speeds, however, the signal sensitivity
f 𝜔𝑅𝑜𝑡 is insufficient such that mass imbalances are either not detected
r misclassified as yaw misalignment. Reasons for the low sensitivity
t higher wind speeds may be higher influences of the aerodynamic
orque compared to the torque excitation from gravitational imbalance.
t is also feasible that above rated wind speeds the pitch controller is
ctively damping the 1P torque fluctuations.

For comparison, the results for a traditional LDA classifier are pre-
ented in Fig. 6. The LDA classifier is able to predict both fault type and

ault severity, as it is trained on a labelled dataset of faulty conditions.
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Table 5
True positive rates for fault detection with a 10 min sample size (𝑁 = 10) with test statistic 𝑇 (𝑥) (Eq. (8)).

h m1 m2 m3 p1 p2 p3 y1 y2 y3

Classical SCADA 𝑃𝑒𝑙 0.98 0.02 0.02 0.03 0.02 0.03 0.03 0.03 0.03 0.04

𝑎𝑁𝑎𝑐,𝑌 1 0.01 0.06 0.23 0.05 0.25 0.42 0.95 1 1

𝜔𝑅𝑜𝑡 0.98 0.03 0.04 0.07 0.02 0.02 0.02 0.02 0.02 0.02

Proposed drivetrain CMS 𝑣𝐺𝐵,𝑋 1 0 0 0 0 0.01 0,01 0 0 0

𝑣𝐺𝐵,𝑌 1 0 0 0 0.82 1 1 0 0 0

𝑣𝐺𝐵,𝑍 1 0 0 0 0.59 0.75 0.89 0 0 0.01
Table 6
True positive rates for fault detection with a 60 min sample size (𝑁 = 60) with test statistic 𝑇 (𝑥) (Eq. (8)).

h m1 m2 m3 p1 p2 p3 y1 y2 y3

Classical SCADA 𝑃𝑒𝑙 1 0 0 0 0 0 0.03 0 0 0

𝑎𝑁𝑎𝑐,𝑌 1 0.14 0.31 0.64 0.19 0.44 0.61 1 1 1

𝜔𝑅𝑜𝑡 0.94 0.06 0.17 0.22 0.06 0.06 0.06 0.06 0.06 0.06

Proposed drivetrain CMS 𝑣𝐺𝐵,𝑋 1 0 0 0 0 0 0 0 0 0

𝑣𝐺𝐵,𝑌 1 0 0 0 1 1 1 0 0 0

𝑣𝐺𝐵,𝑍 1 0 0 0 0.67 0.81 1 0 0.03 0.14
Fig. 5. Confusion matrix for knowledge-based expert system (Section 2.3.2) tested on one hour samples of simulated SCADA and CMS signals under healthy conditions (h) and
rotor imbalance faults (m, p, y).
With regard to pitch misalignment and yaw misalignment classification
the performance is comparable to the expert system with a TPR of close
to 100%. The prediction of mass imbalance is significantly improved:
Mass imbalance is longer misclassified as yaw misalignment, however
it still suffers from low detection rates due to a generally weak dynamic
system response and low signal sensitivities.

From these results it can be concluded that the SCADA signals 𝑎𝑁𝑎𝑐,𝑌
and 𝜔𝑅𝑜𝑡 in combination with the CMS signal 𝑣𝐺𝐵,𝑌 are suitable to
detect and classify the three considered rotor imbalance types, at least
at lower wind speeds. With the inclusion of training data of faulty
conditions, the classification accuracy may be improved, however such
information is rarely available in practice.

3.6. Fault localization accuracy

The accuracy of localizing the faulty blade is displayed in Fig. 7 for
both classical SCADA signals and the proposed CMS drivetrain signals.
The fault location is estimated with Eq. (10) based on one hour samples
and shown here aggregated for all environmental conditions. In all
simulated cases the fault is implemented at blade 1, which corresponds
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to 𝜃 = 0. The results show that an accurate localization of mass
imbalances is possible with the phase of nacelle acceleration signals
∠𝑎𝑁𝑎𝑐,𝑌 . The expected error (mean ± standard deviation) ranges from
−0.1 ± 27.4.5◦ (m1) to 2.0 ± 16.4◦ (m3). The remaining signals show
standard errors of higher than ±100◦ and are thus not suitable for
localizing mass imbalance. The best performance for localizing pitch
misalignment show side-side gearbox housing velocities ∠𝑣𝐺𝐵,𝑌 with
errors between 0.6 ± 11.2◦ (p1) to 0.1 ± 13.2◦ (p3). This is a significant
improvement compared to classical SCADA signals (∠𝑎𝑁𝑎𝑐,𝑌 ), which
result in much higher standard errors of up to ±71.5◦ (p1)

Similar conclusions as in Section 3.4 can be drawn in that drivetrain
CMS vibration signals outperform classical SCADA signals and facilitate
the detection and localization of pitch errors with much higher accu-
racy. For mass imbalance and yaw misalignment, however, the classical
approach with nacelle acceleration signals prevails.

3.7. Considerations for field implementation and sources of uncertainty

Implementation of the proposed knowledge-based diagnostic
method requires only the normal behaviour model. In practice, this
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Fig. 6. Confusion matrix for data-driven LDA classifier (Section 2.4) trained and tested on one hour samples of simulated SCADA and CMS signals under healthy conditions (h)
and rotor imbalance faults of varying severity (m, p, y).
Fig. 7. Estimated fault location �̂� (Eq. (10)) based on 60 min samples of simulated SCADA and CMS signals. Shown are median, 25 and 75 percentiles, and extreme values
aggregated for all EC. The true fault location is 𝜃 = 0 (blade 1).
would entail measuring long-term mean values and standard deviation
of the signals nacelle side–side acceleration, gearbox housing side–side
vibrations, and rotor speed for different wind speed bins.

It is feasible to integrate the proposed diagnostic method with re-
silient control techniques, which aim at minimizing fault consequences
by compensating the faulty signal. Resilient control strategies for pitch
misalignment are presented by Bertele et al. [7], who propose a re-
balancing algorithm to iteratively correct for pitch imbalance. Other
signals compensation methods such as Takagi–Sugeno fuzzy models
may also be applicable in this case [43].

In addition, the detection thresholds must be set to appropriate
values using the parameter 𝑃𝐹𝐴 (Eq. (9)). Unfortunately, standards
or guidelines on setting detection thresholds for this specific appli-
cation have not been developed yet, and the values of 𝑃𝐹𝐴 reported
in scientific publications range widely from 10−2 to 10−12 [34,35].
Lower thresholds are desirable to maximize fault detection rates and
to mitigate potentially harmful consequences of rotor imbalance faults
such as increased fatigue loads, reduced lifetime and higher risks of
failure of wind turbine components. On the other hand, low thresholds
are conducive to false positives and lead to unnecessary activation of
automatic rebalancing algorithms, which are disruptive to the wind
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turbine operation. This represents an optimization problem with the
objective of minimizing the combined costs associated with false neg-
atives 𝐾𝐹𝑁 and false positives 𝐾𝐹𝑃 and can be expressed with a cost
function 𝐾 [44]

min
𝑃𝐹𝐴

𝐾 = 𝐾𝐹𝑃 +𝐾𝐹𝑁 (14)

Defining the cost functions of false positives 𝐾𝐹𝑃 and false negatives
𝐾𝐹𝑁 is challenging, as it requires extensive economical analysis and
risk assessment on the effects of rotor imbalance faults. Wind farm
operators may instead resort to empirical methods based on confidence
intervals commonly employed for drivetrain condition monitoring. Typ-
ical threshold values are 𝛾 = 𝜇0 + 3𝜎0, which corresponds to a 99.7%
confidence interval [45].

Lastly, several limitations of the presented methodology and other
sources of uncertainty need to be carefully considered for implementa-
tion in the field.

• Simulation model limitations: Simulation-based studies with aca-
demic reference models are effective for demonstrating the proof
of concept of novel methods. Simulation models enable the ex-
ploration of many different fault scenarios in a short time frame,
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however due to model assumptions and complexity reduction
they do not fully reflect the dynamics of real wind turbines.
The 10 MW DTU reference drivetrain model is considered state-
of-the-art for load calculations, but is limited with regard to
vibration analysis. Flexible housing models for the main bearings,
gearbox and the generator are not implemented and as a result the
simulated drivetrain CMS signals may suffer from inaccuracies.
It should also be noted that the analysis of this paper is limited
to four point support, medium speed drivetrains and that the
findings are not directly transferable to direct drive systems.

• Considered fault cases: The scope of this paper is limited to a
small amount of fault cases to retain reasonable simulation times,
in particular with the computationally expensive MBS drivetrain
model. Only static pitch misalignment of a single blade towards
feather is investigated. Combinations of aerodynamic and mass
imbalances, which are likely to occur in practice, are not consid-
ered in this study. Shaft misalignment faults are not considered
in this study, but may cause similar dynamic responses at 1P
and thus be misclassified as a rotor imbalance by the diagnostic
method. Other faults including main bearing and gear faults are
out of the scope of this paper, since they typically have much
higher characteristic frequencies and would be filtered out by the
proposed method.

• Fault severity : The proposed method is not capable of estimating
the rotor imbalance severity, as this would require additional
model assumptions and/or training data. For instance, the power
reduction with respect to the yaw misalignment angle can be
modelled with the third power of the cosine function [20]. Veloc-
ity and acceleration amplitudes can be well described by linear
functions of the rotor imbalance severity, as seen in Fig. 4,
however additional training data would be required to determine
the unknown slopes.

• Operational conditions: The proposed method is only robust at cut-
in wind speeds, where mass imbalance cause significant torque
excitations and induce an observable torsional response in the
drivetrain. At higher wind speeds the method is unable to distin-
guish between yaw misalignment and mass imbalance. Further-
more the method was not tested under other IEC 61400-1 load
cases such as start-up or emergency shutdown.

• Measurement noise: Sensors in the field are subject to measure-
ment noise and other sources of uncertainty, which could affect
the diagnostic performance. However, it can be argued that the
measurement noise of commercial accelerometers has relatively
low energy compared to the excitations of rotor imbalance faults.
Typical values for measurement noise in the low frequency range
of 1P are specified to 4 μg or 4⋅10−5 m∕s2 (see PCB Model
622B01), whereas simulated acceleration amplitudes under faulty
conditions were of the order 10−4 m∕s2 at the gearbox housing
and 10−2 m∕s2 at the nacelle (Fig. 4). Furthermore, it is observed
in this study that the employed statistical methods are effec-
tive at filtering out the energetic 1P component from a noisy
background.

• Signal resolution: Sensor data quality is also limited by the signal
resolution. The minimum required sample frequency to estimate
1P-amplitudes of nacelle and drivetrain signals is 0.2 Hz at a mini-
mum rotor speed of 6 rpm. Classical SCADA data stored as 10 min
averages do not suffice for this purpose, however, it is reported
that wind farm operators are moving towards high-frequency
(1 Hz) SCADA data [46].

. Conclusions

This paper presented a novel approach for diagnosis of rotor imbal-
nce faults, namely pitch misalignment, yaw misalignment and mass
mbalance, by monitoring the drivetrain vibration response. Tradition-
lly, only SCADA signals indicative of structural dynamics including
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nacelle accelerations, rotor speed and electrical power are utilized for
this purpose. Drivetrain CMS signals on the other hand are normally
used for diagnosis of local drivetrain faults in gears and bearings. The
proposed method comprises the three steps fault detection, classifi-
cation and localization. Fault detection is realized with methods of
statistical change detection from normal behaviour. Classification of
the rotor imbalance type uses heuristic, physics-based decision criteria
derived from simulations and literature review. Localization of the
faulty blade is based on maximum likelihood estimates of the phase
angle.

Simulations were conducted with both high-fidelity aeroelastic and
drivetrain models of the floating 10 MW DTU reference turbine to
synthesize SCADA and CMS signals and evaluate the proposed method.
Six environmental conditions with wind speeds ranging from cut-in to
cut-out and three fault severity levels were carefully selected based on
literature review to emulate realistic conditions.

The proposed drivetrain CMS signal (gearbox housing side-side
velocity) outperformed classical SCADA signals in detecting pitch mis-
alignment and increased the detection rate of a 1◦ pitch error from
19% to near 100% based on one hour measurements. Furthermore,
the standard error in localizing the blade with faulty pitch angle was
reduced from 71.5◦ to 11.2◦. For mass imbalance and yaw misalignment,
owever, the classical approach using nacelle accelerations remained
ore accurate.

The benefit of drivetrain CMS signals is also seen in the classification
f the rotor imbalance type. Pitch misalignment uniquely causes once
er revolution (1P) bending moments on the main shaft, which are
bservable throughout the drivetrain as increased lateral vibration
mplitudes. Thus, the 1P-amplitudes of CMS signals are proposed as an
ndicator to distinguish pitch misalignment from other rotor imbalance
ypes. Using CMS signals all simulated test cases of pitch misalign-
ent ranging from 1◦ to 3◦ were correctly classified regardless of the

nvironmental conditions.
A unique characteristic of mass imbalance are periodic 1P torque

oads, which excite torsional modes of the drivetrain. For this reason
he 1P-amplitude of the main shaft speed is proposed as an identifier
or mass imbalances, however, in practice the signal sensitivity is
elatively low due to environmental influences and controller effects.
nly at cut-in wind speeds (EC1) this criterion was shown to be robust
nd able to identify 10 out of 18 of test cases. A benchmark linear
iscriminant analysis (LDA) classifier representative for a fully data-
riven approach showed significantly higher classification performance
or both mass imbalance and yaw misalignment. However, the success
f this approach relies on the availability of training data of faulty
onditions, which in practice is rarely the case.

From these results it can be concluded that the SCADA signals na-
elle side-side acceleration (𝑎𝑁𝑎𝑐,𝑌 ) and rotor speed (𝜔𝑅𝑜𝑡) in combina-
ion with the CMS signal gearbox housing velocity (𝑣𝐺𝐵,𝑌 ) are suitable
o detect and classify the three considered rotor imbalance types, at
east at lower wind speeds. For practical implementation in operating
urbines it is recommended to apply the change detection framework
resented in this paper, as it has very low requirements. Only the
ormal behaviour model of healthy conditions must be established from
istorical measurements. However, some method limitations have to
e considered including lower accuracy than data-driven methods, the
nability to estimate the fault severity, the required signal resolution of

Hz and the limited operational range near cut-in wind speeds.
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