
ISBN 978-82-326-5788-9 (printed ver.)
ISBN 978-82-326-6955-4 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:134

Vilde Benoni Gjærum

Machine Learning in Robotics:
Explaining Autonomous Agents
in Real-TimeD

oc
to

ra
l t

he
si

s

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

sD
octoral theses at N

TN
U

, 2023:134
Vilde Benoni G

jæ
rum

Thesis for the Degree of Philosophiae Doctor

Trondheim, April 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Vilde Benoni Gjærum

Machine Learning in Robotics:
Explaining Autonomous Agents
in Real-Time

NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

© Vilde Benoni Gjærum

ISBN 978-82-326-5788-9 (printed ver.)
ISBN 978-82-326-6955-4 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:134

Printed by NTNU Grafisk senter

Summary

Artifcial intelligence (AI) and machine learning (ML) offer a number of benefits
in multiple applications within the field of robotics, such as computer vision,
object grasping, motion control, and planning. Although AI methods can boost
performance in many robotic tasks, these methods’ utility value is limited by the
fact that humans struggle to understand how these methods operate. AI or ML
models that are so complex that we cannot understand them are called black
boxes. Our lack of understanding of these black boxes can lead to a lack of trust
in systems working perfectly well or too much trust in systems that might not
be trustworthy. Additionally, understanding the black boxes can help us improve
them, detect their weaknesses and thus better assess which scenarios the black
box can be applied to in a safe manner and ensure that the black box obeys
laws and regulations. These are some of the shortcomings of AI that the field of
explainable artificial intelligence (XAI) addresses.

This thesis presents topics related to XAI in robotics. The main part of the thesis
is a collection of four peer-reviewed papers, two journal papers and two conference
papers. Additionally, one submitted conference paper is included. In addition to
the paper collection, the first part of the thesis contains an introduction to the
thesis as well as an introduction of the main topics of the thesis, namely ML in
robotics, XAI and linear model treess (LMTs). This first part provides context
to the publications and puts the different publications in relation to each other.
In this thesis, LMTs are used as an XAI method. LMTs are decision trees (DTs)
with a linear prediction function in the leaf nodes. The LMTs divides the input
space into distinct regions and fits a linear function to each region, and the
LMTs thus makes out a piece-wise linear function approximator. The LMTs can
be used as an XAI method by approximating the black box and subsequently
analysing the LMT to gain a better understanding of the black box. The first
thing that needs to be done when using LMTs for explainability is to build the
tree to approximate the black box. To do so, we must gather data from the
world and collect the corresponding output responses from the black box. We
then use this dataset to build the LMT in a supervised manner. The validity of
the explanations depends on how similar the LMT is to the black box, so great
care must be taken when gathering the dataset and building the tree. We found
that introducing domain knowledge to the building process improved the tree’s
accuracy and building time.

We use the LMTs as a post-hoc, model-agnostic surrogate model, which means
that the LMTs is an XAI method that mimics any type of black box model that
is already built. In addition to being able to give explanations in the form of

i

feature attributions and counterfactuals, LMTs also is an explanation in itself
since the trees’ structure and linear prediction functions represent the black box
model in a simpler manner. We show that the LMTs are capable of generating
feature attribution and counterfactuals in real-time, even for complex, robotic
applications.

Once the explanations have been generated, we must make sure the explanations
are effectively communicated to the user of the AI system. How an explana-
tion best can be communicated depends on the system to be explained, which
application the system is used on, and who the recipient of the explanation is.
We suggest two different visualizations of feature attributions to two different
end-users based on their background knowledge and characteristics.

ii

Preface

This thesis is submitted in partial fulfilment of the requirements for the degree of
Philosophiae Doctor (PhD) at the Norwegian University of Science and Techno-
logy (NTNU). The work has been carried out at, and funded by, the Department
of Engineering Cybernetics (ITK) as part of the EXAIGON project (project
number 304843), with Associate Professor Anastasios Lekkas as my main super-
visor and Professor Timothy Miller and Dr Inga Strümke as my co-supervisors.
The Research Council of Norway funded the research stay at the University of
Melbourne as a part of the EXAIGON project.

Acknowledgements

This thesis is the result of over three years of hard work, support from the people
that have been around me, and just a little dash of luck. I want to use this
opportunity to thank my supervisors, colleagues, friends, and family for all of
their support.

First of all, I would like to thank my main supervisor, Tasos, for giving me
the opportunity to do this PhD. I am grateful for all our discussions and your
valuable input and feedback. I want to thank Tim for sharing your knowledge
and inviting me to Melbourne. I am so grateful for how including you and all
the lovely people at the Agent lab were; I truly had a blast! The biggest hug
goes to Inga. Your ability to motivate and see the break in the clouds whenever
things were rough has been so invaluable to me. Thank you for all the support
and advice, but more importantly, for being such a good friend. I would also like
to thank Associate Professor Ole Andreas Alsos for sharing your knowledge and
insights regarding the visualizations of the explanations.

I am grateful to my previous classmate, Ella-Lovise Hammervold Rørvik, for
letting me use the results of her master’s thesis as the black box to explain and
for happily helping me set it all up and answering any questions I had. I have
had the pleasure of working with two master’s students, Nicolas Blystad Carbone
and Jakob Løver, during the course of my thesis. Nicolas’ idea for using LMTs
for vehicle control changed the entire course of my PhD, and the collaboration
with Jakob resulted in two publications. Thank you both for all the interesting
discussions!

I have been so lucky to have Bjørn, Sindre, Thomas, and Andreas as my office
mates. Thank you for all the GeoGuessr matches, coffee breaks, distractions and

iii

motivation, and for making D444 a great place to be. Katrine, I really appreciate
our friendship and am so glad we got to know each other.

I want to thank my family for all the love and support. To dad, for all the encour-
agement and for always having the time to talk whenever I call. To mom, for all
the support and care packages. To Wiggo, for always cracking up jokes. To my
sister, Lina, for always listening to my worries and cheering on my accomplish-
ments. To my brother, Henrik, and his family, for welcoming me to Trondheim 8
years ago and for all the time we have spent together since then. And to Karl’s
family for being so warm and welcoming.

Finally, the biggest thank you of them all goes to Karl for the endless love and
support and for always having more faith in me than I tend to have myself.

Started making it.
Had a breakdown.
Bon appétit !

James Acaster

iv

Table of Contents

List of Figures vi

List of Tables vii

1 Introduction 1

1.1 Motivation . 1

1.2 Publications . 3

1.3 Contributions at a glance . 6

1.4 Outline . 6

2 Background 7

2.1 Machine learning in robotics . 7

2.2 The need for explanations in AI-based robotics 10

2.3 Explainable artificial intelligence 12

2.4 Linear model trees . 17

2.5 Test applications . 24

2.5.1 The docking problem . 24

2.5.2 The inverted pendulum problem 25

3 Contributions and discussion 26

3.1 Building LMTs . 26

3.2 LMTs as an XAI-method . 29

3.3 Visualization of explanations in robotics 30

4 Conclusions and further work 34

v

5 Publications 35

5.1 Paper A . 36

5.2 Paper B . 53

5.3 Paper C . 70

5.4 Paper D . 94

5.5 Paper E . 121

Bibliography 136

List of Figures

1 Overview of the relation between the black box model, the XAI
method, and the end user. 3

2 Publication and contribution overview. 4

3 Deep neural network . 8

4 Reinforcement learning and control loop 11

5 Characterization of XAI-methods 13

6 Illustration of a decision tree. 18

7 How regression trees divide the input space into regions. 19

8 How linear model trees divide the input space into regions. 19

9 Overview over the pipeline of using linear model tree as explainer
for a reinforcement learning agent 23

10 Example of a run in the simulated docking environment. 25

11 Illustration of the inverted pendulum from Paper E [20]. 25

12 Examples of different visualizations of systems and explanations . 33

vi

List of Tables

1 Terms in reinforcement learning . 10

2 Overview over explanation types 15

3 Motivations for transparency . 16

4 Characteristics of LMTs affecting interpretability 24

vii

1 Introduction

1.1 Motivation

Recent developments within the field of robotics include solutions utilizing AI
methods, and more specifically ML methods. In [44], ML is defined as “.. a
set of methods that can automatically detect patterns in data, and then use the
uncovered patterns to predict future data, or to perform other kinds of decision
making under uncertainty” while IBM1 describes ML as “.. a branch of AI and
computer science which focuses on the use of data and algorithms to imitate the
way that humans learn, gradually improving its accuracy”. In essence, ML allows
the machines to learn patterns in the data useful for solving some problem or task
by themselves. Whereas [44] argues that the best tools to attack ML-problems
come from probability theory, [7] argues that most ML-problems can and be
solved accurately by the use of optimization techniques. Whichever of these two
approaches is taken to solve the ML-problem, considering the swooningly amount
of data we produce every day, it is easy to see that there is a seemingly endless
amount of problems for ML to wrestle with.

There are numerous examples of successful reinforcement learning (RL) agents,
perhaps most prominently within computer and board games, such as in [6], [43],
[45], and [61]. In [6], agents playing hide and seek developed new strategies to
counter the opposing teams’ strategy multiple times, leading to a continuously
evolving game of cat-and-mouse. In [43], agents learned how to play Atari games,
and in [45] five RL-agents started beating beginner human players in the com-
petitive, team-based, real-time-strategy game Dota 2. As famously presented in
[61], an RL-algorithm mastered to play the classic games of Chess, Go, and Shogi
at a superhuman level.

Apart from RL agents’ ability to learn and dominate in games, they also achieved
significant feats in the field of robotics. In [24], a sample-efficient RL algorithm
was used to train a Minitaur robot to learn how to walk from scratch, while
RL agents in [56] learned different gaits for different simulated robots. A RL
algorithm controlling a five-fingered humanoid hand learned to solve the Rubik’s
cube. In [33], a model-free RL-algorithm was trained to master control of over
20 different simulated physical tasks. In [49], a RL-agent learned to master the
manipulation of a robotic lever, and in [46], the very same algorithm that was used
in [45] was used to control a dexterous hand. Additionally, there are numerous
examples of RL being used to perform maritime operations [3, 38, 39, 41, 59, 71].

1https://www.ibm.com/cloud/learn/machine-learning

1

https://www.ibm.com/cloud/learn/machine-learning

As AI methods become ubiquitous and get an increasingly important role in
our everyday lives, it becomes clear that for us to be able to predict how these
methods will impact us, we need to study these algorithms [48]. The Defence
Advanced Research Project Agency (DARPA)2, a research agency of the United
States Department of Defence, defined the term XAI as

“AI systems that can explain their rationale to a human user, characterize their
strengths and weaknesses, and convey an understanding of how they will behave
in the future.”[23].

DARPA differs between XAI and other similar terms (such as interpretable, com-
prehensible, or transparent AI) to focus more on making the AI systems human-
understandable through communicating effective explanations. This research ini-
tiative was started to address the critical shortcomings of AI. The European
Union’s XAI project3 focuses on explaining opaque AI/ML models to enable bet-
ter collaboration between humans and machines, ensuring good communication,
trust, clarity, and understanding. As AI systems are entering our everyday life
through industries such as healthcare, banking, advertising, transportation, and
so on, the need for understanding these systems arises. EXAIGON (Explainable
AI systems for Gradual Industry Adoption) 4 is a Norwegian research initiative
that concerns with the challenges that must be addressed before trustworthy AI
systems can be deployed in social environments and business-critical applications.
XAI has not only gotten the attention of research communities, but also many
companies are seeing the commercial value of XAI and are offering their solutions,
such as IBM’s open-source toolkit, AI Explainability 360 [4], Interpretable AI5,
Google’s XAI tool6, Seldon7, the open source explainable AI Toolkit (XAITK)8.

Take the field of healthcare. If you go to the doctor and get diagnosed with some
disease, you most likely would ask your doctor on what basis they concluded with
this. Given an AI system with the same, or higher even, skill level, you would still
be left with the same questions. This need for explanation is not limited to the
field of healthcare. Quite the opposite, this reasoning behind the decisions made
by an AI system is wanted (and in most cases, also needed) for all safety critical
systems and systems that must comply with regulations and legislation. This
need for robotic applications becomes especially clear for autonomous systems
interacting with or working close to humans. However, understanding the system

2https://www.darpa.mil/program/explainable-artificial-intelligence
3https://xai-project.eu/
4https://www.ntnu.edu/exaigon
5https://www.interpretable.ai/
6https://cloud.google.com/explainable-ai
7https://www.seldon.io/
8https://xaitk.org/

2

https://www.darpa.mil/program/explainable-artificial-intelligence
https://xai-project.eu/
https://www.ntnu.edu/exaigon
https://www.interpretable.ai/
https://cloud.google.com/explainable-ai
https://www.seldon.io/
https://xaitk.org/

Figure 1: Overview of the relation between the black box model, the XAI method,
and the end user.

is crucial for applications with risks associated with equipment or the robot, such
as autonomous vehicles. AI methods of which we do not understand the inner
workings are often referred to as black boxes, not because what is inside them is
secret or hidden but simply because we do not know how the method uses the
input to compute the output. Figure 1 outlines a simple overview of how the
black box, the XAI method, and the users relate to each other is shown. We
gather data that ideally (but rarely) perfectly represents the world on which the
AI model, or the black box, is built. Since we do not understand how this black
box works, the end user is left wondering and perhaps sceptical. The goal of XAI
is to answer the questions the end-user has so that they understand and trust
the black box.

1.2 Publications

This thesis is based on two journal papers and three conference publications
(where two are accepted and one under review). Additionally, two conference
publications that are not included in this thesis were published during the PhD.

The contributions of this thesis can be divided into three main parts, namely:
1) suggesting tactics and emphasizing considerations that must be taken into
account when building the LMTs, 2) demonstrating and appraising the LMTs’
utility value as an XAI method for robotic applications, and 3) considering the
end-user’s perspective and suggesting user-adapted visualizations of the feature
attributions. An overview of the main contributions and the publications linked
to the different contributions is given in Figure 2. A detailed discussion regarding
the different contributions and how they relate to each other is given in Section 3.

3

Figure 2: Publication and contribution overview.

Conference publications

Paper A

[17]: Vilde B. Gjærum, Ella L. H. Rørvik and Anastasios M. Lekkas. ‘Approx-
imating a deep reinforcement learning docking agent using linear model trees’.
In: The 19th European Control Conference(ECC)(2021), pp. 1465-1471, doi:
https://doi.org/10.23919/ECC54610.2021.9655007

Paper B

[35]: Jakob Løver, Vilde B. Gjærum and A. M. Lekkas. ”Explainable AI
methods on a deep reinforcement learning agent for automatic docking”. In:
14th IFAC Conference on Control Applications in Marine Systems, Robotics,

4

https://doi.org/10.23919/ECC54610.2021.9655007

and Vehicles (CAMS) (2021) doi: https://doi.org/10.1016/j.ifacol.2021.10.086

Paper E

[20]: Vilde B. Gjærum, Inga Strümke, Anastasios M. Lekkas, and Timothy
Miller, ”Real-Time Counterfactual Explanations For Robotic Systems With Mul-
tiple Continuous Outputs”. Accepted to: The 22nd World Congress of the
International Federation of Automatic Control (IFAC WC) (2023) doi: https:
//doi.org/10.48550/arXiv.2212.04212

Journal publications

Paper C

[18]: Vilde B. Gjærum, Inga Strümke, Ole Andreas Alsos, and Anastasios M.
Lekkas. ”Explaining a deep reinforcement learning docking agent using linear
model trees and user adapted visualizations”. In: Journal for Marine Science
and Engineering 9(11) 1178 (2021). doi: https://doi.org/10.3390/jmse9111178

Paper D

[19]: Vilde B. Gjærum, Inga Strümke, Jakob Løver, Timothy Miller, and Ana-
stasios M. Lekkas. ”Model tree methods for explaining deep reinforcement learn-
ing agents in real-time robotic applications”. In: Neurocomputing 515 (2022),
pp. 133–144. doi: https://doi.org/10.1016/j.neucom.2022.10.014

Conference publications not included in this thesis

[25]: Anne H̊akansson, Aya Saad, Akhil Anand, Vilde B. Gjærum, Haakon
Robinson and Katrine Seel. ”Robust Reasoning for Autonomous Cyber-Physical
Systems in Dynamic Environments”. In: Proceedings of the 25th International
Conference on Knowledge Based and Intelligent Information and Engineering
Systems(KES) 192 (2021) pp. 3966-3978, doi: https://doi.org/10.1016/j.procs.
2021.09.171

5

https://doi.org/10.1016/j.ifacol.2021.10.086
https://doi.org/10.48550/arXiv.2212.04212
https://doi.org/10.48550/arXiv.2212.04212
https://doi.org/10.3390/jmse9111178
https://doi.org/10.1016/j.neucom.2022.10.014
https://doi.org/10.1016/j.procs.2021.09.171
https://doi.org/10.1016/j.procs.2021.09.171

[2]: Akhil Anand, Katrine Seel, Vilde B. Gjærum, Anne H̊akansson, Haakon
Robinson and Aya Saad. ”Safe Learning for Control using Control Lyapunov
Functions and Control Barrier Functions: A Review”. In: Proceedings of the
25th International Conference on Knowledge Based and Intelligent Information
and Engineering Systems(KES) 192 (2021) pp. 3987 - 3997, doi: https://doi.org/
10.1016/j.procs.2021.09.173

1.3 Contributions at a glance

This thesis has contributed to the literature at the intersection of robotics and
XAI in the following ways:

• Proposed the novel idea of using LMTs as a surrogate XAI method for ro-
botic applications by extracting feature attributions from the LMT’s linear
prediction functions.

• Demonstrated that LMTs could be used as a post-hoc explanation method
for complex, robotic applications.

• Proposed a method for extracting counterfactual explanations utilizing the
LMT’s structure.

• Proposed two significantly different ways of visualizing the explanations to
two end-users taking their background knowledge, situation, and needs into
account.

• Compared the LMTs to two other post-hoc, model-agnostic XAI methods
in light of robotic applications.

• Compared four different methods for building model trees (MTs) for the
specific application of using them as post-hoc explanation methods for ro-
botic applications.

1.4 Outline

The rest of the thesis is structured as follows: Section 2 contains the background
on the topics covered in the the publications. Section 3 presents and discusses
the contributions of the thesis. In Section 4, the conclusion is given, along with
some reflections on possible further work. Finally, in Section 5, the publications
written as a result of the work done in this thesis is presented. The references for
each publication are not included in the bibliography at the end of the thesis.

6

https://doi.org/10.1016/j.procs.2021.09.173
https://doi.org/10.1016/j.procs.2021.09.173

2 Background

In this chapter, the necessary background is presented. Without AI there is
no need for XAI, so in Section 2.1, the AI methods, and more specifically the
ML models, that we want to understand better is introduced. In Section 2.3,
an introduction to XAI is given and in Section 2.2, what must be taken into
account when applying XAI to robotic applications is presented. In Section 2.4,
a thorough walkthrough of LMTs, the XAI model used in all the publications, is
given. Lastly, the docking problem, which was used as the test application in all
the publications, is briefly introduced in Section 2.5.1.

2.1 Machine learning in robotics

ML can be divided into three main subfields, namely supervised learning (SL),
unsupervised learning (UL), and RL. In SL, the goal is to learn a mapping
between the inputs to the outputs given a set of correct input-output pairings. If
the output is categorical, it is called a classification problem, and if the output
is continuous it is called a regression problem. The second branch of ML is UL.
In UL, there is no correct or incorrect output. The goal is rather to discover
interesting patterns in the data. Lastly, in RL, the AI agent discovers the best
(and worst) actions through trial and error and a reward signal. Unlike in SL,
where every prediction must be labelled either correct or wrong, it is only the
”overall goal” that must be defined in RL. As mentioned in the introduction, RL
has made great achievements within both games and robotics, but there are also
numerous examples of RL being used to perform maritime operations [3, 38, 39,
41, 59, 71].

When referring to ML, including these three subfields, we often mean deep learn-
ing (DL). DL is a subfield of AI that allows us to avoid spending time on finding
a mathematical model that accurately describes our system, hard-coding rules
based on apriori knowledge, or creating complex, specialized algorithms for the
particular task. DL make us of deep neural networks (DNNs), a function ap-
proximator with a structure that is inspired by the human brain. A DNN is
a neural network (NN) with at least two hidden layers, as shown in Figure 3.
At first glance, DL may seem like the perfect short-cut to everything we could
ever want from an AI based system, and some even argue that RL is the way
to go for exactly that [63]. However, this ”short-cut” through the use of DL
includes obstacles like tedious fine-tuning of parameters and reward or cost func-
tions, carefully choosing model structures, prolonged training times requiring a
lot of computational resources, and crucial preprocessing of data to ensure they

7

Figure 3: Illustration of a deep neural network with a four-dimensional input layer
(red nodes), three hidden layers (blue nodes), and a one-dimensional output layer
(purple node).

adequately represent the real world.

Even though all three methods can be useful in robotics, RL is an especially
fitting methodology for problems where we know what we want the agent to do
but do not necessarily know what is the best way to achieve said goal, which is
the case for many robotic tasks. Additionally, for many applications, labelled
data is very expensive, or even not feasible at all, to require.

RL solves sequential decision-making problems, meaning that the outcome (or
the behaviour) of the system does not come from a single prediction but rather
many decisions made consecutively. Many problems fit this description, especially
within robotics, such as driving a car, flying a drone or controlling an industrial
robot. The agent includes the physical or simulated entity that interacts with the
environment as well as the model (which for deep RL (DRL) will be some sort
of NN) that it is controlled by. The environment is the world the agent lives in,
either the real world or a simulated one. The state gives a complete description
of the world, whereas the observation is an incomplete description of the world to
that the agent has access. Say that the agent is an autonomous vacuum robot, and
your apartment is its environment. The observation will be all the information
the little robot can gather through its sensors. Even if the sensors could gather
information about everything relevant, most real-world problems will still only
be partially observable due to modelling errors or noise in the environment or
in the sensors. It should be noted that state and observation often are used
interchangeably, even though there are distinct differences. The action space
includes the various ways the agent can interact with its environment, which for
example, can be through controlling the motors. The agent has a goal, something
it wants to achieve in the environment, which for the vacuum robot will be to
make the floors in your apartment clean and dust-free. The agent is learning
through testing different actions in different states and receiving rewards from

8

an reward function. The reward function is crucial for the agent’s learning and
should describe the agent’s goal or desired behaviour. For the vacuum robot,
this could be the percentage of the area cleaned. The agent wants to maximize
the return, which is the accumulated reward over one episode. One episode is all
the time steps from the starting point in the environment until the environment
terminates either due to failure or success or after a number of time steps have
passed. In Figure 4a, the RL loop where the agent receives a state from the
environment, performs one action and then receives both a reward and a new
action is shown. As pointed out by [66], the boundary between the agent and the
environment is not always clear and may vary from one application to another.
The agent does not usually include the entire physical body of the robot since the
motors and sensors often are included in the environment. The corresponding
control loop is shown in Figure 4b. Even though the relationship between the
terms is not completely one-to-one, the controller can be thought of as the agent
(or the policy), the plant as the environment, the control input as the state, and
the measured output of the plant as the state. An experience includes one state,
one action, and one reward signal. A trajectory is the sequence of all experiences
during one episode. The policy, sometimes referred to as the controller, is a
mapping from state to action and is what the agent uses to determine which
action to take. An overview of the different terms commonly used in RL is given
in Table 1. The goal of the RL-algorithm is to find a policy that maximizes the
return for every episode. The main RL-problem can be described as

π∗ = max
π

J(π), (1)

where π∗ is the optimal policy and the J is the expected return which can be
denoted as

J(π) = E[R(π)] =

∫

τ

P (τ |π)R(τ), (2)

and the probability of a trajectory is denoted as P (τ |π), and R is the return.
There exists numerous RL-algorithms applying different tactics to find π∗, such
as [58, 57, 62, 28].

RL excels in applications where it is extremely challenging to model the system
dynamics but relatively easy to model the objective (and thus the reward func-
tion) given that a reliable training environment is available or that it is possible to
collect experience from a real-world implementation without any risk for safety.
This applies to problems where the system or the environment is very complex,
unknown factors affect the system, or the dynamics are changing.

9

Table 1: Terms in reinforcement learning

Term Symbol Meaning

Agent The entity that interacts with the en-
vironment

Policy π A function that maps states to actions
Action at Describes how the agent interacts with

the environment at time t
State st Describes the environment at time t
Observation ot Describes the agent’s observation of the

environment at time t
Reward rt The value of either the state or the

state, action pair at time t assigned by
the reward function

Return R The accumulated rewards throughout
an episode

Trajectory τ All the states, actions, and rewards for
one episode

Episode All the time steps from the beginning
until the end of the environment

2.2 The need for explanations in AI-based robotics

Even though DL-models have proven themselves to be highly accurate, there are
also numerous examples of cases where the DL-model is unfair or untrustworthy.
As stated in [40]:

“... fairness is the absence of any prejudice or favouritism toward an individual
or group based on their inherent or acquired characteristic”.

In [51], a logistic regression classifier was trained to highlight that if we are
not careful, the classifier might learn the correlations within the dataset instead
of the causations. The classifier was trained to classify images of huskies and
wolves and to showcase this issue, a biased dataset was handpicked such that all
the pictures of wolves had snow in the background while the pictures of huskies
did not. By only looking at the model’s accuracy, it seemed like the classifier
did well. Without any additional information regarding how the model made
its prediction, more than a third of the people asked in the study trusted the
model. When presented with the prediction along with the most important fea-
tures (which turned out to be the background) for the prediction, only around

10

(a) The reinforcement learning loop, based
on [66].

(b) The control loop

Figure 4: Reinforcement learning and control loop

1/10 of the people trusted the model. In [8], it is showcased that gender bias
can be found in the word embeddings of natural language processing models. In
some cases, such as with king/man and queen/woman, gendered connections are
desired and useful, but gendered connections along the lines of doctor/man and
nurse/woman, computer programmer/man and homemaker/woman are harmful.
In [21], it is shown that two methods trying to remove sexist word embeddings
are not reliable in doing so since they turned out to merely cover them up. In [11],
two datasets used for benchmarking facial recognition models are found to have
an overwhelmingly disproportionate share of lighter-skinned individuals. When
three commercially used gender classification systems are tested on an evenly dis-
tributed testing set, it becomes clear that the systems are significantly better at
recognising light-skinned individuals compared to dark-skinned individuals and
also significantly better at recognising male faces compared to female faces, both
of which significantly inhibits the applicability of the classification system. These
examples not only highlight the fact that accuracy alone is not enough for us to
decide whether or not a model is trustworthy but also that the foundation of
the decision-making is crucial to help us gauge the level of trust to place in the
system.

ML is capable of making sense of the large amounts of data coming from the
sensors on robotic systems, thus creating more intelligent robots that can factor
in more information regarding the environment it is operating in and adapt ac-
cordingly. ML, and more specifically DL, has boosted the performance of many
robotics systems, and it is clear that unfair ML-systems can lead to unfair, or
even dangerous, autonomous robots. This issue is not limited to the issue of
fairness. The utility value of these robots heavily depends on whether or not
they can gain our trust. Letting AI models we do not have a complete picture of
how works control robotic systems in real-world applications raises concerns for

11

safety since any misstep could pose a huge risk to the safety of not only people
but also the robot itself as well as other equipment and valuables. Applying AI
methods to real-world robotic use cases requiring safety insurance or stability
guarantees is a challenging task. It is imperative that human end users at differ-
ent levels are guaranteed that an AI-based controller will perform as expected.
Even with meticulous testing, we cannot cover the entire state space and thus
not be sure that there does not exist an edge scenario where the controller fails.
Traditional control methods are not except for failure but the fact that we have a
fundamental understanding of how they work allows us to trust them enough to
use them even in safety-critical applications. For those scenarios where AI meth-
ods are deployed, and more specifically when they involve black boxes, taking
explainability into account may allow the user to [1, 55]:

• discover the unknown dynamics, how to optimize the performance, new
aspects of situational awareness and so on.

• have better control over the system. Having a general understanding of
how a system works is crucial for controlling the system. If we are going
to have a human in the loop, the human must understand the system, for
example, to know when to take control of the system.

• justify the system’s decisions and behaviour. Systems that are working for
or alongside humans must be able to communicate the reasoning behind
their decisions. Additionally, we must be able to justify that the system
complies with legislation.

• improve the system in terms of optimality or by pinpointing weaknesses
that should be improved.

• achieve the appropriate amount of trust not only for the system as a whole
but also for the system’s reaction to different situations it may encounter.
If a perfect system cannot gain our trust, it will not be used, but on the
other hand, trusting a system too much can be dangerous.

2.3 Explainable artificial intelligence

Even though the use of complex ML methods brings multiple benefits such as
high performance in complex tasks, the models that we refer to as black boxes
also bring in some challenges of their own. The field of XAI attempts to address
these challenges through ”unboxing” the black boxes, i.e. by understanding why
a model made the prediction it did. Different XAI methods apply different tactics

12

XAI methods

Intrinsic

NN with prototypes[32]

CART[9]

Post-hoc

Surrogate

LIME[51]

KernelSHAP[36]

LMTs[17, 18]

Extrinsic

Anchors[52]

SAGE[14]

Introspective

LRP[5]

TreeExplainer[37]

DeepSHAP[36]

Figure 5: Characterization of XAI-methods with examples of each type.

for unboxing the black box at hand. Since XAI aims to explain how extremely
complex models work to humans the field has quite a challenging translation
task at hand as well. There are many benefits of uncovering these models’ inner
workings and knowing how and why they make the predictions and the decisions
that they do. We need to be able to see precisely what factors went into a decision
to justify that they are fair and unbiased by giving the reasoning behind different
outcomes. Gaining a better understanding of how the model works will give us
better control of the model because we know exactly what the model can and
cannot do, and thus we would be able to properly evaluate whether it is capable
of handling the task at hand. Knowing the model’s weaknesses and limitations
will not only let us have better control over the model but it also makes the task
of improving the model easier. Lastly, if the model discovers solutions, patterns,
or strategies previously unknown to humans we would like to be able to learn
from the model and ideally make the same discoveries.

The terminology of XAI is sometimes used interchangeably, and do to some extent
overlap. In short, in this thesis, the three most commonly used terms are defined
as follows. Transparency relates to whether or not the relevant information is
available to humans in an understandable form. Interpretability relates to how

13

easy it is for humans to understand how a model works, including predicting
what it will do in different situations. Explainability relates to the model being
able to explain the reason behind its decisions and behaviour. Interpretability
can be seen as a passive trait of the model, whereas explainability relates to the
active trait of being able to give explanations or reasoning.

If explainability is considered before building the model such that it is either self-
explainable or self-explaining, it is called an intrinsic XAI method. In essence,
the XAI part is embedded in the AI method. Self-explainable methods, such as
linear regression at one end of the scale, usually have limited expressive power and
thus struggle with achieving high accuracy and good performance in comparison
with black boxes such as DNNs. A post-hoc method, on the other hand, is
a method that is applied on top of, or in addition to, the model that needs
to be explained. Among the post-hoc methods, there are three main types,
namely surrogate models, extrinsic methods, and introspective methods. Surrogate
models, or imitation models, are simpler models that attempt to approximate
the complex black box model. By looking at how the surrogate model makes its
predictions, we can learn something about how the black box model makes its
predictions. The surrogate model can be local, global, or somewhere in between.
A global surrogate model approximates the entire black box model. An example
of such a method is presented in Section 2.4. A local approximation method
generates a surrogate model around the instance to be explained. An example of
such a method can be found in [51] where a linear function is built around the
instance. Extrinsic methods treat the model to be explained strictly as a black
box and only make use of the input and output. On the other hand, Introspective
methods make use of the black box model’s structure. For example, with NN this
can be making use of the activation functions, the weights, or the gradients [5, 64,
65, 69]. XAI methods can be either model-agnostic or model-specific. A model-
agnostic method can be applied to any model. In contrast, a model-specific
method can only be applied to one specific type of method such as DTs, NNs,
or perhaps NNs with a specific structure. By definition, intrinsic methods are
always model-specific as they only explain themselves.

In [67], they highlight that transparency is beneficial but not necessarily a uni-
versal good and should rather be treated as a means to an end instead of as a
goal in itself. The goal should be robust and fair systems which we understand
and thus can attribute the appropriate amount of trust. Transparency can be
an important tool or characteristic towards that goal. In Table 3, some motiva-
tions for transparency based on [67] are given. The developer’s motivations for
transparency which include the user introduces some interesting situations where
giving truthful explanations might not be in the developer’s best interest. If the
system is unfair or biased and the goal still is to make the user trust the sys-

14

Table 2: An overview of the different explanation types along with examples of
methods that give such explanations.

Explanation type Examples of methods that give
this explanation type

Sensitivity explanations LIME[51], SHAP[36], LMTs[17, 18],
TreeExplainer[37], LRP[5]

Counterfactual explanations LMTs[17, 18]
Prototypes NN with embedded proto-

types[32],ProtoX [47]
Concepts TCAV[30]
Rule-based explanations Anchors [52]

tem, the system either must be improved, or the user must be led to believe that
the system is fair and unbiased. In addition to often having to make a trade-off
between explainability and accuracy when building intrinsic methods, the pos-
sibility of ”bad” intentions from the developer’s side motivates the development
of post-hoc, extrinsic methods since they can be applied to any model without
knowledge or access to any more than the black box’s inputs and outputs.

When we refer to the scope of the explanations, we refer to how much the explan-
ations cover. On one end of the scale, we have local explanations that explain a
single instance. In contrast, on the other end of the scale, we have global explan-
ations that explain the black box model’s overall behaviour in the entire state
space. This is not a binary characteristic, as explanations can cover a group of
instances, a certain region in the state space, or a certain part of the model’s
behaviour. Following, and in Table 2, a non-exhaustive list of different types of
explanation types is presented.

Sensitivity explanations comes in many forms, such as feature attributions
and saliency maps. In essence, these explanations tell us something about how
sensitive the output of the model is to the different parts of the model’s input.
Sensitivity explanations in the form of feature attribution, more specifically, tell
us how much each input feature contributed to the outcome. Think about the
outcome of the model as the outcome of a volleyball match and the input of
the model as all the players. The feature attributions then say something about
how important each player was for the outcome of the match, good or bad. As
the name indicates, saliency maps highlight which parts of an image were most
important when a model made a prediction or classification. It can be seen as a
representation of where the model paid the most attention to in the image.

15

Table 3: Motivations for transparency, based on [67]’s list of types and goals of
transparency.

Developer End-user Other

To understand how the
system works to im-
prove or debug the sys-
tem.

Provide a sense for
what the system is do-
ing and the system’s
reasoning behind it,
in addition to gaining
trust towards the sys-
tem

Giving society a basic
understanding of the
system, and becoming
comfortable with the
technology.

To make the user take
the appropriate (or
wanted) action

For the user to under-
stand a particular pre-
diction so that they
can check for them-
selves that the system
worked appropriately
and possibly challenge
this prediction

To facilitate safety
guarantees and monit-
oring of edge cases

To make the user trust
the system so that they
continue using it

Counterfactual explanations answers the hypothetical questions that are con-
trastive to how the situation actually is. Such questions typically go along the
lines of ”but what if?”. For a classification problem, the counterfactual explana-
tion is defined as follows.

Definition 1 (Counterfactual explanation [22]). Given a classifier b that outputs
the decision y = b(x) for an instance x, a counterfactual explanation consists of
an instance x′ such that the decision for b on x′ is different from y, i.e., b(x′) ̸= y,
and such that the difference between x and x′ is minimal.

For a regression problem, this must be modified to the output being significantly
different in terms of some distance metric. Which metric to be used and how
different the counterfactual output b(x′) depends on the problem at hand.

Prototypes gives explanations in a case-based reasoning manner. Prototypes
are stereotypical examples of a certain type of input, and when used as an ex-
planation, it lets us know which prototype the new instance is most similar to. In
essence, the explanation takes the form of ”I predicted this because that’s what I

16

did in this similar scenario”. In [32], a way of building an intrinsically explainable
NN by introducing a prototype layer to the structure is shown. In [47], a post-hoc
method for giving prototypes as explanations for a RL-agent is presented. Each
prototype constitutes a stereotypical state, taking the agent’s behaviour and the
environment into account.

Concepts are global explanations aiming at discovering human-understandable
concepts that the black box has understood. An example of such a concept could
be ’stripes’ when deciding whether an image contains a zebra. These concepts
can help us understand what the NN overall is basing its predictions on.

Rule-based explanations presents the explanations either as a set of rules or
an ordered list of rules. These rules can either locally describe the rules used for
one instance or globally describe the most important rules over all.

Previous work on XAI in DRL can be divided into four main categories[27],
namely video games ([16, 29]), guidance and navigation tasks ([26]), system con-
trol ([31, 53, 70]), and robotic manipulation([15, 49, 50]). The use cases in robot-
ics introduce some additional aspects and considerations to XAI. This includes
(but is not limited to) the following:

• Many robotic applications are sequential decision-making problems. This
means that it is not enough to analyze only one decision but rather that
several consecutive decisions must be analyzed as a whole to understand
the behaviour within a time frame.

• Robotic applications are governed by the laws of physics which must be
taken into account to ensure meaningful explanations.

• Many of the problems are complex by nature, and thus, the explanations
might also be complex. Therefore, care must be taken to communicate the
explanations efficiently and understandably.

2.4 Linear model trees

DTs are one of the most commonly used ML techniques, both for regression
and classification problems. A DT consists of a root node, branch nodes, and
leaf nodes, as illustrated in Figure 6. The root node is the top node, it has no
parent node and is where data instances enter the tree. Just like the root node,
the branch node contains a splitting condition that decides if the data instance
should follow the left or the right path coming out of the node. The leaf nodes
have no descendants or splitting condition, but they do contain a prediction.

17

Figure 6: Illustration of a decision tree. The red node is the root node, the yellow
nodes are branch nodes, and the purple nodes are leaf nodes.

This prediction is a class for classification trees, and for regression trees, this
prediction is a constant number. The splitting conditions in the branch nodes
usually take the form of checking whether or not a certain input feature is larger
or smaller than a set threshold. By repetitively splitting the input space in two
with different splitting conditions, the structure of the tree corresponds to a given
partitioning of the input space, and each leaf node corresponds to one region. This
is illustrated in Figure 7 for the case of regression trees. MTs is an umbrella term
for all DTs with a non-constant prediction in the leaf nodes. The leaf nodes can
contain all types of prediction functions, such as simple linear functions or even
huge NNs. Trees with leaf nodes that contain a linear function are called LMTs.
Both regression trees and LMTs constitute piece-wise linear functions, as can be
seen in Figure 7 and Figure 8. However, by comparing Figure 7 and Figure 8 it
is easy to see why LMTs can approximate functions much more accurately than
regression trees even when the LMT is shallower than the regression tree.

18

Figure 7: Illustration of how different regression trees divide the input space and
assign a constant prediction to each region. The red node is the root node, the
yellow nodes are branch nodes, and the purple nodes are leaf nodes.

Figure 8: Illustration of how different linear model trees divide the input space
and fit a linear function to each region. The red node is the root node, the yellow
nodes are branch nodes, and the purple nodes are leaf nodes.

19

Generally, the tree’s structure is determined by either all or some of the following
parameters:

• The maximum depth states the maximum depth a leaf node in the tree
can be at. Nodes at this level cannot have any children nodes and thus
must be a leaf node.

• The tree stops growing when the maximum number of leaf nodes is
achieved.

• Minimum number of samples states the minimum number of samples
that must belong to each leaf node. If this parameter is too low, the tree
might be prone to overfitting.

In [7], the authors show that LMTs can be formalized as a mixed integer optim-
ization (MIO)-problem. A simplified version of the MIO-equations for a LMT
with univariate splitting conditions in (16) is given below, for the full version,
including measures taken to account for numerical instability and multivariate
splitting conditions the reader is referred to [7].

Since the linear prediction function for the t’th leaf node, yt, can be described as

yt(xi) = βT
t xi + β0t. (3)

The overall prediction, f , for the LMT can be described as

f(xi) =

Tl∑

t=1

yt(xi)zit, (4)

where zit ∈ {0, 1} indicates whether or not the i’th data instance xi belongs to
the t’th leaf node, Tl is the total number of leaf nodes, and n the size of x. The
loss function can then be formulated as

L =

n∑

i=0

|Yi − f(xi)|

=

n∑

i=0

(|Yi −
Tl∑

t=0

(βT
t xi + β0t)zit|),

(5)

where Yi is the correct output for the input xi. Since we are minimizing over L
we can linearize (5) to

Li ≥ fi − yi,∀i ∈ [n],

Li ≥ −fi + yi,∀i ∈ [n].
(6)

20

(3) can be linearized to

fi − (βT
t xi + β0t) ≥ −Mf (1− zit),

fi − (βT
t xi + β0t) ≤Mf (1− zit).

(7)

Here, Mf must be larger than the maximum value of fi − (βT
t xi + β0t) for any

i. If zit equals 1 fi must equal (βT
t xi + β0t) and if zit is zero the constraint is

inactive. To ensure that each data point is assigned to one, and one only, leaf
node. As stated, zit tells us if data point i belongs to the t′th leaf node. Each
leaf node must contain a minimum number of samples, Nmin and if lt is a binary
variable stating whether or not leaf node t contains any sample the allocation of
data points to leaf nodes can be described as

n∑

i=1

zit ≥ Nminlt,∀t ∈ TL (8)

and ∑

t∈TL

zit = 1,∀i ∈ [n]. (9)

To ensure that all leaf nodes are valid and contain at least the minimum amount
of samples required, the following is introduced:

zit ≤ lt,∀t ∈ TL. (10)

The next thing we need to include is the splitting conditions. The variable
dt assigns which branch nodes apply a splitting condition or not. This is just
for the convenience of not having to remove or introduce new variables to the
optimization problem if the tree should be shallower than the maximum depth.
If dt is zero, all data instances will be sent the same way. The splitting conditions
used in LMTs are given by

atxi < bt,∀t ∈ TB (11)

and
p∑

j=1

ajt = dt,∀t ∈ TB (12)

ensures that the splitting conditions are univariate since both ajt ∈ {0, 1}∀j ∈ [p]
and t ∈ TB where (n, p) is the dimension of x and TB is all the branch nodes.
(11) can be linearized in the same fashion as (3) which gives us

21

aTmxi < bm +M1(1− zit),∀i ∈ [n], t ∈ TL,m ∈ L(t),
aTmxi ≥ bm −M2(1− zit),∀i ∈ [n], t ∈ TL,m ∈ R(t),

(13)

whereM1 andM2 must be sufficiently large so that the constrain disappears when
zit equals zero. The set of right-hand ancestors of node t is denoted R(t) and the
set of left-hand ancestors of node t is denoted L(t). Given that xi ∈ [0, 1]p, we
have that

0 ≤ bt ≤ dt,∀t ∈ TB. (14)

A branch node cannot apply a splitting if its parent node does not. We enforce
this by

dt ≤ dp(t),∀t ∈ TB {1}. (15)

Combining the equations above allows us to express the problem of finding the
optimal LMT with maximum depth d in the following way:

min

n∑

i=0

Li (16)

s.t. Li ≥ fi − yi ∀i ∈ [n],

Li ≥ −fi + yi ∀i ∈ [n],

fi − (βT
t xi + β0t) ≥ −Mf (1− zit), ∀t ∈ Tl,

fi − (βT
t xi + β0t) ≤Mf (1− zit), ∀t ∈ Tl,

n∑

i=1

zit ≥ Nminlt, ∀t ∈ TL,
∑

t∈TL

zit = 1, ∀i ∈ [n],

zit ≤ lt, ∀t ∈ TL,
aTmxi < bm +M1(1− zit), ∀i ∈ [n], t ∈ TL,m ∈ L(t),
aTmxi ≥ bm −M2(1− zit), ∀i ∈ [n], t ∈ TL,m ∈ R(t),

0 ≤ bt ≤ dt, ∀t ∈ TB,
p∑

j=1

ajt = dt, ∀t ∈ TB,

dt ≤ dp(t), ∀t ∈ TB{1},

22

Figure 9: Overview of the pipeline of using the linear model tree as an explainer
for a reinforcement learning agent. The training of a reinforcement learning agent
is shown in the red field, building the LMT is shown in the yellow field, and how
to combine them during run-time is shown in the purple field.

DTs are often considered completely transparent or interpretable because of their
intuitive structure. Many DTs are hard for humans to understand. Incompre-
hensible trees can be built by using features that are hard to understand, unintu-
itive splitting conditions, complex prediction functions, or by simply letting the
tree grow so deep that we lose track of all the different paths from the root node
to the different leaf nodes. Therefore, it is better to consider DTs as possibly
interpretable because they can be interpretable if interpretability is taken into
account when building them. Of course, an intrinsically explainable method is
preferred over a black box with a post-hoc explanation method. Still, more often
than not, we must accept that there is a trade-off between interpretability and
accuracy. In Table 4, an overview of the different characteristics of LMTs that
affect the trees’ interpretability is given.

Additionally, DTs must be trained in a supervised manner, which makes them
challenging to use for problems better solved by RL. Since it is easier to train a
NN with adequate accuracy, LMTs can instead be used as a post-hoc explanation
method. In Figure 9, how an LMT can be used as a post-hoc explanation method
for a RL-agent. First, a black box model is trained by an RL-agent. For this case,
we assume that it is a NN. By sampling states from the environment and passing
them through the NN a dataset that can be used to build an LMT is formed.
Given that the LMT managed to approximate the NN properly, the LMT can
run in parallel with the NN. Thus, the NN will still control the system, and the
LMT will provide explanations.

23

Table 4: Characteristics of LMTs affecting interpretability

Characteristic Positive impact Negative impact

Depth of tree Shallow trees Deep trees
Splitting condition Simple, univariate, lin-

ear
Complex, multivariate,
non-linear

Prediction function Simple, univariate, lin-
ear

Complex, multivariate,
non-linear

Features Intuitive, real-world
based

Complex, over-
engineered

[htb]

2.5 Test applications

The concepts presented in this thesis were tested on the two robotic applications
presented in this chapter, namely the docking problem presented in Section 2.5.1
and the pendulum presented in Section 2.5.2.

2.5.1 The docking problem

The docking problem was originally presented in [54]. Docking is the process of
taking a vessel to the desired berthing point along the quay and subsequently
holding that position. Docking is a critical skill that must be mastered in order
to achieve autonomous ships. This process is considered to be both a challenging
and a high-risk process due to nonlinear system behaviour and reduced manoeuv-
rability.

In [54], a DRL agent was trained to perform docking in a simulated environment
based on Trondheim harbour. An example of a run in the simulated environment
is given in Figure 10. The simulated vessel had 9 input features concerning the
vessel’s position and velocity and 5 actions that controlled 3 thrusters. The
DRL agent’s policy takes the form of a DNN with two hidden layers with 400
neurons each. The agent was trained with the proximal policy optimization
(PPO) algorithm [57]. It is this agent’s DNN which is used as the black box to
be explained in all the publications of this thesis.

For further details regarding the agent or the environment, the reader is referred
to [54].

24

Figure 10: Example of a run in the simulated docking environment.

Figure 11: Illustration of the inverted pendulum from Paper E [20].

2.5.2 The inverted pendulum problem

The second robotic application used in this thesis is the inverted pendulum prob-
lem9. The goal is to balance the pendulum in the upright position by applying
force to the free end of the pendulum. An illustration of the inverted pendulum
is given Figure 11.

9https://www.gymlibrary.ml/environments/classic control/pendulum/

25

https://www.gymlibrary.ml/environments/classic_control/pendulum/

3 Contributions and discussion

In this chapter, a more thorough discussion regarding the three main contri-
butions: first, proposing tactics and highlighting important considerations for
developing LMTs in Section 3.1; second, evaluating the usefulness of LMTs as
an XAI approach for robotics in Section 3.2; and third, taking into account the
end-user’s perspective and suggesting customized visualizations of feature attri-
butions in Section 3.3.

3.1 Building LMTs

In Paper A ([17]), a heuristic algorithm for building LMTs was presented. A
demonstration showing that the LMTs are capable of approximating the DNN
controlling a vessel performing docking in a simulated harbour environment well
enough to act as a post-hoc explanation method is given. In Paper C ([18]), an
improved version of the algorithm presented in Paper A ([17]) was presented. In
Paper D ([19]), four different algorithms for building MTs were investigated.

The algorithms presented in both Paper A ([17]) and In Paper C ([18]), are
heuristic methods that follow a top-down approach, meaning that they start from
the root node and the tree then grows deeper as opposed to taking the entire tree
into consideration as can be done by taking a MIO-approach. As noted by [7],
the number of binary variables in the MIO-formulation shown in (16) quickly
increases as the number of data points increases. Given a data set with 1000
data points and a tree of depth 5, there are 320,000 binary variables needed to
keep track of which leaf node each data point belongs to. For this reason, the
MIO approach requires a lot of computational resources for applications that
require larger datasets, and we, therefore, chose a heuristic approach instead.

LMTs and quadratic MTs have been used to replace an RL agent and thus
serve as an intrinsic explainable method by calculating feature attributions from
the prediction functions in the leaf nodes [12]. The MTs were not capable of
achieving the same accuracy as the RL agent and this replacement thus came with
a performance cost. The LMT implementation from Paper A ([17]) was used in
[34], where three regression tree methods were compared. The implementations
from [34] were used as a basis for the implementations in Paper D ([19]). To
the author’s best knowledge, in Paper A ([17]), LMTs were used as a surrogate
model to generate explanations in the form of feature attributions for the first
time in the literature.

The CART-like implementation of LMTs is an extension of the implementation

26

of LMTs from [68]. Instead of using the maximum depth of the tree, we used the
maximum number of leaf nodes to include more asymmetric trees in the search
space. Additionally, we introduced some randomization to both finding the next
node to be split and to the search for the threshold in the splitting conditions
so that the trees can be built in parallel with the same parameters and still give
different results.

To allow the algorithm to explore more of the solution space, the maximum num-
ber of leaf nodes was chosen as a hyperparameter instead of using the maximum
depth of the tree. For binary trees (meaning trees that splits the nodes into two
children nodes), the maximum depth indirectly sets the maximum number of leaf
nodes since a complete tree with depth D has a total number of 2D leaf nodes.
On the other hand, if 2D is used as the maximum number of leaf nodes, the tree
can grow deeper than depth D in regions that require that and shallow for the
more linear regions.

A critical drawback with heuristic methods is that we have no guarantee for the
optimality of the resulting tree. Even though using a prebuilt LMT is straight-
forward, building them can be more tedious. Firstly, there are quite a few hyper-
parameters to be defined. These hyperparameters include the maximum number
of leaf nodes, the minimum number of samples required for a leaf node to be
valid, and the required improvement in the loss metric for a branch node to be
split. It is important to note that we are searching for the best tree given these
hyperparameters and not the best tree in general. Take the MIO-formulation of
LMTs where we are searching for the optimal tree with a given depth instead of
searching for the optimal tree with any depth. For example, if we are searching
for the optimal tree with a depth of 4 but the globally optimal tree has a depth of
6, we will never find the globally optimal tree. The same goes for any of the hy-
perparameters that we need to set. Secondly, the LMT cannot approximate the
NN for situations that are not well-represented by the dataset. Thus, great care
must be taken when gathering data from the environment and the agent. One
measure, introduced in Paper A ([17]), taken to ensure good datasets to build the
LMTs upon was the strategy referred to as iterative tree building. First, data was
gathered evenly distributed from the environment and paired with the output of
the NN and an LMT was built upon that dataset. Then, the outputs of the NN
and the LMT in this dataset was compared to see where in the state space more
data collection was required, followed by building a new LMT based upon this
improved dataset. This process is then repeated until the LMT approximates the
black-box accurately enough. It is hard to set a hard threshold for what accur-
ate enough should be, as there is no good metric to determine how similar two
different models are. Instead, this should be investigated through several differ-
ent metrics and using these metrics as indicators for when the LMT accurately

27

enough approximates the black box.

Paper C ([18]) introduced domain knowledge by stating which features could be
used in the splitting conditions in the branch nodes at the different depths of
the tree, which is called ordered feature splitting. Not only does this signific-
antly speed up the algorithm since the number of features that must be searched
through is lower, but the algorithm also finds more promising trees more con-
sistently. This ordering should be done with the application at hand in mind as
it imposes some rather strict limitations to the structure of the LMT. Ordered
feature splitting can have a positive impact, given that it removes the parts of
the solution space that includes bad performing trees and keep the part of the
solution space that includes the optimal and near-optimal solutions.

Within the field of computer science, a lot of work has been done on different
algorithms for building DTs, such as the pruning of trees to prevent overfitting
or other methods for simplifying the trees [10]. Lessons from previous work on
DTs should be utilized to a higher degree to improve the algorithm for building
LMTs as well.

As stated earlier, LMTs’ structural properties are both beneficial in terms of
being intuitive for humans so that we can easily follow an instance’s path from
the root node to its respective leaf node and because it is relatively easy to extract
explanations from the trees. Even though it is always possible to follow the path,
the number and length of the paths will vary with the size of the tree, which is
directly linked to how easy it is to get an overview of the tree. Therefore, the
size of the tree is also directly linked to how easily humans can understand it.

There are many ways of building not only DTs in general but also LMTs spe-
cifically. As shown in Paper B ([35]), LMTs structure makes them well-suited
to be formalized as a MIO-problem but solving them for real-world problems is
difficult and we thus must resort to heuristic and greedy methods. Paper D ([19])
compared three different methods for building LMTs and one method for build-
ing non-linear MTs. The work is limited to only containing methods that could
handle multiple, continuous inputs and outputs and used non-constant prediction
functions within the leaf node of the trees. With some adjustments, other meth-
ods could apply to these kinds of robotic problems but only methods that were
ready to go were considered. Two of these methods, optimal regression tree with
linear prediction function (ORT-L) and ORT-L with hypersplits (ORT-LH), are
commercially used methods offered by Intepretable AI 10. At the time, ORT-LH
had issues with numerical instability during run-time and a structured search for
the best hyperparameters was not possible which most likely resulted in subop-

10https://www.interpretable.ai/

28

https://www.interpretable.ai/

timal trees.

3.2 LMTs as an XAI-method

DTs is a well-known SL method, with CART dating back to 1984 [9]. Most DT-
algorithms do not apply to RL-problems as they must be built from scratch to
introduce new data. The differentiable decision trees (DDTs) from [60] can be
updated online as the splitting conditions in the branch nodes are sigmoid func-
tions but the sigmoid functions are discretized after training to ensure discrete
splits. Sigmoid functions are differentiable and backpropagation can therefore be
applied to the trees. DDTs as presented in [60] is only applicable to applications
with a discrete action space. In this thesis, the LMTs is used as a post-hoc,
surrogate XAI method trained as a SL problem. As emphasized in Section 3.1, it
is crucial to have a dataset that properly represents the agent’s behaviour across
the entire state space to build an LMT that accurately represents the black box
model. For a surrogate model to be able to run in parallel with the black box and
give explanations in real time for robotic applications, the surrogate model must
be fast enough to keep up with the black box. The fact that LMTs are capable
of this is a significant motivation for using them as an XAI method.

LMTs can be seen as a global explanation as the black box model’s complex
structure is ported to the more easily understood structure of LMTs. However,
as discussed in Paper D ([19]) and Paper C ([18]), a large DT is not necessarily
interpretable for humans without the use of additional analytical tools as it simply
is too much information to be able to get a good overview over the model. That
the LMTs’ structure is easy to understand, meaning it is easy to follow all the
decisions made from the root node along the path to the leaf node and finally, the
linear prediction function must not be confused with that the LMT as a whole is
easy to get an overview of.

In Paper B ([35]), three post-hoc, model-agnostic methods generating explana-
tions in the form of feature attributions were implemented and evaluated for a
marine robotic application. The methods that were tested out and evaluated
were linear model agnostic explanations (LIME) [51], Kernel-SHAP [36], and the
first iteration of LMTs from Paper A ([17]). Since both LIME and SHAP adapt a
local surrogate model around the instance to be explained, they can easily adapt
to new data, whereas LMTs must have all data available at the time it is built.
LIME gave somewhat noisy explanations in addition to being too slow to run in
real-time. Due to the LMT being only piece-wise linear, it can have quite big and
abrupt changes in its predictions and, thus also in its explanations in areas close
to the borders of the leaf nodes’ regions. SHAP gave smoother explanations, in

29

terms of not changing too suddenly in comparison to both LIME and the LMT,
but only the LMT was able to give explanations in real time. Since linear regres-
sion is vulnerable to dependant features, so are the feature attributions generated
based upon these linear functions. Suppose even just for a region two (or more)
features are dependent. In that case, the linear function may only need to use
one of these features to get an accurate prediction and the features not used will
thus be given no importance by the feature attributions. SHAP also assumes
independent features, which is pointed out and addressed in Causal-SHAP [13].

In addition to porting the complex structure of the black box to a more simplistic
form, LMTs are capable of generating explanations in the form of feature attribu-
tions as seen in Paper A ([17]), Paper B ([35]), Paper C ([18]), Paper D ([19]) and
counterfactual explanationss (CFEs) as seen in Paper E ([20]). In Paper E ([20]),
it is shown that CFEs can be generated from the LMT without any adjustments
to either the structure of the tree or the building process of the tree. The LMT
is only used to locate the counterfactual state and then this counterfactual state
is passed through the black box to find the counterfactual action. The counter-
factual state and action together make out the counterfactual explanation. Since
the black box is used to determine the counterfactual action, the counterfactual
explanation is always true, but we cannot be sure that it is the best explanation.
Best, in this case, being the counterfactual example that has maximized the ob-
jective function used to find the counterfactual example with the smallest change
to the state while still giving the largest change in the action. Neither feature
attributions nor CFEs constitute a complete local or global explanation but can
still give insightful information about the black box’s decision-making process.

3.3 Visualization of explanations in robotics

As stated in [42], an explanation is the transfer of information. The explainer
has some causal information regarding a decision made by themselves or someone
(or something) else that they want to explain to the explainee. There could be
many reasons for wanting this transfer of information, such as the explainee
wanting to understand something (think of the explainee as a student and the
explainer as a teacher) or that the explainee wants to check that the explainer
has understood something (think of the explainee as the teacher wanting to check
what the student, the explainer, has learned). In the context of XAI, the explainer
would be the XAI method explaining itself (if it is an intrinsic method) or a black
box model to be explained to the human user of the system by a post-hoc XAI
method.

In Paper A ([17]), the feature attributions were presented in five bar plots, one

30

for each action, which can be seen in Figure 12a. If an input feature contributed
positively (pushed the action towards a higher value) the bar plot is green, and
red if it contributed negatively. The bar plots are more efficient than just looking
at the raw numbers. However, there are still connections that must be made, such
as considering that the state of the azimuth thrusters is collectively determined by
f1 and a1, and f2 and a2. The colours should be changed to be more colour-blind
friendly. Even though the explanations are given in real-time, it is challenging
for the end-user to process them in real time.

In Paper C ([18]), the focus lies on how to best communicate the explanations
depending on who the explainee, which is referred to as the end-user, is. Many
different aspects and characteristics of the different end-users can affect how the
explanations should be communicated. Two central questions to ask when con-
sidering the end-user is 1) ”What questions are the end-user asking?”, and 2)
”What is the end-user going to use the explanations for?”. To answer the first
question, we must know what the end-user knows beforehand, what their expect-
ations for the system are, and why they are asking questions. To answer the
second question, the end-users role (such as captain, developer, or passenger of
an autonomous surface vessel (ASV)) must be considered. In Paper C ([18]), two
end-users were considered, namely the developer of the black-box model and the
captain of the ship the black-box model is used upon. There are many differences
between these two end-users, ranging from different background knowledge to dif-
ferent personal risks associated with failures of the system. Since the developer
does not need to process the explanations in real time, all the information regard-
ing an episode was presented through plots of the episodes, states, and feature
attributions. The captain, on the other hand, must process the information in
real-time and irrelevant information (such as too detailed information) is filtered
out. One of the developer’s plots can be seen in Figure 12d, and the visualization
of the state, action, and explanation given to the captain is shown in Figure 12c.
The end user and the industry they are intended for should evaluate the ex-
planations and how they are visualised. Additionally, several end-users, such as
passengers of the ASV should be included.

In Paper E ([20]), CFEs were generated both for the docking problem and the
inverted pendulum problem. For the docking problem, the difference between
the factual state and action and the counterfactual state and action was given
in a tabular form next to the visualizations as presented in Paper C ([18]). This
is not an ideal way of presenting the CFEs, and work concerning how these
explanations best can be presented for this application should be done. For the
inverted pendulum case, however, the counterfactual state and counterfactual
action could be presented in the same way as for the system, only in another
colour. This can be seen in Figure 12b, where the pendulum’s state and the

31

agent’s action are shown in red, and the counterfactual state and action are
shown in black.

(a) Bar plot of the feature attributions from Paper A ([17]).

(b) Visualization of counterfactual explanations from Paper
E ([20]).

32

(c) Visualizations intended for the captain of the system and the feature attributions
from Paper C ([18]).

(d) One of the visualizations of the state, actions, and feature attributions intended
for the developer from Paper C ([18]).

Figure 12: Examples of different visualizations of systems and explanations from
Paper A ([17]), Paper C ([18]), and Paper E ([20]).

33

4 Conclusions and further work

This thesis contains contributions with novel solutions to the problem of ex-
plaining AI based robotic systems in real-time, adapting the visualization and
communication of the explanation to two different users of the AI based system,
and how LMTs can be built and used as a post-hoc, surrogate XAI method for
robotic applications.

There is a clear need for XAI within robotic applications that utilize black box
models such as DNNs. This thesis, and the publications it contains, has shown
that LMTs have several traits that make them a useful XAI tool, such as

• being real-time runnable,

• being able to deal with multiple, continuous inputs and outputs,

• being a global surrogate model with an intuitive structure,

• and being able to give both feature attributions and counterfactual explan-
ations.

Even though LMTs can be formalized as a MIO-problem, solving them optimally
is still very challenging for large-scale problems. Within the field of computer
science, a lot of work has been done on how to build DTs, and further work
should utilize different methods from this field, such as pruning the trees. It is
shown that LMTs can give two forms of explanations: feature attributions and
CFEs. The feature attributions are generated based on the linear functions in the
leaf nodes of the LMT, while the CFEs are generated by searching through the
closest leaf nodes until a CFE is found. Additionally, the LMTs are by themselves
a form of explanation as they transform the black box into a simpler structure.
However, very large DT are arguably not transparent as it will be very challenging
to get a good overview of the trees. Both the feature attributions and the CFEs
are local explanations. Thus, working on generating more global explanations
from the LMTs would be an interesting direction for further work.

The trees benefit from having domain knowledge introduced to the structure
of the tree under the building. Having multiple actions for each tree leads to a
simpler structure that is more easily understood by humans and more consistently
accurate trees. Measuring the similarity between the black box model and the
LMT is not straightforward. Both the error on a test set and the behaviour of
the two models when controlling the robotic system were compared to get some
indications of how similar they were. Further work should include finding more
reliable similarity measures and preferably some benchmark metric.

34

How the explanations are communicated can affect the receivers’ understanding
of the black box model, the XAI method and the system. Different people want
different explanations, so it is crucial to consider the receiver when presenting
the explanations given by the XAI method. Two significantly different ways
of visualizing the explanations to two different users of the black box model is
given, and further work should include having such visualizations evaluated by
their respective receivers.

The field of robotics introduces some additional requirements and challenges to
the XAI problem. This includes, but is not limited to, explaining sequential
decisions, making sure not to give explanations that do not violate the laws of
physics, and giving the explanations in real-time.

5 Publications

This chapter contains reprints of the publications which were written as a result
of the work in this thesis. The publications are formatted to fit the format of the
thesis.

35

5.1 Paper A

Postprint of [17]: Vilde B. Gjærum, Ella L. H. Rørvik and Anastasios M.
Lekkas. ‘Approximating a deep reinforcement learning docking agent using linear
model trees’. In: The 19th European Control Conference(ECC)(2021), pp. 1465-
1471, doi: https://doi.org/10.23919/ECC54610.2021.9655007

©2021 Vilde B. Gjærum, Ella L. H. Rørvik, and Anastasios M. Lekkas. Reprin-
ted and formatted to fit the thesis under the terms of the Creative Commons
Attribution License L M

36

https://doi.org/10.23919/ECC54610.2021.9655007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Approximating a deep reinforcement learning
docking agent using linear model trees

Vilde B. Gjærum1 and Ella-Lovise H. Rørvik2 and Anastasios M. Lekkas1

Abstract

Deep reinforcement learning has led to numerous notable results in robotics.
However, deep neural networks (DNNs) are unintuitive, which makes it difficult to
understand their predictions and strongly limits their potential for real-world appli-
cations due to economic, safety, and assurance reasons. To remedy this problem, a
number of explainable AI methods have been presented, such as SHAP and LIME,
but these can be either be too costly to be used in real-time robotic applications or
provide only local explanations. In this paper, the main contribution is the use of a
linear model tree (LMT) to approximate a DNN policy, originally trained via proximal
policy optimization(PPO), for an autonomous surface vehicle with five control inputs
performing a docking operation. The two main benefits of the proposed approach
are: a) LMTs are transparent which makes it possible to associate directly the outputs
(control actions, in our case) with specific values of the input features, b) LMTs are
computationally efficient and can provide information in real-time. In our simulations,
the opaque DNN policy controls the vehicle and the LMT runs in parallel to provide
explanations in the form of feature attributions. Our results indicate that LMTs can
be a useful component within digital assurance frameworks for autonomous ships.

Index Terms

Deep Reinforcement Learning , Explainable Artificial Intelligence, Linear Model
Trees, Docking, Berthing, Autonomous Surface Vessel

I. INTRODUCTION

Deep reinforcement learning (DRL) is a powerful tool with many application areas
within robotics, such as perception and control. One of DRL’s attributes is that it
enables end-to-end learning, which refers to mapping sensory input directly to control
actions. This mapping allows for optimizing the overall system performance, instead of
having several, locally optimized systems in cascade, which often is the case for model-
based systems. In [1], the learned policy was able to perform various manipulation
tasks with a dexterous, robotic hand. In [2], a real-world Minitaur robot learned to walk
on a flat surface and was able to handle somewhat challenging surfaces and obstacles
without having seen these obstacles during training. In [3], one of DRL’s greatest

This work was supported by the Research Council of Norway through the EXAIGON project, project
number 304843. An additional thanks to Nicolas B. Carbone for his contribution through several valuable
discussions.

1Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim,
Norway. Email: vilde.gjarum, anastasios.lekkas}@ntnu.no

2Department of Artificial Intelligence, TrønderEnergi, Trondheim, Norway. Email:elh.rorvik@gmail.com

37

strengths is demonstrated, namely discovering strategies through the exploration of
the state- and action space in the multi-agent environment of playing hide and seek.
The agents adapted and came up with new strategies to combat the opponents’ latest
strategy, even going as far as using parts of the environment in ways not originally
intended. The applicability of DRL has also been demonstrated in motion control
tasks for autonomous surface vessels (ASVs), which often operate in complex and
uncertain environments that are challenging to model. In [4], DRL was used to perform
curved-path following on a surface vessel and performed well compared to line-
of-sight guidance in simulations. In [5], a DRL-agent was trained to perform both
path-following and collision avoidance. In [6], a DRL agent is trained to perform the
approach and berthing phases of docking of an ASV.

Even though DRL is a promising tool for advancing the level of autonomy in
many fields, its potential applications in real life are strongly limited by the lack
of transparency of the deep neural networks (DNNs) involved. This is crucial in all
cost- and safety- critical applications. To be able to understand the agent’s actions,
a global explainer is needed, or as a bare minimum, local explanations for each
prediction. There has been done a lot of work on addressing this problem in the
field of eXplainable Artificial Intelligence (XAI) in the recent years. The goal of XAI
is to uncover the inner workings of black-box models. One of the most prominent
explainers is the Local Interpretable Model-agnostic Explainer (LIME) [7], which
trains an interpretable, surrogate model around the instance it is explaining based on
neighboring instances. LIME is a post-hoc (it explains previously trained methods),
model-agnostic (it can explain any type of model) XAI method. The neighboring
datapoints are weighted based on how far away from the instance to be explained
they are. One weakness of LIME is that it does not perform as well when explaining
instances it has not seen before. This problem is addressed in [8] by the same authors,
where the interpretable surrogate model is replaced by a set of IF-THEN rules called
anchors. Another prominent XAI method is Shapley Additive exPlanations (SHAP)
from [9]. The SHAP method explains a prediction by assigning importance to the input
features for that prediction. The importance of the features is calculated by utilizing
Shapley values from game theory, in combination with the coefficients of a local linear
regression. SHAP is a model-agnostic, post-hoc method. The assigned contributions
of the input features should add up to the original prediction, thus SHAP is an
additive feature attribution method. Also, although SHAP is mainly a local explanation
method, it can give indications of how the black-box model works as a whole through
calculating the Shapley values for every instance and analyzing the resulting matrix
of Shapley values. It should be noted that SHAP is a very computationally demanding
method. Both LIME and SHAP form their explanations by perturbating the inputs
and computing how these perturbations affect the output of model to be explained. In
[10], it was shown that XAI methods relying on input perturbations are vulnerable to
adversarial attacks aiming to hide their classification bias from the XAI method. One of

38

the reasons such methods are vulnerable to adversarial attacks is that the data sampled
from input pertubation often are irrelevant, and the model is forced to explain input
samples it has never seen before [11]. Even if the model to be explained does not intend
to fool the explainer, if the samples created by perturbating the inputs are unrealistic,
the explanations will be based upon predictions not fairly representing the model.
Additionally, in [11] it is pointed out that SHAP assumes complete independence
between the input features, which is often not the case for robotic systems. In [12], the
method called Integrated Gradients was presented. As the name implies, the gradients
are integrated along a straight-line path between the instance to be explained and an
information-less baseline instance to extract the explanations directly from the neural
network. Integrated Gradients is a post-hoc, model-specific (it can only explain one
type of model). In this paper, the focus is on linear model trees, a type of decision tree
(DT). The rule-based nature of DTs make them inherently transparent and interpretable,
since it is trivial to follow the path from the leaf node (output) to the root node (input)
of the tree. The most basic form of a decision tree for continuous data - a simple
regression tree - has univariate splits and each leaf node predicts a constant value.
Model trees are regression trees with a different type of prediction model at the leaf
nodes. In linear model trees (LMTs), linear regression is used in the leaf nodes in stead,
which makes it easy to extract explanations of the predictions in the form of feature
attributions, in addition to being transparent. Linear model trees, as presented in this
paper, are fast enough to be used in real-time, are model-agnostic, and can be used
to understand both individual predictions and the system as a whole. To the authors’
best knowledge, there is no existing literature where LMTs are used to approximate
DNN policies controlling robotic systems. The main contributions of this paper are:

• We use an LMT to approximate a DRL policy, previously trained in [6] via prox-
imal policy optimization(PPO), to perform autonomous docking in a simulated
environment.

• Compared to the standard way of building LMTs, we have added randomization
to the search for thresholds and the process of choosing which node to split next.
Moreover, to ensure a sufficient dataset from the areas of interest, an iterative
approach to the training and data collection was used.

• We run the LMT in parallel with the policy in order to provide real-time cor-
relation between input features and the selected control inputs computed by the
policy.

II. DOCKING AS A DEEP REINFORCEMENT LEARNING PROBLEM

In this section, the docking problem and the reinforcement learning docking agent
are briefly introduced. For further details about the implementation and training, the
reader is referred to [6].

39

A. The docking problem

Docking pertains to reaching a fixed location along a quay, where the vessel can
moor, and can be split in three stages: 1) Moving from open seas to confined waters
(the approach phase), 2) parking the vessel (the berthing phase), and 3) fastening the
vessel to the dock (the mooring phase). Docking is a complex motion control scenario
and requires a lot of intricate maneuvering, since the vessel operates close to the harbor
infrastructure with little to no space for deviations, and under the influence of external
disturbances that gain increased importance at lower speeds. Such circumstances are
challenging for most traditional control systems since they often depend on accurate
mathematical models in contrast to RL-methods that can learn the model guided by the
reward function. In [6], a PPO policy was trained in a simulated environment based
on the Trondheim harbor environment.

B. The docking agent

Deep RL is a subfield of machine learning where learning occurs by selecting actions
via an exploration/exploitation scheme and receiving reinforcement signals for these
actions. The reinforcement signals, called rewards, are given by the reward function,
which is user-defined. The agent is tasked to find the state-action mapping (i.e. the
policy) that optimizes the return, which represents the expected cumulative reward
during an episode. Thus the reward function is crucial for the agent’s learning process
and its resulting behavior. The policy used in this work, was trained extensively in
[6] with the PPO method from [13]. It performs the approach and berthing phases of
the docking process from up to 400 meters distance from the quay. The PPO method
uses a trust region to prevent the agent from overreacting to a training batch and thus
risking getting stuck in a local minimum. A trust region is defined as the region where
the policy approximation used for gradient descent is adequately accurate. Instead of
having the trust-region as a hard constraint, PPO includes it in the objective as a
penalty for leaving the trust region, which makes the training less rigorous. The policy
is trained to perform the approach- and berthing phase of the docking. The training
algorithm has no prior knowledge of the inner dynamics of the vessel and it utilizes
the feedback from the reward function as the agent takes action and the outcomes of
these actions are evaluated. Selecting the input features vector is crucial for the reward
function and the agents learning, and thorough work was done in [6] to develop an
effective reward function for the task in hand. The fully-actuated vessel to be controlled
has two azimuth thrusters and one tunnel thruster, hence giving the following control
states:

A = [f1, f2, f3, α1, α2], (1)

where f1,f2 (from -70 to 100 kN) and α1,α2 (from -90 to 90 degrees) are the forces
and rotation angles of the two azimuth thrusters, whereas the tunnel thruster can exert
only a lateral force f3 (from -50 to 50 kN). The thrusters’ placement on the vessel

40

Fig. 1: The features, or states, representing the vessels position relative to the closest
obstacle and the positioning of the vessels three thrusters.

can be seen in Figure 1. The state vector, which is also the input feature is composed
of 9 states:

x = [x̃, ỹ, ψ̃, u, v, r, l, do, ψ̃o], (2)

where x̃ and ỹ represent the distance to the berthing point in the body frame, while
ψ̃ represents the difference in the heading compared to the desired heading. The vessel
velocities are given by the variables u, v, and r. The binary variable l indicates whether
or not the vessel has made contact (crashed) with an obstacle. The relative position to
the closest obstacle in body frame is given by do and ψ̃o.

The PPO-trained policy network involves two hidden layers, consisting of 400
neurons each. The ReLU activation function was used for the hidden layers, and the
hyperbolic tangent was used as the activation function for the output layer, ensuring
actions in the range [-1,1]. The PPO-trained policy converged after approximately 6
million interactions with the environment. The DRL agent was trained in [6] to perform
both the approach and berthing phase of docking, but without consideration for any
speed regulations within the harbor.

III. APPROXIMATION VIA LINEAR MODEL TREES

A decision tree is a rule-based prediction method, which splits the input space into
smaller regions and makes a prediction for each region [14]. A tree consists of branch
nodes, where the splitting happens, and leaf nodes, where the prediction happens.
LMTs perform linear regression in all the regions separately instead of attempting
to fit the function for the entire feature space at once. To preserve the transparency
of the tree in this work, the splits are univariate. Increasing the complexity of the
prediction- or splitting model significantly increases the computational time required
to build a tree, in addition to limiting their transparency. More generally, given any

41

Algorithm 1: Building LMTs
Require:
training data D
Maximum number of leaf nodes N
Minimum number of data samples for leaf nodes M
while number of leaf nodes is less than N do

if there exist a node that fulfills all splitting criteria then
Choose node to split
Perform splitting
Calculate best potential split for the newly created nodes

else
return root node

end
end

black-box model f: x→ y, LMTs make out a piece-wise linear approximation function
f ’: x → y’, where y ≃ y′. LMTs are useful because they are easy to implement and
can give explanations in real-time, which is crucial for most robotic applications. The
implementation of the LMTs in this paper is based on [15] which again is based on
Classification and Regression Trees (CART) from [16]. The following modifications
have been made to [15]’s implementation:

• We added randomization in the process of searching for thresholds and choosing
the next node to split.

• We replaced the maximum depth of the tree with maximum number of leaf nodes.
The tree building process as implemented in this paper is shown in Algorithm 1.

For a node to be split, and two new nodes to be created, there must exist at least one
node which fulfills the splitting criteria. That is, a node where a split will result in two
nodes with at least M data samples each, and gives an improvement in the model’s
loss. When a splitting has occurred, the best potential split for the newly created nodes
are calculated. It is this loss improvement value that is used when choosing the next
node to be split. When searching for these split conditions, it is not possible to check
for all possible thresholds, so instead a grid search is done. There is no guarantee
that the optimal threshold will be found in this grid search, so some randomness is
introduced. Not having the process be deterministic is beneficial because the process
will generate a different tree every time it is run, which allows us to explore different
outcomes. Equations 3-5 show how the split variables for a node are calculated.

f, tn = argmin
f,n

(loss(DL) + loss(DR)) (3)

42

DL = (x ∈ D : xf ≤ tn)
DR = (x ∈ D : xf > tn)

(4)

tn = min(Df) + (n+ r)
(max(Df)−min(Df))

N
(5)

where f is the feature the split should be performed on, tn is the threshold number n
in the grid search, where n ∈ [0, 1, 2, ..., N], N is the size of the grid search, and r
is a random number between ±2%. The variable Df denotes the values of feature f
in the set D, thus min(Df) and max(Df) denotes the minimum and maximum values
of feature f in dataset D. It is important to note that the LMT training process makes
local, greedy choices, which gives no guarantee of global optimality. For example, if
an extremely good split comes after an apparently bad split, it may never be found.
This is a common problem for heuristic decision tree training methods. We alleviate
this issue by adding some randomness to the process of choosing the next node to be
split, as shown in the following equation:

ns = argmax
n

((1 + r)(loss(Dn
L) + loss(Dn

R))) (6)

where ns is the node to be split next, r is a random number between ±2%, and Dn
L

and Dn
R are as defined in Equation 4 given the best split conditions f and t for node

n.
The tree has no maximum depth condition, instead it has a maximum number of

leaf nodes it is allowed to have. This lets us directly state how many regions the tree
is allowed to divide the input feature space into. Additionally, the tree is allowed to
grow more asymmetrically, which again allows the tree to grow deeper in the area that
covers the most complex regions of the feature space, while keeping the parts of the
tree that covers simpler regions shallower.

The aspect that proved to be most important, and most challenging, was getting
a balanced data set. The number of data points a certain area in the feature space
requires in order to be represented adequately, depends on how far away from linearity
the problem is in that area. To account for this, iterative tree-building was used. First,
an initial data set is created through randomly sampling the feature space. Then, an
initial tree is created based on that data set. The data set is then improved by letting
the tree run through the environment and further samples from episodes that did not
end successfully. To form the local explanations, the linear functions in the leaf nodes
are utilized. The linear functions take the form of Equation 7 where af is feature
f ’s coefficient and xf is the sample x’s value for feature f, and C is a constant. The
importance If for each input feature concerning each output feature can be calculated
as shown in Equation 8, similarly to LIME and SHAP.

y =
∑

f

afxf + C (7)

43

If =
afxf∑

j∈∀f |ajxj |
(8)

Transparency can be divided into three categories, namely simulatable-, decomposable-
, and algorithmic transparency. In [17], simulatable transparency is defined as the model
not being more complex than what a human can easily comprehend. Therefore, given
that the input features are understandable by humans (or at least domain experts)
and the tree is not too deep, a linear model tree can be simulatable transparent.
Decomposable transparency means that every part of the model must be understandable
by a human without any additional tools. Since the linear model trees have univariate
splits and linear function in the leaf nodes and the input and output features are
understandable they are decomposable transparent, even if they grow big. Algorithmic
transparency takes into account if it is possible to analyze the model with help of
mathematical tools, which it is. Thus, linear models with univariate splits can be
simulatable transparent but are always decomposable- and algorithmic transparent.
The explanations given by the LMTs are local, feature relevant explanations, which
means that, for each prediction, an explanation in the form of showing how much a
feature pulled in a certain direction is given.

IV. SIMULATION RESULTS

For this application, there are five control inputs to be predicted. This can either
be solved by fitting one tree to each output feature or combining their losses when
evaluating splits. The LMT made for this work used the latter and had 681 leaf nodes,
where the shallowest leaf nodes were at depth 5, and the deepest leaf nodes were
at depth 15. Thus, for all practical means, the resulting tree is only decomposable
transparent, and not simulatable transparent. In Figure 2a, the path along the tree from
the root node to leaf node is highlighted, and in Figure 2b the explanations given in
form of relative feature contribution is shown. Figure 2 is from the last time instance
shown in Figure 4b. Like the PPO-agent, the LMT can act as a controller on its
own. Thus, how well the LMT approximated the PPO-trained policy network can be
evaluated through the difference between their outputs when they are given the same
input. Table I shows the analysis of the LMT’s error through its deviation from the
target output by the PPO-agent from 1000 episodes with random starting points. In
most episodes, the vessel has arrived at the berthing point at step 800. After this it
enters a cycle of repeating states. To prevent these states to skew the evaluation since
the LMT approximates the PPO-agent quite well in the region close to the berthing
point, the episodes are stopped at step 800. The highest errors usually occurs in the
beginning of the episode, when the vessel still is far from the harbour, where the
LMT’s actions follows the curvature of the PPO-agent’s actions but are somewhat
noisy, causing an increase in the average error. Overall, the magnitude of the average
error and standard deviation is moderate.

An alternative way to evaluate the LMT’s approximation of the PPO-trained DRL
agent is to look at their paths when starting from the same initial point and aiming

44

(a) Tree path for actions. Left arrow means
that the condition in branch node above was
true, right arrow means it was false.

(b) Relative importance for input features for
the actions

Fig. 2: Explanations and path from root node to leaf node predicting the actions in
last step of Figure 4b.

for the same berthing point. A successful run is here defined as the vessel reaching
the berthing point without making contact with any obstacle, while a failed run is
defined as the vessel making contact with an obstacle (crashing). This criterion is not
meant to evaluate the PPO-agent’s behavior, because berthing can be successful even
if it makes contact with the harbor if it happens slowly enough (i.e a small bump is
usually tolerated), but rather as a way of evaluating how well the LMT managed to
approximate the PPO-trained policy. Of note, neither of the agents have any episodes
that does not end by either successfully berthing the vessel or by making contact with
an obstacle. An example of a successful run by both the LMT and the PPO-agent is
shown in Figure 4a. It is clear that for this starting point, the LMT has approximated
the PPO-trained policy very well. The LMT fails approximately 3% more often than

45

Fig. 3: Relative feature contributions given by the LMT for the episode shown in
Figure 4b.

Output feature Mean absolute error Error standard deviation
f1(kN) 15.84(9.3%) 25.6(15.05%)
f2(kN) 14.23(8.3%) 21.7(12.76%)
α1(deg) 16.61(9.2%) 23.49(13.05%)
α2(deg) 13.75(7.63%) 20.62(11.45%)
f3(kN) 9.08(9.08%) 15.9(15.9%)

TABLE I: Output error analysis

the PPO-agent, but when looking closer at the situations where the LMT fails and
the PPO-agent succeeds, it is apparent that such episodes typically unfolds similar to
the episode shown in Figure 5. Even though their outcome is different, they act very
similarly, so the explanations are still useful. However, the biggest difference between
the two agents is most apparent when the PPO-agent fails, as can be seen in Figure 6.
This could either be due to the LMT not having seen enough data from this area, that
this is a more complex area so the LMT needs to grow deeper, or that the PPO-agent
has not found a proper strategy for this area (which in turn can be due to the starting
position being extremely hard or even impossible, for example, if the boat has an initial
speed towards the harbor that is too high. However, if this deviation is detected, it might
be used to raise an alarm of some sort, to alert an overseer. The explanations for the
episode shown in Figure 4b are shown in Figure 3. Since the LMT only uses the linear
functions in the leaf nodes as a basis for its explanations it does not take the splits
along the path from the root node to the respective leaf node into consideration, even
though it intuitively is relevant. This can for example be seen in the two flat areas in the

46

first 500 steps of the episode for output f1. The PPO-agent reaches the berthing point
at around step number 750, and both the output of the PPO-agent and the explanations
from the LMT goes into a rather repetitive cycle. LMT assigns most importance to ψ̃o

and do for all actions. When looking closer at what features are changing in this part of
the episode, it is clear that it is in fact ψ̃o, r, and do that are changing the most, while
x̃ and ỹ are virtually constant. Since feed-forward neural networks are one-to-one, the
changing parameters are causing the change in outputs and are therefore the correct
explanations. In the first ∼ 250 steps it seems like the PPO-agent cares most about the
three input features regarding the vessel’s position relative to the berthing point (x̃, ỹ
and ψ̃). The part where the explanations are the least decisive is from approximately
step number 250 to 750. LMTs explanations changes fast, which reflects that it is only
piece-wise smooth. LMTs are somewhat time-demanding to build, but when it is built
they can easily give real-time explanations. The LMTs only give explanations for one
output feature at a time. The problem with this is that the 5 outputs are controlling the
same vessel and thus dependent on each other. Additionally, f1 and α1, and f2 and
α2 are controlling the same motor. Explaining dependent factors independently will
not give the whole picture. Even though relative feature contributions cannot serve
as a full-fledged explanation in itself, it can be an important component of technical
assurance [18].

47

(a) Successful run by the LMT.

(b) Successful run by the PPO-agent.

Fig. 4: Paths of PPO-agent and LMT from same starting point.

48

(a) Failed run by the LMT.

(b) Successful run by the PPO-agent.

Fig. 5: Paths of PPO-agent and LMT from same starting point.

49

(a) Failed run by the LMT.

(b) Failed run by the PPO-agent.

Fig. 6: Paths of PPO-agent and LMT from same starting point.

50

V. CONCLUSIONS AND FUTURE WORK

Linear model trees (LMTs) can contribute to tracing the outputs of a deep rein-
forcement learning (DRL) policy by directly linking them to the input features. In this
paper, this potential was demonstrated by approximating a DRL policy controlling
an autonomous surface vessel with five control inputs in a complex motion control
scenario, namely docking. Although LMTs do not approximate the deep neural network
in an optimal way, our results indicate that their performance is close enough to that of
the original policy. In addition, the fact that LMTs are fast enough to be applicable in
real-time applications, make them good candidates as components a digital assurance
framework explaining the actions of black box models during operation. Future work
includes improving the accuracy of the trees, and utilizing domain knowledge in both
the process of building the trees and the process of extracting information about the
system from the trees to make them truly understandable to several categories of end
users.

REFERENCES

[1] A. Singh, L. Yang, K. Hartikainen, C. Finn, and S. Levine, “End-to-end robotic reinforcement learning
without reward engineering,” Robotics: Science and Systems, 2019.

[2] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine, “Learning to walk via deep reinforcement
learning,” Robotics: Science and Systems (RSS), 2019.

[3] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew, and I. Mordatch, “Emergent
tool use from multi-agent autocurricula,” in International Conference on Learning Representations,
2020.

[4] A. B. Martinsen and A. M. Lekkas, “Curved path following with deep reinforcement learning: Results
from three vessel models,” in OCEANS 2018 MTS/IEEE Charleston, pp. 1–8, 2018.

[5] E. Meyer, A. Heiberg, A. Rasheed, and O. San, “COLREG-compliant collision avoidance for unmanned
surface vehicle using deep reinforcement learning,” IEEE Access, vol. 8, pp. 165344–165364, 2020.

[6] E.-L. H. Rørvik, “Automatic docking of an autonomous surface vessel : Developed using deep
reinforcement learning and analysed with Explainable AI,” MA thesis. Trondheim, Norway: Norwegian
University of Science and Technology(NTNU), 2020.

[7] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should i trust you?”: Explaining the predictions of
any classifier,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, (New York, NY, USA), p. 1135–1144, Association for
Computing Machinery, 2016.

[8] M. T. Ribeiro, S. Singh, and C. Guestrin, “Anchors: High-precision model-agnostic explanations,” in
AAAI Conference on Artificial Intelligence (AAAI), 2018.

[9] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” in Advances in
Neural Information Processing Systems 30, 2017, pp. 4765–4774, Curran Associates, Inc., 2017.

[10] D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju, “Fooling LIME and SHAP: Adversarial
attacks on post hoc explanation methods,” AIES ’20, pp. 180–186, ACM, 2020.

[11] I. E. Kumar, S. Venkatasubramanian, C. Scheidegger, and S. Friedler, “Problems with shapley-value-
based explanations as feature importance measures,” Proceedings of the International Conference on
Machine Learning”, pp 8083-8092, 2020.

[12] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep networks,” vol. 70 of
Proceedings of Machine Learning Research, (International Convention Centre, Sydney, Australia),
pp. 3319–3328, PMLR, 06–11 Aug 2017.

[13] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization
algorithms,” CoRR, 2017.

51

[14] K. P. Murphy, Machine learning : a probabilistic perspective. Adaptive computation and machine
learning, Cambridge: MIT Press, 2012.

[15] A. Wong, “Building model trees.” https://github.com/ankonzoid/LearningX/tree/master/advanced ML/
model tree, 2020.

[16] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and regression trees. CRC
press, 1984.

[17] A. Barredo Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. Garcia,
S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, and F. Herrera, “Explainable artificial intelligence
(xai): Concepts, taxonomies, opportunities and challenges toward responsible ai,” Information fusion,
vol. 58, pp. 82–115, 2020.

[18] J. Glomsrud, A. Ødegårdstuen, A. Clair, and O. Smogeli, “Trustworthy versus explainable AI in
autonomous vessels,” ISSAV - International Seminar on Safety and Security of Autonomous Vessels,
2019.

52

5.2 Paper B

Postprint of [35]: Jakob Løver, Vilde B. Gjærum and A. M. Lekkas. ”Explain-
able AI methods on a deep reinforcement learning agent for automatic docking”.
In: 14th IFAC Conference on Control Applications in Marine Systems, Robotics,
and Vehicles (CAMS) (2021) doi: https://doi.org/10.1016/j.ifacol.2021.10.086

©2019 IFAC (International Federation of Automatic Control) Hosting by El-
sevier Ltd. Reprinted and formatted to fit the thesis with permission from Jakob
Løver, Vilde B. Gjærum, and Anastasios M. Lekkas under the terms of the Cre-
ative Commons Attribution License LM.

53

https://doi.org/10.1016/j.ifacol.2021.10.086
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Explainable AI methods on a deep reinforcement learning agent
for automatic docking ⋆

Jakob Løver ∗ Vilde B. Gjærum ∗ Anastasios M. Lekkas ∗

∗ Department of Engineering Cybernetics, Norwegian University of Science and Technology (NTNU),
Trondheim, NO-7491 Norway (e-mail: loverjakob@gmail.com, vilde.gjarum@ntnu.no,

anastasios.lekkas@ntnu.no).

Abstract: Artifical neural networks (ANNs) have made their
way into marine robotics in the last years, where they are used
in control and perception systems, to name a few examples. At
the same time, the black-box nature of ANNs is responsible for
key challenges related to interpretability and trustworthiness,
which need to be addressed if ANNs are to be deployed safely
in real-life operations. In this paper, we implement three XAI
methods to provide explanations to the decisions made by a deep
reinforcement learning agent: Kernel SHAP, LIME and Linear
Model Trees (LMTs). The agent was trained via Proximal Policy
Optimization (PPO) to perform automatic docking on a fully-
actuated vessel. We discuss the properties and suitability of the
three methods, and juxtapose them with important attributes of
the docking agent to provide context to the explanations.

Keywords: Marine control systems, Explainable Artificial
Intelligence, Deep Reinforcement Learning, Autonomous ships,
Docking

1. INTRODUCTION

Despite the progress in artificial intelligence over the past decade, there is still
a significant trade-off between interpretability and accuracy. As neural networks
become increasingly complex in dimensionality and design, understanding the
underlying decision-making becomes equally difficult. Being unable to explain
the reasoning behind black box decisions is unacceptable for safety-critical
applications. Explainable Artificial Intelligence (XAI) is a relatively recent
movement in the AI community, referring to tools that allow humans and/or

⋆ This work was supported by the Research Council of Norway through the EXAIGON project,
project number 304843

54

machines to understand the decision-making rationale of AI systems. XAI systems
are usually characterized as being either intrinsically interpretable, or post-hoc
interpretable. XAI systems that only work for specific predictors are characterized
as model-specific. If they are not concerned about the internal predictor structure,
they are model-agnostic. Interpretability is defined by Miller (2019) as the degree
to which an observer can understand the cause of a decision, and can roughly be
divided into two classes Molnar (2019)

Local Interpretability Being able to explain reasoning behind single decisions
or groups of decisions.

Global Interpretability Understanding the reasoning behind the entire model
behavior on a holistic or modular level.

An explainer should be interpretable, locally faithful, model-agnostic, and should
provide a global perspective Ribeiro et al. (2016). A locally faithful explainer
is one that exerts local fidelity. There are several kinds of networks that are
not inherently interpretable. For example, convolutional neural networks with
multiple successive matrix convolutions end up with being far too complex for
humans to understand. This requires the use of explainers that can be applied to
any black box algorithm post-hoc. In this paper, model-agnostic methods will be
discussed.

Achieving holistic global interpretability is often hard to achieve in practice.
Being able to understand the model on a modular level is however much closer
in reach. For linear regression models with a large feature space for example,
modular interpretability can be achieved through looking at the weights, but
holistic model interpretability is hard to achieve because feature spaces with
dimensions larger than three are simply inconceivable for humans Molnar (2019).

1.1 Related work and motivation

The motivation for this paper was the scarcity of research on XAI for cyber-
physical systems and deep reinforcement learning. Most of the available literature
are survey papers. Additionally, Explainable AI is a fairly young research topic.
To the author’s best knowledge, no paper has compared the explanations from
white-box and black-box models for a cyber-physical system using the methods
described in this paper. Shapley-based methods such as SHAP has been proposed
by researchers as a possible first step to achieve a global understanding of
reinforcement learning agents Heuillet et al. (2021). SHAP was successfully
implemented for a DRL agent in Liessner. et al. (2021); He et al. (2021), but no
comparison to other methods were performed. It is therefore natural to investigate
the method SHAP, and its related method LIME. SHAP and LIME build on many
of the same ideas, but SHAP provides some desirable guarantees that LIME do
not. However, LIME is often lauded as a fast explainer. It was therefore of interest
to see how its explanations compared to SHAP.

55

2. BACKGROUND

This section will present an overview of the docking problem, as well as the
docking agent which was developed by Rørvik (2020). Brief theory behind the
three XAI methods applied to the agent will also be presented. Local Interpretable
Model-Agnostic Explanations (LIME) is an explainer that samples the locality
of the sample to explain, and builds a linear regression model around the sample
to provide explanations. Shapley Additive Explanations (SHAP) is an explainer
rooted in a series of fairness axioms. Finally, the method Linear Model Trees
(LMTs) will be presented, which builds a regression tree that estimates the agent.

2.1 Docking

Docking involves various complex maneuvers to steer a vessel from the open
sea towards a designated area in the harbor area called a berth. It has been
characterized as one of the hardest problems to solve within ship control Tran
and Im (2012). Not only does the vessel need to take into account the speed limits
of the harbor, distance to other ships and obstacles, but it has to simultaneously
deal with extremely nonlinear motions, reduced maneuverability at low speeds,
and environmental forces.

Historically, auxiliary devices such as tug boats have been used to dock large
vessels, but with the increased freedom of maneuverability in the form of
azimuth thrusters and tunnel thrusters, more sophisticated strategies can be
employed. Performing automatic docking using auxiliary devices together with
neural networks have already proven successful Tran and Im (2012); Ahmed and
Hasegawa (2013); Im and Nguyen (2018). For example, Im and Nguyen (2018)
used a neural network architecture with one hidden layer to perform supervised
learning. The artificial neural network (ANN) was trained from data collected
by observing a skilled captain berth the vessel, but there are a multitude of
reasons why this is a sub-optimal approach. The captain would have to berth
the ship perfectly every time, which is not possible in practice. Errors are bound
to happen, and the ANN will be entirely limited to the data provided. Even
though the captain may have experience docking the vessel, the procedure the
captain follows may not necessarily the most efficient for any given scenario. A
major drawback with some of these aforementioned implementations is that they
do not generalize well from one arbitrary port to another. These methods also
had strict limits from what angle the vessel may approach the berth. Recent
advances such as Nguyen (2020) allowed an ANN to berth both starboard and
port side on multiple ports successfully without re-training, but did not take into
account environmental forces such as wind and waves. Some publications were
found using deep reinforcement learning to solve similar problems, but most of
them were applied to underwater vehicles Anderlini et al. (2019). Other methods
that have been proposed are backstepping controllers Zhang et al. (2020) and
model predictive control Martinsen et al. (2019).

56

2.2 Automatic docking as a deep reinforcement learning problem

Deep reinforcement learning (DRL) agents have already been shown to perform
well in collision avoidance and trajectory following Meyer et al. (2020). Using a
deep reinforcement learning agent has been proposed as a solution to the docking
problem Rørvik (2020). The docking agent was proven to successfully solve the
docking scenario from a variety of poses relative to the berth. It was trained
using Proximal Policy Optimization (PPO) with two hidden layers of 400 hidden
units each, ReLU activations for both hidden layers, and a hyperbolic tangent
activation for the output layer.

The agent was trained on a three degrees-of-freedom vessel. It is 76.2 meters
long, weighing 6000 tonnes in dead weight Martinsen et al. (2019). The vessel
actuators are three thrusters: one tunnel thruster, and two azimuth thrusters.
Their numbering and location on the vessel is shown in Figure 1. The tunnel
thruster is used to create a side force on the vessel, while the two azimuth
thrusters are mounted in the aft of the ship, and are rotatable thrusters. The
action vector is described in Equation 1. fi is the applied thrust measured in
newton, and ai is the azimuth angle in radians for thruster i.

y = [f1 f2 f3 a1 a2] (1)

Fig. 1. Thruster numbering on vessel Martinsen et al. (2019)

The state vector is described in Equation 2, and the respective state descriptions
in Table 1.

x =
[
x̃ ỹ l u v r dobs ψ̃obs ψ̃

]
(2)

3. IMPLEMENTATION

3.1 Computational Hardware

The results were produced using a workstation running a virtualized Ubuntu
20.04 environment. The workstation has an AMD Ryzen 9 3950X CPU with
32GB of allocated RAM.

3.2 LIME

Local Interpretable Model-Agnostic Explanations (LIME) creates locally inter-
pretable explanations for a single data point. LIME creates a linear surrogate

57

State Description

x̃,ỹ The Cartesian distances from origin of the vessel to the
target position, in body frame. x-direction is north-south,
y-direction is east-west.

ψ̃ The relative difference between heading of vessel and
heading of the desired target.

u,v,r Linear and rotational velocities of the vessel, in body
frame.

l A binary variable describing whether the vessel is in
contact with land. Only used when training the agent.

dobs,ψ̃obs The distance from the vessel’s edge to the closest obstacle
and the relative heading between the vessel and the
closest obstacle.

Table 1. Description of states Rørvik (2020).

model that approximates the local behavior of the predictor for a single predic-
tion. By creating a perturbed dataset made up of local perturbations around the
decision in question, the importance of each feature in the black box predictor can
be inferred. The output from LIME is a vector of coefficients that suggests how
increasing or decreasing variables affect the prediction. As described in Ribeiro
et al. (2016), Equation 3 illustrates how LIME creates an explanation ξ(x) for an
instance x:

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (3)

L(f, g, πx) is a measure of how unfaithful a model g is when approximating f
in the locality πx. All predictions are weighted according to πx, also called a
kernel. As the samples stray further from the prediction LIME is explaining,
they will carry lower weight. Ω(g) is a measure of complexity of the explanation.
LIME balances out this equation by minimizing L(f, g, πx) while keeping Ω(g)
low enough to be human interpretable.

For tabular data, LIME will also have to be supplied a background dataset. The
dataset will be used to compute the mean, standard deviation, and discretize the
feature into quartiles Ribeiro (2018), which are used to scale the data. When
LIME samples perturbed instances, it first samples from a normal distribution.
Then, the samples are multiplied by the standard deviation, and the mean is
added.

The GitHub LIME implementation made available by Ribeiro (2018) was used
to explain the docking episode. The number of neighbors were set to 5000, which
is the amount of perturbations per sample LIME will perform to evaluate feature
importance. For every second of the docking episode, LIME was applied to each
data point one time for every action.

58

3.3 Kernel SHAP

The Shapley value is a coalitional game theory concept based on a set of
fundamental axioms of fairness. It is proven that the Shapley value is the only
solution that satisfies these axioms. The Shapley value therefore provides a unique
solution to distribution of reward based on work contributed Young (1985). The
Shapley value serves as the basis for the Shapley Additive Explanations (SHAP)
framework to quantify how much each feature in a neural network contributes to
the output.

Several variations of SHAP exist, but this paper focuses on Kernel SHAP. Kernel
SHAP is a model-agnostic method of approximating feature attributions. The
feature attributions are approximated instead of calculated exactly, because
computing them exactly is time-consuming. Kernel SHAP builds on the LIME
framework, as shown by Lundberg and Lee (2017) when the following parameters
are inserted into Equation 3:

Ω(g) = 0 (4)

πx(z
′) =

(M − 1)(
M
|z′|

)
|z′|(M − |z′|)

(5)

L(f, g, πx) =
∑

z′∈Z

[f(h−1
x (z′))− g(z′)]2πx(z′) (6)

|z′| is the number of present features in z′, and hx is a function that maps a
coalition z′ to a valid instance. hx is needed because in practice, ”removing” a
feature is not trivial for models with a fixed-size input. Setting the feature values
to 0 is also not always desirable either. Instead, Kernel SHAP ”removes” features
by sampling the background data and replacing the missing features with feature
values from one of these random samples.

The most significant difference from LIME is the weighting kernel. Instead of
weighting samples according to how close they are to the sample to be explained,
Kernel SHAP weighs small and large coalitions heavier through the Shapley kernel
πx(z

′). Small coalitions—coalitions where many features are missing—allows the
significance of presence of a feature to be studied. Large coalitions, where few
features are missing, allows the algorithm to see how the model prediction changes
with respect to the absence of features. Mid-sized coalitions do not say much
about either situation, and are weighted less.

The KernelExplainer object of the SHAP implementation provided by Lundberg
and Lee (2017) was used to create SHAP values for the states in the docking
episode. The background data for SHAP was first summarized using a K-means
summarizer with 100 neighbors to reduce computation time.

59

3.4 Linear Model Trees

A decision tree (DT) is a machine learning model that divides the input domain
into subregions by performing multiple evaluations on data, and assigns a
prediction to each of the subregions. This can be visualized as a tree-like structure,
where each of the splits are called internal nodes. When there are no more splits to
be evaluated, a leaf node has been reached. The prediction depends on which leaf
node, or subregion, the input data falls into. Regression trees are decision trees
where the predicted output is a constant real number. Model trees on the other
hand can output predictions based on any type of model. Linear Model Trees
(LMT) is a regression tree where the only structural difference is that instead of
constant predictions in the leaf nodes, an LMT uses a linear function to form its
prediction. For DTs, the splits in the input data can be either multivariate or
univariate. Univariate splits are splits that depends on only one input feature at
a time. When the splits are done using multiple input features, they are called
multivariate splits. DTs with multivariate splits are called oblique DTs. For the
LMT implementation used, the splits on the input data are univariate. This is
done to retain interpretability and reduce computation time. Growing an LMT is
done by greedily splitting the data. This gives no guarantees for global optimality,
as a seemingly bad split may cause a good split to never be found Gjærum et al.
(2021).

By using an LMT to form a piece-wise linear approximation of a black box
predictor, the simpler structure of the LMT can be used to understand the
predictions made by the black box predictor. The resulting tree sacrifices
some accuracy to give more interpretability. By weighting the linear regression
coefficients in the leaf nodes, the predictions by the LMT can be interpreted.
From Gjærum et al. (2021), the linear functions in the leaf nodes can be written
on the form

y =
∑

f∈F
afxf + C (7)

where y is the model prediction. af is the linear regression coefficient for the
feature xf , and C is a constant. F is the set of all features. Total feature
importance If for each feature f can then be calculated as

If =
afxf∑

j∈F |ajxj |
(8)

The LMT implementation used is based on an adaptation of classification and
regression trees from Wong (2020). The modifications done allowed the tree to
grow to a maximum number of leaf nodes instead of a maximum depth, and
added randomization in the process of searching for thresholds and choosing the
next node splits Gjærum et al. (2021). The LMT used contains 681 leaf nodes,

60

with the shallowest leaf node situated at depth 5, and the deepest at depth 15.
The LMT was trained by collecting the states and actions from the PPO agent
from 1000 docking episodes. The starting points were chosen randomly for each
docking episode in order to capture as much of the vessel dynamics as possible.

3.5 Background Data

As mentioned in Section 3.2 and Section 3.3, we need to supply these algorithms
with a background dataset. Motivated by observed values, the following table was
proposed in Rørvik (2020) as a representative dataset for the DRL agent.

Variable Valid range

xd [m] 800

yd [m] 517.8

x [m] (xd − 400, xd + 400)

y [m] (yd − 400, yd + 400)

ψ [rad] (−π
4
, π
4
)

u [m/s] (−0.5, 0.5)

v [m/s] (−0.05, 0.05)

r [rad/s] (−0.005, 0.005)

Table 2. Valid ranges for the dataset.

Data was first collected by letting the DRL agent perform ten docking episodes
from ten different locations. From this data, 2000 data points that fell within the
valid ranges of Table 2 were sampled as part of the dataset. The final dataset
to serve as background data for SHAP and LIME therefore had the dimensions
(2000,9).

4. RESULTS

The results were inspected by plotting the vessel’s position in Figure 2 together
with the vessel’s actions in Figure 3. Figure 4 is a screenshot of a video setup
that allowed inspection of the force and torque vector of the vessel in body frame
together with actions and explanations. The dial in the bottom right contains
an orange line, and a blue circular bar plot. The orange line is the calculated
force vector applied on the vessel in body frame measured from the center. For
example, 100 % of max force in the north-westward direction results in an orange
line from the center which stops at the outer edge of the 45 degree mark. The
blue torque vector denotes how much torque the vessel is applying, and in what
direction. When the actuators exert 25 % of max torque, the circular blue bar
plot will be filled a quarter of the way, stopping at the 270 degree mark. These
visualizations contributed to put the explanations in context.

Figure 5 shows the feature importances from Kernel SHAP for an entire episode.
Note that the y-axes of the plots represent how much each state contributed to the
output of the respective action in the positive or negative direction. The sum of all

61

Fig. 2. Trajectory of vessel during a docking episode.

Fig. 3. Actions for a docking episode.

62

Fig. 4. Visualization of force and torque in body frame together with actions,
trajectory, and feature attributions. The bottom left bar plot represents a
weighted sum of the absolute value of the feature attribution per state across
all actions such that the sum of all bars equal 1.

feature attribution values equal 0. Kernel SHAP provided smooth explanations,
especially during the approach phase, where the vessel is approaching the berth.
The actuators are not changing too much in each time step, and this approach
phase is fairly slow. The explanations also intuitively make sense.

In the beginning of the episode, high importance is attributed to x̃ for the thruster
forces and dobs for the azimuth angles. As the vessel performs for a clockwise
rotation at around 120 seconds into the episode by applying a positive tunnel
thruster force, the importance of the rotational velocity r begins to increase for
f3. The vessel slightly overshoots the berth, and needs to align itself with the
berth. The surge velocity is almost solely the main contributors to a negative
thruster force on the azimuths to slow down the vessel. At this point, the sway
velocity v increases in importance, and the vessel moves closer in the y-direction
to the berth. During the final seconds of the berthing phase, dobs and ψ̃obs begins
to increase in importance to bring the vessel into its final position.

The vessel reaches the berth in about 400 seconds, and begins to slightly oscillate
by the berth in a ”steady state.” The actuators first apply a sharp corrective
action counter-clockwise, with high importance for the state ψ̃obs, seemingly to

63

Fig. 5. Feature attributions for Kernel SHAP.

correct the pose of the vessel. Shortly after, a longer lasting clockwise torque is
applied with importance for r to stop the vessel from rotating and correct its
alignment to the berth.

LIME has a large disadvantage in that it does not take into account the global
sample space when building the linear models as opposed to Kernel SHAP. This
can be seen in practice from the LIME explanations in Figure 6, and comparing
them to Kernel SHAP. It is observed that the feature attributions from LIME
are clearly noisier. In general, the explanations from LIME does seem to follow
the explanations from Kernel SHAP, but are not nearly as smooth.

The LMT exhibits a more discrete behaviour than Kernel SHAP and LIME.
This is shown in Figure 7. There are also several points where their explanations
differ, but they are equally intuitive. For example, when the vessel is making its
final move towards the berth after overshooting it around 300 seconds into the
episode, the agent applies a large force vector backwards towards the berth. The
most dominating feature at this point is dobs. LIME seemed to agree that dobs

64

Fig. 6. Feature attributions for LIME.

was quite important. This is however quite different from SHAP, which attributed
more importance to the surge velocity and the rotational states.

LIME and SHAP are versatile, as the background data can be continuously
modified. The LMT can not easily be modified this way, as it needs to be
retrained. The number of samples in the background dataset mattered greatly
when leaving out a K-means summarizer. When using 2000 samples as the
background data, running Kernel SHAP without a K-means summarizer was
infeasible, as the computer eventually ran out of memory.

LIME was concluded to be ill-suited for this application. LIME was implemented
with the expectation of being able to run real-time, but spent about five times
longer than Kernel SHAP to explain a data sample. The weighting kernel in LIME
is also entirely arbitrary, and introduces another unnecessary tuning parameter.
LMT was fastest method out of all three, and can be implemented to run real-
time. Its explanations were intuitive, but were not as smooth as those from SHAP
due to its piece-wise linearity.

65

Fig. 7. Feature attributions for LMT.

Kernel SHAP was efficient, but assumes that the features are independent of
each other. This is indeed very problematic for many applications. It is not well
known as to what degree the features in the model correlate. There may for
example be some correlation between x̃ and ỹ. Recent attempts have been made to
remedy this assumption of independent features. Tree SHAP—another method of
approximating feature attributions—does not rely as heavily on this assumption
Lundberg et al. (2019). This method does not however deliver satisfactory
accuracy, and may even give highly inaccurate results when dependent features
are present Aas et al. (2020). An overview of the XAI methods and their pros
and cons can be found in Table 3.

Even though Shapley-value based explainers have been widely used as a measure
of feature importance, they may not be suitable as explainers for neural networks
Kumar et al. (2020). SHAP may for example not alarm about any potential biases
in the data, or whether the model accuracy would increase with or without a
feature present. Post-hoc perturbation based methods such as SHAP and LIME
are also vulnerable to deliberate attacks. Scaffolding is a technique that effectively

66

hides the biases of any given classifier by allowing an adversarial entity to craft
an arbitrary desired explanation Slack et al. (2020). This has the potential to
create biased predictions with innocuous explanations, which does not sit well
with the safety-critical nature of a robotic system such as an ASV.

Explainer Pros Cons Time per expla-
nation

LIME • Can easily
adapt to new
data

• Slow
• Noisy
explanations
• Only local
explanations

16.57 s

Kernel SHAP
+K-means

• Can easily
adapt to new
data
• Smooth
explanations

• Slow
• Only local
explanations

3.6486 s

LMT • Fast
• Can run in
real-time
• Drop-in
replacement
for model
• Can provide
global
explanations

• Discrete
explanations
• Long time
to train

0.0012 s

Table 3. Overview of XAI methods used.

5. CONCLUSION

XAI algorithms may be employed to provide explanations in a deep reinforcement
learning agent for robotic applications. Through visualizing the explanations
together with the states of the system, we can gain insight into the reasoning
behind black box predictors. This insight can assist in validating the performance
of the autonomous system, and provide assistance during the certification process.
Methods such as LMTs are fast enough to provide intuitive explanations real-
time, which can be used in real-time visualizations or control loops. Perturbation-
based methods such as SHAP and LIME are slow, and might not be suitable for
real-time explanations. SHAP is however a viable alternative that gives smooth
and intuitive explanations post-hoc, but should be used with caution due to its
vulnerability to create biased predictions with innocuous explanations.

Further work may involve implementing Optimal Regression Trees (ORT), a
method which expresses the node splitting as an mixed integer optimization
problem Bertsimas and Dunn (2019) instead of greedily growing the tree as
with the LMTs. Near-optimal Nonlinear Regression Trees (NNRT) Bertsimas
et al. (2021) should also be investigated. NNRT is another tree method where

67

parameters for multivariate splits in the tree are found through gradient descent
to build non-linear prediction functions in the leaf nodes.

REFERENCES

Aas, K., Jullum, M., and Løland, A. (2020). Explaining individual predictions
when features are dependent: More accurate approximations to shapley values.
Artificial Intelligence, 298, 103502.

Ahmed, Y.A. and Hasegawa, K. (2013). Automatic ship berthing using artificial
neural network trained by consistent teaching data using nonlinear program-
ming method. Engineering Applications of Artificial Intelligence, 26(10), 2287
– 2304.

Anderlini, E., Parker, G., and Thomas, G. (2019). Docking control of an
autonomous underwater vehicle using reinforcement learning. Applied Sciences,
9, 3456.

Bertsimas, D. and Dunn, J. (2019). Machine learning under a modern optimiza-
tion lens. Dynamic Ideas LLC.

Bertsimas, D., Dunn, J., and Wang, Y. (2021). Near-optimal nonlinear regression
trees. Operations Research Letters, 49(2), 201–206.

Gjærum, V., Rørvik, E.L.H., and Lekkas, A.M. (2021). Approximating a deep
reinforcement learning docking agent using linear model trees. Submitted to
IEEE European Control Conference (ECC).

He, L., Nabil, A., and Song, B. (2021). Explainable deep reinforcement learning
for uav autonomous navigation.

Heuillet, A., Couthouis, F., and Dı́az-Rodŕıguez, N. (2021). Explainability in
deep reinforcement learning. Knowledge-Based Systems, 214, 106685.

Im, N.K. and Nguyen, V.S. (2018). Artificial neural network controller for
automatic ship berthing using head-up coordinate system. International
Journal of Naval Architecture and Ocean Engineering, 10(3), 235 – 249.

Kumar, I.E., Venkatasubramanian, S., Scheidegger, C., and Friedler, S. (2020).
Problems with shapley-value-based explanations as feature importance mea-
sures. In International Conference on Machine Learning, 5491–5500.

Liessner., R., Dohmen., J., and Wiering., M. (2021). Explainable reinforcement
learning for longitudinal control. In Proceedings of the 13th International
Conference on Agents and Artificial Intelligence - Volume 2: ICAART,, 874–
881. INSTICC, SciTePress.

Lundberg, S.M., Erion, G.G., and Lee, S.I. (2019). Consistent individualized
feature attribution for tree ensembles.

Lundberg, S.M. and Lee, S.I. (2017). A unified approach to interpreting model
predictions. In I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems 30, 4765–4774. Curran Associates, Inc.

Martinsen, A.B., Lekkas, A.M., and Gros, S. (2019). Autonomous docking using
direct optimal control. IFAC-PapersOnLine, 52(21), 97–102.

68

Meyer, E., Robinson, H., Rasheed, A., and San, O. (2020). Taming an autonomous
surface vehicle for path following and collision avoidance using deep reinforce-
ment learning. IEEE Access, 8, 41466–41481.

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social
sciences. Artificial Intelligence, 267, 1–38.

Molnar, C. (2019). Interpretable Machine Learning.
https://christophm.github.io/
interpretable-ml-book.

Nguyen, V. (2020). Investigation of a multitasking system for automatic ship
berthing in marine practice based on an integrated neural controller. 8, 1–23.

Ribeiro, M., Singh, S., and Guestrin, C. (2016). “why should i trust you?”:
Explaining the predictions of any classifier. 97–101.

Ribeiro, M.T. (2018). LIME. URL https://marcotcr.github.io/lime/.
Rørvik, E.L.H. (2020). Automatic Docking of an Autonomous Surface Vessel.

Master thesis. Norwegian University of Science and Technology (NTNU).
Slack, D., Hilgard, S., Jia, E., Singh, S., and Lakkaraju, H. (2020). Fooling lime

and shap: Adversarial attacks on post hoc explanation methods. 180–186.
Tran, V.L. and Im, N.K. (2012). A study on ship automatic berthing with

assistance of auxiliary devices. International Journal of Naval Architecture
and Ocean Engineering, 4(3), 199–210.

Wong, A. (2020). ankonzoid/LearningX. URL
https://github.com/ankonzoid/LearningX.

Young, H.P. (1985). Monotonic solutions of cooperative games. International
Journal of Game Theory, 14(2), 65–72.

Zhang, Y., Zhang, M., and Zhang, Q. (2020). Auto-berthing control of marine
surface vehicle based on concise backstepping. IEEE Access, 8, 197059–197067.

69

5.3 Paper C

Postprint of [18]: Vilde B. Gjærum, Inga Strümke, Ole Andreas Alsos, and
Anastasios M. Lekkas. ”Explaining a deep reinforcement learning docking agent
using linear model trees and user adapted visualizations”. In: Journal for Mar-
ine Science and Engineering 9(11) 1178 (2021). doi: https://doi.org/10.3390/
jmse9111178

©2021 Vilde B. Gjærum, Inga Strümke, Ole Andreas Alsos, and Anastasios M.
Lekkas. Reprinted under the terms of the Creative Commons Attribution License
L M

70

https://doi.org/10.3390/jmse9111178
https://doi.org/10.3390/jmse9111178
https://creativecommons.org/licenses/by/4.0/

Article

Explaining a deep reinforcement learning docking agent using
linear model trees with user adapted visualization

Vilde B. Gjærum 1, Inga Strümke 1,Ole Andreas Alsos2 and Anastasios M. Lekkas 1,3

Citation: Gjærum, V. B. ; Strümke, I.;

Alsos, O. A. ; Lekkas, A. M.

Explaining a deep reinforcement

learning docking agent using linear

model trees with user adapted

visualization. J. Mar. Sci. Eng. 2021, 1,

0. https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional af-

filiations.

Copyright: © 2023 by the authors.

Submitted to J. Mar. Sci. Eng. for

possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim,
Norway

2 Department of Design, Norwegian University of Science and Technology, Trondheim, Norway
3 Centre for Autonomous Marine Operations and Systems, Norwegian University of Science and

Technology, Trondheim, Norway
* Correspondence: vilde.gjarum@ntnu.no

Abstract: Deep neural networks (DNNs) can be useful within the marine robotics field, but their1

utility value is restricted by their black-box nature. Explainable artificial intelligence methods2

attempt to understand how such black boxes make their decisions. In this work, linear model3

trees (LMTs) are used to approximate the DNN controlling an autonomous surface vessel in a4

simulated environment and then run in parallel with the DNN to give explanations in the form5

of feature attributions in real time. How well a model can be understood depends not only on6

the explanation itself, but also on how well it is presented and adapted to the receiver of said7

explanation. Different end users may need both different types of explanations, as well as different8

representations of these. The main contributions of this work are 1) improving accuracy and build9

time of a greedy approach for building LMTs by introducing ordering of features in the splitting of10

the tree, and 2) suggesting a visualization of the docking agent, the environment, and the feature11

attributions given by the LMT for when the developer is the end user of the system, and another12

visualization for when the seafarer or operator is the end user, based on their different needs and13

characteristics.14

Keywords: Deep Reinforcement Learning, Autonomous Surface Vessel, Explainable Artificial15

Intelligence, Linear Model Trees16

1. Introduction17

Machine learning is the sub-field of artificial intelligence (AI) dedicated to self-18

learning systems that use data to adjust their predictions. Among the most remarkable19

advancements in machine learning methods has been the evolution from artificial neural20

networks to deep architectures, known as deep neural networks (DNNs), forming21

the class of deep learning [1,2]. Reinforcement learning (RL) is a branch of machine22

learning where an agent learns a strategy, referred to as a policy, for controlling an23

agent in an environment based on an evaluation of the agent’s interactions with the24

environment [3], called rewards. That is, the policy maps from a state to an action,25

similar to a controller. Several noteworthy accomplishments have been made with26

the use of deep reinforcement learning (DRL), such as learning to play atari games27

directly from image pixels [4], or discovering new strategies in a simulated hide-and-28

seek environment [5]. DRL has also shown to be a very useful tool for accomplishing29

difficult tasks in robotics, one advantage being that it does not require a mathematical30

model of the agent or the environment. In [6], DRL was used to perform 20 different31

simulated physical tasks. In [7], DRL was used to conduct various manipulation tasks32

with a dexterous, robotic hand. In [8], a DRL-agent learned to walk on flat surfaces, but33

could also handle unseen, more challenging surfaces as well. The potential for reduced34

costs and increased safety has inspired the work towards autonomous ships, and the35

Version March 27, 2023 submitted to J. Mar. Sci. Eng. https://www.mdpi.com/journal/jmse

71

Version March 27, 2023 submitted to J. Mar. Sci. Eng. 2 of 23

industry has already shown promising autonomous surface vessels (ASVs), such as36

Falco [9] and Yara Birkeland [10]. DRL has also been used for marine operations, such37

as autonomous path-following [11–13], collision avoidance [14,15], and for docking [16,38

17]. In [17], a DRL-agent was trained to perform docking of an ASV in a simulated39

environment based on Trondheim harbour. Even though the agent showed promising40

and rather convincing results, its applicability to real-life problems is reduced by the41

lack of understanding of how the DNN-policy makes its decisions. This is because42

the many parameters and interconnections of DNNs makes their inner workings hard43

for humans to interpret. For this reason, DNNs are considered to be black boxes. The44

field of explainable artificial intelligence (XAI) is dedicated to develop methods for45

explaining such black box models [18]. The objective is to gain increased understanding46

regarding how the black box model works and why it behaves the way it does. XAI47

methods can thus be used to interpret and justify the decisions made by a black-box48

model, control and prevent erroneous actions, improve the model, and even discover49

new strategies, correlations in the data set or application [19]. In [20], the importance of50

explaining AI-systems to non-expert users is highlighted, especially with consideration51

for the preparation for wider-scale operations of ASVs. The combination of explanations52

and thorough testing of the AI system is crucial for gaining the trust needed for the53

autonomous system to be deployed [21]. The authors of [21] also argue that depending on54

the role and needs of recipient of the explanation, the explanations should be customized55

regarding several aspects:56

1. Whether all the details of an explanation should be provided, or if it is preferable57

to highlight only the most relevant parts, with respect tothe specific end-user, of58

the explanation.59

2. Whether the end-user need to process the explanations in real-time or not.60

3. In what way the explanation will be presented to the end-user.61

In this work, we consider two different end-users, the developer and the seafarer/operator.62

Their main differences lies in their background knowledge, how much risk they asso-63

ciate with the predictions made by the DNN, and how fast they need to evaluate the64

predictions from the DNN and the explanations from the explainer.65

Among the most widely used explanation methods are local interpretable model-66

agnostic explanations (LIME) [22], Anchors [23], integrated gradients (IG) [24], Shapley67

additive explanations (SHAP) [25] and SAGE [26]. The main characteristics of XAI-68

methods are outlined in Table 1. IG is a model-specific method, only applicable to69

differentiable models, while LIME, Anchors, SHAP and Shapley additive global im-70

portance (SAGE) are model-agnostic methods. While SAGE provides global explanations,71

SHAP, LIME, Anchors, and IG give local explanations. Preliminary work was presented72

in [27], where we approximated the DRL-policy from [17] with a linear model tree (LMT)73

and used the linear functions in the active leaf node to form explanations in the form of74

feature attributions. The LMTs was built by a greedy method, which was quite sensitive75

to the dataset. To remedy this, a very time demanding iterative data sampling process76

was used to ensure that the LMT got enough samples from regions it did not approx-77

imate as well. In this paper, we improve the approximation by enforcing the order of78

which features to better match guidance system logic when searching for the splits in79

each branch node at different depths of the tree. Not only does this speed up the time it80

takes to build one tree, but the iterative data sampling process was deemed unnecessary81

when ordered feature splitting was used. Additionally, two different visualizations for82

two different end-users with regards for their characteristics and needs is suggested.83

Following the main characteristics of XAI-methods, LMTs is a post-hoc, model-agnostic84

explanation method giving local explanations in the form of feature attributions. Even85

though the feature attributions used to form the local explanations in this work, it should86

be noted that instead of creating an explanation model for specific data points, the LMT87

approximates the full model across its whole range of validity. So, the explanations pro-88

vided by the LMT are local, but since decision trees (DTs) are considered interpretable,89 72

Version March 27, 2023 submitted to J. Mar. Sci. Eng. 3 of 23

Table 1: Main characteristics of XAI-methods

Scope of explanation Local/
Global

The scope of the explanations range from lo-
cal explanations, where only one instance is
explained, to global, where the entire model
is explained. This is not a binary categories,
as for example groups of similar instances
can be explained at the same time.

Complexity of model
to be explained

Intrinsic/
Post-hoc

Models that are self-explanatory, such as
simple linear regression, are called intrin-
sically explainable models. More complex
methods, such as most DNNs or other mod-
els considered to be black-boxes however,
cannot be easily understood by humans, so
a post-hocXAI-method must be applied to
the model toaid with the understanding of
it.

Applicability of XAI-
method

Model-
agnostic/
Model-
specific

A model-agnostic XAI-method treats the
model to be explained as a black-box, that is
the XAI-method only cares about the inputs
and outputs of the model to be explained.
Thus, it can be applied to any model. A
model-specific XAI-method, as the name im-
plies, can only be applied to one specific
model.

in theory the LMT also yields a global explanation of the full model. However, note that90

for all practical means, the global interpretability of a DT is reduced quickly as the size91

of the tree increases. The LMT is intended to run in real-time, parallel to the full model,92

to provide explanations in the form of feature attributions for its predictions. The ability93

of LMTs to run real-time combined with their inherent transparency are the two main94

benefits of using them to explain black-box models used in robotic applications such as95

docking. The terms used in relation to LMTs and DRL are described in Table 2.96

Our main contributions are the following:97

• An improved and faster building process of LMTs from [27] by introducing re-98

ordering to the splitting sequence of the input features, to better match the way99

guidance systems work. This made the iterative data sampling process slowing100

down the building process from [27] unnecessary.101

• An overview of the background knowledge, skills, needs, and requirements the102

different end-users of the docking agents have.103

• Two different visualizations of the explanations based on the characteristics of each104

end-user.105

2. Preliminaries106

In this section, the DRL agent as well as the training environment used for its107

development are presented. For more details, the reader is referred to [17].108

2.1. The ASV docking problem109

Docking is the process of taking a vessel from being in open waters to being fastened110

to a specific location along the quay, referred to as the berthing point. The process can be111

divided into the following three stages:112

1. The approach phase.113

2. The berthing phase.114
73

Version March 27, 2023 submitted to J. Mar. Sci. Eng. 4 of 23

Table 2: Description of terms used in relation with the LMT and DRL.

LMT DRL Description

Input features States Information the model is trained and later used to
predict on, in this case a description of the environ-
ment as provided to the policy and the policy approx-
imator, given in Equation (2).

Predictions Actions The model output, given in Equation (1)

Policy
approximator

Policy The model itself, providing a mapping from input
features to predictions or states to actions, respec-
tively. The policy corresponds to the controller in
robotics, while the policy approximator is in this case
only used to generate explanations

Explainer Agent The application of the model. In the current setting,
the agent comprises the policy and the vessel, while
the explainer is produced using the LMT to generate
feature attributions and visualisations

3. The mooring phase.115

During the approach phase, the vessel moves from open seas to confined waters. In116

the berthing phase, the vessel maneuvers inside confined waters until it is parked at a117

location close to the berthing point. In the mooring phase, the vessel is fastened to the118

berthing point. Docking is considered to be a challenging task since it requires complex119

decision making and significant fine-tuning of actions. In addition to being difficult to120

model, external disturbances affect the vessel more at low speeds than at high speeds.121

Thus, their impact on the movement of the vessel increases when the vessel operates at122

low speeds close to obstacles. The simulation environment used in this work is based on123

Trondheim harbor, and is the same as the one used in [17]. Figure 1a) shows a snapshot124

of the simulation environment. An illustration of the vessel is shown in Figure 1b). The125

vessel has three thrusters: a tunnel thruster in the front and two azimuth thrusters at the126

back. The vessel is controlled using the control inputs127

A = [f1, f2, f3, α1, α2] , (1)128

where f1, f2 are restricted to the range [−70 kN, 100 kN] and α1, α2 to the range129

[−90 degrees, 90 degrees] represent the force and the angle of the two azimuth thrusters,130

respectively. The tunnel thruster is controlled by changing its force, f3, in the range131

[−50 kN, 50 kN]. The features representing the vessel’s state and relative position in the132

environment form the vector133

x = [x̃, ỹ, ψ̃, u, v, r, l, dobs, ψ̃obs] . (2)134

Here, x̃ and ỹ represent the relative distance to the berthing point in the vessel’s body135

frame, in which u, v, r represent the vessel’s velocity. ψ̃ represents the difference between136

the actual heading and the heading desired at the berthing point. Note that since x̃137

and ỹ are in body frame, they are only aligned with the environment axis if ψ̃ is zero138

and aligned with the environment frames. That is, x̃ is not necessarily in the south-139

north direction, and ỹ is not necessarily in the west-east direction. The binary variable140

l indicates whether or not the vessel has made contact (i.e. collided) with an obstacle,141

which, as discussed in Section 2.2, is mainly used during training. The variables dobs and142

ψ̃obs represent the relative position to the closest obstacle in body frame. A restriction143

in the simulated environment is that the agent is not allowed to make any contact with144

the harbour under any circumstances, although gentle contact with the harbour under145 74

Version March 27, 2023 submitted to J. Mar. Sci. Eng. 5 of 23

low speeds while berthing is usually allowed in real life. The binary variable l is only146

used during training of the DRL-policy through giving a large penalty and ending the147

episode.148

2.2. The docking agent149

As previously discussed, the problem of docking is challenging due to several150

reasons, one being that it is hard to achieve adequate mathematical models of all the151

aspects affecting the operation, which is crucial of most traditional control methods.152

In [17], an RL-agent learned how to perform berthing from substantial distances – up153

to 400 meters from the berthing point, corresponding to LP4:Distance berthing in [17]154

– without using any additional models of the environment or vessel. RL is the branch155

of machine learning dedicated to learning by interacting with the environment and156

receiving rewards for different states based on their desirability. The reward function157

is chosen or designed by the programmer, and is crucial for the learning process of the158

agent. Extensive work was done in engineering a fitting reward function for the task in159

this paper, and the objectives for the RL-agent are the following:160

1. Avoiding any obstacles, specifically keeping dobs > 0.161

2. Reaching and staying at the berthing point, specifically achieve a stable situation162

with x̃ = ỹ = ψ̃ = 0.163

Note that COLREG(Convention on the International Regulations for Preventing Colli-164

sions at Sea)1 is not taken into consideration. These objectives are given to the RL-agent165

through the following reward function166

R(x̃, ỹ, l, dobs) = Rd + Rψ̃ + Robs + Rḋ . (3)167

Here, Rd rewards the agent for minimizing the distance to the berthing point. Given that168

the distance to the berthing point is small enough, rewards for achieving the desired169

heading is given through Rψ̃. The agent was given significant penalties for getting170

close to, and especially, making contact with any obstacles through Robs since this is of171

high priority. However, this made the agent hesitant to get close to the berthing point172

since this is very close to the harbour, which in the agent’s point of view is an obstacle.173

Therefore, the reward component Rḋ, which rewards decreasing the distance to the174

berthing point, was designed.175

To train the DRL-agent, the proximal policy optimization (PPO) algorithm from [28]176

was used. It is a stochastic, on policy algorithm that uses a trust region to prevent too large177

updates to the policy based on a training batch, which can lead to getting trapped in a178

local minimum. The trust region is the area in which the approximation of the gradient179

descent of the policy is accurate. To prevent the training to become too constrained to180

Berthing

Approach

Figure 1. a) The simulation environment, and b) an illustration of the vessel’s states.

1 https://www.imo.org/en/About/Conventions/Pages/COLREG.aspx75

Version March 27, 2023 submitted to J. Mar. Sci. Eng. 6 of 23

Figure 2. Illustrations of how two perfect LMTs of depth a) two, b) three, and c) an imperfect
LMT of depth three, fit to the same data set. The number of regions estimated by a linear function
correspond to the number of leaf nodes.

this trust region, the trust region does not set hard boundaries for the exploration, but181

is rather included in the objective by giving penalties to the updates that encourage182

not leaving the trust region. The resulting PPO-trained neural network has two hidden183

layers, consisting of 400 neurons each. The hidden layer’s nodes use the rectified184

linear units (ReLu) activation function [29], while the output layer uses the hyperbolic185

tangent function, restricting the outputs to the range [−1, 1]. The agent converged after186

approximately 6 million interactions, i.e. cycles of having a state, performing an action187

and receiving a reward.188

3. Linear Model Trees189

Decision trees (DTs) form a class of machine learning algorithms based on condi-190

tional control statements, and are capable of solving many classification and regression191

problems. Their main advantages are being both easily visualized and interpretable for192

humans. A DT consists of branch and leaf nodes, where the branch nodes perform data193

splitting based on the control statements, and the leaf nodes perform the DT model’s194

prediction. In its simplest form, a DT has univariate splits, i.e. it splits based on only195

one feature at a time, and each leaf node has a constant prediction. Oblique DTs have196

multivariate splits in the branch nodes, making them less interpretable and significantly197

increasing their building time, due to which their are not used in this work. Model trees198

are DTs where the constant predictions in the leaf nodes are replaced by a prediction199

model, for example a linear regression model or a DNN, so that the tree maps the input to200

the appropriate model. The simplest version of model trees are linear model trees (LMTs),201

which have a linear function in the leaf nodes. As illustrated in Figure 2, an LMT makes202

out a piecewise linear function, and the number of regions resulting from the splits of203

the tree correspond to the number of leaf nodes.204

The problem of building an LMT for a data set (X, Y) can be expressed as205

min
a,t,w

= ∑
∀(x,y)∈(X,Y)

(y− f (x))2 , (4)206

where f (x) is the prediction made by the LMT, which we express as follows207

f (x) = ∑
l∈∀ leaf nodes

fl(x) ∏
n∈lla

aT
n x < tn ∏

n∈lra
aT

n x ≥ tn . (5)208

Here, an is a standard basis vector in the chosen coordinate basis, which is in our case209

that of the vessel, while tn is the threshold value upon which node n is split. A leaf node210

l’s ascendants are its left and right ascendants, lla and lra. The linear function fl in leaf211

node l, is given by212

fl(x) =
F

∑
f=1

(w f x f) + wF+1 , (6)213

76

Version March 27, 2023 submitted to J. Mar. Sci. Eng. 7 of 23

where F is the number of input features, i.e. states.214

It is sometimes stated that DTs are fully interpretable models, but this is an oversim-215

plification for most practical means. As outlined in [30], transparency can be understood216

as simulatable, decomposable, or algorithmic transparent. To be simulatable transparent,217

the model as a whole must be simple enough that a human can easily interpret it. This218

also implies that both the input features and the predictions must be easily understand-219

able. Provided that the inputs and outputs are understandable, and that the trees have220

a reasonable size, both DTs and LMTs are simulatable transparent. To be decomposable221

transparent, all parts of the model must be simulatable transparent. This means that222

an LMT that is too big to be simulatable transparent, is still decomposable transparent,223

since all its parts, i.e. its subtrees, are still simulatable transparent. Finally, algorithmic224

transparent methods are those that can be analyzed using mathematical tools. Thus,225

LMTs are always decomposable and algorithmic transparent, and whether they are also226

simulatable transparent depends on the size of the specific tree.227

3.1. Heuristic tree building228

The LMTs used here and presented in [27] are constructed using Algorithm 1. Since229

building an optimal DT given a data set D is an NP-hard problem, our approach is230

heuristic, which is common for most approaches to building DTs (see e.g. CART [31],231

ID3 [32], and C4.5 [33]).232

Algorithm 1: The LMT algorithm from [27].
Require:
Training data D

Maximum number of leaf nodes N
Minimum number of data samples for leaf nodes M
while number of leaf nodes is less than N do

if there exist a node that fulfills all splitting criteria then
Choose node to split
Perform splitting
Calculate best potential split for the newly created nodes

else
return root node

end
end

A so-called perfect DT is a tree with binary splits where all the leaf nodes have the233

same depth. The trees in Figure 2a),Figure 2b) are examples of perfect DTs. However,234

as pointed out in [34], perfect DTs are often unnecessarily big. Consider the docking235

problem, the complexity of the agent’s behaviour will vary in different parts of the236

harbor and with different positions and velocities. For example, it is expected that the237

maneuvers required close to the berthing point will be more intricate than at open seas.238

If the DT is to be perfect, it will either not be deep enough to approximate the behavior239

close to the berthing point, or it will overfit to the behavior for open seas. For the same240

reason, the stopping criteria was changed from maximum depth to maximum number241

of leaf nodes, which allows the DT to grow deeper in areas that require more splits,242

resulting in an imperfect tree. Figure 2b) and Figure 2c) illustrates the difference between243

an imperfect DT and a perfect DT. One way of searching for splitting conditions for244

a node is to order the values for each feature, and try threshold values in the middle245

between two neighboring feature values. However, for large data sets, this procedure is246

very computationally expensive. Therefore, a search grid evenly distributed from the247

77

Version March 27, 2023 submitted to J. Mar. Sci. Eng. 8 of 23

lowest to the highest feature values is used to find the split thresholds. The splitting248

condition for a node is found via249

F , tn = argmin
F ,n

(loss(DL) + loss(DR)) , (7)250

where F and tn are the feature and threshold, respectively, the node is to split upon,251

given the data samples in D. That is, the non-zero entry of the basis vector an for node n252

in Equation (5) corresponds to F . The data sets DL and DR are subsets of D, and result253

from the split of a node. Each branch node splits the data it receives into a left and right254

part, so all data points end up in exactly one leaf node. Each node splits the data it255

receives according to256

DL = x ∈ D if xF ≤ tn ,

DR = x ∈ D if xF > tn ,
(8)257

where xF is the data sample x’s value for feature F . Since not all possible thresholds are258

explored, and there is no guarantee for global optimality since this method is greedy,259

there is no need for the algorithm to be deterministic and yield exactly the same tree260

in each run. Instead, having the process include some randomness leads to a wider261

exploration in the same runtime, if run in parallel. The n’th threshold is262

tn = min(DF) + (n + r)
(max(DF)−min(DF))

N
, (9)263

where DF are all the values of feature F in the data set D, N is the number of thresholds264

in the grid search, and r is a random number that alters the threshold value in the range265

±2%. The next node ns to split is chosen using266

ns = argmax
n

((1 + r)(loss(Dn
L) + loss(Dn

R))) , (10)267

where Dn
L and Dn

R are the losses of the left and right child nodes, respectively, of node268

n, given its best split variables F and tn. The linear functions showed in Equation (6)269

in the leaf nodes are calculated by performing ordinary least squares regression on the270

data Dl belonging to leaf node l.271

As our aim is for the LMT to be a faithful explanation model for the DRL model,272

the loss in Equation (10) is calculated as the mean squared error (MSE) between the273

prediction of the DRL model and that of the linear function fitted by linear regression in274

the leaf nodes.275

When tested, Algorithm 1 turned out be very sensitive to the data set D, which is a276

well-known problem for DTs. How many data points are needed to represent an area277

properly, depends on how complex the DRL model is in that area.278

To mitigate this, we performed the data sampling and tree building iteratively,279

according to the following algorithm280

78

Version March 27, 2023 submitted to J. Mar. Sci. Eng. 9 of 23

Algorithm 2: The data sampling process from [27].
Require:
Maximum number of iterations Max_it

Maximum number of leaf nodes N
Minimum number of data samples for leaf nodes M
it = 0
while number of iterations it is less than Max_it do
Dit+1 ← sample_from_environment(LMTit)
LMTit ← Algorithm 1(Dit,M,N)
it++

end

This process was repeated for ten iterations, before checking which resulting LMT281

performed best on an independent validation set. The best chosen LMT tree was built282

on the ninth iteration.283

In [27], an imperfect LMT with a total of 681 leaf nodes was trained to approximate284

and serve as explanation model for the DRL-model presented in Section 2.2. The tree285

model is inarguably too large to be considered simulatable transparent, but it can still286

be used to map the input features, i.e., the states, to the predictions, i.e., the actions.287

Furthermore, sub-parts of the tree are still considered simulatable transparent. The288

maximum depth of the tree was 15, while the shallowest leaf node was at depth 5.289

As the vessel has five control inputs, the DRL model has five outputs, and so must290

the LMT. This can be achieved either by building one LMT for each control input, or by291

building one LMT for all the control inputs. In the latter case, every leaf node contains a292

fitted linear function for each of the control inputs, and the average loss is used when293

fitting and evaluating the splits. Consequently, this approach requires the control inputs,294

respectively the LMT outputs, to be normalized. The latter approach was used both295

in [27] and the present work, because it is challenging to understand, and because it is296

much more time demanding to build five trees instead of just one.297

3.2. Building linear model trees utilizing ordered feature splitting298

Although the LMT used in [27] did show promising results, there are two important299

drawbacks. Primarily, the process of building it is slow because several trees must be300

built, and data sampling has to be done for several iterations. This leads to a larger data301

set, which again increases the time it takes to build an LMT each iteration. Secondly, the302

resulting tree is very large and thus, as mentioned, in no way simulatable transparent,303

which is a significant drawback since the LMT is used as an explanatory model.304

To address this, we set the order in which the LMT building process searches for305

feature splits. This is done by letting the LMT search for splits on the following features,306

and in the following order:307

1. x̃, ỹ, ψ̃308

2. dobs, ψ̃obs309

3. u, v, r .310

As mentioned, the binary variable l is only for penalizing the DRL-agent during training311

and ending the episode, and it will therefore not be used for the LMTs. The order is312

set to better match guidance system logic, however, a more systematically approach313

remains future work. During training, the criteria for a split to be valid is that the overall314

loss decrease, and that the child node receive a minimum number of data samples, here315

M. Once these criteria are met, the node is split. If the criteria aren’t met after trying all316

features in the three feature groups, the tree stops growing.317

As expected, this approach to searching the features for splitting decreases the318

time needed to train the LMT, since the number of feature and threshold pairs are319

reduced in the split search. Additionally, with ordered feature splits the iterative data320 79

Version March 27, 2023 submitted to J. Mar. Sci. Eng. 10 of 23

Figure 3. Illustration of a) the developer’s and b) the operator/seafarer’s different relations to the
agent and the environment.

sampling process shown in Algorithm 2 was deemed unnecessary. More importantly,321

the resulting tree is more interpretable for humans since similar features are close to each322

other, making it easier to locate which parts of the tree are relevant in different situations.323

Furthermore, the resulting LMT is sufficiently small to be simulatable transparent.324

4. Increasing model interpretability using linear model trees325

The goal of approximating the DRL model with an LMT is to use the inherent326

transparency of the LMT and its intuitive structure to efficiently obtain an importance327

ranking of the input features, i.e. the states of the vessel. However, as previously328

emphasized, although DTs, and consequently LMTs, are transparent, this does not329

necessarily make them easily understandable for humans. In this section, we first330

discuss how the linear functions in the leaf nodes can be used to obtain explanations for331

a prediction in the form of feature attributions. Next, we demonstrate how these feature332

attributions can be visualized together with the environment as well as the states and333

actions of the vessel to obtain a more comprehensible picture.334

4.1. Extracting feature attributions from the leaf nodes335

LMTs can give local explanations in the form of feature attributions, which can be336

seen as giving credit or blame to the input features for the output, in essence feature337

attributions are answering the question "how much did each input feature affect the338

model’s output?". The local explanations are calculated utilizing the coefficient in the339

linear function in the leaf nodes and the values of the instance to be explained. The340

linear functions in the leaf nodes take the form of Equation (6), and the importance of a341

feature F is342

IF =
wF xF

∑ f∈∀F |w f x f |
, (11)343

where wF is the coefficient of the linear function in Equation (5) of the leaf node making344

the prediction, and xF the value of the sample for feature F . Note that the constant345

coefficient wF + 1 from Equation (5) is not included in Equation (11), which means that346

if the linear function in a leaf node is a constant function no feature attributions can be347

calculated. Additionally, it should be noted that when forming these local explanations,348

only the function in the leaf node is taken into consideration, even though the path349

from root node to this leaf node is not irrelevant and most likely should be considered.350

However, including the paths in (both local and global) explanations should not be done351

carelessly since even irreducible DTs can have irrelevant splits [35].352

80

Version March 27, 2023 submitted to J. Mar. Sci. Eng. 11 of 23

Figure 4. Pipeline after both the LMT and DNN are trained.

4.2. Visualization of feature attributions353

Different users require both different explanations and different representations of354

the explanations, states, and actions. For this work two users of the black-box model is355

considered, namely the developer and the seafarer/operator. The developer wants to use the356

XAI-method to verify that the black-box model works as intended, detect edge cases or357

erroneous behaviour to improve the model, as well as understanding of how the model358

behaves. On the other hand, the seafarer/operator uses the XAI-method as a supporting359

tool to monitor and control the autonomous agent’s behaviour to assess whether or360

not they should intervene to prevent a dangerous situation or accident. An important361

difference is that the operator/seafarer has a personal risks associated with erroneous362

behaviour of the model, whereas the developer has not. The different relation to the363

black-box model, the environment, and the XAI-system for the two users is shown in364

Figure 3. Where the developer can carefully inspect the models behavior in a simulated365

environment with no time pressure, the seafarer/operator must make assessments within366

a short time span with risk of serious consequences for vessel, crew, and equipment.367

Additionally, the seafarer/operator has a lot of other sources of information, both from368

other sensors and displays, but also from their own senses. The main differences that369

needs to be taken into account when deciding how to convey the explanations to the370

specific user are outlined in Table 3.371

To aid the developer in thoroughly investigate the step-by-step state-action pairs372

with their corresponding feature attributions the plots in Figure 5 are suggested. In373

Figure 5a), the feature attributions are plotted for each step. The feature attributions374

should be studied together with the state and action plots of Figure 5b) and Figure 5c).375

Figure 5 contains a lot of information that requires a lot of time to analyse, so this type of376

visualization cannot be used real-time. For a user like the operator/seafarer, another type377

of representation of this information is needed. One aspect that makes it hard for humans,378

and even domain experts such as operators/seafarers, to process the information is the379

fact that the vessel has 9 state features and 5 control inputs. Additionally, f1 and α1, and380

f2 and α2 are controlling the same motors, and it is not possible to understand the agent’s381

behavior as a whole while looking at cooperating actions independently. To remedy this,382

the actions are mapped to and visualized on the vessel for faster comprehension as can383

be seen Figure 6. Additionally, feature attributions for the 5 actions are combined as384

follows385

IF = ∑
a∈A
|IF

a | (12)386

81

Version March 27, 2023 submitted to J. Mar. Sci. Eng. 12 of 23

Table 3: Differences between developer and operator/seafarer

Developer Operator/Seafarer

Background
knowledge

Good analytical skills, but not
necessarily domain knowledge

Domain knowledge, but not nec-
essarily good analytical skills

Environment Works in simulated environ-
ments or digital twins without
risk of physical damage

Works with the physical vessel,
with risks for material damage
and potentially personnel injury

Risk Works with a risk-free simulated
environment

Works in a physical environment
where errors can compromise
safety of units involved

Urgency Analyses the model offline with
no time pressure

Monitors the controller via the
XAI module real-time under
time pressure

Tools Has access to analytical and
mathematical tools

Has no analytical or mathemati-
cal tools available

Information
design

Prefers information enabling
thorough and analytic investiga-
tion of the controller’s behaviour

Prefers information suitable for
fast processing, and related to
the vessel

Level of
detail

Desires high level of detail, has
low risk of cognitive overload as
information originates from one
source only and the working en-
vironment is stress-free

Only interested in the neces-
sary information, having several
sources of information and a po-
tentially stressful working envi-
ronment, creating a risk for cog-
nitive overload

Event
frequency

Interested in examining the con-
troller’s behaviour over the en-
tire state space

Not interested in experiencing
states that might lead to unde-
sired behaviour or dangerous sit-
uations

Edge cases Uses edge cases to detect unde-
sirable or unexpected behavior

Does not wish to experience
edge cases that involve higher
risk of faulty controller behavior

Intervention Does not intervene if undesir-
able or unexpected behavior is
discovered

Intervenes if entering or experi-
encing state that lead to unde-
sired behavior to avoid danger-
ous situations

Table 4: Feature compression

Compressed features Features Compressed feature importance

Distance x̃, ỹ ID = I x̃ + I ỹ

Heading ψ̃ IH = Iψ̃

Obstacle dobs, ψ̃obs IO = Idobs + Iψ̃obs

Velocity u, v, r IV = Iu + Iv + Ir

82

Version March 27, 2023 submitted to J. Mar. Sci. Eng. 13 of 23

Table 5: Overview of the structures of the different LMTs. LMT+ OFS denotes LMTs
where ordered feature splitting was utilized, while the number denotes the total number
of leaf nodes the LMT has.

Name of LMT Number of
leaf nodes

Depth of
deepest
node(s)

Depth of
shallowest
node(s)

LMT 467 467 16 3

LMT OFS 100 100 11 3

LMT OFS 312 312 12 3

Table 6: Run time for the different algorithms for trees of different sizes.

Algorithm Build time for 10 leaf
nodes

Build time for 50 leaf
nodes

LMT 74.75 s 171.45 s

LMT+ OFS 52.748 s 117.91 s

where IF is the overall importance for the feature F . Still, having to consider feature387

attributions for 9 features is too much to take into consideration in a stressfull environ-388

ment with time pressure, so the feature attributions are further compressed as shown389

in Table 4. It is important to note that the feature importance is not confused with the390

actual values of the features. A high importance for the velocity does not mean that the391

vessel has a high velocity, it just means that the velocity played an important part when392

the the action was predicted. The pipeline between the DRL-agent, the LMT and the393

visualization tools, and the end-users after the DNN is trained and the LMT is built is394

shown in Figure 4.395

5. Results396

To create the data set to build the LMTs 1000 unique starting points was found,397

whereas 800 of these were used as starting points for the training set, 50 for the validation398

set, and the remaining 150 for the test set. The complete data sets consisted of data from399

runs performed by the RL-agent with these starting points. In this chapter the LMT400

process presented in Section 3.1 and the LMT process utilizing ordered feature splitting401

presented in Section 3.2 will be evaluated and compared.402

5.1. Structure of linear model trees403

There is an important difference between building the optimal tree given a data set,404

and building the optimal tree given a specific structure of the tree and a given data set. In this405

work, we take on the problem of building an LMT given a maximum number of leaf406

nodes, univariate, binary splits, and a given data set. In Table 5, the structures of the two407

best LMTs built using ordered feature splitting and one LMT built by the purely greedy408

approach. Utilizing ordered feature splitting resulted in slightly smaller trees than when409

building LMTs without utilizing ordered feature splitting.410

5.2. Computational complexity411

To compare the computational complexity of building LMTs with the algorithm412

presented in Section 3.1 and the version that limit the number of features considered413

at each split as presented in Section 3.2 the time it takes to build trees with 10 and 50414

leaf nodes is compared. The different run times are presented in Table 6. LMT OFS is415

significant faster than LMT, and the difference (naturally) increases when the size of the416

trees increases.417 83

Version March 27, 2023 submitted to J. Mar. Sci. Eng. 14 of 23

Figure 5. The visualization of the states, actions and feature attributions from one episode for the
developer. The shaded area in the action-plot shows the difference between the actions taken by
the DRL-agent and predicted by the LMT.

84

Version March 27, 2023 submitted to J. Mar. Sci. Eng. 15 of 23

Figure 6. The visualization of the environment, vessel, and compressed feature attributions for
the seafarer/operator. The compressed feature Distance to berthing position is shortened to Dist. to
berth. pos.

5.3. Evaluating the fidelity418

The most important aspect when choosing which tree to use is how well the tree419

approximated the DRL-agent, i.e. the fidelity, which will be evaluated based on the420

following metrics:421

1. The average error between the DRL-agent’s output and the tree’s output given the422

same input state as presented in Section 5.3.1.423

2. The trees’ path when running the vessel in the simulator compared to the path424

taken by the DRL-agent as presented in Section 5.3.2.425

3. The error between the resulting forces and moment based on the predicted actions426

as presented in 5.3.3.427

5.3.1. Output error428

The mean absolute error and the standard deviation can be seen in Table 7. Both the429

LMT OFS 100 and LMT OFS 312 has better accuracy and precision than LMT 467, despite430

LMT 467 being significantly larger. LMT OFS 312 also has better accuracy and precision431

than LMT OFS 100 on all actions. Additionally, using ordered feature splitting gave432

consistently better results than without, and the building process became less sensitive433

to the dataset.434

5.3.2. Comparing the paths of the agent and of the linear model trees435

If the LMT has approximated the PPO-policy well enough, the LMT should be able436

to replicate the PPO-policy’s behavior. Therefore, one way of evaluating how well the437

LMT has approximated the PPO-policy is to compare the paths of their runs given the438

same starting point. Plots for the four agents from four different starting points can be439

seen in Figure 7 and Figure 8. Figure 8 shows a difficult scenario where the agent must440

first steer the vessel backwards followed by straightening the yaw while simultaneously441

controlling the surge and sway. Unlike Figure 7, Figure 8 does not require a turn, but442

the path is close to the boundaries and deviations from this path will quickly lead to443

the vessel making contact with the harbor limits. The DRL-agent’s behavior is shown444

in Figure 7a) and Figure 8a), the LMT OFS 100’s behaviour in Figure 7b) and Figure445

8b), the LMT OFS 312’s behaviour in Figure 7c) and Figure 8c), and finally the LMT446 85

Version March 27, 2023 submitted to J. Mar. Sci. Eng. 16 of 23

Figure 7. a) Successful run by the PPO-policy, b) failed run by the LMT OFS 100, c) failed run by
the LMT OFS 312 , and d) failed run by the LMT 467.

Figure 8. a) Successful run by the PPO-policy, b) failed run by the LMT OFS 100 , c) failed run by
the LMT OFS 312 , and d) failed run by the LMT 467 .

86

Version March 27, 2023 submitted to J. Mar. Sci. Eng. 17 of 23

LMT OFS 100

Output feature Mean absolute error Error standard deviation

f1 (kN) 4.57 (2.68%) 9.31 (5.5%)

f2 (kN) 4.018 (2.36%) 7.261 (4.2%)

α1 (deg) 3.43 (1.9%) 7.66 (4.3%)

α2 (deg) 4.81 (2.67%) 8.04 (4.4%)

f3 (kN) 1.77 (1.77%) 4.049 (4.05%)

LMT OFS 312

Output feature Mean absolute error Error standard deviation

f1 (kN) 3.55 (2.08%) (-7,22%) 7.78 (4.57%) (-7,27%)

f2 (kN) 3.33 (1.95%) (-6,35%) 7.085 (4.16%) (-5,675%)

α1 (deg) 2.463 (1.36%) (-7,84%) 6.93 (3.85%) (-6,12%)

α2 (deg) 3.66 (2.15%) (-5,48%) 8.03 (4.45%) (-3,42%)

f3 (kN) 1.302 (1.3%) (-7,78%) 3.513 (3.51%) (-12,387%)

LMT 467

Output feature Mean absolute error Error standard deviation

f1(kN) 11.85(6.97%) 19.07(11.22%)

f2(kN) 9.039(5.32%) 17.38(10.22%)

α1(deg) 7.9(4.3%) 14.32(7.96%)

α2(deg) 14.09(7.83%) 18.91(10.51%)

f3(kN) 3.84(3.84%) 6.83(6.83%)

Table 7: Output error analysis for the three different LMTs LMT OFS 100, LMT OFS 312,
and LMT 467. The improvements from the LMT presented in [27] are highlighted in red

467’s behaviour in Figure 7d) and Figure 8d). In the episode shown in Figure 7 it is clear447

that the LMT OFS 312 performs best out of the three. In the episode shown in Figure448

8 only LMT DK 100 and LMT OFS 312 completes the episode, while LMT 467 makes449

contact with the harbor limits while attempting the last part of the docking. LMT OFS450

312 mimics the behavior of the DRL-agent better than LMT OFS 100, as can be seen in451

Figure 8.452

5.3.3. Comparison of resulting forces and moment on vessel453

To further investigate the behavior of the policy and the LMT, we look at the forces
acting on the vessel that result from the actions taken. This is because there are many
combinations of actions that may result in the same overall forces. This also means that
small deviations in each action may accumulate, causing the policy and the LMT to
predict very different forces, despite their action predictions being similar. On the other

87

Version March 27, 2023 submitted to J. Mar. Sci. Eng. 18 of 23

Figure 9. Plot of total force and moment predicted by both the LMT and the PPO-policy for an
episode where the PPO-policy actions are given to the vessel.

hand, if the force of a thruster is zero then its angle does not matter, but it may still look
like an important error. We calculate the overall forces predicted by the two models as

Fx =
3

∑
i=1

ficos(αi), (13)

Fy =
3

∑
i=1

fisin(αi), (14)

T =
3

∑
i=1

fi(lix sin(αi)− liy cos(αi)) , (15)

where Fx denotes the applied force in the x-direction, Fy the applied force in the y-454

direction, and T the applied torque, all three in the body frame. The forces’ arms of455

moment are given by lix and liy . Figures 9 and 10 show the forces and moments predicted456

by both the PPO-policy and the LMT. The LMT predictions do not follow the PPO-policy457

forces and moment perfectly, but the behaviour is very similar. Note that, as was also the458

case for the actions and feature attributions, the actions predicted by the LMT sometimes459

change abruptly. This happens when there is a change in which leaf node in the tree is460

being used to make the prediction.461

5.4. Comparison of rewards462

The LMT is trained without any knowledge of the reward function, whereas the463

DRL-agent’s training relies heavily on it. However, it is expected that the LMT receives464

approximately the same rewards as the DRL-agent throughout an episode since they465

should behave similarly. In Figure 11, an episode where the LMT and PPO-policy466

behaves very similarly and their corresponding rewards can be seen. Since they have so467

similar paths their rewards are also similar, though with small deviations. The docking468

problem is a complex problem with many possible solutions, and thus, many different469

reward functions ought to lead to a viable solution. An example of two different paths470

successfully leading to the berthing point from the same starting point can be seen471

in Figure 12. Even though both the LMT and the PPO-policy successfully brings the472

vessel to the berthing point, the PPO-policy receives a higher cumulative reward. In473

cases like this, where the LMT ends up taking a different, but still viable, path than the474

PPO-policy does, the output error will be high. It might be interesting to evaluate the475 88

Version March 27, 2023 submitted to J. Mar. Sci. Eng. 19 of 23

Figure 10. Plot of total force and moment predicted by both the LMT and the PPO-policy for an
episode where the PPO-policy actions are given to the vessel.

LMT in the same way as the acPPO-policy, because if the LMT behaves as well as the476

PPO-policy, the LMT could replace the PPO-policy entirely, which would be beneficial477

because then we would be certain that the feature attributions would be completely478

correct. Nevertheless,as could be seen in Figure 7, the PPO-policy performs better than479

the LMTs.480

6. Discussion481

The main drawback with the building process outlined in Algorithm 1 is that it is482

a heuristic, greedy method. This means there that there is no guarantee of an optimal483

approximation of the black-box method, nor any guarantee of optimality given a dataset484

or a given tree structure. Introducing feature ordering to the splits improved the accuracy485

of the trees while decreasing their size, but still good splits can be hidden behind bad486

splits which will not be found due to the building process’ greedy nature. This have487

been addressed by adding some randomness to the building process to further explore488

the solution space. Algorithm 1 can be sensitive to outliers in the dataset, since a larger489

range in the features’ values will stretch out the thresholds’ grid search. The linear490

regression may also be affected by outliers. For this reason, alongside the fact that the491

LMT cannot learn aspects of the black-box model’s behaviour that is not represented492

in the dataset, it is important to have a good dataset. For this application, one tree493

with five linear functions in each leaf node was chosen due to the fact that building494

five trees is much more computational demanding than building one. As discussed,495

transparency for both DTs in general and LMTs depends on the size of the tree. If a small496

enough tree can be made with decent fidelity to the black-box model it’s approximating,497

an assessment between accuracy and interpretability must be made. In this work, all498

the trees considered are too big to be categorized as simulatable transparent, thus only499

accuracy should be taken into account when choosing which tree should be the explainer500

model for the black-box model. In this work, the explanations come in the form of501

feature attributions which are calculated by using the linear function in the activated502

leaf node. This means that the splits along the path from the root node to the activated503

leaf node is not taken into account when forming the explanation, even though it clearly504

is important. Say that a leaf node gives out a constant prediction through the coefficient505

wF + 1 from Equation (5), then the feature attributions will all be zero, and thus there506

are no explanations for this region. For this problem, the thruster’s force and angle507

is controlled directly instead of having the vessel be controlled through a total force508 89

Version March 27, 2023 submitted to J. Mar. Sci. Eng. 20 of 23

Figure 11. a) A successful run by the LMT, b) a successful run by the PPO-policy, and c) the LMT’s
and PPO-policy’s rewards for their respective runs with the same starting points.

and torque applied to the vessel. This is desirable because the DRL-agent gets more509

freedom to learn new strategies, but it provides an additional challenge to the XAI-510

method because it gets less clear what the DRL-policy is attempting to do because there511

will be many combinations of forces and angles of the thrusters that equals the same total512

force and torque. Additionally, a1 and f1 controls the same azimuth thruster, and how513

each of these actions affect the vessel is heavily dependant on each other. For example, if514

f1 gives no force, the angle, a1, of the thruster does not affect the vessel in any way. As515

pointed out by [36], interpretability is not a concept that is easily objectively measured,516

and how the explanation is communicated to the end user is of great importance to how517

well the model will be understood. Thus, the visualizations of the vessel’s states, actions,518

and corresponding feature attributions should be evaluated by the users themselves in519

terms of how factors such as how efficient the information is communicated, and how520

they affect the users trust towards the system. Additionally, how the trees’ structure can521

be used to form better explanations should be investigated, and a more systematically522

approach to the reordering of the features used in the splitting should be looked into.523

90

Version March 27, 2023 submitted to J. Mar. Sci. Eng. 21 of 23

Figure 12. a) A successful run by the LMT, b) a sucussefull run by the PPO-policy, and c) the
LMT’s and PPO-policy’s rewards for their respective runs with the same starting points.

7. Conclusions524

The need for XAI-methods for black-box models such as DNNs to be used for525

marine robotics in general, but also more specifically ASVs. In this work, the preliminary526

work from [27] was significantly extended through improving the algorithm, more527

thoroughly testing of the approximation, and better communication of the feature528

attributions through user adapted visualizations. The algorithm was improved by529

introducing ordered feature splitting to the trees, both in terms of more accurate trees530

and in faster building time. This makes the LMTs capable of tackling more complex531

problems with higher dimensions. Different users require different types of explanations,532

as well as different representation of both the information about the ASV and the533

explanation given by the LMTs. Therefore, two different visualizations was suggested534

for two different users, the developer and the seafarer/operator. The visualizations of535

the feature attributions do not serve as a full explanation of the model, but can be used536

as a step towards understanding, or at least trusting, the model.537

Acknowledgments: This work was supported by the Research Council of Norway through the538

EXAIGON project, project number 304843.539

Conflicts of Interest: The authors declare no conflict of interest.540

91

Version March 27, 2023 submitted to J. Mar. Sci. Eng. 22 of 23

1. References

1. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–44. doi:10.1038/nature14539.
2. Goodfellow, I.; Bengio, Y.; Courville, A. Deep learning; MIT press, 2016.
3. Sutton, R.; S., Barto, A.G. Reinforcement learning: An introduction.; MIT Press, 1998.
4. Mnih, V.; Kavukcuoglu, K.; Silver, D.; et al.. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533.

doi:https://doi.org/10.1038/nature14236.
5. Baker, B.; Kanitscheider, I.; Markov, T.; Wu, Y.; Powell, G.; McGrew, B.; Mordatch, I. Emergent Tool Use From Multi-Agent

Autocurricula, 2020, [arXiv:cs.LG/1909.07528].
6. Lillicrap, T.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep reinforcement

learning. CoRR 2016, abs/1509.02971.
7. Singh, L.Y.; K. Hartikainen, C.F.; Levine, S. End-to-end robotic reinforcement learning without reward engineering. Robotics:Science

and Systems 2019.
8. Haarnoja, T.; Ha, S.; Zhou, A.; Tan, J.; Tucker, G.; Levine, S. Learning to walk via deep reinforcement learning. Robotics: Science

and Systems (RSS) 2019.
9. Rolls-Royce. Marine RRC. Rolls-Royce and Finferries demonstrate world’s first Fully AutonomousFerry. https://www.rolls-royce.

com/media/press-releases/2018/03-12-2018-rr-and-finferries-demonstrate-worlds-first-fully-autonomous-ferry.aspx, 2018.
[Online; accessed 2021-05-18].

10. Skredderberget A., Y.I.A. The first ever zero emission, autonomous ship. https://www.yara.com/knowledge-grows/game-
changer-for-the-environment/, 2018. Online; accessed 2021-05-18.

11. Shen, H.; Guo, C. Path-following control of underactuated ships using actor-critic reinforcement learning with mlp neural
networks. Sixth International Conference on Information Science and Technology (ICIST),IEEE, p. pp. 317–321.

12. Martinsen, A.; Lekkas, A. "Curved-path following with deep reinforcement learning: Results from three vessel models. OCEANS
MTS/IEEE 2018.

13. Martinsen, A.; Lekkas, A. Straight-Path Following for Underactuated Marine Vessels using Deep Reinforcement Learning.
IFAC-PapersOnLine 2018, p. 329–334.

14. Meyer, E.; A. Heiberg, A.R.; San, O. COLREG-compliant collision avoidance for unmanned surface vehicle using deep reinforce-
ment learning. IEEE Access 2020, 8, 165344–165364.

15. Zhao, L.; Roh, M.I. COLREGs-compliant multiship collision avoidance based on deep reinforcement learning. Ocean Eng. 2019,
191.

16. Anderlini, E.; Parker, G.; Thomas, G. Docking Control of an Autonomous Underwater Vehicle Using Reinforcement Learning.
Applied Sciences 2019, 9.

17. Rørvik, E.L.H. Automatic Docking of an Autonomous Surface Vessel : Developed using Deep Reinforcement Learning and
analysed with Explainable AI; MA thesis. Trondheim, Norway: Norwegian University of Science and Technology(NTNU), 2020.

18. Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; Pedreschi, D. A Survey of Methods for Explaining Black Box
Models. ACM Comput. Surv. 2018, 51. doi:10.1145/3236009.

19. Adadi, A.; Berrada, M. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access 2018,
6, 52138–52160. doi:10.1109/ACCESS.2018.2870052.

20. Veitch, E.; Alsos, O.A. Human centered explainable artificial intelligence for marine autonomous surface vehicles: concepts, strate-
gies, and case study using Interaction Design (IxD) perspectives. Journal of Marine Science and Engineering. 9(8). 2021(Manuscript
in preparation).

21. Glomsrud, J.; Ødegårdstuen, A.; Clair, A.; Smogeli, O. Trustworthy versus explainable AI in autonomous vessels. ISSAV -
International Seminar on Safety and Security of Autonomous Vessels 2019.

22. Ribeiro, M.T.; Singh, S.; Guestrin, C. "Why Should I Trust You?": Explaining the Predictions of Any Classifier. Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2016.

23. Ribeiro, M.T.; Singh, S.; Guestrin, C. Anchors: High-Precision Model-Agnostic Explanations. AAAI Conference on Artificial
Intelligence (AAAI) 2018.

24. Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic Attribution for Deep Networks. Proceedings of the 34th International Conference
on Machine Learning - Volume 70. JMLR.org, 2017, ICML’17, p. 3319–3328.

25. Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. Proceedings of the 31st International Conference
on Neural Information Processing Systems; Curran Associates Inc.: Red Hook, NY, USA, 2017; NIPS’17, p. 4768–4777.

26. Covert, I.; Lundberg, S.; Lee, S.I. Understanding Global Feature Contributions With Additive Importance Measures, 2020,
[arXiv:cs.LG/2004.00668].

27. Gjærum, V.B.; Rørvik, E.L.H.; Lekkas, A.M. Approximating a deep reinforcement learning docking agent using linear model
trees. ECC 2021.

28. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms, 2017, [arXiv:cs.LG/1707.06347].
29. Agarap, A.F. Deep Learning using Rectified Linear Units (ReLU) 2018.
30. et al., A.B.A. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI.

Information Fusion 2020, 58, 82–115. 92

Version March 27, 2023 submitted to J. Mar. Sci. Eng. 23 of 23

31. Breiman, L.; Friedman, J.; Olshen. R., Stone, C. Classification and Regression Trees. Wadsworth 1984.
32. Quinlan, R. Induction of Decision Trees. Mach. Lear 1986, 1, 81–106.
33. Quinlan, R. C4.5: programs for machine learning. Elsevier 2014.
34. Avellaneda, F. Efficient Inference of Optimal Decision Trees. AAAI Conference on Artificial Intelligence (AAAI) 2020, 34, 3195–3202.
35. Izza, Y.; Ignatiev, A.; Marques-Silva, J. On Explaining Decision Trees 2020.
36. Dinu, J.; Bigham, J.; Kolter, J.Z. Challenging common interpretability assumptions in feature attribution explanations, 2020,

[arXiv:cs.LG/2012.02748].

93

5.4 Paper D

Postprint of [19]: Vilde B. Gjærum, Inga Strümke, Jakob Løver, Timothy
Miller, and Anastasios M. Lekkas. ”Model tree methods for explaining deep rein-
forcement learning agents in real-time robotic applications”. In: Neurocomputing
515 (2022), pp. 133–144. doi: https://doi.org/10.1016/j.neucom.2022.10.014

©2022 Vilde B. Gjærum, Inga Strümke, Jakob Løver, Timothy Miller, and Ana-
stasios M. Lekkas. Reprinted under the terms of the Creative Commons Attri-
bution License L M

94

https://doi.org/10.1016/j.neucom.2022.10.014
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Model tree methods for explaining
deep reinforcement learning agents
in real-time robotic applications

Vilde B. Gjærum 1, Inga Strümke2, Jakob Løver3,
Timothy Miller4, Anastasios M. Lekkas1

Abstract

Deep reinforcement learning has shown useful in the field of robotics but the
black-box nature of deep neural networks impedes the applicability of deep rein-
forcement learning agents for real-world tasks. This is addressed in the field of
explainable artificial intelligence, by developing explanation methods that aim to
explain such agents to humans. Model trees as surrogate models have proven useful
for producing explanations for black-box models used in real-world robotic applica-
tions, in particular, due to their capability of providing explanations in real time. In
this paper, we provide an overview and analysis of available methods for building
model trees for explaining deep reinforcement learning agents solving robotics tasks.
We find that multiple outputs are important for the model to be able to grasp the
dependencies of coupled output features, i.e. actions. Additionally, our results indicate
that introducing domain knowledge via a hierarchy among the input features during
the building process results in higher accuracies and a faster building process.

Index Terms

Explainable Artificial Intelligence, Model trees, Reinforcement Learning, Robotics

1. INTRODUCTION

The need for explaining artificial intelligence (AI) systems for decision making
has become more prominent over the recent years [1], [3], [12], [16], [21]. This is
also the case in the field of robotics, where black-box methods, such as deep neural

This work was supported by the Research Council of Norway through the EXAIGON project, project
number 304843.

1 V. B. Gjærum and A. M. Lekkas are with the Department of Engineering Cybernetics at
the Norwegian University of Science and Technology (NTNU). E-mails: {vilde.gjaerum,
anastasios.lekkas}@ntnu.no

2 I. Strümke is with the Department of Computer Science at NTNU. E-mail:
inga.strumke@ntnu.no,

3 J. Løver is with Nordic Semiconductor. E-mail: lover.jakob@gmail.com,
4 T. Miller is with the School of Computing and Information Systems at the University of Melbourne.

E-mail: tmiller@unimelb.edu.au,
∗ The author is currently with Nordic Semiconductor.

95

networks, have shown great potential [14], [15], [20], [25], [28], but their usage for
real-world applications with potential risk for humans and equipment is limited due to
our lack of understanding of their decision making processes. The field of explainable
artificial intelligence (XAI) has experienced rapid growth in response to this, and a
large number of methods have been developed [8], [17], [21], [22], [29].

Reinforcement learning (RL) is a form of machine learning where an agent learns by
autonomously exploring an environment. The environment responds to the actions of
the agent by providing it with states and a reward. In machine learning (ML) terms, the
states of the environment are thus the agent model’s input features, while its outputs
constitute the actions performed by the agent. We study explanation methods in the
context of robotics and reinforcement learning. These problems often involve large
state spaces, as the agent can explore a potentially open environment, which results
in large training data sets.

In robotics settings, the states of the environment are often represented as continuous
variables. For instance, autonomous vehicles use sensors that provide continuous mea-
surements, such as position and velocity. Furthermore, the actions of robotic agents
are often continuous. Some robotic applications also require real-time explanations,
which constitutes a challenging additional requirement for the XAI methods.

In total, these requirements are challenging to meet for existing explanation meth-
ods. As seen in [18], both SHapley Additive exPlanations (SHAP) [17] and Local
Interpretable Model-agnostic Explainer (LIME) [21] are not fast enough to be used in
real-time for real-world robotic applications. Similar to LIME [21] and Anchors [22],
both LOcal Rule-Based Explainer (LORE) [13] and FOILTREE [30] build a local
interpretable model(a decision tree) around the instance to be explained and then
searches that decision tree for explanations but neither are applicable to regression
problems with multiple outputs. Additionally, they might not be fast enough to use in
real-time for robotic applications since it needs to build a model for each instance to
be explained as was shown to be a problem for both SHAP [17] and LIME in [19].

One class of methods that meet these aforementioned requirements is model trees
when used as a surrogate model to gain insight into a black-box model as first
presented in [10]. In short, the decision tree’s intuitive structure can be utilized to
extract explanations about a black-box given that the decision tree has adequately
approximated the black-box model. The process of extracting explanations from a
linear model tree in the form of feature attributions is thoroughly presented in Section
3. Decision trees are widely used for classification and regression tasks, and are popular
for their more intuitive structure, especially compared to black-box models such as
deep neural networks, which allows for a better understanding of their decision-making
process. A decision tree model is a directed graph, consisting of one root node, branch
nodes, and leaf nodes. The root node is the top node and the place where a data instance
enters the model. Both the root node and the branch nodes contain a decision statement
each, which split the data. Finally, the leaf nodes contain the model outcome for a data

96

instance following the root and branch node splits. The leaf nodes are at the bottom
of the tree’s structure and have no children nodes. For classification trees, each leaf
node predicts a class, i.e. a constant integer, while for regression trees, each leaf node
predicts a constant. Thus, each leaf node has a constant prediction function.

The constant prediction in decision trees’ root nodes can be replaced by any type
of prediction model, and the resulting decision tree is then commonly referred to as a
model tree. The simplest form of model trees is regression trees with linear prediction
functions in the leaf nodes, called linear model trees (LMTs). The structure of the
tree corresponds to a specific partitioning of the feature space, and each region of
this partitioning corresponds to one leaf node and its prediction function. Thus, an
LMT is a piece-wise linear function approximator. In this work, we focus on methods
for building model trees for explaining deep reinforcement learning (DRL) models
acting as agents in robotics settings. Specifically, the methods must handle continuous
output, yield non-constant prediction function output, and be able to deal with large
datasets. They must also handle large data sets, and provide explanations quickly
enough to be used in real time. In [11], an LMT was built by a heuristic, greedy
algorithm that was used to provide explanations in the form of feature attributions of
a deep neural network (DNN) controlling an autonomous surface vessel (ASV) in a
simulated environment. Having approximated the DNN, the LMT ran in parallel with
the controller and generated explanations in real time. The problem of finding the
optimal LMT given the dataset can be represented as a mixed integer optimization
problem, as shown in [5]. However, solving the optimal tree problem as a mixed
integer optimization problem quickly becomes intractable for complex problems with
large data sets which is the case for most robotic applications. Therefore, this is not
a viable approach for our problem.

In [27], it is demonstrated that model trees can be used to build policies for rein-
forcement learning problems, but this method requires binary actions and is therefore
not applicable to problems featuring continuous actions. Other commonly used method
types for building decision trees include satisfiability(SAT) solvers, various constraint
programming methods, and branch-and-bound search methods. Most SAT solvers,
such as [4], [24], and constraint programming methods, such as [31], [32], work on
classification problems with binary input features and are therefore not applicable to
robotic applications. Additionally, many of the SAT solvers and constraint program-
ming solvers do not scale well to larger data sets, one reason being that these methods
add one constraint per sample in the dataset. Finally, branch-and-bound search methods,
such as [2], also require binary input features.

97

Given the aforementioned requirements, the following is, to the best of our knowl-
edge, an exhaustive list of relevant methods for building model trees in a robotics
setting

• Optimal regression trees with linear prediction functions (ORT-L) [5]
• Optimal regression trees with linear prediction functions and hypersplits (ORT-LH)

[5]
• Heuristic linear model tree (H-LMT) [11]
• Near optimal non-linear regression tree (NNRT) [6] .
The paper’s main contributions are the following:
• We provide an overview of the decision tree methods applicable to use as expla-

nation methods for real-time, real-world robotic applications.
• We implement three methods(ORT-L, ORT-LH, and NNRT) on a robotic system

with the intent of adding insight into a black-box’s decision making which, to
the best of our knowledge, has not been done before.

• We present a comparison of the methods’ performances on a real-world problem
involving an autonomous docking agent in a complex environment.

• We evaluate the four relevant methods in terms of
– their strength and weaknesses,
– their fidelity to the black-box model,
– and their level of interpretability.

The paper is structured as follows. In Section 2, the methods are explained. How
LMTs can be used as explanation methods is explained in Section 3. In Section 4,
the docking problem used for the case study is presented, and the results from the
case study are presented in Section 5. In Section 6, the methods’ results are analysed,
and their strengths and weaknesses are discussed. Finally, we draw our conclusions in
Section 7.

2. BACKGROUND

To approximate and explain DRL agents in complex environments using continuous
states and producing continuous actions, the model tree algorithm must have the
following capabilities:

• Ability to deal with large data sets
• Handle continuous input,
• Non-constant prediction function.

98

TABLE I: Characteristics of the different model tree algorithms.

H-LMT Sep. H-LMT NNRT ORT-L ORT-LH

Continuous input ✓ ✓ ✓ ✓ ✓

Continuous output ✓ ✓ ✓ ✓ ✓

Piece-wise linear function ✓ ✓ ✗ ✓ ✓

Piece-wise polynomial function ✗ ✗ ✓ ✗ ✗

Univariate splits ✓ ✓ ✗ ✓ ✗

Multivariate splits ✗ ✗ ✓ ✗ ✓

Ordered feature splitting ✓ ✓ ✗ ✗ ✗

Optimality guarantees ✗ ✗ ✗ ✗ ✗

Multiple output ✓ ✗ ✗ ✗ ✗

Given these, the following is, as mentioned, an exhaustive list of relevant methods:
• Optimal regression trees with linear prediction functions (ORT-L), presented in

Section 2-A,
• Optimal regression trees with linear prediction functions and hypersplits (ORT-LH),

presented in Section 2-B,
• Heuristic linear model tree (H-LMT), presented in Section 2-C,
• Near optimal non-linear regression tree (NNRT), presented in Section 2-D.
Briefly summarised, the different methods work as follows. ORT-L and ORT-LH

search for the best tree by locally improving the tree until convergence. H-LMT
searches using a greedy approach, and NNRT uses gradient descent to determine the
splitting functions and ridge regression for the prediction functions. ORT-L, ORT-LH,
and H-LMT have linear prediction functions, while NNRT has polynomial prediction
functions. ORT-LH and NNRT have multivariate split functions, also referred to as
hypersplits, while ORT-L and H-LMT have univariate split functions.

ORT-L and ORT-LH are both built by using the Python package Interpretable AI1.
Unfortunately, the implementation of ORT-LH is unstable at the time of writing,
which makes performing a systematic hyperparameter search challenging and time-
consuming. The implementation of NNRT is an improved version of the implementa-
tion presented in [18]. H-LMT and separated H-LMT’s (sep. H-LMT) implementation
is as presented in [11]. The only difference between H-LMT and sep. H-LMT is that
sep. H-LMT builds one tree per output, while H-LMT builds one tree with several
prediction functions in the leaf nodes.

The different methods are further explained in the following, and Table I contains
an overview of their characteristics.

1https://docs.interpretable.ai/stable/

99

2.1. ORT-L

ORT-L is a method for building LMTs with univariate splits in the branch nodes,
whose overall objective function can be expressed as

min
β,β0

1

L̂

n∑

i=1

(yi − fi)2 + λ
∑

t∈TL

||βt||1, (1)

where yi is the prediction target, fi is the ORT-L model prediction, TL is the set
of all leaf nodes, L̂ is the baseline error in the training data, β are the coefficients of
the linear prediction function in the leaf node t, and λ is a regularization factor. The
objective function in Equation (1) concerns both the structure of the tree, which maps
an input sample to its respective leaf node and prediction function, represented as f ,
and the fitting of all the prediction functions in the leaf nodes. The problem of finding
the structure of the tree and fitting the linear prediction function in the leaf nodes can
be divided into two separate problems. The objective function can thus be written as

min
β,β0

1

2|It|
∑

i∈It

(yi − fi)2 +
λL̂

2|It|
||βt||1, (2)

where It is the set of data points that fall into leaf node t, and |It| is the number of
data points that fall into leaf node t. The local search method provided by [5] searches
for the solution to Equation (1) by iteratively improving the tree until it reaches a local
optimum. For each iteration, this method locally optimizes the splits in all branch nodes
in random order, followed by fitting the linear prediction functions in the leaf nodes,
given the current structure of the tree.

One challenge in the process of finding the optimal LMT is that even small changes
to the structure of the tree can require recalculating many of the prediction functions
in the leaf nodes. This is because even adding just a few samples to the regression
problem can cause significant changes to the final leaf node function. A regression
method that addresses this is the GLMNet algorithm [9], which solves the regression
problem efficiently by using coordinate descent.

2.2. ORT-LH

ORT-LH is a method for building LMTs with multivariate splits, or hypersplits, in
the branch nodes. The only difference between ORT-LH and ORT-L lies in the search
for the best splits, where ORT-L searches for the best splitting criteria on one feature,
while ORT-LH searches for the best splitting function. The splitting criteria for ORT-L
are expressed as

xj < t, (3)

while the splitting criteria for the hypersplits in ORT-LH are expressed as
∑

j∈J
βjxj < t, (4)

100

where t is the threshold, J is the set of features, and β are the coefficients of the
hypersplit function.

2.3. H-LMT

H-LMT, presented in [11], is a heuristic method for building LMTs with univariate
splits. The method, presented in Algorithm 1, follows a procedure similar to CART
[7].

Algorithm 1: H-LMT
Require:
Training data D

Maximum number of leaf nodes N
Minimum number of data samples for leaf nodes M
Order of which features can be used for splits OFS
Number of thresholds to search for when performing splitting Ts
Number of thresholds to search for calculating the potential split value Tpsv
do:
Split the root node by using Equation (6)
Calculate the potential split for the new nodes using Equation (6) searching
through OFS(depth) and Tpsv thresholds

while number of leaf nodes is less than N do
if there exists a node that fulfills all splitting criteria then

Choose node to split using Equation (5)
Perform splitting using Equation (6)
Calculate best potential split for the newly created nodes using
Equation (6) searching through OFS(depth) and Tpsv thresholds

else
return root node

end
end

As in CART, the method starts from the root node and incrementally expands the
tree as long as this is possible, given the restrictions set by the hyperparameters of
the algorithm. H-LMT does not take maximum depth as a restriction but rather the
maximum number of leaf nodes allowed. Using maximum number of leaf nodes instead
of maximum depth allows for growing asymmetric trees because the tree can grow
deeper in the more complex parts of the feature space while leaving the parts of the
tree covering simpler regions shallow. For this to happen the tree cannot grow one
branch at a time as deep as it allows (as done in CART) but must rather make some
intuition about which regions should be partitioned further.

101

When choosing the next node to split, all the leaf nodes’ potential loss value are
compared. How to choose the next node to be split can be expressed as

ltbs = max
l∈L

potential split value(l), (5)

where ltbs is the leaf node that gives the highest improvement of error for the model
called the potential split value, and L is all leaf nodes. The potential loss value is
calculated by performing a split search on the children of a newly split node as in
Equation (6) but searching through fewer possible thresholds. If a particular child is
later on chosen as the next node to be split, a thorough split search is done.

The method provides no guarantee of optimality and there is therefore no need for the
method to output the same tree at every run given the same data set and parameters.
To further explore the solution space, randomness is used when searching for the
thresholds in the splits and when deciding which node to split next. If run in parallel,
several different trees can be built without increasing the run-time. Equation (6) is
used both when performing splitting and when calculating the best potential split for
newly created nodes in Algorithm 1, the difference being the number of thresholds
explored. The feature F and the threshold tn to be split upon are found via

F , tn = argmin
F,n

(loss(DL) + loss(DR)) , (6)

where

DL = x ∈ D if xF ≤ tn ,
DR = x ∈ D if xF > tn ,

(7)

tn = min(DF) + (n+ r)
(max(DF)−min(DF))

N
, (8)

and
ns = argmax

n
((1 + r) (loss(Dn

L) + loss(Dn
R))) . (9)

The data sets belonging to the left and right child node of the current node are denoted
DL and DR, respectively. The search includes N evenly distributed thresholds for each
feature in the range spanned by that feature. The randomness is introduced through
the value r, which changes the threshold value or the potential loss value by up to
2%.

In [11], a restriction on which features could be used for finding the best split
at different depths of the tree was set called ordered feature splitting (OFS). OFS
maps different depths of the tree to a set of features that can be used for the splitting
condition in the branch nodes at this depth. This means that we can manipulate the
trees’ structures, and utilize domain knowledge or improve the trees’ interpretabil-
ity by getting a more intuitive structure or grouping splits on certain features. This
significantly speeds up the algorithm, since it decreases the number of features that

102

must be searched through when calculating the best split combination. Such ordering
of features must be done with care – since it strongly affects the resulting trees –
preferably by testing various options and adapting specifically to the task at hand.

2.4. NNRT

NNRTs is a method for building model trees with multivariate splits and polynomial
prediction as a nonlinear optimization problem with a near-optimal solver, introduced
in [6]. NNRT’s overall prediction function is expressed as

g(x) =
∑

p∈L

gp(x)
∏

l∈L<
p

1{aT
l x < bl}

∏

l∈L≥
p

1{aT
l x ≥ bl}, (10)

where x is the input sample, L is the set of all leaf nodes, L<
p and L>

p denotes the set
of all the left and right parents of the node with their corresponding splitting criteria
{aTl x < bl} or {aTl x ≥ bl}. The polynomial prediction function in the leaf nodes is
given by

gp(x) = fp,D+1 +
D∑

i=1

fp,i

li∏

l=l1

|aTl x− bl|, (11)

where D is the depth of the tree. As we can see from Equation (11), the polynomial
function in a leaf node consists of the linear splitting functions from the branch nodes
along the path from the root node to the leaf node. However, since

|aTl x− bl|1{aTl x < bl} = max(bl − aTl x, 0) (12)

|aTl x− bl|1{aTl x ≥ bl} = max(aTl x− bl, 0) (13)

the problem can also be formulated as a nonlinear optimization problem as follows:

g(x) =
∑

p∈L

fp,i(x)
∏

l∈L<
li

max{bl − aTl x, 0}
∏

l∈L≥
li

max{aTl x− bl, 0}, (14)

The polynomial functions in the leaf nodes of the tree are thus made out of the
linear functions (the hypersplits) in the branch nodes on the path from the root node
to the activated leaf node. This means that the depth of the tree determines the power
of the polynomial prediction functions in the leaf nodes. The final objective to be
minimized is thus

min
a,b,c

L(a,b, f) =
1

n

n∑

i=1

(yi − g(xi))2 + λ(||a||22 + ||b||22 + ||f||22). (15)

NNRT searches for the optimal solution to 15 by alternating between applying gradient
descent to the hypersplit parameters a and b of the branch nodes, and by fitting the
leaf nodes parameters f via ridge regression.

103

Fig. 1: Illustration of the pipeline for how to build an LMT for a reinforcement learning
agent trained on a robotic system.

3. LINEAR MODEL TREES AS EXPLAINERS

One strategy within XAI is to use a simpler, more interpretable model as a surrogate
model for the complex black-box model. The surrogate model mimics the behaviour
of the black-box model locally around an instance to be explained or globally for the
entire black-box model and we can then learn something about the black-box model by
analysing the surrogate model [1]. An LMT can be used as a surrogate model to support
explanation whenever the tree is capable of approximating the black-box model to be
explained. For problems suited for supervised learning, training the surrogate model is
straightforward since it can just be trained on the same data as the black-box model was
trained on. For robotic applications, supervised learning is often not possible because
the correct output is not known and therefore reinforcement learning is often used.
Figure 1 illustrates how we train an LMT for a reinforcement learning agent. For the
LMT to approximate the model properly we first need to gather the appropriate data.
Such data can be obtained by sampling states from the environment and running these
states through the black-box model to get its action and using this state-action dataset
to build the LMT. If the LMT approximates the black-box model accurately enough,
it serves as a piece-wise linear function approximator to the black-box model, and can
run in parallel and give explanations in real-time as illustrated in Figure 2 [11]. When
LMTs are built by the process shown in Figure 1 and used as shown in Figure 1,
the LMT is a post-hoc, model-agnostic explanation method. Post-hoc meaning applied
to a preexisting model, and model-agnostic meaning it can be applied to any type of
model [1]. Using LMTs as explanation models yield the following advantages:

1) their structure is intuitive and their decision flow directly available to humans,
2) they merely split, not transform, the input features, leaving these interpretable

to humans
3) they are fast enough to run in real time even for robotic applications.
Gjaerum et al. [10], [11] present a way to retrieve explanations in the form of feature

attributions – the same type of explanations given by other explanation methods such as
SHAP and LIME – from an LMT. Since each leaf node corresponds to a certain region
in the state space, feature attributions are local explanations. Even though decision
trees are often considered to be transparent and interpretable for humans, analysing

104

Fig. 2: Illustration of how the black-box model controlling the robotic system and the
LMT explaining the black-box model runs in parallel.

the structure and splits of the tree is very time consuming depending on the tree’s size.
The linear functions fl(x) in the leaf nodes can be written as

fl(x) =
F∑

f=1

(wfxf) + wF+1 , (16)

where wf is the coefficient of feature f in the input vector x. The importance IF
attributed to feature F by the model is then

IF =
wFxF∑

f∈∀F |wfxf |
. (17)

105

Berthing

Approach

Fig. 3: Overview of the simulated environment from [23].

Fig. 4: Illustration of simulated vessel and the states representing it, from [11].

106

4. CASE STUDY: THE DOCKING PROBLEM

To evaluate the four methods’ utility values in robotic applications, we apply them
to an RL agent solving the problem of docking an ASV in a simulated environment
based on a physical harbour, shown in Figure 3. The physical harbour is located in
Trondheim, Norway harbour and the RL docking agent used is the same as in [23].
The vessel has three thrusters which can be controlled through five input actions given
by

A = [f1, f2, f3, α1, α2] , (18)

where the two azimuth thrusters at the back of the vessel are controlled by setting
their force and angle, f1, f2 and α1, α2. The tunnel thruster at the front of the vessel
is controlled by setting its force f3. The forces of the azimuth thrusters are restricted
to [−70 kN, 100 kN], and the angles are restricted to [−90 degrees, 90 degrees]. The
tunnel thruster’s force is restricted to [−50 kN, 50 kN]. The vessel’s states are illustrated
in Figure 4 and expressed as

x = [x̃, ỹ, ψ̃, u, v, r, l, dobs, ψ̃obs] . (19)

where x̃, ỹ, and ψ̃ gives the vessels position relative to the berthing point in the vessel’s
body frame. The velocity is represented by u, v, and r. The vessel’s position relative
to the closest obstacle is given by dobs and ψ̃obs. Additionally, the binary variable l
indicates whether or not the vessel has made contact with an obstacle. The variable l
is mainly used under the training of the RL-agent. The RL-agent used to control the
ASV is a neural network with two hidden layers of 400 neurons each trained with
the proximal policy optimization (PPO) algorithm from [26]. The task of docking an
ASV is a challenging problem that requires complex decision making and accurate
fine-tuning of the actions, especially when the ASV is close to the harbour and needs
to be very precise in its movements.

5. RESULTS

In this section, the four methods H-LMT, NNRT, ORT-L, and ORT-LH are compared
on a case study of the docking problem.

5.1. Tree structure

In Table II, the depth and number of leaf nodes are given for NNRT,ORT-L,
and ORT-LH. H-LMT and sep. H-LMT’s structure is only given by the number
of leaf nodes since the depth of the leaf nodes may vary which can be seen in
Figure 5. Additionally, the total number of leaf nodes and the total number of prediction
functions are also given in Table II. Even though H-LMT only has a total number of 18
leaf nodes, it’s still important to remember that its number of prediction functions is five
times higher, namely 90. Still, having multiple outputs per tree significantly reduces
the number of splitting functions and regions the dataset is split into since all actions
use the same tree structure. Besides ORT-L building somewhat bigger trees than the

107

TABLE II: Overview of the trees’ structures, in terms of depth and number of leaf
nodes denoted by ∗.

Depth of tree Total number Total number of

f1 f2 f3 a1 a2 of leaf nodes prediction functions

H-LMT 18∗ 18 90

NNRT 4(16∗) 4(16∗) 4(16∗) 4(16∗) 4(16∗) 80 80

ORT-L 2(4∗) 4(16∗) 6(64∗) 3(8∗) 7(128∗) 220 220

ORT-LH 4(16∗) 4(16∗) 4(16∗) 4(16∗) 4(16∗) 80 80

sep. H-LMT 12∗ 13∗ 13∗ 22∗ 27∗ 87 87

Fig. 5: H-LMT’s structure.

other methods, mostly due to the trees built for a2 and f3 being quite large, no method
sticks out for building more sparse models compared to the other methods. NNRT and
ORT-LH are both expected to build shallower trees since these use multivariate splits
instead of univariate splits. ORT-LH is smaller than ORT-L, but neither ORT-LH nor
NNRT are significantly smaller than H-LMT or sep. H-LMT. Compared to the original
policy network which consisted of two hidden layers of 400 neurons each, the trees
are considerably smaller in addition to being structured in a way more intuitive to
humans.

5.2. Prediction error

In Table III, the mean absolute error and standard deviation of the different trees’
predictions are given. The dataset consists of 80% randomly sampled starting positions
and 20% is sampled from paths where the DRL-agent controls the vessel given a
random starting point. Since practically all paths end up at the berthing point, many
of the states in different runs will be very similar. This is why most of the data used
for calculating these error measures are from randomly sampled starting points so that
the dataset is not skewed to this particular part of the state space Sep. H-LMT has

108

TABLE III: MAE and standard deviation for all actions.

Average error

f1(kN) f2(kN) f3(kN) a1(deg) a2(deg)

H-LMT 8.45(4.9%) 8.04(4.7%) 2.8(2.8%) 9.17(5.09%) 10.31 (5.73%)

NNRT 21.92(12.89%) 17.53(10.31%) 7.82(7.82%) 18.9(10.5%) 26.92(14.96%)

ORT-L 10.02(5.89%) 8.57(5.04%) 2.92(2.92%) 10.31(5.73%) 10.89(6.05%)

ORT-LH 7.16(4.2%) 8.39(4.9%) 3.96(3.96%) 11.46(6.37%) 12.61(7%)

Sep. H-LMT 6.98(4.1%) 7.23 (4.25%) 3.27 (3.27%) 8.6 (4.78%) 9.74(5.41%)

Standard deviation

f1(kN) f2(kN) f3(kN) a1(deg) a2(deg)

H-LMT 14.2(8.35%) 12.2(7.18%) 4.51(4.51%) 12.6(7%) 13.75(7.64%)

NNRT 24.65(14.5%) 20.66(12.15%) 9.71(9.71%) 20.63(11.46%) 20.05(11.14%)

ORT-L 12.81(7.54%) 13.46(7.91%) 4.9(4.9%) 13.18(7.32%) 14.9(8.28%)

ORT-LH 11.54(6.79%) 12.73(7.48%) 6.13(6.13%) 14.32(7.96%) 14.9(8.28%)

Sep. H-LMT 10.82 (6.36%) 11.6(6.82%) 4.92 (4.92%) 12.6(7%) 13.18(7.32%)

the lowest average error on all actions except f3, and the lowest standard deviation on
all actions except f3 and a1 where H-LMT has the same standard deviation. Overall,
ORT-L has a somewhat higher error and standard deviation compared to sep. H-LMT
and H-LMT. NNRT has both very high error and standard deviation, for some actions
even more than twice as high as the other methods. ORT-LH performs similarly to
H-LMT and sep. H-LMT on f1, f2, and f3 but struggles more with approximating a1
and a2.

5.3. Path comparison

One way of evaluating how well a tree approximates the DRL-agent is by letting
the tree control the vessel and comparing their behaviour related to the DRL-agent’s
behaviour. A good approximation performs similarly to the DRL-agent not only when
the DRL-agent performs well but also when it performs poorly. We do not want the
approximation model to find solutions to the areas where the DRL-agent struggles
since then the fidelity of the explanations will be weakened. An example of this can
be seen in Figure 6, where ORT-L manages to arrive close to the berthing point but it
deviates from the DRL-agent’s path along the way. H-LMT and ORT-LH on the other
hand do not get as close to the berthing point but their paths more closely resemble
the DRL agent’s path, and are thus better approximations in this situation.

Since sep. H-LMT achieves lower error than H-LMT, as shown in Table III, sep.
H-LMT is expected to be more capable than the other methods to control the vessel.

109

200 300 400 500 600 700 800
East [m]

400

500

600

700

800

900

No
rth

 [m
]

Harbour constraints
Path
Start point
Berth point

(a) DRL-agent

200 300 400 500 600 700 800
East [m]

400

500

600

700

800

900

No
rth

 [m
]

Harbour constraints
Path
Start point
Berth point

(b) H-LMT

200 300 400 500 600 700 800
East [m]

400

500

600

700

800

900

No
rth

 [m
]

Harbour constraints
Path
Start point
Berth point

(c) sep. H-LMT

200 300 400 500 600 700 800
East [m]

400

500

600

700

800

900

No
rth

 [m
]

Harbour constraints
Path
Start point
Berth point

(d) NNRT

200 300 400 500 600 700 800
East [m]

400

500

600

700

800

900

No
rth

 [m
]

Harbour constraints
Path
Start point
Berth point

(e) ORT-L

200 300 400 500 600 700 800
East [m]

400

500

600

700

800

900

No
rth

 [m
]

Harbour constraints
Path
Start point
Berth point

(f) ORT-LH

Fig. 6: Path plots of the vessel controlled by the DRL-agent and the trees given the
same starting point.

However, sep. H-LMT at best performs marginally better than H-LMT, as can be seen
in Figure 7. In Figure 7, we can see that in the last steps sep. H-LMT approaches the
berthing point from the right, H-LMT approaches slightly from above and must go
backwards the last steps but the DRL-agent approaches the berthing point first from
the right and then moves forward the last few steps. On the other hand, for most
of the scenarios and as can be seen in Figure 6, H-LMT performs better than sep.
H-LMT. Specifically, in Figure 6, sep. H-LMT crashes with the harbour limits due
to not having the right angle. This could be due to that sep. H-LMT consists of five
trees, one per each action, while H-LMT only consist of one tree which predicts all
five outputs. Decoupling these very dependent actions most likely leads to a loss of
general understanding of what these actions do. Since f1 and a1 control the left azimuth
thruster together, a mistake in only one of them will still lead to a wrong control action
for that thruster. Some mistakes will also have more effect on the final control input
the vessel receives than others. Let’s consider the two following prediction errors:

1) f1 is supposed to be −5 kN but +5 kN is predicted
2) f1 is supposed to be 50 kN but 40 kN is predicted

Both of these scenarios have an absolute error of 10 kN, but the first error will affect
the outcome much more since this will make the thruster give a force in the opposite
direction.

110

200 300 400 500 600 700 800
East [m]

700

750

800

850

900

950

1000

No
rth

 [m
]

Harbour constraints
Path
Start point
Berth point

(a) DRL-agent

200 300 400 500 600 700 800
East [m]

700

750

800

850

900

950

1000

No
rth

 [m
]

Harbour constraints
Path
Start point
Berth point

(b) H-LMT

200 300 400 500 600 700 800
East [m]

700

750

800

850

900

950

1000

No
rth

 [m
]

Harbour constraints
Path
Start point
Berth point

(c) sep. H-LMT

200 300 400 500 600 700 800
East [m]

650

700

750

800

850

900

950

1000

No
rth

 [m
]

Harbour constraints
Path
Start point
Berth point

(d) NNRT

200 300 400 500 600 700 800
East [m]

650

700

750

800

850

900

950

1000

No
rth

 [m
]

Harbour constraints
Path
Start point
Berth point

(e) ORT-L

200 300 400 500 600 700 800
East [m]

650

700

750

800

850

900

950

1000

No
rth

 [m
]

Harbour constraints
Path
Start point
Berth point

(f) ORT-LH

Fig. 7: Path plots of the vessel controlled by the DRL-agent, H-LMT, and sep. H-LMT
given the same starting point.

As expected based on the errors shown in Table III, NNRT performs rather poorly
as can be seen in Figure 6. NNRT has not managed to grasp the overall concept, but
there are some situations where NNRT performs somewhat better, such as the one we
can see in Figure 8 where the vessel is positioned in front of the berthing point and
moves backwards towards the berthing point. ORT-LH manages to get the vessel close
to the berthing point via a similar path as the DRL-agent in the situation shown in
Figure 6, but shows the poorest performance in the situation showed in Figure 8. In
Figure 7, NNRT, ORT-L, and especially ORT-LH perform poorly.

5.4. Action comparison

Another way of evaluating how well the tree methods approximated the neural
network is by looking closer at how close the actions predicted by the neural network
and the tree given the same states. We do this by letting the DRL-agent control the
vessel and running the trees in parallel, predicting actions for the same states. One
important difference between these episodes and the ones shown in Section 5-C, is
that for those episodes, the actions of the trees do not affect the next state, since the
DRL-agent controls the vessel.

In Figure 9, we can see the difference between what the DRL-agent and the NNRT
give as actions given the same states. The NNRT struggles with abrupt changes in the
actions, which can be seen from around step 550 and after. At this part of the episode,

111

200 300 400 500 600 700 800
East [m]

700

800

900

1000

1100

No
rth

 [m
]

Harbour constraints
Path
Start point
Berth point

(a) DRL-agent

200 300 400 500 600 700 800
East [m]

700

800

900

1000

1100

No
rth

 [m
]

Harbour constraints
Path
Start point
Berth point

(b) H-LMT

200 300 400 500 600 700 800
East [m]

700

800

900

1000

1100

No
rth

 [m
]

Harbour constraints
Path
Start point
Berth point

(c) sep. H-LMT

200 300 400 500 600 700 800
East [m]

700

800

900

1000

1100

No
rth

 [m
]

Harbour constraints
Path
Start point
Berth point

(d) NNRT

200 300 400 500 600 700 800
East [m]

700

800

900

1000

1100

No
rth

 [m
]

Harbour constraints
Path
Start point
Berth point

(e) ORT-L

200 300 400 500 600 700 800
East [m]

700

800

900

1000

1100

No
rth

 [m
]

Harbour constraints
Path
Start point
Berth point

(f) ORT-LH

Fig. 8: Path plots of the vessel controlled by the DRL-agent, NNRT, ORT-L, and
ORT-LH given the same starting point.

the vessel has reached the berthing point and stabilises the vessel around this point
through repetitive actions. We can see the same thing happening for the NNRT, and to
some degree also for ORT-L and ORT-LH in Figure 10. Figure 10 shows the difference
in actions for states in the episode showed in Figure 6 controlled by the DRL-agent.
As expected given previously shown results for NNRT, NNRT predicts quite different
actions as the DRL-agent given the same states. The simulated docking environment
only accepts actions within range of [−1, 1] so actions outside of this range will be
clipped if the model is controlling the vessel. However, this will affect the feature
attributions and thus the explanations’ fidelity. Another aspect that is important to
note is that since this is an end-to-end control process(meaning that the agent controls
the actuators directly and not through a control allocation system) is that there are an
endless amount of action combinations that will lead to the same combined control
action. For example, f1 equal to 10 kN and a1 equal to 30 degrees yield the exact
same thruster status as having f1 equals to -10 kN and a1 equal to -30 degrees. For the
purpose of controlling the vessel, there is no difference between the two action-pairs,
but for the case of the explanations, it is two vastly different outcomes. Overall, as can
also be seen in Figure 10 after approximately step 500, H-LMT, sep. H-LMT, and to
some degree ORT-L and ORT-LH has managed to approximate the DRL-agent quite
well. This could be due to this being an area that is well-represented in the training

112

Fig. 9: The difference between the DRL-agent’s actions and the NNRTs actions is
highlighted by the shaded area. These actions are for the episode shown in Figure 7
where the DRL-agent controls the vessel and the NNRT predicts actions for the states
without controlling the vessel.

data since it appears for most episodes regardless of the starting point. Some of the
leaf nodes in ORT-LH have either constant prediction functions, or linear prediction
functions relying on few input features leading to nearly constant predictions. This can
be seen in f1 in Figure 10. The methods often have similar under- and overestimations
of the predicted actions which could indicate they have misunderstood the mapping
from state to action in the same manner, or perhaps have discovered the same (perhaps
irrelevant) pattern.

5.5. Interpretability metrics

In Table IV, a categorization of the different tree methods’ level of transparency
and structural properties is given.

In [16], the transparency of a method is divided into three different levels, namely
simulatable, decomposable, and algorithmic transparency. For a method to be simu-
latable transparent, it must be so simple that a human can simulate the outcome of

113

(a) LMT-agent (b) NNRT (c) sep. H-LMT

(d) ORT-L (e) ORT-LH

Fig. 10: The difference between the DRL-agent’s actions and the trees’ actions given
the same states from the path shown in Figure 6

a method given a certain input. For a method to be decomposable transparent, the
model cannot alter the data in a way that makes them unreadable to humans, for
example through complex feature engineering. Lastly, for a method to be algorithmic
transparent, it must be possible to evaluate the method mathematically [3]. For the
categorization of the methods’ level of transparency, we assume that the trees are of
the same size. This especially becomes important when deciding whether or not the
different trees are simulatable transparent. We decide that only H-LMT is simulatable
transparent since it’s the only one that has all three of the structural properties on
what we’ve considered more interpretable, namely univariate splits, linear prediction
functions, and multiple outputs. Univariate splits are considered more interpretable
than multivariate splits since univariate splits only consist of one variable and one
threshold, whereas multivariate splits consist of several variables and their coefficients,
and a threshold. Thus, univariate splits are much more sparse than multivariate splits.
Linear functions are considered more interpretable than polynomial functions because
they, given that they consist of the same number of variables, are easier to compute,
especially for humans. It is also easier to know how a change in a variable will affect the
outcome of a linear function than for a polynomial function. Lastly, we consider trees
with multiple outputs more interpretable than multiple trees with single output because
1) the model consists of significantly fewer splits, and 2) it is considerably easier to see

114

TABLE IV: The decision trees’ levels of transparency and structural properties that
affect their interpretability.

Transparency

Simulatable Decomposable Algorithmic

ORT-L No Yes Yes
ORT-LH No Yes Yes
H-LMT Yes Yes Yes

Sep. H-LMT No Yes Yes
NNRT No Yes Yes

Structural properties

Split Prediction function Num. of outputs

ORT-L Univariate Linear Single
ORT-LH Multivariate Linear Single
H-LMT Univariate Linear Multiple

Sep. H-LMT Univariate Linear Single
NNRT Univariate Polynomial Single

how the different outputs change in relation to each other since the prediction functions
belong to the same regions of the input space. All three of the structural properties
related to interpretability are affected by the size of the trees. It’s not easy to say
how much bigger a tree with univariate splits, linear prediction functions, and multiple
outputs can be compared to multiple small trees with multivariate splits and polynomial
prediction functions to still be considered most interpretable. This consideration will
of course also be affected by both the end-user of this model, as well as the application
they are used on. Following this intuition, H-LMT is considered to be the most
interpretable followed by ORT-L and sep. H-LMT in second. ORT-LH is considered
the second least interpretable, and NNRT is considered the least interpretable method.

6. DISCUSSION

NNRT,ORT-L, and ORT-LH cannot build trees with multiple outputs and must
therefore build one tree for each action. This is an important drawback because 1)
the vessel is controlled through the combination of the actions and by building one
model for each action the dependencies between the actions are lost, and 2) the model
becomes less interpretable. Only H-LMT can build a tree that gives five outputs, while
sep. H-LMT builds five H-LMTs, one for each action. As shown in III, separated
H-LMT achieves lower errors than H-LMT with multiple actions, and one could
therefore expect that sep. H-LMT would perform better at controlling the vessel.
Instead, the two methods perform similarly at the task, and in most situations the
H-LMT yields superior performance to sep. H-LMT. A likely explanation for this is
that when building one tree per action the codependency between the actions is lost.

115

NNRTs consistently performs poorly. This could be due to the fact that expanding
the size of the tree comes at the cost of increased complexity of the polynomial
prediction function in the leaf node. Since the power of the polynomial in the leaf
node corresponds to the depth of the tree the prediction function quickly becomes
unnecessary big while the number of leaf nodes and thus the number of regions the
feature space is divided into still is too small.

Considering H-LMT is a greedy method and that ORT-L performs a much more
thorough search for the optimal tree, it is expected that ORT-L would build better trees
than H-LMT. However, this is not the case and this could be due to several reasons:

• H-LMT uses OFS,
• H-LMT uses maximum number of leaf nodes as a parameter instead of maximum

depth,
• H-LMT is able to produce multiple outputs for each tree.

Using OFS may improve the trees because the tree is given a structure that is likely
to help the tree produce better regions based on domain knowledge. As previously
mentioned, this should be done carefully with the specific task at hand in mind. For
this application, the following feature ordering is used

1) x̃, ỹ, ψ̃;
2) dobs, ψ̃obs;
3) u, v, r .
Using maximum number of leaf nodes as a hyperparameter instead of maximum

depth gives H-LMT a bigger solution space to explore than ORT-L since it allows
for more asymmetrical trees. One drawback of having one tree with multiple outputs
becomes prominent if the different outputs have very different complexity. If one
output requires a very deep branch to be predicted accurately the other outputs must
also go through the same branches although this might not be necessary. Additionally,
although sep. H-LMT achieves slightly lower errors compared to H-LMT, having one
tree with multiple outputs seems to be beneficial over having one tree per output.

Due to instability issues in the implementation of ORT-LH, the search for the best
parameter settings for this method was not done as rigorously as for the other methods
in our experiments. Hence, we cannot rule out that it is possible to build significantly
better performing trees with different hyperparameters.

It is important to remember that the explanations given by the tree cannot bring
any insight regarding the black-box model if they are not similar enough, i.e. if the
tree has not approximated the model with adequate accuracy. This accuracy should be
taken into account when analysing the model through the explanations of the tree, for
example by looking at how different the output of the tree and the model is.

Even though sparse model trees are more interpretable than large neural networks,
most model trees are still too complex to be understood in real time. It is therefore
needed that the necessary and relevant information is extracted and presented to the
end-users in a suitable way. Feature attributions on their own do not constitute a

116

Fig. 11: The visualizations of the feature attributions given by the H-LMT, the vessel’s
states and actions aimed for the operator or seafarer [11].

complete explanation of a model, but can serve as part of one by highlighting how the
inputs affect the outputs of a model, or in terms of a robotic application, how the states
of the environment affects the action of the control agent. What constitutes a complete
explanation depends on the field, application, use-case, and end-user. In [11], two
different visualizations and level of detail catered to two different end-users, namely
the operator or seafarer of the vessel and the developer of the system, was suggested.
The visualization of the vessel’s state, actions, and explanations in the form of feature
attributions is shown in Figure 11. Global explanations, meaning explanations that
explain the entire inner workings of the black-box model are desirable to understand
the behaviour of the control agent as a whole [1]. By looking at the linear prediction
function in a leaf node, we can learn something about the behaviour of the model in
a specific region of the input space, but the feature attributions are only applicable to
one specific input instance and are therefore a local explanation. However, by looking
at the feature attributions together with the states and actions for longer periods of
time we can find patterns in the behaviour and explanations of the model.

117

7. CONCLUSION

We have compared different methods for building model trees used as post-hoc
explanation methods for real-world, robotic tasks with multiple continuous inputs and
outputs in terms of both accuracy and interpretability. It is crucial for the model trees to
achieve high accuracy for the explanations to have any value but it is also important for
the surrogate model to be simplistic so that the surrogate model is easy to analyse. We
found that the methods benefit from being able to predict multiple outputs for a single
tree, both in terms of interpretability and in being able to better grasp the properties of
the model to be explained. Additionally, we find that it can be beneficial to introduce
domain knowledge during the tree building process by determining which features can
be used for splitting at different depths of the tree. Overall, simpler tree models with
univariate splits, linear prediction functions, and multiple outputs per tree are favored
because these are more sparse, which is favorable in terms of interpretability, but still
capable of approximating even complex models. Future work includes investigating
how the splitting conditions in the branch nodes and the overall structure of the tree
can be used to produce more global explanations and/or other types of explanations
to complement the feature attributions. The possibility of adding an uncertainty metric
with the explanations based on how similar the output of the black-box model and the
model tree also warrants further research.

ACKNOWLEDGEMENTS

An additional thanks to Dr. Daisy Zhuo from Interpretable AI for the support with
ORT-LH.

REFERENCES

[1] A. Adadi and M. Berrada. Peeking inside the black-box: A survey on explainable artificial intelligence
(XAI). IEEE Access, 6:52138–52160, 2018.

[2] G. Aglin, S. Nijssen, and P. Schaus. Learning optimal decision trees using caching branch-and-bound
search. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):3146–3153, 2020.

[3] A. B. Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. Garcia, Salvador
ang Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, and F. Herrera. Explainable artificial intelligence
(XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion,
58:82–115, 2020.

[4] F. Avellaneda. Efficient inference of optimal decision trees. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(04):3195–3202, 2020.

[5] D. Bertsimas and J. Dunn. Machine learning under a modern optimization lens. Dynamic Ideas LLC,
2019.

[6] D. Bertsimas, J. Dunn, and Y. Wang. Near-optimal nonlinear regression trees. Operations Research
Letters, 49:201–206, 03 2021.

[7] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and regression trees. Wadsworth,
1984.

[8] I. Covert, S. Lundberg, and S.-I. Lee. Understanding global feature contributions with additive
importance measures. 4th Conference on Neural Information Processing Systems (NeurIPS), 2020.

[9] J. H. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010.

[10] V. B. Gjærum, E. L. H. Rørvik, and A. M. Lekkas. Approximating a deep reinforcement learning
docking agent using linear model trees. European Control Conference(ECC), 2021.

118

[11] V. B. Gjærum, I. Strümke, O. A. Alsos, and A. M. Lekkas. Explaining a deep reinforcement learning
docking agent using linear model trees and user adapted visualizations. Journal for Marine Science
and Engineering(JMSE), 8(9), 2021.

[12] J. A. Glomsrud, A. Ødegårdstuen, A. L. S. Clair, and O. Smogeli. Trustworthy versus explainable AI
in autonomous vessels. International Seminar on Safety and Security of Autonomous Vessels(ISSAV),
2019.

[13] R. Guidotti, A. Monreale, F. Giannotti, D. Pedreschi, S. Ruggieri, and F. Turini. Factual and
counterfactual explanations for black box decision making. IEEE Intelligent Systems, 34(6):14–23,
2019.

[14] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine. Learning to walk via deep reinforcement
learning. Robotics: Science and Systems (RSS), 2019.

[15] T. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. 4th International Conference on Learning
Representations(ICLR), 2016.

[16] Z. C. Lipton. The mythos of model interpretability: In machine learning, the concept of interpretability
is both important and slippery. ACM Queue, 16(3):31–57, 2018.

[17] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. In Proceedings
of the 31st International Conference on Neural Information Processing Systems(NeurIPS), page
4768–4777, 2017.

[18] J. Løver. Explaining a deep reinforcement learning agent using regression trees. MA thesis. Trondheim,
Norway: Norwegian University of Science and Technology(NTNU), 2021.

[19] J. Løver, V. B. Gjærum, and A. M. Lekkas. Explainable AI methods on a deep reinforcement learning
agent for automatic docking. IFAC-PapersOnLine, 54(16):146–152, 2021. 13th IFAC Conference on
Control Applications in Marine Systems, Robotics, and Vehicles (CAMS).

[20] S. B. Remman and A. M. Lekkas. Robotic lever manipulation using hindsight experience replay and
shapley additive explanations. European Control Conference(ECC), 2021.

[21] M. T. Ribeiro, S. Singh, and C. Guestrin. ”why should i trust you?”: Explaining the predictions of
any classifier. Proceedings of the 22nd International Conference on Knowledge Discovery and Data
Mining, 2016.

[22] M. T. Ribeiro, S. Singh, and C. Guestrin. Anchors: High-precision model-agnostic explanations.
Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018.

[23] E.-L. H. Rørvik. Automatic docking of an autonomous surface vessel : Developed using deep
reinforcement learning and analysed with Explainable AI. MA thesis. Trondheim, Norway: Norwegian
University of Science and Technology(NTNU), 2020.

[24] A. Schidler and S. Szeider. SAT-based decision tree learning for large data sets. Proceedings of the
35th AAAI Conference on Artificial Intelligence, (5):3904–3912, 2021.

[25] J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel. High-dimensional continuous control
using generalized advantage estimation. International Conference on learning representation(ICLR),
2016.

[26] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[27] A. Silva, T. Killian, I. D. J. Rodriguez, S.-H. Son, and M. Gombolay. Optimization methods
for interpretable differentiable decision trees in reinforcement learning. Proceedings of the 23rd
International Conference on Artificial Intelligence and Statistics(AISTATS), 2020.

[28] L. Y. Singh, C. F. K. Hartikainen, and S. Levine. End-to-end robotic reinforcement learning without
reward engineering. Robotics: Science and Systems(RSS), 2019.

[29] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In Proceedings of
the 34th International Conference on Machine Learning, volume 70, page 3319–3328, 2017.

[30] J. van der Waa, M. Robeer, J. van Diggelen, M. Brinkhuis, and M. Neerincx. Contrastive explanations
with local foil trees. arXiv preprint arXiv:1806.07470, 2018.

[31] H. Verhaeghe, S. Nijssen, G. Pesant, C.-G. Quimper, and P. Schaus. Learning optimal decision trees
using constraint programming. In Proceedings of the 29th International Joint Conference on Artificial
Intelligence (IJCAI), pages 4765–4769, 2020.

119

[32] S. Verwer and Y. Zhang. Learning optimal classification trees using a binary linear program
formulation. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):1625–1632, Jul.
2019.

120

5.5 Paper E

Postprint of [20]: Vilde B. Gjærum, Inga Strümke, Anastasios M. Lekkas, and
Timothy Miller, ”Real-Time Counterfactual Explanations For Robotic Systems
With Multiple Continuous Outputs”. Accepted to: The 22nd World Congress
of the International Federation of Automatic Control (IFAC WC) (2023) doi:
https://doi.org/10.48550/arXiv.2212.04212

©2021 Vilde B. Gjærum, Inga Strümke, Anastasios M. Lekkas, and Timothy
Miller. Reprinted and formatted to fit the thesis under the terms of the Creative
Commons Attribution License L M

121

https://doi.org/10.48550/arXiv.2212.04212
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Real-Time Counterfactual Explanations For Robotic Systems
With Multiple Continuous Outputs ⋆

Vilde B. Gjærum ∗ Inga Strümke ∗∗ Anastasios M. Lekkas ∗ Timothy Miller ∗∗∗

∗ Department of Engineering Cybernetics, Norwegian University of Science and Technology,
Trondheim, Norway, (e-mail: vilde.gjarum, anastasios.lekkas ,@ntnu.no).

∗∗ Department of Computer Science, Norwegian University of Science and Technology, Trondheim,
Norway ,(e-mail: inga.strumke@ntnu.no)

∗∗∗ School of Computing and Information Systems, University of Melbourne, Melbourne,
Australia(e-mail: tmiller@unimelb.edu.aus)

Abstract: Although many machine learning methods, especially
from the field of deep learning, have been instrumental in address-
ing challenges within robotic applications, we cannot take full
advantage of such methods before these can provide performance
and safety guarantees. The lack of trust that impedes the use of
these methods mainly stems from a lack of human understand-
ing of what exactly machine learning models have learned, and
how robust their behaviour is. This is the problem the field of
explainable artificial intelligence aims to solve. Based on insights
from the social sciences, we know that humans prefer contrastive
explanations, i.e. explanations answering the hypothetical ques-
tion “what if?”. In this paper, we show that linear model trees
are capable of producing answers to such questions, so-called
counterfactual explanations, for robotic systems, including in the
case of multiple, continuous inputs and outputs. We demonstrate
the use of this method to produce counterfactual explanations
for two robotic applications. Additionally, we explore the issue of
infeasibility, which is of particular interest in systems governed
by the laws of physics.

Keywords: Explicability and transparency in Cyber-physical
and human systems, Reinforcement learning and deep learning
in control, data-driven control, autonomous robotic systems,
explainable artificial intelligence for robotics, counterfactual
explanations for robotic systems

⋆ This work was supported by the Research Council of Norway through the EXAIGON project,
project number 304843.

122

1. INTRODUCTION

Artificial intelligence (AI) has shown to be useful for robotics, control, and
autonomous systems in several ways, for example by deep learning (DL) boosting
the performance of image processing and thus also giving robots better percep-
tion.Reinforcement learning (RL) is a subfield of machine learning (ML) where
the agent learns through exploring its environment, and through trial and error
improving its strategy. One of the main benefits of using RL is that we do
not need to label every prediction as right or wrong but can rather encourage
desired behaviour through a reward function describing the wanted outcome of
the agent’s behaviour. Deep RL (DRL) is well-suited for problems where the
system and/or the environment cannot be modelled accurately making it a good
approach for many challenging control problems. There are numerous examples
of RL-agents successfully performing robotic tasks (Remman and Lekkas, 2021;
Martinsen and Lekkas, 2018; Haarnoja et al., 2019; Lillicrap et al., 2016). When a
model is so complex that humans no longer can understand how they make their
decisions or predictions we call it a black-box model. For AI-methods of black-box
nature, such as deep neural networks, to reach their full potential in applications
with real-life risk associated we need to better understand their inner workings.
By using explainable artificial intelligence (XAI)-methods we can get increased
trust, better knowledge, improved control, and the ability to justify decisions and
predictions (Adadi and Berrada, 2018). The fields of robotics and control have
some additional requirements for the explanations given by XAI-methods, such
as:

• explanations to be used under live operations must be given in real-time,
• the methods must be able to handle large, continuous input and output

spaces
• the methods must be able to handle large datasets.

As seen in Løver et al. (2021), these are requirements that some XAI-methods
struggle to meet. In Gjærum et al. (2021a) it is shown that linear model
trees (LMTs), a decision tree (DT) with linear functions in the leaf nodes,
are well-suited for acting as a post-hoc, explanation method for a RL-agent
performing docking of a surface vessel. In Gjærum et al. (2021a), the LMT gave
explanations in the form of feature attributions that states a direct mapping from
the inputs to the outputs. Another popular form of explanation is counterfactual
explanations (CFEs). CFEs answers the hypothetical question “but what if (the
state was different)?” or the more specific question “why did you do this instead of
that?”. A commonly used example for showing the utility value of counterfactual
explanations is the case of someone getting a loan application rejected, and
the importance of giving an actionable explanation is emphasized. For example,
“if you had more savings your loan application would have been accepted is an
actionable explanation since this is something that can be changed, whereas “if
you were 10 years younger your loan application would have been accepted is not
an actionable explanation. Similar examples can be found in other fields, such

123

as job and university applications, predicting the risk of disease in the future,
or disbursing government aid (Mothilal et al., 2020). However, this notion of
actionable explanations does not apply to the field of robotics as it does not
make sense to change the input features(the state). Instead, the focus should be
more on the feasibility of the counterfactual explanations, in the sense of whether
or not the counterfactual state and the counterfactual action are physically
possible (Guidotti, 2022). In Gjærum et al. (2021a), it is shown that LMTs are
capable of giving explanations in the form of feature attributions in real time
for robotic applications. LMTs are decision trees where the constant prediction
in the leaf nodes is replaced by a linear function. Since the branch node and its
splitting conditions divide the input space into different regions, and each region
has a corresponding linear function, the LMTs constitute a piece-wise linear
function. If the LMT has accurately enough approximated black-box model, such
as a Neural network (NN), it can be used as a post-hoc explanation method.
In Carreira-Perpiñán and Hada (2021), an exact method for computing CFEs
for classification trees with both univariate and multivariate splits in the branch
nodes is proposed. Regression trees with univariate splitting conditions are solved
directly by exploiting the fact that the problem is separable within the leaf
nodes, meaning that solving the problem in every leaf node and then choosing the
leaf node with the best CFE solves the problem globally. For the classification
trees with multivariate splits, the problem of finding CFEs are expressed as a
mixed-integer problem and the solution is found by using linear or quadratic
problem solvers depending on whether the objective function is expressed as
a linear or quadratic problem. A model-agnostic method for finding CFEs is
presented in Karimi et al. (2019). The problem of finding CFEs is expressed
as a sequence of satisfiability(SAT) problem. Neither Carreira-Perpiñán and
Hada (2021) nor Karimi et al. (2019) are applicable to regression problems with
multiple outputs and thus not applicable to most robotic applications. In Sokol
and Flach (2019), CFEs are found using a leaf-to-leaf counterfactual distance
matrix describing how much an instance belonging to a leaf node would have
to change to belong in another leaf node. However, the method proposed is
for classification trees and details for implementation lacks. Both LOcal Rule-
Based Explainer (LORE) Guidotti et al. (2019) and FOILTREE van der Waa
et al. (2018) build a DT locally around the instance to be explained and searches
through the DT for CFEs but neither apply to robotic applications since they do
not apply to regression problems with multiple outputs. Another problem with
methods that builds a new local interpretable model for every explanation is that
they are often not fast enough to be used in real-time (Løver et al., 2021). In this
paper, we present an algorithm for finding counterfactual explanations from an
LMT and show that this method is applicable to robotic applications.

The paper’s main contributions are as follows:

• Algorithm for getting counterfactual explanations in real-time for a black-
box model through an LMT serving as a surrogate model.

124

• Using the algorithm on two robotic applications, one with singular, contin-
uous outputs and one with multiple, continuous outputs.

• Identify the issue of infeasibility that arises when producing CFEs for real-
world problems where the laws of physics apply.

• Suggesting remedies for avoiding infeasible counterfactuals.

The paper is structured as follows. In Section 2.1, LMTs will be presented,
followed by an introduction to CFEs in Section 2.3. In Section 3, we will present
how LMTs can be used to find CFEs. In Section 5, the results are presented and
the discussion is given in Section 6.

2. BACKGROUND

In this section, the necessary background will be introduced. First, the LMTs will
be introduced in Section 2.1 followed by the two applications we test the LMTs
on in Section 2.2. Finally, the CFEs will be introduced in Section 2.3.

2.1 Linear Model Trees

DTs consist of branch nodes and leaf nodes. The branch nodes have a univariate
splitting condition, meaning they split the data based on whether or not a certain
input feature is smaller or bigger than a threshold. In this way, the branch nodes
split the input space into distinct regions and each region has a corresponding
leaf node. LMTs are decision trees with linear functions in the leaf nodes and
LMTs are piece-wise linear function approximators. As presented in Gjærum
et al. (2021b), several methods for building LMTs for robotic applications exist
but for this work LMTs trained with the method presented in Gjærum et al.
(2021a) will be used.

2.2 Test applications

In this section, we introduce the two robotic applications for which the LMT
produced counterfactual explanations.

Pendulum: The inverted pendulum 1 is a classic control theory problem where
the goal is to balance the pendulum in the upright position by applying force to
the free end of the pendulum. The pendulum has three states, namely the angular
velocity θ̇ and the coordinates of the free end of the pendulum x and y. The force
applied to the free end of the pendulum is continuous and is the only action for
this environment. A NN has been trained with the RL-method Proximal Policy
Optimization (PPO) (Schulman et al., 2017) to balance the pendulum.

1 See https://www.gymlibrary.ml/environments/classic_control/pendulum/

125

Docking environment: The docking agent and the harbour environment are
thoroughly presented in Gjærum et al. (2021a). The vessel has eight input features
describing the vessel’s relative position and velocity in the harbour. The vessel
has three thrusters, one tunnel thruster at the front and two azimuth thrusters
at the back. The tunnel thruster is controlled by setting the force of the thruster,
while the azimuth thrusters are controlled by setting the force and angle of the
thruster. The NN that performs the docking was trained by PPO as originally
presented in Rørvik (2020).

2.3 Counterfactual explanations

Definition 1. (Counterfactual explanation (Guidotti, 2022)). Given a classifier b
that outputs the decision y = b(x) for an instance x, a counterfactual explanation
consists of an instance x′ such that the decision for b on x′ is different from y,
i.e., b(x′) ̸= y, and such that the difference between x and x′ is minimal.

Following this definition, a CFE can be formulated as:
If state s had been ∆s different, the corresponding action a would have been ∆a
different.

The most frequently asked contrastive question that applies to robotic appli-
cations is “Why is action A used in state S, rather than action B?” (Krarup
et al., 2021). The classifier b in Definition 1 is usually a black-box model such
as a deep neural network, and we are looking for another instance with as
similar input features as our original instance but with a different output. The
meaning of a different output is straightforward for classification problems as the
counterfactual example will be the closest instance (based on some distance metric
on the input features) with a different class as output. This is more challenging for
regression problems since it is not as clear what the counterfactual action is since
the meaning of different enough output is context-dependent. Counterfactual
explanations for problems with multiple, continuous input and output features
can be defined as follows.

Definition 2. (Cont. counterfactual explanation). Given a predictor b that out-
puts a continuous prediction of dimension n, y = b(x), for a continuous instance
x of dimension m, a counterfactual explanation consists of an instance x′ such
that the distance from b’s prediction on x′ from y is maximal, i.e., b(x′) ̸= y, and
such that the difference between x and x′ is minimal.

3. METHOD

CFEs can be found by using an LMT as shown in Alg. Algorithm 1 by ordering
the leaf nodes from closest to furthest and then solving an optimization problem
within that region instead of over the entire state space. To ensure the correctness
of the explanations, the LMT is only used to locate the counterfactual example
and the black-box is used when formulating the explanation.

We make the following two main assumptions:

126

Algorithm 1 CFEs from LMTs

Require:
x: instance to be explained
num exp: number of explanations wanted
constraints: known constraints for input and output
ordered leaf nodes: the trees leaf nodes ordered from closest to furthest
relative to the leaf node x belongs to
f : Objective function

i = 0
while i < num exp do:

leaf node← ordered leaf nodes[i]
constraints←boundaries of leaf node
x′ ← minimize f subject to constraints
y′ ← black box(x′)

end while

(1) We assume that the LMT is successfully trained and thus has approximated
the black-box model with sufficient accuracy (Gjærum et al., 2021b).

(2) We assume that the tree has placed leaf nodes of regions that are similar in
vicinity of each other.

3.1 Leaf node ordering

To avoid searching through the entire state space for counterfactual explanations,
we exploit the fact that the LMT has already split the state space into regions. We
want to order the regions by how close they are to the instance to be explained.
Since each region corresponds to a specific leaf node we can do this by ordering
the leaf nodes, which again can be done by looking at the structure of the tree.
This ordering of leaf nodes can be found by counting how many branch nodes
must be traversed to get from the instance to every other leaf node. An example
of how the leaf nodes would be ordered is shown in Figure 1 and the algorithm
for ordering the leaf nodes is presented in Algorithm 2.

3.2 Counterfactual explanations from optimization

Given that we already have the leaf nodes ordered from closest to furthest relative
to the leaf node the instance to be explained x belongs to, the counterfactual
example can be found by solving the optimization problem given in 1.

127

Fig. 1. Illustration of how the leaf nodes will ordered if the instance to be
explained belongs to the red leaf node.

Algorithm 2 Leaf node ordering

Require: instance x to be explained
Lc ← the leaf node x belongs to ▷ Lc is the current leaf node
LNO ← Lc ▷ List containing the Leaf N ode Order
Lc ← Parent(Lc)
while Lc is not the root node do

Traverse the subtree starting for Lc

Add leaf nodes to LNO in the order they’re found.
Lc ← Parent(Lc)

end while

min
x′

z =| x− x′ | −(y − y′)2 − sparsity(x′)
s.t. x′ji ≤ ti, i ∈ Pleft

x′ji > ti, i ∈ Pright

x′ji > ti, i ∈ Binputupper

x′ji < ti, i ∈ Binputlower

y′ji > ti, i ∈ Boutputupper

y′ji > ti, i ∈ Boutputlower

y′ = fl(x
′)

(1)

where x′ is the counterfactual example and its corresponding output y′. The left
and right parent nodes along the path from the root node to the leaf node are
denoted by Pleft/right, while ti is the threshold used in the splitting condition
on input feature j. The lower and upper boundaries on the input are given by
Binputlower/upper, while the lower and upper boundaries on the output are given by

Boutputlower/upper. The objective function is given by z in 1 and the expression consists

of three parts:

128

• |x−x′|: The distance between the input values of the instance to be explained
and the counterfactual example should be minimized

• (Y − y′)2: The distance between the output value of the instance to be
explained and the counterfactual example should be maximized

• sparsity(x′) and sparsity(y′): Simple explanations are preferred and thus it
is better with explanations where a few features have been changed a lot
rather than many features changed slightly.

For different applications, it may be beneficial to change these metrics with for
example different distance functions or different sparsity measurements.

Requesting specific explanations Given the objective function in 1, we are
searching for the counterfactual problem that balances finding an example with
a as small as possible change in input features while having a as big as possible
change in the output feature. However, if a specific explanation is requested, such
as “Why was the action y taken instead of action Y?”, we are no longer searching
for a counterfactual example in general but rather the counterfactual example
with the smallest change in the input and output as close as possible to Y . This
specific counterfactual can be found by using

z = |x− x′| − (Y − y′)2 − sparsity(x′)− sparsity(y′), (2)

where
sparsity(x′) = |x− x′|0, (3)

and
sparsity(y′) = |y − y′|0. (4)

3.3 Pipeline

How the system, the NN, and the LMT are connected is illustrated in Figure 2.
For both the case of the pendulum and the docking agent the controller is a NN
but since the LMT is a model-agnostic method any type of model can be used to
control the system. The NN gets the state from the system and returns the action
for that state. The LMT receives the same state for the system and calculates
what the counterfactual state is, gives this counterfactual state to the NN and
the NN returns the counterfactual action. By combining the counterfactual state
and action we get the counterfactual explanation. By doing it this way we are
certain that the counterfactual explanation is true because we are sure that this
is the action the NN would have taken given the state found by the LMT.

4. INFEASIBLE EXPLANATIONS

Given a black-box controlling a robot operating in the real world, we argue
that explanations must make sense from a physical point of view. However, this
may contradict the desire for a sparse explanation. Take the inverted pendulum
as an example. Following the desire for sparse explanations, a counterfactual
example where only one of x or y is changed is preferred. However, since the

129

Fig. 2. Pipeline describing how the system, the NN, and the LMT works together.

free end of the pendulum always will be at a point along a circle with a radius
the length of the pendulum, thus, with only one exception, all counterfactual
examples changing only one of the two coordinates will be physically impossible
and thus make no sense. We address this through feature engineering as presented
in Sec. Section 4.1, adding constraints to the optimization problem as presented
in Section 4.2.

4.1 Feature engineering

One way of ensuring that the tree does not return infeasible counterfactuals is
by making sure that the features, both input and output, are not dependent.
This can be achieved using feature engineering to find new features that are
independent but represent the original problem (or an approximation of it).

In the case of the pendulum problem, this could be done by using θ and θ̇ as
input features instead of x,y, and θ̇.

4.2 Adding constraints

If the relationship between the dependent features is known and can be formalized
as a function they can be added to the optimization solver. It is important to
note that the constraint functions form affects which optimization solvers can be
used. For the case of the pendulum, the following constraint can be added:

L = x2 + y2, (5)

where L is the length of the pendulum, and x and y the position of the end of
the pendulum.

5. RESULTS

In this section, we show that the LMTs are capable of giving counterfactual
explanations for robotic systems with both singular and multiple continuous
inputs and outputs in real time. For both the inverted pendulum environment
and the docking environment a NN is trained to perform the respective tasks,
and an LMT is built to approximate the NNs. The LMT approximating the

130

Application Average time

Pendulum 0.21 s

Docking env. 0.036 s

Table 1. Average time for computing the counterfactual explana-
tion for each of the test applications.

docking agent was trained and presented in (Gjærum et al., 2021a), while the
LMT and the NN for the pendulum were built for this paper. In Table 1, the
average time it took to compute the counterfactual explanations for 250 different
states on an Intel ®Core™i9-9980HK CPU @ 2.40GHz. The explanations can be
computed within a quarter of a second which is faster than humans can interpret
the explanations and the explanations are thus suitable for use in real-time. The
LMT giving explanations for the pendulum-agent has 220 leaf nodes, while the
LMT giving explanations fo r the docking agent has 312 leaf nodes. The most
time consuming part of the algorithm is the ordering of all the leaf nodes. This
can be speeded up by only ordering the a limited number of the closest leaf
nodes instead of all of the leaf nodes. This is especially helpful for large trees.
Despite the LMT for the docking problem being larger and dealing with more
inputs and outputs than the LMT for the pendulum problem, the LMT for the
docking problem finds the counterfactual explanations faster than the LMT for
the pendulum problem. This is due to the fact that the docking problem is a more
complex problem with faster changing outputs than the pendulum problem, and
it is thus easier to find different enough outputs.

In Figure 3a, a counterfactual explanation for the inverted pendulum is shown.
The thick, red line is the position of the pendulum, while the black line is the
position of the pendulum in the counterfactual state. The torque applied to the
pendulum by the NN is shown with a red, circular line while the counterfactual
action is shown with a black, circular line.

In Figure 3b, an example of an infeasible counterfactual explanation is shown.
This explanation is infeasible because the counterfactual state is infeasible. In
fact, when building an LMT using the features θ and θ̇ instead of x,y, and
θ̇, as discussed in Section 4.1, we find that the LMT always gives feasible
counterfactuals.This can be seen in Figure 3c, where a feasible counterfactual
explanation for the same state as in Figure 3b is shown.

In Figure 4, a counterfactual explanation for the docking agent is shown. Since
the vessel has so many input and output features we found it easier to express the
counterfactual explanation in a table rather than in words. Still, the explanation
could be communicated faster with appropriate visualizations.

131

(a) (b) (c)

Fig. 3. The pendulums state is given by the red rod and the torque applied by the
black-box model is shown in red. The counterfactual explanation is given by
the counterfactual state (the black rod) and the counterfactual action (black
torque).
(a) shows a feasible counterfactual explanation,
(b) shows an infeasible counterfactual explanation,
and
(c) shows the corresponding feasible counterfactual explanation found by
using feature engineering.

Fig. 4. The table shows the counterfactual explanation by stating how much the
state and the action would change in the counterfactual example for the
situation given by the vessels point of view(top left) and how the vessel is
situated in the harbour (right).

6. DISCUSSION

We have shown that LMTs are suitable for generating counterfactual explanations
even for complex robotic systems with multiple, continuous outputs. Which
counterfactual explanation is found is determined solely by 1, and the tuning

132

of this function is crucial because it determines the trade-off between a large
distance in the output, a small distance in the input and the sparsity of the
explanation. Since the LMT only identifies the counterfactual state, while the NN
is used to complete the counterfactual explanation by finding the counterfactual
action, we know that the counterfactual explanation is necessarily true. However,
we do not know whether there exist better (in terms of distance in input and
output) counterfactual explanations that could have been found by using another
cost function. The CFEs could also say something about the agents or the
environments stability around a certain point by looking at how far (in the
input space) we have to look before finding a significantly different output.
Actions that are changing a lot, even when the state is just slightly different,
can be due to either the agent being in an especially complex region or that
the agents behaviour is unstable. As shown for the pendulum case, the LMT
may find infeasible states if the input features are not independent. One way of
handling this problem is by performing feature engineering on the input features
so that they become independent. This approach was successful in the case of the
pendulum but would be significantly harder in a more complex environment, as
is the case for the docking agent. In some cases, not all the relevant dependencies
are defined or even known. If they are known, they can be added to the
optimization problem as constraints, which again can make the optimization
problem harder to solve. Evaluating the usefulness of an explanation is difficult
because explanations are subjective, and different recipients prefer different types
of explanations. Additionally, how an explanation is communicated is sometimes
as important as the explanation itself, especially for complex systems. Therefore,
future work should include investigating both to what extent these explanations
can improve the understanding of the system and how to communicate these
explanations most effectively. The usefulness of infeasible explanations should
also be investigated.

REFERENCES

Adadi, A. and Berrada, M. (2018). Peeking inside the black-box: A survey on
explainable artificial intelligence (xai). IEEE Access, 6, 52138–52160. doi:
10.1109/ACCESS.2018.2870052.

Carreira-Perpiñán, M.a. and Hada, S.S. (2021). Counterfactual explanations for
oblique decision trees: Exact, efficient algorithms. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(8), 6903–6911.

Gjærum, V.B., Strümke, I., Alsos, O.A., and Lekkas, A.M. (2021a). Explaining
a deep reinforcement learning docking agent using linear model trees and user
adapted visualizations. Journal for Marine Science and Engineering(JMSE),
8(9).

Gjærum, V.B., Strümke, I., Løver, J., Miller, T., and Lekkas, A.M. (2021b).
Model tree methods for explaining deep reinforcement learning agents in real-
time robotic applications. Submitted to Neurocomputing.

133

Guidotti, R. (2022). Counterfactual explanations and how to find them: literature
review and benchmarking. Data Mining and Knowledge Discovery, 1–55. doi:
10.1007/s10618-022-00831-6.

Guidotti, R., Monreale, A., Giannotti, F., Pedreschi, D., Ruggieri, S., and Turini,
F. (2019). Factual and counterfactual explanations for black box decision
making. IEEE Intelligent Systems, 34(6), 14–23. doi:10.1109/MIS.2019.
2957223.

Haarnoja, T., Ha, S., Zhou, A., Tan, J., Tucker, G., and Levine, S. (2019).
Learning to walk via deep reinforcement learning. Robotics: Science and
Systems (RSS).

Karimi, A.H., Barthe, G., Belle, B., and Valera, I. (2019). Model-agnostic
counterfactual explanations for consequential decisions. The 22nd International
Conference on Artificial Intelligence and Statistics.

Krarup, B., Krivic, S., Magazzeni, D., Long, D., Cashmore, M., and Smith, D.E.
(2021). Contrastive explanations of plans through model restrictions. Journal
of Artifcial Intelligence Research, 72, 533–612.

Lillicrap, T., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and
Wierstra, D. (2016). Continuous control with deep reinforcement learning. 4th
International Conference on Learning Representations(ICLR).

Løver, J., Gjærum, V.B., and Lekkas, A.M. (2021). Explainable ai methods on
a deep reinforcement learning agent for automatic docking∗∗this work was
supported by the research council of norway through the exaigon project,
project number 304843. IFAC-PapersOnLine, 54(16), 146–152. doi:https:
//doi.org/10.1016/j.ifacol.2021.10.086. URL https://www.sciencedirect.
com/science/article/pii/S2405896321014889. 13th IFAC Conference on
Control Applications in Marine Systems, Robotics, and Vehicles CAMS 2021.

Martinsen, A.B. and Lekkas, A.M. (2018). ”curved-path following with deep re-
inforcement learning: Results from three vessel models. OCEANS MTS/IEEE.

Mothilal, R.K., Sharma, A., and Tan, C. (2020). Explaining machine learning
classifiers through diverse counterfactual explanations. In Proceedings of the
2020 Conference on Fairness, Accountability, and Transparency, FAT* ’20,
607–617. Association for Computing Machinery, New York, NY, USA. doi:10.
1145/3351095.3372850. URL https://doi.org/10.1145/3351095.3372850.

Remman, S.B. and Lekkas, A.M. (2021). Robotic lever manipulation using
hindsight experience replay and shapley additive explanations. European
Control Conference(ECC).

Rørvik, E.L.H. (2020). Automatic docking of an autonomous surface vessel : De-
veloped using deep reinforcement learning and analysed with Explainable AI.
MA thesis. Trondheim, Norway: Norwegian University of Science and Technol-
ogy(NTNU). URL https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/
2656724.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017).
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Sokol, K. and Flach, P. (2019). Desiderata for interpretability: Explaining decision
tree predictions with counterfactuals. Proceedings of the AAAI Conference

134

on Artificial Intelligence, 33, 10035–10036. doi:https://doi.org/10.1609/aaai.
v33i01.330110035.

van der Waa, J., Robeer, M., van Diggelen, J., Brinkhuis, M., and Neerincx, M.
(2018). Contrastive explanations with local foil trees. doi:10.48550/ARXIV.
1806.07470. URL https://arxiv.org/abs/1806.07470.

135

Bibliography

[1] A. Adadi and M. Berrada. ‘Peeking Inside the Black-Box: A Survey on Ex-
plainable Artificial Intelligence (XAI)’. In: IEEE Access 6 (2018), pp. 52138–
52160. doi: 10.1109/ACCESS.2018.2870052.

[2] A. Anand et al. ‘Safe Learning for Control using Control Lyapunov Func-
tions and Control Barrier Functions: A Review’. In: Procedia Computer Sci-
ence, Proceedings of the 25th International Conference on Knowledge Based
and Intelligent Information and Engineering Systems(KES) 192 (2021),
pp. 3987–3997. doi: 10.1016/j.procs.2021.09.173.

[3] E. Anderlini, G. Parker and G. Thomas. ‘Docking Control of an Autonom-
ous Underwater Vehicle Using Reinforcement Learning’. In: Applied Sci-
ences 9.3456 (2019).

[4] Vijay Arya et al. One Explanation Does Not Fit All: A Toolkit and Tax-
onomy of AI Explainability Techniques. 2019. url: https://arxiv.org/abs/
1909.03012.

[5] Sebastian Bach et al. ‘On Pixel-Wise Explanations for Non-Linear Classifier
Decisions by Layer-Wise Relevance Propagation’. In: PloS one 10.7 (2015).
doi: DOI:10.1371/journal.pone.0130140.

[6] Bowen Baker et al. Emergent Tool Use From Multi-Agent Autocurricula.
2020. arXiv: 1909.07528 [cs.LG].

[7] Dimitri Bertsimas and Jack Dunn. Machine learning under a modern op-
timization lens. Dynamic Ideas LLC, 2019. url: https://books.google.no/
books?id=g3ZWygEACAAJ.

[8] Tolga Bolukbasi et al. ‘Man is to Computer Programmer as Woman is to
Homemaker? Debiasing Word Embeddings’. In: The 30th Conference on
Neural Information Processing Systems (NeurIPS (2016).

[9] L. Breiman, J. Friedman and C. Olshen. R. Stone. ‘Classification and Re-
gression Trees’. In: Wadsworth (1984).

[10] Leonard A. Breslow and David W. Aha. ‘Simplifying decision trees: A sur-
vey’. In: The Knowledge Engineering Review 12.01 (1997), pp. 1–40. doi:
10.1017/S0269888997000015.

[11] Joy Buolamwini and Timnit Gebru. ‘Gender Shades: Intersectional Accur-
acy Disparities in Commercial Gender Classification’. In: Proceedings of
the 1st Conference on Fairness, Accountability and Transparency. Ed. by
Sorelle A. Friedler and Christo Wilson. Vol. 81. Proceedings of Machine
Learning Research. PMLR, Feb. 2018, pp. 77–91. url: https://proceedings.
mlr.press/v81/buolamwini18a.html.

136

https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1016/j.procs.2021.09.173
https://arxiv.org/abs/1909.03012
https://arxiv.org/abs/1909.03012
https://doi.org/DOI: 10.1371/journal.pone.0130140
https://arxiv.org/abs/1909.07528
https://books.google.no/books?id=g3ZWygEACAAJ
https://books.google.no/books?id=g3ZWygEACAAJ
https://doi.org/10.1017/S0269888997000015
https://proceedings.mlr.press/v81/buolamwini18a.html
https://proceedings.mlr.press/v81/buolamwini18a.html

[12] Nicolas Blystad Carbone. ‘Explainable AI for path following with Model
Trees’. MA thesis. Norwegian University of Science and Technology (NTNU),
2020.

[13] ‘Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual
Predictions of Complex Models’. In: Proceedings of the 34th Conference on
Neural Information Processing Systems (NeurIPS) (2020).

[14] Ian Covert, Scott Lundberg and Su-In Lee. Understanding Global Feature
Contributions With Additive Importance Measures. 2020. doi: 10.48550/
ARXIV.2004.00668. url: https://arxiv.org/abs/2004.00668.

[15] Francisco Cruz et al. ‘Explainable robotic systems: understanding goal-
driven actions in a reinforcement learning scenario’. In: Neural Computing
and Applications (2021). doi: https://doi.org/10.1007/s00521-021-06425-5.

[16] Nathan Douglas et al. ‘Towers of Saliency: A Reinforcement Learning Visu-
alization Using Immersive Environments’. In: Proceedings of the 14th ACM
International Conference on Interactive Surfaces and Spaces (ISS) (2019).

[17] Vilde B. Gjærum, Ella-Lovise H. Rørvik and Anastasios M. Lekkas. ‘Ap-
proximating a deep reinforcement learning docking agent using linear model
trees’. In: 2021 European Control Conference (ECC). 2021, pp. 1465–1471.
doi: 10.23919/ECC54610.2021.9655007.

[18] Vilde B. Gjærum et al. ‘Explaining a deep reinforcement learning docking
agent using linear model trees and user adapted visualizations’. In: Journal
for Marine Science and Engineering 9.1178 (2021). doi: https://doi.org/
10.3390/jmse9111178.

[19] Vilde B. Gjærum et al. ‘Model tree methods for explaining deep reinforce-
ment learning agents in real-time robotic applications’. In: Neurocomputing
515 (2022), pp. 133–144. doi: https://doi.org/10.1016/j.neucom.2022.10.
014.

[20] Vilde B. Gjærum et al. ‘Real-Time Counterfactual Explanations For Ro-
botic Systems With Multiple Continuous Outputs’. In: Submitted to the
22nd World Congress of the International Federation of Automatic Control
(IFAC WC) (2023).

[21] Hila Gonen and Yoav Goldberg. ‘Lipstick on a Pig: Debiasing Methods
Cover up Systematic Gender Biases in Word Embeddings But do not Re-
move Them’. In: North American Chapter of the Association for Compu-
tational Lingusitics (NAACL) (2019).

[22] Riccardo Guidotti. ‘Counterfactual explanations and how to find them:
literature review and benchmarking’. In: Data Mining and Knowledge Dis-
covery (Apr. 2022), pp. 1–55. doi: 10.1007/s10618-022-00831-6.

137

https://doi.org/10.48550/ARXIV.2004.00668
https://doi.org/10.48550/ARXIV.2004.00668
https://arxiv.org/abs/2004.00668
https://doi.org/https://doi.org/10.1007/s00521-021-06425-5
https://doi.org/10.23919/ECC54610.2021.9655007
https://doi.org/https://doi.org/10.3390/jmse9111178
https://doi.org/https://doi.org/10.3390/jmse9111178
https://doi.org/https://doi.org/10.1016/j.neucom.2022.10.014
https://doi.org/https://doi.org/10.1016/j.neucom.2022.10.014
https://doi.org/10.1007/s10618-022-00831-6

[23] David Gunning and D. W. Aha. ‘DARPA’s Explainable Artificial Intelli-
gence (XAI) Program’. In: AI Magazine 40.2 (2019), pp. 44–58. doi: https:
//doi.org/10.1609/aimag.v40i2.2850.

[24] T. Haarnoja et al. ‘Learning to walk via deep reinforcement learning’. In:
Robotics: Science and Systems (RSS) (2019).

[25] A. H̊akansson et al. ‘Robust Reasoning for Autonomous Cyber-Physical
Systems in Dynamic Environments’. In: Procedia Computer Science, Pro-
ceedings of the 25th International Conference on Knowledge Based and In-
telligent Information and Engineering Systems(KES) 192 (2021), pp. 3966–
3978. doi: 10.1016/j.procs.2021.09.171.

[26] Lei He, Nabil Aouf and Bifeng Song. ‘Explainable Deep Reinforcement
Learning for UAV autonomous path planning’. In: Aerospace Science and
Technology 118 (2021), p. 107052. issn: 1270-9638. doi: https://doi.org/10.
1016/j.ast.2021.107052.

[27] Thomas Hickling et al. ‘Explainability in Deep Reinforcement Learning,
a Review into Current Methods and Applications’. In: arXiv:2207.01911
(2022).

[28] ‘Hindsight Experience Replay’. In: Proceedings of the 31st Conference on
Neural Information Processings Systems (NeurIPS) 30 (2017). url: https:
//proceedings.neurips.cc/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-
Paper.pdf.

[29] Ho-Taek Joo and Kyung-Joong Kim. ‘Visualization of Deep Reinforcement
Learning using Grad-CAM: How AI Plays Atari Games?’ In: IEEE Con-
ference on Games (CoG). 2019, pp. 1–2. doi: 10.1109/CIG.2019.8847950.

[30] Been Kim et al. ‘Interpretability Beyond Feature Attribution: Quantitat-
ive Testing with Concept Activation Vectors (TCAV)’. In: International
Conference on Machine Learning(ICML). 2018.

[31] O. Kotevska et al. ‘Methodology for Interpretable Reinforcement Learning
Model for HVAC Energy Control’. In: IEEE International Conference on
Big Data. 2020, pp. 1555–1564. doi: 10.1109/BigData50022.2020.9377735.

[32] Oscar Li et al. ‘Deep Learning for Case-Based Reasoning through Pro-
totypes: A Neural Network That Explains Its Predictions’. In: Proceed-
ings of the Thirty-Second AAAI Conference on Artificial Intelligence and
Thirtieth Innovative Applications of Artificial Intelligence Conference and
Eighth AAAI Symposium on Educational Advances in Artificial Intelli-
gence. AAAI’18/IAAI’18/EAAI’18. New Orleans, Louisiana, USA: AAAI
Press, 2018. isbn: 978-1-57735-800-8.

[33] T. Lillicrap et al. ‘Continuous control with deep reinforcement learning’. In:
4th International Conference on Learning Representations(ICLR) (2016).

138

https://doi.org/https://doi.org/10.1609/aimag.v40i2.2850
https://doi.org/https://doi.org/10.1609/aimag.v40i2.2850
https://doi.org/10.1016/j.procs.2021.09.171
https://doi.org/https://doi.org/10.1016/j.ast.2021.107052
https://doi.org/https://doi.org/10.1016/j.ast.2021.107052
https://proceedings.neurips.cc/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://doi.org/10.1109/CIG.2019.8847950
https://doi.org/10.1109/BigData50022.2020.9377735

[34] Jakob Løver. ‘Explaining a Deep Reinforcement Learning Agent Using Re-
gression Trees’. MA thesis. Norwegian University of Science and Technology
(NTNU), 2021.

[35] Jakob Løver, Vilde B. Gjærum and A. M. Lekkas. ‘Explainable AI methods
on a deep reinforcement learning agent for automatic docking’. In: 14th
IFAC Conference on Control Applications in Marine Systems, Robotics,
and Vehicles (CAMS) (2021).

[36] Scott M. Lundberg and Su-In Lee. ‘A Unified Approach to Interpreting
Model Predictions’. In: Proceedings of the 31st International Conference
on Neural Information Processing Systems. NeurIPS’17. Curran Associates
Inc., 2017, pp. 4768–4777. isbn: 9781510860964.

[37] Scott M. Lundberg et al. ‘From local explanations to global understanding
with explainable AI for trees’. In: Nature Machine Intelligence 2 (2020),
pp. 56–67.

[38] A.B. Martinsen and A.M. Lekkas. ‘”Curved-path following with deep rein-
forcement learning: Results from three vessel models.’ In:OCEANS MTS/IEEE
(2018).

[39] A.B. Martinsen and A.M. Lekkas. ‘Straight-Path Following for Underactu-
ated Marine Vessels using Deep Reinforcement Learning’. In: IFAC-PapersOnLine
51(29) (2018), pp. 329–334.

[40] Ninareh Mehrabi et al. ‘A Survey on Bias and Fairness in Machine Learn-
ing’. In: ACM Comput. Surv. 54.6 (July 2021). issn: 0360-0300. doi: 10.
1145/3457607. url: https://doi.org/10.1145/3457607.

[41] E. Meyer, A. Rasheed A. Heiberg and O. San. ‘COLREG-compliant col-
lision avoidance for unmanned surface vehicle using deep reinforcement
learning’. In: IEEE Access 8 (2020), pp. 165344–165364.

[42] Tim Miller. ‘Explanation in artificial intelligence: Insights from the social
sciences’. In: Artificial Intelligence 267 (2019), pp. 1–38. doi: https://doi.
org/10.1016/j.artint.2018.07.007..

[43] V. Mnih et al. ‘Human-level control through deep reinforcement learn-
ing’. In: Nature 518 (2015), pp. 529–533. doi: https://doi.org/10.1038/
nature14236.

[44] Kevin P. Murphy. Machine Learning: A probabilistic perspective. The MIT
press, 2012.

[45] OpenAI. OpenAI Five. https://blog.openai.com/openai-five/. 2018.

[46] OpenAI et al. Learning Dexterous In-Hand Manipulation. 2018. doi: 10.
48550/ARXIV.1808.00177. url: https://arxiv.org/abs/1808.00177.

139

https://doi.org/10.1145/3457607
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3457607
https://doi.org/https://doi.org/10.1016/j.artint.2018.07.007.
https://doi.org/https://doi.org/10.1016/j.artint.2018.07.007.
https://doi.org/https://doi.org/10.1038/nature14236
https://doi.org/https://doi.org/10.1038/nature14236
https://blog.openai.com/openai-five/
https://doi.org/10.48550/ARXIV.1808.00177
https://doi.org/10.48550/ARXIV.1808.00177
https://arxiv.org/abs/1808.00177

[47] Ronilo J. Ragodos et al. ProtoX: Explaining a Reinforcement Learning
Agent via Prototyping. 2022. doi: 10.48550/ARXIV.2211.03162. url: https:
//arxiv.org/abs/2211.03162.

[48] Iyad Rahwan et al. ‘Machine Behaviour’. In:Nature 568.7753 (2019), pp. 477–
486. doi: 10.1038/s41586-019-1138-y.

[49] Sindre Benjamin Remman and Anastasios M. Lekkas. ‘Robotic Lever Ma-
nipulation using Hindsight Experience Replay and Shapley Additive Ex-
planations’. In: European Control Conference(ECC) (2021). doi: 10.23919/
ACC53348.2022.9867807.

[50] Sindre Benjamin Remman, Inga Strümke and Anastasios M. Lekkas. ‘Causal
versus Marginal Shapley Values for Robotic Lever Manipulation Controlled
using Deep Reinforcement Learning’. In:American Control Conference(ACC)
(2021).

[51] Marco Tulio Ribeiro, Sameer Singh and Carlos Guestrin. ‘”Why Should
I Trust You?”: Explaining the Predictions of Any Classifier’. In: Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’16. New York, NY, USA: Association
for Computing Machinery, 2016, pp. 1135–1144. isbn: 9781450342322. doi:
10.1145/2939672.2939778.

[52] Marco Tulio Ribeiro, Sameer Singh and Carlos Guestrin. ‘Anchors: High-
Precision Model-Agnostic Explanations’. In: Proceedings of the AAAI Con-
ference on Artificial Intelligence (AAAI) 32.1 (2018).

[53] Stefano Giovanni Rizzo, Giovanna Vantini and Sanjay Chawla. ‘Reinforce-
ment Learning with Explainability for Traffic Signal Control’. In: IEEE
Intelligent Transportation Systems Conference (ITSC) (2019), pp. 3567–
3572. doi: 10.1109/ITSC.2019.8917519.

[54] Ella-Lovise Hammervold Rørvik. ‘Automatic Docking of an Autonomous
Surface Vessel’. MA thesis. Norwegian University of Science and Technology
(NTNU), 2020.

[55] Wojciech Samek, Thomas Wiegand and Klaus-Robert Müller. Explainable
Artificial Intelligence: Understanding, Visualizing and Interpreting Deep
Learning Models. 2017. doi: 10 . 48550 /ARXIV . 1708 . 08296. url: https :
//arxiv.org/abs/1708.08296.

[56] J. Schulman et al. ‘High-dimensional continuous control using generalized
advantage estimation’. In: International Conference on learning represent-
ation(ICLR) (2016).

[57] John Schulman et al. Proximal Policy Optimization Algorithms. 2017. doi:
10.48550/ARXIV.1707.06347. url: https://arxiv.org/abs/1707.06347.

140

https://doi.org/10.48550/ARXIV.2211.03162
https://arxiv.org/abs/2211.03162
https://arxiv.org/abs/2211.03162
https://doi.org/10.1038/s41586-019-1138-y
https://doi.org/10.23919/ACC53348.2022.9867807
https://doi.org/10.23919/ACC53348.2022.9867807
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1109/ITSC.2019.8917519
https://doi.org/10.48550/ARXIV.1708.08296
https://arxiv.org/abs/1708.08296
https://arxiv.org/abs/1708.08296
https://doi.org/10.48550/ARXIV.1707.06347
https://arxiv.org/abs/1707.06347

[58] John Schulman et al. ‘Trust Region Policy Optimization’. In: Proceed-
ings of the 32nd International Conference on Machine Learning 37 (2015),
pp. 1889–1897.

[59] H. Shen and C. Guo. ‘Path-following control of underactuated ships using
actor-critic reinforcement learning with mlp neural networks’. In: Sixth In-
ternational Conference on Information Science and Technology (ICIST),IEEE
(2016), pp. 317–321.

[60] Andrew Silva et al. ‘Optimization Methods for Interpretable Differentiable
Decision Trees Applied to Reinforcement Learning’. In: Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Stat-
istics. Ed. by Silvia Chiappa and Roberto Calandra. Vol. 108. Proceedings
of Machine Learning Research. PMLR, Aug. 2020, pp. 1855–1865. url:
https://proceedings.mlr.press/v108/silva20a.html.

[61] David Silver et al. ‘A general reinforcement learning algorithm that mas-
ters chess, shogi, and Go through self-play’. In: Science 362.6419 (2018),
pp. 1140–1144. doi: 10.1126/science.aar6404.

[62] David Silver et al. ‘Deterministic Policy Gradient Algorithms’. In: Proceed-
ings of the 31st International Conference on Machine Learnin 32.1 (2014),
pp. 387–395. url: https://proceedings.mlr.press/v32/silver14.html.

[63] David Silver et al. ‘Reward is enough’. In: Artificial Intelligence 299.103535
(2021). issn: 0004-3702. doi: https://doi.org/10.1016/j.artint.2021.103535.

[64] Karen Simonyan, Andrea Vedaldi and Andrew Zisserman. ‘Deep Inside
Convolutional Networks: Visualising Image Classification Models and Sa-
liency Maps’. In: Workshop at International Conference on Learning Rep-
resentations. 2014.

[65] Mukund Sundararajan, Ankur Taly and Qiqi Yan. ‘Axiomatic Attribution
for Deep Networks’. In: Proceedings of the 34th International Conference
on Machine Learning. Vol. 70. Sydney, NSW, Australia: JMLR.org, 2017,
pp. 3319–3328.

[66] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction. MIT press, 2018.

[67] Adrian Weller. ‘Transparency: Motivations and Challenges’. In: Explain-
able AI: Interpreting, Explaining and Visualizing Deep Learning. Springer
International Publishing, 2019, pp. 23–40. isbn: 978-3-030-28954-6. doi:
10.1007/978-3-030-28954-6 2.

[68] AnsonWong. Building Model Trees. 2020. url: https://github.com/ankonzoid/
LearningX/tree/master/advanced ML/model tree.

141

https://proceedings.mlr.press/v108/silva20a.html
https://doi.org/10.1126/science.aar6404
https://proceedings.mlr.press/v32/silver14.html
https://doi.org/https://doi.org/10.1016/j.artint.2021.103535
https://doi.org/10.1007/978-3-030-28954-6_2
https://github.com/ankonzoid/LearningX/tree/master/advanced_ML/model_tree
https://github.com/ankonzoid/LearningX/tree/master/advanced_ML/model_tree

[69] Matthew D. Zeiler and Rob Fergus. ‘Visualizing and Understanding Con-
volutional Networks’. In: Proceedings of the 13th Europen Conference on
Computer Vision. 8689 (2014).

[70] Ke Zhang et al. ‘Explainable AI in Deep Reinforcement Learning Models
for Power System Emergency Control’. In: IEEE Transactions on Compu-
tational Social Systems 9.2 (2022), pp. 419–427. doi: 10.1109/TCSS.2021.
3096824.

[71] L. Zhao and M.-I. Roh. ‘COLREGs-compliant multiship collision avoidance
based on deep reinforcement learning’. In: Ocean Eng. 191.106436 (2019).
doi: 10.1016/j.oceaneng.2019.106436.

142

https://doi.org/10.1109/TCSS.2021.3096824
https://doi.org/10.1109/TCSS.2021.3096824
https://doi.org/10.1016/j.oceaneng.2019.106436

ISBN 978-82-326-5788-9 (printed ver.)
ISBN 978-82-326-6955-4 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:134

Vilde Benoni Gjærum

Machine Learning in Robotics:
Explaining Autonomous Agents
in Real-TimeD

oc
to

ra
l t

he
si

s

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

sD
octoral theses at N

TN
U

, 2023:134
Vilde Benoni G

jæ
rum

	List of Figures
	List of Tables
	Introduction
	Motivation
	Publications
	Contributions at a glance
	Outline

	Background
	Machine learning in robotics
	The need for explanations in AI-based robotics
	Explainable artificial intelligence
	Linear model trees
	Test applications
	The docking problem
	The inverted pendulum problem

	Contributions and discussion
	Building LMTs
	LMTs as an XAI-method
	Visualization of explanations in robotics

	Conclusions and further work
	Publications
	Paper A
	Paper B
	Paper C
	Paper D
	Paper E

	Bibliography
	Blank Page
	Blank Page

