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Automatic building outline extraction from ALS point
cloud data using generative adversarial network

Gefei Kong, Hongchao Fan and Gabriele Lobaccaro

Department of Civil and Environmental Engineering, Norwegian University of Science and
Technology, Trondheim, Norway

ABSTRACT
The generation of building footprints from laser scanning point
clouds or remote sensing images involves three steps: segmenta-
tion, outline extraction and boundary regularization/generaliza-
tion. Currently, existing approaches mainly focus on the first and
third steps, while only few studies have been conducted for the
second step. However, the extraction result of the building out-
lines directly determines the regularization performance.
Therefore, high-quality building outlines are important to be
delivered for the regularization. Determining parameters, such as
point distance and neighborhood radius, is the primary challenge
in the process of extracting building outlines. In this study, a par-
ameter-free method is proposed by using an improved generative
adversarial network (GAN). It extracts building outlines from
gridded binary images with default resolution and no other input
of parameters. Hence, the parameter selection problem is over-
come. The experimental results on segmented point cloud data-
sets of building roofs reveal that our method achieves the mean
intersection over union of 93.52%, the Hausdorff distance of
0.640m and the PoLiS of 0.165m. The comparison with a-shape
method shows that our method can improve the extraction per-
formance of concave shapes and provide a more regularized out-
line result. The method reduces the difficulty and complexity of
the next regularization task, and contributes to the accuracy of
point cloud-based building footprint generation.
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1. Introduction

Building footprint information is one of the most important data in many geographic
applications, such as mapping, 3D building reconstruction, urban planning, and emer-
gency response (Sugihara et al. 2012, Bittner et al. 2018, Zhu et al. 2021). Automatic foot-
print generation has garnered considerable attention from the research community. To
date, several methods have been proposed to solve this problem. and two main data
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sources are used: remote sensing image data and point cloud data. Many studies con-
ducted in the last few decades (Shackelford et al. 2004, Zhu et al. 2021, Guo et al. 2022,
Li et al. 2022) achieved automatic building footprint generation based on remote sensing
images. However, the limitations of remote sensing images affect the practicality of these
methods, such as the lack of elevation information and the presence of shadow casts.
Owing to the development of Light Detection and Ranging (LiDAR) technology, point
cloud data produced by the LiDAR technology can be more easily obtained. Compared
with remote sensing images, point cloud data contain accurate 3D information, and are
less sensitive to occlusions and shadows (Jochem et al. 2012). Hence, point cloud data are
a better choice for automatic building footprint generation and have been used by many
researchers (Wang et al. 2006, Albers et al. 2016, Li 2020, Mahphood and Arefi 2022).

In general, the standard procedure for building footprint generation involves three
steps for point cloud data: (1) segmentation, (2) extraction of building outlines, and (3)
boundary regularization or generalization. The first segmentation step classifies points
belonging to a building from the point cloud dataset. The second step involves the extrac-
tion of building boundary and generation of the preliminary footprint polygon. Finally,
the third step of the boundary regularization involves the adjustment of the generated
boundary and retrieval of simpler and more regular footprint polygon. In particular, the
second step of the building footprint production (i.e., the extraction of building outlines)
is important, as it determines the quality of input in the next regularization step and
finally influences the result of building footprint generation (Awrangjeb 2016).

According to Awrangjeb (2016), methods for extracting building outlines can be div-
ided into two types: direct and indirect. Direct methods directly extract building outlines
based on points, without transformation. However, these methods are sensitive to the
selection of parameters, such as neighborhood radius, and are easily affected by the noise
in the point cloud data. In particular, owing to the iteration process in these methods,
they are much time consuming when the parameters are not properly set, which limits
the practicality of these methods. In contrast, indirect methods first transform point cloud
data into binary images or triangular networks and then extract building outlines based
on the transformed data. These methods are more efficient because they reduce the data
volume and noise by the gridding process during the transformation. However, they have
the problems of resolution selection and information loss caused by the transformation,
which reduces the shape accuracy of the extracted building outlines. All these problems
severely limit the application of existing methods.

In recent years, deep learning methods have been successfully applied into the field of
image understanding, such as semantic segmentation (Long et al. 2015). As a new deep-learn-
ing technology, Generative Adversarial Network (GAN) has shown the potential in image
inpainting, image translation and related tasks, which can achieve the information restoration
of images, leading to indirect methods with less parameter selection and information loss.

To solve the parameter selection problem in existing methods and improve the shape
accuracy of extracted building outlines, in this study, a new parameter-free method with
an improved GAN is proposed to achieve automatic and robust outline extraction from
airborne laser scanning (ALS) point cloud data. After the generation of a binary image,
instead of directly extracting the building outline from the binary image using an edge
detector or a boundary tracing algorithm, GAN is implemented to optimize the building
binary image. The optimized image with a more accurate building shape and less noise
will be applied to the next boundary tracing step in the process for the extraction of
building outlines, and finally helps the vector (i.e., polygon) result of building outline
extraction. A better outline extraction result will better guide the boundary regularization
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in the next step of footprint generation and finally improve the performance of automatic
building footprint generation. The main contributions of this study are as follows:

1. GAN is introduced into the process of building boundary extraction to optimize the
building shape, repair its pore spaces, and reduce irregularities and noise in the
gridded binary image. This reduces the influence of parameter selection (e.g., reso-
lution and grid distance), ultimately avoiding reliance on parameter selection in the
method for extracting building outlines and increasing its effectiveness and efficiency.

2. The network structure in the existing GAN is improved to enhance its performance
in the task of building outline extraction and better solve the problem of resolution
selection. The extraction results of the building outlines from the new network struc-
ture will have better shapes than the baseline structure.

This paper is organized as follows: Section 2 is a review of related research on the
extraction of building outlines. Section 3 outlines the detailed workflow of the proposed
method. Section 4 introduces the experimental dataset and other details. Section 5 con-
tains the experimental results and discussions of the findings. And Section 6 discusses the
conclusions of this study and the future work.

2. Related work

2.1. Direct methods

In direct methods, the convex hull algorithm (Berg et al. 2000) is one of the base.
However, the traditional convex hull algorithm cannot be applied to the outline extraction
of concave polygons, which are usually the outlines of buildings. Sampath and Shan
(2007) used a modified convex hull algorithm proposed by Jarvis (1977) to directly extract
building boundaries from point cloud data. The modified algorithm can be used to extract
concave outlines. Hence, some researchers (Herve 2008, Dai et al. 2017) followed
Sampath and Shan’s research and used the same method to extract building outlines.
However, it is difficult to set a suitable neighborhood distance parameter in this algorithm
to avoid the unstable performance of the algorithm when facing uneven point distribution
of the point cloud data. Wang and Shan (2009) combined convex hull estimation and the
classification of boundary and non-boundary points to achieve outline extraction. Cao
et al. (2017) redesigned and refined the modified convex hull algorithm to improve the
performance of outline extraction. However, the two methods reduced the impact of
neighborhood distance determination, but introduced new neighborhood parameters,
such as the minimum number of neighbors (minPts). The problem of parameter deter-
mination remains unsolved.

Another powerful algorithm, a-shape (Edelsbrunner and M€ucke 1994, Cazals et al.
2005), can also achieve direct outline extraction of a set of points. The a-shape algorithm
uses a circle with radius¼a to “roll” around the points and traces the order in which it
hits each point to achieve the outline extraction of points. Compared to the convex hull
algorithm, the a-shape algorithm can trace both convex and concave polygons. Hence,
many researchers have used this algorithm to extract building outlines directly from point
cloud data. In a-shape-based research, some researchers (Dorninger and Pfeifer 2008,
Shahzad and Zhu 2015) set the value of a to twice the mean linear point distance. He
et al. (2014) set the value of a to 1.5 times� the average point distance (spacing). Albers
et al. (2016) calculated the value of a based on the point cloud density. Li et al. (2015)
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further improved the a-shape algorithm using a dual threshold. However, the thresholds
of a were manually defined based on experience, making these methods less adaptable to
data changes. dos Santos et al. (2019) further improved the algorithm and estimated the a
value based on the local point spacing rather than the global average. However, this
method introduced a new parameter, neighborhood radius, to help the algorithm adapt to
the density variation in the point cloud data and each building. The setting of the new
parameter remains empirical.

In contrast to the above methods, Li (2020) directly extracted points at the building
outline using multiple return information of the point cloud data. However, this method
cannot be used for point cloud data without this information. The author had to propose
a recursive convex hull algorithm to solve this problem. However, the problem of the
convex hull algorithm, in which the parameter settings are difficult, ensues. In addition,
this algorithm is less efficient.

2.2. Indirect methods

In indirect methods, the task of building outline extraction from point cloud data is typic-
ally simplified by transforming the 3D point cloud data into a 2D-image representation.
Verma et al. (2006) used the oriented bounding box of each building’s point cloud data to
generate grids, and then marked the grids with enough points as the foreground to generate
the corresponding binary image. The outline of the foreground region was regarded as the
outline of the building roof. Poullis and You (2009) directly converted 3D data to a 2D
XYZ map by subdividing and resampling the raw data, and then achieved the region
boundary extraction based on the 2D map. Zhou and Neumann (2009) divided raw point
cloud data into 2D grids and achieved the classification of points and extraction of building
outlines based on grids. Awrangjeb and Fraser (2014) generated grids of point cloud data
and used the Canny edge detector (Canny 1986) to extract the building roof outlines based
on the grids. Mahphood and Arefi (2017) also generated grids and then extracted outlines
based on the number of neighboring points. Mahphood and Arefi (2022) proposed an
enlargement method to extract and regularize building outlines based on grids. However, as
mentioned by Poullis and You (2009), information loss cannot be avoided during the trans-
formation process owing to the resampling or “clustering”. The selection of a proper reso-
lution is also a problem, that has a significant impact on the accuracy of the final extraction
result. Mahphood and Arefi (2022) markedly reduced the effect of parameter settings, but a
proper resolution for gridding is still needed. Hence, although it is more efficient than dir-
ect methods, limited research for extracting building outlines from point cloud data has
been performed based on this indirect image-based idea.

Some indirect methods are based on triangulation to avoid information loss.
Awrangjeb (2016) used Delaunay triangulation to find the initial boundaries and then
optimized the extraction result of the building outlines by removing the long boundary
edges. However, this method loses the efficiency advantage of indirect methods as it is
time consuming to achieve triangulation for many points. In addition, the threshold of
the removal strategy affects the practicality of this method.

3. Methodology

3.1. Overview of our method

The workflow of the proposed method is illustrated in Figure 1. First, the point cloud
data of each building are grided to create a corresponding binary image. Subsequently,
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GAN is applied to optimize the building shape and repair the pore spaces in the binary
image. After image optimization, a more accurate extraction of the building outlines can
be achieved by boundary tracing based on the optimized binary image.

3.2. Generation of the binary image

Unlike existing image-based indirect methods, we do not define the geographical reso-
lution parameter, such as 2m or 1.5m, and then convert the point cloud data into binary
images of different sizes. In our method, the resolution of the output binary images,
RESBImg, is set as the resolution parameter. The maximum distance in the x- or y- direc-
tion of each building is used to determine the grid size in both directions. The calculation
method for the size of each grid Sig for each building’s point cloud data PSi is shown in
Equation (1).

Sig ¼
max ximax � ximin

� �
, yimax � yimin

� �� �
RESBImg

(1)

where Sig is the size of each grid for the point clouds, P ¼ (x, y, z) is the coordinate of
each point, and i is the number of point cloud data of the buildings (which is equal to
the number of buildings).

Each building’s point cloud data PSi are grided based on the size of each grid Sig : The
value of each grid with points is set to 1, as the foreground of the binary image and then
the binary image generation for each building is completed.

Using this new resolution parameter, the generated binary image of each building is of
the same size. This enlarges buildings with small areas, which can help their outline
extraction. However, if only this new resolution parameter is used, a similar problem of
resolution selection in the existing image-based indirect method will still exist and the

Figure 1. Workflow of our method for the extraction of building outlines.
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large parameter will cause pore spaces inside the building point cloud data, as shown in
the first, third and fourth buildings in Figure 1. Hence, GAN is introduced in the next
subsection to solve these problems.

3.3. Optimization of the binary image using improved GAN

The gridding process reduces the data volume, and the use of binary images simplifies the
boundary tracing problem. However, the resolution selection and pore spaces remain a
critical challenge. An inappropriate RESBImg significantly affects the final extraction per-
formance of the building outlines, as shown in Figure 2. If RESBImg is set high (e.g.,
RESBImg ¼ 64), the building shape details will be saved. However, pore spaces will be
found in the binary image owing to the limited and imbalanced point density.
Nonetheless, if given a low RESBImg (e.g., RESBImg ¼ 16) to avoid the pore spaces, the
boundary of the building in images will become too coarse and the outline will become
inaccurate. Moreover, considering the different sizes of buildings, it is difficult and even
impossible to set an appropriate resolution for all buildings. Hence, the impact of reso-
lution selection should be avoided as much as possible.

To solve this problem, GAN is introduced. GAN uses adversarial learning, and can
generate input-like outputs by imitating the input data distribution (Goodfellow et al.
2014). A GAN includes two critical submodules: a discriminator module and generator
module. The discriminator is deployed to check whether the input is real or fake (i.e.,
generated), while the generator learns the distribution of input data and attempts to gen-
erate a realistic-looking output to fool the discriminator. By alternately training the dis-
criminator and generator, the discriminator can better distinguish between the real input
and fake input from the generator. Owing to a better discriminator, the generator grad-
ually improves itself and generates an output that is increasingly close to the real data. In

Figure 2. Sample of resolution selection problem: the direct extraction of building outlines from binary images gener-
ated by different resolution parameters.
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addition to solving the problem of resolution selection, owing to the game of the discrim-
inator and generator in GAN, the noise in the input image will also be learned and then
excluded by the generator to fabricate an image close to the real distribution. Hence,
GAN can also minimize noise interference in the point cloud data, which cannot be
achieved by direct methods of outline extraction.

In our method, the framework Pix2Pix (Isola et al. 2017) is improved and used to opti-
mize the binary image. The pipeline of Pix2Pix is shown in Figure 3(a). The detailed
structures of the generator and discriminator of Pix2Pix are shown in Figure 3(b)–(d).
Compared to other GANs, the original Pix2Pix from Isola et al. (2017) has the following
characteristics:

1. Pix2Pix combined the input image Imgin and noise vector NV as the input of the
generator, rather than used the noise vector as the only input. The input of the dis-
criminator was changed from the generator output G(Imgin, NV) to both the gener-
ator output and the original input image (Imgin, G(Imgin, NV)). This design improves
the control of the generator output in the network, which can generate images closer
to the input image.

2. Pix2Pix improved its generator by using a UNet-like structure. The addition of skip
connection between the corresponding layers in the encoder and decoder improves
the information connection between them, and improves the generation result.

3. PatchGAN was proposed and used as the discriminator model, which classifies an
image as real or fake for each patch, rather than the entire image. The high-frequency
structure in the data distribution can be better learned by PatchGAN, which further
improves the network performance.

4. Pix2Pix designed a better loss function to generate images with better edge informa-
tion that are closer to the expected data distribution. The loss function is given by
Equation (2):

LPix2Pix ¼ minG maxD LGAN G,Dð Þ þ kL1 Gð Þ
¼ minG maxD E Imgin , Imggtð Þ logD Imgin, Imggt

� �h i

þ E Imgin , NVð Þ log 1� D Imgin, G Imgin, NVð Þð Þð Þ� �

þ kE Imgin , Imggt , NVð Þ | Imggt � G Imgin , NVð Þ|1
h i

(2)

where Imggt is the real image and k is the weight of L1 loss function, which can help
the generator output to be more similar to the real image in structure.

Pix2Pix added the skip connection structure into its generator to enhance the informa-
tion connection between the encoder and decoder, as shown in Figure 3 (b), but in the
encoder of the generator, the shape information is still severely lost owing to the down-
sampling process. However, shape is one of the most critical pieces of information in the
task of building outline extraction. To improve the shape information connection, we
redesign the encoder in the generator. The improvements are described below.

1. As shown in Figure 4, the residual block from ResNet (He et al. 2016) is used to
replace the original simple downsampling encoder block. The residual block trans-
forms the original flow of information transmission between the two layers
fyi  f yi�1ð Þg into the new residual connection flow fyi  g yi�1ð Þ þ yi�1g: With this
change, more image details from the higher-resolution layer yi�1 are saved and trans-
ferred to the next layer, including the shape information. Hence, by introducing the
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residual block into the encoder, more shape information can be saved during the
downsampling process, and the building shape of the generator output can
be enhanced.

2. In addition to the improvement of the encoder block, the method of skip connection
between the encoder and decoder in the generator is adjusted, as shown by the red
dotted lines in Figure 4. Replacing the last output of each encoder block in the ori-
ginal generator structure for the skip connection, the new layer for the skip connec-
tion is the downsampling output in each encoder block. The new position of the skip
connection will help the generator save more information from the original images,
such as the original data distribution, to better guide the generator output closer to
the expected distribution.

Figure 3. The pipeline of Pix2Pix.
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The generator output G(Imgin, NV) from the improved GAN is regarded as the opti-
mization result. With sharper boundaries and filled pore spaces, the optimized image
from GAN can better represent the real building outlines and contribute to better extrac-
tion results of building outlines.

3.4. Image to polygon to obtain the result of outline extraction

After the optimization step, the image-border-following algorithm from Suzuki and Abe
(1985) is applied to trace the image building outlines Oi from the optimized binary
images. Thereafter, to obtain the final building outlines, two processes should be com-
pleted: (1) transformation of the coordinate system and (2) transformation from points to
polygons. In the first process, because the traced building outlines are still in the local
image coordinate system, there is no geographical reference for these outlines. Hence,
these outlines should be transformed from the local system to the global geographical
coordinate system for following application. The second process is due to the typical use
of polygon features to represent areas, such as buildings.

In the first coordinate system transformation process, the mapping between the geo-
graphical coordinates and image pixels is calculated based on the original point cloud
data of each building. This process is the same as the gridding process described in sec-
tion 3.2. The bounding box of each building’s point cloud data is extracted and used to
generate the grid Gridsizeg , where the size of the entire grid is (sizeg � sizeg), which is the
same as the image size of the generator output, G(Imgin, NV). The geographical coordi-
nates of each pixel ðioi , joiÞin the image building outline Oi is Gridsizeg ðioi , joiÞ: Finally, the
point set of each building outline with geographical information is obtained. Thereafter,
in the second process of points to polygons, each point set is sorted and reorganized into
a polygon, and the output is the final extraction result of the building outline.

4. Experiments

4.1. Experiment dataset

The experiments are conducted on ALS point cloud data provided by the mapping
authority of Trondheim Municipality. These data are collected in Trondheim, Norway in
2018, at a standard density of 12-20 points/m2. This Trondheim 3D point cloud dataset
containing 903 building roofs with different shapes and sizes is pre-manually extracted

Figure 4. Improvements to the generator in Pix2Pix: the new block structure of the encoder in the generator and the
new skip connection method.
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from the raw ALS data for the extraction of building outlines in this dataset. General
building footprint (roof) types with different shapes, such as rectangle-shaped, L-shaped,
T-shaped and more complex combined-shaped, are included in this dataset to ensure the
generalization of our model. The building footprint dataset from the national open geo-
graphical data provided by the Norwegian Mapping Authority (FKB-Buildings Dataset
2021) is used as the ground truth dataset for network training and result evaluation. This
Trondheim dataset is split into three groups at a ratio of 7:2:1 for training, validation,
and testing. The three groups have 630, 180 and 93 samples, respectively.

Another benchmark dataset, the ISPRS dataset (Vaihingen) (Cramer 2010), is also con-
sidered in the experiment to more completely evaluate our method. This dataset is pro-
vided by the ISPRS Test Project on Urban Classification and 3D Building Reconstruction,
and is collected at Vaihingen, Germany in 2008, with a low point density of 4-6 points/
m2. A total of 94 building roof point clouds with ground-truth footprint shapes are
included in this dataset. These building footprints also have different shapes and sizes.
Following its official guidance, the dataset is split into three areas: area1, area2 and area3.
The building roofs located in area2 and area3 are used for training and validation, and
those in area1 are used for testing. A total of 40, 20, and 34 samples are used for training,
validation, and testing, respectively.

4.2. Experiment details

The improved GAN is implemented by Tensorflow 2.6.2 (Abadi et al. 2016) and trained
on a NVIDIA Tesla P100-PCIE-16GB graphics processing unit (GPU) and an Intel(R)
Xeon(R) central processing unit (CPU) (2.20GHz) supported by Kaggle (https://www.kag-
gle.com/). Adam (Kingma and Ba 2015) is used as the optimizer to train both the gener-
ator and discriminator in the improved GAN. network, with a learning rate of 0.0005 for
the generator and 0.0003 for the discriminator, b1 ¼ 0.5 and b2 ¼ 0.999. The parameter
k in the loss function is set to 100. The input size of the network is set to 256� 256 for
both the input and real images. The batch size is set to 1.

4.3. Evaluation metrics

Three metrics are used to evaluate the extraction results of building outlines: mean inter-
section over union (mIoU), Hausdorff distance (HD) (Huttenlocher et al. 1993), and
PoLiS (Avbelj et al. 2015). The first metric is used to compare the area similarity (i.e.,
area completeness) between the extracted building outlines and the real building footprint
polygon. The second and third metrics are used to compare the maximum shape distance
and average shape similarity (distance), respectively.mIoU is calculated using Equation
(3).

mIoU ¼ 1
N

XN
n¼1

Predn \ GTnð Þ
Predn [ GTnð Þ (3)

where N is the number of samples, Predn is the n extracted building outline using our
method, and GTn is the n real building footprint polygon. The intersection and union
area between Predn and GTn are calculated based on polygons in the geographical coord-
inate system to ensure the reliability and referability of these metrics.

The calculation for HD and PoLiS can be found in the cited papers. HD and PoLiS are
also calculated in the geographical coordinate system.
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Figure 5. Results for the extraction of building outlines for different methods where B1–B5 are on the Trondheim
dataset and B6–B10 are on the ISPRS dataset (images in (b).1 are shown in the image coordinate system without geo-
graphical projection).
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5. Results and discussions

5.1. Comparison with the existing method

To evaluate the effectiveness of our method on datasets with different point densities, a
classic method for the extraction of building outlines, a-shape, is compared with our
method. Based on related research (Dorninger and Pfeifer 2008, Shahzad and Zhu 2015,
dos Santos et al. 2018, 2019), the different a values for each building are provided,
which are set to twice the average point distance density of each building’s point
cloud data.

A qualitative comparison of the results is presented in Figure 5. The buildings of dif-
ferent shapes are shown in this figure. The results of the a-shape algorithm are shown in
Figure 5(a) and those of the proposed method are shown in Figure 5(b). The black points
in Figure 5 represent the building points from the point cloud dataset, the gray polygons
represent the ground truth building footprint polygons, and the lines with different colors
represent the results of the building outlines extracted by different methods. Based on the
qualitative results, our method is effective and more accurately retains the shape details of
the buildings. Both the a-shape algorithm and our method perform well on a simple con-
vex polygon (B1 and B6). However, the a-shape algorithm cannot trace the concave part
of the building polygon well, as shown in B2–B5 and B7–B10, while our method can han-
dle building polygons with both convex and concave parts. Our method can also extract
building outlines with fewer noise points than the a-shape algorithm as shown by the
upper boundaries of B1 and B8. Moreover, compared with the “zig-zag” building outlines
extracted by a-shape, our method can directly extract more smooth outlines, as shown in
B8. These results demonstrate that our method can contribute to the accuracy of the final
building footprint. Overall, the visualization result further indicates that our method can
accept a binary image with pore spaces, which is still not addressed by the newest related
research (Mahphood and Arefi 2022). The adaptation of pore spaces in a binary image
allows our method to retain more details of building shapes and thus extract outlines
with higher shape accuracy.

The quantitative evaluation results are presented in Table 1. On the Trondheim dataset
and comparing the a-shape, the metric mIoU in our method increases 0.72% and HD
increases by 0.22m. For the strictest metric – PoLiS, our method could result in an
increase of 0.02m. On the ISPRS dataset, the metrics mIoU and HD in our method
increase by 2.1% and 0.03m, respectively, with PoLiS decreasing by 0.02m. According to
the quantitative result, compared with the a-shape algorithm, the introduction of GAN is
effective, and our method obtains better results for both datasets. Only the PoLiS of our
method on the ISPRS dataset is slightly lower than the a-shape result. The increase in
mIoU indicates that our method can extract building outlines more completely and close
to the regularized footprint, and the increase in HD and PoLiS indicates that our method
better retains the shape details. Although our method performs similar to the a-shape in
shape accuracy on the ISPRS dataset, our method better guarantees the completeness of
the extracted building outlines and provides a more regularized result.

Table 1. Quantitative result for the extraction of building outlines for different methods.

Dataset Method mIoU(%) HD(m) PoLiS(m)

Trondheim a-shape 92.80 0.858 0.187
Our method 93.52 0.640 0.165

ISPRS a-shape 83.10 1.825 0.413
Our method 85.18 1.796 0.429
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The point density and ground truth quality of the ISPRS dataset are markedly lower
than those of the Trondheim dataset, which negatively affects the accuracy and informa-
tion volume of the binary image. Hence, the decrease in shape accuracy on the ISPRS
dataset is predictable. Examples of B6–B10 in Figure 5 highlight such case. Our method
obtains a slightly lower average shape similarity than the a-shape on this dataset.
However, the building outlines extracted using our method is markedly smoother than
those extracted using the a-shape. In addition, less noise is presented in the results of the
proposed method.

Figure 6. Results for the extraction of building outlines for different resolutions on the Trondheim dataset (point
density: 12-20 points/m2).
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5.2. Analysis of resolution parameter choosing

The proposed method is parameter-free. It means that, in comparison with existing meth-
ods, the parameter setting is not very important, and our method does not actually need
to set parameter when applied in a practical project. In our method and many other
indirect methods, this critical parameter is the resolution for gridding point clouds into
binary images, referred to as RESBImg in this study. To investigate whether our method
avoids the impact on resolution selection, RESBImg is set to three different values: 16, 32
and 64. The Trondheim dataset is mainly used for the experiment. In this dataset, the
chosen values correspond to three different gridding levels:

1. 16: few details of building shape but almost no pore spaces in the binary image (can
be accepted by existing methods), as shown in Figure 6 (a).1;

2. 32: some pore spaces but better shape details in the binary image (cannot be accepted
by existing methods), as shown in Figure 6 (b).1;

3. 64: more shape details but many pore spaces in the binary image (cannot be accepted
by existing methods), as shown in Figure 6 (c).1.

The qualitative and quantitative experimental results are presented in Figure 6 and
Table 2. As reported in the quantitative experiment result, from RESBImg¼64 to 32 with
the 22-fold information loss as shown in Figure 6 (c).1–(b).1, the mIoU only decreases by
0.32%, the PoLiS only decreases by 0.01m, and the HD increases by 0.04m. From
RESBImg¼32 to 16 with the 22-fold information loss as shown in Figure 6 (b).1–(a).1, the
mIoU decreases by 1.07% and the PoLiS decreases 0.02m, and the HD only decreases by
0.11m. Considering the degree of information loss between two resolution levels, our

Table 2. Quantitative results for the extraction of building outlines for different resolutions on the Trondheim data-
set (point density: 12-20 points/m2).

Dataset RESBImg mIoU(%) HD(m) PoLiS(m)

Trondheim 16 92.14 0.703 0.194
32 93.21 0.596 0.171
64 93.52 0.640 0.165

Table 3. Quantitative results for the extraction of building outlines for different resolutions on the ISPRS dataset
(point density: 4-6 points/m2).

Dataset RESBImg mIoU(%) HD(m) PoLiS(m)

ISPRS 16 83.55 1.851 0.480
32 84.43 1.823 0.444
64 85.18 1.796 0.429

Table 4. Results of the ablation study.

Structure RESBImg
Changes

mIoU(%) HD(m) PoLiS(m)
(a) (b)

Pix2Pix 16 91.67 0.796 0.218
32 92.67 0.655 0.185
64 93.48 0.676 0.189

Pix2Pix–(a) 16 � 91.89 0.727 0.209
32 � 92.76 0.642 0.180
64 � 93.31 0.564 0.165

Our improved Pix2Pix (Our improved GAN) 16 � � 92.14 0.703 0.194
32 � � 93.21 0.596 0.171
64 � � 93.52 0.640 0.165
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method performs quite stably. Moreover, compared with existing indirect methods, pore
spaces in the binary image are allowed in our method and the resolution parameter does
not need to be carefully adjusted. These indicate that our method improves and balances
the performance of the extraction of building outlines under different resolution parame-
ters. The parameter setting in our method is not as important as that in existing methods.
The qualitative visualization results also support this conclusion.

Furthermore, our method is tested on the ISPRS dataset using different resolution
parameters RESBImg. The ISPRS dataset has a lower point density than the Trondheim
dataset. The experimental results are listed in Table 3. As shown in Table 3, our method
also obtains the best result at RESBImg¼64 for the ISPRS dataset. This result indicates that
the default parameter setting (64) can adapt to datasets with different point densities.

Overall, in our method, setting RESBImg is not as important as setting this parameter
in existing related methods. In fact, our method does not require parameter tuning in
practical project as the best results can be achieved using the default param-
eter (RESBImg¼64).

5.3. Ablation study

In our method, two changes are introduced to improve the performance of Pix2Pix in the
task of building outline extraction. The ablation study is performed to evaluate the effect-
iveness of these changes. Table 4 shows the results of the ablation study, where change
(a) is the residual block and change (b) is the new skip connection position. As there is
no additional convolutional layer for the new skip connection position without the add-
ition of the residual block, the Pix2Pix–(b) (the Pix2Pix network with only the new skip
connection position) does not need to be considered in the ablation study.

As shown in Table 4, the two changes proposed in our method are effective. Our
improved Pix2Pix structure with two changes generally performs better than the original
Pix2Pix structure and the Pix2Pix structure with change (a) in the task of extracting
building outlines. Although the HD of our improved Pix2Pix structure at RESBImg ¼ 64 is
0.08m less than the HD of the Pix2Pix structure with the residual block alone, all metrics
of our improved Pix2Pix structure perform better at RESBImg ¼ 16 and 32. Such finding
indicates that our improved Pix2Pix structure is more stable and robust when facing dif-
ferent resolution parameters, and better solves the resolution selection problem in image-
based indirect methods. Hence, the improved Pix2Pix structure with two changes is a bet-
ter choice for extracting building outlines.

6. Conclusion and future work

The extraction of building outlines is a critical step in the generation of building foot-
print. However, traditional methods have the parameter selection problem. To solve the
problem of existing methods and reduce the difficulty of the next regularization step to
improve the accuracy of building footprints, a new method for the extraction of building
outlines is proposed in this study. This method achieves an automatic and more accurate
extraction of building outlines from segmented point cloud data of building roofs. By
introducing GAN after the binary image generation of point cloud data, the information
loss and pore spaces in the transformation from the point cloud data to the image are
recovered, thereby improving the performance of extracting the building outline. The
residual block and new skip connection position are introduced in our GAN structure to
improve its performance for this specific task. The proposed method is trained and

15978 G. KONG ET AL.



evaluated on two segmented point cloud datasets with different point densities. The quan-
titative experimental result of our method includes the mIoU of 93.52%, the HD of
0.640m and the PoLiS of 0.165m. The qualitative and quantitative experimental results
demonstrate that our method with an improved GAN not only effectively and efficiently
solves the problem of parameter selection in the existing methods, but also improves the
shape accuracy of the extracted building outline, which provides a better basis for the
building footprint generation.

The extracted outline polygons retain many details of the building shape and should
be further regularized and generalized to generate the final building footprint polygons;
this is the boundary regularization work in the next step of the building footprint gener-
ation. Hence, in the future, we will attempt to find an automatic and parameter-free
method for boundary regularization and combine this method with that proposed in this
study, to achieve full automation of building footprint generation. This research will also
be combined with research on roof plane segmentation and façade parsing to further
achieve automatic 3D building reconstruction in LoD2 and LoD3 from raw geo-
graphic data.
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