
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Øivind Albrigtsen

A Web Based Scripting Environment
for Creating
and Interacting with Ray Marched 3D
Graphics.

Master’s thesis in Datateknologi
Supervisor: Michael Engel
July 2021

M
as

te
r’s

 th
es

is





Øivind Albrigtsen

A Web Based Scripting Environment for
Creating
and Interacting with Ray Marched 3D
Graphics.

Master’s thesis in Datateknologi
Supervisor: Michael Engel
July 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science





A Web Based Scripting Environment for Creating
and Interacting with Ray Marched 3D Graphics.

Øivind Albrigtsen

CC-BY 05.04.21





Abstract

This thesis presents a problem with a branch of computer graphics called ray
marching where there is a lack of accessibility and usability. This was an inter-
esting problem for me personally to work on as I have been making 3D rendering
engines as a hobby for several years, so the technical challenge of making a ren-
dering engine where most of the engine is written in shader code was interesting.
I have also been involved with the procedural art community for several years as
well. Procedural art is an art style where computer programs and mathematics
are used to make images and video. Ray marching is one of the techniques often
used for creating art, so I have seen first hand the gap between people who are
very experienced and are capable of using ray marching and those who can’t.

The thesis then details the research project that was undertaken and the software
solution developed to solve this problem. The result of the project is that a script-
ing language and corresponding scripting environment was made for the purpose
of creating and interacting with ray marched graphics. The environment presents
the user with a GUI for changing the properties of the graphics and a scripting
language that lets the user build graphics step-by-step using simpler primitives.
Some examples of graphics created using this scripting environment and the cor-
responding scripts are also included.
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Sammendrag

Denne tesen presenterer et problem innen en gren av datagrafikk kalt ray march-
ing der det er en mangel av brukervenlig og tilgjengelig programvare. Dette var et
interessant problem å jobbe med for meg pesonlig siden jeg har laget 3D grafikkmotorer
som en hobby i flere år, så den tekniske utfordringen ved å lage en grafikkmotor
der mesteparten av motoren er skrevet i GLSL var interessant. Jeg har også vært
involvert i procedural art miljøet i flere år. Procedural art er en kunstform der data-
programmer og matematikk er brukt for å lage bilder og videoer. Ray marching er
ofte brukt som en teknikk i procedural art, så jeg har vitnet den store forskjellen
mellom folk som har nok erfaring og har evner til å bruke ray marching og de som
ikke kan.

Denne tesen går så over detaljene til forskningsprosjektet og programvareløsnin-
gen utviklet for å løse problement. Resultatet av prosjektet er at et scripting språk
og tilhørende scripting miljø var laget for den hensikt å skape og interagere med
ray marched grafikk. Miljøet viser brukeren en GUI for å endre egenskapene til
grafikken og presenterer et scriptespråk som lar brukeren bygge grafikk steg for
steg ved bruk av enklere former. Noen eksempler på grafikk laget ved å bruke
denne programvaren og korresponderende script er også inkludert.
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Preface

The main motivation for this thesis is the increase in popularity of ray based ren-
dering that has taken place these last few years and the lack of accessibility hinder-
ing this. As ray based rendering techniques become more widely used there is a
need for better tooling as currently only very knowledgeable and experienced
people are able to work with this technology. Having tools that are easier to use
can also in turn speed up the adoption of these techniques as more graphical
artists become aware of the capabilities and the possible use cases.
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Chapter 1

Introduction

In this section I will outline the necessary background to put the problem in con-
text, the problem itself as I see it and how this thesis tries to solve it.

1.1 Background

Polygon rasterization has been the standard way of working with computer graph-
ics for decades. Hardware is now designed specifically to speed up polygon ras-
terization as that is what is used in 3d animation and video games.
Ray based rendering is a technique that has been used since the 60s [1]. This
way of rendering computer graphics never gained prominence even though it has
certain technical advantages over traditional polygon rendering. The main reason
for this is that creating high-fidelity 3d scenes is too difficult and rendering them
is too compute intensive. Now Graphics processing unit (GPU)s are becoming fast
enough that complex ray based scenes can be rendered in real time. And this de-
velopment is speeding up as modern GPUs are adding acceleration for ray based
rendering techniques[2].

1.1.1 Computer Graphics

Computer graphics refers to the methods for creating and manipulating digital im-
agery. In this paper the most relevant parts of computer graphics are those meth-
ods employed in real-time 3d interactive programs and pre-rendered 3d imagery
such as video games and animated movies.

1.1.2 Triangle rasterization

The most common way of representing objects to be rendered are to build them
up using vertices and edges which form triangles which combined forms a mesh,
the surface of an object. These objects can then be rendered using a technique
called triangle rasterization.

1



2 Øivind Albrigtsen: A Scripting Environment for Ray Marched 3D Graphics

Figure 1.1: Polygons before they have been rasterized.

Figure 1.2: The polygons from 1.1 rasterized using the top-left rule.

Triangle rasterization involves iterating over all the triangles to be drawn, trans-
lating the vertices positions into screen-space positions and then iterating over all
the pixels enclosed by the vertices and their edges. To ensure certain properties in
the finished image certain rules have to be followed when determining if a pixel
should be rasterized, a common one is the top-left rule [3]. Each pixel determined
to be inside the polygon is then colored based on the output of some computation
done on the GPU. This computation is described using shader code.
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1.1.3 Ray based rendering

There are several related terms used in the graphics community for a set of tech-
niques similar in some aspects. These terms are raytracing, pathtracing and ray-
marching. The core similarity between these techniques is that they use rays to
mimic, to various degrees, the behavior of photons. This is then used to determ-
ine the color of each pixel in the rendered image. Another difference from the
polygon rasterization mentioned above is that for these ray based techniques the
entire program can be inside a shader.
The lines between these different techniques are blurry and the terms are some-
times used interchangeably.

Ray tracing and path tracing

In general ray tracing means the image is rendered by tracing the path light would
take in reverse. Starting from the camera and into the scene, calculating how it
would interact with the objects to gain its color. Going in reverse is not technically
necessary, but it saves a lot of computation as most photons bouncing around in
the scene will not hit the camera and will therefore not affect the image. These
photons are excluded by starting from the camera and going in reverse.
Path tracing is a form of ray tracing where Monte Carlo methods are used as well
to more accurately simulate lighting conditions at the points the ray intersects the
scene.
To determine what object the ray will hit, a ray intersection formula is used.

As an example, a ray with direction
−→
d and origin −→o is defined as the parametric

equation in 1.1 and a sphere with center −→c and radius r is defined as 1.2. Where
−→p is a point on the sphere.

−→r (t) = −→o + t
−→
d . (1.1)

(−→p −−→c )(−→p −−→c ) = r2. (1.2)

The intersection between the ray and the sphere can then be determined by com-
bining these equations, giving us equation 1.3, and solving for t.

(−→o + t
−→
d −−→c )(−→o + t

−→
d −−→c ) = r2. (1.3)

Solving for t leads to solving a polynomial of degree 2, meaning there will be
either zero solutions meaning no intersection, one solution meaning the ray is
tangent to a point on the sphere surface or two solutions meaning the ray inter-
sects the sphere twice, once when entering and once more on exit [4]. Finding the
visible point is trivial with one solution as we already have 1.1 for determining the
ray position with a given t. When we have two solutions we need to determine
which of them corresponds to the entry point, as that is the point on the sphere
that we can actually see.
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Ray marching

Ray marching is similar to ray tracing in that we are shooting rays out from the
camera into our scene and determining how they interact with the objects. The
main difference is that, as the name implies, the ray object intersections are not
solved analytically, instead the ray is marched forward some distance until it has
hit an object. This allows for a different way of describing objects, as we can now
render any function f , where f is defined as in equation 1.4.

f : R3 −→ R. (1.4)

Of course there are properties f could have to make it more or less useful for mod-
eling objects. Usually a function that is supposed to model some discrete object
would be smooth so that it creates a surface without holes or jumps. The functions
for some basic shapes are given in [5].
These functions map each point in space to a value. This value can be viewed as
a density, like the density of a cloud varying as you move through it. The color of
the pixel generating this ray would then be determined by adding up the densities
at each step as we march through the cloud. This would give us a cloud that is
translucent in some areas and opaque in others, depending on the thickness of
cloud blocking our ray.
This could be made even more realistic by shooting more rays out at each point
while we are marching through the cloud. We could then take into account the
light transfer happening inside the cloud itself.
Fig 1.3 shows the four steps of the ray marching process.

• 1. Shooting the ray through the volume described by f .
• 2. Determining the values at each point the ray marches through.
• 3. Calculate each sampled points color contribution.
• 4. Combine the calculated values to get the final pixel color.

Figure 1.3: Four steps of coloring with ray marching. By "Florian Hofmann" li-
censed under CC BY-SA 3.0

A different way to use f is to think of a threshold for the density function which
would then describe an implicit surface enclosing the area with lower density than
the threshold.
The concept is easier to demonstrate by removing one dimension and looking at
it as a familiar 2d height map, like the one shown in fig 1.4. The 2d height map
is created by a function g, g : R2 −→ R and we can draw height curves on it by
changing the color for height values close to the height value h we want a height

https://creativecommons.org/licenses/by-sa/3.0/
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Figure 1.4: A standard 2d map of a
landscape.

Figure 1.5: The 2d map with height
curves.

curve for. This means finding the points where g(x , y)≈ h. In fig 1.5 these height
curves are drawn in red for a few different values of h.

Figure 1.6: A height curve filled in
red.

Figure 1.7: The height curve with
colors and arrows showing the
gradient.

By filling in one of these height curves, like in 1.6, we get some 2d shape and
since we have g we can find the gradient of g, ∇g. ∇g : R2 −→ R2 is a map-
ping from each point in the image to a vector pointing in the direction of greatest
increase with a magnitude equal to the rate of increase in that direction [6]. In
1.7 ∇g has been used for the fill color and plotted as lines for some points on
the boundary of the shape. The important insights here is that this height-curve-
enclosed shape would be a 3d object when applying the same idea to f and that
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these arrows, in f , would correspond to the normal vectors of the surface of the
3d object.

The last piece of the ray marching puzzle is to speed up the marching process.
Until now we have described a system where the ray is marched forward in fixed
increments and tested against functions describing the scene. This is of course a
slow way of doing things. Instead what we want is to be able to determine some
lower bound where no object can be hit. That is, a distance d from the current ray
position where we know we can move without interacting with anything.
To achieve this we can impose a requirement on f , that it needs to be a distance
function. A distance function is also a function R3 −→ R, but instead of describing
a density it describes a distance to a surface.

sphere(−→p ) = ||−→p || − r. (1.5)

1.5 is the distance function for a sphere centered at (0, 0,0) with radius r. This is
also a signed distance function as it will give negative distances when we are in-
side the object. When ray marching a scene with this sphere object we would pass
in our current ray position as −→p and the result would tell us how far it is safe to
move. Moving any further than this safe distance could put us inside the sphere.
If the scene has multiple of these distance functions describing multiple objects
we would take the minimum of these distances as the maximum safe distance to
move. Once a distance function returns ≈ 0 for our ray position, we know that we
have hit a surface.

So now we have a way to efficiently ray march scenes described using distance
functions and these functions have gradients that can be used to calculate color
information. That is all the background needed for the general implementation
this ray marcher.

1.2 Problem

Since we’ve been in a polygon based world for so long both our hardware and
software has been built around it. Using a ray-based renderer opens many new
possibilities, in terms of the complexity of scenes and the fidelity of effects that can
be employed [7]. But the community of computer graphics creators, hobbyists and
up, does not have easy access to play with this technology at a fundamental level.
This can lead to interesting ideas that are hard to or impossible to achieve with
polygon rasterization simply never coming to fruition because the artist didn’t
have the tools available to create what they envisioned.

1.2.1 Existing software

There are a few existing software solutions for working with ray marching, most
similar to this project is Shadertoy.com[8].
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Shadertoy

Shadertoy is a website for playing around with and experimenting with shaders,
hence the name. It is a creation of Inigo Quilez and Pol Jeremias. It’s not primar-
ily made for ray marching, all kinds of shader code can be written and executed.
People make all kinds of graphical effects, but the ray marching techniques are
among the most popular [9].

Figure 1.8 shows what the user sees when interacting with a shader. On the left
side is the actual render output and on the right you can see the shader code.
There is usually very little to no interactivity with the render window. You can’t
use the mouse to click things or look around and there is no way to move the cam-
era freely. In this particular scene, the second most popular scene on the site [10],
the camera rotates around the shapes in the middle on a predetermined track and
clicking with the mouse changes your position along that track.

Figure 1.8: This is what a user sees when interacting with a shader using shader-
toy.com.

This means that the main way for a user to interact with this scene is by directly
modifying the shader code on the right. Code listing 1.1 shows a representative
snippet of the 632 line long shader program. The program in its entirety is in-
cluded in appendix A.
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Code listing 1.1: Lines 200 to 223 of the shader code.

1 // vertical
2 float sdCone( in vec3 p, in vec2 c, float h )
3 {
4 vec2 q = h*vec2(c.x,-c.y)/c.y;
5 vec2 w = vec2( length(p.xz), p.y );
6
7 vec2 a = w - q*clamp( dot(w,q)/dot(q,q), 0.0, 1.0 );
8 vec2 b = w - q*vec2( clamp( w.x/q.x, 0.0, 1.0 ), 1.0 );
9 float k = sign( q.y );

10 float d = min(dot( a, a ),dot(b, b));
11 float s = max( k*(w.x*q.y-w.y*q.x),k*(w.y-q.y) );
12 return sqrt(d)*sign(s);
13 }
14
15 float sdCappedCone( in vec3 p, in float h, in float r1, in float r2 )
16 {
17 vec2 q = vec2( length(p.xz), p.y );
18
19 vec2 k1 = vec2(r2,h);
20 vec2 k2 = vec2(r2-r1,2.0*h);
21 vec2 ca = vec2(q.x-min(q.x,(q.y < 0.0)?r1:r2), abs(q.y)-h);
22 vec2 cb = q - k1 + k2*clamp( dot(k1-q,k2)/dot2(k2), 0.0, 1.0 );
23 float s = (cb.x < 0.0 && ca.y < 0.0) ? -1.0 : 1.0;
24 return s*sqrt( min(dot2(ca),dot2(cb)) );
25 }

This way of interacting with the shaders makes it very hard for other people to
modify or build upon them. The shader exposes very complicated GLSL code dir-
ectly to the user and complicated shaders often use many clever tricks to increase
performance. These tricks are not hidden behind some abstraction layer so that
you can interact with the rest of the code without understanding the optimiza-
tion tricks used. Instead they are directly embedded in the code and very closely
coupled to the functions describing the scene.

As an example of a trick used to optimize a scene, the shader in 1.8 groups the
objects in the middle into different bounding boxes. A bounding box is a tool of-
ten used for collision detection, you place a bounding box around the objects you
want to check for collision against and then you can use, in this case, a box dis-
tance function to see how far away from the box you are. This saves computation
as you now only check for collision against a single box until you are inside that
box then you start checking against the grouping of objects inside.
This means that when a user wants to, for example, move the torus up a bit. They
would locate the code that calls the torus function.
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Code listing 1.2: Code calling the torus function.

1 // bounding box
2 if(sdBox(pos-vec3(0.0,0.3,-1.0),vec3(0.35,0.3,2.5))<res.x)
3 {
4 // more primitives
5 res = opU(res, vec2(sdBoundingBox(pos-vec3(0.0,0.25, 0.0),
6 vec3(0.3,0.25,0.2), 0.025), 16.9));
7 res = opU(res, vec2(sdTorus((pos-vec3(0.0,0.80, 1.0)).xzy,
8 vec2(0.25,0.05)), 25.0));
9 res = opU( res, vec2( sdCone(pos-vec3(0.0,0.45,-1.0),

10 vec2(0.6,0.8),0.45), 55.0));
11 res = opU(res, vec2(sdCappedCone(pos-vec3(0.0,0.25,-2.0), 0.25, 0.25, 0.1
12 ), 13.67));
13 res = opU(res, vec2(sdSolidAngle(pos-vec3(0.0,0.00,-3.0),
14 vec2(3,4)/5.0, 0.4), 49.13));
15 }

Code listing 1.2 shows line 325 to 334 where the torus signed distance func-
tion is called. It’s not clear what all the numbers mean as they are just exposed
to us without much context, but one can reason that the first argument to the
sdTorus function is its position since that is where the "pos", meaning "current ray
position", variable is used. So lets modify the y component of the position and see
what happens.

Figure 1.9: Torus with y position
0.3.

Figure 1.10: Torus with y position
0.8.

Fig 1.9 shows the normal full torus at y position 0.3 and in fig 1.10 the torus is
moved to y position 0.8 and has been cut in half by a bounding box. This is where
a deeper understanding of the shader code is required to make modifications. A
person seeing this code for the first time might assume that it is enough to expand
the bounding box on line 326 to make the torus whole, but this does not work. In-
stead what is required is to change a different bounding box shown in code listing
1.3 on line 401.

Code listing 1.3: Bounding box cutting the torus in half.

1 vec2 tb = iBox( ro-vec3(0.0,0.4,-0.5), rd, vec3(2.5,0.41,3.0) );

After changing the y of this bounding box the torus becomes visible as expected
1.11.

The Shadertoy tool is built by and for people who are very knowledgeable
about shader programming, it is therefore not built with ease of use in mind.
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Figure 1.11: Torus with y position 0.8. The torus is no longer cut in half.

This being the most popular tool for making and sharing these types of graphics
means there is a high barrier of entry into the field. As GPU computation power
increases and the computation costs of ray marched graphics becomes less and
less significant there will be a need for a tool with lower barriers of entry.

1.3 This thesis

This paper details my software solution to this problem. It is a web-based scripting
environment for creating, interacting with and sharing ray marched graphics. The
two key aspects of the software was for it to be widely available and easy to use.

1.3.1 Widely available

The software being widely available so that anyone can participate in creating,
modifying or simply viewing other peoples creations was a core requirement from
the start. This requirement made decisions relating to the technology stack clear.
The software had to be platform independent, this would mean using some 3d
framework that works on all platforms. This excluded using any OS specific Ap-
plication programming interface (API) like DirectX or Metal as these only work on
windows and OSX respectively and therefore multiple front-ends for the software
would have to be written. Instead something like OpenGL was considered, as this
would allow me to write the graphics portion of the program only once.
Having the software be platform independent is one step towards higher availab-
ility, but it would still require a good bit of work to target, compile and distribute
for all possible platforms. To eliminate this issue i decided to use WebGL instead.
This makes distributing the application easy, it can be hosted on a website and
any modern browser on any OS can access and use it. More technical details of
the solution are given in Chapter 3 and Chapter 4.

1.3.2 Easy to use

The effort to make the software easy to use is focused on to main aspects. It should
be easy to create a ray marched scene and any scene created in the tool should
have a high degree of modifiability and interactivity by default.
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To make it easy to create scenes and make sure they fulfill the need for modi-
fiability and interactivity a layer of abstraction was needed. Instead of interacting
directly with GLSL shader code the user manipulates objects that are in turned
converted to GLSL for them.

The interactivity and modifiability exists on two levels. Interactivity is created
by the fact that all scenes by default have a movable camera. The camera doesn’t
have to be specified manually in shader code every time a user wants a movable
camera in their scene. Instead if the creator wants to specify certain attributes of
the camera they can do so in the script. Also creating interactivity is the fact that
attributes of objects in the scene are available to be changed via a simple Graph-
ical user interface (GUI) and the effects are visible in real-time.
Modifiability is achieved by the abstraction of raw shader code into discrete objects
and a scripting language surrounding them. This means that the scene definition
is easy to read as it just contains lines adding objects and lines scripting their
behavior in javascript.





Chapter 2

Requirements

This section will detail some of the requirements this software was developed
against and the development methodology used.

2.1 Methodology

I will not go into great detail explaining my development methodology as this was
a research project and requirements and development practices changed rapidly
throughout the project. The development can be characterized as agile in that
it largely consisted of solving and creating new issues on the fly instead of any
lengthy planning process [11]. Following a stricter methodology would have ad-
ded a lot of extra managerial work to the project and as I was only one person
working it felt unnecessary.

2.2 Functional requirements

Interaction

The software will allow to user to interact with the scene being displayed.

Input

The software will take user input text to write the scripts and keyboard and mouse
movement to move the camera around the scene.

GUI

The software will display GUI elements to show the state of the properties of the
objects in the scene.

13
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Feedback

The software will return any error messages generated when running the script.

2.3 Non-functional requirements

Interactivity

The system must allow real time interaction, meaning the changes the user makes
should take effect immediately without any long delay like a compilation step. The
change should appear within the time between frames, i.e within 33.34ms.

GUI

The GUI elements presented will be tailored to the type of the property being
represented. So for example editing a color will display a color picker element.

Feedback

The error messages generate when running the script shall be displayed in the
"Error and Warnings" window.



Chapter 3

Language Design

This section will go into more detail about the scripting language created for this
software. The language has certain semantics and syntax to use these semantics
as a base. On top of this base it also supports JavaScript as a sort of embedded
scripting language within itself.

The language is designed to be easy to use and to allow a new user to quickly
get objects on screen. Once they have something showing it also allows them to
easily add and modify the properties of the things on screen.

3.1 Semantics and syntax

This section will go over all the core semantics of the language and the related
syntax. The semantics can be split into 3 main parts. Shape semantics, those se-
mantics describing the actual shape of object, material semantics, describing the
material of the object and data semantics, describing data to be used to shape or
color objects.

In general to use these semantics you start with a base object, this object then
affords certain properties that can be optionally added and given values.

Shape and material semantics are used directly when creating a new object
for the scene.

Code listing 3.1: Syntax for creating a sphere.

1 object("My␣Sphere")
2 .shape(sphere)
3 .material(singleColored);

Each shape has some shared set of properties all shapes have and some that are
unique to itself. Materials mostly have unique properties. To access these proper-
ties a builder-like syntax is used where the properties are simply added after the
shape or material. There is no significant whitespace or newlines, the indentation
style just makes it easier to read.

15
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Name Data

float [number]
vec2 [number, number]
vec3 [number, number, number]
color [number, number, number] (number in range 0-1)
string string

function function

Table 3.1: Table describing how types in our language map to actual JavaScript
types/objects.

Code listing 3.2: Shape syntax for creating a sphere with a position and radius.

1 object("My␣Sphere")
2 .shape(sphere)
3 .position()
4 .radius()
5 .material(singleColored);

These properties are split into two groups, variable and static. Variable properties
can vary without recompiling the scene and can be modified in the GUI or by
some JavaScript running each frame. Static properties have to be hardcoded in
the shader code and can only be changed by recompiling. Position and radius
are examples of variable properties. What texture to use is an example of a static
property.

Code listing 3.3: Setting a javascript function to update the position of a sphere.

1 object("My␣Sphere")
2 .shape(sphere)
3 .position()
4 .setUpdate((dt,ft) => {
5 return [Math.sin(ft), 0, 0];
6 })
7 .radius([2])
8 .material(singleColored);

Listing 3.3 shows a sphere with a JavaScript function updating its position prop-
erty every frame and a default value of 2 for the radius property. The values of
these properties are always one of the types outlined in table 3.1. Name is the
name of the datatype and Data is the JavaScript data it holds.

3.1.1 Shape

The shape of an object is the function that determines whether or not any point in
space is inside or outside the object. All shape functions have a variable property
called position that takes a vec3.
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Sphere

Property Type Variable Description

radius float yes
Determines the radius
of the sphere.

UVOffset vec2 yes

Determines what off-
set to add to the
spheres UV coordin-
ates.

Box

Property Type Variable Description

size vec3 yes
Determines the size of
the box from its cen-
ter.

UVOffset vec2 yes
Determines what off-
set to add to the box’s
UV coordinates.

BoxFrame

Property Type Variable Description

size vec3 yes
Determines the size of
the box from its cen-
ter.

thickness float yes
Determines the thick-
ness of the boxes
making up the frame.
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Height map

Property Type Variable Description

size vec3 yes
Determines the size of
the box surrounding
the height map.

stepSize float yes

Determines how far
to step the ray when
marching the height
map.

thickness float yes
Determines the thick-
ness of the surface of
the height map.

data string no
Reference to some
Data that describes
the height map.

UVOffset vec2 yes
Determines UV offset
to add to the UV co-
ordinates.

HexagonalPrism

Property Type Variable Description

width float yes
Determines width of
the prism.

depth float yes
Determines the
dept/how long the
prism is.

InterpolatedShape

Property Type Variable Description

shapeA object no
One of the objects to
interpolate between.

shapeB object no
One of the objects to
interpolate between.

weight float yes

Determines how
much weight to give
to shape A, shape B
is then weighted at
1-weight.
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Torus

Property Type Variable Description

thickness float yes
Determines the thick-
ness of the torus ring.

size float yes

Determines the size of
the torus, i.e the dia-
meter of the whole
object.

3.1.2 Material

The material of an object is the function that determines what color to give every
point on the surface of the object.

NormalColored

Colors each pixel of the shape based on the normal at that pixel. This material has
no properties.

PhongShaded

Property Type Variable Description

color vec3 yes
Determines the color
used in the Phong
shading model [12].

SingleColored

Property Type Variable Description

color vec3 yes
Determines the color
of the material.

SquaresShaded

Produces a checkerboard pattern on a shape. This material has no properties.

Textured

Shows a texture or set of texture on the shape. By supplying only the "texture"
property only a single texture will be used. If instead any combination of "ambi-
ent", "specular", "diffuse" and "shadow" is supplied the object will use a lighting
model that takes into account ambient, specular and diffuse lighting as well as
shadows.
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Property Type Variable Description

texture string no
Used to show only a
single texture with no
lighting effects.

ambient float yes
Ambient determines
the strength of the
diffuse texture.

specular string no
Texture used fr spec-
ular reflections of in-
coming light.

diffuse string no
The diffuse color of
the shape.

shadow string no

If supplied this tex-
ture is displayed on
the part of the shape
that is in shadow.

UVColored

The color at each pixel is the shapes’ UV coordinates at that pixel. This material
has no properties.

3.1.3 Data

Data is used for things that can’t easily be transferred using the uniforms system
like the other properties does. Data is used by passing in a string referencing the
name of some data object.

Texture2D

A Texture2D is a data object holding a 2d texture, this will appear as a sampler2d
in the shader. There are two main ways of constructing a Texture 2d, fromCanvas
constructs one using the canvas2D API and fromFetch constructs one by fetching
some data using a HTML img element.

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
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FromCanvas

Property Type Variable Description

setInit function no

Set the initial state of
the texture. The func-
tion receives the with
and height of the tex-
ture and a reference
to a canvas 2d context
that can be used for
drawing on the tex-
ture.

setUpdate function no
Same as setInit but is
called every frame to
update the texture.

FromFetch

Property Type Variable Description

setInit function no

Set the initial state of
the texture. The func-
tion receives a call-
back function setSrc
used to set the source
data of the texture.
This can be a URL
pointing to some im-
age.

setUpdate function no
Same as setInit but is
called every frame to
update the texture.

3.1.4 Other

There are also some features available via free functions that can be used any-
where in the script. Table 3.2 lists all of these functions and how to use them.

3.2 Javascript

JavaScript is a dynamic scripting language that runs in the browser. As websites
has added more features and in some instances replaced desktop applications
JavaScript has become more and more used.
The scripting language leverages JavaScript to expand what is possible to create
using the language. In general when a property is updated by calling setUpdate
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Name Usage

setSkybox

Takes either a color as an array [r, g, b] or a ref-
erence to a texture as a string and uses that as
the skybox. Can only be called once, to update
the skybox during runtime assign a texture to
the skybox and update the texture instead.

setCameraPosition
Takes an array [x, y, z] and sets the camera’s
position to those coordinates.

setLightPosition
Takes an array [x, y, z] and sets the light’s pos-
ition to those coordinates.

lookAt
Takes an array [x, y, z] and sets the camera’s
rotation so that it looks at those coordinates.

onUpdate

Function for registering functions that will be
called each frame. Takes in a function that takes
the delta time and the frame time and returns
nothing. Multiple functions can be registered
by calling onUpdate multiple times.

Table 3.2: Table describing how to use the built in functions.

and passing in a JavaScript function to run every frame, that function has access to
any computation a normal JavaScript function running in the browser would. This
means that end users are free to use preexisting JavaScript libraries to manipulate
the objects in the scene.

3.3 Usage

In this section we will be combining the concepts discussed in the previous two
sections two create some scenes. That demonstrate some, but not all, of the cap-
abilities of the language.

3.3.1 Multiple primitives

No special syntax is required to add multiple primitives in one scene, after finish-
ing a call to create an object a second one can be created right after. When this is
done the primitives in the scene are treated as a union of the functions. Fig 3.1 is
an example showing 4 basic primitives in a single scene, the entirety of the code is
visible on the right. A video of this scene is included as multiple-primitives.mp4.
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Figure 3.1: Multiple primitives in a scene.

3.3.2 Primitives occupying the same space

The environment is meant to be easy to use and so the default behavior should
be what someone inexperienced with graphics would expect. So when placing
multiple objects in the same space they should behave like real physical objects
when they can. Like when the parts that intersect are empty interiors as can be
seen with the box frames. When the solid parts intersect they will become a new
object, forming the shape that is the union of both surfaces.

Figure 3.2 shows a screenshot from a scene where objects are inside each other.
A video of this scene is included as primitives-inside.mp4 in the delivery and the
full code can be found in listing C.2.
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Figure 3.2: Primitives that intersect each other.

3.3.3 Primitives moving in a coordinated way

Using the scripting capabilities to set the position and other properties of the ob-
jects means it’s easy to coordinate them. Figure 3.3 shows a still image from the
video primitives-coordinated.mp4 that shows 3 different primitives moving and
changing their properties in line with each other. The camera is also moved auto-
matically using the setCameraPosition and lookAt functions. The code for this scene
is included in listing C.3. The positions are coordinated such that the sphere-box

Figure 3.3: Primitives that move and change in a coordinated fashion.

moves through the hole of the torus. The size of the box frame is coordinated



Chapter 3: Language Design 25

with the spheres movement so that it "clamps down" on it as it passes through.
The weight property of the sphere-box is in line with its movement so that it is a
sphere when passing the torus and a box when passing the frame.

3.3.4 Multiple textures from URLs

Adding textures via URLs is very easy to do as demonstrated in this scene, this is
a feature of running in the web. In this scene a sphere is textured to look like the
earth using 3 textures for the surface. An image of the earth as the diffuse texture,
an image of earth at night as the shadow texture and an image with the worlds
oceans colored white and the land colored black as the specular texture. There
is also an image of the stars in the sky used as the skybox. Figure 3.4 shows an
image of the scene.

Figure 3.4: Scene where multiple textures fetched from the web are in use at
once.

The full code can be found in listing C.4 and two videos of the scene are
included in the delivery, texture-1.mp4 and texture-2.mp4.
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3.3.5 Loading a JavaScript library

The fact that the scripting language is being run with a call to the JavaScript func-
tion eval means we have access to all of JavaScript, including eval itself. This makes
the scripting environment incredibly flexible as we can now load any JavaScript
library as plain text and use it in our environment.
In this example usage we load a Perlin noise [13] library, that is a library that
generates smooth noise, that is being hosted as a plain text file. We then eval it
and use it to texture a sphere. Figure 3.5 shows an image of the scene.

Figure 3.5: A texture created with a Perlin noise library loaded from the scripting
environment.

The full code can be found in listing C.5 and a video of the scene is included
in the delivery as load-library.mp4.
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Implementation

This section lists the main tools and technologies used in this project and explains
for what purpose they were used.

4.1 Programming languages

There was three programming languages used in this project, TypeScript, JavaS-
cript and GLSL. The main one used is TypeScript. This is what the main application
is written in, the GLSL code generator, the scripting language and the renderer.

4.1.1 TypeScript

TypeScript is a language based on JavaScript [14], the main difference is that
while regular JavaScript is dynamically typed and interpreted, TypeScript has a
static type system and is compiled to JavaScript. This is a great advantage when it
comes to working on larger projects as static typing lets you catch errors at com-
pile time instead of runtime. It is also helpful when a project has multiple modules
that does very different work but needs to work together like this one. This is be-
cause the static typing lets you define the interfaces that the modules will use to
interact and it helps make sure you follow them.

The main TypeScript portion of the project is divided into 4 sections. The compiler,
the language, the scene and the renderer. Fig 4.1 shows how this is structured.
The res folder is just a general resource folder for the project, that’s where fonts
and test images are placed.

Compiler

The compiler part of the project is responsible for taking a scene with objects in
it and compiling it to valid GLSL code with certain constraints. This generated
code needs to have a data binding to the scene that is still being manipulated in
JavaScript. This is done by passing the variable properties of the scene itself and

27
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Figure 4.1: The structure of the project.

the objects in the scene to the shader via uniforms each frame.
A code example of how the compiler’s buildShader function is used is given in
listing 4.1. This function returns a string containing the correct fragment shader
code for the scene. An example of this generated GLSL code can be fund in ap-
pendix B.

Code listing 4.1: Code example creating a shader from a scene.

1 //Turn the scene into a fragment shader.
2 const fragment = buildShader(scene, gl.canvas.width, gl.canvas.height);
3 const fragShader = compileShader(fragment, gl.FRAGMENT_SHADER, gl);
4 //Vertex shader always uses same shader code, no need to generate.
5 const vertShader = compileShader(vertex, gl.VERTEX_SHADER, gl);
6 //Create a program to use the shaders.
7 this.program = gl.createProgram();
8 //Attach and link.
9 gl.attachShader(this.program, vertShader);

10 gl.attachShader(this.program, fragShader);
11 gl.linkProgram(this.program);

Language

The language module deals with the actual scripting language the user uses. Fig
4.2 shows the content of the language module. The language works by using
JavaScript’s eval function with a context that has some extra functions.
Eval is a function in JavaScript that takes some string input and runs it, or eval-
uates it, as JavaScript code. The code execution is run using the enclosing scope.
This means that we can give the script being ran access to variables and functions
by declaring new aliases that points to these variables and functions in the enclos-
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Figure 4.2: The structure of the language module.

ing scope of the call to eval.
The functions and variables we give eval access to are what makes up the script-
ing language. The primitives, like sphere, are variables in the scope that actually
points to builders that can build the correct GLSL code based on what proper-
ties the user wants active and the values of those properties. These builders are
made in the BuildableShapes.ts, BuildableTextures.ts and BuildableMater-
ials.ts files.

Renderer

The renderer is in the top-level file Renderer.ts and it is responsible for actually
rendering the scene. To render the scene it has to use the buildShader function
to create the correct fragment shader for the scene as shown in listing 4.1. As can
be seen from this code sample a reference to a WebGL context is also needed, so
this needs to be passed to the renderer as well.
There are 3 steps to this process, each represented by a function on the renderer.
The first step is the compile step, this function takes a WebGL context and a scene
and creates a shader program representing the scene for the context. The next
step is attach, this is where a target WebGL context is given. This target context is
where the scene will be drawn. The final step is update, this updates the uniforms
in the shader so that they have the latest data.
After these steps are complete the renderer’s draw function can be called to ac-
tually run the shader, ray march the scene and output it the the specified target.
This update −→ draw step then happens once every frame for the entirety of the
applications lifetime.
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Scene

The scene is a class that holds the data describing the graphical objects to be
rendered and functions to update them. Each scene has a camera, list of objects,
a list of properties and a list of textures. All of these are used by other parts of
the program in different ways. The language builds the scene and the objects,
properties and textures to put in it, the compiler uses it to generate GLSL and the
renderer uses it to update the shader and to draw the graphics described by the
scene.

4.1.2 JavasScript

JavaScript is used in two places in the project. As a scripting language within
the language and for controlling the GUI as that is loaded from an online source
without type information.
The GUI code can be found in the file GUI.js. This file is responsible for taking a
scene and rendering controls to modify the properties of the objects in the scene,
a window showing errors or warnings and the script input tabs where the user can
enter text. When the user clicks the run button this GUI calls a callback function
that passes the script text back to the entry point of the application. From there
the compiler and lang modules and the renderer is used to run the script, generate
a scene and then render it.

4.1.3 GLSL

GLSL is a shading language developed by OpenGL ARB and now maintained by
the Khronos group [15]. This project fundamentally revolves around generating
GLSL code with certain features based on simpler constructs in a higher level
language. This means that a lot of GLSL was written directly but most is generated
at runtime.

4.2 Libraries

The software is mainly original code using no third party libraries or code, but
for the user-facing GUI i decided to go with a simple framework to make the
development process easier.

4.2.1 Dear ImGui js

Dear ImGui is a renderer agnostic immediate mode GUI library written in c++
[16]. Immediate mode refers to the style used when defining the GUI. The concept
of an immediate mode UI vs retained UI is very big and blurry. A good intro can be
found at the wiki article [17]. A short summary of how it differs from other GUI
libraries is that it limints the amount of state we have to keep track of. Dear ImGui

https://github.com/ocornut/imgui/wiki/About-the-IMGUI-paradigm
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exposes very easy to use functions instead that takes care of managing state and
polling for events etc. A code snipped from the projects GitHub showing how to
create some text, a button and a slider in Dear ImGui is given in listing 4.2.

Code listing 4.2: Code example creating some GUI elements in Dear ImGui.

1 ImGui::Text("Hello,␣world␣%d", 123);
2 if (ImGui::Button("Save"))
3 MySaveFunction();
4 ImGui::InputText("string", buf, IM_ARRAYSIZE(buf));
5 ImGui::SliderFloat("float", &f, 0.0f, 1.0f);

Dear ImGui js is a JavaScript port of the project that uses a WebGL backend.
This was used to create the main GUI that the user interacts with. This consists of
two main parts. The script input tabs and the objects window.

Figure 4.3: Main GUI

The script input is a set of tabbed text input fields where the user can enter
scripts and a button to run them. The window is movable and in fig 4.4 it can be
seen on the right side.

The objects window is a window showing all the objects in the scene and their
properties that can be modified in real time. There are different GUI elements
depending on the type of the variable for easy interaction. In fig 4.5 the color
picker for the sphere object is visible and several other elements to adjust things
like size and position can be seen as well. All of these GUI elements are standard
ones that are part of the Dear ImGui js library.

https://github.com/ocornut/imgui
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Figure 4.4: The script input window can be seen on the right.

Figure 4.5: The objects window is shown to the left.

4.3 Tools

4.3.1 Github

Github was used for version control during the development of the project. The
final project source is hosted here.

https://www.github.com
https://github.com/formalatist/A-Web-Based-Scripting-Environment-for-Creatingand-Interacting-with-Ray-Marched-3D-Graphics
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4.3.2 Chrome

Chrome is the browser with the most support for needed WebGL features. In par-
ticular the shaders use GLSL version 300 which is a WebGL2 feature, this version
of GLSL has different keywords from the old version 100. WegGL2 also allows
more texture types in the shaders which is helpful during testing and develop-
ment, it also has certain useful extensions by default. A list of useful additions in
WebGL2 can be found here. Because of this Chrome was the main browser used
for the entirety of the development, but other browsers has also been tested and
the software also works on Firefox version 84 and Opera version 77.

https://webgl2fundamentals.org/webgl/lessons/webgl2-whats-new.html
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Deployment

5.1 Clone

The code for this project is open source and available here. You can clone it to you
local machine either by using git and cloning the project via the URL on github
or by navigating to the project in a browser and downloading a zip archive. This
archive can then be unzip to a folder where you want to install and build the
project.

5.2 Install

To install the software NPM is needed. Simply running

Code listing 5.1: NPM command to install dependencies

1 npm install

will install all necessary dependencies required for building the project. The pro-
ject also depends on libraries hosted online that does not need to be installed to
deploy.

5.3 Build

The project is written in TypeScript, JavaScript and some GLSL. The TypeScript
portion has to be compiled to JavaScript before it can be run. This is done using
the TypeScript compiler. Both Javascript and the GLSL code do not require any
further modification before they can be run in a browser. After this compilation
all the code has to be combined, or bundled, so that it can be referenced as a single
file in HTML. This is all done using Webpack. Webpack is configured to run tsc on
all referenced TypeScript files and include them in the bundle when running the
command in listing 5.2.

35
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Code listing 5.2: Running the build script with NPM from the command line

1 npm run build

After building you have to place the index.html file into the dist folder before you
open it.

5.4 Run

To run the compiled project simply open the run script as shown in listing 5.3, this
will start a server locally that only you can access.

Code listing 5.3: Running the start script with NPM from the command line

1 npm run start
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Evaluation and Discussion

6.1 Evaluation

The performance of the software is depended on the hardware and OS used as
well as what version of Chrome so this evaluation is only for the specific hardware
and software the evaluation was performed with. Changing any of these proper-
ties can affect the result.
The evaluation was performed on a laptop with an Intel Core i7-6700HQ at 2.60GHz
CPU, 8 GB RAM and a Nvidia GeForce GTX 960M GPU. The OS was Windows 10
Home build 19041 and the browser was Chrome version 91.

Interactivity

The software easily manages to stay at withing the frame times required for 30
fps when showing the least intensive scene, a scene with only a sphere in it. As
more objects are added however the fps will decrease, how many objects that can
be added will depend on how powerful the hardware running the software is and
how complex the objects are.
If we keep the objects as simple as possible and give them no properties the com-
piler will have a much easier job and we can get to 252 objects before we run into
Error: expression too complex. Using these objects without any properties we
are still staying within our frame time budget of 33.34ms. The script for this scene
is in listing 6.1 and the GLSL generated is included in the file 252-spheres-glsl.txt.
This however is not a very interesting scene, as there are no properties to change
so the spheres are completely static and in the same spot.

Code listing 6.1: Code for creating 252 spheres.

1 const numberOfSpheres = 252;
2 for(let i = 0; i < numberOfSpheres; i++) {
3 create(object(""+i)
4 .shape(sphere)
5 .material(singleColored));
6 }

37
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If we then add a single property to the spheres, position in this case, the num-
ber changes to about 40 before rendering starts taking too long. It should be noted
that there are other factors affecting the frame rate too, if we move the camera
close to a single object so that it covers the entire screen that will of course dra-
matically increase the performance as way fewer ray marching steps has to be
taken for each pixel. The code for the scene can be found in listing 6.2 and the
full GLSL is in the file 40-spheres-glsl.txt.

Code listing 6.2: Code for creating 40 spheres with a position property initialized
to a random position.

1 const numberOfSpheres = 40;
2 for(let i = 0; i < numberOfSpheres; i++) {
3 create(object(""+i)
4 .shape(sphere).position([Math.random()*10-5,
5 Math.random()*10-5,
6 Math.random()*10-5])
7 .material(singleColored));
8 }

The next thing to look at is the impact on the frame rate of manipulating these
properties. Listing 6.3 shows the code to create the scene, it gives each sphere a
random start position and over time moves them into the center. This scene could
only handle about 20 spheres before the frame rate dipped slightly below 30 fps,
however since the spheres are very spread out at the start and then they all move
to the same spot the effects of the complexity of the scene on the frame rate is
noticeable too. When the spheres are very close together the frame rate increases
as the number of ray marching steps required decreases.

Code listing 6.3: Code for creating 20 spheres with a position property being
updated.

1 const numberOfSpheres = 20;
2 for(let i = 0; i < numberOfSpheres; i++) {
3 const start = [Math.random()*10-5,Math.random()*10-5,Math.random()*10-5];
4 create(object(""+i)
5 .shape(sphere)
6 .position()
7 .setUpdate((dt,ft)=>[start[0]*(Math.cos(ft)*0.5+0.5),
8 start[1]*(Math.cos(ft)*0.5+0.5),
9 start[2]*(Math.cos(ft)*0.5+0.5)])

10 .material(singleColored));
11 }

6.2 Discussion

How did the process work

Being that the project focused on doing something new in the space of graphics it
required a good amount of research at the start of the project. This also meant that
my vision of the end product changed a good bit during this research and exper-
imentation phase of the project. However the core problem statement and what
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I wanted to achieve did not change much, it was mostly the how that changed
underway as I learned more.
As an example at the start of the project I tried to make a system where I would
create GLSL and corresponding JavaScript so that the ray marching could be done
both on the GPU and on the CPU. This would give the benefit of easy random ac-
cess into the scene. This access could be used to automatically generate bounding
boxes for the scene or to allow users to click objects to select them. This turned
out to be a bit difficult and it ended up being too time consuming to implement
with how I set the language up.

Choices made

A choice that was made early on was to target WebGL, I think this was a very
good decision, but it did cause some problems later on. One major problem being
that using WebGL gives you less control over the GPU vs using a native API and
making a normal desktop application. This led to me running into the issue of
long compile times early on, as modern browsers will crash if you take too long
to compile. This issue is compounded by two facts of WebGL in a browser. One is
that shader source has to be compiled on the users computer, you are not allowed
to run pre-compiled code sent over the web on the GPU. Second is that WebGL
does not support linking to other shaders, making it almost impossible to split the
code into multiple smaller compilation units.
I say almost impossible because with WebGL 2 we now have depth buffers which
means that if the bottleneck is shader compilation and not shader runtime a solu-
tion could be to split the shader into multiple shaders, each with their own ray
marching loop and their own set of objects. These would then write to the depth
buffer and use that to determine which shader’s object should be drawn when they
overlap. This would increase runtime as multiple draw calls would be needed each
frame instead of just one.

An important design decision I made was how granular to make the language.
At the one end of the spectrum I could have made something that was essentially
just a different dialect of GLSL but equally low level. On the other end of the
spectrum is what I ended up doing, which is a very high level language where
the user only has access to pre-defined primitives that each represents multiple
lines of GLSL that the user does not have granular control over. It should be men-
tioned here that via the JavaScript scripting it is technically possible for users to
add their own objects with their own GLSL code, but this is not very user friendly
as then all the guard rails of the higher level primitives are gone. A better solution
might have been to let the user somehow voluntarily step down this spectrum at
will, to obtain a slightly more granular control while still being in the easy-to-use
beginner-friendly scripting environment. I did not figure out how to achieve this.
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What I would have done differently

If I were to do this same project once more I would spend more time on making
the language more powerful to allow users to essentially write, a subset of, GLSL
in an easier more high level way. These new language features would still have to
support the out of the box modifiability and interactivity that the current system
has. With a more complex language I would also look into writing a parser for it
instead of relying on the browser’s JavaScript engine. This would also make the
goal of translating the code to both shader code and JavaScript easier.



Chapter 7

Conclusion

In this thesis project a web based software for creating and interacting with ray
marched graphics was created. This was done by creating a scripting environment
and a new high level scripting language that compiles to GLSL so that it would be
easier for beginners to use. In this scripting environment a easy to use GUI was
included to interact with the properties of the objects of the scene in an intuitive
way.
It seems clear from the examples given in this thesis that this is an easier and more
accessible way to work with ray marched graphics and in that sense the software
fulfills its goals mentioned in the introduction.

To further develop this software the next steps would be to expand the capab-
ilities of the scripting language by adding more primitives and materials, but also
by adding more granular control to make it easier to add new GLSL to the envir-
onment.
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Appendix A

Code listing A.1: Shadercode from shadertoy.com

1 // The MIT License
2 // Copyright 2013 Inigo Quilez
3 /* Permission is hereby granted, free of charge, to any person obtaining a copy of
4 this software and associated documentation files (the "Software"), to deal in the
5 Software without restriction, including without limitation the rights to use,
6 copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
7 Software, and to permit persons to whom the Software is furnished to do so,
8 subject to the following conditions: The above copyright notice and this
9 permission notice shall be included in all copies or substantial portions of the

10 Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
13 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
14 WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
15 CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
16
17 // A list of useful distance function to simple primitives. All
18 // these functions (except for ellipsoid) return an exact
19 // euclidean distance, meaning they produce a better SDF than
20 // what you’d get if you were constructing them from boolean
21 // operations.
22
23 // List of other 3D SDFs: https://www.shadertoy.com/playlist/43cXRl
24 //
25 // and http://iquilezles.org/www/articles/distfunctions/distfunctions.htm
26
27
28 #if HW_PERFORMANCE==0
29 #define AA 1
30 #else
31 #define AA 2 // make this 2 or 3 for antialiasing
32 #endif
33
34 //------------------------------------------------------------------
35 float dot2( in vec2 v ) { return dot(v,v); }
36 float dot2( in vec3 v ) { return dot(v,v); }
37 float ndot( in vec2 a, in vec2 b ) { return a.x*b.x - a.y*b.y; }
38
39 float sdPlane( vec3 p )
40 {

45
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41 return p.y;
42 }
43
44 float sdSphere( vec3 p, float s )
45 {
46 return length(p)-s;
47 }
48
49 float sdBox( vec3 p, vec3 b )
50 {
51 vec3 d = abs(p) - b;
52 return min(max(d.x,max(d.y,d.z)),0.0) + length(max(d,0.0));
53 }
54
55 float sdBoundingBox( vec3 p, vec3 b, float e )
56 {
57 p = abs(p )-b;
58 vec3 q = abs(p+e)-e;
59
60 return min(min(
61 length(max(vec3(p.x,q.y,q.z),0.0))+min(max(p.x,max(q.y,q.z)),0.0),
62 length(max(vec3(q.x,p.y,q.z),0.0))+min(max(q.x,max(p.y,q.z)),0.0)),
63 length(max(vec3(q.x,q.y,p.z),0.0))+min(max(q.x,max(q.y,p.z)),0.0));
64 }
65 float sdEllipsoid( in vec3 p, in vec3 r ) // approximated
66 {
67 float k0 = length(p/r);
68 float k1 = length(p/(r*r));
69 return k0*(k0-1.0)/k1;
70 }
71
72 float sdTorus( vec3 p, vec2 t )
73 {
74 return length( vec2(length(p.xz)-t.x,p.y) )-t.y;
75 }
76
77 float sdCappedTorus(in vec3 p, in vec2 sc, in float ra, in float rb)
78 {
79 p.x = abs(p.x);
80 float k = (sc.y*p.x>sc.x*p.y) ? dot(p.xy,sc) : length(p.xy);
81 return sqrt( dot(p,p) + ra*ra - 2.0*ra*k ) - rb;
82 }
83
84 float sdHexPrism( vec3 p, vec2 h )
85 {
86 vec3 q = abs(p);
87
88 const vec3 k = vec3(-0.8660254, 0.5, 0.57735);
89 p = abs(p);
90 p.xy -= 2.0*min(dot(k.xy, p.xy), 0.0)*k.xy;
91 vec2 d = vec2(
92 length(p.xy - vec2(clamp(p.x, -k.z*h.x, k.z*h.x), h.x))*sign(p.y - h.x),
93 p.z-h.y );
94 return min(max(d.x,d.y),0.0) + length(max(d,0.0));
95 }
96
97 float sdOctogonPrism( in vec3 p, in float r, float h )
98 {
99 const vec3 k = vec3(-0.9238795325, // sqrt(2+sqrt(2))/2

100 0.3826834323, // sqrt(2-sqrt(2))/2
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101 0.4142135623 ); // sqrt(2)-1
102 // reflections
103 p = abs(p);
104 p.xy -= 2.0*min(dot(vec2( k.x,k.y),p.xy),0.0)*vec2( k.x,k.y);
105 p.xy -= 2.0*min(dot(vec2(-k.x,k.y),p.xy),0.0)*vec2(-k.x,k.y);
106 // polygon side
107 p.xy -= vec2(clamp(p.x, -k.z*r, k.z*r), r);
108 vec2 d = vec2( length(p.xy)*sign(p.y), p.z-h );
109 return min(max(d.x,d.y),0.0) + length(max(d,0.0));
110 }
111
112 float sdCapsule( vec3 p, vec3 a, vec3 b, float r )
113 {
114 vec3 pa = p-a, ba = b-a;
115 float h = clamp( dot(pa,ba)/dot(ba,ba), 0.0, 1.0 );
116 return length( pa - ba*h ) - r;
117 }
118
119 float sdRoundCone( in vec3 p, in float r1, float r2, float h )
120 {
121 vec2 q = vec2( length(p.xz), p.y );
122
123 float b = (r1-r2)/h;
124 float a = sqrt(1.0-b*b);
125 float k = dot(q,vec2(-b,a));
126
127 if( k < 0.0 ) return length(q) - r1;
128 if( k > a*h ) return length(q-vec2(0.0,h)) - r2;
129
130 return dot(q, vec2(a,b) ) - r1;
131 }
132
133 float sdRoundCone(vec3 p, vec3 a, vec3 b, float r1, float r2)
134 {
135 // sampling independent computations (only depend on shape)
136 vec3 ba = b - a;
137 float l2 = dot(ba,ba);
138 float rr = r1 - r2;
139 float a2 = l2 - rr*rr;
140 float il2 = 1.0/l2;
141
142 // sampling dependant computations
143 vec3 pa = p - a;
144 float y = dot(pa,ba);
145 float z = y - l2;
146 float x2 = dot2( pa*l2 - ba*y );
147 float y2 = y*y*l2;
148 float z2 = z*z*l2;
149
150 // single square root!
151 float k = sign(rr)*rr*rr*x2;
152 if( sign(z)*a2*z2 > k ) return sqrt(x2 + z2) *il2 - r2;
153 if( sign(y)*a2*y2 < k ) return sqrt(x2 + y2) *il2 - r1;
154 return (sqrt(x2*a2*il2)+y*rr)*il2 - r1;
155 }
156
157 float sdTriPrism( vec3 p, vec2 h )
158 {
159 const float k = sqrt(3.0);
160 h.x *= 0.5*k;
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161 p.xy /= h.x;
162 p.x = abs(p.x) - 1.0;
163 p.y = p.y + 1.0/k;
164 if( p.x+k*p.y>0.0 ) p.xy=vec2(p.x-k*p.y,-k*p.x-p.y)/2.0;
165 p.x -= clamp( p.x, -2.0, 0.0 );
166 float d1 = length(p.xy)*sign(-p.y)*h.x;
167 float d2 = abs(p.z)-h.y;
168 return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
169 }
170
171 // vertical
172 float sdCylinder( vec3 p, vec2 h )
173 {
174 vec2 d = abs(vec2(length(p.xz),p.y)) - h;
175 return min(max(d.x,d.y),0.0) + length(max(d,0.0));
176 }
177
178 // arbitrary orientation
179 float sdCylinder(vec3 p, vec3 a, vec3 b, float r)
180 {
181 vec3 pa = p - a;
182 vec3 ba = b - a;
183 float baba = dot(ba,ba);
184 float paba = dot(pa,ba);
185
186 float x = length(pa*baba-ba*paba) - r*baba;
187 float y = abs(paba-baba*0.5)-baba*0.5;
188 float x2 = x*x;
189 float y2 = y*y*baba;
190 float d = (max(x,y)<0.0)?-min(x2,y2):(((x>0.0)?x2:0.0)+((y>0.0)?y2:0.0));
191 return sign(d)*sqrt(abs(d))/baba;
192 }
193
194 // vertical
195 float sdCone( in vec3 p, in vec2 c, float h )
196 {
197 vec2 q = h*vec2(c.x,-c.y)/c.y;
198 vec2 w = vec2( length(p.xz), p.y );
199
200 vec2 a = w - q*clamp( dot(w,q)/dot(q,q), 0.0, 1.0 );
201 vec2 b = w - q*vec2( clamp( w.x/q.x, 0.0, 1.0 ), 1.0 );
202 float k = sign( q.y );
203 float d = min(dot( a, a ),dot(b, b));
204 float s = max( k*(w.x*q.y-w.y*q.x),k*(w.y-q.y) );
205 return sqrt(d)*sign(s);
206 }
207
208 float sdCappedCone( in vec3 p, in float h, in float r1, in float r2 )
209 {
210 vec2 q = vec2( length(p.xz), p.y );
211
212 vec2 k1 = vec2(r2,h);
213 vec2 k2 = vec2(r2-r1,2.0*h);
214 vec2 ca = vec2(q.x-min(q.x,(q.y < 0.0)?r1:r2), abs(q.y)-h);
215 vec2 cb = q - k1 + k2*clamp( dot(k1-q,k2)/dot2(k2), 0.0, 1.0 );
216 float s = (cb.x < 0.0 && ca.y < 0.0) ? -1.0 : 1.0;
217 return s*sqrt( min(dot2(ca),dot2(cb)) );
218 }
219
220 float sdCappedCone(vec3 p, vec3 a, vec3 b, float ra, float rb)
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221 {
222 float rba = rb-ra;
223 float baba = dot(b-a,b-a);
224 float papa = dot(p-a,p-a);
225 float paba = dot(p-a,b-a)/baba;
226
227 float x = sqrt( papa - paba*paba*baba );
228
229 float cax = max(0.0,x-((paba<0.5)?ra:rb));
230 float cay = abs(paba-0.5)-0.5;
231
232 float k = rba*rba + baba;
233 float f = clamp( (rba*(x-ra)+paba*baba)/k, 0.0, 1.0 );
234
235 float cbx = x-ra - f*rba;
236 float cby = paba - f;
237
238 float s = (cbx < 0.0 && cay < 0.0) ? -1.0 : 1.0;
239
240 return s*sqrt( min(cax*cax + cay*cay*baba,
241 cbx*cbx + cby*cby*baba) );
242 }
243
244 // c is the sin/cos of the desired cone angle
245 float sdSolidAngle(vec3 pos, vec2 c, float ra)
246 {
247 vec2 p = vec2( length(pos.xz), pos.y );
248 float l = length(p) - ra;
249 float m = length(p - c*clamp(dot(p,c),0.0,ra) );
250 return max(l,m*sign(c.y*p.x-c.x*p.y));
251 }
252
253 float sdOctahedron(vec3 p, float s)
254 {
255 p = abs(p);
256 float m = p.x + p.y + p.z - s;
257
258 // exact distance
259 #if 0
260 vec3 o = min(3.0*p - m, 0.0);
261 o = max(6.0*p - m*2.0 - o*3.0 + (o.x+o.y+o.z), 0.0);
262 return length(p - s*o/(o.x+o.y+o.z));
263 #endif
264
265 // exact distance
266 #if 1
267 vec3 q;
268 if( 3.0*p.x < m ) q = p.xyz;
269 else if( 3.0*p.y < m ) q = p.yzx;
270 else if( 3.0*p.z < m ) q = p.zxy;
271 else return m*0.57735027;
272 float k = clamp(0.5*(q.z-q.y+s),0.0,s);
273 return length(vec3(q.x,q.y-s+k,q.z-k));
274 #endif
275
276 // bound, not exact
277 #if 0
278 return m*0.57735027;
279 #endif
280 }
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281
282 float sdPyramid( in vec3 p, in float h )
283 {
284 float m2 = h*h + 0.25;
285
286 // symmetry
287 p.xz = abs(p.xz);
288 p.xz = (p.z>p.x) ? p.zx : p.xz;
289 p.xz -= 0.5;
290
291 // project into face plane (2D)
292 vec3 q = vec3( p.z, h*p.y - 0.5*p.x, h*p.x + 0.5*p.y);
293
294 float s = max(-q.x,0.0);
295 float t = clamp( (q.y-0.5*p.z)/(m2+0.25), 0.0, 1.0 );
296
297 float a = m2*(q.x+s)*(q.x+s) + q.y*q.y;
298 float b = m2*(q.x+0.5*t)*(q.x+0.5*t) + (q.y-m2*t)*(q.y-m2*t);
299
300 float d2 = min(q.y,-q.x*m2-q.y*0.5) > 0.0 ? 0.0 : min(a,b);
301
302 // recover 3D and scale, and add sign
303 return sqrt( (d2+q.z*q.z)/m2 ) * sign(max(q.z,-p.y));;
304 }
305
306 // la,lb=semi axis, h=height, ra=corner
307 float sdRhombus(vec3 p, float la, float lb, float h, float ra)
308 {
309 p = abs(p);
310 vec2 b = vec2(la,lb);
311 float f = clamp( (ndot(b,b-2.0*p.xz))/dot(b,b), -1.0, 1.0 );
312 vec2 q = vec2(length(p.xz-0.5*b*vec2(1.0-f,1.0+f))*sign(p.x*b.y+p.z*b.x-b.x*b.y)-

ra, p.y-h);
313 return min(max(q.x,q.y),0.0) + length(max(q,0.0));
314 }
315
316 //------------------------------------------------------------------
317
318 vec2 opU( vec2 d1, vec2 d2 )
319 {
320 return (d1.x<d2.x) ? d1 : d2;
321 }
322
323 //------------------------------------------------------------------
324
325 #define ZERO (min(iFrame,0))
326
327 //------------------------------------------------------------------
328
329 vec2 map( in vec3 pos )
330 {
331 vec2 res = vec2( 1e10, 0.0 );
332
333 {
334 res = opU( res, vec2( sdSphere( pos-vec3(-2.0,0.25, 0.0), 0.25 ), 26.9 ) )

;
335 }
336
337 // bounding box
338 if( sdBox( pos-vec3(0.0,0.3,-1.0),vec3(0.35,0.3,2.5) )<res.x )
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339 {
340 // more primitives
341 res = opU( res, vec2( sdBoundingBox( pos-vec3( 0.0,0.25, 0.0), vec3

(0.3,0.25,0.2), 0.025 ), 16.9 ) );
342 res = opU( res, vec2( sdTorus( (pos-vec3( 0.0,0.30, 1.0)).xzy, vec2

(0.25,0.05) ), 25.0 ) );
343 res = opU( res, vec2( sdCone( pos-vec3( 0.0,0.45,-1.0), vec2(0.6,0.8),0.45

), 55.0 ) );
344 res = opU( res, vec2( sdCappedCone( pos-vec3( 0.0,0.25,-2.0), 0.25, 0.25, 0.1

), 13.67 ) );
345 res = opU( res, vec2( sdSolidAngle( pos-vec3( 0.0,0.00,-3.0), vec2(3,4)/5.0,

0.4 ), 49.13 ) );
346 }
347
348 // bounding box
349 if( sdBox( pos-vec3(1.0,0.3,-1.0),vec3(0.35,0.3,2.5) )<res.x )
350 {
351 // more primitives
352 res = opU( res, vec2( sdCappedTorus((pos-vec3( 1.0,0.30, 1.0))*vec3(1,-1,1), vec2

(0.866025,-0.5), 0.25, 0.05), 8.5) );
353 res = opU( res, vec2( sdBox( pos-vec3( 1.0,0.25, 0.0), vec3

(0.3,0.25,0.1) ), 3.0 ) );
354 res = opU( res, vec2( sdCapsule( pos-vec3( 1.0,0.00,-1.0),vec3

(-0.1,0.1,-0.1), vec3(0.2,0.4,0.2), 0.1 ), 31.9 ) );
355 res = opU( res, vec2( sdCylinder( pos-vec3( 1.0,0.25,-2.0), vec2(0.15,0.25) ),

8.0 ) );
356 res = opU( res, vec2( sdHexPrism( pos-vec3( 1.0,0.2,-3.0), vec2(0.2,0.05) ),

18.4 ) );
357 }
358
359 // bounding box
360 if( sdBox( pos-vec3(-1.0,0.35,-1.0),vec3(0.35,0.35,2.5))<res.x )
361 {
362 // more primitives
363 res = opU( res, vec2( sdPyramid( pos-vec3(-1.0,-0.6,-3.0), 1.0 ), 13.56 ) );
364 res = opU( res, vec2( sdOctahedron( pos-vec3(-1.0,0.15,-2.0), 0.35 ), 23.56 ) );
365 res = opU( res, vec2( sdTriPrism( pos-vec3(-1.0,0.15,-1.0), vec2(0.3,0.05) )

,43.5 ) );
366 res = opU( res, vec2( sdEllipsoid( pos-vec3(-1.0,0.25, 0.0), vec3(0.2, 0.25,

0.05) ), 43.17 ) );
367 res = opU( res, vec2( sdRhombus( (pos-vec3(-1.0,0.34, 1.0)).xzy, 0.15, 0.25,

0.04, 0.08 ),17.0 ) );
368 }
369
370 // bounding box
371 if( sdBox( pos-vec3(2.0,0.3,-1.0),vec3(0.35,0.3,2.5) )<res.x )
372 {
373 // more primitives
374 res = opU( res, vec2( sdOctogonPrism(pos-vec3( 2.0,0.2,-3.0), 0.2, 0.05), 51.8

) );
375 res = opU( res, vec2( sdCylinder( pos-vec3( 2.0,0.15,-2.0), vec3

(0.1,-0.1,0.0), vec3(-0.2,0.35,0.1), 0.08), 31.2 ) );
376 res = opU( res, vec2( sdCappedCone( pos-vec3( 2.0,0.10,-1.0), vec3(0.1,0.0,0.0),

vec3(-0.2,0.40,0.1), 0.15, 0.05), 46.1 ) );
377 res = opU( res, vec2( sdRoundCone( pos-vec3( 2.0,0.15, 0.0), vec3

(0.1,0.0,0.0), vec3(-0.1,0.35,0.1), 0.15, 0.05), 51.7 ) );
378 res = opU( res, vec2( sdRoundCone( pos-vec3( 2.0,0.20, 1.0), 0.2, 0.1, 0.3 ),

37.0 ) );
379 }
380
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381 return res;
382 }
383
384 // http://iquilezles.org/www/articles/boxfunctions/boxfunctions.htm
385 vec2 iBox( in vec3 ro, in vec3 rd, in vec3 rad )
386 {
387 vec3 m = 1.0/rd;
388 vec3 n = m*ro;
389 vec3 k = abs(m)*rad;
390 vec3 t1 = -n - k;
391 vec3 t2 = -n + k;
392 return vec2( max( max( t1.x, t1.y ), t1.z ),
393 min( min( t2.x, t2.y ), t2.z ) );
394 }
395
396 vec2 raycast( in vec3 ro, in vec3 rd )
397 {
398 vec2 res = vec2(-1.0,-1.0);
399
400 float tmin = 1.0;
401 float tmax = 20.0;
402
403 // raytrace floor plane
404 float tp1 = (0.0-ro.y)/rd.y;
405 if( tp1>0.0 )
406 {
407 tmax = min( tmax, tp1 );
408 res = vec2( tp1, 1.0 );
409 }
410 //else return res;
411
412 // raymarch primitives
413 vec2 tb = iBox( ro-vec3(0.0,0.4,-0.5), rd, vec3(2.5,0.41,3.0) );
414 if( tb.x<tb.y && tb.y>0.0 && tb.x<tmax)
415 {
416 //return vec2(tb.x,2.0);
417 tmin = max(tb.x,tmin);
418 tmax = min(tb.y,tmax);
419
420 float t = tmin;
421 for( int i=0; i<70 && t<tmax; i++ )
422 {
423 vec2 h = map( ro+rd*t );
424 if( abs(h.x)<(0.0001*t) )
425 {
426 res = vec2(t,h.y);
427 break;
428 }
429 t += h.x;
430 }
431 }
432
433 return res;
434 }
435
436 // http://iquilezles.org/www/articles/rmshadows/rmshadows.htm
437 float calcSoftshadow( in vec3 ro, in vec3 rd, in float mint, in float tmax )
438 {
439 // bounding volume
440 float tp = (0.8-ro.y)/rd.y; if( tp>0.0 ) tmax = min( tmax, tp );
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441
442 float res = 1.0;
443 float t = mint;
444 for( int i=ZERO; i<24; i++ )
445 {
446 float h = map( ro + rd*t ).x;
447 float s = clamp(8.0*h/t,0.0,1.0);
448 res = min( res, s*s*(3.0-2.0*s) );
449 t += clamp( h, 0.02, 0.2 );
450 if( res<0.004 || t>tmax ) break;
451 }
452 return clamp( res, 0.0, 1.0 );
453 }
454
455 // http://iquilezles.org/www/articles/normalsSDF/normalsSDF.htm
456 vec3 calcNormal( in vec3 pos )
457 {
458 #if 0
459 vec2 e = vec2(1.0,-1.0)*0.5773*0.0005;
460 return normalize( e.xyy*map( pos + e.xyy ).x +
461 e.yyx*map( pos + e.yyx ).x +
462 e.yxy*map( pos + e.yxy ).x +
463 e.xxx*map( pos + e.xxx ).x );
464 #else
465 // inspired by tdhooper and klems - a way to prevent the compiler from inlining

map() 4 times
466 vec3 n = vec3(0.0);
467 for( int i=ZERO; i<4; i++ )
468 {
469 vec3 e = 0.5773*(2.0*vec3((((i+3)>>1)&1),((i>>1)&1),(i&1))-1.0);
470 n += e*map(pos+0.0005*e).x;
471 //if( n.x+n.y+n.z>100.0 ) break;
472 }
473 return normalize(n);
474 #endif
475 }
476
477 float calcAO( in vec3 pos, in vec3 nor )
478 {
479 float occ = 0.0;
480 float sca = 1.0;
481 for( int i=ZERO; i<5; i++ )
482 {
483 float h = 0.01 + 0.12*float(i)/4.0;
484 float d = map( pos + h*nor ).x;
485 occ += (h-d)*sca;
486 sca *= 0.95;
487 if( occ>0.35 ) break;
488 }
489 return clamp( 1.0 - 3.0*occ, 0.0, 1.0 ) * (0.5+0.5*nor.y);
490 }
491
492 // http://iquilezles.org/www/articles/checkerfiltering/checkerfiltering.htm
493 float checkersGradBox( in vec2 p, in vec2 dpdx, in vec2 dpdy )
494 {
495 // filter kernel
496 vec2 w = abs(dpdx)+abs(dpdy) + 0.001;
497 // analytical integral (box filter)
498 vec2 i = 2.0*(abs(fract((p-0.5*w)*0.5)-0.5)-abs(fract((p+0.5*w)*0.5)-0.5))/w;
499 // xor pattern
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500 return 0.5 - 0.5*i.x*i.y;
501 }
502
503 vec3 render( in vec3 ro, in vec3 rd, in vec3 rdx, in vec3 rdy )
504 {
505 // background
506 vec3 col = vec3(0.7, 0.7, 0.9) - max(rd.y,0.0)*0.3;
507
508 // raycast scene
509 vec2 res = raycast(ro,rd);
510 float t = res.x;
511 float m = res.y;
512 if( m>-0.5 )
513 {
514 vec3 pos = ro + t*rd;
515 vec3 nor = (m<1.5) ? vec3(0.0,1.0,0.0) : calcNormal( pos );
516 vec3 ref = reflect( rd, nor );
517
518 // material
519 col = 0.2 + 0.2*sin( m*2.0 + vec3(0.0,1.0,2.0) );
520 float ks = 1.0;
521
522 if( m<1.5 )
523 {
524 // project pixel footprint into the plane
525 vec3 dpdx = ro.y*(rd/rd.y-rdx/rdx.y);
526 vec3 dpdy = ro.y*(rd/rd.y-rdy/rdy.y);
527
528 float f = checkersGradBox( 3.0*pos.xz, 3.0*dpdx.xz, 3.0*dpdy.xz );
529 col = 0.15 + f*vec3(0.05);
530 ks = 0.4;
531 }
532
533 // lighting
534 float occ = calcAO( pos, nor );
535
536 vec3 lin = vec3(0.0);
537
538 // sun
539 {
540 vec3 lig = normalize( vec3(-0.5, 0.4, -0.6) );
541 vec3 hal = normalize( lig-rd );
542 float dif = clamp( dot( nor, lig ), 0.0, 1.0 );
543 //if( dif>0.0001 )
544 dif *= calcSoftshadow( pos, lig, 0.02, 2.5 );
545 float spe = pow( clamp( dot( nor, hal ), 0.0, 1.0 ),16.0);
546 spe *= dif;
547 spe *= 0.04+0.96*pow(clamp(1.0-dot(hal,lig),0.0,1.0),5.0);
548 lin += col*2.20*dif*vec3(1.30,1.00,0.70);
549 lin += 5.00*spe*vec3(1.30,1.00,0.70)*ks;
550 }
551 // sky
552 {
553 float dif = sqrt(clamp( 0.5+0.5*nor.y, 0.0, 1.0 ));
554 dif *= occ;
555 float spe = smoothstep( -0.2, 0.2, ref.y );
556 spe *= dif;
557 spe *= 0.04+0.96*pow(clamp(1.0+dot(nor,rd),0.0,1.0), 5.0 );
558 //if( spe>0.001 )
559 spe *= calcSoftshadow( pos, ref, 0.02, 2.5 );
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560 lin += col*0.60*dif*vec3(0.40,0.60,1.15);
561 lin += 2.00*spe*vec3(0.40,0.60,1.30)*ks;
562 }
563 // back
564 {
565 float dif = clamp( dot( nor, normalize(vec3(0.5,0.0,0.6))), 0.0, 1.0 )*

clamp( 1.0-pos.y,0.0,1.0);
566 dif *= occ;
567 lin += col*0.55*dif*vec3(0.25,0.25,0.25);
568 }
569 // sss
570 {
571 float dif = pow(clamp(1.0+dot(nor,rd),0.0,1.0),2.0);
572 dif *= occ;
573 lin += col*0.25*dif*vec3(1.00,1.00,1.00);
574 }
575
576 col = lin;
577
578 col = mix( col, vec3(0.7,0.7,0.9), 1.0-exp( -0.0001*t*t*t ) );
579 }
580
581 return vec3( clamp(col,0.0,1.0) );
582 }
583
584 mat3 setCamera( in vec3 ro, in vec3 ta, float cr )
585 {
586 vec3 cw = normalize(ta-ro);
587 vec3 cp = vec3(sin(cr), cos(cr),0.0);
588 vec3 cu = normalize( cross(cw,cp) );
589 vec3 cv = ( cross(cu,cw) );
590 return mat3( cu, cv, cw );
591 }
592
593 void mainImage( out vec4 fragColor, in vec2 fragCoord )
594 {
595 vec2 mo = iMouse.xy/iResolution.xy;
596 float time = 32.0 + iTime*1.5;
597
598 // camera
599 vec3 ta = vec3( 0.5, -0.5, -0.6 );
600 vec3 ro = ta + vec3( 4.5*cos(0.1*time + 7.0*mo.x), 1.3 + 2.0*mo.y, 4.5*sin(0.1*

time + 7.0*mo.x) );
601 // camera-to-world transformation
602 mat3 ca = setCamera( ro, ta, 0.0 );
603
604 vec3 tot = vec3(0.0);
605 #if AA>1
606 for( int m=ZERO; m<AA; m++ )
607 for( int n=ZERO; n<AA; n++ )
608 {
609 // pixel coordinates
610 vec2 o = vec2(float(m),float(n)) / float(AA) - 0.5;
611 vec2 p = (2.0*(fragCoord+o)-iResolution.xy)/iResolution.y;
612 #else
613 vec2 p = (2.0*fragCoord-iResolution.xy)/iResolution.y;
614 #endif
615
616 // focal length
617 const float fl = 2.5;
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618
619 // ray direction
620 vec3 rd = ca * normalize( vec3(p,fl) );
621
622 // ray differentials
623 vec2 px = (2.0*(fragCoord+vec2(1.0,0.0))-iResolution.xy)/iResolution.y;
624 vec2 py = (2.0*(fragCoord+vec2(0.0,1.0))-iResolution.xy)/iResolution.y;
625 vec3 rdx = ca * normalize( vec3(px,fl) );
626 vec3 rdy = ca * normalize( vec3(py,fl) );
627
628 // render
629 vec3 col = render( ro, rd, rdx, rdy );
630
631 // gain
632 // col = col*3.0/(2.5+col);
633
634 // gamma
635 col = pow( col, vec3(0.4545) );
636
637 tot += col;
638 #if AA>1
639 }
640 tot /= float(AA*AA);
641 #endif
642
643 fragColor = vec4( tot, 1.0 );
644 }
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Code listing B.1: Fragment shader generated by the compiler.

1 #version 300 es
2 #ifdef GL_FRAGMENT_PRECISION_HIGH
3 precision highp float;
4 #else
5 precision mediump float;
6 #endif
7
8 vec2 UV;
9

10 const float epsilon = 0.005;
11 const vec3 lightPos = vec3(0.7, 2.0, -5.0);
12 const float maxDist = 50.0;
13 #define PI 3.1415
14
15 uniform vec3 cameraPos;
16 uniform vec3 bottomLeftCorner;
17 uniform vec3 left;
18 uniform vec3 up;
19 out vec4 oCol;
20
21 float evaluate(vec3 rayPos, out vec3 col, float epsilon);
22 float density(vec3 rayPos);
23
24 vec3 gradient(in vec3 pos) {
25 vec3 ex = vec3(epsilon,0,0);
26 vec3 ey = vec3(0,epsilon,0);
27 vec3 ez = vec3(0,0,epsilon);
28
29 return normalize(vec3(density(pos+ex)-density(pos-ex),
30 density(pos+ey)-density(pos-ey),
31 density(pos+ez)-density(pos-ez)));
32 }
33
34 uniform vec3 vector3s[12];uniform float floats[4];uniform vec2 vector2s[3];
35
36 vec3 skybox(vec3 p) {return vec3(0.992,0.675,0.655);}
37
38 vec2 sphereUVs(vec3 rayPos);float sphere(vec3 rayPos);float box(vec3 rayPos);vec2

interpolatedUVs(vec3 rayPos,float weight,vec3 position);vec2 BoxUVFunc(vec3
rayPos);vec2 BoxUVFunc(vec3 rayPos,vec3 position,vec2 UVs,vec3 size,float

57
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rotation);vec2 sphereUVs(vec3 rayPos){
39 vec3 d = normalize(-rayPos-vec3(0,0,0));
40 return vec2(+0.5+atan(d.z, d.x)/(2.0*PI), +0.5-asin(-d.y)/PI)+

vec2(0,0);}
41 float sphere(vec3 rayPos){vec3 p = rayPos-vec3(0,0,0);
42 return length(p)-1.0;}
43 float box(vec3 rayPos){
44 vec3 p = rayPos-vec3(0,0,0);
45 mat2 rot = mat2(cos(0.0),-sin(0.0),
46 sin(0.0),cos(0.0));
47 p.xz *= rot;
48 vec3 q = abs(p) - vec3(0.5,0.5,0.5);
49 return length(max(q, 0.0)) + min(max(q.x,max(q.y,q.z)),0.0);}
50 vec2 interpolatedUVs(vec3 rayPos,float weight,vec3 position){
51 return weight*sphereUVs(rayPos)+(1.0-weight)*BoxUVFunc(rayPos);}
52 vec2 BoxUVFunc(vec3 rayPos){
53 vec3 p = rayPos-vec3(0,0,0);
54 mat2 rot = mat2(cos(0.0),-sin(0.0),
55 sin(0.0),cos(0.0));
56 p.xz *= rot;
57 vec3 n = gradient(rayPos);
58 n.xz *= rot;
59 n = abs(n);
60 p = p/vec3(0.5,0.5,0.5)*0.5+vec3(0.5,0.5,0.5);
61 return n.x*p.zy+n.y*p.xz+n.z*p.xy;
62 }
63 vec2 BoxUVFunc(vec3 rayPos,vec3 position,vec2 UVs,vec3 size,float rotation){
64 vec3 p = rayPos-position;
65 mat2 rot = mat2(cos(rotation),-sin(rotation),
66 sin(rotation),cos(rotation));
67 p.xz *= rot;
68 vec3 n = gradient(rayPos);
69 n.xz *= rot;
70 n = abs(n);
71 p = p/size*0.5+vec3(0.5,0.5,0.5);
72 return n.x*p.zy+n.y*p.xz+n.z*p.xy;
73 }
74 float sphere0(vec3 rayPos){vec3 p = rayPos-vec3(0,0,0);
75 return length(p)-1.0;}
76 float interpolatedShape0(vec3 rayPos,float weight,vec3 position){rayPos = rayPos

- position;
77 return weight*sphere(rayPos)+(1.0-weight)*box(rayPos);}
78 float boxFramed0(vec3 rayPos,vec3 position,vec3 size){
79 vec3 p = rayPos-position;
80 mat2 rot = mat2(cos(0.0),-sin(0.0),
81 sin(0.0),cos(0.0));
82 p.xz *= rot;
83 p = abs(p) - size;
84 vec3 q = abs(p+0.01)-0.01;
85 return min(min(
86 length(max(vec3(p.x,q.y,q.z),0.0))+min(max(p.x,max(q.y,q.z)),0.0),
87 length(max(vec3(q.x,p.y,q.z),0.0))+min(max(q.x,max(p.y,q.z)),0.0)),
88 length(max(vec3(q.x,q.y,p.z),0.0))+min(max(q.x,max(q.y,p.z)),0.0));}
89 float box0(vec3 rayPos,vec3 position,vec2 UVs,vec3 size,float rotation){
90 vec3 p = rayPos-position;
91 mat2 rot = mat2(cos(rotation),-sin(rotation),
92 sin(rotation),cos(rotation));
93 p.xz *= rot;
94 vec3 q = abs(p) - size;
95 return length(max(q, 0.0)) + min(max(q.x,max(q.y,q.z)),0.0);}
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96
97
98 vec3 phongShadedDefObject0(vec3 rayPos,vec3 color){vec3 surfaceN = gradient(

rayPos);
99 vec3 dir = normalize(lightPos-rayPos);

100
101 float shadow = 1.0;
102 // rayPos -= surfaceN*0.01;
103 for(float t=20.0*epsilon; t<maxDist;) {
104 float h = density(rayPos + dir*t);
105 if(h < epsilon) {
106 shadow = 0.0;
107 break;
108 }
109 t += h;
110 }
111
112 float lightStrength = max(0.5, dot(surfaceN, -normalize(rayPos-lightPos)));
113 return lightStrength*color*shadow;}
114 vec3 UVColored0(vec3 rayPos){return vec3(BoxUVFunc(rayPos,vector3s[6],vector2s

[0],vector3s[7],floats[1]), 0.0);}
115 vec3 UVColored1(vec3 rayPos){return vec3(BoxUVFunc(rayPos,vector3s[8],vector2s

[1],vector3s[9],floats[2]), 0.0);}
116 vec3 UVColored2(vec3 rayPos){return vec3(BoxUVFunc(rayPos,vector3s[10],vector2s

[2],vector3s[11],floats[3]), 0.0);}
117
118
119 float density(vec3 rayPos) {return min(box0(rayPos ,vector3s[10],vector2s[2],

vector3s[11],floats[3]), min(box0(rayPos ,vector3s[8],vector2s[1],vector3s
[9],floats[2]), min(box0(rayPos ,vector3s[6],vector2s[0],vector3s[7],floats
[1]), min(boxFramed0(rayPos ,vector3s[3],vector3s[4]), min(interpolatedShape0
(rayPos ,floats[0],vector3s[1]), sphere0(rayPos ))))));}

120
121 vec3 color(vec3 rayPos) {if(sphere0(rayPos ) < epsilon) {
122 return phongShadedDefObject0(rayPos ,vector3s[0]);
123 }if(interpolatedShape0(rayPos ,floats[0],vector3s[1]) < epsilon) {
124 return phongShadedDefObject0(rayPos ,vector3s[2]);
125 }if(boxFramed0(rayPos ,vector3s[3],vector3s[4]) < epsilon) {
126 return phongShadedDefObject0(rayPos ,vector3s[5]);
127 }if(box0(rayPos ,vector3s[6],vector2s[0],vector3s[7],floats[1]) < epsilon) {
128 return UVColored0(rayPos );
129 }if(box0(rayPos ,vector3s[8],vector2s[1],vector3s[9],floats[2]) < epsilon) {
130 return UVColored1(rayPos );
131 }if(box0(rayPos ,vector3s[10],vector2s[2],vector3s[11],floats[3]) < epsilon) {
132 return UVColored2(rayPos );
133 } return vec3(0.0,0.0,1.0);}
134
135
136 vec3 marchRay(vec3 dir, vec3 origin, out bool hit) {
137 float val = 0.0;
138 for(float distanceTraced = 0.0; distanceTraced < maxDist; distanceTraced+=val)

{
139 vec3 pos = origin + vec3(dir*distanceTraced);
140 val = density(pos);
141
142 if(val <= epsilon) { //hit object
143 hit = true;
144 return pos;
145 }
146 }
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147 hit = false;
148 return vec3(0.0,0.0,0.0);
149 }
150
151 void main() {
152 vec3 col = vec3(0,0,1.0);
153 vec2 uvs = vec2(gl_FragCoord.x/960.0,
154 gl_FragCoord.y/540.0);
155
156 vec3 ray = bottomLeftCorner - left*uvs.x + up*uvs.y;
157 ray = normalize(ray);
158
159 bool hitObject = false;
160 vec3 currentPos = marchRay(ray, cameraPos, hitObject);
161 if(hitObject) {
162 col = color(currentPos);
163 } else {
164 col = skybox(ray);
165 }
166 oCol = vec4(col, 1.0);
167 }
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Code listing C.1: Script to generate a scene with multiple primitives.

1
2 //Utility function for creating objects
3 const shapeAtPos = (s,x,z)=>
4 create(object("Shape"+x+z)
5 .shape(s)
6 .position().setUpdate((dt,ft)=>[x,Math.sin(ft+x*0.1+z*0.3)*0.2,z])
7 .material(phongShaded)
8 .color([Math.random(),Math.random(),Math.random()]));
9

10 //Create some objects in a grid
11 shapeAtPos(sphere, 0,0);
12 shapeAtPos(box, 0,3);
13 shapeAtPos(boxFrame, 3,0);
14 shapeAtPos(torus, 3,3);
15
16 //Set the skybox
17 setSkybox("skyboxTex");
18 create(texture("skyboxTex")
19 .data(fromCanvas)
20 .width(1)
21 .height(1)
22 .setUpdate((dt,ft,ctx,w,h)=> {
23 ctx.fillStyle = \‘hsl(\${Math.floor((ft*10))%360},80%,50%)\‘;
24 ctx.fillRect(0,0,w,h);
25 }));

Code listing C.2: Script to generate a scene with intersecting primitives.

1 //Place the light above and slightly to the side of the objects
2 setLightPosition([2,10,-3]);
3
4 //Utility function for making boxes with a certain size
5 const boxAtPos = (x,y,size) => create(object("Box"+x+y)
6 .shape(box)
7 .position([x,y,0])
8 .size([size,size,size])
9 .material(phongShaded)

10 .color([Math.random(),Math.random(),Math.random()]))
11 //Make 7 boxes that intersect

61



62 Øivind Albrigtsen: A Scripting Environment for Ray Marched 3D Graphics

12 boxAtPos(-1,0,0.5);
13 boxAtPos(-1,0.5,0.25);
14 boxAtPos(-1,0.75,0.125);
15 boxAtPos(-1.5,0,0.25);
16 boxAtPos(-1.75,0,0.125);
17 boxAtPos(-0.5,0,0.25);
18 boxAtPos(-0.25,0,0.125);
19
20 //Three interlinked box frames
21 create(object("BoxFrame1")
22 .shape(boxFrame)
23 .position([1,0,0])
24 .thickness([0.05])
25 .material(phongShaded)
26 .color([0.8,0.2,0.4]));
27
28 create(object("BoxFrame2")
29 .shape(boxFrame)
30 .position([1.5,0.5,0.5])
31 .thickness([0.05])
32 .material(phongShaded)
33 .color([0.2,0.4,0.8]));
34
35 create(object("BoxFrame3")
36 .shape(boxFrame)
37 .position([2,1,1])
38 .thickness([0.05])
39 .material(phongShaded)
40 .color([0.4,0.8,0.2]));
41
42 //Floor
43 create(object("Floor")
44 .shape(box)
45 .size([20,1,20])
46 .position([0,-1.5,0])
47 .material(squaresShaded));
48
49 //Make the sky a blue-ish color
50 setSkybox([0.6,0.6,1]);
51
52 //Move the camera automatically
53 onUpdate((dt,ft)=>setCameraPosition([Math.cos(ft)*5,3,Math.sin(ft)*5]));
54 onUpdate(()=>lookAt([0,0,0]));

Code listing C.3: Script to generate a scene where primitives move in a coordin-
ated way using JavaScript scripting.

1
2 //BoxFrame
3 create(object("Frame")
4 .shape(boxFrame)
5 .thickness([0.05])
6 .size([1.2,1.2,1.2])
7 .setUpdate((dt,ft)=>{
8 const d = ((ft/(Math.PI)+1/20)%1)*20;
9 let s = 1.2-0.7*d*Math.exp(1-d);

10 return [s,s,s]})
11 .position([0,0,-4])
12 .material(phongShaded)



Chapter C: Appendix C 63

13 .color([0.2,0.4,0.8]));
14
15 //Torus
16 create(object("Torus")
17 .shape(torus)
18 .size([1.1])
19 .thickness([0.33])
20 .position([0,0,-10])
21 .setUpdate((dt,ft)=>[2*Math.sin(3*ft),0,-10])
22 .material(phongShaded));
23
24 //Sphere-box
25 create(object("Interpolated")
26 .shape(interpolatedShape)
27 .weight().setUpdate((dt,ft)=>[0.5*Math.cos(ft+Math.PI)+0.5])
28 .shapeA(object("Sphere")
29 .shape(sphere)
30 .radius([0.77])
31 .setUpdate((dt,ft)=>[0.5+0.27*(Math.cos(2*ft+Math.PI)+1)/2]))
32 .shapeB(object("Box")
33 .shape(box))
34 .position()
35 .setUpdate((dt,ft)=>[0,3*Math.sin(2*ft),3*Math.cos(ft)-7])
36 .material(skyboxReflective));
37
38 setSkybox("sky")
39 create(texture("sky")
40 .data(fromFetch)
41 .setInit((dt,ft,set)=>set("https://github.com/rpgwhitelock/AllSkyFree_Godot/raw

/master/addons/AllSkyFree/Skyboxes/AllSkyFree_Sky_EpicGloriousPink_Equirect
.png")));

42 //Move the camera automatically
43 onUpdate(
44 (dt,ft)=>setCameraPosition([Math.cos(ft/4)*13,
45 5,
46 Math.sin(ft/4)*13-7]))
47 onUpdate(()=>lookAt([0,0,-7]))

Code listing C.4: Script to create a planet using multiple textures fetched from
the web.

1
2 //Fetch the different textures needed
3 create(texture("sb")
4 .data(fromFetch)
5 .setInit((dt,ft,setSrc)=> {
6 setSrc("https://cdn.eso.org/images/large/eso0932a.jpg");
7 }));
8 setSkybox("sb");
9 create(texture("earthDiffuse")

10 .data(fromFetch)
11 .setInit((dt,ft,setSrc)=> {
12 setSrc("http://shadedrelief.com/natural3/ne3_data/8192/textures/4

_no_ice_clouds_mts_8k.jpg");
13 }));
14 create(texture("earthSpecular")
15 .data(fromFetch)
16 .setInit((dt,ft,setSrc)=> {
17 setSrc("http://shadedrelief.com/natural3/ne3_data/8192/masks/water_8k.png");
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18 }));
19 create(texture("earthShadow")
20 .data(fromFetch)
21 .setInit((dt,ft,setSrc)=> {
22 setSrc("http://shadedrelief.com/natural3/ne3_data/8192/textures/5_night_8k.

jpg");
23 }));
24
25 //Make the sphere representing the earth
26 create(object("Earth")
27 .shape(sphere)
28 .UVOffset().setUpdate((dt,ft)=>[0.02*ft%1,0])
29 .radius([1.5])
30 .material(textured)
31 .diffuse("earthDiffuse")
32 .specular("earthSpecular")
33 .shadow("earthShadow"));
34 //Move the camera
35 //onUpdate((dt,ft)=>(setCameraPosition([Math.cos(-ft/5)*(5+ft/3),0,Math.sin(-ft/5)

*(5+ft/3)]),
36 // lookAt([0,0,0])));

Code listing C.5: Script to load a JavaScript library from the scripting environ-
ment.

1 //Create the sphere we will texture using Perlin noise.
2 create(object("Planet")
3 .shape(sphere)
4 .UVOffset().setUpdate((dt,ft)=>[(ft/10)%1,0])
5 .radius([2])
6 .material(textured)
7 .texture("PerlinTex"));
8
9 //Draw function that loads a Perlin noise library to draw

10 const drawF = (ctx,w,h) => fetch("https://pastebin.com/raw/MZWiaBL6")
11 .then((r)=>r.text())
12 .then((p)=>{
13 let getPerlin = new Function(p+"return␣Perlin");
14 const Perlin = getPerlin();
15 ctx.fillStyle = "white";
16 ctx.fillRect(0,0,w,h);
17 ctx.fillStyle = "black";
18 for(let u = 0; u < w; u++) {
19 for(let v = 0; v < h; v++) {
20 let theta = Math.PI*2*u/w;
21 let phi = Math.PI*v/h;
22 let x = Math.cos(theta)*Math.sin(phi);
23 let y = Math.sin(theta)*Math.sin(phi)
24 let z = -Math.cos(phi);
25 let val = Perlin.noiseOctaves(x,y,4,z);
26 ctx.fillStyle = getColor(val/1.8);
27 ctx.fillRect(u,v,1,1);
28 }
29 }
30 });
31
32 //Utility function for mapping height values to colors.
33 const getColor = (height) => {
34 if(height < 0.35) {
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35 return "rgb(60,104,192)";
36 }
37 if(height < 0.45) {
38 return "rgb(64,110,200)";
39 }
40 if(height < 0.48) {
41 return "rgb(208,207,130)";
42 }
43 if(height < 0.55) {
44 return "rgb(84,150,29)";
45 }
46 if(height < 0.6) {
47 return "rgb(61,105,22)";
48 }
49 if(height < 0.7) {
50 return "rgb(91,68,61)";
51 }
52 if(height < 0.87) {
53 return "rgb(75,58,54)";
54 }
55 return "rgb(255,254,255)";
56 }
57
58 //Create the actual texture using the Perlin library function.
59 create(texture("PerlinTex")
60 .data(fromCanvas)
61 .width(1024)
62 .height(1024)
63 .setInit((dt,ft,ctx,w,h)=>drawF(ctx,w,h)));
64
65
66 setSkybox([30/255,40/255,70/255])
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