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ABSTRACT We argue that object detectors in the safety critical domain should prioritize detection of objects
that are most likely to interfere with the actions of the autonomous actor. Especially, this applies to objects
that can impact the actor’s safety and reliability. To quantify the impact of object (mis)detection on safety
and reliability in the context of autonomous driving, we propose new object detection measures that reward
the correct identification of objects that are most dangerous and most likely to affect driving decisions.
To achieve this, we build an object criticality model to reward the detection of the objects based on proximity,
orientation, and relative velocity with respect to the subject vehicle. Then, we apply our model on the recent
autonomous driving dataset nuScenes, and we compare nine object detectors. Results show that, in several
settings, object detectors that perform best according to the nuScenes ranking are not the preferable ones
when the focus is shifted on safety and reliability.

INDEX TERMS Autonomous driving, object detection, safety, reliability.

I. INTRODUCTION
The goal of object detection is to perceive and locate instances
of semantic objects of a certain class [20]. A multitude of
solutions have been proposed for 2D and 3D object detec-
tion, based on cameras and lidars [26], [44]. Object detec-
tion is fundamental in emerging safety-critical applications,
and in particular it is a major pillar of autonomous driving
applications [32].

To study object detection, new datasets are continu-
ously proposed, for example in the autonomous driving
domain KITTI [15], VOC [12], CityScapes [10], and more
recently Waymo [35], nuScenes [5], and Level5 Lyft [19].
Object detectors are evaluated against datasets using widely
acknowledged measures [30], [31], and well-defined rou-
tines [5], [10], [12], [15], [19], allowing a fair comparison.
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Noteworthy, the Average Precision, first presented in [34], is
currently deemed the most suitable measure to compute and
rank the performance of object detectors.

However, we argue that current measures for object
detection do not match the demands and peculiarities of
autonomous vehicles and safety-critical systems in general,
i.e., systems whose failure may lead to harmful consequences
[3]. Evaluations based on Average Precision typically judge
how well a detector detects objects, without discriminating
based on the current position of these objects, and on their
possibility to interfere with the subject in the considered sce-
nario. To clarify, let us consider the typical modular pipeline
for autonomous driving [17]: the subject vehicle is sensing
the surroundings to perform object detection, and the output
of the object detection is used for trajectory planning. Let us
now consider two other vehicles in the sensed scenario, one
directed straight towards the subject vehicle, in a colliding
trajectory, and one headed away from the subject vehicle at
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a higher speed. Clearly, for the safety of the driving task,
it is critical to detect the first one, while detection of the
second vehicle is not relevant at all. Unfortunately, this is not
captured by the measures currently used in object detection,
which consider both objects as equally relevant. Very practi-
cally, in a typical autonomous driving modular pipeline, it is
first essential to detect all relevant objects, then these objects
can be used for, e.g., trajectory planning. We argue that it is
desirable the object detector does not fail to detect objects in
colliding trajectory, otherwise also the output of the trajectory
planner is compromised.

In this paper, we elaborate on how to measure the per-
formance of object detectors in the safety-critical domain,
with specific contextualization to the domain of autonomous
driving, and we identify the need of an object criticality
model and related measures. As key requirement, the desired
measures should reward the detection of those objects that
may interfere with the subject vehicle, and that are relevant
for the safe and reliable execution of the driving task. Also,
to be practically useful, the proposed measures have to be
in a defined range, and be summarized by an overarching
unifying measure. While autonomous driving is the most
evident application domain, and it will be used as reference
in the rest of this paper, our reasoning applies to any domain
where reliability and safety of the object detection task are
relevant for the success of the mission, for example in case of
navigation and collision avoidance in drone systems [42].

More in detail, we propose a set of new measures, that we
refer to as object criticality model. Such an object criticality
model assigns a criticality score to each object, based on
ground truth and estimated object distance, colliding trajec-
tory, and time to collisions. Such criticality scores contribute
to compute measures, named reliability-weighted precision
and safety-weighted recall, that weight correct object detec-
tions and misdetections based on the impact on the safety
and the reliability of the driving task. Last, a summarizing
measure, named Critical Average Precision, allows ranking
detectors according to such safety- and reliability-oriented
measures.

The object criticality model and the related measures are
exercised on the nuScenes dataset, with nine 3D-object detec-
tors. We show that, under numerous settings, the ranking we
obtain differs from the one achieved using the nuScenes eval-
uation library, which relies on traditional measures. Amongst
implications, this result questions the usual approach to
rate and select the most suitable object detector for the
autonomous driving domain.

The rest of the paper is organized as follows. Section II
presents basic notions and the related works. Section III
shows the object criticality model and the measures we are
introducing. Section IV describes the experiments based on
nine object detectors and the nuScenes dataset. Section V
illustrates the results, in which the object detectors are ranked
according to our and traditional measures, and differences are
discussed. Section VI concludes the paper.

II. BACKGROUND AND RELATED WORKS
A. OBJECT DETECTION AND ITS EVALUATION
We report the minimal set of notions on object detection that
we require to present the choices made in our work.

To describe the spatial location and extent of a detectable
object, in this paper for simplicity we only consider bounding
boxes, although alternative approaches, e.g., [26], are appli-
cable to our object criticality model as well.

Object detectors compute bounding boxes with an assigned
confidence score. Then, a detection threshold is applied as
a configuration parameter: all bounding boxes with a con-
fidence score above the detection threshold are predictions.
The classification of true positives (TPs), false positives
(FPs), and false negatives (FNs), is based on some defini-
tion of distance between the predicted bounding boxes and
the ground truth bounding boxes. In this paper, we use the
distance between their center points [5]: a detected object
is considered a TP if the distance between the ground truth
bounding box and the detected bounding box is closer than a
distance limit.

If there is no predicted bounding box that matches this cri-
terion, then the object is not detected and it counts as an FN.
Predicted bounding boxes that are farther than the distance
limit from all ground truth bounding boxes are considered
FPs. True negatives (TNs) are not taken into account, because
there are infinite bounding boxes that should not be detected
within any given image [30].

While there are several measures that can evaluate the
performance of object detectors, the conventional approach
to the evaluation of object detectors consists of measures
that are derived from the count of TP, FP, and FN. These
form the basis for our object criticality model defined in
Section III, and they are briefly reviewed here [6], [30],
[31]. Precision, P = TP/(TP + FP), indicates how many
of the selected items are relevant. If some non-relevant items
are selected, this reduces precision. Precision is 1 if all the
detected objects exist, and 0 in the opposite case. Conversely,
Recall, R = TP/(TP + FN ), indicates how many of the
existing relevant items are selected. If a detector has recall 1,
it means it detected everything without any detection miss;
in the opposite case, recall is 0. An object detector with high
recall but low precision outputs many predictions, but most
of them are incorrect; an object detector with high precision
but low recall returns very few predictions, but most of them
are correct.

Currently, the most frequently used summarizing mea-
sure is Average Precision (AP) [13], which summarizes the
precision-recall curve as the weighted mean of precision
scores achieved at different detection thresholds, using the
increase in recall from the previous detection threshold as the
weight. More precisely, AP =

∑
n (Rn − Rn−1)Pn, where

Pn and Rn are the precision and recall at the n-th detection
threshold. In this paper, in agreement with [5], we calculate
AP only for recall and precision above or equal to 0.1: we
remove cases in which recall or precision is less than 0.1 in
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order to minimize the impact of noise commonly seen in
regions with low precision or low recall.

B. RELATED WORKS ON OBJECT DETECTION IN
SAFETY-CRITICAL SYSTEMS
A safety-critical (computer) system is one whosemalfunction
could lead to unacceptable consequences, like harm to users
or to the environment. A typical example is an autonomous
vehicle, whose malfunction (of whatever cause) may lead to
a collision. Instead, reliability describes the continuity of cor-
rect service, which can be temporarily disrupted, for example,
to avoid situations that are potentially dangerous [3].

The inclusion of object detection tasks in safety-critical
systems comes with a relevant set of renowned challenges,
because of the many distinguishing aspects of the problem,
its complexity, and also the variety of applications [1], [22],
[38]. Considering object detectors, some incorrect predic-
tions may lead to catastrophic consequences, and therefore
have the maximum impact on safety, while others may have
an irrelevant impact. Further, some false positives may cause
an unnecessary interruption of the service, and therefore they
impact the reliability. However, to evaluate object detec-
tors, measures from Section II-A are typically used, without
considering the different impact of each detection mistake.
This also applies to the wide domain of autonomous driv-
ing, and it becomes evident when considering the measures
used in object detection challenges for autonomous driving.
For example, in challenges for KITTI [15], CityScapes [10],
Waymo [35], or nuScenes [5], evaluation measures revolve
around Average Precision and the concepts summarized in
Section II-A.

Up to now, very few approaches have attempted to define
safety or reliability measures for object detectors; to the best
of our knowledge, the few works which targets a goal similar
to ours are focusing on safety but leaving aside the reliability
concern, and are [4], [28], [36], [39]. Noteworthy, they all
appeared in very recent years, which underlines a recent
understanding of the relevance of the subject, and they are
all in the autonomous driving domain. The work in [4] ranks
each object in three categories (imminent collision, potential
collision, no collision), based on its collision risk. Instead,
in [36] the authors define critical zones in which accurate
perception is mandatory. On a similar position, the authors
of [28] argue the relevance of identifying a distance up to
which all pedestrians are detected. The closest approach to
our work is [39], where the authors combine scoresmeasuring
detection quality, collision potential, and time needed tomake
the detection. This allows computing a safety score of a test
scenario, in 5 classes from insufficient to excellent.

With respect to the reviewed works, the object criticality
model we propose includes both safety and reliability issues
of the driving task. This is important, because safety by
itself (to detect everything which is potentially dangerous)
can be enforced by low precision and high recall, i.e., low

false negatives at the cost of many false positives. Instead,
by balancing both reliability and safety issues, our object
criticality model provides a standalone evaluation of object
detectors.

Other works address the problem of deep neural network
uncertainty in autonomous driving, where the term uncer-
tainty should be interpreted in the broad sense of how certain
an object detector is about its predictions [14]. In general,
these works aim to improve object detection, but they do
not target the definition of specific measures. More specif-
ically, the work in [14] arguments that object detectors
should also include prediction confidence, and it presents
various methods to capture uncertainties in object detection
for autonomous driving. Otherwise, object detectors can only
tell the human drivers what they have seen, but not how
certain they are about it. The work in [27] includes infor-
mation on uncertainty sources (e.g., sensor noise), the work
in [18] includes uncertainty when computing the bounding
box regression loss, and the work in [21] considers both
the noise inherent to the observations and the uncertainty
that can be explained away given enough data. Last, despite
not focusing on object detection, the work in [16] defines
safety-oriented measures by proposing that predictions with
a confidence score close to the detection threshold should be
treated differently and more suspiciously. Finally, the work
in [8] introduces the distinction of a critical area, which is the
area nearby the vehicle where failed detection of an object
may lead to immediate safety risks. The work acknowledges
that the design of a driving application is focused on both
i) guaranteeing safety in such critical area, and ii) guarantee-
ing high detection accuracy on the non-critical area (in order
to have smooth driving). This observation leads the author to
build different DNNs for the detection of objects in the two
areas.

Still, the above works weight all the detected objects the
same, i.e., when assessing the object detector, the usual binary
(yes/no) counting of TPs, FPs, and FNs is performed. Instead,
in our work we claim that i) object detectors should be eval-
uated depending on the ability to detect those objects that are
most likely to affect the driving task, i.e., impact on safety and
reliability, and ii) this can be realized byweighting the objects
based on their criticality, and by building specific measures
that consider such weights. Also, we remark that, in our
object criticality model, measurement errors and uncertainty
in the detection are inherently considered, when computing
the scores assigned to each object, and when the predicted
values are compared to the ground truth.

III. OBJECT CRITICALITY MODEL
Our object criticality model is based on assigning a critical-
ity value to each object in the scene, and then computing
object detection measures that consider this criticality. The
description of such model is independent of the sensors used
to capture the scene (e.g., cameras or lidars) and of the type
of objects.
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A. REQUIREMENTS AND ASSUMPTIONS
The application of the object criticality model requires i) a
subject vehicle (named ego afterwards) that captures the
scenewith sensors as cameras and lidars, and ii) objects (other
vehicles, pedestrians, etc.) that are within line-of-sight to ego
and that are consequently captured by the sensors. This is the
very typical situation of an autonomous vehicle that performs
object detection.

We assume that the following ground truth information is
available: i) 3D bounding boxes describing the size of the
objects; ii) coordinates of ego and of the objects; iii) velocity
of ego and of the objects. Themost recent automotive datasets
have very rich meta-data, typically including the above infor-
mation; for example, in Section IV and in Section V we will
use nuScenes [5], which satisfies our assumptions. Clearly,
the ground truth is required only to evaluate the object detec-
tor, and not in the case of operation in a deployed setting.

Further, we assume that the object detector produces as
output: i) the computed 3D bounding boxes, ii) the estimated
distance of detected objects from ego, and iii) the estimated
velocity of objects. In other words, the object detector is
assumed to conflate detection, tracking, and dynamics: this is
done in several 3D object detectors, which include the above
estimates in their output. Noteworthy, these estimates are
computed in the object detection challenges of the nuScenes
community, which will be our reference for the experiments
in Section IV and Section V.
For simplicity of the discussion, when computing coordi-

nates of objects and their distance from ego, in this paper we
consider only the (x, y) coordinates, i.e., we ignore the verti-
cal dimension. In other words, while extending the object crit-
icality model to the z-dimension is definitely possible, only
at the cost of slightly more complex geometric computations,
in the following we exclude the relative altitude of the objects
and the ego. From the point of view of results, this is not an
issue, because the dataset we use in this paper was collected
on essentially flat lands. Also, note that ignoring possible
vertical offsets of objects may only reduce their distance from
ego, and it is therefore a worst-case approximation.

B. STRUCTURE OF THE OBJECT CRITICALITY MODEL
We call ego the roving vehicle that mounts the sensors and
collects data from the environment, and we call object B any
other object. There are no restrictions on the type of objects,
for example B can be a car, a pedestrian, a bike, etc. Note
that for ego we only have ground truth values, i.e., the object
detector does not predict its own velocity or position.

The construction of our object criticality model is orga-
nized in 3 steps, which are repeated for each object B within
the line of sight of ego, and for both the ground truth values
and the predicted values of B.

The first step (Section III-C) is the analysis of the colli-
sion scenario involving B and ego. In this step, we calculate
indicators that will be later used to define the criticality

of B. In particular, we calculate i) the initial distance d
between ego and B, ii) the closest distance r that ego and B
would reach, and iii) the time 1t that ego and B require to
reach such distance. These values are input to the following
step, together with the current position and velocity of ego
and B.

The second step (Section III-D) is the calculation of crit-
icality weights that are assigned to each object B. These are
κd , κr , and κt , and they are based, respectively, on the three
values calculated in the first step.

These weights indicate the relevance of B for the driving
task: weights are higher if it is more likely that B may affect
the behavior of ego. Such weights are used as rewards or
penalties depending, respectively, on whether the object has
been detected or missed.

The third step (Section III-E) exploits the assigned critical-
ity to construct aggregate safety and reliability measures that
allow comparing different detectors.

C. ANALYTICAL CHARACTERIZATION OF THE COLLISION
SCENARIO
We refer to Figure 1 for a visual representation of the collision
scenario analyzed in this section.

We define ego = (egox , egoy) the position of ego, and
B = (Bx ,By) the position of the object B in the captured
scene. Further, we define, in vector form, vego = (vegox , vegoy )
the velocity of ego, and vB = (vBx , vBy ) the velocity of B.
We compute the relative velocity of B with respect to ego,
as vrel = (vrelx , vrely ) = (vBx − vegox , vBy − vegoy ), that is, the
vectorial difference of the velocity of ego and the velocity
of B. This allows simplifying the subsequent calculations:
we can consider ego as stationary, while B is moving with
the velocity resulting from the difference between the two
velocity vectors vego and vB.

Then, we identify the shortest distance from ego at which
object B will pass if both continue moving with the same
velocity. This is the distance between ego and point C =

(Cx ,Cy), with C being the point closest to ego on the tra-
jectory of B. Point C can also be thought as the tangent point
between the line representing the trajectory of B and a circle
centered on ego.

Point C = (Cx ,Cy) can be computed as the intersection of
two lines, using basic Euclidean geometry. The line defining
the direction of the relative movement of B is obtained from
the general equation of a line, i.e., y−y0 = m(x−x0). We are
looking for the line passing from point (Bx ,By) and whose
angular coefficient (i.e., orientation with respect to the x axis)
is given by the ratio between the y and x components of the
relative velocity vrel (refer again to Figure 1).

The shortest distance between such line j and the position
of ego lies on the line perpendicular to j passing from ego.
By definition, a line perpendicular to one having coefficient
m has coefficient m′

= −1/m. Point C =
(
Cx ,Cy

)
is

then the point at which these two lines intersect, which
is obtained by solving Section 1 below. Computations are
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FIGURE 1. Geometrical representation of the main elements of our object
criticality model.

omitted for brevity.

Cy =
vrely
vrelx

(Cx − Bx) + By,

Cy = −
vrelx
vrely

(
Cx − egox

)
+ egoy (1)

Then, applying the Euclidean distance, we can easily com-
pute: i) the distance degoB between ego and B, ii) the distance
degoC between ego and C , and iii) the distance dBC between
B and C .

Assuming that both ego and B continue moving with the
same velocity, the time 1t that B needs to reach the collision
point C is then computed as the distance divided by the scalar
speed of B, i.e., 1t = dBC/|v|, where |v| =

√
v2x + v2y .

We recall that ego is considered to be stationary, while B
moves with a relative velocity obtained as the difference of
the velocities of the two objects.

We note that including acceleration would better char-
acterize objects’ movement; however, since acceleration is
quadratic with respect to space, any estimation error would be
greatly amplified, introducing unnecessary noise in the final
measures.

Finally, note that the object criticality model exhibits some
corner cases, for example, when ego and B are moving at
the exact same velocity, 1t is undefined. We treat these rare
cases by skipping the object criticality model calculation and
setting the criticality values to conservative fallback values.

D. COMPUTATION OF CRITICALITY WEIGHTS
The collision scenario above is used to assign criticality
to objects. The idea is inspired by reliability analysis [37],
in which quantities like reliability (or safety) are defined in
the interval [0, 1]. However, we do not propose probabilities.

Each object B, either identified by the object detector
or ground truth, is assigned a criticality weight κ(B). This
weight is obtained by combining three criticality values
κd (B), κr (B), and κt (B), as explained later. Note that for a
given object B, its criticality κ(B) may be different if calcu-
lated with its predicted properties (e.g., position and velocity)
or the ground truth ones. Furthermore, for some objects,
we may have ground truth values only (FNs) or predicted
values only (FPs). When needed, we indicate with κ ′(B)

the criticality weight computed with predicted properties of
object B, as opposed to κ(B) that is calculated based on the
ground truth.

1) CRITICALITY SCORES
TheDistance Criticality, κd (B), is based on the distance degoB
between ego and the object B. This score does not depend
on velocity, but only on the position of objects in the scene.
We want the score to be maximum when the distance from
ego to B is zero, and then decrease to zero when reaching a
maximum distance Dmax > 0.

We compute the weight κd (B) as a second-degree equa-
tion (downward parabola) passing from points (0, 1) and
(Dmax , 0). That is, the maximum value is 1.0 when degoB =

0 and it decreases as degoB increases, reaching 0 when dego =

Dmax . The parabola shape allows the criticality to decrease
non-linearly with respect to the distance: the decrease is slow
for values close to zero (i.e., close to the vehicle), and it gets
faster when approaching Dmax (i.e., far from the vehicle).
We also need to enforce that κd (B) is always in the interval
[0, 1], and therefore the final equation is:

κd (B)=max
(
0, −

1
Z2 x

2
+1

)
, x=degoB, Z=Dmax . (2)

The Collision Distance Criticality, κr (B), is based on the
distance between ego and the potential collision point C .
It is an indicator of how close to ego the object is likely to
pass. κr (B) is calculated using the same rationale of κd (B)
(Section 2), with x = degoC and Z = Rmax , whereRmax > 0 is
the maximum considered collision distance, beyond which
the corresponding criticality is zero.

Similarly, the Collision Time Criticality, κt (B), is based on
the time1t for B to reach the potential collision point. All the
other things unchanged, this score depends on the (relative)
velocity of the objectBwith respect to ego. This score is again
calculated based on Section 2, with x = 1t and Z = Tmax .

2) OBJECT CRITICALITY
The final criticality κ(B) is obtained by the combination of
the three criticality scores κd (B), κr (B), κt (B). The resulting
measure is defined following four requirements: i) it should
range in the interval [0, 1]; ii) it should be 0 if all values are
zero; iii) it should be 1 if at least one of the values is 1; and
iv) it should increase if any of the three values increases.

Inspired again by classic reliability analysis [37], our final
criticality weight is then computed as:

κ = 1 − (1 − κd ) · (1 − κr ) · (1 − κt ). (3)

The final criticality κ(B) is therefore a measure of: how much
the object is close, how much it is likely to pass close in the
near future, and how much time is available to react.

3) CORNER CASES
The following corner cases are considered:

• When ego and B are moving at the exact same velocity
(in both dimensions), the resulting relative velocity is
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zero, and 1t cannot be computed. We solve this case
by setting κr and κt to zero.

• The case in which only one component of the relative
velocity is zero does not need to be treated differently.
The resolution of Section III-C yields a form in which
the denominator is the sum of squares of the two compo-
nents of the velocity. The denominator is thus zero only
when both components of the velocity are zero, which is
already treated in the previous case.

• In the calculation of 1t we need to verify if the object B
is actually moving towards point C , and not on the same
line but in the opposite direction. In case B is moving in
the opposite direction, κr and κt are again set to zero.

• In rare cases, where the collision point is particularly far
away or the speed is particularly low, the calculation of
1t may generate an overflow or a not-a-number (NaN)
value: in this case κt is set to 0.1. The rationale is to set
it to a low value, but still greater than zero.

• The dataset may contain invalid values, or the detector
may not be able to provide estimates. In particular, when
we are not able to obtain the velocity of the object, we set
κr and κt to 1 (their maximum value).

E. SAFETY AND RELIABILITY-BASED MEASURES
We exploit the above criticality scores to remodel the tradi-
tional recall and precision measures, such that they are more
oriented towards reflecting the safety and reliability offered
by object detectors.

1) RELIABILITY
Reliability measures the continuity of correct service. [3].
For a reliable driving task, a good object detector should
not predict false positives that correspond to dangerous situa-
tions, because they could lead to an interruption of the driving
task. For example, false positives may cause an unnecessary
brake; instead, the continuity of the driving mission may
require considering some risks of collision as unavoidable.
This clearly conflicts with safety (which aims to minimize
risks), but it is widely accepted that safety and reliability have
different goals [3] and may be conflicting requirements.

For this reason, we measure the reliability of the detection
task through a revised definition of precision. The idea is that
false positives are penalizing the continuity of the driving
process, with a greater impact the closer they are, or are
likely to be, to ego. We weight TPs and FPs according to the
criticality κ(B) of the associated object B. In simpler words,
when a non-existing object is detected, we do not add 1 to
the count of FPs, but instead we add its criticality; the same
applies to TPs.

For a correctly detected object we may use the criticality
computed either using the ground truth (κ) or the predicted
values (κ ′): we use ground truth values at the numerator, and
predicted values at the denominator. The idea is that the detec-
tor might detect a greater criticality (denominator) than what
is actually present (numerator), which reduces reliability of

the driving task. Also, clearly we do not have ground truth
values for FPs, because those objects do not exist.

We can then define the reliability-weighted precision as:

PR =

∑
B∈TP∗ κ(B)∑

B∈TP∗ κ ′(B) +
∑

B∈FP∗ κ ′(B)
, (4)

where TP∗ is the set of true positive objects, and FP∗ is
the set of false positive objects. Note that the PR may in
principle raise above 1, in case the detected criticality is
significantly lower than the ground truth. To be consistent
with the classic definition of precision, we limit themaximum
value of PR to 1.

2) SAFETY
Safety is instead the absence of catastrophic consequences
[3]. To ensure safety, the object detector must detect as many
as possible of the dangerous objects, even at the cost of raising
some false alarms. A safety measure should then reflect how
much of the existing criticality has been detected by the object
detector. The proposed measure is adapted from the recall,
using the ground truth values at the denominator and the
detected values at the numerator. Clearly, we do not have
predicted values for FNs, which are objects that have been
missed. Therefore, we define the safety-weighted recall as:

RS =

∑
B∈TP∗ κ ′(B)∑

B∈TP∗ κ(B) +
∑

B∈FN∗ κ(B)
(5)

where TP∗ is the set of true positive objects and FN ∗ is the set
of false negative objects. Also for RS we limit its maximum
value to 1.

3) CRITICAL AVERAGE PRECISION
The proposed criticality values depend on three parameters,
namely Dmax , Rmax , and Tmax . We can compute PR and
RS for different values of these parameters, to understand
their evolution when different subsets of objects are con-
sidered. In analogy to the precision-recall curve (see Sec-
tion II-A), this allows computing several PR-RS curves, one
for each combination of values (Dmax ,Rmax ,Tmax); conse-
quently, we can compute the Critical Average PrecisionAPcrit
from each of the PR-RS curves, based on our definitions of
PR and RS .

Depending on the driving scenario and the intended system
in which the object detector is deployed, different values of
Dmax , Rmax , and Tmax may be favored. For example, an object
detector which is very good on PR could be safely used on a
highway under low traffic conditions; but if it is not good on
RS , it should not be used in an urban scenario, where carsmay
approach from different directions at essentially any angle.

IV. CASE STUDY ON THE nuScenes DATASET
A. DATASETS AND SELECTED OBJECT DETECTORS
To exercise the object criticality model, we choose the
nuScenes dataset for the following reasons: i) it is very
recent and extensive, forgedwith the latest sensor technology;
ii) very recent object detectors are available; iii) it includes all
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the necessary information to apply the object criticalitymodel
presented in Section III.

NuScenes [5] is a recent large-scale dataset for autonomous
driving that reports scenes collected from a vehicle. The
dataset comprises 1000 scenes, each being 20 seconds long
and fully annotated with 3D bounding boxes. Keyframes
are sampled every 0.5 seconds; five intermediate frames are
collected between keyframes.

Following common practices in datasets of this kind [15],
[35], nuScenes defines an object detection task and proposes
related measures to officially rank object detectors on its
website. The detection task in nuScenes consists in predicting
the objects at each keyframe time t , using sensors data col-
lected between (t−0.5, t] seconds (five intermediate frames).
Detectable objects are all objects within 50 meters from ego
and with line of sight. For each object, ground truth 3D
bounding boxes, attributes (e.g., orientation), and velocities
are provided. A detection is successful if the distance between
the centers of the predicted and ground-truth bounding boxes
is less than a distance limit l; four different values of l
are considered, which are l ∈ {0.5, 1, 2, 4} meters. For
brevity of the discussion, the only objects we consider are
cars.

We select nine 3D object detectors from the zoo of mmde-
tection3d [9], an open-source object detection toolbox based
on PyTorch for 3D detection. We present the object detectors
below; each detector is matched to an acronym to easily
distinguish it in the rest of the paper.
FCOS [40] and its evolution PGD [41] use visual cam-

eras only. The backbone is a pretrained ResNet101 with
deformable convolutions [11]. The neck is the Feature
Pyramid Network (FPN, [24]), which generates a pyra-
mid of feature maps. The head that produces final predic-
tions (deciding on object class, location, etc.) relies on an
approach similar to RetinaNet [25], which applies shared
heads to operate detection of multiple targets. PGD head
also includes a branch to improve the estimation of distance
depth.

The other seven object detectors (see Table 1) process
lidar’s pointcloud and they are based on the Pointpillars
[23] network. Pointpillars is well-known both for its speed
and its accuracy. It exploits an encoder that learns features
on pillars (vertical columns) of the point cloud to predict
3D oriented bounding boxes for objects. The Pointpillars
network consists of three main stages: i) a feature encoder
network that converts a point cloud to a structured repre-
sentation, namely a sparse pseudoimage; ii) a 2D convolu-
tional backbone to process the pseudo-image into high-level
representation, extracting the features map upon which the
rest of the network is used; and iii) a detection head that
detects and regresses 3D bounding boxes. We consider seven
alternatives based on Pointpillars; essentially, they use the
pillar-basedmethod from [23] to convert the point cloud into a
sparse pseudoimage, and differentiate from [23] by applying
different backbones, and optionally changing the necks and
heads.

TABLE 1. The seven lidar-based object detectors in use.

B. IMPLEMENTATION OF THE OBJECT CRITICALITY
MODEL
We execute all the object detectors on the nuScenes validation
set [5], which consists of 150 frame sequences of 20 seconds
each, and achieved the exact same results of their authors
reported at [9]. This confirms that our setup of mmdetec-
tion3d is correct.

The implementation of our object criticality model exploits
the development kit of nuScenes, which is available with
open-source license. For example, the ranking of object
detectors available at the nuScenes website [29] is computed
using the code of this library, but on a different test set,
whose ground truth information is not released to the public.
We extended the development kit, to have it compute the
measures from our object criticality model alongside the
usual measures of the nuScenes object detection challenge.
We compute and plot the analogous of the precision-recall
curve, but with our criticality-oriented measures PR and RS .
The resulting library is available at [7]. Its usage is straight-
forward: it is sufficient to have a working installation of
nuScenes-dev, and replace with the files in [7] the corre-
sponding files of the nuScenes-dev installation. Then, the set
of results will appear enriched with our measures. Therefore,
any object detector whose output is compatible with nuScenes
can be also evaluated using our library. The library is released
open source on [7], including tutorials that reproduce the
experiments described in this paper. We used the nuScene
development kit v1.1.2, and we tested for compatibility up
to 1.1.7. The release at [7] includes a usage example, which
allows repeating our experiments from the execution of the
mmdetection3d object detectors to the computation of results.

V. EXPERIMENTS AND RESULTS
We execute the 9 object detectors on the dataset previ-
ously described. We compute APcrit , PR and RS for dif-
ferent values of Dmax , Rmax , and Tmax . More specifically,
we consider several configurations (Dmax ,Rmax ,Tmax), with
Dmax ∈ {5, 10, . . . , 50} meters, Rmax ∈ {5, 10, . . . , 50}
meters, and Tmax ∈ {2, 4, . . . 30} seconds. Since distance
is measured starting from the center of ego, a distance of
5 meters includes only vehicles very close to ego; 50 meters
instead is the maximum distance from ego that is considered
in the nuScenes object detection challenge, where objects
farther than 50 meters from ego are ignored. Overall, this
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TABLE 2. AP and APcrit of car detection, for nine object detectors and l ∈ {0.5, 1, 2, 4}, ordered by AP . APcrit is computed with (Dmax , Rmax , Tmax )
amongst the configurations that reported the highest differences between APcrit and AP ranking. Ranking differences are in bold.

leads to 1500 configurations (Dmax ,Rmax ,Tmax), repeated for
each object detector.

A. APcrit AND RANKING OF OBJECT DETECTORS
First, we calculate the rankings of detectors based on APcrit
for all the 1500 configurations (Dmax ,Rmax ,Tmax). Many of
them produced a different ranking with respect to the one
based on AP. For example, consider l = 0.5 and l = 4. When
l = 0.5, the ranking calculated with APcrit does not match the
AP ranking for 567 out of 1500 configurations; for each of
these 567 configurations, the differencewith respect to theAP
ranking is 2 or 4 positions. The whole set of object detectors
may change position with respect to the AP ranking, with the
exception of the detector in the 7th and 8th positions which are
always PGD and FCOS, respectively. For l = 4, the ranking
changes in 1425 out of 1500 configurations, and all the object
detectors may change position, including FCOS performing
better than PGD. In Table 2, we compare the AP and APcrit
ranking of the nine object detectors, for exemplary config-
urations (Dmax ,Rmax ,Tmax). Noticeably, the object detector
with the highest AP, REG1.6, is outperformed by SSNREG
and also others when we consider APcrit .
To explore trends of APcrit , we select representative exam-

ples. In Figure 2 we show the APcrit values of object detectors
REG1.6 (AP = 0.874) and PGD (AP = 0.703) with l =

2 andwhenDmax = 25, for differentRmax , Tmax . TheAPcrit of
REG1.6 and PGD is higher than the respective APs under the
considered configurations. In fact, settingDmax = 25 reduces
the impact of objects farther than 25 meters, which are a
significant contribution to misdetections.

Next, we pick the object detector REG1.6 with l = 2.0.
In Figure 3 we show the APcrit when Rmax = 20; the figure
clearly shows how the highest APcrit values are achieved
when Dmax is set in the range [20, 30]. This is possibly
due to the fact that setting Dmax very low excludes a lot
of ‘‘easy’’ (i.e., close) objects from the relevant ones, thus
deteriorating APcrit . Conversely, when Dmax becomes much
greater than Rmax , a lot of distant but not relevant objects
are included, which are unlikely to reach a collision point
closer than Rmax . In the lower part of the z axis, AP =

0.874 is represented as a flat grey surface in the figure.

FIGURE 2. APcrit measured on REG1.6 and PGD with l = 2 and Dmax = 25.

Figure 3 shows that APcrit is in general higher than AP. This
is expected, because the APcrit gives less weight to objects
that are harder to detect, e.g., those at a farther distance
from ego.

FIGURE 3. APcrit measured on REG1.6 with l = 4.0 and Rmax = 20, for
the different Dmax and Tmax .
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In general, higher values of APcrit are achieved with low
values of Rmax and Tmax ; for both REG1.6 and PGD, the max-
imum APcrit values are obtained with (Dmax ,Rmax ,Tmax) =

(25, 5, 2). Intuitively, low Rmax and Tmax reduce the number
of vehicles to be considered in our analysis: only those that
are really critical for the detection are included. Analogous
observations can be derived with the other configurations and
object detectors.

We remark that, while studies like Figure 2 and Figure 3
are effective to explain the proposed APcrit measure, the
most suitable configuration (Dmax ,Rmax , Tmax) should be
decided based on the requirements of the target application,
and then the object detector with the highest APcrit for such
configuration should be selected.

B. TRADEOFF BETWEEN PR AND RS
To discuss the relations between PR and RS , we rely on
Figure 4 and Figure 5, where we use SSNREG with l ∈

{1, 4}. We compute PR and P for, respectively, RS and
R at steps of 0.01, starting from 0.85. Red crosses rep-
resent precision-recall pairs (P,R). Black dots represent
(PR,RS ) pairs; these are computed for each configura-
tion (Dmax ,Rmax ,Tmax), thus yielding 1500 black dots for
each RS value. The large blue dots are the (PR,RS ) val-
ues achieved using SSNREG with the configuration from
Table 2b and Table 2d, while the green triangle are the con-
figuration leading to the highest APcrit , which is (25, 5, 2).

FIGURE 4. PR, RS , P and R for SSNREG when RS ≥ 0.85 and R ≥ 0.85,
with l = 1.

We investigate the relations between PR and RS for high
values of RS (safety-weighted recall), which are of particular
interest in the reference domain of this work. This waywe can
study the PR (reliability-weighted precision) that we achieve
when safety is enforced thanks to a high RS . This corre-
sponds to answering the question ‘‘given a safety target on the
detection, what is the possibility of driving the car with good
mission reliability, i.e., without being forced to interrupt the
driving continuously because of false positives?’’. Of course,
the safest condition would be RS = 1, but PR is typically 0 in

such cases; still, a very high RS is necessary to enforce safety
of the detection.

FIGURE 5. PR, RS , P and R for SSNREG when RS ≥ 0.85 and R ≥ 0.85,
with l = 4.

When the recall R increases, the precision P quickly drops
to 0. SSNREG can offer a high recall, i.e., a high ability to
detect all the objects, only at the cost of many false posi-
tives: this is clearly of little or no use in practice. Instead,
if we restrict the scope of the object detector thanks to our
object criticality model, we reach different conclusions. For
example, consider again the case l = 1 (Table 2b). Even with
RS ≥ 0.9, there are some configurations in which PR > 0.8,
which is clearly a much more comforting result, showing
confidence in the detection at least to some extent.

On the other hand, the best-performing triples, represented
with the green triangles in Table 2b, may be not practical,
because it is computed applying small spatial and temporal
distances of the objects from ego. Summarizing, our conclu-
sion on SSNREG can be very different from those we achieve
using P and R, when we apply the criteria of RS and PR.

C. EXPLANATION OF DISTANCE CRITICALITY κ(B)
The objective of this analysis is to explain the inner details
of the object criticality model, even if PR, RS , and APcrit are
sufficient to describe the performance of the object detection.
We rely on bird-views from selected frames of nuScene to
explain how our object criticality model works, in a very
practical way, for the computation of κ(B). We consider PGD
and SEC object detectors, but all nine detectors lead to similar
conclusions.

Figures from Figure 6 to Figure 9 are extracted relying
on the nuscene-dev kit 1.1.2, properly modified to visualize
values from κ(B), κd (B), κr (B), and κt (B). The axes represent
distances, in meters. The ego is always located in the center at
the (0, 0) coordinates and is oriented along the y-axis (head-
ing towards the top). The other vehicles are represented as
rectangles, and the front side is indicated by a small segment.
The ground truth (real position and orientation of cars) is
in green, while the detected cars are in blue. In the ideal
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FIGURE 6. κ(B) = 0.98 and κ(B) = 0.89 for two dangerous missed
detections from PGD.

FIGURE 7. κd (B) computed for SEC with Dmax = 15, Rmax = 20,
Tmax = 10.

case of a perfect object detectors, blue and green rectangles
would overlap. Both ground truths and detected vehicles have
associated a value, which is either κ(B), κd (B), κr (B), and
κt (B) depending on the figure. We add text labels and red
circles to improve readability.

We first consider PGD with Dmax = 30, Rmax = 20,
Tmax = 8.0. Very intuitively, this setting says that it is critical
to detect vehicles that are within 30 meters, and/or that are in
colliding trajectories within 20 meters in the next 8 seconds.

We start from Figure 6. A car is very close to ego, but it
is not detected: it has been assigned κ(B) = 0.98. This car is
located at the center of the diagram, and it is circled in red.
Another one is very close, but in ‘‘a less dangerous’’ situation:
κ(B) = 0.89. A third one is within Dmax = 30 meters, but
headed in a different direction, so it gets a mild criticality
score κ(B) = 0.60. Instead, there are other less critical missed
detections in the upper and lower parts of the image. These
are farther than Dmax = 30 meters, and are headed in non-
colliding trajectories: these are irrelevant, so they are worth
κd (B) = 0.00.

FIGURE 8. κr (B) computed for SEC with Dmax = 15, Rmax = 20,
Tmax = 10. The red circle is an area of approximately Rmax = 20 meters
from ego.

Next, we explore the contribution of the distance criticality
κd (B).We consider SECwithDmax = 15,Rmax = 20, Tmax =

10. Figure 7 shows that cars farther than 15 meters from
ego are assigned κd (B) = 0; the closest to ego, the higher
the κd (B) values. The red circle is approximately 15 meters
radius: vehicles outside the circle have κd (B) = 0.

FIGURE 9. κt (B) computed for SEC with D = 15, I = 20, T = 10. Objects
which may collide with ego within 10 seconds have assigned κt (B) ≥ 0.

Figure 8 shows the values of κr (B) for the same scene and
settings of Figure 7. Cars with a trajectory passing closer to
ego than Rmax = 20 are assigned κr (B) > 0; the closest to
ego, the higher the values, meaning that those passing very
close are at risk of collision. Note that objects can be assigned
a high κr (B) value even if they appear to actually collide with
ego. It is the case of the line of cars in the upper right part
of Figure 8, in the red circle: even if they are proceeding
straight, they are passing very close on the right of ego, and
thus the indicator of potential collision is close to 1.0.

Similarly, Figure 9 shows the values of κt (B). Cars which
may enter in a collision within T = 10 seconds are assigned
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κt (B) > 0. The velocity of ego and each car is a determining
factor to assign the criticality κt (B): vehicles relatively close
and in colliding trajectory may also have κt (B) = 0 val-
ues if they are not expected to reach the collision point
within T = 10. In the red circle, there are opposite examples,
of detected cars in colliding trajectories with ego but with
κt (B) = 0 and κt (B) = 0.96 (note that this last one is a false
positive).

VI. CONCLUSION AND FUTURE WORKS
We argue that the most used measures for object detection do
not match the demands and peculiarities of a safety-critical
system. Within the autonomous driving domain, currently
adopted measures typically describe how good an object
detector is at detecting all the objects on the scene, while
instead, for the purpose of an autonomous driving system,
we are interested in detecting all the objects that will likely
interfere with the driving task of the vehicle.

To this end, we show that the state-of-the-art evalua-
tion of object detectors does not consider the possible role
of the objects in a specific scene, and in particular with
respect to the driving task of the vehicle performing the
detection.

Consequently, we propose novel measures that take into
account the concepts of safety (detection of dangerous
objects, which require immediate reaction, should be pri-
oritized) and reliability (misdetections should not severely
disrupt the continuity of the driving task). We build and
exercise an object criticality model that performs a rating of
the objects, based on the distance from the subject vehicle,
the possible colliding trajectory, and the expected time to
collision. Amongst the main results, we show that our judg-
ment on the performance of object detectors may be very
different when we consider the detection of i) everything on
the scene (as it is usually done), or ii) only the relevant items.
Depending on which of the two cases is of interest, we may
end up choosing different object detectors. Further, we show
that object detectors with high performance under case i) can
be less competitive in case ii), and vice-versa.

Last, an important implication of our object criticality
model is that, when safety and reliability issues are consid-
ered, the selection of the most suitable object detector strictly
depends on its desired use, i.e., on the requirements of the
target application. Starting from application requirements,
the desired configuration of our object criticality model is
identified, measures are computed, and the most suitable
object detector is selected.

Noteworthy, our analysis is not meant to prove that the
evaluated object detectors are safe and reliable. Rather,
it shows how the object criticality model allows establish-
ing sound parameters that can be used to build, assess and
tune object detectors for their application in safety-critical
domains.

We remark that object detection in complex scenarios is
still an open research topic that makes improvements every
year [2], with new detectors that are proposed continuously;

however, defining new object detectors, or assessing the most
up-to-date object detectors, is beyond the scope of this paper.

As future work, we are currently working towards training
an object detector whose goal is to maximise APcrit . More
precisely, the objective is to train to maximize a specific
configuration of RS and PS , rather than R and P. Intuitively,
the object detector is intended to reward the detection of
objects that are relevant (close and in colliding trajectories),
and it is expected instead to be far less effective in the
detection of objects that are not relevant for the driving tasks
and that do not interfere with the elaboration of the trajectory
of ego. Practically, this can be realized by a proper training
phase, where the usual loss measurement approach is modi-
fied according to the principles and measures established in
this work.
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