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A B S T R A C T

In an attempt to contribute to the investigation of radiomic features
from magnetic resonance images (MRI) as potential biomarkers within
the field of rectal cancer, this thesis had tree main objectives. First,
to establish and optimize binary prediction models with progression
free survival (PFS), tumor regression grade (TRG) and posttherapy
pathological T-staging (ypT) as endpoints. The latter two are indicative
of response to neoadjuvant chemoradiotherapy (nCRT). Second, to
investigate the predictive and prognostic value of texture features in
particular, and finally, determine the reproducibility of obtained results
with respect to voxel dimension, tumor delineation and intensity
discretization.

Combinations of four feature selector algorithms and six classifiers
were evaluated. Shape, first-order statistical and texture features were
derived from T2- and diffusion-weighted MRIs. Radiomic data from 81
individuals with confirmed rectal cancer, of which 35 received nCRT,
was analysed.

The combination of Fisher score selector and Decision tree classifier
achieved test scores measured in area under the receiver operator
curve (AUC) of 62.2± 5.9% and 73.0± 10.8% when predicting PFS for
all patients and the nCRT cohort, respectively. Both models selected
first-order and texture features only. Across models, the small area
high gray level emphasis texture feature appeared to be of relevance
in predicting PFS. Prediction of TRG and ypT was achieved with test
scores of about 80% and 90% AUC, respectively. Overall, texture and
first-order features were well represented among those selected.

Values for test standard deviation were above 10% for a majority of
models, and above 20% for some models considering the nCRT cohort.
The small size and high dimensionality of this cohort may cause issues
like over-fitting and poor ability to generalize.

As a preliminary investigation, reproducibility of obtained results
was low. This may be influenced by the presence of correlated features.
Evaluating correlation and removing redundant features accordingly
are likely to render results more reliable and allow for features with
predictive and prognostic value to more readily be identified.
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S A M M E N D R A G

Med et ønske om å bidra til forskningen om hvorvidt radiomics-
parametre fra MR-bilder kan være biomarkører for endetarmskreft,
hadde denne oppgaven tre hovedmål. For det første, å etablere og op-
timalisere binære prediksjonsmodeller med progresjonsfri overlevelse
(PFS), tumorskrumpning (TRG) og T-stadieinndeling etter kjemora-
dioterapi (ypT) som endepunkter. De to sistnevnte indikerer effekten
av preoperativ kjemoradioterapi (nCRT). For det andre, å undersøke i
hvilken grad parametre som beskriver bildetekstur har prognostisk
og prediktiv verdi. For det tredje, å evaluere utvalgte resultaters re-
produserbarhet i forhold til voxeldimensjon, tumorsegmentering og
diskretisering av bildenes intensitetsnivåer.

Kombinasjoner av fire seleksjonsalgoritmer og seks klassifikasjon-
salgoritmer ble vurdert. Parametre som beskriver tumorens form og
tekstur, i tillegg til første ordens statistiske parametre, ble beregnet
fra T2- og diffusjonsvektede MR bilder. Radiomicdata fra 81 pasienter
med bekreftet endetarmskreft ble analysert. Av disse fikk 35 pasienter
nCRT.

Seleksjonsalgoritmen Fisher score i kombinasjon med klassifikas-
jonsalgoritmen Decision tree oppnådde følgende testresultat, målt
som area under the receiver operator curve (AUC): 62.2± 5.9% og
73.0± 10.8% for prediksjon av PFS for henholdsvis alle pasienter, og
pasienter som fikk nCRT. Begge modellene selekterte kun teksturpara-
metre og første ordens statistiske paramerte. Basert på resultater fra
flere modeller var en parameter som vektlegger små, høyintensive bil-
deregioner tilsynelatende av relevans i prediksjon av PFS. Prediksjon
av TRG og ypT resulterte i AUC-verdier omkring henholdsvis 80%
og 90%. Samlet sett var tekstur og første ordens statistiske parametre
godt representert blant de selekterte.

Standardavvikene for test-verdier var omkring 10% for majoriteten,
og over 20% for noen, for modellene som predikerte kun på bakgrunn
av data fra pasienter med nCRT. Dette datasettet var lite og hadde
samtidig høy dimensjonalitet på grunn av antallet parametre, noe som
kan resultere i en overtilpasning av modellen, og en redusert evne til
å generalisere.

Basert på denne undersøkelsen viste resultatene lav reproduser-
barhet. Korrelasjon mellom parametre kan være en sentral årsak. En
evaluering av i hvilken grad slik korrelasjon forekommer, og eksklude-
ring av overflødige parametre, kan potensielt bidra til mer troverdige
resultater. Dette vil også kunne gjøre det enklere å identifisere påliteli-
ge parametre med prognostisk og prediktiv verdi.
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Part I

B A C K G R O U N D





1
I N T R O D U C T I O N

In 2018, colorectal cancer had the second highest incidence rate in
Norway as well as in Europe, and third highest worldwide [1]. In
present-day (2019) rectal cancer staging, magnetic resonance imaging
(MRI) is the recommended image modality [2].

In the field of oncology, there is growing evidence of and attention
towards tumor heterogeneity [3]. Observed differences in how patients
respond to treatment motivates development of more personalized
treatment options [3]. Increased knowledge on and quantification of
tumor heterogeneity is considered to be crucial in this regard [4]. Being
able to predict each tumor’s response to a particular therapy would
allow for a more exact tailoring of dose, duration and overall intensity
of the cancer treatment [3].

Both inter- and intratumor heterogeneity exist. This may be due
to differences in tumor origin (e.g. cell types involved, location and
environment), as well as in the pattern of mutations occurring during
tumor progression and in response to treatment [4].

Images acquired using MRI or other modalities are obtained for
nearly all cancer patients [5], often several times during the course of
diagnosis, cancer staging and treatment [3]. There exists a conception
of such images containing unexploited, potentially highly useful infor-
mation [3]. Image texture, defined in Chapter 4, is being explored as
a source to such information and may be a way of evaluating tumor
heterogeneity [3]. Parameters relevant for describing image texture, as
well as other tumor features, can be extracted from MRIs in a process
referred to as radiomics [3].

radiomics Radiomics is defined as the process in which quan-
titative and high-dimensional features are extracted from medical
images and then used to recognize patterns in the data [5]. Together
with qualitative features as derived from medical images by experts,
the quantitative, mathematically based features may be referred to
as imaging biomarkers [6]. As such, radiomic features might provide
information on normal as well as pathogenic biological processes [6].

Information provided by the radiomics analysis may be combined
with other available data, for example genomic and clinical, to uncover
patterns and typically assist in some sort of decision support, like
predicting response to treatment [5]. As such, the field of radiomics
contributes to personalized medicine. In the following, some important
aspects of a typical radiomic analysis are introduced.
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4 introduction

Prior to feature extraction, a region or volume of interest (denoted
ROI and VOI, respectively) must be defined and subsequently seg-
mented [5]. The VOI is typically whole tumor(s) or specific parts of
the tumor with different physiology, so-called habitats [5]. Segmenta-
tion is done either manually by radiologists, by the use of automatic
segmentation software, or by using a combination of the two [5].

In this thesis, the following three classes of radiomic features will be
considered: first-order statistical features, shape-based features, and
texture features [7] [8]. The latter includes features derived from the
grey level cooccurence matrix (GLCM), grey level run length matrix
(GLRLM), grey level size zone matrix (GLSZM), neighbouring grey tone
difference matrix (NGTDM), as well as the grey level dependence matrix
(GLDM). Chapter 4 includes the necessary background on this topic.

The number of features extracted in a radiomics analysis may be
large, typically in the order of hundreds [5] [9] or even thousands [10]
[11]. The latter is often true especially when features are derived from
MRIs of various scan types [11].

This increasing amount of available features may lead to over-fitting,
especially when the number of patients is small [12]. As such, there is
need for a selection process from which only the most relevant features
remain [5]. The topic of feature selection is addressed in Chapter 5.

Finally, the dataset represented by selected features combined with
chosen endpoint(s) may be used to train machine learning-based pre-
dictive and prognostic models [10]. Data mining refers to the process
of thoroughly exploring large datasets with the goal of discovering
intricate relationships [13], and is commonly performed within the
field of radiomics [5]. Machine learning is the topic of Chapter 5.

In order for prediction models built from radiomics studies to
be of use in evaluation of new input data, reproducibility must be
assessed [14]. Various factors might add variability and thereby affect
the reproducibility or robustness of radiomic biomarkers [14]. In
particular, such factors include image acquisition approach, voxel
dimensions, VOI segmentation, and intensity discretization [14] [12].

project aim The overall aim of this thesis was to explore how
a radiomics analysis of T2- and diffusion-weighted MRIs (denoted
T2WIs and DWIs, respectively) may provide predictive and prognostic
value within the field of rectal cancer, with response to preopera-
tive treatment and progression free survival (PFS) as endpoints. The
approach was threefold. First, binary prediction models based on ra-
diomic data were established and attempted optimized by evaluating
various combinations of selectors and classifiers. Second, the degree
to which texture features in particular showed predictive or prognos-
tic value was investigated. And, finally, a preliminary evaluation of
reproducibility was performed.
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The patient cohort considered in this thesis consisted of 81 individ-
uals, all diagnosed with rectal cancer.

note : If a reference is given at the end of a paragraph, it is implied
that the reference was used throughout that particular paragraph.





2
M A G N E T I C R E S O N A N C E I M A G I N G

In this Chapter, the fundamental principles of MRI are first outlined
in brief, based mainly on information found in [15] and [16]. Then, in
Section 2.3, DWI is explained.

2.1 fundamental principles

MRI takes advantage of the fact that the hydrogen proton has spin. By
virtue of being a charge in motion the hydrogen proton will posses a
magnetic dipole moment. When exposed to a strong, static magnetic
field as provided by the magnetic resonance (MR) machine, the dipole
moments of the hydrogen protons attempt to align with this external
field. Due to phenomena within quantum mechanics they are not
quite able to align. This gives rise to a precession movement of the
hydrogen protons around the direction of the external field. The
angular frequency is commonly referred to as the Larmor frequency,
expressed as the precessing hydrogen proton’s gyromagnetic ratio
multiplied by the magnetic field strength [15]:

f = 42.58 ·magnetic field strength (2.1)

in units of MHz. Angular Larmor frequency is obtained by multi-
plication of 2π [15].

In addition to inducing precession, the external magnetic field will
cause the hydrogen protons to be in one of two possible states, almost
parallel or almost anti-parallel relative to the external field. Depending
on field strength and temperature, there will be a slight majority
of protons in one state. In MRI, this is usually the former state. The
hydrogen protons all precess at the same frequency but are on average
completely out of phase. Accordingly, with majority of protons in
the parallel state, there will be a net magnetization precisely in the
direction of the external field [16].

An illustration of both the spin and precession movement of protons
can be seen from Figure 2.1.

In the following, a brief description of the main steps involved in
acquiring an MRI is included. Subsections 2.1.1 and 2.1.2 are based on
information from [15].

7
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Figure 2.1: Protons precessing at the Larmor frequency ω, as evident by
the green arrow, around the Z-direction, i.e. the direction of the
external magnetic field B0. The blue arrow indicates spin. A
majority of protons in the almost parallel state. Inspiration for
this figure was found in [15], page 30.

2.1.1 MRI sequences

MR sequences are specifications of the steps involved in acquiring MRIs.
Various approaches can be made based on the type of information the
resulting MRI is expected to provide. Yet, four basic components are
part of any standard MR sequence.

First, the previously mentioned static, external magnetic field, typi-
cally denoted B0, parallel to the z-axis. A common field strength is 1.5
Tesla.

Furthermore, a second, much weaker magnetic field is employed,
namely the gradient field, giving rise to slight variations in the total
magnetic field strength along the chosen gradient directions. This
enables association of an individually detected signal with a specific
position in the tissue being imaged.

Third, a radio frequency (RF) pulse is utilized. Prior to the pulse
being emitted, the net magnetization of the hydrogen protons dipole
moment was aligned parallel to B0 in the longitudinal direction, de-
noted Mz. The component in the transverse direction, Mxy, is zero. It is
difficult to detect Mz particularly because it is not in motion and will
therefore not induce current, and due to its magnitude being much
smaller than that of B0.

Hence the RF, or excitation, pulse. The frequency of the pulse
matches the precession frequency of the hydrogen protons, i.e. the
Larmor frequency. Consequently, resonance will occur and thereby
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give rise to a short-lived transverse component. The RF pulse and sub-
sequent resonance provide energy, causing the net magnetization to
be "flipped" into the transverse plane. This means that the direction of
the hydrogen protons spin axis or dipole moment are now positioned
at a greater angle to the z-axis. In addition, they now precess with
quite similar phases, resulting in a net magnetization in the transverse
direction, Mxy, according to vector addition. Mxy will rotate at the
Larmor frequency about the direction of B0.

It is this transverse component of the net magnetization that is
altered according to the gradient field: the applied gradient generates
slight differences in the protons precession frequency, and subsequent
dephasing and decrease in Mxy. The extent to which Mxy is reduced
can be linked to the position exposed to a gradient of matching mag-
nitude.

The final step in the MRI sequence is signal detection. Current is
induced in receiver coils due to the rotating Mxy. Areas with different
anatomy or function correspond to distinct signal intensities. Two
main aspects in this regard are proton density and relaxation.

The former reflects the density of hydrogen protons able to interact
as explained and give off signal. This will mainly be the case for hy-
drogen protons in water and fat. Relaxation is the net magnetization’s
return to its original state prior to being effected by the RF pulse. This
process will begin right after emission of the RF pulse. It involves two
concurrent phenomena: an increase in the longitudinal component
and a decrease in the transverse component, referred to as T1 and
T2 relaxation, respectively. T1 and T2 are both time constants for its
associated relaxation process.

2.1.2 T1 and T2

Weakening of the transverse net magnetization component and in-
crease of the longitudinal component will occur at a rate dependent
on the hydrogen proton’s environment. In T1 relaxation, the deter-
mining factor is whether or not the local magnetic field fluctuates at
a frequency close to the Larmor frequency. In tissues were this is the
case, the T1 relaxation will be rapid, corresponding to high-intensity
signal.

T2 relaxation is based on dephasing of Mxy. As mentioned, for there
to be a net magnetization in the transverse plane, the spin axis must
be in phase for a majority of the hydrogen protons. Accordingly, a
dephasing is a weakening of the transverse component. Areas with
high-frequency, low-amplitude magnetic field variations give rise to
slow dephasing and corresponding T2 relaxation. This is the case
for aqueous tissue and corresponds to high-intensity areas in the
MR image. Conversely, rapid T2 relaxation is associated with low-
frequency, high-amplitude magnetic field variations. In T2 relaxation,
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dephasing occurs solely due to impact on the hydrogen protons from
nearby atoms and molecules. T2

∗ relaxation refers to the situation in
which other "external" effects like susceptibility of the different tissues
as well as heterogeneity in the applied magnetic field are present.

An MRI can be T1-weighted or T2-weighted, implying that the se-
quence is constructed such that it is the T1 and T2 properties of the
different tissues that are forming the basis of the image, respectively.
T2WIs, as exemplified in Figure 2.2a, are considered in this thesis.

2.1.3 Magnetic field gradients

This Subsection is based on information provided by [16], mainly
Chapter 4 and 7.

As mentioned, magnetic gradient fields are used in addition to
the main magnetic field, B0. While B0 is of strength typically in the
range of 1.5 T to 3 T, the gradient fields have units of mT. They are
referred to as gradient fields because they give rise to linear variations
in the total static, magnetic field strength. Gradients can be applied in
either direction; x, y or in the direction of B0, z. This typically involves
a subtraction or an addition to B0 based on the position along the
corresponding axis. For instance, a gradient field in the y-direction,
denoted Gy, will add to or subtract from B0 according to distance
along the y axis from the position at which Gy = 0.

Gx, Gy and Gz are induced by the use of gradient coils. These can
be employed in combination, thereby enabling linear field variations
in any direction and orientation.

The precession frequency of the hydrogen protons is directly pro-
portional to the magnetic field strength according to Equation 2.1.
Thus, at a position exposed to a positive gradient the protons will be
precessing faster than at the position of zero gradient, and vice versa.
The overall result is a dephasing.

Magnetic field gradients are utilized in slice selection, spatial encod-
ing and acquiring gradient echos.

slice selection Choosing the area to excite and form an MR im-
age from is a crucial step in MRI. In addition to allowing for selection of
direction and orientation, the gradient coils also enable determination
of slice thickness.

Slice selection is achieved by applying the RF excitation pulse in
combination with a gradient field. The RF pulse will have a narrow
bandwidth in the sense that it only contains frequencies slightly higher
and slightly lower than the frequency of the precessing protons in
the absence of any gradient. A smaller bandwidth give rise to a a
narrower area of excited hydrogen protons. The gradient field will
alter the protons precession frequency according to position along the
chosen direction(s). Resonance between the RF pulse and precession
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movement only occurs if the frequencies of the two matches. In other
words, at positions where the gradient field has decreased or increased
the precession frequency to such an extent that this is no longer the
case, hydrogen protons will not be excited.

spatial encoding Spatial encoding involves relating detected
signal to the position from where it originates from. In order to asso-
ciate each pixel or intensity value in the 2D matrix with a position,
spatial encoding along two directions is required. So-called phase
encoding could be carried out in both directions, however utilizing
frequency encoding in one of the two speeds up the image acquisition
process.

Phase encoding is achieved by the use of a gradient along one of the
two directions to be spatially encoded, say, the y-direction. Initially,
following the RF pulse, the excited protons will have quite similar
phases. As explained, the gradient will cause a dephasing. The extent
to which the protons dephase depends on the distance along the y-axis
from where the gradient is zero.

A second, frequency-encode gradient is applied along the other
direction, the x-axis. This is done at a later time than the phase-
encode gradient, simultaneously as detecting the signal. As a result,
the obtained signal will be spatially encoded in two directions.

2.1.4 Gradient echo and spin echo sequences

MR signals are commonly referred to as echos. The time interval be-
tween emission of the RF pulse and detection of the echo is defined as
time to echo (TE). In order to acquire enough signal to form an image,
the steps involved in the MR sequence are typically repeated several
times. The time between start points of two succeeding repetitions is
defined as time to repetition (TR) [15].

The two main types of MRI sequences are the gradient echo and
spin echo sequence [15].

gradient echo In a gradient echo sequence, the area being im-
aged is exposed to a negative gradient field shortly after emission
of the excitation RF pulse. Then the gradient is reversed, resulting in
a rephasing taking place. An echo is detected from this rephasing
process as well as the ensuing "natural" dephasing [15].

spin echo Spin echo involves the use of a second RF pulse, referred
to as the refocusing pulse. Optimally, this results in an elimination of
the static, external effects, which is favorable both due to avoidance
of artifacts potentially created by these effects, as well as enhanced
signal intensity [15].
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2.2 image formation

This Section is based on information provided by [16], mainly Chapter
4 and 7. One exception exists, at which the reference is given.

Simply put, the analogue signal as detected by the receiver coils
is sampled to fit a matrix of the same dimension as the final image,
defined as the raw data matrix. The signal is now digitized. How-
ever, this raw data matrix consists of values in k-space. Accordingly,
reconstruction of the raw data into the final image involves Fourier
transformation.

MR images are made up of pixels. The image size is determined
by the pixel matrix. Some commonly used dimensions are 256 x 128
and 512 x 256. Each position in the matrix corresponds to a pixel
represented by a number referring to the intensity of the signal at this
position.

Each pixel corresponds to the amount of signal originating from
a specific element of the area being imaged, a so-called voxel. The
delineated area that is imaged is in the form of a 3D slice. The thickness
of each voxel corresponds to the thickness of the slice. The surface
area of each voxel is given by the field of view (often square) divided
by the number of pixels/voxels in each direction as defined by the
matrix dimension.

The value of each pixel lies within a range determined by the bits
(denoted b in the relation below) of the image. The different values,
reflecting the intensity at each position, are referred to as grey-values.
Normally, black corresponds to 0 and the maximum grey-level value
to white. The number of different grey-levels are calculated as follows:
2b − 1. MRIs are often of 12 bits [17].

2.3 diffusion weighted mri

In DWI, the mobility of hydrogen protons can be observed [18]. This
is useful in particular because many pathological events like inflam-
mation, or the presence of a tumor [19], involve changes that in turn
may alter the degree to which water protons are free to diffuse [18].
For comparison, diffusive motion is completely unrestricted in pure
water [20].

Magnetic gradient fields are employed to achieve image contrast
that is diffusion-weighted [16]. The b-value parameter, depending on
magnitude and duration of the gradient field, reflects the degree to
which obtained contrast is determined by diffusion [16]. A DWI can be
seen from Figure 2.2b.

DWI is achieved by using a minimum of two different b-values,
allowing for calculation of the apparent diffusion coefficient (ADC) as
belonging to each tissue or area in the image [19].
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For a given b-value, signal strength from a tissue with diffusion
coefficient D is given by [16]

S(b) = S(0)e−bD, (2.2)

where S(0) is the intensity with no diffusion-weighting [19]. Then,
ADC associated with each voxel may be calculated as [19]

ADC =
1
b
· ln S(0)

S(b)
(2.3)

Values for all voxels are typically presented in an ADC-map [19]. An
ADC-map on top of a T2WI can be seen from Figure 2.2c.

DWIs and ADC-maps are used in correlation to get optimal informa-
tion, for example in characterization of a lesion as either benign or
malignant: the former appear dark (low intensity) in DWIs with high
b-value and bright (high intensity) in the corresponding ADC-map,
while the situation is reversed for malign lesions [19].

(a) T2WI of the tumor. (b) DWI of the tumor.

(c) ADC-map on top of the T2WI of the
tumor.

Figure 2.2: T2WI (a), DWI (b) and ADC-map on top of the T2WI (c), all showing
the tumor of a patient included in the Hypoxia-mediated Rectal
Cancer Aggressiveness (OxyTarget) study [21].





3
R E C TA L C A N C E R A N D M R I

Colorectal cancer include both colon and rectal cancer. Of all incidences
of colorectal cancer, about 30− 35% is rectal cancer (2019) [10].

The rectum is the 12 cm to 18 cm long final part of the large intestine.
In contrast to the colon, the rectum is surrounded by a layer of muscle,
embedded in its walls. Some of the most important layers enclosing
the rectal tube, from inner to outer, are the mucosa, the submucosa,
the muscularis propria, and finally the mesorectum, bordered by the
mesorectal fascia (MRF) [2]. The mesorectum may be of relevance in
the development and spreading of rectal cancer due to the number
of lymph nodes found here, typically between 5 and 20. Such lymph
nodes may be targets in radiation therapy. A tumor is defined as
locally advanced if it protrudes the MRF [22].

Cancer staging is the process of determining the degree to which the
primary tumor has developed and spread [23]. The TNM standard [24],
describing the tumor, regional lymph nodes, and degree of metastasis,
respectively, is frequently used. The former is concerned with how far
into the rectal wall the tumor extends. T1 and T2 refer to tumors having
spread to the submucosa and muscularis propria, respectively. A T3
tumor extends into the mesorectum, while a T4 tumor penetrates the
rectums entire cross-section and is thereby defined as locally advanced.
T4b is descriptive of the tumor being in contact with nearby organs.
Furthermore, N0 is indicative of no detected metastasis in nearby,
or regional, lymph nodes. N1, N2 and the subdivisions within these
stages correspond to increasing numbers of lymph nodes showing
presence of metastasis. M1a and M1b denotes the case of metastasis
to one or more distant organ(s) or position(s), respectively [2].

Based on stage, treatment of rectal cancer is normally attempted
through surgery. So-called total mesorectal excision (resection of all
layers enclosing the rectal canal until and including the mesorectum) is
often performed [2]. Most times, surgery is done in combination with
some form of preoperative therapy. This is referred to as neoadjuvant
therapy and may involve radiation, chemotherapy, or a combination of
both. Such preoperative measures are taken with the goal of reducing
tumor size as well as enhancing possibility of a successful tumor
removal during surgery [23].

In Europe, the following selected definitions and treatment stan-
dards prevails, according to [2]. In addition to a few other factors, a
tumor staged as T1-T3, N0 and M0 is defined as low risk and therapy
will consist of surgery only. High risk disease include T4-tumors and
tumors with spreading to lymph nodes, i.e. locally advanced tumors.

15
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In such cases, neoadjuvant chemoradiotherapy (nCRT) would typically
be performed prior to surgery.

3.1 mri in rectal cancer staging , treatment planning

and surveillance

This section is based on information found in [2] unless otherwise
stated.

MRI is the recommended image modality for rectal cancer staging.
T2WIs are frequently used, with a narrow field of view and slice
thickness below 3 mm. MRI is typically used in both primary staging
and restaging, as well as in evaluation of local recurrence.

3.1.1 Primary staging

Primary staging is done prior to surgery and involves obtaining a de-
tailed understanding of the particular case so that further actions can
be carried out accordingly. Features related to high degree of tumor
development, like invasion of the mesorectal vasculature and protru-
sion of the MRF, may be identified. Both location and morphology of
the tumor can be described in great detail. An important descriptor is
distance of the tumor to the anal verge. Tumors at a distance greater
than 15 cm are defined as colon cancer. Furthermore, the extent to
which the tumor protrudes the various tissues of the rectal wall is
determined. This is crucial in T-staging.

The degree to which lymph nodes are involved, and thereby the
N-stage, can be determined. MRI provides higher accuracy in T-staging
than in N-staging. Nevertheless, useful insight regarding regional
lymph nodes can be obtained from MRIs. In the case of tumors defined
as T4, the organs and structures possibly invaded may be determined.

Based on features like the above mentioned, primary staging enables
determination of whether or not neoadjuvant therapy is necessary,
and is often crucial in planning of surgery.

3.1.2 Restaging and evaluation of local recurrence

Primary staging is also referred to as clinical staging, denoted cTNM.
In pathological staging, denoted pTNM, information from analysing
the resected tumor is obtained. Finally, posttherapy staging, denoted
yTNM, consider the effect of preoperative treatment, and is also used
when radiation- and/or chemotherapy is the only treatment [24].

In this thesis, both posttherapy pathological staging, denoted ypT,
and Tumor Regression Grade (TRG), as explained next, are used as
measures of the degree to which preoperative CRT was successful.

The TRG system exist in various forms, some ranging from 1 to 5

[2], others from 0 to 3 [25], where the lower number is indicative of
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complete removal and the higher of no or poor response. The latter
system is called the 2010 American Joint Committee on Cancer (AJCC)
TRG system [25], and will be used to assess response to nCRT in this
thesis.

3.2 predicting response to preoperative crt

In the field of rectal cancer, several studies on predicting response to
nCRT in particular have been conducted. As mentioned, patients with
locally advanced rectal cancer, LARC for short, is normally treated with
nCRT prior to surgery. How successful this preoperative treatment is
for LARC patients varies greatly, however [9].

To highlight the extremas: some experience complete tumor removal
(about 15-27 % of patients receiving nCRT [26], [27]), while others are
seemingly unaffected by the CRT [9].

From this it is clear that predicting response to nCRT could ideally
limit the use of surgery and nCRT, respectively, to the cases in which
it is actually of use. In particular, being able to select the patients
experiencing complete tumor removal would be beneficial, as these
patients might not need surgery at all [27].





4
I M A G E T E X T U R E A N D R A D I O M I C F E AT U R E S

Various definitions of image texture exists, each having a slightly
different focus or generality. Some make higher demands as to what
can be described as image texture than others.

A general definition is texture simply being spatial heterogeneity in
pixel intensity [3]. While some include in their definition of texture
features like mean, median and max/min values of intensity from
a region of voxels [3] [17], others are more consistent with the idea
that texture describes relationships between two or more voxels [5].
These two groups of features are referred to as first- and second-order
statistical features, respectively [5]. Higher-order features are typically
obtained by the means of filters or transforms and describe patterns
in the VOI [5].

More specifically, the author of [28] defines texture in medical im-
ages as intrinsic heterogeneity or diversity at smaller scales than that of
the object or structure being imaged. Such variations must be intrinsic
in the sense that they exist due to actual heterogeneity or variation in
the imaged structures, not merely caused by the instrument acquiring
the image, such as noise.

The term texture will in this thesis apply to both second- and higher-
order statistical features.

intensity binning Discretisation or binning of the image inten-
sities is commonly done prior to calculation of first-order and texture
features, achieved according to either a defined bin width or, alterna-
tively, a defined number of bins [6]. The latter will alter the contrast
between two images, while a fixed bin width influence the image
coarseness [6].

In this thesis, discretisation is done by defining a bin width, denoted
wb. Accordingly, the intensity of each voxel, X, is calculated as [6]

Xd =
X− Xmin

wb
+ 1 (4.1)

radiomic features The remains of this chapter include theory
on relevant radiomic features from each of the three classes; shape-
based features, first-order statistical features and various texture fea-
tures.

note : All definitions presented in this chapter are based on the
PyRadiomics package documentation [7] [8]. The same is true for
associated descriptions and elaborations, unless otherwise stated.
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All first-order statistical and texture features will be calculated from
grey level values of voxels residing within the region of interest (ROI).

4.1 shape features

Shape features describe the size and shape of the ROI. They are based
on the binary mask used for segmentation of the ROI and thus inde-
pendent of the intensity distribution within this region. Shape features
may be three-dimensional or two-dimensional.

A network or mesh is created from the ROI to allow for calculation
of shape features. Simply put, this mesh is made up by triangles where
each triangle is defined by three adjacent points. The edge of the mesh
consists of triangles defined by points positioned at the midpoint
of the border between a voxel inside the ROI and a voxel excluded
from the ROI. Note that the principal components defined below are
obtained from the tumor directly, not from the mesh.

The shape features considered in this thesis are presented in Table
4.1, with corresponding descriptions for some features below.

Define:

• Nv = number of voxels in the ROI.

• N f = number of triangles in the mesh.

• ai, bi, ci = points constituting a triangle.

• O = point defined as image origin.

• λmajor, λminor, λleast = greatest, next-greatest, and smallest princi-
pal component, respectively. Obtained by principal component
analysis.

Sphericity quantifies the degree to which the tumor is shaped as
a sphere. It ranges from 0 to 1, the latter suggesting a fully spherical
tumor.

Obtained from a principal component, the major, minor and least
axis length measure the greatest, next-greatest, and smallest axis
length, respectively. The elongation feature ranges between 1, as in-
dicative of a spherical, i.e. non-elongated tumor shape, and 0, as
indicative of a 2D line, i.e. fully elongated. Similarly, flatness equals 1
when the tumor is spherical and non-flat, and 1 when the opposite is
true.
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features definition

Mesh Volume, V ∑
N f
i=1

Oai · (Obi×Oci)
6

Voxel Volume, Vvoxel ∑Nv
k=1 Vk

Surface Area, A 1
2 ∑

N f
i=1 |aibi × aici|

Surface to Volume ratio A
V

Sphericity
3√36πV2

A

Major Axis Length 4
√

λmajor

Minor Axis Length 4
√

λminor

Least Axis Length 4
√

λleast

Elongation
√

λminor
λmajor

Flatness
√

λleast
λmajor

Maximum 3D Diameter

Maximum 2D Diameter, Slice

Maximum 2D Diameter, Column

Maximum 2D Diameter, Row

Table 4.1: Features describing shape. Definitions are according to the PyRa-
diomics package documentation [7] [8].

4.2 first-order statistical features

The first-order statistical features can be obtained in a histogram analy-
sis, in which the histogram displays the number of pixels in the whole
image or ROI at each intensity level [4]. The features describe such
intensity distributions without taking spatial relationships between
voxels into account, thereby being first-order [29].

The first-order statistical features considered in this thesis are pre-
sented in Table 4.2, with corresponding descriptions below.

Define:

• X is a set of Np voxels, all positioned within the ROI.

• P(i) is a first-order histogram containing Ng intensity bins, and
normalized as p(i) = P(i)

Np
.

• c = constant defined if X contains negative values, resulting in
positive intensities only.

• ε = some small, positive constant.

Percentiles describe the intensity value that a given percentage of
all pixels are below, or less than [4]. The percentiles considered in this
thesis are 10 % and 90 %, referred to as P10 and P90, respectively [6].



22 image texture and radiomic features

features definition

Maximum intensity max(X)

Minimum intensity min(X)

Range max(X)−min(X)

Median intensity

Mean intensity 1
Np

∑
Np
i=1 X(i)

10th percentile P10

90th percentile P90

Interquartile range P75 − P25

Energy ∑
Np
i=1(X(i) + c)2

Total energy Vvoxel ∑
Np
i=1(X(i) + c)2

Entropy −∑
Ng
i=1 p(i)log2(p(i) + ε)

Variance 1
Np

∑
Np
i=1(X(i)− X)2

Mean absolute deviation

(MAD) 1
Np

∑
Np
i=1 |X(i)− X|

Robust MAD 1
N10−90

∑N10−90
i=1 |X10−90(i)− X10−90|

Root mean square
√

1
Np

∑
Np
i=1(X(i) + c)2

Uniformity ∑
Ng
i=1 p(i)2

Skewness
1

Np ∑
Np
i=1(X(i)−X)3

(

√
1

Np ∑
Np
i=1(X(i)−X)2)3

Kurtosis
1

Np ∑
Np
i=1(X(i)−X)4

( 1
Np ∑

Np
i=1(X(i)−X)2)2

Table 4.2: First-order statistical features. Definitions are according to the
PyRadiomics package documentation [7] [8].
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High energy corresponds to a large number of high-intensity voxels.
The total energy feature is obtained as the product of energy and
voxel volume.

The entropy feature represents the degree to which an intensity
histogram is irregular [4], or random [8].

The variance of X is the degree to which intensities are spread out
from the mean intensity. Similar to variance, the mean absolute devi-
ation (MAD) and the robust MAD are both measures of the degree to
which intensities are spread out about the mean. In the calculation of
robust MAD, only pixels within the range defined by P10 as lower limit
and P90 as upper limit are considered.

Similar to energy, the root mean square reflects the magnitude of
the total intensity.

Uniformity quantifies the extent to which the image consists of
voxels with similar intensity values, in other words the homogeneity
of the histogram.

Skewness describes the degree to which the intensity values are
distributed in an asymmetric fashion about the mean intensity. A
positively skewed distribution is characterized as being flat and spread-
out for values to the right of the mean, while the left side often contains
a broader peak [4], and vice versa.

Kurtosis reflects the shape of the intensity histogram [4]. Simply
put, it describes whether the distribution is peaked around the mean
intensity value (low kurtosis) or less peaked and more broad (high
kurtosis).

4.3 texture features

Evaluating image texture may be viewed as a second order histogram
analysis [4]. As mentioned, texture features take into account the
spatial relationship between voxels [29]. From each of the matrices
described below, various features can be derived. All features are
calculated from voxels inside the ROI.

Define, for each ROI:

• Ng = number of intensity bins.

• p(i, j) = the normalized matrix.

• Np = number of voxels.

• ε = random, positive number of magnitude ∼ 10−16

Additional parameters are defined for each particular matrix.

4.3.1 GLCM Features

The grey level co-occurrence matrix (GLCM), denoted P(i, j), shows,
for a given spacing between the two pixels as well as direction in the
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image, the number of pixel pairs found for each possible combination
of intensity values [17].

The number of possible pixel pair combinations and thus GLCM size,
is Ng x Ng. For a given spacing, δ, and angle, θ, each matrix element
(i,j) is a value equal to the frequency at which this particular intensity
combination i and j appears in the image.

The GLCM features considered in this thesis are presented in Table
4.3, with corresponding descriptions below.

Define, for each ROI:

• p(i, j) = P(i,j)
∑ P(i,j)

• px(i) = ∑
Ng
j=1 P(i, j) and py(j) = ∑

Ng
i=1 P(i, j) are marginal row

and column probabilities, respectively.

• µx and σx = mean intensity and standard deviation of px, respec-
tively.

• µy and σy = mean intensity and standard deviation of py, respec-
tively.

• HXY = joint entropy

The autocorrelation feature quantifies image coarseness. High joint
energy indicates the presence of more homogeneous patterns, while
high joint entropy is indicative of high variability among the pixel
pairs calculated from the image.

Cluster prominence also quantifies variability, with a lower value
indicating that values in the GLCM are closer to the mean, i.e. little
variation. The same is true for the cluster shade feature. Cluster
tendency quantifies the degree to which groups of voxels with similar
intensities appear.

High contrast indicates larger differences in gray-levels for vox-
els in close vicinity of each other. The correlation feature quantifies
correlation between the intensity value and the voxel.

Difference average evaluates the relation between pixel pairs of
equal and dissimilar gray-level value, respectively. Difference entropy
quantifies the degree to which the differences in intensities that appear
close, vary. Finally, difference variance weights pixel pairs in which
the intensity between the two voxels deviate from the mean difference,
higher.

Informational measure of correlation (IMC) 1 and 2 both quantify
the degree to which probability distributions for i and j are found
to correlate. The inverse difference moment (IDM) feature quantifies
homogeneity among nearby pixel pairs. The same is true for inverse
difference (ID). Similarly to IMC, the maximal correlation coefficient
(MCC) describes texture complexity.
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features definition

Autocorrelation ∑
Ng
i=1 ∑

Ng
j=1 p(i, j)ij

Joint average µx = ∑
Ng
i=1 ∑

Ng
j=1 p(i, j)i

Joint energy ∑
Ng
i=1 ∑

Ng
j=1(p(i, j))2

Joint entropy −∑
Ng
i=1 ∑

Ng
j=1 p(i, j)log2(p(i, j) + ε)

Cluster prominence ∑
Ng
i=1 ∑

Ng
j=1(i + j− µx − µy)4 p(i, j)

Cluster shade ∑
Ng
i=1 ∑

Ng
j=1(i + j− µx − µy)3 p(i, j)

Cluster tendency ∑
Ng
i=1 ∑

Ng
j=1(i + j− µx − µy)2 p(i, j)

Contrast ∑
Ng
i=1 ∑

Ng
j=1(i− j)2 p(i, j)

Correlation
∑

Ng
i=1 ∑

Ng
j=1 p(i,j)ij−µxµy

σx(i)σy(j)

Difference average ∑
Ng−1
k=0 kpx−y(k)

Difference entropy ∑
Ng−1
k=0 px−y(k)log2(px−y(k) + ε)

Difference variance ∑
Ng−1
k=0 (k− DA)2 px−y(k)

IMC 1
HXY−HXY1
max{HX,HY}

IMC 2

√
1− exp(−2(HXY2− HXY)

IDM ∑
Ng−1
k=0

px−y(k)
1+k2

IDM normalized ∑
Ng−1
k=0

px−y(k)

1+ k2

N2
g

ID ∑
Ng−1
k=0

px−y(k)
1+k

ID normalized ∑
Ng−1
k=0

px−y(k)
1+ k

Ng

MCC ∑
Ng
k=0

p(i,k)p(j,k)
px(i)py(k)

Inverse variance ∑
Ng−1
k=1

px−y(k)
k2

Maximum

probability max(p(i, j))

Sum average ∑
2Ng
k=2 px+y(k)k

Sum entropy ∑
2Ng
k=2 px+y(k)log2(px+y(k) + ε)

Sum of squares ∑
Ng
i=1 ∑

Ng
j=1(i− µx)2 p(i, j)

Table 4.3: Features derived from the GLCM. Definitions according to the PyRa-
diomics package documentation [7] [8].
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Maximum probability considers the intensity value pair that ap-
pears most often in the GLCM, and equals the frequency of this occur-
rence.

Similar to the difference variance feature, sum average quantifies
the relation between pixel pairs of lower and higher gray-levels, re-
spectively. The sum entropy feature summarizes the differences in
gray-level values between pairs in a neighbourhood.

Finally, the sum of squares feature quantify the deviation of gray-
level value of neighbouring pixel pairs from the mean.

4.3.2 GLSZM Features

The grey level size zone matrix (GLSZM), denoted P(i, j), shows, for
each intensity value, the number of adjacent or so-called connected
voxels having the same intensity, thereby constituting a zone. The
vertical and horizontal matrix dimension represents the grey level
values and number of voxels in each zone, respectively. As such, each
matrix element (i,j) corresponds to the number of zones with grey
level i and j number of voxels. In a 2D image, each voxel is connected
to 8 other voxels.

The GLSZM features considered in this thesis are presented in Table
4.4, with corresponding descriptions below.

Define, for each ROI:

• Np = number of voxels.

• Nz = number of zones.

• Ns = number of different zone sizes.

• p(i, j) = P(i,j)
Nz

The small and large area emphasis features quantify, respectively,
the degree to which zones in the image are smaller, corresponding to
finer texture, or larger, corresponding to courser texture.

High gray level non-uniformity indicates larger variance or hetero-
geneity in the different intensity values of the image. Similarly, a high
size-zone non-uniformity indicates larger variance in the volumes of
the different size zones of the image.

The zone percentage feature, defined as the number of zones rela-
tive to the number of voxels, is also a measure of texture coarseness.

Similarly to gray level and size-zone non-uniformity, the gray level
and zone variance features quantify the variability in intensity values
and volumes of the zones, respecitvely. In the corresponding equations,
µ is defined as mean zone intensity and volume, respectively.

Zone entropy quantifies the degree to which the volumes and in-
tensity values of the zones appear randomly, or more structured in a
pattern.
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features definition

Small area emphasis
∑

Ng
i=1 ∑Ns

j=1
P(i,j)

j2

Nz

Large area emphasis
∑

Ng
i=1 ∑Ns

j=1 P(i,j)j2

Nz

Gray level non-uniformity
∑

Ng
i=1(∑

Ns
j=1 P(i,j))2

Nz

Gray level non-uniformity nor-
malized

∑
Ng
i=1(∑

Ns
j=1 P(i,j))2

N2
z

Size-zone non-uniformity
∑

Ng
j=1(∑

Ns
i=1 P(i,j))2

Nz

Size-Zone non-uniformity Nor-
malized

∑
Ng
j=1(∑

Ns
i=1 P(i,j))2

N2
z

Zone Percentage Nz
Np

Gray level variance ∑
Ng
i=1 ∑Ns

j=1 p(i, j)(i− µ)2

Zone variance ∑
Ng
i=1 ∑Ns

j=1 p(i, j)(i− µ)2

Zone entropy −∑
ng
i=1 ∑Ns

j=1 p(i, j)log2(p(i, j) + ε)

Low gray level zone emphasis
∑

Ng
i=1 ∑Ns

j=1
P(i,j)

i2
Nz

High gray level zone emphasis
∑

Ng
i=1 ∑Ns

j=1 P(i,j)i2

Nz

Small area low gray level em-
phasis

∑
Ng
i=1 ∑Ns

j=1
P(i,j)
i2 j2

Nz

Small area high gray level em-
phasis

∑
Ng
i=1 ∑Ns

j=1
P(i,j)i2

j2

Nz

Large area low gray level em-
phasis

∑
Ng
i=1 ∑Ns

j=1
P(i,j)j2

i2
Nz

Large area high gray level em-
phasis

∑
Ng
i=1 ∑Ns

j=1 P(i,j)i2 j2

Nz

Table 4.4: Features derived from the GLSZM. Definitions according to the
PyRadiomics package documentation [7] [8].
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The information quantified by remaining features is given from the
name. Each feature equals the distribution of all zones with attributes
according to its name.

4.3.3 GLRLM Features

The grey level run length matrix (GLRLM), denoted P(i, j|θ), contains
in a similar manner as the GLSZM, for each intensity value, the length
defined in number of pixels along the direction of θ having the same
intensity. The vertical and horizontal matrix dimension represents the
grey level values and the length of each run, respectively.

The GLRLM features considered in this thesis are presented in Table
4.1, with corresponding descriptions below.

Define, for each ROI:

• Np = number of voxels.

• Nr = number of run lengths.

• Nr(θ) = number of runs along the direction of θ

• p(i, j|θ) = P(i,j|θ)
Nr(θ)

The analogy to features derived from the GLSZM is apparent, now
with the focus being run length instead of zone size.

The short and long run emphasis features quantify the degree to
which runs are shorter or longer, as corresponding to finer or coarser
texture, respectively.

Gray level non-uniformity is defined similarly to when this fea-
ture is extracted from the GLSZM as outlined above, now calculated
based on the intensity levels of the runs. Likewise, run length non-
uniformity quantifies the degree to which lengths of the runs calcu-
lated from the VOI vary.

Again, similarly to the zone percentage feature from the GLSZM, run
percentage is another measure for texture coarseness. Furthermore,
gray level and run variance describes the variability in intensity and
length of the runs, respectively, similarly to the two non-uniformity
features. In the corresponding equations, µ is defined as mean run
intensity and length, respectively.

Run entropy quantifies randomness both with respect to length and
intensity of runs.

The information quantified by remaining features is given from the
name. Each feature equals the distribution of all runs with attributes
according to its name.
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features definition

Short run emphasis
∑

Ng
i=1 ∑Nr

j=1
P(i, j|θ)

j2

Nr(θ)

Long run emphasis
∑

Ng
i=1 ∑Nr

j=1 P(i, j|θ)j2

Nr(θ)

Gray level non-uniformity
∑

Ng
i=1(∑

Nr
j=1 P(i, j|θ))2

Nr(θ)

Gray level non-uniformity
normalized

∑
Ng
i=1(∑

Nr
j=1 P(i, j|θ))2

Nr(θ)2

Run length non-
uniformity

∑Nr
j=1(∑

Ng
i=1 P(i, j|θ))2

Nr(θ)

Run length non-uniformity
normalized

∑Nr
j=1(∑

Ng
i=1 P(i, j|θ))2

Nr(θ)2

Run percentage Nr(θ)
Np

Gray level variance ∑
Ng
i=1 ∑Nr

j=1 p(i, j|θ)(j− µ)2

Run variance ∑
Ng
i=1 ∑Nr

j=1 p(i, j|θ)(j− µ)2

Run entropy −∑
Ng
i=1 ∑Nr

j=1 p(i, j|θ)log2(p(i, j|θ) + ε)

Low gray level run empha-
sis

∑
Ng
i=1 ∑Nr

j=1
P(i,j)

i2

Nr(θ)

High gray level run em-
phasis

∑
Ng
i=1 ∑Nr

j=1 P(i,j)i2

Nr(θ)

Short run low gray level
emphasis

∑
Ng
i=1 ∑Nr

j=1
P(i,j)
i2 j2

Nr(θ)

Short run high gray level
emphasis

∑
Ng
i=1 ∑Nr

j=1
P(i,j)i2

j2

Nr(θ)

Long run low gray level
emphasis

∑
Ng
i=1 ∑Nr

j=1
P(i,j)j2

i2

Nr(θ)

Long run high gray level
emphasis

∑
Ng
i=1 ∑Nr

j=1 P(i,j)i2 j2

Nr(θ)

Table 4.5: Features derived from the GLRLM. Definitions according to the
PyRadiomics package documentation [7] [8].
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4.3.4 NGTDM Features

The neighbouring gray tone difference matrix (NGTDM) contains, for
each intensity value i in the image, the following parameters: first, the
number of voxels in the ROI having intensity i, denoted ni. Second,
the probability of intensity i, expressed as pi =

ni
Nv

, Nv being the total
number of voxels in the ROI. Finally, the absolute difference between
i and the average intensity of this particular voxels surroundings or
neighbourhood, defined by a distance δ, summed up for each value of
i. This sum is denoted si and defined as ∑ni |i− Āi|.

The NGTDM features considered in this thesis are presented in Table
4.6, with corresponding descriptions below.

In addition to parameters defined above, let

• Ng,p = the number of gray levels present in the ROI, i.e. having
non-zero pi

• Nv,p = the number of voxels in the ROI with a minimum of one
neighbor

features definition

Coarseness 1

∑
Ng
i=1 pisi

Contrast ( 1
Ng,p(Ng,p−1) ∑

Ng
i=1 ∑

Ng
j=1 pi, pj(i− j)2)( 1

Nv,p
∑

Ng
i=1 si)

Busyness ∑
Ng
i=1 pisi

∑
Ng
i=1 ∑

Ng
j=1 |ipi−jpj|

Complexity 1
Nv,p ∑

Ng
i=1 ∑

Ng
j=1 |i− j| pisi+pjsj

pi+pj

Strength
∑

Ng
i=1 ∑

Ng
j=1(pi+pj)(i−j)2

∑
Ng
i=1 si

Table 4.6: Features derived from the NGTDM. Definitions according to the
PyRadiomics package documentation [7] [8].

Coarseness quantifies how quickly gray levels are found to change,
when moving from the voxel in question and out into its neighbor-
hood. Low coarseness suggests rapid change and corresponding fine,
heterogeneous texture.

High contrast is associated with high Ng,p and low coarseness. Sim-
ilarly to coarseness, busyness quantifies the difference between the
gray-level value of each pixel and the surrounding neighborhood.
Likewise, complexity measures the degree to which the ROI is hetero-
geneous with respect to intensity.

Finally, strength represents the degree to which larger character-
istics in the ROI appear, as evident by less abrupt local gray-level
changes, and higher coarseness.
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4.3.5 GLDM Features

Two voxels i and j separated by a distance δ are defined as dependent if
|i− j| ≤ α. The grey level dependence matrix (GLDM), denoted P(i, j),
shows the frequency of each combination of intensity i and number of
dependent voxels j occurring in the image. Each dependency can be
viewed as a dependency zone.

The GLDM features considered in this thesis are presented in Table
4.7, with corresponding descriptions below.

Define, for each ROI:

• Nd = the number of different dependencies with respect to size

• Nz = ∑
Ng
i=1 ∑Nd

j=1 P(i, j)

• µi = ∑
Ng
i=1 ∑Nd

j=1 ip(i, j)

• µj = ∑
Ng
i=1 ∑Nd

j=1 ip(i, j)

The analogy to features derived from the GLSZM and GLRLM is
apparent, now with the focus being voxel dependency instead of zone
size and run length, respectively.

The small and large dependence emphasis quantify the degree to
which smaller or larger dependency zones appear in the ROI. As for
the GLSZM and GLRLM, these features are representative of texture
coarseness. Larger dependencies suggest coarse texture.

Gray level non-uniformity is defined as for the GLSZM and GLRLM

however now calculated from dependency intensities. High depen-
dence non-uniformity is indicative of greater variance in the sizes
of dependency zones. Similarly, gray level and dependence variance
also quantify variability in intensity and dependency zone sizes, re-
spectively.

Dependency entropy quantifies randomness with respect to both
gray level value and dependency zone size.

The information quantified by remaining features is given from the
name. Each feature equals the distribution of all dependencies with
attributes according to its name.
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features definition

Small dependence emphasis
∑

Ng
i=1 ∑

Nd
j=1 P(i,j)/i2

Nz

Large dependence emphasis
∑

Ng
i=1 ∑

Nd
j=1 P(i,j)j2

Nz

Gray level non-uniformity
∑

Ng
i=1(∑

Nd
j=1 P(i,j))2

Nz

Dependence non-uniformity
∑

Nd
j=1(∑

Ng
i=1 P(i,j))2

Nz

Dependence non-uniformity
normalized

∑
Nd
j=1(∑

Ng
i=1 P(i,j))2

N2
z

Gray level variance ∑
Ng
i=1 ∑Nd

j=1 p(i, j)(i− µi)
2

Dependence variance ∑
Ng
i=1 ∑Nd

j=1 p(i, j)(j− µj)
2

Dependence entropy −∑
Ng
i=1 ∑Nd

j=1 p(i, j)log2(p(i, j) + ε)

Low gray level emphasis
∑

Ng
i=1 ∑

Nd
j=1 P(i,j)/i2

Nz

High gray level emphasis
∑

Ng
i=1 ∑

Nd
j=1 P(i,j)i2

Nz

Small dependence low gray
level emphasis

∑
Ng
i=1 ∑

Nd
j=1

P(i,j)
i2 j2

Nz

Small dependence high gray
level emphasis

∑
Ng
i=1 ∑

Nd
j=1

P(i,j)i2

j2

Nz

Large dependence low gray
level emphasis

∑
Ng
i=1 ∑

Nd
j=1

P(i,j)j2

i2
Nz

Large dependence high gray
level emphasis

∑
Ng
i=1 ∑

Nd
j=1 P(i,j)j2i2

Nz

Table 4.7: Features derived from the GLDM. Definitions according to the PyRa-
diomics package documentation [7] [8].
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M A C H I N E L E A R N I N G

Two of the primary approaches to machine learning are supervised
learning and unsupervised learning. They differ in the sense that the
former involves providing the algorithm with both the dataset and the
corresponding output, i.e. the dataset is labeled. In this context, the
goal of the learning process is for an algorithm to predict the output
when given just data and no right answer. Supervised learning is
conducted mainly as either classification (organization of data into two
or more distinct classes) or regression (model establishment founded
on relationships in the data and subsequent prediction of an (often
continuous) variable [30]). On the contrary, unsupervised learning
involves algorithms recognizing tendencies and trends in unlabeled
datasets, and on that basis organize the data into clusters [31].

Most algorithms used for predictive purposes have parameters that
must be pre-defined [32], so-called hyper-parameters. Such parameters
may impact the bias-variance tradeoff, i.e. whether the model is over-
fit (high variance, low bias) or under-fit (low variance, high bias) [33].
Bias is here defined as the deviation of estimated performance from
the true value [32]. The more a model is trained to fit the data, the
more complex it will be, and correspondingly the higher the risk of
over-fitting [34].

In this chapter, methods for feature selection and classification are
first introduced. Then, in Section 5.3, approaches for evaluation of
model performance are outlined.

5.1 feature selection

Feature selection can be viewed as a process in which a subset of
relevant features is defined [35]. Here, relevant implies being useful in
categorizing the data relative to some endpoint or class [36]. Feature
selection is particularly important when dealing with large datasats,
in which typically only a fraction of features are useful, the rest just
adding to the complexity of the problem [36].

Various feature selection methods exist. Choosing the optimal method
for a particular problem is crucial, notably to avoid discarding features
that provide important information. Methods may be categorized
based on the criteria defined as allowing for inclusion in the selected
feature subset, or, alternatively, based on how the selection process
relates to model construction. The latter distinguishes between filter,
wrapper and embedded methods. Relief based selection methods, the
topic of Subsection 5.1.4, are classified as filter methods [36].

33
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Furthermore, selection methods may be categorized as either uni-
variate or multivariate. In the former, each feature is evaluated sepa-
rately, without taking the possibility of it depending on other features
into account [35]. Mutual information (MI) is an example of a uni-
variate method [37]. On the other hand, the Relief-based selection
method ReliefF (ReF) considers feature dependency, thereby being a
multivariate selection method [35].

5.1.1 Variance threshold

This subsection is based on information provided as documentation
of the Scikit-Learn package (v. 0.22.2) [37] [38].

Selecting radiomic features based on the degree to which each
feature is found to vary across samples is a straightforward approach,
realized by defining a variance threshold (VT). As a minimum, this
method excludes features found to be equal in all samples, in other
words having Var[X] = 0.

5.1.2 Mutual Information

MI is an approach used for evaluating dependency between random
variables [39]. Feature selection may be performed based on MI by
evaluating the degree to which a feature is relevant in determining
target class [40]. In other words, selecting features that best describe or
provide information on the target class [40]. An MI score equal to zero
indicates that the two variables are independent [39], and the feature
is defined as not relevant in predicting class.

5.1.3 Fisher Score

A feature may be assigned a Fisher score (FS) based on an evaluation
of the extent to which the value of this feature varies between classes.
Higher-scoring features appear close in value for instances belonging
to the same class, with a large difference for instances in different
classes [41].

Each feature can be assigned a score according to the following
expression [41]:

F =
∑c

i=1 ni (µi − µ)2

∑c
i=1 niσ

2
i

(5.1)

Here, ni is the number of instances belonging to each class, with c
being the number of classes. Furthermore, µi and σ2

i are the mean and
variance, respectively, of the particular feature in class i. Finally, µ is
equal to the mean feature value across all classes.
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5.1.4 Relief and ReliefF

Relief is a feature weighting method in which weights are assigned
based on the features ability to distinguish between similar samples
or instances [42]. To test this ability, the feature value corresponding
to a given instance, I, is compared with two of its nearest neighbours,
namely a near-hit (same binary outcome as I) and a near-miss (oppo-
site binary outcome as I) [42]. A feature with values of I and near-hit
being similar, while I and near-miss are different, is considered rele-
vant [42].

The remains of this subsection is based on [36].
Features are ranked or weighted from −1 to +1, +1 being the best.

For each randomly chosen instance, referred to as the target Ri, a
comparison is made between Ri and pairs of neighbouring hit, H, and
miss, M, instances, respectively. In each such comparison, all features
are considered. The weighting of a feature A, initially being equal to
zero, is updated as follows:

W[A] = W[A]− di f f (A, Ri, H)

m
+

di f f (A, Ri, M)

m
(5.2)

where m is the number of times a new Ri is chosen from the dataset,
and the difference function, with I2 equal to either H or M, defined as

di f f (A, Ri, I2) =
|value(A, Ri)− value(A, I2)|

max(A)−min(A)
(5.3)

The normalization is done in order to get weights ranging from 0 to
1, and then from −1 to 1 when dividing by m in Equation 5.2.

5.1.4.1 ReliefF

Several Relief-based selection methods or algorithms exists. ReF is
the most commonly used, and has to a large extent replaced Relief.
While this initial algorithm only can be used on binary classification
problems, ReF is applicable for datasets with endpoints consisting of
more than two classes.

Furthermore, instead of simply evaluating Ri on the basis of one
hit and one miss, ReF enables evaluation according to a number of
k nearest neighbors, in other words k hits and k misses, where k is
specified by the user. A third main difference between Relief and ReF is
that m is equal to the total number of instances in the training dataset.
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5.2 classification

5.2.1 Ridge regression

Ridge regression (RR) is a method for regularization of linear mod-
els, developed with the goal of addressing shortcomings associated
with ordinary least squares (OLS) regression [43]. For a number N of
training instances (xi, yi), OLS or linear regression involves estimat-
ing parameters θ = (θ0, θ1, ..., θp)T that minimize the following cost
function [44]:

Clinear =
N

∑
i=1

(yi − f (xi))
2, (5.4)

with f (xi) = θ0 + ∑
p
j=1 xiθj being the linear model. This approach

is susceptible to collinearity, which occurs when several variables
represent highly similar information, and resulting in high variance
when introduced to new data [45]. I. e., the model is over-fit.

To reduce variability while still keeping bias to a minimum, RR

involves a shrinkage of the coefficients [43]. This is achieved by adding
a regularization term [46] to the cost function [44]:

Cridge = Clinear + α
p

∑
j=1

θ2
j (5.5)

where the regularization parameter α can be optimized to best fit
the problem at hand.

Ridge regression may be used for both binary and multiclass clas-
sification purposes, the former involving defining classes as {−1, 1}
and predict class according to the sign of the regression result [47].

5.2.2 Logistic regression

Logistic regression (LR) is frequently used for classification purposes,
and, like RR, typically involve regularization [46].

Considering a binary classification problem with yi = {0, 1}, the
probabilities of yi given some xi is expressed as [46] [48]:

Pr(yi = 1|xi) = f (xi, θ) =
1

1 + exp(θ0 + θTxi)
(5.6)

Pr(yi = 0|xi) = 1− f (xi, θ) (5.7)
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with θ defined as in Subsection 5.2.1. The cost function, i.e. the
negative log-likelihood [49], for this classification problem with N
training instances may be expressed as [46] [48]:

Clogistic = f (θ) = − 1
N

N

∑
i=1

yilog( f (xi, θ)) + (1+ yi)log(1− f (xi, θ))

(5.8)

A regularization term is often added to Equation 5.8 typically in
one of the following ways [46]:

C = f (θ) + β
N

∑
i=1
|θi| (5.9)

C = f (θ) + α
N

∑
i=1

θ2
i (5.10)

referred to as `1- and `2-regularization, respectively. Note, from Eq.
5.5, that RR is linear regression with `2-regularization by definition.

5.2.3 Support vector machine

Support vector machine based methods involve mapping of the data
set in such a way that classification according to two or more defined
classes, typically separated by a hyperplane, is possible [50].

Lets first consider a binary classification problem with yi ∈ −1, 1
and data that is linearly separable, implying that the hyperplane H is
given as [51]:

H : w · x− b = 0 (5.11)

where x is the input dataset, w is a weight vector and b the bias.
Furthermore, supporting hyperplanes, one on either side of H, may
be defined on the basis of the following expressions for each instance
xi [51]:

 w · xi − b ≥ 1, yi = 1

w · xi − b ≤ −1, yi = −1
(5.12)

Instances appearing on (w · xi − b = 1 or w · xi − b = −1) or close
to the supporting hyperplanes are referred to as support vectors. The
separation, or margin, between the two classes corresponds to the
distance between the two hyperplanes, expressed as 2

||w|| [51].
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Optimal values for w and b must satisfy Equation 5.12, rephrased
as yi(w · xi − b)− 1 ≥ 0, for all xi. Furthermore, the margin should be
maximized. As such, optimal w and b satisfy both of the following
[51]:

 minimize ||w||
2

2

yi(w · xi − b) ≥ 1, for all i = 1, 2, ..., m
(5.13)

m being the number of instances in the training set.
However, most datasets cannot be perfectly linearly separated. A

possible approach then could be to allow for some minimal degree of
misclassification, realised by including a slack variable ξi ≥ 0 in Eq.
5.13, now expressed as [51]:

 minimize ||w||
2

2 + C ∑m
i=1 ξi, C > 0

yi(w · xi − b) ≥ 1− ξi, for all i = 1, 2, ..., m
(5.14)

where C is the regularization parameter. Note that the higher the
value of C, the less regularization is posed on the problem [52].

For some classification problems this is still not sufficient, how-
ever. The approach may then be to map the dataset into a higher-
dimensional space by means of a nonlinear transformation. If the
dataset has acquired sufficiently high dimensionality, it may now be
linearly separable. The mapping is achieved by the use of a kernel,
K(x, y) [51].

The support vector classifier (SVC) algorithm is used in this thesis.

5.2.4 Tree-Based Methods

5.2.4.1 Decision tree

A Decision tree (DT) model is built on the basis of a hierarchy of
descriptors with the goal of ending up at the most suitable "answer",
or class, for each sample in the dataset [53].

Simply put, a common approach is as follows: 1) define the root
node (i.e. the point at which the entire dataset is initially split into
subsets [54]), 2) define a decision so that the split provides maximal
information, and then repeat these steps for each of the subsequent
decision nodes (i.e. sub-nodes being split into additional sub-nodes
[54]) [53]. Leaf nodes terminate the hierarchy, thereby providing the
class to which the particular instance belong [54].

Consider a binary classification problem with yi ∈ {0, 1}. For each
node m corresponding to a subset Rm containing Nm instances, I, the
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proportion of instances belonging to each class may be expressed as
[55]:

pm,yi =
1

Nm
∑

xi∈Rm

I(yi) (5.15)

The Nm instances in node m are classified according to the value of
yi for which Equation 5.15 is maximized [55].

In order to define optimal variables and decisions at each split, node
impurity is evaluated [56]. Node impurity quantifies the homogeneity
or bias of the node, the optimal choice in variable and split corresponds
to minimal impurity [56]. Two frequently used measures of impurity
are gini index and cross-entropy [55]:

Gini Index = 2p(1− p) (5.16)

Cross-entropy = −plogp− (1− p)log(1− p) (5.17)

where p is Equation 5.15 corresponding to class yi = 1.

5.2.4.2 Random forest

A random forest is established based on DTs and two concepts referred
to as bootstrapping and bagging [57]. The former involves random
selection with replacement of instances from the training dataset to
yield a bootstrap dataset of the same size as the training set [34].
Several bootstrap datasets are made, and for each one, a tree is built
to fit the data [57]. The tree nodes are defined based on the variable
and split found to be optimal from a randomly selected subset of the
available variables [57].

Bagging, also called bootstrap aggregation, involves averaging pre-
dictions made by each model, in this case trees, built from each of
the bootstrap datasets [58] [57]. As such, the variance of the final
prediction is reduced [58].

Bagging is an ensemble method, characterized by the use of several
random and thus at best unbiased models to yield a final prediction
[57] [59].

5.2.4.3 Extremely Randomized Trees

In an attempt to improve the accuracy of the random forest further,
the Extremely randomized trees (ET) method with increased random-
ization levels, was proposed [59].

Contrary to the random forest approach where bootstrap datasets
are created, the whole training set is used to built each tree, or stump
[59].
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As for random forests, tree nodes are defined based on a randomly
selected subset of variables. However, the split or more precisely the
cut-off value in the case of numerical variables, belonging to each
variable is not optimized but rather chosen at random. Then, defined
by their random cut-off value, the optimal variable is selected for the
node [59].

5.2.5 Boosting

Boosting is a committee-based machine learning approach in which
several sub-optimal models are employed to generate a final, pow-
erful "committee" [60]. As such, it resembles bagging [57]. The main
difference is that in boosting, the weak models evolve over time [57].

Boosting is utilized for both classification and regression purposes,
and are typically based on DTs although other learning methods
can also be suitable [60]. AdaBoost and gradient boosting are two
commonly used boosting methods [60]. The latter is described next.

5.2.5.1 Gradient Boosting

Gradient boosting involves a model predicting the error of the previous
model, which in turn predicts the error of its former model, and so
on. This results in a consistent improvement (boosting) of the error
(gradient), i.e. the prediction error is gradually reduced [61].

Considering m = 1, 2, ..., M weak or interim classifiers. The gradient
boosting involves, for each current tree denoted fm−1(x), determina-
tion of the optimal parameters defining the next tree, fm(x) [60].

5.2.5.2 Light gradient boosting machine

The computational complexity of the gradient boosting decision tree
(GBDT) method is proportional to the number of instances in the
dataset, as well as the number of features. Accordingly, when dealing
with large datasets, this method is time-intensive. The approach to
overcome this issue was to introduce to GBDT ways in which data
could be sampled, thereby reducing the overall dataset size [62].

As such, the light gradient boosting machine (LGBM) was developed.
In short, LGBM combines GBDT with gradient-based One-Side Sam-
pling and Exclusive Feature Bundling. The former involves favoring
instances with the largest gradients, i.e. the instances with a tendency
to be misclassified, defined as "under-trained". The Exclusive Feature
Bundling algorithm groups features that seldom have nonzero values
at the same time, defined as exclusive features. The features now
appear in bundles, thereby reducing overall complexity [62].
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5.3 evaluating model performance

A crucial step in model selection and evaluation is to define the hyper-
parameter configuration best fit to the problem at hand [63]. Examples
are the k number of nearest neighbours that the ReF algorithm evalu-
ates, and the regularization parameter λ in RR.

5.3.1 Cross-validation

Samples used to evaluate model performance should ideally not have
been included in the data with which the model was trained. For
smaller datasets however, it can be problematic to isolate the test data
both because it may be too small to provide trustworthy evaluations,
and because it renders the train dataset scarce. Resampling can offer
a solution, of which bootstrapping is an example. Another common
method is cross-validation (CV) [32].

K-fold CV involves dividing the training data into k number of
groups or folds. Then, each of the k groups are in turn defined as the
validation set while the others are used as training sets. So for each k,
the other folds are trained to fit this particular fold [34].

Overall performance of the model is then defined as e.g. mean
performance of all k validations [34]. Measures for evaluating model
performance are outlined next.

5.3.2 The Confusion Matrix

Considering a binary classification problem, a confusion matrix shows,
for a given classifier and test data, the number of true positives (TP)
and negatives (TN), as well as false positives (FP) and negatives (FN)
[64]. When the test data is imbalanced the minority and majority class
are typically defined as the positive and negative class, respectively
[65]. The confusion matrix forms the basis of several measures of
classifier performance [64].

Accuracy or error rate (1 - accuracy) are commonly used, accuracy
being defined as TP+TN

P+N , with P and N the number of positives and
negatives in the test data, respecitvely [66] [64]. A shortcoming of
these metrics is the falsely high performance that may be obtained for
imbalanced datasets, e.g. models consistently predicting the majority
class [66].

5.3.3 The Receiver Operating Characteristic Curve

The receiver operating characteristic curve (ROC) is defined by plotting
true positive rate, TPR = TP

P , versus false positive rate, FPR = FP
N TPR

is equal to the sensitivity of the model, while FPR = 1 - specificity [64].
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For scoring classifiers considering a binary classification problem,
the ROC may be obtained by varying the score threshold that separates
instances into the two respective classes. Accordingly, choosing a
threshold involves defining the optimal trade-off between a high TPR
while maintaining a low FPR [64].

The area under the ROC, referred to as AUC, is a measure used to
compare the prediction ability of classifiers. A large area reflects high
TPR and low FPR [64], or, equivalently, high sensitivity and specificity
[55]. As such, the classifiers performance can be determined from a
single number [64]. AUC values range between 0 and 1, and random
guessing corresponds to an AUC of 0.5. [64].

For imbalanced data sets in which the number of instances in the
minority class is low, the AUC can be unreliable as a measure of
model performance[66]. Then, Precision-Recall (PR) have proved more
suitable, especially due to its focus on the positive, i.e. minority, class
[66].

5.3.4 The Precision-Recall Curve

The PR curve is defined by plotting precision, defined as TP
TP+FP , versus

recall, which is equal to the TPR [64]. A well-performing classifier is
associated with both high precision and recall, and the PR AUC may
be used as a measure of performance [66]. Note that hereinafter, AUC

will refer to the ROC AUC.
For a given scoring threshold, the F-score is a commonly used

measure, defined as [66]

Fβ = (1 + β2)
precision · recall

(β2 · precision) + recall
(5.18)

where β is often set equal to 1, yielding the F1 measure [66].



Part II

M E T H O D S

Chapter 6 includes information on acquisition and pro-
cessing of the MRIs, as well as clinical characteristics of the
patient cohort.

In Chapter 7, eleven experiments designed in an attempt
to achieve the objectives of this thesis are outlined.
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D ATA A C Q U I S I T I O N A N D P R E PA R AT I O N

This thesis was part of the Functional MRI of Hypoxia-mediated Rectal
Cancer Aggressiveness (OxyTarget) study [21], which aim was to
identify image biomarkers related to metastasis-free survival and
response to CRT in rectal cancer [67].

192 individuals were enrolled into the study between October 2013
and December 2017. A total of 111 individuals were excluded from
further analysis in this thesis due to rectal cancer not being histologi-
cally confirmed, standards for image acquisition or quality not met, or
other problems experienced during image acquisition and processing
[68].

35 patients received preoperative treatment, of which 32 received
CRT, while 3 patients received radiotherapy only. Considering that
radiotherapy will have the greatest effect on tumor response, while
chemotherapy prevents spreading of disease, all 35 patients will be
included in what is referred to as the nCRT cohort in the remains of
this thesis. Both chemotherapy and radiotherapy were performed as
per clinical guidelines [69].

T2WIs and DWIs were obtained for all 81 patients prior to treatment.
Acquisition protocols are included in Section 6.2.

6.1 clinical factors

Initial staging was done according to the TNM standard, edition 7 [24].
For the nCRT cohort, two measures were used to evaluate response to
this nCRT as mentioned in Section 3.1.2; posttherapy pathological T-
staging, denoted ypT according to [24] as above, and TRG [25]. Clinical
characteristics of the patient cohort are summarized in Table 6.1.

PFS was defined as time from study enrollment to some event, either
local recurrence, metastasis or death. When used as binary endpoint,
i.e. event occurring or not occurring (corresponding to y = 1 and
y = 0, respectively), no time frame was defined. This means that the
endpoint was assigned based on whether or not an event had occurred
during the time from inclusion to the study until January 20th 2020,
when the study ended. Since patients were enrolled at different times,
from October 2013 to December 2017, a more accurate measure would
have been PFS three years after inclusion, for example. Events tend to
occur early, however, so the difference between these two definitions
of PFS is small; only two patients had first event occurring at a time
longer than three years post inclusion.

45
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Number of participants 81

Sex (women, men) 28 (35%), 53 (65%)

Age (mean) 64

Initial T-stage (AJCC)

1 0

2 12

3 41

4 28

Treatment

Surgery alone 37

Preoperative CRT 36*

Palliative care alone 7

Palliative care and surgery 1

Response to nCRT

ypT (0− 1, 2− 4) (8, 27)

TRG (0− 1, 2− 3) (12, 23)

Survival

PFS (event, no event) (32, 49)

Table 6.1: Clinical characteristics of the study cohort. An event refer to local
recurrence, metastasis or death. No event indicates PFS. * One
patient did not undergo surgery, and is not included in the nCRT

cohort.

6.2 mr images

6.2.1 Acquisition protocol

MRIs were acquired using a Philips Achieva 1.5T machine from Philips
Healthcare, Best, The Netherlands [68].

For each patient, T2WI was performed using a 180× 180 mm2 field
of view (FOV) and a 512× 512 matrix dimension. The thickness of
each slice was 2.50 mm, yielding a voxel size of 0.35× 0.35× 2.50 mm3.
Each slice was positioned perpendicular to the tumor axis.

DWIs were acquired using seven different b-values; b = 0, 25, 50, 100,
500, 1000, 1300 s/mm2. FOV was 160 × 160 mm2, matrix dimension
128× 128, and slice thickness 4.00 mm, yielding a voxel size of 1.25×
1.25× 4.00 mm3. The spacing between slices was 4.30 mm.
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6.2.2 Delineation

Manual delineation of whole tumors was performed on the T2WIs by
two radiologists with 14 and 7 years of experience, respectively [68].
These delineations were fit to the DWIs as explained in Subsection
6.2.3.

The delineations performed by the two radiologists resulted in two
binary masks, referred to as mask1 and mask2, in which voxels outside
the ROI were indicated by zero’s.

6.2.3 Preprocessing

registration When imaging a tumor using different acquisition
schemes, registration (also referred to as coregistration) is necessary
in order to combine the information provided by the different images.
Registration involves a mapping of the image being transformed,
called the moving image, so that it fits the image chosen as a reference.
As such, differences in how the patient is positioned for the two
respective acquisition schemes are taken into account [70].

For this purpose, the SimpleElastix package Release 01, a part of Sim-
pleITK, was used [71]. Registration was performed by Franziska Knuth
at The Norwegian University of Science and Technology (NTNU). A
brief summary of the process is presented in the next few paragraphs.

Raw images were of the Digital Imaging and Communications in
Medicine (DICOM) format, each capturing a 2D slice. DICOM images are
sorted into stacks and converted to the 3D Neuroimaging Informatics
Technology Initiative (NifTI) format. This was performed for the T2WIs,
and for DWIs corresponding to each of the seven b-values, yielding
eight NifTI images per patient.

Registration was performed in several rounds. First, to account for
movement of the patient in the course of acquiring all seven b-values,
registration was conducted considering the DWIs only.

Next, the DWI with b = 0 was defined as moving image and regis-
tered to fit the T2WI. No mask was used. The transformation, consisting
of a deformation vector field, defined from this registration process
was then used directly to register the remaining DWIs.

Finally, delineation masks were obtained for the DWIs by again using
the transformation, this time in reverse. As such, the mask defined on
the T2WI was registered to fit the DWIs, yielding, for each of the two
delineations, a single mask used for DWIs of all b-values.

resampling Two sets of images were obtained, hereinafter re-
ferred to as Dataset1 and Dataset2. For the former, no adjustments of
the voxel dimension were performed, and resolution is as described in
Subsection 6.2.1. The voxels of the images in Dataset2 were resampled
to yield the isotropic size of 1× 1× 1 mm3.



48 data acquisition and preparation

cropping All images in both datasets were cropped so that a
10× 10 mm2 margin enclosed the union of the two masks. The scripts
for both resampling and cropping were written by Franziska Knuth.

6.2.4 Intensity Discretization

Prior to feature extraction as will be described shortly, in Subsection
7.1.1, discretization or binning of image intensities were performed
according to a defined bin width. Voxel intensities are calculated
according to Equation 4.1 Chapter 4. The intensity binning tool is an
integrated part of the PyRadiomics package [7] [8], further described
in the next chapter.

The authors of [72] argue that the total number of intensity bins
should be in the range of 8− 128 when extracting texture features.
Their argument is based on [73] in which 18F-FDG PET scans are
considered.

This turned out to be difficult to ensure, however. Images considered
in this thesis were not normalized. T2WIs consisted of intensities in
the range of about 20− 2000. For the DWIs, the variation was quite
high, both between images with the same b-value, and (as expected)
across b-values. Images with b = 0 s/mm2 consisted of larger grey-
value ranges, some up to 4500, while greater b-values yielded lower
numbers, also as expected.

In an attempt to take this into account, two different bin widths
were tested: 25 and 35.
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Experiments were designed in an attempt to achieve the following
three aims: first of all, establish high-performing binary prediction
models based on radiomic data while taking issues regarding over-
fitting, poor regularization and imbalanced datasets into account.
Second, investigate whether texture features in particular were selected
as relevant. And, finally, evaluate reproducibility with respect to voxel
size, intensity discretization, and VOI segmentation.

Accordingly, the eleven experiments presented in Section 7.2 were
performed. The Python-based Biorad program, Section 7.1, was used
for this purpose.

Four combinations of patient cohort and response variable (RV) were
considered, as presented in Table 7.1. These were: 1) the all patients
cohort (n = 81) with RV = PFS, 2) the nCRT cohort (n = 35) with RV =
PFS, 3) the nCRT cohort with RV = TRG, and 4) the nCRT cohort with RV

= ypT. Note that PFS is defined in Section 6.1, while TRG and ypT both
are defined in Section 3.1.

Samples RV y = 1 y = 0

All patients PFS 32 49

nCRT cohort PFS 14 21

nCRT cohort TRG 12 23

nCRT cohort ypT 8 27

Table 7.1: The different combinations of samples and binary RV used to train
prediction models. The columns denoted y = 1 and y = 0 refer to
the number of samples belonging to each class. For PFS, 1 and 0
denotes event and no event, respectively. For TRG and ypT, 1 and 0
denotes good and bad response, respectively.

7.1 biorad

Both extraction of radiomic features as well as building and testing of
models were achieved using Biorad. The first version of this program
was developed by Geir Severin Rakh Elvatun Langberg [74], and the
second version by Ahmed Albuni, both at the Norwegian University of
Life Sciences: NMBU. The latter version was used in this thesis and is
available from GitHub as https://github.com/ahmedalbuni/biorad.

Biorad is based on the Python programming language, version 3.6.2,
and consists of two main parts: a tool for radiomics feature extraction,
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and a tool for model building and comparison. These are the topic of
Subsections 7.1.1 and 7.1.2, respectively.

7.1.1 Radiomic feature extraction

The feature extraction tool is based on the PyRadiomics package [7]
[8]. All features are calculated accordingly, as described in Sections 4.1
- 4.3. Segmentation of the VOI using a binary mask, as well as binning
of intensities, are both integrated in the PyRadiomics software.

Shape, first-order and texture features were extracted from both
T2WIs and DWIs . Note that shape features are calculated based on the
binary mask and are thus independent of the images.

107 features were extracted from the T2WIs: 14 shape features, 18
first-order features, and the remaining described texture; 16 from the
GLSZM, 16 from the GLRLM, 5 from the NGTDM, 14 from the GLDM and
24 from the GLCM.

For all DWIs, the same mask is used, thereby resulting in the same
exact shape features for all seven images. As such, when features from
the DWIs were combined, the 107 features including those describing
shape were only extracted from one of the images. From the remaining
DWIs, 93 features (first-order and texture) were derived.

Considering all eight images (one T2WI and seven DWIs) belonging
to each patient, a total number of 772 features were derived for each
patient.

notation The output comma-separated values (csv) file contain-
ing all radiomic features (n = 772) corresponding to each patient is
denoted X0. After inclusion of endpoint (PFS, TRG or ypT) and dele-
tion of the column containing patient ID numbers, the feature file is
referred to as X.

Table 7.2 shows an overview of the various feature files that will be
analysed in the experiments presented in Section 7.2. Note that for
XTb5, the second highest b-value (denoted b5) is chosen in order to
derive features from highly diffusion weighted images while avoiding
too much noise. The latter may appear in DWIs with b = 1300 s/mm2.

Note that no investigation of feature correlation was performed
prior to feature selection and classification.

7.1.2 Features selection and classification

Prediction models were established based on feature selectors and
classifiers as described in Sections 5.1 - 5.2. In addition, the case of no
feature selection was evaluated.

algorithms and hyperparameters All algorithms are based
solely on Scikit-Learn Software, except LGBM, FS and ReF. The LGBM
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Notation Features n

X T2WIs & all DWIs 772

XT T2WIs 107

XTb5 T2WIs & DWIs (b5) 214

Xs Shape features 28

Xt
Tb5 Texture features from XTb5 150

Table 7.2: Description of the features included in each input file used in
Section 7.2. n = number of features per patient.

algorithm is part of a Microsoft Open Source Project [75], while the
FS algorithm is from the Skfeature package. The ReF algorithm is
part of the Scikit-Rebate project, accessible from GitHub as https:

//github.com/EpistasisLab/scikit-rebate.
All selectors and classifiers considered required optimization of

at least one hyper-parameter. In Table 7.3, the parameters for which
Biorad required a range to be specified by the user are presented. Note
that a range was required, i.e. the program did not allow for fixed
numbers.

Here, k is the number of top-scoring features to select, n the number
of nearest neighbors, αRR, CLR and CSVC regularization parameters,
MTD = maximum tree depth, MNI = minimum number of instances
at a leaf node, and MNL = maximum number of leaf nodes per tree.
Note that CLR = 1

2αRR
and CSVC = 1

αRR
[47] [52].

Both gini index and entropy was evaluated as impurity measure for
the DT and ET classifier.

Remaining parameters required by each algorithm were left to
default value of which information can be found by accessing the
reference specified in Table 7.3. Note that the abbreviations MTD, MNI
and MNL are used here only.

Together, the parameters in Table 7.3 constituted the hyper-parameter
space from which configurations were established and evaluated.
These values were chosen based on available documentation on the
various algorithms as well as results from test runs. Performance, over-
fitting and ability to generalize were considered. Model complexity
and the number of features to select were attempted tuned thereafter.

As evident from Table 7.2 however, the dimensionality of inputs var-
ied greatly, from 28 to 772 number of features per patient. Accordingly,
defining parameter ranges that performed well with all inputs were
difficult. Where minor adjustments were made, it will be specified.

measure of performance The measure used to evaluate and
compare prediction models was AUC as described in Subsection 5.3.3.
In addition, selected experiments performed on the nCRT cohort were

https://github.com/EpistasisLab/scikit-rebate
https://github.com/EpistasisLab/scikit-rebate
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Algorithm Ref. Parameter n = 81 n = 35

VT [37] Threshold 0.1 - 0.9 0.1 - 0.9

MI [37] k 1 - 15 1 - 9

MI [37] k 1 - 15 1 - 9

ReF k 1 - 15 1 - 9

ReF n 1 - 3 1 - 3

RR [47] αRR 1 - 5 1 - 5

LR [47] CLR 1 - 4 1 - 4

SVC [52] CSVC 1 - 4 1 - 4

DT [76] MTD 10, 20, 30 10, 20, 30

DT MNI 1 - 15 1 - 15

ET [77] MNI 5 - 15 5 - 15

LGBM [75] MTD 5 - 30 5 - 30

LGBM MNI 1 - 15 1 - 15

LGBM MNL 3 - 20 3 - 20

Table 7.3: Values defining the hyper-parameter space. All notations for pa-
rameters are defined in the text above. n = 81 and n = 35 refer to
the all patient and nCRT cohort, respecitvely.

repeated with the F1 score (Subsection 5.3.4) in an attempt to account
for these datasets being imbalanced.

Model performance was evaluated as achieving a high score with
low associated standard deviation (std) and ability to generalize well.
The latter corresponds to small differences between train and test
scores.

model establishment and comparison The approach for
evaluating hyper-parameter configurations and prediction models are
summarized in the following.

Each model, performing both feature selection (F) and classification
(CLF), is expressed as [74]

λ(φ, ·) = λCLF(φCLF, λF(φF, ·)), (7.1)

where φ is a particular configuration of hyper-parameters consider-
ing both the selector and classifier, in other words φ = φCLF ∪ φF.

CV is used to evaluate the model with different hyper-parameter
configurations. In all experiments conducted, the number of configu-
rations to be tested was equal to 80.

The parameter space as shown in Table 7.3 is sampled by a ran-
dom search function, rather than a more comprehensive grid search
[78]. More specifically, the RandomizedSearchCV function from Scikit-
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Learn is used with five stratified CV folds [78] [79]. All the available
data is included, i.e. no validation set is isolated.

Mean test and train scores, as well as the optimal φ, are obtained
from the CV schema.

By iterating through the set of prediction models (combinations of
selector and classifier), optimal hyper-parameter configuration and
performance (both training and testing) was specified for each model.
As such, the various combinations of selector and classifier can be
compared.

Results according to test performance are presented using heatmaps.
Furthermore, for each model, results include values corresponding to
the optimal φ and the list of selected features. For MI and ReF selectors,
the ranking corresponding to each feature is provided.

7.2 experiments

In addition to the random search for the optimal hyper-parameter
combinations, model evaluation and comparison was performed in
view of several aspects, as evident by Subsections 7.2.1 - 7.2.2.

Features derived from images of different scan types were used,
corresponding to X, XT and XTb5 in Table 7.2. Features of different type
were considered separately, corresponding to Xs and Xt

Tb5 in Table 7.2.
Finally, reproducibility of the result with respect to voxel resampling,
bin width and VOI delineation were evaluated.

As described in Section 6.2.3, two sets of images were prepared.
Dataset1 contained images of original voxel size, while in Dataset2,
the voxels were resampled to yield the isotropic size of 1× 1× 1 mm3.
Mask1 and mask2 refer to the two VOI delineations.

Experiments 1 and 3 were performed on all four combinations of pa-
tient cohort and RV, as presented in Table 7.1. Remaining experiments
were only performed with the all patient cohort (n = 81). Experiment
2 was not performed with the nCRT cohort (n = 35) due to the great
difference between number of features and number of samples. Fur-
thermore, X was not considered in experiments 6 − 11 due to the
potentially large number of redundant features.

Results from experiments 1− 5 are presented in Chapters 8 and 9.
Results from experiments 6− 11 are presented in Chapter 10.

In Table 7.4, an overview of the experiments that were performed
are presented. Details are given in Subsections 7.2.1 - 7.2.2.

note : "fixed" parameters In Table 7.4, note the following for ex-
periments in which the parameters were "Fixed": as mentioned, Biorad
required a range designated each parameter, so keeping parameters
fixed was not possible. Still, attempts were made to achieve this in
order to allow for comparison of experiments related to reproducibil-
ity. This involved setting ranges corresponding to the parameters in
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question equal to only two values, or excluding parameters if default
value was the wanted one.

Exp. Input Dataset BW Mask Param.

1 XT 1 25 1 7.3

2 X 1 25 1 7.3

3 XTb5 1 25 1 7.3

4 Xs 1 25 1 7.3

5 Xt
Tb5 1 25 1 7.3

6 XT, XTb5 2 25 1 7.3

7 XTb5 2 25 1 "Fixed"

8 XT, XTb5 1 35 1 7.3

9 XTb5 1 35 1 "Fixed"

10 XT, XTb5 1 25 2 7.3

11 XTb5 1 25 2 "Fixed"

Table 7.4: Summary of experiments. "Fixed" parameters (param.) refer to
attempts of achieving this despite Biorad requiring a range. In
these experiments, the aim was to evaluate the effect of resampling
(Exp. 7), bin width (Exp. 9) and delineation mask (Exp. 11) relative
to the situation in experiment 3. Experiments below the line seek
to investigate reproducibility. BW = Bin width.

7.2.1 Scan Type and Number of Input Features

In experiment 1− 3, the effect of including features from DWIs was
investigated. All were performed on Dataset1. Mask1 and a bin width
of 25 was used.

experiment 1 Features from T2WIs only, i.e. input was XT.

experiment 2 Features from T2WIs and all seven DWIs, i.e. input
was X.

experiment 3 Features from T2WIs as well as DWIs with b =
1000 s/mm2, i.e. input was XTb5.

7.2.2 Feature type

Experiment 4 and 5 were conducted to investigate the effect of consid-
ering only shape features, Xs (n = 28), and only texture features, Xt

Tb5
(n = 150), respectively. Both were performed on Dataset1. Mask1 and
a bin width of 25 was used in all runs.



7.2 experiments 55

experiment 4 Xs was input.

experiment 5 Xt
Tb5 was input.

7.2.3 Voxel resampling

To investigate the effect of non-isotropic vs. fully isotropic voxels on
reproducibility of the results, experiment 6 was performed. As before,
mask1 and a bin width of 25 was used.

experiment 6 Experiment 1 and 3 were repeated, this time on
features derived from images in Dataset2.

experiment 7 Experiment 3 was repeated, this time on XTb5 ob-
tained from Dataset2. The exact parameters of a specific, selected
model from experiment 3 was now used with Dataset2. This allowed
for comparison of this particular model across the two datasets, but
none of the other selector and classifier combinations. See the para-
graph above on "fixed" parameters. Details regarding the chosen model
and corresponding parameters are given in Chapter 10.

7.2.4 Bin width

So far, a bin width of 25 has been used. Experiment 7 and 8 were
performed to investigate the effect of bin width on reproducibility of
the results. Both experiments were conducted with bin width equal to
35. Performed on Dataset1, and mask1 was used in all runs.

experiment 8 Experiment 1 and 3 were repeated, this time on
features derived from images binned to a width of 35.

experiment 9 Similarly to experiment 7; experiment 3 was re-
peated, this time on XTb5 obtained from images (Dataset1) binned to a
width of 35. The exact parameters of a specific, selected model from
experiment 3 was used. This allowed for comparison of this particular
model across the two datasets, but none of the other selector and clas-
sifier combinations. See the paragraph above on "fixed" parameters.
Details regarding the chosen model and corresponding parameters
are given in Chapter 10.

7.2.5 Segmentation mask

So far mask1 has been used. In experiment 9 and 10, the effect of
segmentation mask was investigated. The same approach as in Sub-
sections 7.2.3 and 7.2.4 was chosen. Performed on Dataset1, using a
bin width of 25 in all runs.
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experiment 10 Experiment 1 and 3 were repeated, this time on
features derived from images in which the ROI was defined by mask2.

experiment 11 Similarly to experiments 7 and 9, experiment 3
was repeated, this time on features derived from images with the ROI

defined by mask2. The exact parameters of a specific, selected model
from experiment 3 was used. This allowed for comparison of this
particular model across the two datasets, but none of the other selec-
tor and classifier combinations. See the paragraph above on "fixed"
parameters. Details regarding the chosen model and corresponding
parameters are given in Chapter 10.



Part III

R E S U LT S A N D D I S C U S S I O N

In Chapters 8 and 9, results from experiments 1− 5 are
presented. The former includes results for models predict-
ing PFS, while the topic of the latter chapter is predicting
response to nCRT.

In Chapter 10, results from experiments 6− 11 are pre-
sented, with the goal of investigating reproducibility.

Note that across experiments, test standard deviation was
quite high. Large differences between test and train scores
as evident of poor generalization ability were observed.
These trends were present in particular from analysis with
the nCRT cohort containing only 35 patients.

A discussion on methods and obtained results are included
in Chapter 11.
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P R E D I C T I N G P R O G R E S S I O N F R E E S U RV I VA L

In this chapter, results from experiments 1− 5 for models predicting
PFS are presented. It consists of two main sections. In the former,
results for models trained on radiomic data from all 81 patients are
outlined. In the latter, Section 8.2, results for models considering the
nCRT cohort only (n = 35) are presented. Before proceeding, a few
remarks are made. These apply to Chapters 8 - 10.

note 1 : Models that employ VT as feature selector are not given
much consideration in the ensuing chapters due to the large number
of features typically being selected. Accordingly, such models would
be prone to over-fit when trained with datasets of relatively small
sizes, as is the case in this thesis. The same is true for models not
performing any feature selection. Overall high train scores as well as
test std were associated with these models. However, note that in the
calculation of selection rates, the VT algorithm is included.

note 2 : In some experiments, test AUC values below 50% were
obtained. Overall high test std was typically associated with these
experiments. This topic will not be given much attention in Chapters
8 - 10, but will be discussed in Chapter 11.

8.1 predicting pfs for the all patients cohort

8.1.1 Evaluating performance

experiment 1 In experiment 1, models were trained to predict
PFS based on 107 features per patient derived from T2WIs. A selection
of models are presented in Table 8.1. Corresponding selected hyper-
parameters are included in Table A.1.

In Figure 8.1a, a heatmap showing performance of the various
combinations of feature selector and classifier is included. Note that
LGBM in combination with FS had training score of 100.0% AUC, i.e.
apparently not generalizing well and therefore not included in Table
8.1. The train score of SVC combined with MI was 89.5± 2.1%, so the
same applies to this model.

No model had AUC score below 50%. Both RR and LR had train
scores slightly (∼ 4%) below test score when combined with FS as well
as ReF selectors. This occurred in some other experiments as well. A
discussion on this topic is included in Chapter 11.
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Each selector algorithm is part of six models. Mean test std for
the six models in which ReF was used as feature selector was 15.5%.
Similarly, mean values for test std of models consisting of the MI and
FS selectors, respectively, were 11.1% and 11.6%.

Model AUC,

Test (%) Train (%)

FS and SVC 63.0± 11.8 63.4± 5.6

FS and DT 62.2± 5.9 77.1± 4.8

FS and ET 62.1± 14.7 69.6± 3.6

Table 8.1: Model performance in prediction of PFS for all patients. Selected
combinations of feature selector and classifier that performed rela-
tively well in experiment 1. Hyper-parameters for all models are
presented in Table A.1.

experiment 2 In experiment 2, the number of features per patient
was 772, derived from T2WIs and all DWIs. The heatmap showing per-
formance of the various models is presented in Figure A.1. Models
performing overall well are included in Table 8.2 with corresponding
selected hyper-parameters given in Table A.2 and A.3. As in experi-
ment 1, FS in combination with LGBM had training score of 100% AUC

and are thus not included in the table below.
Two models had AUC value below 50%. Two models had train scores

slightly below test scores.
Mean values for test std of models consisting of the ReF, MI and FS

selectors, respectively, were 12.4%, 11.0% and 10.8%.

Model AUC,

Test (%) Train (%)

FS and DT 68.6± 8.9 86.4± 3.1

MI and LR 68.2± 13.5 60.6± 2.2

FS and ET 67.0± 10.1 72.7± 1.9

MI and ET 64.9± 12.9 70.0± 6.6

Table 8.2: Model performance in prediction of PFS for all patients. Selected
combinations of feature selector and classifier that performed rela-
tively well in experiment 2. Hyper-parameters for all models are
presented in Tables A.2 and A.3.

experiment 3 In experiment 3, features derived from T2WIs and
the DWIs with second highest b-value, equal to 1000 s/mm2, were
analysed, the latter referred to as DWIs (b5). The heatmap with test
scores from this experiment can be seen in Figure 8.1b. In Table 8.3
models performing overall well are presented. The LGBM classifier
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over-fit when combined with both MI and FS selectors, as evident by
the 100% train score.

One combination of feature selector and classifier had AUC values
below 50%, as evident from Figure 8.1b. Train scores were consistently
higher than test scores across models.

Mean values for test std of models consisting of the ReF, MI and FS

selectors, respectively, were 10.0%, 15.0% and 10.4%.

Model AUC,

Test (%) Train (%)

MI and ET 67.5± 15.0 76.0± 3.7

FS and ET 62.7± 13.3 91.7± 4.2

MI and SVC 62.4± 16.2 72.7± 3.9

MI and DT 61.0± 13.8 86.7± 3.0

FS and DT 60.6± 11.0 72.4± 2.9

FS and LR 59.1± 9.6 60.5± 1.4

Table 8.3: Model performance in prediction of PFS for all patients. Selected
combinations of feature selector and classifier that performed rela-
tively well in experiment 3. Hyper-parameters for all models are
presented in Tables A.4 and A.5.

8.1.2 The predictive value of texture features

The selection frequency of a feature corresponds to the number of
times it was selected relative to the number of times it could have been
selected [74]. It is obtained by dividing the number of times a feature
appears in an experiment with the number of selector and classifier
combinations, i.e. 24.

Figure 8.2 shows selection frequency, or rate, for features selected
more than 8 out of the 24 times, i.e. having selections rates > 0.33.
This value was chosen in order to show rates for a decent number of
features.

As evident from Figures 8.2b and 8.2c, no feature had selection rate
above 0.50 in experiment 2 or 3. For the former, this may be expected
considering that features from all seven DWIs were included without
any prior investigation of feature correlation. Accordingly, several fea-
tures probably represent overlapping information, rendering selection
rates for each individual feature low.

Higher rates were expected in experiment 3 considering features
from DWIs (b5) only were included in addition to the T2WI features.
However, comparing Figures 8.2b and 8.2c, rates appearing in the
former are slightly more constant than for the latter (experiment 3),
with a larger difference between the two or three highest rates and
the remaining ones. This may suggest a somewhat lower correlation
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(a) Test AUC scores from experiment 1.

(b) Test AUC scores from experiment 3.

Figure 8.1: Performance, measured in AUC, for combinations of feature selec-
tor and classifiers from experiment 1 (a) and 3 (b).

between features in experiment 3. A discussion on the topic of feature
correlation, its effect on selection rate, as well as features potentially
representing overlapping information is included in Chapter 11.

From Figure 8.2 it can be seen that small area high grey level empha-
sis from the GLSZM was the most selected feature in both experiment 1
and 3, together with gray level variance from the GLRLM for the latter
experiment. Small area high gray level emphasis was selected at a rate
equal to 0.46 in experiment 2.
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(a) Selection rates from experiment 1. Gray level non-uniformity was from the GLSZM.

(b) Selection rates from experiment 2. Gray level variance (b4) is from the GLSZM.

(c) Selection rates from experiment 3. Gray level variance was from the GLRLM, while
gray level non-uniformity (b5) and high gray level emphasis (b5) were from the
GLDM.

Figure 8.2: Feature selection rates from experiment 1 (a), 2 (b), and 3 (c).
Remaining features had selection rate ≤ 0.33. Information on
which matrix each texture feature was derived from can be found
in Chapter 4.

feature scores Each feature selector algorithm except VT des-
ignated a score to each input feature. The Biorad program allowed
for retrieval of the scores imposed by the MI and ReF selectors. The FS

could unfortunately not be obtained.
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Consider again Table 8.3 with selected models from experiment 3.
The same two top-scoring features were selected by the MI selector in
combination with both the ET classifier and SVC, respectively. These
were small area high gray level emphasis from the GLSZM and depen-
dence non-uniformity (b5) from the GLDM, scored by the MI algorithm
as 0.17 and 0.16, respectively.

experiment 4 and 5 In these experiments, the predictive perfor-
mance of models based on only shape, Xs, or texture features, Xt

Tb5,
respectively, were evaluated. Heatmaps showing test performance of
the different models are included in Figures A.2 and A.3.

Of the models predicting PFS solely from texture features (experi-
ment 5), the ones based on LGBM or DT classifiers with high test scores
generalized poorly, evident by large differences between test and train
scores. Mean values for test std of models using the ReF, MI and FS

selectors, respectively, were 11.0%, 13.2% and 12.8%. MI combined
with the SVC performed relatively well, with test and train scores of
60.4± 10.4% and 66.8± 6.7%, respectively. A single feature was se-
lected by this model, namely small area high gray level emphasis from
the GLSZM. Across models, this feature was selected at a rate of 0.42.
The same rate was observed for small area high gray level emphasis
calculated from the DWI (b5).

Relatively high selection rates were observed in both experiments.
Note that Xs only contains 28 features per patient, so higher selection
rates are expected. Xt

Tb5 contains 150 features per patient. In Figures
8.3 and 8.4, features selected at a rate greater than 0.46, i.e. at least 12
out of the 24 times, are included.

Figure 8.3: Selection rates from experiment 4. Remaining features had selec-
tion rate ≤ 0.46.
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Figure 8.4: Selection rates from experiment 5. Remaining features had selec-
tion rate ≤ 0.46. Information on which matrix each feature was
derived from can be found in Chapter 4.

8.2 predicting pfs for the ncrt cohort

From experiment 1 and 3, test scores were overall higher than for
experiments run with radiomic data from all 81 patients.

experiment 1 Selected models performing overall well with fea-
tures derived from T2WIs are included in Table 8.4. The heatmap
corresponding to experiment 1 is shown in Figure 8.5a. The MI selector
in combination with both LGBM and SVC had train scores of 98.6± 3.2%
and 97.6± 3.2%, respectively, i.e. clearly not generalizing well and
thus not included in the table below.

Mean values for test std of the six models consisting of the ReF, MI

and FS selectors, respectively, were 23.3%, 20.3% and 19.4%.

Model AUC,

Test (%) Train (%)

MI and ET 76.0± 15.9 81.6± 3.1

MI and DT 74.7± 17.3 73.2± 6.7

MI and RR 70.0± 26.1 75.7± 6.1

Table 8.4: Model performance in prediction of PFS for the nCRT cohort. Se-
lected combinations of feature selector and classifier that per-
formed relatively well in experiment 1. Hyper-parameters for both
models are presented in Table A.6.

experiment 3 Inclusion of features from DWIs (b5) overall in-
creased test scores. However, the highest-scoring model, FS in combi-
nation with LGBM, was maximally over-fit, with train score of 100%.
Similarly, MI and FS selectors with SVC had train scores of 99.1± 1.2%
and 96.8± 2.2%. Scores for selected models performing overall well
are presented in Table 8.5, and the heatmap shown in Figure 8.5b.
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Mean values for test std of the six models consisting of the ReF, MI

and FS selectors, respectively, were 19.0%, 19.7% and 17.0%. Again, test
std is high. Accordingly, predictions made by the models considered
in this section are unreliable.

Model AUC,

Test (%) Train (%)

FS and ET 78.3± 18.0 84.6± 6.1

FS and DT 73.0± 10.8 80.7± 3.0

Table 8.5: Model performance in prediction of PFS for the nCRT cohort. Se-
lected combinations of feature selector and classifier that per-
formed relatively well in experiment 3. Hyper-parameters for both
models are presented in Table A.7.

8.2.1 The predictive value of texture features

Figure 8.6 shows selection frequency for features with rates > 0.33. The
same trend as for the all patients cohort is apparent, with overall lower
and more similar rates across features for experiment 3. Furthermore,
small area high gray level emphasis from the GLSZM is most frequently
selected in experiment 1, now at a rate of 0.75. In experiment 3, this
feature is selected at a rate equal to 0.38.
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(a) Test AUC scores from experiment 1.

(b) Test AUC scores from experiment 3.

Figure 8.5: Performance measured in AUC, for combinations of feature selec-
tor and classifiers from experiment 1 (a) and 3 (b), considering
the nCRT cohort.
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(a) Selection rates from experiment 1.

(b) Selection rates from experiment 3. Both gray level variance (b5) and gray level
non-uniformity (b5) are from the GLDM.

Figure 8.6: Predicting PFS in the nCRT cohort. Selection rates for experiment
1 (a) and 3 (b). Remaining features had selection rate ≤ 0.33.
Information on which matrix each texture feature was derived
from can be found in Chapter 4.
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In this chapter, results from experiments 1 and 3 for models predict-
ing response to nCRT are presented. It consists of two main sections,
corresponding to the two metrics used to evaluate response. In the
former, results for models predicting TRG are presented. In section 9.2,
ypT is used as endpoint.

9.1 predicting trg

9.1.1 Evaluating performance

experiment 1 Models were trained on radiomic data derived from
the T2WIs only. In Table 9.1, a selection of models that performed well
are presented. The corresponding heatmap is shown in Figure 9.1a.

Mean values for test std of the six models using the ReF, MI and
FS algorithm as feature selector, respectively, were 13.0%, 12.4% and
13.3%.

Model AUC,

Test (%) Train (%)

FS and LR 85.3± 11.1 75.2± 3.0

ReF and SVC 83.3± 7.3 95.3± 2.4

ReF and ET 81.0± 15.8 80.6± 4.6

FS and ET 80.3± 12.7 83.5± 1.7

MI and DT 79.7± 4.1 85.8± 2.9

Table 9.1: Model performance in prediction of TRG. Selected combinations
of feature selector and classifier that performed relatively well in
experiment 1. Hyper-parameters for all models are presented in
Tables A.8 and A.9.

experiment 3 Results from experiment 3 are presented in Table
9.2, with corresponding heatmap shown in Figure 9.1b. Both ReF and
FS had train scores of ∼ 100% when combined with the LGBM classifier.
Mean values for test std of the six models consisting of the ReF, MI and
FS selectors, respectively, were 12.5%, 15.6% and 17.8%.

Across models in both experiment 1 and 3, values for test std were
lower than for models predicting PFS in the nCRT cohort, as evident
from Section 8.2.
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(a) Predicting TRG. Test AUC scores from experiment 1.

(b) Predicting TRG. Test AUC scores from experiment 3.

Figure 9.1: Performance measured in AUC, for combinations of feature selec-
tor and classifiers predicting TRG, from experiment 1 (a) and 3
(b).

9.1.2 The predictive value of texture features

As evident from Figure 9.2a, a relatively low number of features were
selected at a rate above 0.33 in experiment 1. The highest selection
rate was as low as 0.54. The latter is also true for experiment 3 as
shown in Figure 9.2b, however a greater number of features were
selected at rates between 0.54 and 0.33. This high number of features
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Model AUC,

Test (%) Train (%)

MI and LR 84.0± 16.9 87.2± 5.5

ReF and LGBM 80.7± 3.4 98.4± 2.6

MI and RR 80.3± 21.1 85.5± 3.8

MI and ET 79.7± 12.9 86.4± 8.4

MI and DT 76.7± 4.6 79.0± 2.6

Table 9.2: Model performance in prediction of TRG. Selected combinations
of feature selector and classifier that performed relatively well in
experiment 3. Hyper-parameters for all models are presented in
Table A.10 and A.11.

selected at similar rates is, as mentioned in Chapter 8, suggestive of
features representing overlapping information and thereby leaving
some redundant.

The two features cluster prominence from the GLCM and dependence
variance from the GLDM were selected at relatively high rates in both
experiments; 0.54 and 0.50 in experiment 1, 0.50 and 0.54 in experiment
2, respectively.
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(a) Selection rates from experiment 1.

(b) Selection rates from experiment 3. Gray level variance (b5) was from the GLSZM.

Figure 9.2: Predicting TRG. Selection rates for experiment 1 (a) and 3 (b).
Remaining features had selection rate ≤ 0.33. Information on
which matrix each texture feature was derived from can be found
in Chapter 4.

9.2 predicting ypt

9.2.1 Evaluating performance

As evident from Figure 9.3, overall high AUC scores were associated
with experiments considering the nCRT cohort with ypT as endpoint.
Scores of some selected models from experiment 1 and 3 are presented
in table 9.3.

From experiment 1, mean values for test std of the six models
consisting of the ReF, MI and FS selectors, respectively, were 6.0%, 7.8%
and 15.2%. From experiment 3, these respective values were 13.0%,
6.7% and 20.6%. Lower values as well as larger variations in test std
were observed compared to models trained to predict PFS or TRG in
the nCRT cohort.

An important factor in causing such inconsistent and presumably
over-optimistic results is the imbalance of the dataset. As seen from
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Exp. Model AUC,

Test (%) Train (%)

1 ReF and ET 98.0± 4.0 94.0± 2.1

1 ReF and SVC 98.0± 4.0 97.8± 1.2

1 MI and DT 94.7± 3.1 97.0± 1.8

1 ReF and LGBM 94.3± 7.9 99.2± 1.3

3 MI and DT 96.3± 3.2 98.5± 0.3

3 MI and ET 94.7± 6.9 96.2± 2.4

3 MI and RR 94.7± 6.9 88.0± 11.9

3 FS and DT 79.0± 19.1 88.6± 2.5

Table 9.3: Model performance in prediction of ypT. Selected combinations
of feature selector and classifier that performed relatively well in
experiments (Exp.) 1 and 3. Hyper-parameters for all models are
presented in Tables A.13 - A.15.

Table 7.1, only 12 of the 35 patients responded well (y = 1) according
to the TRG metric, while the remaining 23 responded poorly (y = 0).
When ypT is used as endpoint, the imbalance is even greater, with 8
responding well and 27 responding poorly. Accordingly, it might be
difficult to obtain trustworthy results using AUC as metric. A discus-
sion on this topic is included in Chapter 11.

Experiment 1 and 3 were repeated using F1 as performance metric
in an attempt to better account for few positive, i.e. y = 1, samples.
Heatmaps are shown in Figure 9.4. The range corresponding to the
minimum number of samples in each leaf node for the ET classifier
was changed from 5− 15 to 0− 15 due to higher performance being
observed when using this range during test runs.

With the F1 score, mean values for test std increased: 25.5%, 24.1%
and 26.5% for the six models using the ReF, MI and FS feature selector,
respectively, from experiment 1. From experiment 3, the respective
values were 20.9%, 15.4% and 34.1%.

9.2.2 The predictive value of texture features

Selection rates from experiment 1 and 3 when using AUC as scoring
metric are presented in Figure 9.5. The same trends as for models
predicting TRG were observed: a relatively low number of features
selected in experiment 1, with top rates just slightly above 0.5. For
experiment 3, the high number of features with rates between 0.33
and 0.50 were again observed.

The only feature selected at rates > 0.33 in both experiments was
small area high gray level emphasis from the GLSZM at rates of 0.46
and 0.38 for experiments 1 and 3, respectively.
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(a) Predicting ypT. Test AUC scores from experiment 1.

(b) Predicting ypT. Test AUC scores from experiment 1.

Figure 9.3: Performance, measured in AUC, for combinations of feature se-
lector and classifiers predicting ypT, from experiment 1 (a) and 3
(b).
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(a) Predicting ypT. Test F1 scores from experiment 1.

(b) Predicting ypT. Test F1 scores from experiment 3.

Figure 9.4: Performance measured as F1 score, for combinations of feature
selector and classifiers predicting ypT, from experiment 1 (a) and
3 (b).
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(a) Selection rates from experiment 1.

(b) Selection rates from experiment 3. Gray level non-uniformity (b5) was calculated
from the GLRLM.

Figure 9.5: Predicting ypT, performance measured in AUC. Selection rates
from experiment 1 (a) and 3 (b). Remaining features had selection
rate ≤ 0.33. Information on which matrix each texture feature
was derived from can be found in Chapter 4.
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Results included in this chapter offer a first evaluation of reproducibil-
ity. It is divided into three main sections based on the different aspects
in view of which reproducibility is evaluated. Namely, voxel resam-
pling (10.1), intensity binning (10.2) and VOI delineation (10.3). In
Section 10.4, the findings in terms of selected features are summarized
in an attempt to assess feature robustness.

The same approach was chosen for sections 10.1 - 10.3. In experi-
ments 6, 8 and 10, features derived from T2WIs alone were analysed,
before doing a second run in which features from the DWIs (b5), were
included. I.e., experiment 1 and 3 were repeated, respectively. In exper-
iment 6, Dataset2 was analysed instead of Dataset1. In experiment 8, a
bin width of 35 was used instead of 25, and in experiment 10, mask2

instead of mask1 defined the VOI. This allowed for a first evaluation
of reproducibility.

In order to take this investigation of reproducibility one step further,
experiment 7, 9 and 11 were performed. In these experiments, the
model consisting of FS selector and LR classifier were considered. In
experiment 3 as presented in Section 8.1, this model had number of
selected features k = 4 and regularization parameter CLR = 3. Se-
lected features were gray level variance, run percentage (b5) and short
run emphasis (b5) from the GLRLM, and dependence non-uniformity
normalized (b5) from the GLDM, evident from Table A.5.

When achieving equal values for parameters k and CLR for this
model in experiment 7, 9 and 11, performance could be compared
across experiments. This model was chosen due to its relatively low
std and small difference between train and test score in experiment 3,
as evident from Table 8.3.

All models considered in this chapter were trained to predict PFS

using radiomic data from all 81 patients.

10.1 voxel resampling

In experiments 6 and 7, features derived from Dataset2 were analysed.
Images in this dataset had isotropic voxels with size 1× 1× 1 mm3.

10.1.1 Experiment 6

evaluating performance Heatmaps showing performance of
models from experiment 6 are included in Figures A.4 and A.5. Com-
paring with those shown in Figure 8.1 for Dataset1, performance was
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all over quite similar between the two datasets. The highest scores
when only considering T2WIs were about 63% AUC for both datasets,
and increased by a few percentage when including features from DWIs
(b5).

Mean values for test std of the six models consisting of the ReF,
MI and FS selectors, respectively, were 14.5%, 13.9% and 14.1% in
the experiment considering T2WI-derived features only. When XTb5
was input, values for mean test std were 10.0%, 10.7% and 12.8%,
respectively.

selected features Differences were greater when considering
feature selection rates. In particular, in the first run when only con-
sidering features from T2WIs, only two features had rates higher than
0.33, and these were as low as 0.50 and 0.46. The features in question
were cluster tendency from the GLCM and complexity from the NGTDM,
respectively.

The most frequently selected feature in experiment 1 for Dataset1
was small area high grey level emphasis from the GLSZM with selection
rate 0.71, as evident from Figure 8.2a. With Dataset2, this feature was
selected at the much lower rate of 0.25.

When including features from the DWI (b5) the situation was some-
what more similar to that for Dataset1, as can be seen from Figure
10.1. Five of the same features as in experiment 3 for Dataset1 were
selected, as evident from Table 10.2 below. Small area high gray level
emphasis was again selected at a rate of only 0.25.

Figure 10.1: Predicting PFS, all patients. Selection rates obtained in experi-
ment 6 from analysis performed on features from both T2WIs and
DWIs (b5). Remaining features had selection rate ≤ 0.33. Gray
level non-uniformity (b5) was from the GLSZM, while high gray
level emphasis (b5) and gray level non-uniformity (b5) were from
the GLDM. Information on which matrix each of the remaining
texture feature was derived from can be found in Chapter 4.
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10.1.2 Experiment 7

With k = 4 and CLR = 3, the model consisting of FS selector and LR

classifier performed poorly, with test and train scores of 51.1± 13.7%
and 64.8± 1.7%, respectively. Selected features were small area low
gray level emphasis from the GLSZM, short run low gray level emphasis
(b5) from the GLRLM, busyness (b5) from the NGTDM and gray level
non-uniformity (b5) from the GLDM.

10.2 bin width

In experiments 8 and 9, features were again derived from images in
Dataset1, however this time from images with intensities binned to a
width of 35 instead of 25

10.2.1 Experiment 8

The approach for this experiment was similar to that in Section 10.1,
as explained in the introduction of this chapter.

evaluating performance Test scores for the various models
from experiment 8 can be seen from the heatmaps presented in Figures
A.6 and A.7. When features from T2WIs only were input, only one
model had test score above 60%. The lowest score was 43.8± 8.3% for
the LR classifier with no feature selection. Inclusion of features from
DWIs (b5) overall increased test scores, with only two scores below
50%.

Mean values for test std of the six models consisting of the RF, MI

and FS selectors, respectively, were 10.9%, 11.9% and 13.3% in the
experiment considering T2WI-derived features only. When XTb5 was
input, the respectively values for mean test std were 9.5%, 9.0% and
11.2%.

selected features Selection rates for experiment 8 are presented
in Figure 10.2. As evident from Table 10.1 below, six feature were
selected at a rate greater than 0.33 in both experiment 1 and 8, when
only analysing features from T2WI.

10.2.2 Experiment 9

With k = 4 and CLR = 3, the model consisting of FS selector and LR

classifier again performed quite poorly, with test and train scores of
55.6± 9.9% and 62.6± 6.1%, respectively. Selected features were now
zone entropy from the GLSZM, low gray level run emphasis (b5) and
run length non-uniformity (b5) from the GLRLM, as well as complexity
(b5) from the NGTDM.
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(a) Predicting PFS based on radiomic data from T2WIs.

(b) Predicting PFS based on radiomic data from T2WIs and DWIs (b5). High gray level
emphasis (b5) was from the GLDM.

Figure 10.2: Predicting PFS, all patients. Selection rates from experiment 8,
when analysing features from T2WIs only (a), and when including
features derived from DWIs (b5) (b). Remaining features had
selection rate ≤ 0.33. Information on which matrix each texture
feature was derived from can be found in Chapter 4.

10.3 segmentation mask

The two final experiments were performed with the aim of evaluating
the effect of segmentation mask defining the VOI on the radiomic
results. Mask1 was used in experiments 1− 9. In experiment 10 and
11, mask2 was used. The same approach as in Sections 10.1 and 10.2
were used.

10.3.1 Experiment 10

evaluating performance Heatmaps showing test scores for
models from experiment 10 are presented in Figures A.8 and A.9.
When simply comparing with Figure 8.1, performance appear some-
what similar; no AUC values below 50% when features from T2WI only
were input, and best performances slightly above 60% for models
including the RF, MI or FS selector. Mean values for test std of the six
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models consisting of the RF, MI and FS selectors, respectively, were
14.1%, 15.2% and 8.5%.

When including features from DWIs (b5), a few test AUC values were
below 50% as in experiment 3. Mean values for test std of the six
models consisting of the RF, MI and FS selectors, respectively, were
14.2%, 13.7% and 10.9%.

selected features Selected features with rates > 0.33 are shown
in Figure 10.3. Findings are summarized next, in the final section of
this chapter.

(a) Predicting PFS based on radiomic data from T2WIs.

(b) Predicting PFS based on radiomic data from T2WIs and DWIs (b5). Gray level
variance (b5) and gray level non-uniformity were from the GLSZM.

Figure 10.3: Predicting PFS, all patients. Selection rates from experiment 10,
when analysing features from T2WIs only (a), and when including
features derived from DWIs (b5) (b). Remaining features had
selection rate ≤ 0.33. Information on which matrix each texture
feature was derived from can be found in Chapter 4.

10.3.2 Experiment 11

Similarly to results from experiment 7 and 9, with k = 4 and CLR = 3,
the model consisting of FS selector and LR classifier performed poorly,
with test and train scores of 50.9± 10.6% and 58.9± 3.1%, respectively.
Selected features were now maximum 2D diameter slice, elongation
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(b5), run variance (b5) from the GLRLM and ID normalized (b5) from
the GLCM.

10.4 feature robustness , a summary

In Table 10.1, features selected at rates > 0.33 in at least one of exper-
iments 6, 8 and/or 10 in addition to experiment 1 are shown. Table
10.2 shows the same for experiment 3. This was done in an attempt of
making a first evaluation of feature robustness.

Experiment: 1 6 8 10

Feature:

Complexity 0.42 0.46 - 0.46

Maximum 2D diameter Row 0.46 - 0.42 -

Maximum 2D diameter Slice 0.42 - 0.42 -

Autocorrelation 0.67 - 0.42 0.50

Cluster Shade 0.42 - 0.42 -

Maximum 3D diameter 0.50 - 0.38 -

Zone variance 0.42 - 0.38 -

Table 10.1: Comparing selection rates for features selected at a frequency >
0.33 across experiments. "-" indicates that the feature was selected
at a rate ≤ 0.33. Evaluating feature robustness for experiments
in which features derived from T2WIs only were analysed, i.e. XT
was input.

Experiment: 3 6 8 10

Feature:

Maximum 3D diameter 0.42 0.46 -

High gray level emphasis (b5), GLDM 0.38 0.46 0.50 -

Gray level non-uniformity (b5), GLDM 0.42 0.42 - -

Difference variance (b5) 0.38 0.42 - -

Mean (b5) 0.38 0.38 0.50 0.50

Short run high gray level emphasis (b5) 0.38 - 0.46 0.46

Table 10.2: Comparing selection rates for features selected at a frequency >
0.33 across experiments. "-" indicated that the feature was selected
at a rate ≤ 0.33. Evaluating feature robustness for experiments
in which features derived from both T2WIs and DWIs (b5) were
analysed, i.e. XTb5 was input.

It is again important to note that several radiomic features may
provide overlapping information. This can be seen from feature def-
initions presented in Chapter 4, and may also occur when the same
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features are calculated from both T2WIs and DWIs (b5). As such, the
degree to which the exact feature is selected across experiments as pre-
sented in the tables above is just a first, possibly deficient, comparison.
The evaluation of feature robustness is continued in Chapter 11 by
comparing the information provided by each selected feature.





11
D I S C U S S I O N

In this chapter, model performance and the predictive value of tex-
ture features are first discussed on the basis of results outlined in
the preceding chapters. Then, a discussion on performing machine
learning with small sample sizes and imbalanced datasets is presented
in Sections 11.3 and 11.4, respectively. Findings and reviews in sup-
port of the overall high performance estimates obtained for the nCRT

cohort are included in Section 11.5. Finally, in Sections 11.6 and 11.7
the discussion on correlating features and reproducibility initiated in
Chapter 10 is continued.

11.1 evaluating model performance

The prediction models obtained in this thesis were evaluated and
compared on the basis of their AUC scores. The F1 scoring metric was
also used for models predicting ypT in Section 9.2. In all experiments,
train and test scores were obtained as mean values from a 5-fold
stratified CV scheme [79].

As evident from the previous chapters, several models performed
poorly, with high mean values for test std as well as differences
between train and test score. The latter, as indicative of an insufficient
ability to generalize, may result in low test scores when exposing the
model to new data. High values for std obviously render models an
inappropriate choice for making trustworthy predictions.

worse than random performance Some performance esti-
mates below 50% AUC were obtained. This was surprising considering
these models performed worse than random guessing. Overall high
values for mean test std were often associated with these experiments.
In the following, two articles that may provide some clarification are
reviewed.

Parker et al. [80] within the field of genetics show that performing
machine learning-based class prediction on random microarray data
with 10-fold CV resulted in AUC values as low as 0.30. They refer to
AUC values below the value of true performance as being pessimisti-
cally biased [80]. The authors argue that methods for reusing samples,
like CV, may result in such estimates due to a difference in the number
of samples belonging to each class in the train and test datasets, re-
spectively. Although none below 0.50, Parker et al. obtained consistent
pessimistic bias for non-random datasets as well, in particular when
the number of samples were low (< 25). In conclusion, they found
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that performing a stratified version of CV that ensures greater balance
between the train and test set may improve results.

Microarray data often contains few samples (< 100) and can be
difficult to separate into distinct classes [80], similarly to what is often
the case for radiomics. On this basis, the arguments made by Parker
et al. may be valid for findings presented in this thesis.

As evident from Chapter 7, the 5-fold CV schema used here was in
fact stratified. However, when the number of samples is low and if it is
not possible to achieve the exact ratio of negative and positive samples
in each fold, a small difference in numbers may result in a larger
change in percentage, thereby causing the folds to appear different.
With few samples, each sample has a larger say. Furthermore, with
small number of samples and large number of features the dataset
may appear more or less random. Thus, the small sample size may
have caused pessimistic bias in the performance estimates, with values
below 50% occurring due to the apparent randomness. Performing
machine learning with small sample sizes is further discussed in
Section 11.3.

Perlich et al. [81] found that, for datasets with small numbers of
positive samples, values below 50% occurred even though stratified
CV was performed. This was seen to a greater extent when the number
of folds were high. Without going into further detail, this may be of
relevance considering all four combinations of samples and response
variable evaluated in this thesis were indeed imbalanced, with a ma-
jority of negative samples. Dataset imbalance is discussed in Section
11.4.

hyper-parameter optimization The tree-based classifiers LGBM

and DT tended to over-fit, with train scores up to 100% AUC. Accord-
ing to Scikit-learn documentation [76], DT classifiers are prone to
over-fitting when the number of features is high. Hyper-parameters
controlling tree depth, number of leaves as well as number of samples
required to be at a leaf should be carefully tuned in order to avoid
the model becoming too complex [75]. If time allowed, a greater effort
should have been made to better choose the value ranges from which
hyper-parameter configurations were sampled. A greater number of
configurations could also have been evaluated.

Selection of relevant features is an important step in establishing
prediction models. As evident from Table 7.3, the range corresponding
to the number of features the model could select, k, were set to 1− 15
and 1− 9 when training models with data from all 81 patients and
just the 35 patients in the nCRT cohort, respectively. Low values were
chosen in an attempt to avoid over-fitting. Gillies et al. [5] argue that
for binary classification models, about 10 patients are required for
each feature.
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However, requiring the algorithms to identify such small subsets of
features when the training data contains many features relative to the
number of samples may be problematic. A discussion on this topic
is included in Section 11.3. This issue becomes even more apparent
when several features represent overlapping information, as discussed
in Sections 11.6 and 11.7.

11.2 the predictive value of texture features

It is known that T-stage of a tumor at diagnosis is predictive of rates
like overall and disease-free survival [82] [83]. As evident from Chap-
ter 3, factors like size and invasiveness of the tumor contribute in
determining the T-stage. Accordingly, although shape features ex-
tracted in a radiomics analysis may provide more precise descriptions
of shape-related tumor attributes than what can be obtained with
conventional image analysis, many shape features are already more or
less known predictors of survival. These may be volume, surface area
and various diameters. So in order for the field of radiomics to be of
added value in prediction of survival, features not readily obtained
from conventional image analysis must prove themselves relevant [84].
Texture and first-order statistical features potentially describing tumor
heterogeneity [3], are of interest in this regard.

From Chapters 8 - 10, it appears that several selected features were
in fact texture features. Across experiments, several models were based
solely on texture features. This is evident from Tables A.1 - A.4. The
high representation of texture features is also evident from figures
showing selection rates.

To further investigate whether models could perform well based on
texture features alone, experiment 5 was performed. Across models,
performance was quite similar to that in experiment 1 and 3, with
test scores of about 60% AUC and corresponding mean test std values
slightly above 10%.

As observed in Chapter 8, the small area high gray level emphasis
feature from the GLSZM appeared to be of importance in prediction of
PFS.

Other studies within MRI-based radiomics report of similar find-
ings, i.e. predicting survival from subsets with mainly texture features
[85] [86]. Kim et al. [85] calculated a radiomic score based on five
selected features from the GLDM, GLSZM or GLCM found to be of rele-
vance in prediction of disease-free survival. Note that features were
derived from T2WIs and T1WIs, and that filters were applied prior
to extraction. The authors of [86] extracted features from T2WIs and
contrast-enhanced T1WIs from patients with non-metastatic nasopha-
ryngeal carcinoma. 20 features were selected as predictive of PFS, with
which they performed a statistical survival analysis. One shape fea-
ture, elongation, was selected, while the remaining described texture
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and the first-order intensity histogram. Filters were applied prior to
extraction.

11.3 learning with small sample sizes

In this thesis, prediction models were trained on datasets of different
sizes both with respect to the number of samples, n, and number
of features, m. When considering all patients and the nCRT cohort,
n was equal to 81 and 35, respectively. The number of features per
patient varied from m = 28 when examining shape features only in
experiment 5, to m = 772 when deriving features from T2WIs and all
seven DWIs in experiment 2.

In radiomics analysis, the number of extracted features and corre-
sponding dimensionality are often high [12]. Accordingly, there is a
demand for large samples sizes to obtain predictions with statistical
significance [12]. Within the field of medicine however, it is often
difficult to obtain datasets with a large number of samples due to
high costs and time-consuming work typically associated with the
process of data collection [87]. Such high m low n situations may be
prone to issues like over-fitting [12], and models misinterpreting noise
in the training data as essential patterns [87]. This results in poor
generalization and low degree of reproducibility of results [88].

The authors of [88] define a dataset as wide if m
n > 10. They gen-

erated random datasets and showed that predictions measured in
accuracy obtained with models trained on wide datasets were largely
influenced by chance. Furthermore, considering feature selection, they
argue the following. With greater number of features and lower num-
ber of samples, the probability of mistaking features that simply
correlated with a class by chance as actually relevant, increases [88].

As mentioned in Section 5.3, K-fold CV is often used to increase
the reliability of results without the need to fully isolate a test set,
something which might be problematic for small datasets. However,
the authors of [87] found that performance results from K-fold CV

tend to be biased and falsely high due to lack of ability to avoid over-
fitting, especially for small datasets but also for larger ones. Nested
CV on the other hand ensured more trustworthy evaluations of model
performance also for small datasets due to the isolated test set [87].
This finding is supported by documentation provided for the Scikit-
learn software [89].

Estimates for model performance obtained in this thesis may be
overly optimistic, when viewed in light of the discussion above.

For models predicting PFS based on radiomic data from all 81 pa-
tients, overall higher AUC values were obtained when including fea-
tures from all seven DWIs without significant increase in test std.
Evaluation of all m = 772 features per patient correspond more or less
to a wide dataset situation according to [88], with m

n ∼ 9.5. For the
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nCRT cohort with n = 35, this fraction would be m
n ∼ 22.1. Accordingly,

results from experiment 2 for the nCRT cohort were not included due
to the presumably low reliability of results.

Estimates of model performance obtained for the nCRT cohort in
prediction of PFS, TRG and ypT may to some extent be overly optimistic.
According to the discussion above, the most reliable results are ob-
tained from experiment 1, in which n = 107. As evident from Chapter
8, predictions of PFS for the nCRT cohort were associated with mean
std values about 20%. When considering all 81 patients, std values
were lower, yet still often above 10%.

Surprisingly, lower train than test scores were observed for some
models, both considering all patients and the nCRT cohort. In particular,
this occurred for models predicting ypT, where eight combinations
of feature selector and classifier in total for both experiments had
lower train scores. When this occurred, associated mean values for std
were often high, thereby adding uncertainty to the obtained scores.
Moreover, across models and experiments, the difference between
train and test scores were consistently within the mean train std value
for the particular model.

The overall high test std values, as well as lower train than test
scores, may again reflect the fact that when establishing CV folds from
relatively few samples, each sample obtains a greater impact on the
final score.

11.4 dataset imbalance

In this thesis, all four combinations of samples and endpoints were
imbalanced with a majority in the negatively labeled class, as evident
from Table 7.1. This may contribute further to causing overly optimistic
performance estimates when the metric is AUC.

As evident from Section 5.3, the AUC score is based on the true
positive rate (TPR) and the false positive rate (FPR). While the former
focuses on the positive, i.e. minority class, the FPR evaluates the
models ability to classify negative samples correctly. In contrast, the
F1 score is based on recall, equal to the TPR, and precision. The latter
also depends on the number of true positives, thereby rendering the
F1 score a more reliable measure for models trained with datasets
containing smaller number of positive samples [66].

Considering the nCRT cohort, higher AUC values were obtained for
models predicting TRG and ypT than PFS. Moreover, mean test std
values for models predicting TRG were overall lower than for models
predicting PFS. Results obtained from models predicting ypT included
several models with scores above 90% AUC and low associated std,
but also models with values for std above 20%. In short, the larger
the dataset imbalance, the more optimistic the performance estimates
tended to get.
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Repeating experiments 1 and 3 on the nCRT dataset with ypT as
endpoint using the F1 metric may have provided more trustworthy
results. However, with mean values for test std now overall very high,
no reliable insight can be drawn from these models. Note that ranges
from which hyper-parameter configurations were samples could have
been optimized further. In any case, the dataset consisting of the nCRT

cohort with ypT as endpoint is both small and severely imbalanced, i.e.
not ideal for training prediction models.

When trained with imbalanced datasets, classification-based pre-
diction models tend to have higher degree of misclassification for the
minority, or positive, class [90]. This may again contribute to explain-
ing performance estimates obtained for the nCRT cohort: when the
number of positive samples decreases, from 14 when predicting TRG to
8 when predicting ypT, the number of misclassifications (as apparent
from higher performance) decreased accordingly. It would here be of
interest to display the confusion matrix for each model with numbers
of true/false negatives and positives, as explained in Section 5.3.

Methods for decreasing class imbalance exist, some focused on
undersampling the majority class, while others, like the Synthetic
minority oversampling technique (SMOTE), oversample the minority
class [90]. However, when the goal is to establish a model with the
ability to make accurate predictions for new, unlabeled data, it is
essential that the data used for training were representative of the
actual situation [65]. If the problem is in fact imbalanced with respect
to class, then so should the datasets used for both training and testing
of the prediction model [65].

Still, in many problems for which classification is used, one type of
misclassification (false positive or false negative) is often worse than
the other [65] [91], like classifying a cancerous tumor as benign [65].
Then, a cost or penalty for misclassification can be assigned to this
class [91]. This may be a good strategy for imbalanced datasets in
which correct classification of the minority class is most important
[91].

The choice of metric might also contribute to obtaining performance
estimates in accordance with what is most important, as evident from
the discussion above. If misclassifying poor response to nCRT (i.e.
y = 0) is worse than misclassifying good response, and if poor re-
sponse being the majority class in fact represents reality, then AUC may
be a good metric. Avoiding nCRT due to a prediction of no response
when the patient would indeed benefit from such treatment would
be problematic. Furthermore, for patients predicted to respond well
or even achieve complete response a "wait-and-see" approach may be
chosen instead of performing surgery right away [9] [26]. Still, con-
sidering CRT being invasive [92], correctly classifying good response
should also be given priority.
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While it is obvious that any ideal binary prediction model would
perform well considering both classes, matters like those mentioned
should be taken into account when establishing, evaluating and im-
proving algorithms for use in prediction of both PFS and response to
nCRT.

11.5 in support of high performance estimates

In the preceding sections it was argued that the overall higher AUC

scores obtained for models considering the nCRT cohort were overly
optimistic and potentially misleading. In the current section, aspects
and findings that may add support to such high performance esti-
mates are outlined. Still, the overall high values for test std remain
problematic.

According to the therapeutic guidelines mentioned in Chapter 3 and
the clinical data presented in Chapter 6.1, patients selected to undergo
CRT prior to surgery typically have tumors staged as T4 (i.e. locally
advanced) or T3 with positive lymph nodes. The subset of patients
with such high-risk disease may then form a more homogeneous
group than all 81 patients. Accordingly, it is not unlikely that the
radiomic features of actual relevance are more readily identified by
the machine learning algorithms. Relevant features are those that are
found to differ more or less consistently between patients belonging to
each respective class, and these may manifest themselves better when
other tumor attributes are more similar between classes.

Several studies predicting response to nCRT for LARC patients re-
port of high performance estimates [9] [26] [27]. The authors of [9]
obtained AUC values of 90.17% and 89.72% for the train and validation
dataset, respectively, when predicting good response to nCRT based
on radiomic features derived from T2WIs for 134 patients. Note that
the Dowrak/Rödel TRG system was used, in which TRG 0-2 and 3-4
correspond to poor and good tumor response to nCRT, respectively
[25] [9].

The authors of [26] obtained AUC values of 0.89 when predicting
good response to nCRT, with good and no/poor tumor response de-
fined as in this thesis. The patient cohort consisted of 48 patients, 31
responding well and 17 responding poorly. Features were extracted
from T1WIs, T2WIs, DWIs and dynamic contrast-enhanced images, and
the AUC value found to be higher when including all features com-
pared to when considering features from each scan type alone.

Horvat et al. [27] predicted pathological complete response (pCR)
to nCRT with AUC value of 0.93 based on radiomic features derived
from T2WIs. 114 patients with rectal cancer were evaluated, of which
21 obtained pCR. Note that pCR corresponds to TRG = 0 according to
the AJCC 7th. edition [24].
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In order for predictive models established from radiomic data to
be of use in clinical decision making, validation with unseen datasets
must be performed [12]. Zhenwei et al. [93] compared performance of
a radiomic signature developed for non-small cell lung cancer at one
institution, with the performance of this signature obtained at a new,
independent institution. Performance, measured as ability to predict
overall survival, across institutions was found to be similar.

11.6 correlated features

When revisiting the definitions of radiomic features outlined in Chap-
ter 4 several features appear to provide overlapping information. In
particular, features derived from texture matrices may correlate.

Some features are calculated from more than one matrix, like gray
level non-uniformity from the GLSZM, GLRLM and GLDM. Furthermore,
features like small/large area emphasis, short/long run emphasis
and small/large dependence emphasis all quantify texture coarseness.
Accordingly, these features would be positively correlated. This applies
to several other features calculated from the GLSZM, GLRLM and GLDM,
as evident from Tables 4.4, 4.5 and 4.7.

Furthermore, features calculated from the same matrix may be de-
scriptive of the same image attributes and thereby correlate. Examples
are gray level non-uniformity and gray level variance, as well as busy-
ness and complexity from the NGTDM. Compared to the latter two,
coarseness from the NGTDM may to some extent be negatively corre-
lated. Various other similar examples exists. This demonstrates the
need for removal of redundant features.

removal of redundant features In many radiomic studies,
feature selection is performed in more than one step [74] [94] [5]
[29]. The initial feature selection step often involves dimensionality
reduction with corresponding removal of correlated and redundant
features, often achieved by use of a cluster analysis [94] [5] [29]. This
is an unsupervised approach in which highly correlated features are
grouped together, thereby yielding low similarity between clusters
[29]. Each cluster can then be averaged into a single value [94], or
represented by selecting one [29] or a few [5] features. Leger et al. [94]
extracted 1610 features per patient, from which they established 229
clusters.

A second method for excluding redundant features is the principal
component analysis (PCA) [29]. It involves selection of a minimum
number of features, i.e. the principal components, that capture the
variation in the dataset and eliminate all others [29]. Huynh et al. [95]
reduced the number of radiomic features from 855 to 12 in a process
involving PCA.
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Although CT- and not MRI-based radiomics were performed in both
[94] and [95], the significant decrease in numbers illustrate the high
degree of correlation between radiomic features.

The authors of [96] argue that when feature selection methods like
Lasso [44] are used with datasets containing correlated features, a
more or less random selection of features from the groups or clus-
ters found to be relevant occurs. Accordingly, if slight changes are
introduced in the training data, the risk of obtaining a completely
different set of selected features exists, i.e. the model is unstable [96].
These arguments were made within the field of genomics. However, as
mentioned, the high number of potentially correlated features relative
to a small number of patients as typical for this field [96], also applies
in radiomics, as evident from the discussion in previous sections.

Several findings in this thesis are suggestive of feature correlation,
and will be the focus of the ensuing paragraphs.

selection rates In most experiments, when considering features
with rates higher than 0.33, the majority were selected at rates lower
than 0.50. This low degree of agreement across models regarding
specific, relevant features could indicate that groups of correlated
features exist. Accordingly, as explained above, from a group found
to be relevant for the endpoint in question (PFS, TRG or ypT), several
features would qualify as the representative.

From Figures 8.2 and 8.6 in Chapter 8, higher selection rates are
associated with experiment 1 than 3 for all patients as well as the nCRT

cohort when predicting PFS. The number of input features is doubled
from experiment 1 to experiment 3, with the same 107 features derived
from both T2WIs and DWIs (b5) in the latter. This may further contribute
to introducing redundant features.

The overall correlation between features derived from the different
scan types could potentially be decreased by extracting features from
ADC maps rather than from the DWIs themselves. This is done in a
number of studies [97] [26].

Selection rates are more similar between experiment 1 and 3 for
models predicting TRG or ypT, as evident from Figures 9.2 and 9.5 in
Chapter 9. For these models however, but also for the ones predicting
PFS in the nCRT cohort, the high number of features and few patients
could make it difficult for the machine learning algorithms to identify
consistent patterns in the datasets.

The overall high selection rates obtained in experiment 4 as evident
from Figure 8.3 are likely influenced by the mere fact that the dataset
consisted of 81 samples with only 28 features per patient.

The discussion on feature correlation is continued in the next section,
now with the focus being the seemingly low reproducibility.
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11.7 reproducibility and feature robustness

In the field of radiomics, many variables with potentially large impact
on obtained results exist [12]. Important areas from which such vari-
ables may emerge are image acquisition and reconstruction, intensity
binning, and segmentation [12] [14] [98].

For a prediction model to be of clinical use it must provide reliable
and stable results, i.e. results must be reproducible [12]. By evaluating
reproducibility in view of different aspects, robust features may be
identified [14]. It is important to note, however, that performing feature
selection strictly according to robustness may result in removal of
features with predictive value [14].

Among studies in which evaluation of reproducibility of radiomic
results are performed, metrics used to quantify this reproducibility are
often intraclass-correlation coefficient (ICC) or concordance correlation
coefficient (CCC) [12] [98]. In this thesis, reproducibility was not
quantified as such.

An attempt was made to perform a preliminary evaluation of repro-
ducibility. The apparent high degree of feature correlation as discussed
in the previous section is likely to have affected the obtained results.

As evident from Chapter 10, reproducibility of the results obtained
in experiments 1 and 3 was overall low with respect to voxel resam-
pling, intensity binning and VOI delineation.

In experiments 6, 8 and 10, values for test std were about the same
as in experiments 1 and 3, likely influenced by the ratio between
samples and features being equal. Comparing performance and se-
lected features by each individual model across experiments however,
reproducibility appeared to be low. As evident from Tables 10.1 and
10.2, few features are selected at high rates across experiments, i.e. few
features emerge as robust. As argued by Tolosi et al. [96] in Section
11.6, these models may be unstable due to the presence of correlated
features.

fixed hyper-parameters In experiments 7, 9 and 11, hyper-
parameters for the model consisting of FS selector and the LR classifier
were equivalent to as in experiment 3. Comparing each of the three
former experiments with the latter, performance was consistently
lower (slightly above 50% AUC) and none of the same features were
selected. The latter is evident from Table 11.1.

Consider the features selected in experiment 3. As explained in
Chapter 4, both run percentage and short run emphasis from the
GLRLM quantify texture coarseness. Gray level variance and depen-
dence non-uniformity evaluates variability in intensities and depen-
dencies, respectively.

Consider features selected in experiment 7. Short run low gray
level emphasis from the GLRLM represents the fraction of short, low-
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intensity runs. As evident from Table 4.5, this feature is obtained from
the expression for short run emphasis simply by including intensity in
the sum as 1

i . Furthermore, gray level non-uniformity (b5) quantifies
variability in intensity values, just like gray level variance.

Similar comparisons could be made between selected features from
the remaining experiments.

Experiment 3

Gray level variance, GLRLM

Run percentage (b5), GLRLM

Short run emphasis (b5), GLRLM

Dependence non-uniformity normalized (b5), GLDM

Experiment 7

Small area low gray level emphasis, GLSZM

Short run low gray level emphasis (b5), GLRLM

Busyness (b5), NGTDM

Gray level non-uniformity (b5), GLDM

Experiment 9

Zone entropy, GLSZM

Low gray level run emphasis (b5), GLRLM

Run length non-uniformity (b5), GLRLM

Complexity (b5), NGTDM

Experiment 11

Maximum 2D diameter slice

Elongation (b5)

Run variance (b5), GLRLM

ID normalized (b5), GLCM

Table 11.1: Features selected by the FS selector in combination with LR classi-
fier in experiments 3, 7, 9 and 11.
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11.8 topics for further investigation

From the results and discussion as presented here and in previous
chapters, certain topics have emerged as relevant for further investiga-
tion.

First, it would be of interest to repeat the experiments outlined in
this thesis after performing an evaluation of feature correlation and cor-
responding removal of redundant features. Moreover, features could
be extracted from ADC-maps rather than from the DWIs themselves.
A nested CV scheme [89] could be utilized to evaluate performance.
Even with the given relatively small, imbalanced dataset, these modi-
fications may decrease std and potential over-fitting, i.e. render results
more reliable. Finally, plotting the confusion matrix would enable a
more precise evaluation of performance.

Second, dimensionality reduction and removal of redundant fea-
tures are likely to facilitate a better evaluation of reproducibility and
feature robustness. Implementing software that allows for fixation of
hyper-parameters would ease this investigation. Consistently using
dataset2, with voxels resampled to a 1× 1× 1 mm3 dimension could
better promote reproducibility across studies. Due to the many factors
with potential impact on results [14] [98], standardization is of impor-
tance [5]. In summary, completion of the following three objectives
should be part of establishing a radiomics-based model with ability to
assist in clinical decision-making: perform an exhaustive evaluation of
effects posed on the results by different factors [14], choose approaches
for image acquisition, reconstruction and processing that optimally
facilitate reproducibility, and report these [5], and finally, evaluate
performance with new datasets not used during training.

Lastly, to evaluate the potential prognostic value of specific features,
a statistical survival analysis may be performed. Such analysis with
radiomic features have previously been done within the field of rectal
cancer [99] [100]. Kaplan-Meier and Cox regression are two methods
frequently used for this purpose [101]. The former involves estimation
of survival curves [102], while the latter allows for a more in-depth
analysis of the relationship between features and outcome by taking
confounding variables into account [101] [102].
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C O N C L U S I O N

In this thesis, it was investigated how a radiomics analysis based
on T2WIs and DWIs may provide added predictive and prognostic
value within the field of rectal cancer. More specifically, an attempt
was made to achieve tree main goals. Namely, (1) establish binary
predictions models based on radiomic data, (2) investigate whether
texture and first-order features in particular proved valuable, and (3)
evaluate reproducibility of results.

To this end, eleven experiments were designed and performed. A
machine learning approach was chosen, realized by the Python-based
Biorad program as available from https://github.com/ahmedalbuni/

biorad. Performance of four feature selector algorithms in combination
with six classifiers were evaluated. Three endpoints were used: PFS,
TRG and ypT, the latter two representing response to nCRT.

A few trends were apparent across experiments. Values for test
std were high, likely influenced by the relatively small sample sizes
(81 and 35). The presence of redundant features and the need for
investigation of feature correlation prior to performing selection and
classification using Biorad was apparent. Texture features were well
represented among those selected. Several models predicted PFS, TRG

or ypT purely from texture and first-order features, some of which
achieved test AUC scores of 62.2± 5.9% (FS and DT, all patients, RV =
PFS), 73.0± 10.8% (FS and DT, nCRT cohort, RV = PFS), and 76.7± 4.6%
(MI and DT, nCRT cohort, RV = TRG). Results from experiment 5, in
which only texture features were analysed, added further support
to the finding that features describing image texture were indeed of
predictive value.

predicting pfs for all patients The FS selector and DT clas-
sifier performed relatively well, predicting PFS with AUC test scores
of 62.2± 5.9%, 68.6± 8.9% and 60.6± 11.0% in experiments 1, 2 and
3, respectively. Overall, without significant increase in std, test scores
improved from experiment 1 to experiment 3, and again in experi-
ment 2. Considering that dimensionality increased correspondingly,
over-fitting is likely to be part of the explanation. Reproducibility with
respect to voxel resampling, intensity binning and VOI delineation was
poor, in particular considering selected features. It was argued that
this may be partly due to the presence of correlated features.

Small area high gray level emphasis from the GLSZM appeared
to be of relevance in prediction of PFS both for all patients and the
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nCRT cohort. Note that this may be subject to change if correlation is
evaluated and redundant features removed.

predicting pfs for the ncrt cohort Values for mean test
std were higher than when predicting PFS for all patients. Considering
selection rates, the same trend as when predicting PFS for all patients
was apparent, with lower and more similar rates in experiment 3.
Feature correlation was proposed as a feasible explanation.

The number of samples relative to the number of features were low
across experiments, which may give rise to over-fitting and difficulties
in identifying relevant features. This also applies to models predicting
TRG and ypT.

predicting trg and ypt Models predicting TRG and ypT typi-
cally achieved test scores of about 80% and 90% AUC, respectively. This
was more or less in accordance with reported findings from literature.
Still, some models clearly over-fit. In prediction of ypT, performance
measured in terms of the F1 score was lower, with high associated
test std values. Given the dataset and software used in this thesis,
performance estimates in prediction of response to nCRT may be most
reliably obtained using TRG as endpoint, due to a more severe class
imbalance associated with ypT.
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A P P E N D I X
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Figure A.1: Experiment 2, i.e. evaluating features derived from T2WIs and all
DWIs. Performance, measured in AUC, for combinations of feature
selector and classifiers predicting PFS in the all patient cohort.
See Table 8.2 for details on a selection of models, and Figure 8.2b
for feature selection rates.

Figure A.2: Experiment 4, i.e. evaluating shape features derived from T2WIs
and DWIs (b5). Performance, measured in AUC, for combinations
of feature selector and classifiers predicting PFS in the all patient
cohort. See Figure 8.3 for feature selection rates.
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Figure A.3: Experiment 5, i.e. evaluating texture features derived from T2WIs
and DWIs (b5). Performance, measured in AUC, for combinations
of feature selector and classifiers predicting PFS in the all patient
cohort. See Figure 8.4 for feature selection rates.

Figure A.4: Reproducibility of radiomic results: Experiment 6, repeating
experiment 1 with Dataset2. Performance, measured in AUC, for
combinations of feature selector and classifiers predicting PFS in
the all patient cohort.
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Figure A.5: Reproducibility of radiomic results: Experiment 6, repeating
experiment 3 with Dataset2. Performance, measured in AUC, for
combinations of feature selector and classifiers predicting PFS in
the all patient cohort. See Figure 10.1 for feature selection rates.

Figure A.6: Reproducibility of radiomic results: Experiment 8, repeating ex-
periment 1 with images with bin width equal to 35. Performance,
measured in AUC, for combinations of feature selector and classi-
fiers predicting PFS in the all patient cohort. See Figure 10.2a for
feature selection rates.
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Figure A.7: Reproducibility of radiomic results: Experiment 8, repeating
experiment 3 with with images with bin width equal to 35. Per-
formance, measured in AUC, for combinations of feature selector
and classifiers predicting PFS in the all patient cohort. See Figure
10.2b for feature selection rates.

Figure A.8: Reproducibility of radiomic results: Experiment 10, i.e. repeat-
ing experiment 1 with mask2 defining the ROI. Performance,
measured in AUC, for combinations of feature selector and classi-
fiers predicting PFS in the all patient cohort. See Figure 10.3a for
feature selection rates.
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Figure A.9: Reproducibility of radiomic results: Experiment 10, i.e. repeat-
ing experiment 3 with mask2 defining the ROI. Performance,
measured in AUC, for combinations of feature selector and classi-
fiers predicting PFS in the all patient cohort. See Figure 10.3b for
feature selection rates.
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Experiment 1, All patients, Selected hyper-parameters and fea-
tures

FS and SVC

CSVC = 2

Selected features:

Maximum, first-order

Autocorrelation, GLCM

FS and DT

Impurity measure: gini index

Maximum tree depth = 30

Minimum number of samples at each leaf = 10

Selected features:

Maximum, first-order

Autocorrelation, GLCM

Small dependence low gray level emphasis, GLDM

Correlation, GLCM

MCC, GLCM

FS and ET

Impurity measure: entropy

Minimum number of samples at each leaf = 11

Selected features:

Maximum, first-order

Autocorrelation, GLCM

Small dependence low gray level emphasis, GLDM

Correlation, GLCM

MCC, GLCM

Table A.1: Experiment 1, i.e. evaluating features derived from T2WIs. Selected
hyper-parameters and features for models presented in Table 8.1.
Predicting PFS in the all patients cohort.
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Experiment 2, All patients, Selected hyper-parameters and fea-
tures

FS and DT

Impurity measure: entropy

Maximum tree depth = 10

Minimum number of samples at each leaf = 9

Selected features:

IMC 2 (b0), GLCM

Median (b1), first-order

High gray level run emphasis (b5), GLRLM

Long run high gray level emphasis (b5), GLRLM

Correlation (b5), GLCM

Difference entropy (b5), GLCM

Minimum (b6), first-order

Variance (b6), first-order

Low gray level zone emphasis (b6), GLSZM

Dependence non-uniformity normalized (b6), GLDM

High gray level emphasis (b6), GLDM

Large dependence low gray level emphasis (b6), GLDM

ID (b6), GLCM

Joint average (b6), GLCM

FS and ET

Impurity measure: gini index

Minimum number of samples at each leaf = 11

Selected features:

IMC 2 (b0), GLCM

Correlation (b5), GLCM

Difference entropy (b5), GLCM

Minimum (b6), first-order

Joint average (b6), GLCM

Table A.2: Experiment 2, i.e. evaluating features derived from T2WIs and
all DWIs. Selected hyper-parameters and features for models pre-
sented in Table 8.2. Predicting PFS in the all patients cohort.
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Experiment 2, All patients, Selected hyper-parameters and fea-
tures

MI and LR

CLR = 3

Selected features:

Small area high gray level emphasis, GLSZM

Joint energy (b1), GLCM

MI and ET

Impurity measure: entropy

Minimum number of samples at a leaf = 13

Selected features:

Small area high gray level emphasis, GLSZM

Joint energy (b1), GLCM

IDMN (b2), GLCM

Table A.3: Continued: Experiment 2, i.e. evaluating features derived from
T2WIs and all DWIs. Selected hyper-parameters and features for
models presented in Table 8.2. Predicting PFS in the all patients
cohort.
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Experiment 3, All patients, Selected hyper-parameters and fea-
tures

MI and ET

Impurity measure: gini index

Minimum number of samples at each leaf = 8

Selected features:

Small area high gray level emphasis, GLSZM

Dependence non-uniformity (b5), GLDM

FS and ET

Impurity measure: entropy

Minimum number of samples at each leaf = 5

Selected features:

Gray level variance, GLRLM

Zone percentage (b5), GLSZM

Run percentage (b5), GLRLM

Short run emphasis (b5), GLRLM

Dependence non-uniformity normalized (b5), GLDM

Gray level non-uniformity (b5), GLDM

Large dependence high gray level emphasis (b5), GLDM

Contrast (b5), GLCM

Difference average (b5), GLCM

Difference variance (b5), GLCM

Inverse variance (b5), GLCM

Joint energy (b5), GLCM

MI and SVC

CSVC = 1

Selected features:

Small area high gray level emphasis, GLSZM

Dependence non-uniformity (b5), GLDM

MI and DT

Impurity measure: gini index

Max tree depth: 30

Minimum number of samples at each leaf = 7

Selected features:

Small area high gray level emphasis, GLSZM

Table A.4: Experiment 3, i.e. evaluating features derived from T2WIs and DWIs
(b5). Selected hyper-parameters and features for models presented
in Table 8.3. Predicting PFS in the all patients cohort.
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Experiment 3, All patients, Selected hyper-parameters and fea-
tures

FS and DT

Impurity measure: gini index

Max tree depth: 30

Minimum number of samples at each leaf = 14

Selected features:

Gray level variance, GLRLM

Run percentage (b5), GLRLM

Short run emphasis (b5), GLRLM

Dependence non-uniformity normalized (b5), GLDM

Gray level non-uniformity (b5), GLDM

Joint energy (b5), GLCM

FS and LR

CLR = 3

Selected features:

Gray level variance, GLRLM

Run percentage (b5), GLRLM

Short run emphasis (b5), GLRLM

Dependence non-uniformity normalized (b5), GLDM

Table A.5: Continued: Experiment 3, i.e. evaluating features derived from
T2WIs and DWIs (b5). Selected hyper-parameters and features for
models presented in Table 8.3. Predicting PFS in the all patients
cohort.
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Experiment 1, nCRT cohort, Selected hyper-parameters and fea-
tures

MI and ET

Impurity measure: entropy

Minimum number of samples at each leaf = 7

Selected features:

Skewness, first-order

Small area high gray level emphasis, GLSZM

Zone entropy, GLSZM

Zone variance, GLSZM

High gray level run emphasis, GLRLM

Autocorrelation, GLCM

MI and DT

Impurity measure: gini index

Max tree depth: 20

Minimum number of samples at each leaf = 12

Selected features:

Median, first-order

Skewness, first-order

Small area high gray level emphasis, GLSZM

Zone entropy, GLSZM

Zone variance, GLSZM

High gray level run emphasis, GLRLM

Autocorrelation, GLCM

MI and RR

αRR = 1

Selected features:

Mean, first-order

Skewness, first-order

Large area emphasis, GLSZM

Small area high gray level emphasis, GLSZM

Zone entropy, GLSZM

Zone variance, GLSZM

High gray level run emphasis, GLRLM

Autocorrelation, GLCM

Table A.6: Experiment 1, i.e. evaluating features derived from T2WIs. Selected
hyper-parameters and features for models presented in Table 8.4.
Predicting PFS in the nCRT cohort.
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Experiment 3, nCRT cohort, Selected hyper-parameters and fea-
tures

FS and ET

Impurity measure: entropy

Minimum number of samples at each leaf = 5

Selected features:

Size zone non-uniformity normalized (b5), GLSZM

Zone variance (b5), GLSZM

Dependence non-uniformity normalized (b5), GLDM

Gray level non-uniformity (b5), GLDM

Gray level variance (b5), GLDM

ID (b5), GLCM

FS and DT

Impurity measure: gini index

Max tree depth: 20

Minimum number of samples at each leaf = 5

Selected features:

Size zone non-uniformity normalized (b5), GLSZM

Gray level variance (b5), GLDM

Table A.7: Experiment 3, i.e. evaluating features derived from T2WIs and DWIs
(b5). Selected hyper-parameters and features for models presented
in Table 8.5. Predicting PFS in the nCRT cohort.
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Experiment 1, nCRT cohort, Selected hyper-parameters and fea-
tures

FS and LR

CLR = 3

Selected features:

Small area emphasis, GLSZM

Autocorrelation, GLCM

IDM, GLCM

IDMN, GLCM

ReF and SVC

CSVC = 1

n = 1

Selected features:

Flatness, shape

IMC1, GLCM

Elongation, shape

Correlation, GLCM

ReF and ET

Impurity measure: gini index

Minimum number of samples at each leaf = 7

Selected features:

Flatness, shape

IMC1, GLCM

Elongation, shape

Table A.8: Experiment 1, i.e. evaluating features derived from T2WIs. Selected
hyper-parameters and features for models presented in Table 9.1.
Predicting TRG in the nCRT cohort.
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Experiment 1, nCRT cohort, Selected hyper-parameters and fea-
tures

FS and ET

Impurity measure: gini index

Minimum number of samples at each leaf = 5

Selected features:

Small area emphasis, GLSZM

Autocorrelation, GLCM

Cluster tendency, GLCM

Difference average, GLCM

IDM, GLCM

IDMN, GLCM

MI and DT

Impurity measure: entropy

Max tree depth: 10

Minimum number of samples at each leaf = 7

Selected features:

Zone entropy, GLSZM

Contrast, NGTDM

Dependence variance, GLDM

Cluster prominence, GLCM

Cluster tendency, GLCM

IMC1, GLCM

Sum entropy, GLCM

Table A.9: Continued: Experiment 1, i.e. evaluating features derived from
T2WIs. Selected hyper-parameters and features for models pre-
sented in Table 9.1. Predicting TRG in the nCRT cohort.
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Experiment 3, nCRT cohort, Selected hyper-parameters and fea-
tures

MI and LR

CLR = 1 Selected features:

Dependence variance, GLDM

Cluster prominence, GLCM

Cluster tendency, GLCM

IMC1, GLCM

Sum entropy, GLCM

Low gray level zone emphasis (b5), GLSZM

Zone entropy (b5), GLSZM

Busyness (b5), NGTDM

ReF and LGBM

Max tree depth: 28

Minimum number of samples at each leaf = 8

Minimum number of leaves = 13

n = 1

Selected features:

Flatness, shape

Short run low gray level emphasis (b5), GLRLM

Median (b5), first-order

IMC1, GLCM

Low gray level run emphasis (b5), GLRLM

Run entropy (b5), GLRLM

Difference entropy, GLCM

Cluster prominence (b5), GLCM

MI and RR

αRR = 3

Selected features:

Dependence variance, GLDM

Cluster prominence, GLCM

Cluster tendency, GLCM

IMC1, GLCM

Sum entropy, GLCM

Low gray level zone emphasis (b5), GLSZM

Zone entropy (b5), GLSZM

Table A.10: Experiment 3, i.e. evaluating features derived from T2WIs and
DWIs (b5). Selected hyper-parameters and features for models
presented in Table 9.2. Predicting TRG in the nCRT cohort.
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Experiment 1, nCRT cohort, Selected hyper-parameters and fea-
tures

MI and ET

Impurity measure: entropy

Minimum number of samples at each leaf = 9

Selected features:

Dependence variance, GLDM

Cluster prominence, GLCM

IMC1, GLCM

Sum entropy, GLCM

Low gray level zone emphasis (b5), GLSZM

Zone entropy (b5), GLSZM

MI and DT

Impurity measure: entropy

Max tree depth: 30

Minimum number of samples at a leaf = 12

Selected features:

Dependence variance, GLDM

Cluster prominence, GLCM

Cluster tendency, GLCM

IMC1, GLCM

Sum entropy, GLCM

Low gray level zone emphasis (b5), GLSZM

Zone entropy (b5), GLSZM

Table A.11: Continued: Experiment 3, i.e. evaluating features derived from
T2WIs and DWIs (b5). Selected hyper-parameters and features for
models presented in Table 9.2. Predicting TRG in the nCRT cohort.
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Experiment 1, nCRT cohort, Selected hyper-parameters and fea-
tures

ReF and ET

Impurity measure: gini index

Minimum number of samples at each leaf = 7

n = 1

Selected features:

Sum entropy, GLCM

Size zone non-uniformity normalized, GLSZM

Low gray level zone emphasis, GLSZM

High gray level zone emphasis, GLSZM

Small area high gray level emphasis, GLSZM

Small area emphasis, GLSZM

ReF and SVC

CSVC = 2

n = 1

Selected features:

Sum entropy, GLCM

Size zone non-uniformity normalized, GLSZM

Low gray level zone emphasis, GLSZM

High gray level zone emphasis, GLSZM

Small area high gray level emphasis, GLSZM

Table A.12: Experiment 1, i.e. evaluating features derived from T2WIs. Se-
lected hyper-parameters and features for models presented in
Table 9.3. Predicting ypT in the nCRT cohort.
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Experiment 1, nCRT cohort, Selected hyper-parameters and fea-
tures

MI and DT

Impurity measure: gini index

Max tree depth: 30

Minimum number of samples at each leaf = 4

Selected features:

Low gray level zone emphasis, GLSZM

Small area low gray level emphasis, GLSZM

Sum entropy, GLCM

ReF and LGBM

Max tree depth: 18

Minimum number of samples at each leaf = 6

Minimum number of leaves = 5

n = 2

Selected features:

Sum entropy, GLCM

Low gray level zone emphasis, GLSZM

Small area high gray level emphasis, GLSZM

Table A.13: Continued: Experiment 1, i.e. evaluating features derived from
T2WIs. Selected hyper-parameters and features for models pre-
sented in Table 9.3. Predicting ypT in the nCRT cohort.
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Experiment 3, nCRT cohort, Selected hyper-parameters and fea-
tures

MI and DT

Impurity measure: entropy

Max tree depth: 30

Minimum number of samples at each leaf = 3

Selected features:

Large area emphasis, GLSZM

Low gray level zone emphasis, GLSZM

Small area low gray level emphasis, GLSZM

Cluster tendency, GLCM

Sum entropy, GLCM

Entropy (b5), first-order

Uniformity (b5), first-order

Run entropy (b5), GLRLM

MI and ET

Impurity measure: entropy

Minimum number of samples at each leaf = 10

Selected features:

Large area emphasis, GLSZM

Low gray level zone emphasis, GLSZM

Small area low gray level emphasis, GLSZM

Cluster tendency, GLCM

Sum entropy, GLCM

Entropy (b5), first-order

Uniformity (b5), first-order

Run entropy (b5), GLRLM

Table A.14: Experiment 3, i.e. evaluating features derived from T2WIs and
DWIs (b5). Selected hyper-parameters and features for models
presented in Table 9.3. Predicting ypT in the nCRT cohort.
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Experiment 3, Selected hyper-parameters and features

MI and RR

αRR = 1

Selected features:

Low gray level zone emphasis, GLSZM

Sum entropy, GLCM

Entropy (b5), first-order

FS and DT

Impurity measure: entropy

Max tree depth: 30

Minimum number of samples at each leaf = 8

Selected features:

Sum entropy, GLCM

Maximum 2D diameter slice (b5), shape

Mean absolute deviation (b5), first-order

Gray level non-uniformity (b5), GLRLM

Low gray level run emphasis (b5), GLRLM

Run entropy (b5), GLRLM

Short run high gray level emphasis (b5), GLRLM

Maximum probability (b5), GLCM

Table A.15: Continued: Experiment 3, i.e. evaluating features derived from
T2WIs and DWIs (b5). Selected hyper-parameters and features for
models presented in Table 9.3. Predicting ypT in the nCRT cohort.
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