
M
ats Jørgen Skaslien

Lister: A H
ybrid Approach for U

ser-friendly Sem
antic W

eb Inform
ation Retrieval

N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r d

at
at

ek
no

lo
gi

 o
g

in
fo

rm
at

ik
k

M
as
te
ro
pp

ga
ve

Mats Jørgen Skaslien

Lister: A Hybrid Approach for User-
friendly Semantic Web Information
Retrieval

Masteroppgave i Datateknologi
Veileder: Trond Aalberg

Juni 2020

Mats Jørgen Skaslien

Lister: A Hybrid Approach for User-
friendly Semantic Web Information
Retrieval

Masteroppgave i Datateknologi
Veileder: Trond Aalberg
Juni 2020

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for datateknologi og informatikk

Abstract

Semantic Web search engines can give access to vast amounts of structured data,
but the general public struggle when operating them. Studies in the field indicate
that poor usability may be the root issue. The overarching goal of this thesis is,
therefore, to open the semantic web to casual users by exploring the implement-
ation of a more user-friendly search engine.

By conducting a literature review, key usability challenges for Semantic Web
search engines were identified. Based on findings from the review, a hybrid search
engine using natural language query formulation and interactive query specifica-
tion was proposed. A user-driven development process was conducted to further
ensure end product usability, resulting in the Lister1 search engine. Lister was used
to examine whether such an approach could improve usability and aid users in
data exploration.

User tests were held both during and after the development process providing
qualitative data on the usability of the system. As a result, several usability issues
were uncovered and subsequently improved upon. Data from user interviews also
indicated that casual users operated Lister with ease. Lastly, 86 participants com-
pleted the System Usability Scale test, forming a quantitative measure of usability.
SUS scores show that Lister outperforms similar tools reviewed in this report in
terms of usability, as well as the overall average for web user interfaces.

The results suggest that user-driven development is a valuable tool in creating
more usable Semantic Web Search engines. Qualitative data also indicate that
users respond well to the hybrid query-approach put forth by Lister. These findings
are a step forward with regards to usability in Semantic Web search engines. Using
Lister, the general public can draw advantage of the power that the web of data
provides in a user-friendly way.

1Available online at https://folk.ntnu.no/matsjsk/

iii

https://folk.ntnu.no/matsjsk/

Sammendrag

Søkemotorer for det Semantiske Nettet kan gi tilgang til store mengder struk-
turerte data, men allmennheten sliter med å ta dem i bruk. Studier på området
indikerer at dårlig brukbarhet kan være roten av problemet. Det overordnede må-
let med denne oppgaven er derfor å åpne det Semantiske Nettet for et bredt pub-
likum ved å utforske implementasjonen av en mer brukbar søkemotor.

Viktige brukervennlighetutfordringer som søkemotorer for det Semantisk Nettet
står overfor ble identifisert ved å gjennomføre en litteraturgjennomgang. Basert
på data fra gjennomgangen ble en hybrid søkemotor som tar i bruk naturlig språk
grensesnitt og interaktiv spørringsspesifikasjon foreslått. En brukerstyrt utvikling-
sprosess ble utført for ytterligere å sikre sluttproduktets brukbarhet, noe som res-
ulterte i søkemotoren Lister 2. Lister ble brukt til å undersøke om en slik tilnærming
kunne gi forbedret brukervennlighet og hjelpe brukere i utforskning av data.

Kvalitative data om brukbarheten til systemet ble gjennom brukertester in-
nhentet både under og etter utviklingsprosessen. Som et resultat ble flere bruk-
barhetsproblemer avdekket og deretter forbedret, og data fra brukerintervjuer in-
dikerte at brukere enkelt dro nytte Lister. Til slutt fullførte 86 deltakere System Us-
ability Scale-testen og dannet et kvantitativt mål på systemets brukervennlighet.
SUS-scoren viser at Lister overgår sammenlignbare verktøy som er gjennomgått i
denne rapporten når det gjelder brukervennlighet, så vel som det totale gjennom-
snittet for nettbrukergrensesnitt.

Resultatene antyder at brukerstyrt utvikling er et verdifullt verktøy i å lage mer
brukbare søkemotorer for det Semantiske Nettet. Kvalitative data indikerer også
at brukere reagerer godt på den hybride spørringstilnærmingen Lister har frem-
met. Disse funnene er et skritt fremover med hensyn til brukbarhet i semantiske
søkemotorer, og viser at ved å bruke Lister kan allmennheten utnytte kraften som
det Semantiske Nettet gir på en brukervennlig måte.

2Tilgjengelig online på https://folk.ntnu.no/matsjsk/

v

https://folk.ntnu.no/matsjsk/

Acknowledgements

I would like to thank my supervisor, Trond Aalberg, at the Department of Com-
puter Science at NTNU, for his help. Trond provided me with countless hours of
guidance and meticulously revised this report. He was a great sparring partner
when it came to developing the ideas in this paper, and I have learned a lot from
him. I am incredibly grateful for his help, which has been invaluable for the pro-
ject.

I would also like to thank my parents, as well as Marit Johanne and Fredrik
Skatvedt for opening their homes for me during the Covid-19 pandemic. Due to
the pandemic, I cut my stay in Austria short, leaving me without a suitable working
space. Being allowed to move in and use their homes as offices helped my work
tremendously, for which I am grateful.

Finally, I would like to extend a thank you to all participants of the various
stages of user testing. Without you, this project wouldn’t have been feasible in its
current form. I was utterly overwhelmed by the quality of feedback and willing-
ness to help and participate that was displayed by complete strangers. I hope this
project can be of some use to you.

vii

Contents

Abstract . iii
Sammendrag . v
Acknowledgements . vii
Contents . ix
Figures . xi
Tables . xiii
1 Introduction . 1

1.1 Motivation . 1
1.2 Research Questions and Hypotheses . 2

1.2.1 Research Questions . 2
1.2.2 Hypotheses . 3

1.3 Method . 4
1.4 Thesis Outline . 5

2 Background . 7
2.1 What Is the Semantic Web? . 7
2.2 Information-Seeking Behaviour . 9
2.3 Semantic Web Search Engines . 10

2.3.1 Categories of Semantic Web Search Engines 10
2.4 Survey of Semantic Web Search Engines 12

2.4.1 Affective Graphs . 13
2.4.2 Ginseng . 14
2.4.3 K-Search . 15
2.4.4 NLP-Reduce . 16
2.4.5 PepeSearch . 17
2.4.6 Querix . 18
2.4.7 Semantic Crystal . 19

2.5 Usability . 20
2.5.1 The System Usability Scale . 20
2.5.2 Usability of Semantic Web Search Engines 22

2.6 Summary . 24
3 Method . 25

3.1 Research Methodology . 25
3.2 Mapping The Problem . 25
3.3 Approach . 26

ix

x M.J. Skaslien: Lister

3.4 Evaluation Methods . 28
3.4.1 User Testing . 29
3.4.2 System Usability Scale . 30

4 Implementation . 31
4.1 Operation of the Lister Search Engine 32

4.1.1 Overview . 32
4.1.2 Selecting a Class . 33
4.1.3 Data Interaction . 35

4.2 System Architecture . 41
4.2.1 Overview . 41
4.2.2 Front-End . 42
4.2.3 Back-End . 43

4.3 Class Retrieval and Ranking . 45
4.3.1 Index structure . 45
4.3.2 Class Retrieval . 46
4.3.3 Result Ranking . 49

4.4 Data Interaction . 51
4.4.1 The Data Table . 51
4.4.2 Exploiting Linked Data Topolgy 54

4.5 Chosen Technologies . 57
4.5.1 Front-End . 57
4.5.2 Back-End . 57
4.5.3 Data Processing . 58

5 Results and Discussion . 61
5.1 User Tests . 61

5.1.1 Test Population . 61
5.1.2 Results . 61
5.1.3 Feedback on the Final Prototype 64

5.2 System Usability Scale . 65
5.2.1 Test Population . 65
5.2.2 Results . 65
5.2.3 Comparison To Similar Systems 66

5.3 Discussion . 67
5.3.1 Findings of this Study . 67
5.3.2 Contributions . 68
5.3.3 Validity and Reliability of Results 69
5.3.4 Interpreting the Usability Test Scores 71

6 Conclusion . 73
6.1 Conclusion . 73
6.2 Future Work . 74

Bibliography . 75
A How To Set-Up Lister . 79
B Master‘s Agreement . 81

Figures

2.1 Freitas et al.’s diagram of the expressivity-usability spectrum, from
their work [8]. Blue dots indicate the levels of usability and ex-
pressivity an ideal interface should have. 10

2.2 The Affective Graphs interface in use. 13
2.3 The Ginseng interface in use. 14
2.4 The K-Search interface in use. 15
2.5 The NLP-Reduce interface in use. 16
2.6 The PepeSearch interface in use. 17
2.7 The Querix interface in use. 18
2.8 The Semantic Crystal interface in use. 19
2.9 The Querying Process in a QBI . 23
2.10 The Querying Process in an NLI . 23

3.1 A process map showing the operation of the proposed list-retrieval
system, where solid lines represent user actions and dashed lines
code exectuion. 26

3.2 The two main views of the Lister search engine. 27

4.1 A Sitemap of the Lister Search Engine. 32
4.2 The Lister landing page, showing a query under formulation. 34
4.3 The Lister class search result page, showing suggested classes for a

query. 34
4.4 The Lister landing page before user interaction. 36
4.5 The modal for adding or removing columns. 38
4.6 The modal for adding or removing filters. 40
4.7 A high-level architecture of the Lister system, showing user- and

internal interaction. 41
4.8 An overview of the different internal and external interactions of

the front-end. Functions and classes are marked with solid outlines. 42
4.9 An overview of the back-end, its’ endpoints and functions. 44
4.10 A query in the process of being formulated returning intermediate

results. 47
4.11 A typical query, resulting in amore diverse result set. 48
4.12 A query with no class hit, falling back to a class-of-entity search. . . 49

xi

xii M.J. Skaslien: Lister

4.13 Animated placeholder boxes indicate that the program is retrieving
information. 52

4.14 An example showing entities with several multi-valued properties,
and how grouping these can produce a more diverse result-set. . . . 53

4.15 The Add or Remove Information modal. 55
4.16 The Filter Columns modal while adding a temporal filter. 56

5.1 The distibution of scores on the System Usability Scale. n= 86. . . 66

Tables

2.1 The System Usability Scale by John Brooke et al. as used in this study. 20
2.2 The SUS score grading scale as proposed by Sauro et al.. 21
2.3 Usability tests of different SWSEs. Results marked with † are from

[1], ∗ are from [28], ◦ is from [23]. 22

4.1 Description and functionality of landing and class-search results
page elements labled in figures 4.2 and 4.3 33

4.2 Description and functionality of result page elements labled in fig-
ure 4.4. 35

4.3 Description and functionality of result page elements labled in fig-
ure 4.5. 37

4.4 Description and functionality of result page elements labled in fig-
ure 4.5. 39

5.1 Table of user test participants. 61
5.2 Some common paraphrased remarks from user-testing the first pro-

totype. 62
5.3 Some common paraphrased remarks from user-testing the second

prototype. 63
5.4 Some common paraphrased remarks from user-testing the final pro-

totype. 64
5.5 Test participants as grouped by their experience level in structured

query languages . 65
5.6 The median, mean scores, and standard deviations of usability scores

by user experience with structured languages. 66
5.7 Table of SUS Scores of surveyed tools including Lister. Tools with

more than one reported score have had their highest score included.
Lister evaluated by casual users has the highest overall SUS score,
and is therefore highlighted. 67

xiii

Chapter 1

Introduction

This chapter provides an overview of the motivation behind the project, what
methods were used, and an overview of the report structure.

1.1 Motivation

The Semantic Web is also known as the Web of Data. This data web is vast, free,
and open, but is mainly accessed through the structured query language SPARQL.
This sets a high threshold for the wider public to gain access and draw advantage
of the knowledge and information contained therein.

The structured nature of the data is also the greatest feature of the Semantic
Web. The structure allows a Semantic Web user to retrieve data based on their ex-
act need; The user can get for example a list of all Norwegian mountains between
1500 and 2000 meters, or all airports with a name beginning with ‘X’, or some-
thing more niche1 still.

Several user interfaces have been made to open the Semantic Web to casual
users. They aim to simplify access by hiding the complexities of query languages
and data fetching from the user, handling querying in the background. These in-
terfaces are however complex and poorly designed, and users struggle when oper-
ating them [1–4]. The goal of this thesis is, therefore, to build a more user-friendly
Semantic Web search engine, so that the general public may draw advantage of
the Semantic Web.

1Or general, such as retrieving all persons on Wikipedia.

1

2 M.J. Skaslien: Lister

1.2 Research Questions and Hypotheses

1.2.1 Research Questions

The overarching goal of creating an easy-to-use Semantic Web search engine was
broken down into several research questions. These questions specify the focus
areas of the project, and are accompanied by a small text describing how they
relate to the research goal.

Research Goal: Simplify the search for- and retrieval of information from data-
bases of Semantic Web data for casual users.

R.Q. 1 Can interactive techniques and full-text search help users in query
formulation?

Query formulation is the starting point of the searching process; it is therefore
crucial that the user gets a ‘smooth’ start.

R.Q. 2 Can interactive techniques help users in data exploration?

Whether through filtering, ranking, or adding or removing information, interac-
tion helps in understanding a dataset better. By integrating such features into the
search engine itself instead of relying on third-party software like Excel, the ex-
ploration of the data might be simplified.

R.Q. 3 Can data topology be exploited in result ranking?

In large databases there may be many items that are lexically similar to a query, yet
are unrelated or uninteresting for the user. It is therefore of interest to see whether
the topology of semantic data can be exploited to improve upon the initial term-
based result ranking.

R.Q. 4 Can data topology be exploited in explorative search?

Knowing the properties and relationships of a given dataset might aid the user in
understanding the context, aiding them in asking better ‘questions’ of their data.

R.Q. 5 Can user-driven development lead to more user-friendly interfaces?

The design decisions made by a developer may not align with the needs and de-
sires of the end-user. Involving potential end-users in the design and develop-
ment process might, therefore, ensure that the target audience finds the finished
product easy to use.

Chapter 1: Introduction 3

1.2.2 Hypotheses

To further focus and formalize the research questions, each one was restated into
a hypothesis. By reducing the problem-space of a research question to a testable
hypothesis, it is also easier to test the outcome of the study.

H. 1 Full-text search, continuous feedback, and iterative query specification will
ensure that query formulation is easy.

H. 2 By displaying data in a fully interactive data-table, users may explore their
data at a glance. They may also drill down by filtering, ranking, or following a
URI.

H. 3 Query result ranking can be improved by scoring results based on the de-
gree2 of the retrieved results, and pruning irrelevant entities.

H. 4 Data exploration will be simplified by exploiting data topology to fetch
relevant information about the chosen subject, and add human-readable labels to
entity URI’s3

H. 5 By performing iterative development with continuous user testing, a better
than average SUS result can be achieved.

2The degree of a given entity is the number of other entities it is linked to. For a class entity, it
is the number of members that class has.

3Unique Resource Identifiers are used to define individual entities on the Semantic Web. These
URI’s are hard for humans to read.

4 M.J. Skaslien: Lister

1.3 Method

This section provides an overview of the research and development methodology
used in this thesis. The work was structured into three phases;

The Research Phase A literature search was performed, and a review of sur-
veys on the usability of Semantic Web search engines was conducted. Several
issues regarding the usability of Semantic Web search tools were identified from
the information gathered. A novel semantic search engine was proposed to ad-
dress the usability challenges, along with a workflow and testing framework for
ensuring a usable end-result. The search engine combines natural language query
formulation with interactive table representations for semantic data.

The Development Phase The development phase implemented the specifica-
tion made in the first phase. An iterative design and development process was
completed, performing user-testing at two critical stages underway. Several us-
ability issues were therefore discovered early in the development and addressed.
The finished project was deployed online4, open and available for all interested
parties.

The Evaluation Phase Quotes, behaviour, and feedback from users were com-
piled from the user-tests. This data formed the basis for the qualitative evaluation
of the usability of the Lister search engine and was used to test the validity of the
hypotheses. The System Usability Scale test was used as a quantitative measure of
usability. Potential users were invited to test the system and rate it using the SUS
scale. A total of 86 participants completed the test, providing data for evaluating
the usability of the system. Users were also encouraged to leave comments and
feedback on their experience using Lister, which provided qualitative feedback
on the completed system. The research questions and hypotheses were answered
using the collected data, concluding the project.

4Available now at https://folk.ntnu.no/matsjsk/

https://folk.ntnu.no/matsjsk/

Chapter 1: Introduction 5

1.4 Thesis Outline

Chapter 1 - Introduction has introduced this thesis, presenting the motiv-
ation and structure of the work, and an overview of the report.

Chapter 2 - Background presents the theoretical background needed for
readers not familiar with the Semantic Web, reviews similar work, and forms the
theoretical foundation for the rest of the thesis.

Chapter 3 - Method details how the project was planned, what considera-
tions were made, how work proceeded and what methods were chosen to evaluate
the results of the project.

Chapter 4 - Development presents the reader with how the Lister search
engine is used, the high-level architecture of the system, as well as implementation
details and what technologies were chosen.

Chapter 5 - Results and Discussion presents the results gathered during
testing. These results are compared to similar projects’ results, followed by a dis-
cussion about the project and its’ results as a whole.

Chapter 6 - Conclusion concludes the thesis, summing up the work done
and the contributions made. It also outlines areas for future work.

Chapter 2

Background

2.1 What Is the Semantic Web?

The World Wide Web revolves around documents known as ‘websites’ which are
interconnected using hyperlinks, more colloquially known as links. The Semantic
Web - often referred to as the Web of Data - is an extension of that Web, made for
computers.

On the Semantic Web, there are resources instead of documents, and state-
ments instead of hyperlinks. This Web is called semantic, as the statements say
something about the resources they connect. The Semantic Web of resources and
statements is made of ‘clean’ machine-readable data. This is in stark opposition to
the traditional Web, where websites have complex structures and hard-to-parse
content made to be pleasing to the human eye.

A Semantic Web resource represents a physical or digital thing, or an abstract
concept. Resources have a location and a name, both of which are defined by
their Uniform Resource Identifier (URI). An example URI for the city Trondheim
is http://dbpedia.org/page/Trondheim. URIs might look familiar, as URLs - or
links - are a subclass of URIs. The example URI uniquely names Trondheim as
an entity, and that its’ data can be obtained by requesting the data stored at
http://(. . .).

Statements can be made about these resources, stating what we know about
the entity. We know, for example, that Trondheim lies in Norway, and we can state
this and any other fact using a triple. A triple consists of a subject, a predicate, and
an object. In this case, we can say that the subject Trondheim has the predicate
Country with the object value Norway. This method of stating facts about URIs is
part of the Resource Description Framework or RDF for short.

RDF defines no schema for storing things. It is never stated that a city such
as Trondheim must be located in a Country, even though most are. Each fact lives
on its own, linking and identifying its little part of the Semantic Web. This makes
it easy to add entities and information to the Semantic Web; There is no need to
know all the information about a thing, and no need to follow a universal schema
designed for that thing.

7

http://dbpedia.org/page/Trondheim

8 M.J. Skaslien: Lister

Getting information from the Semantic Web is, typically, done using the struc-
tured query language SPARQL. A Query is written by describing what the desired
data ‘looks like’. To retrieve a list of Norwegian cities, a query asking for things
that are cities and further stating that those things are located in Norway would
do the trick. That query, written in a simplified pseudo-SPARQL would look like
this;

SELECT ?City {
?City isA City.
?City Country Norway.

}

Question marks (?) in SPARQL indicate variables, and words without a leading
question mark are URIs or predicates1. The statement SELECT ?City says that values
of the ?City variable should be returned. Finally, to mark the end of a statement, a
period (.) is used. A knowledgable user can string together statements like these,
creating arbitrarily complex queries.

Queries are made to a triple-store, which contains the data of the Semantic
Web. Some triple-stores are topic-specific, such as MusicBrainz2 which stores large
amounts of music metadata. Others, like DBpedia3 and Wikidata4, span a num-
ber of domains, aiming to create a general knowledge-base. Wikidata is a Wiki-
media project that stores structured data from other Wikimedia projects, such as
Wikipedia, Wikivoyage, Wiktionary, and Wikisource. Much of the information on
Wikidata is automatically imported. However, as its’ sibling Wikipedia, it also has a
large community of users curating its data. Due to its active community and large
amounts of high-quality data, Wikidata is quickly emerging as a major knowledge
base on the semantic web.

A user can get precisely the information they need using SPARQL and a con-
nected triple-store. For example; A list of all airports with a name starting with ‘X’
located in China might not exist on the traditional web. Using the Semantic Web,
however, a query retrieving this or almost any other information can be written.
This allows the user to dictate what data they can get, instead of having to rely
on some third-party to have published just what they need. However, as Dadzie
et al. point out in their study, writing and executing structured language queries
is difficult for the general public [4].

In order to write a query, a user must know a suitable triple-store5, how to
query it, and the SPARQL query language. Furthermore, information retrieval
from triple-stores may be hard even with that knowledge. Since there is no schema,
most triple-stores and many classes within a triple-store use different statements
and identifiers for similar things. The user would, therefore, have to be familiar with
the data before making their query.

1Which are also defined by URIs
2https://musicbrainz.org/
3https://wiki.dbpedia.org/
4https://www.wikidata.org/wiki/Wikidata:Main_Page
5A database that hosts Semantic Web data.

https://musicbrainz.org/
https://wiki.dbpedia.org/
https://www.wikidata.org/wiki/Wikidata:Main_Page

Chapter 2: Background 9

2.2 Information-Seeking Behaviour

A great deal of research has been made on how people acquire and search for
information. Thomas D. Wilson presented in his 1997 work a general model for
‘Information Behaviour’ [5]. The model encompasses all human behaviour relat-
ing to information, but of most relevance to this work is information-seeking beha-
viours. Information seeking behaviour examines how users search, discover, and
retrieve relevant data using an information system. This applies to all information
systems, such as libraries, newspapers, or the internet. Wilson outlines four prin-
cipal modes of information seeking; Passive attention, passive search, active search,
and ongoing search. Wilson describes Active Search as modelling how individuals
actively seek out new information to satisfy some information need.

Peter Pirolli & Stuart Card elaborate on how active search is performed in
their 1999 work. They propose that human strategies for search and information
retrieval can be modelled as a foraging behaviour [6]. Optimal foraging theory
models how animals search for food, with an aim for maximizing food intake per
unit of time. It describes how an animal will keep grazing on a patch of food
until it is depleted, or it becomes more profitable to go to one with a higher yield.
Between patches the animal relies on their senses, guiding it to a new patch of
food.

Pirolli & Card propose information patches as the information science relat-
ives of berry-patches [6]. In terms of information science, exploitation of a patch
means to be informed by the data presented. An information patch may be en-
riched through activities like filtering, which increases the information density
of the patch. Once all the information in a patch has been incorporated by the
gatherer, they move on. If the information need has not yet been satisfied, the
forager will follow an information scent in an attempt to find the next information
patch.

Scent in terms of information science consists of ‘imperfect information at in-
termediate locations’, which the forager may use to determine which path to take
in an information system. In a library, this may be the signs telling visitors what
categories of books are in a given self. On the internet, this might be titles, de-
scriptions, or icons hinting that relevant content might exist in that direction. This
scent is what helps information seekers navigate, without which they would per-
form a random walk until a scent is picked up [6]. Information scent is, therefore,
an essential instrument in guiding foragers to relevant sources of information.

Information scent is, however, of little use if the information source is inac-
cessible. Access is a fundamental requirement for information retrieval and may
be blocked or inhibited in a number of ways [5]. The complexities of SPARQL are
an inhibiting factors for access to the Semantic Web [4]. This threshold is hinder-
ing the mainstream from drawing advantage of the vast and detailed data the
Semantic Web has to offer, creating a necessity for Semantic Web search engines
[3, 4, 7].

10 M.J. Skaslien: Lister

2.3 Semantic Web Search Engines

Semantic Web Search Engines (SWSE) aim to simplify information retrieval on
the Semantic Web. Users interact with these search engines through a graphical
interface, and the search engines handle querying on their behalf.

Freitas et al. state that there is a trade-off being made between usability and
expressivity in Semantic Web search engines [8]. Expressivity is a measure of how
much control the user has over a query, or to what degree the user can specify what
they want to retrieve. Usability is a measure of how user-friendly an interface is.
As expressivity increases, usability tends to decrease. To illustrate this, Freitas et
al. created a diagram of the expressivity-usability spectrum which can be seen in
figure 2.1.

Pure SPARQL exists at the extreme expressive end of the spectrum, as it gives
the user full control over their query, but is hard to use [4]. Natural language
search as used by the Google search engine exists at the other extreme as the
most usable, but least expressive interface.

Many Semantic Web search engines fall somewhere in the middle of this spec-
trum. This can in many cases be attributed to the functionality - or category - of
the interface [8].

2.3.1 Categories of Semantic Web Search Engines

Semantic Web Search Engines are in this paper broadly divided in two categories;
Query Building Interfaces (QBI), and Natural Language Interfaces (NLI). The two
categories are separated by how a query is formed. Users of QBIs form queries
using a step-by-step approach, gradually creating the full query. Queries in NLIs
are on the other hand made by writing a query in plain english6.

Figure 2.1: Freitas et al.’s diagram of the expressivity-usability spectrum, from
their work [8]. Blue dots indicate the levels of usability and expressivity an ideal
interface should have.

6Or another supported language

Chapter 2: Background 11

Natural Language Interfaces

Natural Language Interfaces (NLIs) allows the user to formulate queries with their
everyday language. Mainstream search engines like Bing, Google, and Yahoo! all
accept keyword- and full sentence searches through a simple text field. Many
internet-users are familiar with this form of search interface, as searching is an
integral part of the World Wide Web. The success and simplicity of these inter-
faces make them especially attractive to apply to the Semantic Web. NLIs are here
grouped into two subcategories: Keyword- and natural language parsing search
engines.

Keyword search engines accept or extract keywords from a query which is
matched with related entities, in this context in a semantic-triple store [9, 10].
Match-scores are typically based on best lexical match, being the entity with the
most similar string representation. Score is expressed as a continuous variable,
determining how good a match it is. Some keyword-based search engines also at-
tempt disambiguation, which determines whether a search for "House" is looking
for the television series or a building. Disambiguating approaches may use a dis-
crete matching system, determining whether an entity is in or out of the desired
result set. Entities above a threshold score in continuous cases or ‘in’ in discrete
cases, are returned to the user. Keyword-based approaches are, therefore, trans-
parent and relatively simple.

Parsing NLIs attempt to formalize what a natural language input means, and
use that semantic information to perform the search [11, 12]. This meaning can
be extracted using several methods, such as grammatical rules or neural networks.
The underlying semantics can then be translated into a query in a formal query
language like SPARQL. This process of translation gives users the expressivity of
a formal language, with the familiarity of their native tongue. How a query was
interpreted and selection criterea set can however be complex, or in some neural
cases impossible to tell. Neural approaches do however show great promise by
being more flexible than traditional rule-based systems, returning more accurate
result sets [13].

Query Building Interfaces

Query Building Interfaces can be loosely defined as interfaces guiding the user
into creating a valid query. QBIs are divided into three subcategories. Graphical/
Visual query builders that employ graphic elements to build queries or guide the
users [14–16]. Form-based approaches where users fill out a form which can be
static or dynamically generated [17, 18]. Or, faceted search approaches, commonly
used in online stores to navigate between facets or categories of products [19, 20].

12 M.J. Skaslien: Lister

Graphical interfaces rely on some manner of visualization to simplify the query-
ing process. Interfaces like Affective Graphs [21] and Semantic Crystal [1] provide
a graph-based visual query language, detailed in 2.4.1 and 2.4.7 respectively.
These interactive graphs give a visual representation of the triple-patterns in the
data sets. Searching is often done by constructing graphs with the same structure
as that which the user is seeking. Since the query-graph is a direct visual repres-
entation of RDF, conversion to SPARQL is straight-forward.

Faceted interfaces present linked data by grouping data into categories based
on the data hierarchy. In K-Search [22], the user chooses categories iteratively,
gradually specifying the query. K-Search is detailed in 2.4. This is an approach
widely employed in other structured information retrieval systems, such as e-
commerce platforms [17]. By allowing the user to build their query by pointing
and clicking, the user maintains an overview over where in the process they are,
and what choices are available. Assuming the user has some knowledge of where
the desired information can be found, navigating to it is as easy as following dir-
ections.

Form-based interfaces help users query linked data by providing a form to fill
out. The fields of the form may be labelled and provide some context as to what
is supposed to be filled in. Approaches using these interfaces often have dynamic
forms that allow the user to start with a simple query, and gradually expand into
a more complex one by including more relations and restrictions. Noteworthy
examples are PepeSearch [23] and Corese [18]. PepeSearch is detailed in 2.4.5.
Form-based interfaces provide a high level of guidance to the user, as the inform-
ation required to pose a query is immediately visible.

2.4 Survey of Semantic Web Search Engines

This section presents a brief survey of notable Semantic Web search engines be-
longing to different categories. They are especially relevant to this study, as they
have all been evaluated using the system usability scale, detailed in 2.5.1. Con-
tributions, research and development methods, and system evaluation has been
summarized to better relate these systems to the one presented in this report.

Esther Kaufmann and Abraham Bernstein were involved in creating the Gin-
seng (2.4.2), NLP-Reduce (2.4.4), Querix (2.4.6), and Semantic Crystal (2.4.7)
interfaces [1]. The reason for including so many interfaces from Kaufmann &
Bernstein was for their varied interface paradigms and use of the System Usabil-
ity Scale.

Chapter 2: Background 13

2.4.1 Affective Graphs

Affective Graphs is a query-building interface utilizing graph visualizations [21].
The tools’ unique selling points is the point-and-click graph building interface and
its consistent and well thought out aesthetic. A screenshot of the tool in use is
shown in figure 2.2.

Contributions The main contributions made by Mazumdar et al. [21] are two-
fold; First, a list of design principles for general linked data visualization, and
Node-Link (graph-based) representations. Second, the Affective Graphs interface
following the principles above.

Research and Development Methods A literature review was conducted from
which Mazumdar et al. synthesized a list of design principles. These design prin-
ciples were used as a guideline for the development of the Affective Graphs tool.
Affective Graphs was developed in an iterative fashion where user feedback led
to several re-designs.

Evaluation The final version of Affective graphs was evaluated in comparison to
ten other interfaces and research prototypes. The interfaces were scored on how
well they followed the design principles above, in addition to traditional metrics
like the SUS [24] and user interviews. There were twenty participating users,
comprised of ten laypeople and ten semantic web experts.

Figure 2.2: The Affective Graphs interface in use.

14 M.J. Skaslien: Lister

2.4.2 Ginseng

Ginseng, or ‘Guided Input Natural language Search Engine’, is a parsing-based
natural language parser [25]. Ginsengs main feature is its restrictive, but guided,
natural language search bar.

Contributions Ginseng has no built-in grammar, instead creating one from the
currently loaded triple-store. This dynamic vocabulary makes Ginseng highly port-
able. To help users formulate queries in the restricted natural language, a predict-
ive autocomplete dropdown menu appears while typing. The dropdown menu is
visible in the screenshot of the tool in figure 2.3.

Research and Development Methods No research or development methodo-
logy was outlined by Bernstein et al. in [25].

Evaluation Ginseng was evaluated by automatically running 880 natural lan-
guage queries from a geographical knowledge base. The performance measures
chosen in this test was precision and recall. Numbers on how many queries ran
out-of-the-box, how many worked without alterations, and how many that could
not be formulated at all were also recorded. In the later publication by Kaufmann
et al. [1], the system was evaluated using the SUS [24], and other usability related
metrics such as time spent on query formulation.

Figure 2.3: The Ginseng interface in use.

Chapter 2: Background 15

2.4.3 K-Search

K-Search is a form-based approach [22]. Its most unique feature is the combina-
tion of a free-text keyword search with structured semantic search. A screenshot
of the interface is presented in figure 2.4.

Contributions The main contribution of Bhagdev et al. [22] is the development
of their hybrid search technique. K-Search combines traditional information re-
trieval and semantic search approaches, retrieving results both based on document
content and structured data. This gives more consistent performance in ontologies
with highly heterogeneous data.

Research and Development Methods No research or development methodo-
logy was outlined by Bhagdev et al. in [22].

Evaluation K-Search was evaluated on both performance and usability meas-
ures. Precision and recall were used as a performance measure, where 21 pre-
defined queries were tested on a proprietary triple-store. The usability tests, com-
prised of a questionnaire and an interview, commented on efficiency, effectiveness,
and user satisfaction. The questions of the questionnaire were not disclosed. The
usability tests were conducted using 32 ‘professional users’ with relevant domain
knowledge [22].

Figure 2.4: The K-Search interface in use.

16 M.J. Skaslien: Lister

2.4.4 NLP-Reduce

NLP-Reduce is a parsing natural language interface [10]. It has a reduced set of
NLP operators with a focus on portability and robustness to deficient input. The
interface is presented in figure 2.5.

Contributions Kaufmann et al. present the NLP-Reduce interface as their main
contribution. The tool is referred to as a ‘reduced’ NLP approach, as it only per-
forms query expansion and stemming. Using the tokens returned through expan-
sion and stemming, NLP-Reduce maps query terms to properties and entities in
the underlying triple-store. This techinque is reportedly robust, maps queries well
where triple-store labels are close to the natural language input.

Research and Development Methods No research or development methodo-
logy was outlined by Kaufmann et al. in [10].

Evaluation The tool was evaluated on performance and in a later study, usabil-
ity as well. Precision and recall were recorded on two Mooney natural language
ontologies. In the later publication by Kaufmann et al. [1], the system was eval-
uated using the SUS, and other usability related metrics such as time spent on
query formulation.

Figure 2.5: The NLP-Reduce interface in use.

Chapter 2: Background 17

2.4.5 PepeSearch

PepeSearch is a form-based query builder [23]. The interface was developed with
a focus on providing a usable and portable solution. A screenshot of the interface
is presented in figure 2.6.

Contributions With PepeSearch, Vega-Gorgojo et al. seeks to enable mainstream
users to query the semantic web. Their contribution is the PepeSearch tool, which
maps RDF class properties to visual elements in a form. Thus, the users can at all
times see the underlying data structure. This, in turn, makes the users more aware
of what questions they can ask their data. The tool is also made to be completely
portable, meaning that it can be used with any given SPARQL endpoint.

Research and Development Methods No research or development methodo-
logy was outlined by Vega-Gorgojo et al. in [23].

Evaluation The interface was measured on both performance and usability in
the study. Performance was measured by the F-measure, the harmonic mean of
precision and recall. Usability was tested with 15 participants using the System
Usability Scale.

Figure 2.6: The PepeSearch interface in use.

18 M.J. Skaslien: Lister

2.4.6 Querix

Querix is a parsing natural language interface [11]. It solves ambiguous queries
through question answering. A screenshot of the tool in use can be found in figure
2.7.

Contributions The main contribution by Kaufmann et al. with their tool Querix
is the use of question answering to solve ambiguities. Querix features an unres-
tricted natural language input field. However, natural language is hard to parse
and often ambiguous. To solve the classic NLP issues, Querix uses a system of
question-answering dialogue boxes. After a query has been posed, Querix will ask
the user to specify what they meant by their query. This resolves ambiguities and
helps parse the intent of a given query.

Research and Development Methods No research or development methodo-
logy was outlined by Kaufmann et al. in [11].

Evaluation The tool was evaluated on performance and in a later study, usability
as well. Precision and recall were measured using the 2001 Mooney natural lan-
guage geographical knowledge base. In the later publication by Kaufmann et al.
[1], the system was evaluated using the SUS, and other usability related metrics
such as time spent on query formulation.

Figure 2.7: The Querix interface in use.

Chapter 2: Background 19

2.4.7 Semantic Crystal

Semantic Crystal is a graph-based query builder [1]. A graphical point-and-click
interface was created to abstract the formal SPARQL. This interface is shown in
the screenshot in figure 2.8

Contributions With the Semantic Crystal interface, Kaufmann et al. set out to
support most of the expressivity of SPARQL while making it more usable for non-
expert users. The main contribution is, therefore, their graphical query language,
which allows users to point-and-click their way to a complete SPARQL query.

Research and Development Methods No research or development methodo-
logy was outlined by Kaufmann et al. in [1].

Evaluation The tool was evaluated on its usability. Kaufmann et al. [1] evaluate
the system using the SUS, along with metrics like time needed to formulate a
query, and comments on the design by test participants.

Figure 2.8: The Semantic Crystal interface in use.

20 M.J. Skaslien: Lister

2.5 Usability

2.5.1 The System Usability Scale

The System Usability Scale - often referred to as the SUS - is a numerical measure
of how user-friendly a system is. John Brooke (1996) and others developed it to
provide a simple, standardized form for scoring a systems usability [24]. Though
its’ author refers to it as "‘Quick and Dirty’", Bangor et al. report in their study that
the scale captures the perceived usability score of a system very well [26].

The scale is a ten-question form with five responses for each question, ranging
from ‘Strongly Disagree’ to ‘Strongly Agree’7. The form, which can be seen in table
2.1, questions the user on the apparent simplicity or complexity of the system,
whether it was enjoyable, and how easy or hard it was to use.

Strongly
disagree

Strongly
agree

1 2 3 4 5
1. I think that I would like to use this sys-

tem frequently.
○ ○ ○ ○ ○

2. I found the system unnecessarily com-
plex.

○ ○ ○ ○ ○

3. I thought the system was easy to use. ○ ○ ○ ○ ○
4. I think that I would need the support

of a technical person to be able to use
this system.

○ ○ ○ ○ ○

5. I found the various functions in this
system were well integrated.

○ ○ ○ ○ ○

6. I thought there was too much incon-
sistency in this system.

○ ○ ○ ○ ○

7. I would imagine that most people
would learn to use this system very
quickly.

○ ○ ○ ○ ○

8. I found the system very awk-
ward/cumbersome to use.

○ ○ ○ ○ ○

9. I felt very confident using the system. ○ ○ ○ ○ ○
10. I needed to learn a lot of things before

I could get going with this system.
○ ○ ○ ○ ○

Table 2.1: The System Usability Scale by John Brooke et al. as used in this study.

7Also called a Likert scale.

Chapter 2: Background 21

Odd-numbered questions are asked in a positive tone, and even-numbered
questions are posed in a negative tone. To account for this, even and odd questions
are scored differently. The SUS score calculation as defined in [24] is as follows;

SUS yields a single number representing a composite measure of the
overall usability of thesystem being studied. Note that scores for indi-
vidual items are not meaningful on their own.

To calculate the SUS score, first sum the score contributions from
each item. Each item’s score contribution will range from 0 to 4. For
items 1,3,5,7,and 9 the score contribution is the scale position minus 1.
For items 2,4,6,8 and 10, the contribution is 5 minus the scale position
Multiply the sum of the scores by 2.5 to obtain the overall value of SU.

The ‘raw’ SUS score is meant as a relative measure of usability. Sauro et al. in
their quantitative study on usability scores, defines a grading curve for SUS scores
which can be used as an absolute score [27]. This grading curve can be seen in
table 2.2.

SUS Score Range Grade Percentile Range
84.1 - 100 A+ 96-100
80.8 - 84 A 90-95
78.9 - 80.7 A- 85-89
77.2 - 77.1 B+ 80-84
74.1 - 77.1 B 70-79
72.6 - 74 B- 65-69
71.1 - 72.5 C+ 60-64
65 - 71 C 41-59
62.7 - 64.9 C- 35-40
51.7 - 62.6 D 15-34
0 - 51.7 F 0-14

Table 2.2: The SUS score grading scale as proposed by Sauro et al..

Bangor et al. found the mean SUS score for Web user interfaces to be 68.05
with a sample size of 1180 tests [26]. This allows the scale to be used to assess
whether a system has greater or lesser usability than an average system, which is
commonly used as a benchmark. This metric is therefore of particular relevance
in this project, as the aim is to create a more usable Semantic Web interface.

This scale was used to score the systems evaluated in 2.4, making a comparison
between them and Lister straight-forward. Furthermore, the mean SUS score for
Web interfaces is well suited as a benchmark score for evaluating hypothesis 5.

22 M.J. Skaslien: Lister

2.5.2 Usability of Semantic Web Search Engines

According to the report by Berners-Lee et al. [3] and the survey by Dadzie et al.
[4], the interfaces currently available are not usable enough for the casual end-
user. Hachey et al. further report that only a few interfaces are ever tested using
usability tests [7].

The general lack of usability test results makes it hard to gauge progress in
the field and where future efforts should be placed. However, the seven interfaces
reviewed in this paper have all been tested with the SUS. The test results gathered
in table 2.3 substantiate the claims made by Berners-Lee and Dadzie, as only two
out of seven interfaces tested above the SUS average.

All tests are done with users that are deemed to be non-experts. Of note is the
fact that all tests except PepeSearch and Querix scored below the average usability
score of 68.05. All the interfaces examined in the qualitative study in section 2.4
reported their own usability test scores, which can be seen in table 2.3. Ginseng
(2.4.2), NLP-Reduce (2.4.4), and Semantic Crystal (2.4.7) were also tested by
Elbedweihy et al.[28].

Tool System Usability Score Tool type
Affective Graphs 55.00∗ QBI (Graph)
Ginseng 53.7∗, 55.10† NLI
K-Search 41.25∗ QBI (Form)
NLP-Reduce 43.75∗, 56.72† NLI
PepeSearch 75.30◦ QBI (Form)
Querix 75.73† NLI
Semantic Crystal 61.25∗, 36.09† QBI (Graph)

Table 2.3: Usability tests of different SWSEs. Results marked with † are from [1],
∗ are from [28], ◦ is from [23].

Usability of Query Building Interfaces

QBIs split the query-process into several steps, guiding the user on the path to a
complete query. A graphical representation of the querying process of a QBI can
be seen in figure 2.9. While these steps guide the user, they can also be a burden
on the usability of the interface. This was the case for several of the interfaces
reviewed by Kaufmann et al. in their report [1].

Chapter 2: Background 23

The time required to pose a query generally goes up as the number of steps
required to build a query increases[1]. Should the query then fail, or retrieve
wrong results, the process has to start all over again. Five of ten questions in the
SUS are about the perceived simplicity of an interface. It therefore stands to reason
that a cumbersome querying and query-reformulation process could lead to poor
usability scores.

Figure 2.9: The Querying Process in a QBI

The layouts of QBIs are often closely tied to the data they provide access to.
Faceted search engines show classes as a hierarchy, with tabs or flowchart-like
diagrams. Graphical interfaces map shapes and connections to classes and rela-
tions. Form-based approaches adapt to the underlying data by simply displaying
it; Either as columns in a table, items in a drop-down menu, or data-fields. Thus,
in large heterogeneous ontologies, the QBIs tend to become overly complicated
or overpopulated by visual elements.

The close connection between the number of visual elements in the interfaces
and the underlying data makes QBIs scale poorly. The close relation between the
data and the interface may also result in lower usability due to leaky abstractions.
This means that the underlying triple-structure in some way shines through to the
high-level interface. Leaky abstractions and poor scalability in SWSEs have been
documented through usability tests and qualitative studies [1, 28, 29].

Finally, queries generally take longer to formulate in QBIs and are reported
to be more tedious [1, 28]. This might be due to the number of steps required to
build a given query.

Usability of Natural Language Interfaces

The querying process of a Natural Language Interface is more straightforward
than that of the QBIs. A query is typed in the users natural language and submit-
ted. Though some systems use query-answering dialogues to disambiguate, the
querying process is generally as presented in figure 2.10.

Figure 2.10: The Querying Process in an NLI

24 M.J. Skaslien: Lister

Though NLIs often are reported to be the most usable by casual users [1],
the usability test results in table 2.3 do not seem to support this notion. The low
usability scores in NLIs are likely not related to their interfaces, which typically
are simpler than QBIs. It is the way NLIs work and their performance that leads
to poor usability, the most notable example being the habitability problem.

The habitability problem occurs when users do not know whether the interface
can understand their query, as they do not know what queries the system can parse
[1, 8, 30]. Understanding whether a query was formulated wrong, or if the parser
misunderstood it is a hard challenge. The goal of parsing NLIs is to be able to
parse any query, but this has not yet been accomplished [31]. This may lead to
confusion when users find that some queries are correctly parsed, while others
fail silently.

2.6 Summary

The Background chapter has presented an overview of what the Semantic Web
is, how people seek information, and an overview over and examples of search
engines. It has presented results from reported usability tests of these interfaces
and a short survey of SWSE’s representing various user-interface paradigms. The
key insights into the current state of- and issues in SWSE’s are presented below.

The current state of Semantic Web Search Engines There are many dif-
ferent approaches to creating a usable interface to the Semantic Web. On one end
of the expressivity-usability scale [fig 2.1] we find natural language interfaces,
on the other end, pure SPARQL, and form-based approaches in the middle. The
field of research is active, and it appears that knowledge of how to best approach
Semantic Web search engines has not yet crystallized. Very few of the interfaces
utilize usability measures like the System Usability Scale, or user driven develop-
ment. Surveys of the field report that both usability and performance is currently
too low for a general public audience, and that standard benchmarks are lacking
[3, 4, 7].

Usability Issues in Semantic Web Search Engines Through a qualitative
study of literature and projects regarding SWSEs, issues regarding usability were
discovered. Poor interface usability was central in several studies. Specific obstacles
mentioned were, for example; The habitability problem, interfaces being overly
complicated, opaque in their functionality, or requiring some sort of background
knowledge. These issues make it harder for a general audience to effectively use
the interfaces, thereby limiting public access to the Semantic Web.

Chapter 3

Method

This chapter presents why a development project was undertaken, how the usab-
ility problem in semantic web search engines was mapped, the approach taken to
solve the problem, and the methods used to evaluate the solution.

3.1 Research Methodology

To examine the research goals and test the hypotheses put forth in 1.2, a devel-
opment project was undertaken. All aspects of the hypotheses were incorporated
into the resulting system, which was tested in the testing phase. As the proposed
novel system was explicitly designed to test the hypotheses, validity was ensured.

The system can be configured to work with any SPARQL endpoint. However, to
provide a basis for testing, Wikidata was chosen. Wikidata has an active developer
and data editor community, and a large amount of data spanning a multitude of
domains. The generally high-quality and diverse domain data made the triple-
store well suited for supporting a wide range of user queries, which was desirable
for user testing.

3.2 Mapping The Problem

Analyzing a corpus of over 350 million SPARQL queries, Angela Bonifati, Wim
Martens, and Thomas Timm (2019) found that almost 92% of all queries are
SELECT queries [32]. The decision was therefore made to support SELECT queries
exclusively, as this greatly reduces the complexity of the interface.

A further focus was made on promoting data exploration through list-retrieval
rather than focusing on single entity retrieval. List retrieval is defined here as the
process of retrieving all member instances of a class. The search is therefore entity-
based, as a search for the class-entity ‘Mountain’ retrieves entities like ‘Mount
Everest’ and ‘Galdhøpiggen’. Semantic data-stores are well suited for this category
of information retrieval, as hierarchies and class membership are explicitly defined
as part of the triple-structure of the data.

25

26 M.J. Skaslien: Lister

To maximize both the usability and expressivity of the solution, a hybrid system
was proposed; Natural language keyword search was implemented for discovering
classes, and form-based approaches are used for exploring and interacting with
the retrieved class-instance dataset. This combines the usability and familiarity of
natural language search, with the high expressivity of form-based query builders.

The interface was developed with the information foraging model as a guiding
principle. A user confronted with an empty result set will lose their information
scent. With no data, it is hard to know whether the query or the system itself was
at fault, and no clues are given on which path to take next. An interface displaying
too much information might, on the other hand, overwhelm the user, losing any
information scent in the crowd. These issues were addressed by exploiting the
topology of linked data, ensuring that no blank results can appear and that a high
level of accuracy is maintained in the class search results.

Information patches were also considered. Users should be able to interact
with their data without query reformulation, thereby enriching their information
patch. Less querying and more exploiting also increases the rate of information
gain, a central goal of information foragers [6].

A diagram of how interaction with such a system might take place was made.
The intention was to outline how a user would interact with the hybrid system
while keeping the path from start to the desired result as short as possible. It was
hypothesized that by minimizing the number of steps from the user started inter-
action to them having their desired results would improve usability, as observed in
natural language interfaces 2.5.2. The resulting process-diagram (fig 3.1) served
as a basis for further development.

Figure 3.1: A process map showing the operation of the proposed list-retrieval
system, where solid lines represent user actions and dashed lines code exectuion.

3.3 Approach

With the research questions, hypotheses, and process map in mind, the Lister sys-
tem, as shown in figure 3.2 was developed. This section details how the system
sets out to answer the research questions and create a foundation for testing the
hypotheses. More details on the search engine’s architecture and functionality are
presented in chapter 4.

Chapter 3: Method 27

(a) The Lister landing page,
showing a query under for-
mulation. (b) The Lister result page, showing the entities of a class.

Figure 3.2: The two main views of the Lister search engine.

R.Q./H. 1: Interactive Techniques for Query Formulation By using a famil-
iar search-bar concept for querying, users immediately know how to start their
search. As the user types their query, predictive class suggestions appear below,
guiding the user to the right query formulation while providing an information
scent. This Class-Search process is crucial for guiding the user to the right class,
and subsequently, the right data. The class search is implemented using a double
index system (4.3) that maps queries to a corresponding class, either directly or
by finding an entity in the query from which a class can be extracted.

R.Q./H. 2: Interactive Techniques for Data Exploration The data table is a
ubiquitous representation format for data. It is also an ideal format for displaying,
interacting with, and exploring semantic web data. Each row is made to represent
one entity, with columns representing the properties of that entity. By using the
table format, users who are entirely unfamiliar with the semantic web can still
make sense of and work with the data. Entity URIs are formatted as links, using
their human-readable titles as link texts. The user may add or remove columns,
rank, filter, or download their data. These interactive elements enriches the in-
formation patch the data represents. They further enable users to play with and
get an overview of the data presented in a user-friendly way, while still facilitating
exploration through linked data.

28 M.J. Skaslien: Lister

R.Q./H. 3: Exploiting Data Topology for Result Ranking By pruning all classes
without member entities, it is ensured that no query returns an empty result set
and providing an information scent for the user. As the data-source is highly ho-
mogeneous, many unrelated classes and entities have a high textual similarity.
When searching for classes, results are therefore ranked based on several factors;
lexical similarity, number of member entities, properties, and inbound site links.
This ‘importance’ score is similar to what search engines do1 on the traditional
web, keeping the results most likely to be relevant at the top of the result list.

R.Q./H. 4: Exploiting Data Topology for Explorative Search When a user is
unfamiliar with a database or unsure of what their desired class is named, they
might try searching for an entity of that class. By exploiting the class member-
ship topology, the classes of entities related to their query are returned. When
exploring a class, users might not be sure of what properties can be added to the
retrieved entities. This is solved by pre-fetching all available properties of a subset
of the class entities. When the results have loaded, the four most popular proper-
ties have already been added, providing an overview of the class. When adding
more information, the user is presented with properties that are guaranteed to be
relevant, ordered by popularity2. This makes data exploration effortless, avoiding
guesswork as to what properties are relevant.

R.Q./H. 5: Iterative Development By following an iterative development pro-
cess, usability issues are caught early, and user feedback can be incorporated into
the system. This is crucial for discovering how users model the system, how they
interact as opposed to how they should interact, and in verifying that fixes from
the last iteration improved the system. How the iterative development was done
in practice is further detailed in 3.4.1.

3.4 Evaluation Methods

Qualitative and quantitative methods were used to test the system in regards to
the hypotheses put forth in 1.2. The qualitative data gathering took place in two
phases during the development of the project 3.4.1, and as part of the quantitative
testing at the end of the project 3.4.2. The qualitative methods were chosen to
get more detailed user feedback through user interviews and on-site testing. No
dataset for testing class-search was found, and traditional measures like precision
and recall were not the focus of this project. Retrieval performance of the class-
search functionality was therefore evaluated with the qualitative feedback from
user-tests.

1Using PageRank was considered. However, the transfer of importance from classes of a high
degree to those of low was considered undesirable in list-retrieval.

2Defined as the percentage of entities of that class having that property.

Chapter 3: Method 29

User testing, as part of an iterative development process, is a way to gather
qualitative data about the system in development and how the user experience
changes over time. Detailed feedback from how the user interacts and responds to
the system can be gathered in the interview-like setting. This allows the developer
to test hypotheses early, and to steer the project in the right direction.

The System Usability Scale was chosen as the project’s quantitative part. The
scale was chosen both for its widespread use in usability testing, and to be able to
compare the usability of this project to the ones reviewed in 2.4.

3.4.1 User Testing

The user-tests in this report were modelled after those described by Jake Knapp,
John Zeratsky, and Braden Kowitz in their 2016 book ‘Sprint’ [33]. A user-test is
a setting where the user tries to solve several tasks using the system or product
that is to be tested. The user is supervised by a facilitator that notes how the user
reacts to- and interacts with the system. This test was designed to examine the
validity of hypotheses 1—4.

Data was collected as the project progressed by performing two separate rounds
of user testing. The first iteration was conducted in March using the prototype,
where five users participated. Incorporating the feedback and creating the next
version of the system took longer than expected due to the coronavirus pandemic
forcing the author to relocate. The second iteration of user testing was conducted
during the first half of May, with the subsequent development being concluded by
the end of May.

Test Set-Up Performing a user test requires a test subject, a prototype to test,
and a test facilitator. The user test should take place in a quiet and secluded envir-
onment, free of distractions. The test is set up so that the facilitator can see both
how the test subject interacts with the prototype and how the subject reacts during
the test. Notes can be taken during the test or later by recording the session.

The test is performed by the test subject solving tasks using the prototype.
The facilitator should not interfere or provide feedback unless the user gets stuck.
The facilitator should also take care to inform the user that it is the system that
is being tested, not the user, and that honest feedback is essential. Participants
were also informed that their test result would be anonymized, and no personal
information saved.

To gather as many test subjects as possible, and in light of the public health
authorities advice to minimize social contact at the time of writing, online testing
was conducted. Remote testing was done using an online conferencing tool of the
test subjects choosing, with the user completing the test while sharing their screen.
The test consisted of the user testing the two main aspects of the prototype; The
class-search and the data interaction. This was done through two tasks consisting
of first finding the relevant class and subsequently exploring the data it contained.

30 M.J. Skaslien: Lister

3.4.2 System Usability Scale

The usability scale tests were performed unsupervised online from the 31st of
March until the 5th of June. During that period, a total of 86 people completed
the tests successfully. This test was designed to examine the validity of hypotheses
1—4 qualitatively, and to quantitatively measure the SUS score to test hypothesis
5.

Test Set-Up As with the user tests described in 3.4.1, the usability tests were
also held online. Several steps were taken to ensure the ethicality of the test; The
data were anonymously collected through Google forms, requiring no personal
information about the subject. It was explicitly stated that the test was made to
evaluate the system and not the user. Finally, the test was voluntary, ensuring that
all test participants consented to their participation in the study.

The tools reviewed in 2.4 were evaluated with casual users. A screening ques-
tion was therefore formulated to ensure that Lister was tested on the same basis.
Before starting the test, users needed to indicate their skill in using structured
languages like SPARQL or SQL for accessing databases.

The usability test consisted of two parts; First, a task sheet with problems to
solve using the project software Lister. Each task was on a separate sheet, and
users were encouraged to go to the next page if they felt they had solved the
task, or gotten stuck. After each task was completed, the user was shown detailed
instructions on how the task could have been solved. This was to make sure that
the user would able to finish the test and reliably rate the system.

After the tasks, the user was asked to fill in the System Usability Scale, as
presented in 2.5.1. Further data gathering was done after the SUS test as not
to bias the results. The users were subsequently asked whether they successfully
finished the test and whether they found any bugs or had any comments or feed-
back on the system. This final part was voluntary and aimed at getting qualitative
feedback on the performance and design of the final prototype of Lister.

Chapter 4

Implementation

This chapter details how users may operate the Lister search engine, how the code
base is structured, functional details of the implementation, and what technolo-
gies were chosen.

31

32 M.J. Skaslien: Lister

4.1 Operation of the Lister Search Engine

4.1.1 Overview

The system consists of three different ‘views’; The home page, the class-search
results page, and the list-search result page. These views aid the user in the two
main functions of the Lister interface, selecting the right class (4.1.2), and explor-
ing and exploiting their data (4.1.3). An overview of how they connect to each
other can be seen in the sitemap diagram 4.1.

Figure 4.1: A Sitemap of the Lister Search Engine.

Chapter 4: Implementation 33

4.1.2 Selecting a Class

Upon navigating to the Lister home page1 users are presented with a search bar
and a carousel showing example queries. Users receive suggested classes in a res-
ult box below the search bar as they type their query. By selecting one of the
suggestions or one of the example queries, they are taken to their results on the
list-result page. By executing their query, the user is taken to the class-search result
page.

The class-search results page displays the class suggestions in a larger format.
It includes picture representations of the different classes. Its functionality is oth-
erwise the same as the landing page, and selecting a class here takes the user to
the list-result page.

The elements of the landing and class-search result page and their functions
are as follows, each item in 4.1 corresponding to a label in figure 4.2 and 4.3:

Label Element Function

A Search Bar Accepts user input and queries for corresponding
classes.

B Example Carousel Rotates between example queries, which lead to
their respective result sites when clicked.

C Search Result A result for the user query in (A), which leads to
its’ results page when clicked.

D Result List A list containing up to ten relevant result items.

Table 4.1: Description and functionality of landing and class-search results page
elements labled in figures 4.2 and 4.3

1At the time of writing that is https://folk.ntnu.no/matsjsk/

https://folk.ntnu.no/matsjsk/

34 M.J. Skaslien: Lister

Figure 4.2: The Lister landing page, showing a query under formulation.

Figure 4.3: The Lister class search result page, showing suggested classes for a
query.

Chapter 4: Implementation 35

4.1.3 Data Interaction

Once the user has selected their desired class, they are redirected to the list-search
results page. This page displays the member entities of a class in a table format. It
is automatically populated with the properties most used with entities of that class,
as detailed in 4.4.2. The results are retrieved from a SPARQL endpoint connected
to an online triple-store.

The user may interact with their data using a number of functions; Browsing
pages, adding or removing information2, filters, ranking- or downloading their
data, or exploring linked URI’s. They may also extend their search to include sub-
classes and visit URI’s belonging to entities and classes.

Results page

The elements of the results page and their functions are as follows, each item in
4.2 corresponding to a label in figure 4.4:

Label Element Function

A Logotype Links back to the landing page

B Class URI Links to the URI of the selected class

C Add/ Remove In-
formation

Button to open add/remove Information modal.

D Filter Columns Button to open filter columns modal.

E Export to .csv Button download data in a .csv format.

F Search Options Options to; Extend search to subclasses, expand/-
group duplicate rows, and paginate data

G Table Header Contains column names and buttons for sorting,
showing the most common columns by default.

H Table Rows A row of data representing an entity and its rela-
tions in a triple-store.

I Expandable Row Groups multi-valued columns to a single entity, de-
tailed in 4.4.1.

J Pagination Page counter and last and next page buttons, con-
trolling data offset.

Table 4.2: Description and functionality of result page elements labled in figure
4.4.

2This wording was chosen over ‘Properties’ by request in user-testing.

36 M.J. Skaslien: Lister

Figure 4.4: The Lister landing page before user interaction.

Chapter 4: Implementation 37

Adding and Removing Information

The user can add or remove information related to their listed entities, done by
pressing the "Add/Remove Information" button. This function affects the proper-
ties applied to the members of the selected class. Information, hereafter referred
to as properties, are removed by clicking on one of the property chips at the top
of the modal (4.5 A), and added by clicking on a property item (4.5 D) in the
column menu (4.5 E). The properties are ordered by decreasing frequency, where
the frequency is the number of times that property appears with an instance of
the selected class. The user may browse the property menu (4.5 E) or search for
a property using the search bar (4.5 C). The modal may be closed by clicking the
close button (4.5 B) or clicking outside the modal.

The elements of the add/ remove information and their functions are as fol-
lows, each item in 4.3 corresponding to a label in figure 4.5:

Label Element Function

A Column Chips Shows currently selected columns. Clicking a chip
removes the column.

B Close Button Closes the modal.

C Search Bar Search bar for the column menu.

D Column item Shows a title, frequency, and description of a
column. Clicking the column item selects the
column.

E Column menu Lists the available column items by descending or-
der of frequency.

Table 4.3: Description and functionality of result page elements labled in figure
4.5.

38 M.J. Skaslien: Lister

Figure 4.5: The modal for adding or removing columns.

Chapter 4: Implementation 39

Filtering Columns

The result rows may be filtered by the values of their respective properties. The
user does this by clicking the "Add/ Remove Filters" button and specifying a filter.
Filters are specified by first selecting the property3 that the filter should be applied
to using the "Select Column" (4.5 D) select menu. Selecting a column populates
the "Select Filter" select menu (4.5 E) with available filters appropriate to the
data type of the selected column. If the user has chosen a filter that requires a
value, the "Set filter value" field (4.5 F) will accept user input. The input element
changes depending on the datatype, making it easier for the user to provide the
appropriate input. After a filter value has been set, the user may add the filter by
clicking the add filter button (4.5 G) or pushing the enter key.

Filters that have been added can be seen in the applied filters table (4.5 B).
They may be removed by clicking the "X" button (4.5 C) corresponding to the row
of the filter that the user wishes to remove.

Label Element Function

A Close Button Closes the modal.

B Applied Filters
Table

Lists currently applied filters.

C Remove Filter But-
ton

Removes the filter on the same row.

D Column Select Opens a select menu populated with the currently
selected columns.

E Filter Select Opens a select menu populated with filters corres-
ponding to the datatype of the selected column.

F Value Input Accepts user input specifying the value of a filter.

G Add Filter Button Applies the configured filter.

Table 4.4: Description and functionality of result page elements labled in figure
4.5.

3Referred to here as ‘Column’

40 M.J. Skaslien: Lister

Figure 4.6: The modal for adding or removing filters.

Chapter 4: Implementation 41

4.2 System Architecture

4.2.1 Overview

The Lister system consists of a client-side web application that communicates with
a server-side index and a SPARQL endpoint, as shown in figure 4.7. The front-end
handles user interaction and data requests to the back end and the configured
SPARQL endpoint. The Back-end has several endpoints facilitating full-text search
for classes and entities, in addition to convenience functions such as entity-ID
lookup and class of entity retrieval.

Figure 4.7: A high-level architecture of the Lister system, showing user- and in-
ternal interaction.

42 M.J. Skaslien: Lister

4.2.2 Front-End

The front end consists of a landing page4, a result page, a request handler, and
various utility functions. As the user interacts with the landing- and result-pages,
the state of the web app changes and new data is fetched from the back-end or an
external SPARQL endpoint. An overview of how the different pages, classes, and
functions fit together can be seen in figure 4.8.

Figure 4.8: An overview of the different internal and external interactions of the
front-end. Functions and classes are marked with solid outlines.

Landing Page

The landing page consists of a header, a small tagline with a roulette of example
queries, and a search bar and its’ corresponding results. It communicates only with
the request handler, which fetches classes in response to a user query. Results from
queries and the example queries link to their respective results pages.

4The class-search results page is functionally similar to the landing page, and is therefore omitted
from the following figures and texts.

Chapter 4: Implementation 43

Results Page

The results page consists of a back-linking logo, a data-table, and several functions
to facilitate interaction with the data-table. The results page fetches new data
as the user changes the state of the table. State changes by adding or removing
columns, filters, or navigating to the next page of results. New data coming in
triggers a re-render of the table view if necessary.

Request Handling

The request handler collects the various functions needed for getting, cleaning,
and responding to the network requests required for class-search and entity re-
trieval. All network requests are cached for the duration of the user session, saving
network and computing resources, and allowing the user to view previous results
quickly.

The class-search gets its’ data from the ElasticSearch cluster5. Any request is
first sent to the class-index, looking for a matching class. Should none be found, a
fallback query is made to the ClassesOfEntity. This function retrieves and returns
the classes of the top ten entities related to a query. This ensures that a wide range
of queries gets good results.

In order to retrieve data for the result page, a SPARQL-query must be built and
sent to an endpoint. The query is built based on the internal state of the data table.
This SPARQL query follows standard syntax but uses WikiData specific property
types. To query an endpoint other than WikiData, some reconfiguring would be
necessary.

4.2.3 Back-End

The back-end consists of a Node.JS API and two ElasticSearch Indices, a dia-
gram of which is presented in figure 4.9. The Node API facilitates communiation
between the front-end and ElasticSearch cluster.

The primary purpose for the Node API is to protect the ElasticSearch cluster
from malicious code injection and DOS attacks. However, it also provides conveni-
ent functions like cluster- and back-end health checks6 and a service to resolve
entity-search into relevant classes.

The ElasticSearch cluster contains two indices; One for all class-entities, and
one for all entities. Management of the cluster is done either with the console on
the server or through the Kibana dashboard.

5This service was first implemented in pure SPARQL to keep the Lister Web App as lightweight
and portable as possible, but proved impractical due to long processing times.

6Not indicated on the back-end diagram

44 M.J. Skaslien: Lister

Figure 4.9: An overview of the back-end, its’ endpoints and functions.

Chapter 4: Implementation 45

4.3 Class Retrieval and Ranking

To facilitate a fast and accurate full-text search for class retrieval, a doubly in-
dexed ElasticSearch cluster was set up. The cluster splits the triple store data into
Class and Entity indices, both aimed at retrieving classes. As there are orders of
magnitude more entities than there are classes, separating the two improves both
the precision and recall of a user class-query. Class-queries also are made quicker,
due it consisting of a small subset of the total number of entities.

In cases where there are no results for a given class-query, the entity index is
used as a fallback. This fallback approach works by first retrieving a ranked list
of relevant entities, extracting their parent class ids, and subsequently the class
entities themselves. If a user searches for an entity, they should then be presented
with a list of classes with the class of the most relevant entity at the top.

4.3.1 Index structure

Both the class and entity indices share the same document7 fields. All are indexed
by their label, aliases and desc(ription), forming a good foundation for full-
text retrieval. Labels and Aliases are also indexed by their edge n-grams, enabling
search-as-you-type functionality. N-grams are created at index-time and added as
an extra field in the document. Each document also has an ID field that allows
for direct lookups. This ID is set as an entities unique Wikidata ID, which make
parent-class lookups fast.

In addition to the textual fields, the class- and entity- documents have numer-
ical fields used in their ranking. Class documents have a weight field, which is a
normalized score in the range [1, 2] based on the degree of the class. Entity doc-
uments have the parents, num_props num_links fields. parents contains the IDs
of the classes the entity belongs to. num_props denotes the number of property-
statements applied to an entity. num_links is the number of sitelinks an entity
has, which is the number of wiki-pages (-pedia, -media, -books, etc.) linking to it.
Some entities may have Wikipedia pages in many languages, in which case they
are all counted.

Class Index At the core of Lister is the class retrieval system. Without it, finding
relevant entities would require a text search in the triple-store itself, leaving it
to the user to discern class entities from the rest. As full-text search is currently
not viable using SPARQL, the choice was made to build an index for class-entity
search. The class index is hosted on an ElasticSearch cluster which the front-end
can query indirectly.

7An entry in an ElasticSearch index is referred to as a document.

46 M.J. Skaslien: Lister

The class index is comprised of all class-entities which other entities are mem-
bers of. It was populated by exploiting the linked data topology of the ‘instance
of’ property, pruning all entities without an inbound instance of relationship.
To store all of WikiData’s ≈ 100, 000 classes with member entities, ≈60MB of disk
space is required. Half of the classes in the class index have three or fewer mem-
ber entities. Many low degree classes are also of poor quality8. Classes with less
than five member entities were, therefore, pruned to improve the overall ‘quality’
of the class set. This leaves an index with ≈ 17500 entities, requiring ≈11MB of
disk space. This makes the index cheap to store with a low memory and storage
footprint, and fast to search as the number of class entities is relatively low.

By only indexing classes with member entities, a query will always9 return res-
ults to the user. Empty pages throw users off their information scent, and creates
uncertainty regarding why the result set was empty. Ensuring that the user will
never receive an empty result set is therefore a crucial usability aspect.

Entity Index The second part of the Double Index system consists of the entity
index. The entity index is three orders of magnitude larger, requiring ≈15GB of
storage space, and consisting of over 51 million entities. The primary function of
this index is to provide a fallback search in the cases where the class index has no
relevant results. This is done by returning the ids of entities parent classes, which
in turn are displayed to the user. Secondary to the class lookup function is the
pure entity search, which provides entity matching for the filter function outlined
in 4.4.2.

4.3.2 Class Retrieval

Queries are made continuously to the backend as the user types their query, provid-
ing a search-as-you-type functionality. The received query string is first tokenized
using the Unicode Text segmentation algorithm10, and most punctuation symbols
are removed. The tokens are subsequently lowercased, and stemmed using the
Lucene ‘EnglishPossessiveFilter’11, removing trailing ‘’s’.

Documents are first retrieved on whether they contain one or more of the
specific tokens of a query. A query can match either the label, aliases12, or desc
fields. A query in progress for ‘university’ like ‘univer’ would likely not match any
document, or worse, match an unrelated document. The label and aliases fields
are therefore indexed on their edge n-grams as well, providing the prefix matching
neccesary for the search-as-you-type feature.

8Extremely specific, a duplicate of an existing class, acts of vandalism, or test-classes.
9Unless the internet connection is lost or the server fails during querying.

10http://unicode.org/reports/tr29/
11https://lucene.apache.org/core/8_5_1/analyzers-common/org/apache/lucene/

analysis/en/EnglishPossessiveFilter.html
12aliases contains a list of alternate labels.

http://unicode.org/reports/tr29/
https://lucene.apache.org/core/8_5_1/analyzers-common/org/apache/lucene/analysis/en/EnglishPossessiveFilter.html
https://lucene.apache.org/core/8_5_1/analyzers-common/org/apache/lucene/analysis/en/EnglishPossessiveFilter.html

Chapter 4: Implementation 47

Each token is executed as an independent query, the scores of which are summed
up for each document. Furthermore, if a query term is in the ElasticSearch dic-
tionary and has one or more synonyms, the query is expanded to include those.
The matching documents are finally ranked according to the functions detailed in
4.3.3.

Example Queries

To demonstrate how the Double Index system works in practice, three use-cases
are presented below. These demonstrate the terse, verbose, and entity-based use
of the Lister search engine and how the index handles these. In all three cases, the
user is interested in retrieving a list of mountains. All cases begin with the user
typing their query into the front-end search bar which, via the back end, queries
the double index.

Terse Queries The user has understood that the Lister search engine is based
around list retrieval of classes. They, therefore, start typing in their desired class
to list, "Mountain". Queries are made as the user types and return the indexes best
estimate based on the query edge n-gram. Being a high degree class, mountain is
the top search result after the user has typed in ‘mou’. The user sees their desired
class and subsequently selects it, completing the query process. A diagram of this
idealized query process is shown in figure 4.10.

Figure 4.10: A query in the process of being formulated returning intermediate
results.

48 M.J. Skaslien: Lister

Verbose Queries The user has an idea that the Lister search engine retrieves lists
of entities, but prefers to search using sentences than keywords. This user types
"Give me a list of all mountains" before reviewing their results. The query is
broken down into keywords which are all treated as possible edge n-grams and
complete search terms. As ‘mountains’ maps to a class with a high weight, its’
result is returned at the top of the result list.

Figure 4.11: A typical query, resulting in amore diverse result set.

Chapter 4: Implementation 49

Entity-based Queries The user searches for an entity instead of a class. Instead
of being presented with an empty result list, Lister tries to map their entity-query
to a relevant class. Should the class index return no results, the ClassesOfEntity

endpoint is queried as a fallback. This function retrieves and returns the classes
of the top ten entities related to a query. These are presented to the user as shown
in figure 4.12.

Figure 4.12: A query with no class hit, falling back to a class-of-entity search.

4.3.3 Result Ranking

Scoring Mechanism ElasticSearch uses the Okapi BM25 ranking function for
calculating the base score of a document. This ranking may be used as-is or built
upon using ElasticSearch scoring functions. On the Lister cluster, the base score
calculated independently for multiple fields of a document. In this instance the
label and label_ngram, alias and alias_ngram, and desc fields. When a multi-
field query is submitted, ElasticSearch by default scores each document with the
best_fields function. best_fields takes the maximum score of a documents
field, returning that as the score for the document as a whole. Fields can have
multipliers applied, increasing or decreasing their scores. Both the class and entity
indices have their label and alias field scores multiplied by 3 and 1.5 respect-
ively, ensuring that title hits are weighed heavier than the description or ngram
hits. This is hereafter referred to as the multi-field ranking function.

50 M.J. Skaslien: Lister

Class Ranking The ranking function S(c) was defined as detailed in function
4.1 to improve upon the default class-search result ranking by ElasticSearch.

There are a large number of classes, and several of them have a high lexical
similarity13. In order to distinguish lexically similar classes and improve the mean
reciprocal rank, scores are weighted based on importance. This importance score
is a combination of the weight of class c, W (c), the number of properties a class
has np(c), and the number of pages that link to that class nl(c). This results in the
score S(c);

S(c) = ES(c)×W (c)× log((np(c) + 1)× 2nl (c)) (4.1)

The function ES(c) is the score calculated by the weighted ElasticSearch multi-
field scoring function.

The weight W (c) is based on the degree of a class. The degree cannot be used
directly, as the largest degrees are in the millions, while the median is 3. To reflect
that the difference between a degree of 2 or 3 million entities is small, but the
difference between 1 and 100 large, the logarithm of each degree is taken. These
scores are then min-max scaled between 1 and 2, making it a positive factor in
the scoring equation S(c).

The number of properties and site links of a class are used as heuristics for
importance. Site link count was used as the most significant factor of importance,
making classes with more inbound website links higher scoring. The number of
properties a class has is also accounted for, making ‘detailed’ classes more import-
ant. However, classes exist that has a high number of properties with a likely low
relevance to a user query14. The number of links is therefore valued significantly
more than the number of properties, though properties also boost scores.

Entity Ranking To improve the default ranking of entities ES(e), the function
S(e) was defined. S(e) was constructed such that given a list of entities with the
same lexical similarity to a query, ES(e); they should first be ordered by the number
of site links, then the number of properties. This is achieved by scaling the scores
with the function detailed in equation 4.2, which is computed at search-time.

S(e) = ES(e)×
q

(np(e) + 1)× (nl(e) + 1) (4.2)

The function ES(c) is the score calculated by the weighted ElasticSearch multi-
field scoring function. This score is thereafter scaled by a function of the number
of properties and site links an instance has.

13Title, label, or description that is similar in terms of their content
14Speculation based on these classes generally having very few member instances (< 10), and

belonging to a very specific field.

Chapter 4: Implementation 51

4.4 Data Interaction

The data table has a number of features aiding the user in interacting with and
exploring their data. Several steps have been taken to maintain visibility, legibility,
and accessibility. These are highlighted in 4.4.1. By exploiting data topology func-
tions like adding and removing information and adding ‘native SPARQL’ filters is
possible. These are highlighted in 4.4.2.

4.4.1 The Data Table

The following is a non-comprehensive list of the various features of the data table.
These, and other features, ensure that the user can easily and painlessly view and
interact with their data.

Legibility Visual clutter is kept at a minimum by removing all row- and column
line delimiters, and minimizing the use of colours. All columns share the same
width, and all rows the same height. Classic zebra-striping is eschewed in fa-
vour of highlighting rows on mouseover, ensuring that reading data row-wise is
easy. Column-, row-, and cell-padding and margins follow the Material Design15

guidelines for maintaining legibility. Numerical and temporal columns are right-
aligned, and temporal columns all follow the dd.mm.yyyy format. These features
make numerical and temporal data easy to compare at a glance. Finally, each
column header features an order-by button. This button allows the user to order
the table data by any column desired, based on the data type of said column. The
button reflects the table ordering by changing its’ icon corresponding to whether
the column is ordered ascending, descending, or unordered.

Sticky Headers Scrolling may be required to take in all the content on a wide
or long data table, which in turn moves the entity-column or table headers out
of view. Losing the context of what entity or column the user is currently viewing
can make parsing information from the table harder. This problem is solved by
sticking the row-header to the top of the page, keeping it visible as the user scrolls
down. The entity column on the far left also sticks so that users can see which
entities belong to which properties on wide tables.

Placeholders After selecting a class, the user is presented with the results page.
Lister executes a SPARQL-query to an endpoint in the background, retrieving rel-
evant triples. While retrieving, animated placeholder (fig 4.13) boxes indicate to
the user that their data is on its way. Retrieval-time varies based on the total num-
ber of entities belonging to the selected class. For large classes, placeholders are
therefore a necessary clue to the user that the system is functioning as intended.

15https://material.io/components/data-tables

https://material.io/components/data-tables

52 M.J. Skaslien: Lister

Figure 4.13: Animated placeholder boxes indicate that the program is retrieving
information.

URIs URIs are at the heart of the Semantic Web and are a central component
in an RDF triple store. The Lister system facilitates data exploration by including
URIs where they are available, displaying them as standard web-links. By allow-
ing the user to follow links to their respective sites, they might discover more
information about the selected class or retrieved entities. This can also help the
user disambiguate their selected class, should their results look different than ex-
pected.

Pagination Many classes have thousands of member entities, with some having
millions. Retrieving large numbers of triples will take a toll on client computer
memory, bandwidth, and retrieval time. Results sets are therefore paginated by
default, with a default limit set at 10 items. Clicking the next- or previous button
increments or decrements an offset applied to the result set. Counting the total
number of items in a result set is a relatively fast operation, typically taking less
than 30 seconds even for millions of items. This makes it possible to indicate to the
user how large the result set is, while still only displaying a fraction of it. Having
the ground truth total number of queries also allows for a page-counter, showing
the user where in the result set they are.

Chapter 4: Implementation 53

Auto-Grouping Many entities have more than one row in a result set. This is due
to an entity having more than one value for a given property, all combinations
of which being equally true. An example of this can be seen in figure 4.14 The
number of rows representing an entity is, therefore, the product of the number of
values said entity has per property. An equation detailing this is provided in 4.4.

Let C be the set of all properties selected in a table, and c the index of a
property of that set. pc(e) is then set of values the entity e has for property number
pc as shown in equation 4.3. The number of rows of that entity, r(e), is then the
product of the cardinalitites of e for all properties pc .

pc(e) = {v1(e), v2(e), . . . , vn(e)} (4.3)

r(e) =
|C |
∏

c=1

|pc(e)| (4.4)

These apparent duplicates clutter the result set, not letting the user see the
actual diversity of retrieved entities. A group-by operator was therefore added,
and activated by default. An arrow symbol to the left of a column indicates to a
user that a row is expandable. Upon clicking said row, all values of it are displayed,
after which one value may be selected for display by clicking on it. This allows the
user to both dig deep into specific entities, but also to see that the result consists
of several other entities as well.

(a) Multiple statements for the same film,
one for each combination, with the option
to select one.

(b) The same result set, with one value
for Kick-Ass having been selected.

Figure 4.14: An example showing entities with several multi-valued properties,
and how grouping these can produce a more diverse result-set.

54 M.J. Skaslien: Lister

Downloading Data In addition to exploring data online, users can download
their data. Lister collects and the data with the desired columns, group selections,
and filters. What the user sees is what they get. The data is formatted as a comma
separated values (csv) file, which can be painlessly imported into mainstream
spreadsheet applications and is a standard open format for data-science applica-
tions. Example use cases for downloaded data include combining the Lister data
with a local source, integrating with a presentation tool, or for use in a data-based
project.

Responsive Design Modern web agents are more than full-sized browser win-
dows on desktop computers, and according to statcounter16, the most common
screen resolution online is 360x640 pixels. In order to support smaller screens
and browser windows, responsive design has been implemented. Responsiveness
means that the content scales to fit the viewport of the user web browser, and
ensures a functional design for screens of all sizes. Ease of use and accessibility
concerns for touch devices has also been addressed by using semantically tagged
input elements. These inputs use the browsers own input functions, which are op-
timized for input type (text, time, numerical) and I/O devices such as the mouse
or touch display.

4.4.2 Exploiting Linked Data Topolgy

Adding and Removing Properties When exploring new data, users might not
know what properties are relevant to their selected class. Properties that might
seem relevant may not be, and properties thought to be irrelevant might be widely
used. Finding the right properties is, therefore, a matter of trial and error, which
may be time-consuming on large result sets. This issue is solved by pre-fetching
the properties relevant to the selected class.

The most common properties are found using the query detailed in the list-
ing below. ${var} denotes a variable field, supplied by the frontend. The query
gets entities of a class, which it then groups and counts the number of properties
of, returning a ranked list of the most popular properties. This ensures that all
properties are relevant for members of the selected class.

SELECT ?uri ?name ?desc (COUNT(distinct ?p) as ?count) {
{
select ?p {
?p wdt:P31 wd:${entity}.

} limit ${limit}
}
?p ?a ?val.
?uri wikibase:directClaim ?a .
?uri rdfs:label ?name. filter(lang(?name) = "en").
?uri schema:description ?desc. filter(lang(?desc) = "en").

} group by ?uri ?name ?desc order by DESC(?count)

16https://gs.statcounter.com/screen-resolution-stats retrieved 16.05.20

https://gs.statcounter.com/screen-resolution-stats

Chapter 4: Implementation 55

To give users an immediate feel for the class they selected, and an information
scent, the four most common properties are already added when the initial results
are displayed. This query should resolve quickly, so the user is not left waiting
longer than necessary. Also, since the most popular properties should be applied
to most entities, this only counts the properties of 20 entities.

After the initial count, a larger query is made. This gathers and counts the
properties for the first thousand entities of a class. The properties are stored in
memory and can be added using the ‘Add/ Remove Information’ button. This
opens the modal shown in figure 4.15, displaying the available properties along
with their frequency.

The large query is made in the background, blocking the ‘Add/ Remove In-
formation’ button in progress. In cases where the number of entities is less than
this, all properties are retrieved. In other cases, there is a risk of some relevant
properties not being included. It is assumed here that 1000 entities are a repres-
entative sample, however, and therefore assumed that properties not appearing
in that subset are likely irrelevant.

With these convenient functions, data exploration is made more accessible by
removing ‘dead-end properties’ and ranking relevant ones by frequency. The user
may also get a better idea of the members of a class by which ‘company’ it keeps,
determined by the most common properties that are automatically added.

Figure 4.15: The Add or Remove Information modal.

56 M.J. Skaslien: Lister

Filtering Data If a user has a specific information need beyond just adding prop-
erties, filtering comes into play. This allows the user to perform standard filtering
tasks, depending on the data type of the column they have selected. The dialogue
shows a list of currently applied filters at the top, with a menu for adding filters at
the bottom. Filters are built stepwise by first selecting a column, then a filter, then
a value for that filter. An example filter dialogue is shown in figure 4.16. A compre-
hensive list of the available filters can be seen below. All except the URI matching
filter applies standard SPARQL filter statements to the background query.

• URI: Matches (Graph matching on URI), Starts With, Is Not
• String: Matches (String equals), Starts With, Is Not
• Numerical: Larger Than, Smaller Than, Is Not, Equals
• Temporal: Before, After
• All: Remove missing values

Figure 4.16: The Filter Columns modal while adding a temporal filter.

Chapter 4: Implementation 57

4.5 Chosen Technologies

4.5.1 Front-End

When choosing front end technology, several factors were considered. The applic-
ation is meant to be highly portable and able to scale to a large number of users.
To achieve this, a web-app architecture was chosen to place most, if not all, of
the code execution client-side. There are numerous languages and frameworks in
which such a system could be implemented, out of which React.js was chosen. The
React frameworks were selected for its familiarity, popularity, and large package
ecosystem.

React.js

React.js17 is a JavaScript library for creating web applications. It is a code-first
approach to web development where JavaScript is written to "serve" HTML. This
is done by writing code that provides the Document Object Model (DOM) with
JavaScript XML, which specifies the HTML to be rendered. React maintains a Vir-
tual DOM in-memory that monitors any changes to be made to the DOM. In the
event of a change, only the altered element will be updated in the actual DOM.
This makes re-rendering only the changed components on the web-page possible
with no extra effort from the developer.

create-react-app Create-react-app is an installer script made for simplifying the
set-up process when starting a new React project. In a chosen directory it will
set up configuration files, add all necessary dependencies, and sets up scripts for
starting the project locally and building it. CRA was used for set-up in this project
to simplify starting a new project.

4.5.2 Back-End

Node.js

Node.js18 is a JavaScript runtime environment that allows developers to use JavaS-
cript outside of a web browser. This means that practically the same programming
language can be used both front- and back-end. Libraries that work with JavaS-
cript are also compatible with Node.js. Endpoints over HTTP can be set up using
native methods, or using a framework like Express.js19 as was used in this project.

ElasticSearch

Setting up the back-end query API required a simple text search engine with the
ability to tweak search and ranking parameters and fast processing times. Elast-

17https://reactjs.org/
18https://nodejs.org/
19https://expressjs.com/

https://reactjs.org/
https://nodejs.org/
https://expressjs.com/

58 M.J. Skaslien: Lister

icSearch20 is a Lucene-based, NoSQL, schema-free document store with a focus
on fast retrieval of data. The search service provides JSON results over HTTP by
a RESTful API, making it easy to integrate with web services. The API provides
the user with a full set of functionalities, from index creation and specification,
querying, and admin tasks.

Kibana

Kibana21 is a dashboard for managing ElasticSearch clusters. The dashboard can
be used to visualize and query data in the ElasticSearch indices, set up and manage
user privileges, and handling logging and metrics tasks. It runs as a local web
service, accessible with a web browser.

4.5.3 Data Processing

In order to set up the ElasticSearch indices detailed in 4.3.3, some data-processing
was necessary. For this task, Python 3 was chosen. Python is widely used in data-
processing and science contexts, and through packages like Pandas22 and Jupyter
Notebook23 data exploration is simplified.

All data used was sourced from Wikidata. Wikidata has, in addition to host-
ing SPARQL endpoints for data retrieval, made their entire database available for
download24. The data dump comes in a variety of formats, of which the JSON
dump was chosen for being particularly easy to load and modify using the stand-
ard python package json.

Jupyter Notebook

Jupyter Notebook is an interactive web-based environment in which Python code
can be executed iteratively. It runs on a locally hosted web server, which the de-
veloper interacts with through a web-browser of choice. Jupyter is based around
Notebooks, which consist of blocks of code and markup that are executed in a
stepwise manner. Variables are stored until the notebook is restarted, or the vari-
able is deleted or re-assigned. This makes data exploration simple, as there is no
need to re-run a long processing pipeline in order to solve an issue with a single
step. It is also an excellent environment for one-off tasks - usually of the Extract
Transform Load variety. As Jupyter allows for both Python and Markdown code
blocks, creating self-documenting code and stepwise instructions is easy.

20https://www.elastic.co/
21https://www.elastic.co/kibana
22https://pandas.pydata.org/
23https://jupyter.org/
24https://www.wikidata.org/wiki/Wikidata:Database_download

https://www.elastic.co/
https://www.elastic.co/kibana
https://pandas.pydata.org/
https://jupyter.org/
https://www.wikidata.org/wiki/Wikidata:Database_download

Chapter 4: Implementation 59

DASK

Pandas is a widely used package for data exploration and transformation through
its’ DataFrame structure. DataFrames and the data loaded into them are kept en-
tirely in-memory, making them fast but also limiting their size to available RAM.
DASK25 is a Python package which enables, among others, Pandas DataFrame-
like structures while keeping the data on-disk. DASK provides lazy execution of
code and operations on subsets of data, making it excellent both for ETL opera-
tions and fast exploratory analysis. Due to the size of the Wikidata data dumps -
around 55Gb gzipped and 1100Gb unzipped - DASK was an ideal candidate. The
DASK Bag and DataFrame API’s were therefore extensively used to process the
data, preparing it for loading into the ElasticSearch indices.

25https://dask.org/

https://dask.org/

Chapter 5

Results and Discussion

5.1 User Tests

5.1.1 Test Population

Subjects for the user test were chosen based on their availability and relevance as
a potential end-user. Subjects were recruited from the authors’ friends, colleagues
in academia, and journalists from the research magazine Apollon1. An overview
of all test subjects can be seen in table 5.1.

Test Number Subject Number Relevance to the Project

1

1 Professor, Computer Science
2 Computer Science Student
3 UI/UX Designer
4 Journalist
5 Journalist

2

6 Decision Maker
7 Computer Science Student
8 Journalist
9 Professor, Computer Science
10 Programmer

Table 5.1: Table of user test participants.

5.1.2 Results

First Iteration

The results of the first round of user-testing highlighted many issues with the
original prototype. An overview of positive and negative remarks can be seen in
table 5.2.

1https://www.apollon.uio.no/

61

https://www.apollon.uio.no/

62 M.J. Skaslien: Lister

Positive Remarks: Negative Remarks
+ Clean design - It is hard to find the correct class in the result list
+ Intuitive search interface - The wording used does not make sense to me

- I’m not sure if the program is loading or has stopped working
- "Enter" keypress selects class instead of initiating search
- A lot of bugs

Table 5.2: Some common paraphrased remarks from user-testing the first proto-
type.

Several test users reported problems with using the search bar to find relevant
classes. These users either selected a class with no member entities or got so many
irrelevant results that it was hard to pick out the right one. Users also intuitively
searched as if they were using a regular search engine, using sentence structures
like ‘Give me all (...)’ or ‘List of all (...)’. Some users also queried for entities of the
class itself, such as querying for ‘NTNU’ for finding the class ‘University’. It was
therefore made apparent that the class search functionality had to be robust. The
class search furthermore had to provide a fitting mapping for queries that are not
directly related to the desired class but can be found in the ‘neighbourhood’.

The table interface also had problems, most notably when it came to wording.
"Columns" were used to denote properties applying to "entities", which are the
members of the class the user selected. The users appeared to struggle to build
a mental model as to how exactly columns related to entities, and what exactly
entities were.

Finally, there were substantial performance issues. Some were rooted in the
haphazard data-structures of the initial prototype, but most to the retrieval of
data from the triple-store endpoint. The tool retrieved almost all information from
the endpoint, which included some very taxing queries on what properties were
available, what values the different properties could have, and a too-large limit for
retrieving instances altogether. Among others, the following improvements were
made after the first iteration:

• A double index was built, providing fast and accurate class search & retrieval
• All ‘empty’ classes were pruned
• Loading animations indicating that the page is fetching data
• Improved wording
• Extensive rework of the codebase to eliminate bugs
• Automatic data-type detection, so that filters can be customized to specific

data types.

Chapter 5: Results and Discussion 63

Second Iteration

The results of the second round of user testing validated that the prototype was
‘headed in the right direction’. An overview of positive and negative remarks can
be seen in table 5.3.

Positive Remarks: Negative Remarks

+ The Class Search paradigm is easy to grasp after the first search - It is hard to know what to search for initially
+ Clean Design - The search "limit" is confusing; Total number of items or restriction?
+ Feels Powerful - I’m not sure if the program is loading or has stopped working

- The wording used does not make sense to me

Table 5.3: Some common paraphrased remarks from user-testing the second pro-
totype.

By improving the class search, the mental models of users seemed to align
better with the class-first-approach of the search engine. By seeing only classes
that contained members, and having ranked ‘likely relevant’ classes highly, the
users understood that they were supposed to choose a class instead of an entity.
Even though users queried in the same way as observed in the first iteration, the
accuracy of their results improved dramatically. The users could now query in
their preferred way, and still get results containing relevant classes. Much of this
could be attributed to the removal of stop words, simple passive stemming and
exploiting graph topology when ranking results.

The Material Design guidelines for data tables2 were implemented in the table
view. By also reducing the number of results on one page, the visibility of the
data improved substantially. Users reported that this made the results view all-
together feel more orderly, and in turn more usable. Among others, the following
improvements were made after the second iteration:

• Improved Class Search ranking algorithms
• Moved search settings to a ‘three dot menu’, simplifying the UI
• Grouping of rows with the same entities to maintain diversity
• Query caching makes the site feel less sluggish, saves network bandwidth
• Implemented Material Design guidelines
• Added Search Result page for displaying results from Class Search in a sep-

arate page.
• Enable exporting of data to CSV format for use with spreadsheet applica-

tions

2https://material.io/components/data-tables

https://material.io/components/data-tables

64 M.J. Skaslien: Lister

5.1.3 Feedback on the Final Prototype

As part of the System Usability Scale tests detailed in 5.2, users were allowed
to enter qualitative remarks and feedback on the design. These results were also
gathered into a table, which can be seen in 5.4:

Positive Remarks: Negative Remarks
+ Novel idea and application for search - The wording used does not make sense to me
+ Clean Design - Does not scale well for smart-phone use
+ Feels Powerful - Too monotonic and messy design
+ Great for research - The filter function is awkard

Table 5.4: Some common paraphrased remarks from user-testing the final pro-
totype.

The problem of wording remains even in the final prototype. Attempts were
made after each iteration to formulate the text in the prototype better. Especially
the wording for adding or removing properties and the names of different kinds
of filters proved to resonate poorly with users. While users struggled to come up
with better names, many suggested small helper texts to provide context on the
different functions.

Users had several remarks on the experience using the filter functionality.
Users expected filters to be applied as they were filled in. This meant that having
to click the ‘+’ sign or press the enter key to set a filter was found to be confusing.
A number of users also missed the ability to edit their filters.

Some users remarked that the prototype did not scale well for phones, which
have smaller, vertical displays. As the prototype was only tested using a large
desktop monitor, this issue had not been caught early in the process. It is therefore
understandable that users found the search engine poorly designed for mobile
devices.

Finally, there seemed to be two opposing views on the quality of the design.
Users reported both that it was messy and clean, functional and oversimplified.
Quality of design is in large part a subjective rating, where tastes differ. Future
design work should focus on creating a more aesthetic and holistic interface.

Chapter 5: Results and Discussion 65

5.2 System Usability Scale

5.2.1 Test Population

The call to action for testing was posted in various online communities. In or-
der to gather respondents with little to no experience using structured query lan-
guages, a post was made on the author’s Facebook page. To mitigate possible
responder bias, the post was also shared to a large group (≈ 3000 members)
of developers called ‘Kode24-klubben’. To gather respondents with experience in
structured query languages, the call to action was also posted in Wikidata’s com-
munity chat and weekly newsletter.

The test population was divided into three groups of people grouped by their
previous experience using structured query languages. The working hypothesis
was that users familiar with structured data querying languages would quickly
grasp the tool, and bias the results in a positive direction. Part of the motivation
for creating this tool was also to help the general public utilize semantic data;
Casual users usability scores should therefore be given special consideration. The
distribution of participants over these three groups can be seen in table 5.5.

Experience With Structured Languages n % of Total
None 18 ≈ 21%
A Little 37 ≈ 43%
Experienced 31 ≈ 36%
Total 86 100%

Table 5.5: Test participants as grouped by their experience level in structured
query languages

5.2.2 Results

The collection of calculated usability scores can be seen visualized as a bar chart
in figure 5.1, and some descriptive statistics by user group in 5.6.

Results from users that did not successfully complete the test were pruned
from the working data. Several of the users did not finish the test due to a bug
making the tasks impossible for Safari users, and five others reported that they
did not understand the tasks but still rated the system. These are artefacts of the
test format, and does not directly reflect the usability of the system.

Due to an error in the data collection form, the first 20 results are missing
the score for question 8: ‘I found the system very cumbersome/ awkward to use.’.
These missing values were substituted with the median of the remaining 63 scores.

66 M.J. Skaslien: Lister

Figure 5.1: The distibution of scores on the System Usability Scale. n= 86.

Experience n Median Mean SD
None 18 80.0 81.11 11.38
A Little 37 77.5 74.86 12.46
Experienced 31 75.0 70.08 14.84
Total 86 77.5 74.45 13.63

Table 5.6: The median, mean scores, and standard deviations of usability scores
by user experience with structured languages.

5.2.3 Comparison To Similar Systems

Comparison to Web Interface Average Bangor et al. report in their 2008 study
that the average usability for web user interfaces is 68.05. A right-tailed one-
sample t-test is conducted to see whether or not our usability test results exceed
this benchmark. The Lister SUS distribution of scores has the following charac-
teristics: n = 86, µ = 74.45, σ = 13.63. The p-value for this test is p < 0.0001,
indicating an extremely significant result. This evidence that Lister has a SUS score
above the average score for web interfaces.

Comparison to Semantic Web Interfaces Lister can be viewed in comparison
with the SUS scores gathered in the literature review in 2.5.2 in table 5.7. The
scores of other tools reported in table 5.7 are for ‘casual’ users. The mean SUS
score of the combined user groups with little to no experience using structured
languages are considered ‘casual’ end users in this study. The average SUS score
for casual users is, therefore included as Lister (casual) to provide an equal basis
of comparison.

Chapter 5: Results and Discussion 67

Tool SUS Score Tool Type
Affective Graphs 55.00 QBI (Graph)
Ginseng 55.10 NLI
K-Search 41.25 QBI (Form)
Lister (Total) 74.45 Hybrid
Lister (Casual) 76.91 Hybrid
NLP-Reduce 56.72 NLI
PepeSearch 75.30 QBI (Form)
Querix 75.73 NLI
Semantic Crystal 61.25 QBI (Graph)

Table 5.7: Table of SUS Scores of surveyed tools including Lister. Tools with more
than one reported score have had their highest score included. Lister evaluated
by casual users has the highest overall SUS score, and is therefore highlighted.

5.3 Discussion

5.3.1 Findings of this Study

After collecting the results from the user- and SUS-testing, the hypotheses as
defined in chapter 1.2 were re-examined. Qualitative results and field observa-
tions substantiate the claims made in hypotheses 1-4. The quantitative results
gathered from the SUS user-test support hypothesis 5, but it cannot be said for
certain that iterative user-testing was the sole factor making the search engine
more usable than average. A structured review of how the findings of this study
relate to- and support the hypotheses follow;

H. 1 Full-text search, continuous feedback, and iterative query specification will en-
sure that query formulation is easy.

Findings User-tests and qualitative feedback from the online SUS test show that users
found query formulation for class-search easy. While few users searched for
classes in their initial query, it was observed that users quickly reacted to
feedback from the system and adopted more ‘class-centric’ query formula-
tions.

H. 2 By displaying data in a fully interactive data-table, users may explore their
data at a glance. They may also drill down by filtering, ranking, or following
a URI.

Findings User-testing results indicated that users found the table-interface suitable
for interacting with- and exploring their data.

68 M.J. Skaslien: Lister

H. 3 Query result ranking can be improved by scoring results based on the degree
of the retireved results.

Findings Result relevance is dramatically improved by using the double-index ap-
proach. User-testing found that users received the results they expected
querying in their natural language. However, there are still many edge cases
where the current system of ranking falls short, indicating a need for an im-
proved ranking function.

H. 4 Data exploration will be simplified by exploiting data topology to fetch relevant
information about the chosen subject, and add human-readable labels to entity
URI’s.

Findings User testing indicated that adding common properties by default and rank-
ing properties by frequency aided users in data exploration. Users promptly
found the properties relevant to their case and uncovered previously un-
known properties that were of interest. Users instinctively grasped that the
URI ‘links’ led to more information about that specific entity, indicating a
useful metaphor for URI’s, and that entity exploration was facilitated.

H. 5 By performing iterative development with continuous user testing, a better than
average SUS result can be achieved.

Findings SUS test results showed that a significantly better than average user in-
terface was developed. This can, in part, be attributed to the user-testing
where several usability issues were found and addressed, and new features
suggested and subsequently implemented. Furthermore, the SUS scores for
casual users was the highest among those tested indicating improvement
over several existing semantic web user interfaces.

5.3.2 Contributions

Addressing the usability issues outlined in chapter 2.5.2, Lister was developed.
Lister is a user-friendly semantic search engine utilizing a hybrid combination of
natural language querying and query building search specification.

With Lister, the vast amounts of data stored on the semantic web are access-
ible without knowledge of the underlying data structure, or structured query lan-
guages like SPARQL. This democratizes semantic web information retrieval, let-
ting a wider audience reap the benefits of linked data; Users can gather data rel-
evant to their information need without relying on a potentially costly third-party
data provider. Crowd-sourced triple-stores like Wikidata provides vast amounts
of up-to-date data available on almost every imaginable subject. This allows re-
searchers, journalists, and developers to build and download datasets that are
ready to integrate into a data-driven project or application, free of charge. Altern-
atively, a casual user may just want to see what historic sites or attractions are
worth seeing in the city they are visiting.

Chapter 5: Results and Discussion 69

Lister serves as a proof-of-concept on how casual users might draw advantage
of the data stored in triple-stores like WikiData or DBpedia. This concept could, in
addition to being a stand-alone web service, easily be integrated into contempor-
ary internet search engines like Google. Google already attempts to disambiguate
a user query, serving as the ‘class-search’ part of the Lister search engine. With a
class identified, the list of member instances could be displayed in a small widget
allowing the user to explore their data further.

Furthermore, Lister demonstrates a hybrid approach to semantic query formu-
lation. By combining the simplicity of formulating a natural language query with
the ease of use and transparency of query builders, a more user-friendly interface
was built.

Finally, Lister demonstrates the necessity for involving end-users in the design
and development process. Though not all usability issues were caught before the
final usability-test, it is safe to say that Lister would suffer severely from a lack of
testing. As noted by Hachey et al. in their survey [7] and in the background chapter
of this paper, most semantic web user interfaces lack proper usability testing. Com-
bined with the sub-average SUS scores of those interfaces, this substantiates that
future efforts in semantic web interfaces should have an increased focus on usab-
ility and user testing.

5.3.3 Validity and Reliability of Results

User Tests

There are a few threats to the validity of user test results. As a number of test
users were drawn from a computer science environment, there is a chance that
they are better than average at using computer tools. This, in turn, might lead to
usability issues for laypeople go unnoticed, or that incorporating feedback from
a computer science expert might make a system less usable for laypeople. This
can and was counteracted by including a number of people without a computer-
science related background. Furthermore, many usability issues have little to do
with how much or little computer science knowledge the user has. Bugs and poor
design are indiscriminate and should be noticeable when overseeing a test subject
using the system. Finally, a test subject with a computer science background might
also be more sensitive to bad design choices, as they themselves are aware of
common pitfalls.

The test subject might report that the system is better than it actually is to
please the facilitator. The user might find it uncomfortable to criticize the hard
work of another person, or feel that they are not in a position to judge. To coun-
teract this, the facilitator should always tell the test subject that they have not
been involved with the design. Observing how the user interacts is, however, the
"gold standard", as it should be easy to identify whether or not a user struggles
with the design or task at hand.

70 M.J. Skaslien: Lister

The test subject might behave differently than if they were in a non-laboratory
setting. This is hard to counteract, as it might be hard for the user to forget the
fact that they are being supervised. One way to alleviate this might be to conduct
remote tests where the users are in a familiar setting, like at home.

The facilitator may skew the feedback of the user, or cherrypick results. In
the case of these user tests, the developer was also the test facilitator. This likely
increases the chances for the facilitator biasing the results. The facilitator must
take care to word themselves neutrally and not put words in the test subjects
mouth. Even if the facilitator is consciously aware of these possible biases, they
might unconsciously skew the results. The best course of action is, therefore, to
outsource the user-testing to a person who holds no stake in the success of the
system.

System Usability Scale

Users might have previous experience with similar tools, and therefore find the
system being evaluated more usable than it is for relevant but inexperienced users.
McLellan et al. wrote an article on the matter, finding that experienced users ten-
ded to provide more favourable ratings regardless of system domain [34]. To
counteract this McLellan et al. suggest that practitioners of SUS tests ask users
for their experience with systems in the same or similar domains. For this reason,
questions on the profession and experience levels of the users were included in
the form. They also suggest reporting the SUS scores from the users belonging to
the target demographic. Positive bias was however, not an issue with more know-
ledgeable users in this test, as they were significantly more critical of the interface
than casual users. This can be seen in the scores in table 5.6. Based on qualitative
feedback from these users, the negative bias appears to stem from advanced users
feeling that Listers user interface was overly simplified, and not providing enough
features.

Several users reported that they had done the test using their mobile phones.
This was not intended, as the interface has not been adequately tested and op-
timized for small screens. The usability scores of those who reported having used
their phones do not significantly affect results. However, as the form never expli-
citly asked whether the user was on mobile or desktop, there are likely several
unrecorded mobile users. This may have negatively affected the SUS scores of
those users.

Chapter 5: Results and Discussion 71

The first call to action was posted on the author’s personal Facebook. This
message was seen by people identifying themselves as "friends" of the developer.
This might bias the scores of the tool in a positive direction. These users were
among the first to take the test, and most identify themselves as being unfamiliar
with structured query languages. This might be the reason why this user group has
rated the Lister tool higher than those having structured language experience. The
effect of this bias should, however, be mitigated, as a large part of the test subjects
come from outside the author’s network, through the WikiData community and
‘Kode24-klubben’ Facebook group.

5.3.4 Interpreting the Usability Test Scores

The SUS score of Lister, 74.45, places the interface at the 70th percentile of user
interfaces in terms of usability. On this scale, anything above the 50th percentile
is by definition an above-average usability score. Placing this score on Sauro et
al.’s grading scale (table 2.2) gives Lister the usability grade ‘B’.

Chapter 6

Conclusion

6.1 Conclusion

Through a pre-study, it was found that contemporary semantic web user inter-
faces struggle with usability. Users of natural language interfaces often do not
know what questions to ask of the system, or what its capabilities are. This dif-
ference between expectations of the NLI and the actual performance is called the
habitability problem. Query builders, on the other hand, are explicit in their func-
tionality to a fault. Overly complex forms overwhelm users, making even simple
tasks a struggle.

In this paper, a hybrid approach is proposed, combining the best aspects of
both NLI’s and query builders. The vast majority of SPARQL queries are SELECT

queries, and by designing an interface focusing on these can vastly reduce the
complexity of the interface. Users can thus interact with and explore their data
effortlessly, with low cognitive overhead. This reduced scope also solves the hab-
itability problem, as natural language search bars are standard interfaces online.
Users get explicit feedback, showing them that they can search for classes. By em-
ploying a double-index system, entity-, class-, and full-text queries can be mapped
to relevant classes.

Before development started, an overview of the usability issues common in
semantic web search engines was compiled, and an example solution was pro-
posed. An iterative design and development process followed, involving users at
two critical stages underway. This ensured that usability issues were found and
corrected underway, and user feedback incorporated and validated.

This resulted in the Lister search engine. The web-application was tested using
the System Usability Scale, which provides a good measure of how user-friendly
the application is. The Lister SUS scores were significantly higher than the web-
average, and the highest-rated interface among those surveyed in the thesis. Lister
thus provides a user-friendly entryway to information retrieval on the semantic
web and the trove of data contained therein.

73

74 M.J. Skaslien: Lister

6.2 Future Work

Purely natural language interfaces show great potential and may draw advantage
of advances in machine learning to overcome the complexities of rule-based pars-
ing systems. Better and more training data and standardized and high-quality
benchmarks are crucial when it comes to building better machine-learning sys-
tems. Both training data and benchmarks are as of today not good enough to push
the state of the art performance by much. Therefore, the development of train-
ing data and benchmarks should be of high priority. This field of development is
of particular interest, as better structured language generation/translation might
make not only SPARQL/SQL queries possible from natural language, but also pro-
gramming languages.

In order to create the Lister search engine, a separate index was created to
facilitate full-text search. Full-text search is a common feature of the ‘regular’ web
and undoubtedly has many use cases on the semantic web. It is already implemen-
ted in frameworks like Apache Jena but is not yet part of the SPARQL standard.
One method of implementing this could be to encode strings as part of a triple
structure instead of as a literal. This would bring the performance of graph quer-
ies to full-text queries, enabling real-time search by strings.

Finally, the integration of list-retrieval features into traditional search engines
is of particular interest. Traditional search engines are well established, and likely
where users go to have their information needs fulfilled. Semantic searches are
already implemented to some degree by leading search engines like Google, though
mostly in the form of information cards about specific entities. By integrating a
solution like Lister into existing search portals, the mainstream could benefit from
the semantic web without changing their search habits. This would mean an in-
formation gain for the end-user and an excellent incentive for further work and
improvements on existing triple-stores.

Bibliography

[1] E. Kaufmann and A. Bernstein, ‘Evaluating the usability of natural language
query languages and interfaces to semantic web knowledge bases,’ Journal
of Web Semantics, vol. 8, no. 4, pp. 377–393, 2010, Semantic Web Chal-
lenge 2009 User Interaction in Semantic Web research, ISSN: 1570-8268.
DOI: https://doi.org/10.1016/j.websem.2010.06.001. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
S1570826810000582.

[2] J. Klímek, P. Škoda and M. Nečaský, ‘Survey of tools for linked data con-
sumption,’ Semantic Web, vol. 10, pp. 1–57, Aug. 2018. DOI: 10.3233/SW-
180316.

[3] C. Bizer, T. Heath and T. Berners-Lee, ‘Linked data - the story so far,’ Int. J.
Semantic Web Inf. Syst., vol. 5, pp. 1–22, 2009.

[4] A.-S. Dadzie and M. Rowe, ‘Approaches to visualising linked data: A survey,’
Semantic Web, vol. 2, pp. 89–124, Jan. 2011. DOI: 10.3233/SW-2011-0037.

[5] T. D. Wilson, ‘Information behaviour: An interdisciplinary perspective,’ In-
formation processing & management, vol. 33, no. 4, pp. 551–572, 1997.

[6] P. Pirolli and S. Card, ‘Information foraging.,’ Psychological review, vol. 106,
no. 4, p. 643, 1999.

[7] G. Hachey and D. Ga, ‘Semantic web user interfaces: A systematic mapping
study and review,’ 2012.

[8] A. Freitas, E. Curry, J. G. Oliveira and S. O’Riain, ‘Querying heterogeneous
datasets on the linked data web: Challenges, approaches, and trends,’ IEEE
Internet Computing, vol. 16, no. 1, pp. 24–33, Jan. 2012. DOI: 10.1109/
MIC.2011.141.

[9] C. Bobed and E. Mena, ‘Querygen: Semantic interpretation of keyword
queries over heterogeneous information systems,’ Information Sciences, vol. 329,
pp. 412–433, Feb. 2016. DOI: 10.1016/j.ins.2015.09.013.

[10] E. Kaufmann, A. Bernstein and L. Fischer, ‘Nlp-reduce: A “naıve” but domain-
independent natural language interface for querying ontologies,’ 4th European
Semantic Web Conference (ESWC 2007), Jan. 2007.

[11] E. Kaufmann, A. Bernstein and R. Zumstein, ‘Querix: A natural language
interface to query ontologies based on clarification dialogs,’ Jan. 2006.

75

https://doi.org/https://doi.org/10.1016/j.websem.2010.06.001
http://www.sciencedirect.com/science/article/pii/S1570826810000582
http://www.sciencedirect.com/science/article/pii/S1570826810000582
https://doi.org/10.3233/SW-180316
https://doi.org/10.3233/SW-180316
https://doi.org/10.3233/SW-2011-0037
https://doi.org/10.1109/MIC.2011.141
https://doi.org/10.1109/MIC.2011.141
https://doi.org/10.1016/j.ins.2015.09.013

76 M.J. Skaslien: Lister

[12] D. Damljanovic, M. Agatonovic and H. Cunningham, ‘Freya: An interactive
way of querying linked data using natural language,’ in The Semantic Web:
ESWC 2011 Workshops, R. García-Castro, D. Fensel and G. Antoniou, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 125–138, ISBN:
978-3-642-25953-1.

[13] T. Soru, E. Marx, D. Moussallem, G. Publio, A. Valdestilhas, D. Esteves and
C. Neto, ‘Sparql as a foreign language,’ Aug. 2017.

[14] A. Soylu, M. Giese, E. Jimenez-Ruiz, E. Kharlamov, D. Zheleznyakov and
I. Horrocks, ‘Optiquevqs: Towards an ontology-based visual query system
for big data,’ in Proceedings of the Fifth International Conference on Manage-
ment of Emergent Digital EcoSystems, ser. MEDES ’13, Luxembourg, Luxem-
bourg: ACM, 2013, pp. 119–126, ISBN: 978-1-4503-2004-7. DOI: 10.1145/
2536146.2536149. [Online]. Available: http://doi.acm.org/10.1145/
2536146.2536149.

[15] H. Vargas, C. Buil-Aranda, A. Hogan and C. López, ‘Rdf explorer: A visual
sparql query builder,’ in The Semantic Web – ISWC 2019, C. Ghidini, O.
Hartig, M. Maleshkova, V. Svátek, I. Cruz, A. Hogan, J. Song, M. Lefrançois
and F. Gandon, Eds., Cham: Springer International Publishing, 2019, pp. 647–
663, ISBN: 978-3-030-30793-6.

[16] F. Haag, S. Lohmann, S. Siek and T. Ertl, ‘Queryvowl: A visual query nota-
tion for linked data,’ in Revised Selected Papers of the ESWC 2015 Satellite
Events on The Semantic Web: ESWC 2015 Satellite Events - Volume 9341,
New York, NY, USA: Springer-Verlag New York, Inc., 2015, pp. 387–402,
ISBN: 978-3-319-25638-2. DOI: 10.1007/978-3-319-25639-9_51. [On-
line]. Available: http://dx.doi.org/10.1007/978-3-319-25639-9_51.

[17] S. Heggestøyl, G. Vega-Gorgojo and M. Giese, ‘Visual query formulation for
linked open data: The norwegian entity registry case,’ in NIK, 2014.

[18] O. Corby, R. Dieng and C. Faron-Zucker, ‘Querying the semantic web with
corese search engine,’ in ECAI, 2004.

[19] M. Hildebrand, J. van Ossenbruggen and L. Hardman, ‘/facet: A browser
for heterogeneous semantic web repositories,’ in The Semantic Web - ISWC
2006, I. Cruz, S. Decker, D. Allemang, C. Preist, D. Schwabe, P. Mika, M.
Uschold and L. M. Aroyo, Eds., Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2006, pp. 272–285, ISBN: 978-3-540-49055-5.

[20] M. Arenas, B. Cuenca Grau, E. Kharlamov, S. Marciuska, D. Zheleznyakov
and E. Jimenez-Ruiz, ‘Semfacet: Semantic faceted search over yago,’ in Pro-
ceedings of the 23rd International Conference on World Wide Web, ser. WWW
’14 Companion, Seoul, Korea: ACM, 2014, pp. 123–126, ISBN: 978-1-4503-
2745-9. DOI: 10.1145/2567948.2577011. [Online]. Available: http://
doi.acm.org/10.1145/2567948.2577011.

https://doi.org/10.1145/2536146.2536149
https://doi.org/10.1145/2536146.2536149
http://doi.acm.org/10.1145/2536146.2536149
http://doi.acm.org/10.1145/2536146.2536149
https://doi.org/10.1007/978-3-319-25639-9_51
http://dx.doi.org/10.1007/978-3-319-25639-9_51
https://doi.org/10.1145/2567948.2577011
http://doi.acm.org/10.1145/2567948.2577011
http://doi.acm.org/10.1145/2567948.2577011

Bibliography 77

[21] S. Mazumdar, D. Petrelli, K. Elbedweihy, V. Lanfranchi and F. Ciravegna,
‘Affective graphs: The visual appeal of linked data,’ Semantic web : interop-
erability, usability, applicability, Aug. 2013. DOI: 10.3233/SW-140162.

[22] R. Bhagdev, S. Chapman, F. Ciravegna, V. Lanfranchi and D. Petrelli, ‘Hybrid
search: Effectively combining keywords and semantic searches,’ in The Se-
mantic Web: Research and Applications, S. Bechhofer, M. Hauswirth, J. Hoff-
mann and M. Koubarakis, Eds., Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2008, pp. 554–568, ISBN: 978-3-540-68234-9.

[23] G. Vega-gorgojo, M. Giese, S. Heggestøyl, A. Soylu and A. Waaler, ‘Pepe-
search: Semantic data for the masses,’ PLOS ONE, vol. 11, e0151573, Mar.
2016. DOI: 10.1371/journal.pone.0151573.

[24] J. Brooke et al., ‘Sus-a quick and dirty usability scale,’ Usability evaluation
in industry, vol. 189, no. 194, pp. 4–7, 1996.

[25] A. Bernstein, E. Kaufmann, C. Kaiser and C. Kiefer, ‘Ginseng : A guided
input natural language search engine for querying ontologies,’ 2006.

[26] A. Bangor, P. T. Kortum and J. T. Miller, ‘An empirical evaluation of the sys-
tem usability scale,’ Intl. Journal of Human–Computer Interaction, vol. 24,
no. 6, pp. 574–594, 2008.

[27] J. Sauro and J. R. Lewis, Quantifying the User Experience, J. Sauro and J. R.
Lewis, Eds. Boston: Morgan Kaufmann, 2012, ISBN: 978-0-12-384968-7.
DOI: https://doi.org/10.1016/B978-0-12-384968-7.00004-7. [On-
line]. Available: http://www.sciencedirect.com/science/article/pii/
B9780123849687000047.

[28] K. Elbedweihy, S. N. Wrigley and F. Ciravegna, ‘Evaluating semantic search
query approaches with expert and casual users,’ in The Semantic Web –
ISWC 2012, P. Cudré-Mauroux, J. Heflin, E. Sirin, T. Tudorache, J. Euzenat,
M. Hauswirth, J. X. Parreira, J. Hendler, G. Schreiber, A. Bernstein and
E. Blomqvist, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 274–286, ISBN: 978-3-642-35173-0.

[29] V. Uren, Y. Lei, V. Lopez, H. Liu, E. Motta and M. Giordanino, ‘The usability of
semantic search tools: A review,’ Knowledge Eng. Review, vol. 22, pp. 361–
377, Dec. 2007. DOI: 10.1017/S0269888907001233.

[30] C. W. Thompson, P. Pazandak and H. R. Tennant, ‘Talk to your semantic
web,’ IEEE Internet Computing, vol. 9, pp. 75–78, 2005.

[31] Nlp progress, http://nlpprogress.com/english/semantic_parsing.
html, Accessed: 2019-11-14.

[32] A. Bonifati, W. Martens and T. Timm, ‘An analytical study of large sparql
query logs,’ The VLDB Journal, pp. 1–25, 2019.

[33] J. Knapp, J. Zeratsky and B. Kowitz, Sprint: how to solve big problems and
test new ideas in just five days. Simon & Schuster, 2016.

https://doi.org/10.3233/SW-140162
https://doi.org/10.1371/journal.pone.0151573
https://doi.org/https://doi.org/10.1016/B978-0-12-384968-7.00004-7
http://www.sciencedirect.com/science/article/pii/B9780123849687000047
http://www.sciencedirect.com/science/article/pii/B9780123849687000047
https://doi.org/10.1017/S0269888907001233
http://nlpprogress.com/english/semantic_parsing.html
http://nlpprogress.com/english/semantic_parsing.html

78 M.J. Skaslien: Lister

[34] S. McLellan, A. Muddimer and S. C. Peres, ‘The effect of experience on
system usability scale ratings,’ Journal of usability studies, vol. 7, no. 2,
pp. 56–67, 2012.

Appendix A

How To Set-Up Lister

Front-end

Requirements

• Node.js version ≥ 8.10
• npm version ≥ 5.6
• A host server (for production builds)

Procedure

The front-end has different configurations based on whether it is to be served in
a development- or production-setting.

Development set-up

1. Clone the Lister front-end GitHub repository.
2. In the root directory of Lister, run the command NPM install.
3. Verify that the installation was successful.
4. In the root directory of Lister, run the command NPM start.
5. A browser window should open on the locally hosted front-end web applica-

tion. If not, manually navigate to the url returned by the NPM start command.

Production set-up

1. Clone the Lister front-end GitHub repository (either locally or remotely on
a web-host server).

2. In the root directory of Lister, run the command NPM install.
3. Verify that the installation was successful.
4. In the root directory of Lister, run the command NPM run-script build.
5. Move the contents of the build folder to the index of your server.
6. Verify that your web host is now serving the Lister front-end files. A hard

refresh may be needed to avoid loading a cached version of the web-site.

79

80 M.J. Skaslien: Lister

Back-end

Requirements

It is recommended but not required to run the pre-processing notebooks using an
Anaconda1 Python distibution. Anaconda comes pre-packaged with almost all the
python dependencies needed, and it makes setting up a virtual enviroment easy.

• Python version ≥ 3.6
• ElasticSearch version ≥ 7.7
• Node.JS version ≥ 8.10
• npm version ≥ 5.6

The following python packages are required, those that come with Anaconda are
marked with an asterisk:

• tqdm*
• pandas* 1.0.3
• Dask* 2.16
• elasticsearch 7.7.0

Procedure

The back-end is comprised of two parts: The ElasticSearch indices and the Node
backend. The set up for the ElasticSearch indices is as follows:

1. Download and unzip the latest WikiData JSON dump.
2. Download and install the required ElasticSearch version.
3. Set up and launch ElasticSearch
4. For pre-processing, follow the instructions in the wikidata_preprocessing.ipynb

notebook.
5. To create and populate the ES indices, follow the instructions in the populate_es.ipynb

notebook.

The set up for the Node.js backend is as follows:

1. Clone the Lister front-end GitHub repository.
2. In the root directory of Lister, run the command NPM install.
3. Verify that the installation was successful.
4. In the root directory of the Lister back-end, run the command node backend.js.
5. Verify that the set-up was successful by viewing the console logs, or by re-

questing GET localhost:9200/ and GET localhost:9200/cluster/health.

1https://anaconda.org/

Appendix B

Master‘s Agreement

81

 1 av 3

Master`s Agreement

Faculty IE - Fakultet for informasjonsteknologi og elektroteknikk

Institute Institutt for datateknologi og informatikk

Programme code MTDT

Course code 194_TDT4900_1

Personal information

Family name, first name Skaslien, Mats Jørgen

Date of birth 25.01.1994

Email address matsjsk@stud.ntnu.no

The Master`s thesis

Starting date 15.01.2020

Submission deadline 10.06.2020

Thesis working title Semantic Web Interface Project

Thematic description

Via en brukerorientert utviklingsprosess skal et grensesnitt til

den Semantiske Webben skapes, så også folk uten relevant

erfaring skal kunne ta Linked Data i bruk.

Supervision and co-authors

Supervisor Trond Aalberg

Any co-supervisors , - Merknad - Mulig medveileder Vedran Sabol ved TU Graz i

Østerrike. Ikke bestemt per dags dato.

Any co-authors

Topics to be included in the Master`s Degree (if applicable)
Course code Course name Credits Level Term

 2 av 3

Guidelines – Rights and Obligations
Purpose
Agreement on supervision of the Master's thesis is a cooperation agreement between the student, supervisor and the
department that governs the relationship of supervision, scope, nature and responsibilities.

The master's program and the work of the master's thesis are regulated by the Act relating to universities and university

colleges, NTNU's study regulations and current curriculum for the master's program.

Supervision

The student is responsible for

• Agre upon supervision within the framework of the agreement

• Set up a plan of progress for the work in cooperation with the supervisor, including the plan for when the

guidance should take place

• Keep track of the number of hours spent with the supervisor

• Provide the supervisor with the necessary written material in a timely manner before the guidance

• Keep the institute and supervisor informed of any delays

The supervisor is responsible for
• Explain expectations of the guidance and how the guidance should take place

• Ensure that any necessary approvals are requested (REC, ethics, privacy)

• Provide advice on the formulation and demarcation of the topic and issue so that the work is feasible within the

standard or agreed upon study time

• Discuss and evaluate hypotheses and methods

• Advice on professional literature, source material / data base / documentation and potential resource requirements

• Discuss the presentation (disposition, linguistic form, etc.)

• Discuss the results and the interpretation of them

• Stay informed about the progression of the student's work according to the agreed time and work plan, and follow

up the student as needed

• Together with the student, keep an overview of the number of hours spent

The institute is responsible for
• Make sure that the agreement is entered into

• Find and appoint supervisor(-s)

• Enter into an agreement with another department / faculty / institution if there is a designated external supervisor

• In cooperation with the supervisor, keep an overview of the student's progress, an overview of the number of

hours spent, and follow up if the student is delayed by appointment

• Appoint a new supervisor and arrange for a new agreement if

• supervisor will be absent due to research term, illness, travel, etc., and if the student wishes

• student or supervisor requests to terminate the agreement because one of the parties does not follow it

• other circumstances make the parties find it appropriate with a new supervisor

• Notify the student when the guidance relationship expires.

• Inform supervisors about the responsibility for safeguarding ethical issues, privacy and guidance ethics

• Should the cooperation between student and supervisor become problematic for one of the parties, a student or

supervisor may ask to be freed from the Master`s agreement. In such case, the institute must appoint a new

supervisor

 3 av 3

This Master`s agreement must be signed when the guidelines have been reviewed.

Approved by

Mats Jørgen Skaslien

Student

14.01.2020

place and date

Trond Aalberg

Supervisor

16.01.2020

place and date

Berit Hellan

Institute

07.02.2020

place and date

M
ats Jørgen Skaslien

Lister: A H
ybrid Approach for U

ser-friendly Sem
antic W

eb Inform
ation Retrieval

N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r d

at
at

ek
no

lo
gi

 o
g

in
fo

rm
at

ik
k

M
as
te
ro
pp

ga
ve

Mats Jørgen Skaslien

Lister: A Hybrid Approach for User-
friendly Semantic Web Information
Retrieval

Masteroppgave i Datateknologi
Veileder: Trond Aalberg

Juni 2020

	Abstract
	Sammendrag
	Acknowledgements
	Contents
	Figures
	Tables
	Introduction
	Motivation
	Research Questions and Hypotheses
	Research Questions
	Hypotheses

	Method
	Thesis Outline

	Background
	What Is the Semantic Web?
	Information-Seeking Behaviour
	Semantic Web Search Engines
	Categories of Semantic Web Search Engines

	Survey of Semantic Web Search Engines
	Affective Graphs
	Ginseng
	K-Search
	NLP-Reduce
	PepeSearch
	Querix
	Semantic Crystal

	Usability
	The System Usability Scale
	Usability of Semantic Web Search Engines

	Summary

	Method
	Research Methodology
	Mapping The Problem
	Approach
	Evaluation Methods
	User Testing
	System Usability Scale

	Implementation
	Operation of the Lister Search Engine
	Overview
	Selecting a Class
	Data Interaction

	System Architecture
	Overview
	Front-End
	Back-End

	Class Retrieval and Ranking
	Index structure
	Class Retrieval
	Result Ranking

	Data Interaction
	The Data Table
	Exploiting Linked Data Topolgy

	Chosen Technologies
	Front-End
	Back-End
	Data Processing

	Results and Discussion
	User Tests
	Test Population
	Results
	Feedback on the Final Prototype

	System Usability Scale
	Test Population
	Results
	Comparison To Similar Systems

	Discussion
	Findings of this Study
	Contributions
	Validity and Reliability of Results
	Interpreting the Usability Test Scores

	Conclusion
	Conclusion
	Future Work

	Bibliography
	How To Set-Up Lister
	Master`s Agreement

