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Abstract
Current state-of-the-art text-to-image (T2I) synthesis models are based on the architecture
of Generative Adversarial Networks (GAN). These models perform well on limited datasets
that contain images and corresponding image captions within one class or category, like
birds, in that the images generated are realistic and of reasonably high resolution (256 x
256 pixels). However, they fail to generate high quality images when trained on more
complex datasets containing a higher number of classes and complex scene compositions.
Natural language processing models, such as the Bidirectional Encoder Representations
from Transformers (BERT), hold great promise in improving T2I synthesis models.

This Master’s Thesis integrates a recent GAN-based T2I synthesis model, MirrorGAN,
with BERT, through MirrorGAN’s sub-module for re-generation of image captions. The
performance of this novel model is assessed through quantitative measures such as
the Bilingual Evaluation Understudy (BLEU) for comparing the two versions of the
image captioning module and the Fréchet Inception Distance (FID) for comparing the
performance of the resulting T2I synthesis models. Additionally, a qualitative survey
involving 33 participants was conducted to further compare the two models.

The comparison of the two versions of the image captioning module indicates that the
novel version clearly outperforms the original. However, comparing the two versions of
the final model through the Fréchet Inception Distance metric yields greater results for
the original version for all epoch steps but the last. This is supported by the results
from the conducted survey. Moreover, the novel version outperforms the original in the
last epoch step not due to the novel version improving, but rather the deterioration of
the original model. Further inspection indicates that both models suffer from commonly
faced problems when training GANs, such as vanishing gradients and mode collapse.
Moreover, the images can in some cases be fairly visually pleasing, which might propose
that a T2I system could have other value apart from generating realistic images.

With further model optimisation and mitigation strategies for the problems encountered,
the results indicate that this new combined model could produce superior images and
should be the subject of further research.
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Sammendrag
Dagens beste modeller innen tekst-til-bilde-generering (T2I) er basert på Generative
Adverserielle Nettverk (GAN). Disse modellene gjør en god jobb nå de er trent på
begrensede datasett som kun inneholder bilder og korresponderende bildetekst innen én
klasse eller kategori, slik som fugler eller blomster. Når de er trent på slike datasett, klarer
disse modellene å generere realistiske bilder av rimelig god kvalitet (256 x 256 piksler).
På den andre siden mislykkes de i å generere bilder av høy kvalitet om de er trent på et
mer komplekst datasett med et høyere antall klasser og mer komplekse scener. Modeller
for naturlig språkbehandling, slik som BERT — Bidirectional Encoder Representations
from Transformers — har gode forutsetninger til å forbedre slike T2I-modeller.
Denne masteroppgaven integrerer MirrorGAN, en nylig fremtredende GAN-basert

T2I-modell, med BERT. Dette gjøres gjennom MirrorGANs submodul for regenerering av
bildetekst. Ytelsen til denne nye kombinasjonen ble evaluert gjennom både kvantitative og
kvalitative metoder. De kvantitative metodene inkluderer Bilingual Evaluation Understudy
(BLEU) for å sammenligne de to versjonene av submoduler for regenerering av bildetekst,
og Fréchet Inception Distance (FID) for å sammenligne den originale og den nye T2I-
modellen. I tillegg ble det utført en kvalitativ spørreundersøkelse med 33 deltakere for å
videre sammenligne de to modellene.

Sammenligningen av de to versjonene av modulene for regenerering av bildetekst
viser at den nye versjonen helt avgjort utkonkurrerer den originale versjonen. På en
annen side, ved sammenligning av de to endelige T2I-modellene gjennom FID-målingen,
viser den originale versjonen å gjøre det bedre enn den nye. Dette er også støttet av
resultatene fra den utførte spørreundersøkelsen. I tillegg kan man se at den nye versjonen
utkonkurrerer den originale i det siste epokesteget; ikke fordi den nye versjonen ble bedre,
men heller fordi den originale ble verre. Videre inspeksjon av resultatene indikerer at
begge modellene lider av vanlige problemer som oppstår under trening av GANs. Disse
problemene inkluderer forsvinnende gradienter og moduskollaps. I tillegg kan de genererte
bildene i noen tilfeller være visuelt tilfredsstillende, noe som kan indikere at et T2I-system
har verdi utenom å generere realistiske bilder.

Resultatene indikerer at med videre modelloptimalisering og benyttelse av strategier for
å begrense treningsproblemene som ble møtt, kan den nye kombinerte modellen produsere
overlegne bilder. Dette er derfor et tema som bør utforskes videre.
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1. Introduction

Text-to-Image (T2I) synthesis has fascinated the machine learning community for years.
This is mainly due to the “multi-modal” problem of bridging the gap between text and
image representations, where multi-modal represents the many ways of translating from
one domain to another, e.g. text to image. Despite this fascination, significant advances
have only been made in recent years. These advances are mostly based on the use of
Generative Adversarial Networks (GANs; Goodfellow et al., 2014), where one network is
pitted against another network. The first network, the generator, generates an image
from noise and sends it to the second network, the discriminator. The discriminator,
then, evaluates if this generated image belongs to a set of supplied images, before giving
feedback to the generator which adjusts itself thereafter. The goal of this architecture is to
train the generator to generate images that approximate a set of supplied images. Recent
advances in T2I synthesis have predominantly focused on extensions to the original GAN
architecture. These advances include the use of stacking generators to produce images of
higher resolution (Zhang et al., 2017), attention to generate more detailed images (Xu
et al., 2018), and text re-generation to provide additional feedback to the generator (Qiao
et al., 2019). In the field of T2I, this text re-generation more specifically re-generates text
from the generated image, before the original and the re-generated texts are compared.

An important part of T2I synthesis is the processing of natural language input to
create text feature representations that include important visual features described in
the text. This processing falls under the field of natural language processing (NLP). In
the case of cycle-consistency, a processing also goes the other way: from image to text.
In the same way as the challenge of generating images from text, generating text from
image (I2T) is also multi-modal. However, I2T is a more well-defined challenge than T2I
due to the limitations imposed by the structure of language.

The focus of T2I synthesis has mostly been on smaller datasets consisting of particular
objects. The field of T2I synthesis has been reasonably successful at generating images
of single objects, like birds or flowers, but struggles to generate images of more complex
scenes (e.g. of interacting objects) and of higher resolutions (e.g. 256 x 256 pixels or
higher). These observations can be seen in figure 1.1, and are important starting points
for further research in the field of T2I synthesis.

With this in mind, there are two major parts of T2I synthesis that require more
attention: NLP and generation of complex scenes of high resolution.
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1. Introduction

Figure 1.1.: MirrorGAN example images. Figure from Qiao et al. (2019), with permission
from Tingting Qiao.

1.1. Background and Motivation

One of the most prominent models in the field of T2I synthesis is MirrorGAN, introduced
by Qiao et al. (2019). The model incorporates all major recent advances in the field
(including the use of the GAN architecture, stacking and attention) in addition to
employing text re-generation to provide a new state-of-the-art for GAN-based text-to-
image synthesis.
An interesting aspect of T2I synthesis is the potential integration of newer NLP

architectures and models. An important advance in the field of NLP in recent years is
the Bidirectional Encoder Representations from Transformers (BERT) model, introduced
by Devlin et al. (2018). The model was a huge breakthrough in the field of NLP, with
versions being pre-trained on massive datasets (such as the whole English Wikipedia)
and made easily available to the public. This facilitated the use of these powerful models
by anyone. BERT has since been the basis of many state-of-the-art models in the field of
NLP. Further, an interesting and potentially promising application of such pre-trained
models is their incorporation with the MirrorGAN T2I synthesis model.

Like previous models, the work of Qiao et al. (2019) was mainly focused on generating
images from descriptions of birds with training the model on the Caltech-UCSD Birds-
200-2011 (CUB Birds-200) dataset. This dataset includes 8,855 training images of birds,
with five text descriptions per image. In addition to the CUB Birds-200 dataset, the
Microsoft Common Objects in Context (COCO) dataset is also commonly used for tasks
like T2I synthesis and image captioning. This dataset is more complex and general than
the CUB Birds-200 dataset as it contains an increased amount of images which depict
a wide range of objects, including combinations of several objects in context. The first
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four columns of figure 1.1 show images generated by different models trained on the
CUB Birds-200 dataset, including MirrorGAN in row three. The last four columns show
images generated by the same models trained on the COCO dataset. It is evident that
the images in the last four columns are far from perfect and, consequently, that such
generalized T2I synthesis needs more attention.

Although the definition of quality of an image generated from text is debatable, it can
be argued that it should include how well the image corresponds to the text, in addition to
being of reasonable resolution. Additionally, the realism of an image can also be included
in such a definition, where the ultimate goal is for the image to be indistinguishable
from a real image. Although T2I performs well when dealing with a dataset focused on
one object, like the CUB Birds-200 dataset, the field struggles when employing more
generalized and complex datasets, like the COCO dataset. This can be seen in figure 1.1.
The field has many applications, including art generation and computed aided design. It
can also provide insight into areas like computational creativity. For these reasons it is
an important field to develop further.

1.2. Goals and Research Questions

Goal Explore the combination of a text-to-image synthesis system and a recent natural
language processing model employing a complex dataset
The focus of this Master’s Thesis is the integration of the text-to-image model
MirrorGAN and the natural language model BERT. The goal is to explore how such
an integration can be performed and perform the integration before comparing the
image generation capabilities of this new model relative to the original MirrorGAN
model by Qiao et al. (2019). Both the new and the original versions of the model
will be trained on the COCO dataset, which provides a more complex learning base
than the CUB Birds-200 dataset.
The following research questions will assist in reaching this goal.

Research question 1 How can the text-to-image system and the natural language model
be combined?
This research question addresses the task of finding what ways MirrorGAN and
BERT can be combined, and details about how this integration can be performed.
Additionally, the question implies the need for a study of how this integration
performs by itself.

Research question 2 How does the combination of the text-to-image system and the
natural language model affect image generation?
The aim for this research question is not to improve the image generation, but to
analyze what differences there might be in the image generation by the two models,
in addition to why such differences might arise. If the quality of the generated
images of the original and the new models does not differ, the generated images by
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the new model may exhibit other features that are thought-provoking or otherwise
interesting.

Research question 3 How does the combination of the text-to-image and the natural
language models perform when employing a dataset containing complex images?

The field of T2I synthesis faces major problems when it comes to generating images
of high resolution and of more complex character than depicting different types
of birds. Consequently, the original and the new version of MirrorGAN will both
be trained on the COCO dataset, which provides a more challenging and complex
base compared to the CUB Birds-200 dataset.

1.3. Research Method

The goal of this Thesis is approached through experiments that build on an existing body
of research, in addition to an evaluation of the findings. Both the original version of
MirrorGAN and the version integrated with BERT (i.e. new version) will be trained on
the COCO dataset. The results from the experiments are evaluated through the research
questions introduced in the previous section.

1.4. Contributions

While the project implementation can be found on GitHub1, this section provides a brief
summary of the main contributions of this Master’s Thesis. Thus, the main contributions
are as follows:

1. An overview of different GAN-based text-to-image generation systems.

2. A discussion on how BERT can be integrated with MirrorGAN.

3. Using BERT for the image caption re-generation in MirrorGAN.

4. A modular approach to the training of the final models and their sub-modules. This
approach simplifies training of all networks separately before employing them to
train the final model.

5. The use of parallel training of the models over multiple GPUs to accommodate for
a higher batch size than what a single GPU can hold. This is needed as the amount
of memory required for the COCO dataset quickly grows large.

6. A comparison of the two versions of the image caption re-generation sub-module,
calculated through the Bilingual Evaluation Understudy (BLEU).

1https://github.com/cammiida/masters-project
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7. A comparison of the two versions of MirrorGAN through conducting a survey,
employing the Fréchet Inception Distance (FID) metric and performing subjective
analysis.

8. A brief discussion of what other value GAN-based T2I systems might have, apart
from generating realistic images.

1.5. Thesis Structure
Chapter 2 provides the theory and background necessary to follow subsequent chapters.

More specifically, it includes a general introduction to machine learning with
artificial neural networks, an explanation of different GAN-based architectures,
recent advances in NLP that are related to BERT, and a discussion of a recent
image caption generation technique employed for the new version of the image
caption re-generation sub-module.

Chapter 3 provides an overview of the current state of research with regards to GAN-
based T2I synthesis, including a detailed explanation of MirrorGAN and its inner
workings.

Chapter 4 explains the architecture employed for the contributions of this work.
Moreover, the applied methodology for the implementation of the project is also
discussed.

Chapter 5 introduces the conducted experiments and presents the results.

Chapter 6 provides an evaluation and discussion of the findings introduced in chapter
5. Additionally, it aims to answer the research questions and discuss how the
overarching goal has been met. Moreover, it also includes a discussion of the
limitations of the work conducted.

Chapter 7 concludes the work of this Thesis. Additionally, it provides a description of
contributions, and summarizes potential future work that might be promising.
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2. Theory and Background
This chapter presents background information and theory that is necessary to follow the
rest of this Master’s Thesis. Section 2.1 provides an introduction to machine learning
including common terminology, inner workings of Artificial Neural Networks (ANNs)
and training. Section 2.2 explains significant statistical functions and metrics for the
work of this Thesis, while the subsequent section, section 2.3, provides an overview of
different ANN architectures. The work of this Master’s Thesis is focused on Text-to-
Image (T2I) processing, which consists of two major fields in machine learning: image
generation through the use of Generative Adversarial Networks (GANs) and natural
language processing (NLP). With this in mind, sections 2.4 and 2.5 cater to these
subjects, respectively. Furthermore, due to the MirrorGAN model employing image
caption re-generation from the generated image, section 2.6 includes an introduction
to automatic generation of image captions, called image captioning. Additionally, it
provides an explanation of an image captioning technique employed in this work.
A handful of sections and subsections in this chapter are based on the preliminary

studies to this Master’s Thesis, conducted in the Fall of 2019. These sections include
the main parts of section 2.1, section 2.1.3, most of section 2.3, section 2.4.1, the second
halves of sections 2.5.3 and 2.5.6, and section 2.5.7.
Moreover; scalars, vectors and matrices follow the notation of being lowercase, bold

lowercase and bold uppercase, respectively:

x = 1

y =
(
0 1

)
Z =

[
0 1
2 3

]

2.1. Machine Learning

This section provides an introduction to machine learning and specifically to Artificial
Neural Networks (ANNs). It includes the most important parts about the inner workings
of ANNs, how they are used for prediction, and how they are trained.
Machine learning is a sub-field of artificial intelligence that employs algorithms that

can automatically improve through a learning process, and focuses on tasks that are too
complex to achieve otherwise. Machine learning is often implemented through the use
of Artificial Neural Networks (ANNs). An ANN is a model that aims to learn how to
predict an output based on a set of inputs through training. The model is comprised of
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Figure 2.1.: A simple example of an artificial neural network.

nodes that are organized in layers. Each node in a layer computes a function based on
its weights and bias values, and the outputs of the nodes from the previous layer. The
weights and biases of the network are also called parameters. A simple an ANN can be
seen in figure 2.1. The network learns through changing the values of its parameters
through the process of trial and error. All other parameters for a network that are
configurable by the developer are referred to as hyper-parameters.
The ANN was first presented in McCulloch and Pitts (1943) where the idea was

computational mimicking of the animal brain, i.e. its neural network. This is where the
A in the ANN comes from.

Machine learning through the use of ANNs have seen a wide set of applications,
especially in recent years. Commonly employed applications of machine learning include
spam filtering, speech recognition, machine translation, product recommendations and
facial recognition.

2.1.1. Artificial Neural Networks

The main parts of an Artificial Neural Network are the nodes, layers, and its parameters.
Figure 2.1 shows a simple figure of an ANN with three layers: one input layer, one
hidden layer and one output layer. All layers that are not an input layer or an output
layer are called hidden layers. The circles within each layer represent nodes (also called
artificial neurons, neurons, or perceptrons), and each layer is often composed of several
such neurons.

If each node in a network has a connection to all nodes in the next layer, the network
is said to be “fully connected”.
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2.1.2. Training and Gradient Descent

This subsection provides an overview of the mechanisms for training a neural network, in
addition to introducing different types of training.

Forward Propagation

A neural network predicts its output by propagating a sample from the input layer
through to the output layer. This propagation is represented as arrows in figure 2.1, and
commonly referred to as forward propagation or forward pass. Each node calculates its
value (also called activation) based on a set of values from previous nodes and parameters.
This activation is then passed to the next layer of nodes.

While there are different types of neural networks, the function of a node is often just
the weighted sum of the weights and biases of the nodes from the previous layer times
the activations from the same nodes. This can be written as

f(x1, x2, ..., xn) = w1 · x1 + w2 · x2 + ...+ wn · xn, (2.1)

or simplified to

output =
∑

(weights · input). (2.2)

Here, x1, x2, ..., xn are the activations of the nodes from the previous layer (i.e. input
values for the current node), and w1, w2, ..., wn are the weights for each corresponding
activation. Each weight corresponds to a node from the previous layer and indicates how
important that node is to the current node.
The activation of a node also often depends on an activation function employed in

the same layer. The activation function determines the final activation of a node and
introduces non-linearity to the network and the possibility for a network to represent
any complex function. In its simplest binary form, an activation function decides if a
node should fire (output 1), or not fire (output 0). The bias value of each node acts
like a threshold for the activation function, and can be thought of as where the function
intercepts the y-axis. By denoting the activation function by g(), the activation of each
node can be expressed as:

y = g

(
n∑

i=1
(wixi) + b

)
, 1, 2, . . . , n. (2.3)

Common activation functions include softmax, sigmoid and ReLU. These are further
explained in section 2.1.3.

When training a network from scratch, the values of the weights and the biases often
start out as random values, which also results in the network predicting random values.
It is through training that the network learns, e.g. how to predict correctly.
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Figure 2.2.: Simple representation of a loss function with global and local minimums.

Gradient Descent and Backpropagation

One way of training a neural network is through supervised learning, where each input
during training is supplemented with a value that contains the correct answer for what
the output should be. After the output has been predicted, a loss function calculates how
far from the ground truth, or how wrong, the predicted output was. This is also called
the loss of the prediction. For a classification problem, a commonly used loss function is
the Mean Square Error (MSE). The MSE takes the resulting value for each class in the
output layer and subtracts it with its correct value, written as:

L(y, ŷ) = 1
N

N∑
i=0

(y − ŷi)2, (2.4)

where y and ŷ are the true and predicted values, respectively.
This gives a loss vector that indicates how wrong the network was in classifying

the input. The network then learns by propagating this loss vector back through the
network, calculating and adjusting the parameters for each layer, called backpropagation.
Backpropagation is calculated in a backwards fashion because of the dependence of later
layers on previous layers. At each layer during backpropagation, the weights and biases
are adjusted through an optimization algorithm called gradient descent. Gradient descent
is an algorithm that calculates how the parameters of each layer should be adjusted
to minimize the loss function of the network. It does so by finding the gradient of
the loss function, and stepping in the direction of minimizing the loss with regards to
the parameters in each layer. This might be a step in the right direction of the global
minimum, although this is not certain.
To visualize gradient descent, we can look at figure 2.2. Imagine starting on the top

of the hill on the left side. When moving down one small step at the time, and always
stepping in the direction going, we find only the local minimum1. However, if we start
on the right side, we will find the global minimum. This happens more or less by chance

1Given that the step size is small enough.
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as the weights are initialized randomly. We will only find the direction in which to step
to decrease the loss function value from the current point of view. Consequently, we
have no means of knowing if that will actually find a global or a local minimum. All we
know is that it is a step in a direction that is a little bit better than where we were, and
so the parameters are updated accordingly. An important hyper-parameter of gradient
descent is the step size, also called the learning rate. That is, how far we step each time
the gradient is calculated. Different step sizes can have big impacts on the parameters of
the network as too large steps can cause the algorithm to overshoot the optimum and
“jump” back and forth. On the other hand, too small steps are almost certain to find
only local minima. A common practice is to start with a large value and then decrease
the step size as training progresses. Other optimization algorithms are also developed
for aiding the network to converge (i.e. find a global or a good local minimum) and not
become “stuck” at a sub-optimal local minimum.

Gradient descent is an iterative algorithm, and is applied over numerous iterations. The
network learns through this process of repeatedly stepping in the downwards direction.

Types of Training

A neural network can be trained in a supervised, semi-supervised or unsupervised manner.
For all types of training, the mechanism of gradient descent is the same. As previously
seen, supervised learning is when the network is trained through labeled data, i.e. the
network input is supplied with the right answer with which to compare its output or
prediction. Unsupervised learning, however, deals with data that is not labeled and
where the network has to discover information itself. Moreover, for semi-supervised
learning, the training data typically contains a small set of labeled data, where the rest
is unlabeled.

2.1.3. Activation Functions

This subsection introduces common activation functions that are significant to subsequent
chapters. In these subsequent chapters, the activation functions are often referred to or
depicted as separate layers. However, rather than layers containing their own nodes, they
are functions that are applied to the output of a layer in the ANN, as shown in equation
2.3.

The Sigmoid Activation Function

The Sigmoid activation function is a collective name for a set of sigmoid functions that
have a characteristic S-shape, such as the hyperbolic tangent. The standard Sigmoid
function is the logistic function outputs values that lie between 0 and 1 and is denoted as

Sigmoid(x) = 1
1 + e−x

. (2.5)

This Sigmoid function is a commonly applied activation function in classification tasks
where more than one answer can be correct.
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The Softmax Activation Function

The Softmax function can be thought of as an extension of the Sigmoid function in that
it also output values between 0 and 1. However, the Softmax also constricts the output
to follow a probability distribution, where all output values sum up to 1. The Softmax
function is also called softargmax or a normalized exponential function, and is often
employed for classification tasks where output values are mutually exclusive, i.e. only
one answer is correct. The Softmax function is mathematically defined as

Softmax(xi) = exi∑K
j=1 e

xj
, (2.6)

for i = 1, ...,K.

Rectified Linear Unit Activation Function

The Rectified Linear Unit (ReLU) is a simple, yet effective, activation function that takes
in the value of a node and outputs the max value of this value and 0. Consequently, no
output from ReLU will be below 0. Mathematically, ReLU can be written as y = max(0, x).
ReLU is commonly used especially in Convolutional Neural Networks (introduced in
section 2.3), and is often a good first choice of an activation function.

2.1.4. Epochs, Batches and Iterations

When training an ANN, the data is often too big to handle all at once. Consequently, it
is necessary to split up the dataset and load only small parts of it at a time. For this, we
use terms like epochs, batches and iterations.

Epochs

One epoch is when all samples of a dataset are passed through the dataset once. It is
common to use multiple epochs, i.e. passing over the entire training dataset multiple
times. This is necessary since the gradient descent is iterative and passing over the
training data only once is not enough to optimize the loss function. However, it is not
always best to train for as many epochs as possible, as this can lead to overfitting to
the dataset. This is where the network has learnt the dataset “too well”, i.e. performs
very well on the dataset it has trained on, but performs poorly when presented with new
training samples. This means that the network does not generalize well to other data it
has not been trained on.

Batches

The size of a batch can vary between 1 and the size of the entire dataset, i.e. the size of an
epoch. When the batch size is of less than the size of the entire dataset, i.e. mini-batches,
the gradient descent algorithm is referred to stochastic gradient descent (SGD). However,
when the batch size is of the size of the full dataset, the algorithm is referred to as just
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gradient descent. When employing SGD, the gradients are accumulated and averaged over
all training samples in the mini-batch, before these averaged values are backpropagated
through the network. Consequently, when employing gradient descent (i.e. batch size
of the size of the dataset), the gradients are accumulated and averaged over the entire
dataset before being backpropagated.

Iterations

One iteration is a pass over one batch. The number of iterations for one epoch is the
amount of batches that fit in one epoch, and the number of iterations for the entire
training is then how many batches there are in one epoch times the amount of epochs.
As an example, say we have a dataset containing 256 training instances, and we have
chosen a batch size of 32. Then we would have 256/32 = 8 iterations for one epoch. If
we then wanted to train for 100 epochs, we would have 8 · 100 = 800 iterations.

2.2. Statistics and Metrics

The following section introduces and explains statistical functions and metrics that are
relevant for subsequent chapters.

2.2.1. Kullback–Leibler Divergence

The Kullback-Leibler (KL) divergence is a measure of how much two probability dis-
tributions differ. Specifically how much the second distribution differs from the first.
Probability distributions in statistics are often approximated and simplified. However,
through the KL divergence, it is possible to measure how much such a simplified distri-
bution differs from the original, and thus how much information is lost.
Information is linked to the probability of a certain event within the probability

distribution occurring, where an unlikely event provides more information than a likely
event. Thus, the average of the information of all events of a probability distribution
is the expected information from one single event in a probability distribution. This
expected information is defined as the entropy of a probability distribution, denoted
as H. Entropy can also be thought of as measuring the uncertainty of a probability
distribution. The entropy can be used to measure how many bits are needed to encode
the information in the probability, which is written as:

H = −
N∑

i=1
p(xi) · log2 p(xi), (2.7)

where p is the probability of a certain element xi over the distribution of x. The binary
logarithm is used here in the case of measuring bits. The formula for entropy is used as a
basis for calculating the KL divergence between two distributions. More specifically, the
entropy calculation serves as a measure of how many bits of information they differ by,
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i.e. how much information is lost. If we have the distribution p and the distribution q,
we can write the KL divergence as

DKL(p||q) =
N∑

i=1
p(xi) · (log2 p(xi)− log2 q(xi)), (2.8)

or more commonly as

DKL(p||q) =
N∑

i=1
p(xi) ·

(
log2

p(xi)
q(xi)

)
. (2.9)

While the KL divergence measures the information lost from one distribution to another,
it does not measure the distance between the two distributions as the measure is not
symmetric.

2.2.2. Cross-Entropy

While the KL divergence measures the information lost from one probability distribution
to another (or their relative entropy), cross-entropy measures the total entropy between
the two over the same set of events. Given two probability distributions p and q over a
set of N events, we can write their cross entropy as

H(p, q) = −
N∑

i=1
p(xi) · log2 q(xi). (2.10)

Cross-entropy is commonly employed in machine learning as a loss function.

2.2.3. Inception Score

The Inception Score (IS) is a metric developed by Salimans et al. (2016) to approach
an objective way of measuring the quality of generated images. Salimans et al. (2016)
found that the IS correlated well with human evaluation of image quality, and it has
therefore been widely adopted for evaluating images generated by Generative Adversarial
Networks. In short, the IS measures both if each image depicts distinct objects and the
variety of the generated images. The higher the score, the better the images generated
(according to this score).

The IS is calculated through the use of a pre-trained version of the image classification
Inception v3 model by Szegedy et al. (2016), from which the score takes its name. The
model is employed over a large number of generated images to predict the likelihood of each
image belonging to any of the 1,000 classes of the Inception v3 model. Consequently, this
returns a probability distribution over all 1,000 classes for each image. The results from all
generated images are summarized to create a marginal probability distribution from the
whole set of generated images. Salimans et al. (2016) suggested using a set of 50,000 images
to create this marginal probability distribution. The score subsequently combines the
probability distribution of each generated image with the marginal probability distribution
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through the KL divergence. This means that if the two probability distributions, the
class probability distribution of one image and the marginal probability distribution,
differ significantly, we get a high score. Similarly, we get a low score if they are similar.
An optimal score comes from when the marginal probability distribution is even (i.e.
the probability of each class is fairly equal), while the probability distribution of one
generated image is not (i.e. distinctly depicts a class).
Although the score is widely employed, Barratt and Sharma (2018) proposed five

shortcomings of the score for use with generative models. These shortcomings include
high scores on certain distributions like the uniform and the normal distribution and
that slight variations in the classification distribution might yield dramatically different
scores. Additionally, employing the IS on generative models trained on other datasets
than the Inception v3 model (trained on the ImageNet dataset2), results in a discrepancy
in the number and type of classes they contain. Barratt and Sharma (2018) thus argued
that this can lead to misleading scores.

2.2.4. Fréchet Inception Distance

The Fréchet Inception Disctance (FID) is another metric for evaluating generated images,
and was proposed by Heusel et al. (2017) as an improvement of the Inception Score. They
argue that the IS lacks quality from not comparing the generated images to real images.
The FID measures how much two groups of images differ where one set is the set of real
images, and the other the set of generated images. Similarly to the IS, the FID employs
the Inception v3 model. However, it discards the last classification layer, as it rather
employs the different features of the images detected by the Inception v3 model. These
features are calculated over the set of real and generated images, separately. For each
set, the features calculated are summarized as a multivariate Gaussian distribution, with
mean µ and covariance Σ. The FID is subsequently calculated from these two multivariate
Gaussian distributions using the Fréchet distance (also called the Wasserstein-2 distance).
This distance measures the similarity between two curves, which then can be said to
measure the similarity of two image sets. Thus, a low score is better than a high score.

2.2.5. The Bilingual Evaluation Understudy

The Bilingual Evaluation Understudy (BLEU) is a machine translation metric proposed
by Papineni et al. (2002). The metric compares a translated sentence to a reference
sentence, where a perfect match yields a score of 1, and a complete mismatch yields a
score of 0. The evaluation metric was proposed as an alternative to human evaluation and
as a solution to the evaluation bottleneck that was prominent in the machine translation
field.

The BLEU score is calculated through a modified n-gram precision score that matches
n-grams of the two sentences to be compared. This modified n-gram precision score is
found by finding the number of times an n-gram occurs in the test sentence and divides
it by the number of n-grams in the reference sentence. This can be written as,

2http://www.image-net.org/
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modified n-gram precision = maximum number of times n-gram occurs in reference
total number of n-grams in test sentence .

It is important to note that the maximum number of times the n-gram occurs in the
reference is clipped to not be higher than the number of the same n-gram in the test
sentence. Therefore, the modified n-gram precision never exceeds a value of 1. This
modified n-gram precision is then calculated for all n-grams in the test sentence before it
is averaged to produce the score for the test sentence.
1-gram, 2-gram, 3-gram, and 4-gram versions of the BLEU score are referred to as

BLEU-1, BLEU-2, BLEU-3, and BLEU 4, respectively.

2.3. Types of Artificial Neural Networks
This section introduces a few types of artificial neural networks that are relevant for the
rest of this Master’s Thesis, including deep neural networks (DNNs), recurrent neural
networks (RNNs), convolutional neural networks (CNNs) and residual neural networks
(ResNets).

2.3.1. Fully Connected Neural Networks

In Fully Connected Neural Networks (FCNNs), all nodes in each layers are connected to
all nodes in the next layer. The same term can be applied to the connection between two
layers.

2.3.2. Feed-Forward Neural Networks

A Feed-Forward Neural Network is an ANN where there are no cycles, i.e. all input is
only propagated forwards.

2.3.3. Deep Neural Networks

Deep Neural Networks differ from the ANN shown in figure 2.1 in that they contain more
layers. That is, a DNN is deeper than the simple ANN with two or more hidden layers.

DNNs can be powerful if implemented correctly. However, as the network grows deeper,
the problems of vanishing or exploding gradients become increasingly common. An
exploding gradient problem is when accumulated gradients turn very large and produce
major updates of the network parameters. This can result in unstable training and
sometimes overflowing of the activations due to their size. At the other end of the
spectrum, the vanishing gradient problem is when gradients become so small that they
do not produce any visible network change, i.e. that the network does not learn. Neither
of these phenomena is desired.
Because a DNN contains several layers, the gradients are backpropagated a long way

to reach the start of the network. These gradients are calculated with respect to the
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Figure 2.3.: A simple recurrent neural network: The arrows pointing back into the same
node represent the recursion; output from a hidden layer coming in as input
to the same layer.

weights of each layer, and consequently, the chain rule ensures that the gradients can
easily vanish or explode. That is, when a network increases in size (i.e. grows deeper),
if the weights are small (less than 1), they grow increasingly smaller (vanish) as they
backpropagate through the network. Similarly, they grow increasingly bigger (explode) if
their values are high (bigger than 1).

Exploding gradients can in general be avoided by careful configuration of the network.
However, a common countermeasure for exploding gradients is the use of gradient clipping.
This consists of either normalizing the gradient vector so that the magnitude of the vector
equals a specified value, or setting a maximum value for each gradient.

There are several approaches or mechanisms to avoid the vanishing gradient problem.
One such approach is the use of the Long Short-Term Memory architecture, which is
discussed in further detail in section 2.5.3.

2.3.4. Recurrent Neural Networks

A recurrent neural network differs from other ANNs in the way that, for some nodes,
the output comes back in as input (as shown in figure 2.3). Because the RNN can
process its previous state along with the current state, it can process sequences of input,
e.g. sentences. It is ideal for when a sequence in the input is more important than an
individual item. Because of this, RNNs have been frequently used in the context of
natural language processing (Mikolov et al., 2010).
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Figure 2.4.: A simple representation of a convolutional neural network with corresponding
input matrix, convolution, pooling and classification.

2.3.5. Convolutional Neural Networks

A convolutional neural network (CNN) is a type of neural network that is especially
good at learning features or patterns of its grid-like input such as time-series (1-D) and
images (2-D). Consequently, this type of ANN is suitable for image processing. Image
processing with CNNs is conducted through the use of matrix kernels, or filters. These
filters each look at restricted and overlapping parts of the input matrix, starting in the
top left corner and moving to the right. When a filter hits the end on the right, it starts
on the next line on the left again. How much this filter should move each time is set
through a hyper-parameter called the stride length. Moreover, CNNs often employ a
pooling layer to reduce the spatial size of the previous layer. Such a pooling layer is often
employed before a fully connected layer is added for classification. Figure 2.4 shows a
high-level representation of an example CNN.
Deeper CNNs are made up of several filter layers, also called convolutional layers.

Through the use of pooling layers between the convolutional layers, the separate convolu-
tional layers learn different levels of features of the input, also called the feature hierarchy
of a network. The early levels learn low-level features, while the subsequent layers learn
higher-level features. Deeper CNNs are also called Deep Convolutional Neural Networks,
or DCNNs. Generally, early convolutional layers learn low-level features, while later
layers learn high-level features.

2.3.6. Residual Neural Networks

Although deeper neural networks can perform better than their shallower counterparts,
they are more difficult to train and suffer from problems like vanishing and exploding
gradients. He et al. (2016) showed that training a 20-layer CNN versus a 56-layer CNN
yielded increased training error for the 56-layered version. To remedy this problem, He
et al. (2016) proposed a solution by employing shortcut connections (also called skip
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connections) to feed-forward neural networks. Such a connection performs an identity
mapping the output from an early layer to a subsequent layer. I.e. the skip connection
skips one or several layers before adding this output to the output of the subsequent layer
before its activation function is applied. As these skip connections perform an identity
mapping, they do not introduce any new parameters to the network and can still be
trained by normal gradient descent and backpropagation.
He et al. (2016) showed that their proposed technique is successful even when imple-

mented on networks of more than 100 layers, and yield substantially better results than
previous works. They showed state-of-the-art results on several dataset competitions,
like the COCO segmentation and COCO detection tasks, employing their 152-layered
residual net. However, the training degradation problem re-surges when the networks
reach 1000 layers.
He et al. (2016) constructed several deep convolutional residual networks of several

sizes, several of which can be downloaded as fully pre-trained networks. These networks
include ResNet-50, ResNet-101 and ResNet-152, consisting of 50, 101 and 152 layers,
respectively.

2.4. Generative Adversarial Networks

This section introduces the original architecture introduced by Goodfellow et al. (2014),
in addition to a selection of extensions of the architecture, such as the conditional GAN
and the CycleGAN architecture.

2.4.1. Generative Adversarial Network

Goodfellow et al. (2014) introduced the new framework Generative Adversarial Network
(GAN) which employs an adversarial process where two models are pitted against each
other. These two models are called the generator (G) and the discriminator (D), also
shown in figure 2.5. The essence of the process between these two models is the generator
creating samples from random noise and the discriminator evaluating if they are real or
not. A common and much fitting analogy to this system is the work of a forger versus
an expert. The forger tries to forge paintings by a particular artist, while the expert
evaluates if the painting is real or not.

The discriminator is commonly a pre-trained classification network trained on the same
data being employed in the process of training the GAN. That is, it could be trained on
the paintings of a particular painter to assess whether other paintings are of the same
artist. The generator, however, is not pre-trained and generates “forged paintings” from
random noise. These paintings are then supplied to the discriminator, which assesses if
the painting is real or not, before providing feedback to the generator. In the beginning,
the generator naturally performs poorly. However, as it receives feedback it becomes
increasingly better at creating forged paintings. Consequently, the discriminator becomes
increasingly “confused” and might start to classify the forged paintings as real. The goal
of the generator is for the discriminator to output the labels “real” or “fake” with the
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Figure 2.5.: A simple overview of a Generative Adversarial Network. The generator
receives noise input z, from which it generates the example for the discrimin-
ator to assess. The discriminator receives both the training dataset and the
new generated example as input and tries to determine if the new example
could belong to the dataset or not. The result is backpropagated through
both networks where they try to minimize their respective loss functions, i.e.
minimize and maximize the discriminator’s error.

same probability. That is, the expert does not know whether the provided painting is real
or not, and therefore only “guesses” its answer. The network is said to converge should
it reach such a state. An overview of the network structure and inputs and outputs is
shown in figure 2.5.

The discriminator’s objective is to maximize the probability of appointing the correct
label to the example and can be written as log(D(x)), where x is the example to
be assessed and D(x) is the probability that x is real (i.e. comes from the provided
data). On the other hand, the generator’s objective is to minimize the probability of the
discriminator appointing the correct label, and can thus be written as log(1−D(G(z))).
z is here random noise input and G(z) is the example generated by the generator.
The system described is essentially a two-player minmax adversarial game with its

value function

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))], (2.11)

as expressed in Goodfellow et al. (2014). pdata and pz are distributions over the supplied
data and the noise, respectively.

The GAN architecture is an example of unsupervised learning, and was a breakthrough
in computer vision for generating realistic-looking samples.
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Figure 2.6.: CycleGAN example translations from horse to zebra, winter to summer,
and apples to oranges. Figure from Zhu et al. (2017), with permission from
Taesung Park.

2.4.2. Conditional Generative Adversarial Networks

Mirza and Osindero (2014) proposed an extension to the original GAN architecture by
introducing conditioning for directing the data generation process, a conditional GAN
(CGAN). That is, introducing the possibility of supplying extra information to direct
the generation to a specific item, e.g. an image of a dog. The conditioning is performed
through supplying the extra information to both the generator and the discriminator.
Consequently, the value function of the CGAN differs from the original value function by
calculating the objectives of the two networks given the extra information y. As stated
in Mirza and Osindero (2014), the value function thus becomes,

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x|y))] + Ez∼pz(z)[log(1−D(G(z|y)))]. (2.12)

The CGAN plays a major part in T2I synthesis using GANs, as the generated images
are conditioned on the input text.
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(a) Simple CycleGAN archi-
tecture, where G and F
are separate generators,
andX and Y are the two
different domains.

(b) CycleGAN cycle-consistency loss where a sample is
translated from the first domain to the second, and
then back to the first, before the loss is calculated.

Figure 2.7.: Figures from Zhu et al. (2017), with permission from Taesung Park.

2.4.3. CycleGAN

In 2017, Zhu et al. introduced an image-to-image translation model called CycleGAN.
This model was inspired by the need for image-to-image translation training without
paired image examples (i.e. unpaired image-to-image translation). Image translation is,
in essence, a controlled image modification. A classic example of this is to translate an
image of a horse to an image of a zebra, like the examples shown in figure 2.6. The need
for unpaired image-to-image translation was based on the difficulty of acquiring paired
image examples from different domains for training. This could be the task of translating
a photograph (domain X) into the style of the deceased painter (domain Y ), where there
would be very few paired examples.

CycleGAN translates from the first domain, X, to the second domain, Y , before
translating back, from Y to X. To do this, it extends the traditional GAN architecture
by training two GANs simultaneously. The two GANs evaluate their own part with each
GAN’s discriminator having access to a set of images from their respective domain. The
generator for the same GAN is conditioned with an image that belongs to the other
domain. As seen in figure 2.7a, the first GAN’s generator takes an image from domain X
and its discriminator evaluates it on the basis of domain Y . The second GAN’s generator
takes an image from domain Y and its discriminator evaluates it on the basis of domain
X.
Additionally, the CycleGAN architecture also employs an extension called cycle con-

sistency, illustrated in figure 2.7b. As the name implies, CycleGAN uses the output of the
first generator (translating from X to Y ) as input to the second generator (translating
from Y back to X) before evaluating how well the cycled image matches the original
image. Mathematically, we have the first generator G : X → Y and the second generator
F : Y → X. If the cycle consistency is fulfilled, we can say that G and F are inverses of
each other and therefore should “cancel” each other out. This is the same as F (G(x)) ≈ x
and G(F (y)) ≈ y.

This cycle consistency makes sure that the translated images are actually translations
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Figure 2.8.: Word embeddings example showing the relations between man, woman king
and queen in vector space. Figure from “Glossary of Deep Learning: Word
Embedding”3, licensed under CC BY-SA 4.0.

of the input image, and not just new generations of images that fit the domain the
discriminator wants.

2.5. Natural Language Processing

Natural Language Processing (NLP) is a sub-field of artificial intelligence concerned with
the processing and analysis of natural language data, i.e. for the computer to understand
and employ natural language. It is an important part of machine learning and has
applications like voice assistance, translation, spam filtering and is used for chatbots.
Only a few of the concepts presented in this section are used in subsequent chapters.

However, the remaining concepts are presented here to provide a background for under-
standing the more advanced concepts.
Language modeling is a central part of many NLP tasks. A language model aims to

model the connections between words in natural language through predicting the next
word, given a sequence of previous words. A neural language model uses a simple neural
network which maps each word in its vocabulary to real-valued vectors. The network
learns through a joint probability function of the word embeddings of the words in the
input sequence, i.e. it maps the vectors of the words to a probability distribution.

2.5.1. Neural Language Modeling

Word embeddings is an example term of a language model that map words to vector
embeddings in vector space. They have shown to exhibit properties of mapping words
that have similar meaning to similar values. Additionally, the vectors allow for operations
like subtraction and addition to arrive at new values that correspond well with natural
language logic. A classic example of this is king − man + woman = queen, where the

3https://medium.com/deeper-learning/glossary-of-deep-learning-word-embedding-
f90c3cec34ca
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words correspond to their respective values in vector space. The relations between the
words in this example are illustrated in figure 2.8.

2.5.2. Wordpiece Tokenization

Segmentation of the input sequence into meaningful tokens or words is a fundamental
part of NLP. This process facilitates the creation of meaningful embeddings of these
tokens or words. A common approach is to segment based on the words in the input
sequence. Although this is intuitive, the approach has shown to not handle a rare or
unseen word well. On the other hand, segmentation based on characters overcomes this
limitation, but is too fine-grained and thus misses a lot of important information of the
input sequence.

WordPiece tokenization is a combination of the two previously mentioned approaches
where the input sequence is divided into smaller sub-word tokens or wordpieces. An
example of this is the word “strawberries” being segmented into two tokens, namely
“straw” and “berries”. These wordpieces can subsequently be mapped to real-valued
vectors, which together provide the meaning of the whole word. The technique was first
introduced by Schuster and Nakajima (2012) where it was employed for Japanese and
Korean voice search, and later applied to Google’s Neural Machine Translation system
by Wu et al. (2016). Amongst other qualities, the technique increases the robustness of
NLP models with regards to handling of rare words.

2.5.3. Long Short-Term Memory

After segmenting the input sequence, NLP techniques commonly employ RNNs for
processing of input sequences. A prominent problem and a bottleneck of the field has
been the difficulty of dealing with longer input sequences, as the models tend to forget
prior parts as the sequence grows longer. This is because RNNs have a tendency of
suffering from vanishing gradients. This tendency is due to that RNNs are often trained
through the use of backpropagation through the input sequence (also referred to as time,
or steps). This means that when backpropagation is executed, the network is unrolled
through time and essentially becomes a deep neural network. It thus shares the same
property of the vanishing gradient problem as a DNN. Consequently, this problem of
dealing with long-term relations may also lead to loss of important information.

To remedy the problem of vanishing gradients in RNNs, Hochreiter and Schmidhuber
(1997) proposed a new RNN architecture called Long Short-Term Memory (LSTM). The
LSTM employs an architecture with a fitting gradient-based learning algorithm. An
LSTM picks out the most important information from the input sequence and discards
unimportant information. This reduces computational complexity and computing time,
and allows for long-term dependencies within the sequences.
In the LSTM network, the cells contain their own cell states and gating mechanisms.

The cell states contain information from previous parts of the input sequence (also called
hidden state), while the gates are there to decide what information to pass on and which
information to discard. The gates are themselves neural networks that learn what is
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Figure 2.9.: A simple encoder-decoder architecture.

important for their specific task, such as forgetting. These gates include the input, forget
and output gates. While the forget gate decides what information to discard (or forget),
the input gate decides what new information to keep. Moreover, the output gate decides
what information to send as the hidden state for the next part of the sequence.

2.5.4. Encoder-Decoder Architectures

The encoder-decoder is a commonly employed architecture in NLP models. As illustrated
in figure 2.9 the architecture is divided into two parts, an encoder and a decoder. The
encoder takes an input and encodes it to a state that is subsequently sent to the decoder.
The decoder thus generates the output based on this encoded input. The architecture is
commonly employed in neural machine translation (NMT) where the encoder encodes the
input sequence of the first language to its corresponding sequence embeddings, while the
decoder generates the translation based on these values. The encoder-decoder architecture
was constructed to solve the problem where existing architecture (employing RNNs) in
the field of NLP could only be applied where the inputs and outputs could be computed
with vectors of a fixed size of dimensionality (Sutskever et al., 2014).

Sequence to Sequence (Seq2Seq) modeling, is an example of an encoder-decoder
architecture, where the model maps input sequences to output sequences. It has a number
of applications from speech recognition and machine translation to image captioning.
The main idea behind the Seq2Seq architecture is to use one LSTM to encode the input
sequence, and another to decode the output of the first to find the output sequence
(Sutskever et al., 2014).

2.5.5. Attention

Although LSTMs provided an enhanced version of RNNs for longer sequence inputs, the
challenge of dealing with longer sequences was still prominent. In the case of Seq2Seq,
this was mainly due to the fixed-size context vector employed between the encoder and
the decoder. Bahdanau et al. (2014) and Luong et al. (2015) proposed an attention
technique that mitigated this problem. Before attention, an encoder-decoder architecture
passed only the last hidden state (i.e context vector) of the encoder to the decoder. With
attention, however, all of the hidden states of the encoder are passed to the decoder.
This technique allows for the decoder to “pay attention to” the most important part of
the input sequence at each time step. A simple overview of a translation of the sentence
“I am a student” from French to English using attention is illustrated in figure 2.10.
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Figure 2.10.: Example of attention used for translation from French to English. Figure
by Jay Alammar4, licensed under CC BY-NC-SA 4.0.

Figure 2.11.: Transformer encoder and decoder. Figure by Jay Alammar5, licenced under
CC BY-NC-SA 4.0.

2.5.6. Transformers

Like Seq2Seq, the Transformer is based on the encoder-decoder architecture. However,
while the encoder of the Seq2Seq model employs an RNNs, the Transformer encoder is
built up of a fully-connected feed-forward neural network and self-attention (explained
later in this section). Similarly, the Transformer decoder also avoids RNNs by employing
the same components as the Transformer encoder, in addition to a layer of encoder-
decoder attention. This encoder-decoder attention performs attention over the output of
the encoder. An overview of this can be seen in figure 2.11.
The Transformer contains one stack of encoders (of size 6 in Vaswani et al. (2017)),

and one stack of decoders. The input sequence is fed into the first of the encoders in the
encoder stack, which output serves as the input for the next encoder, and so on. The
output of the last encoder in the stack serves as input to the stack of decoders. Here, the
encoder output is sent to all decoders in the stack. The first decoder in the stack takes
the input from the encoder and produces the input for the next decoder in the stack,

4https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-
seq2seq-models-with-attention/

5http://jalammar.github.io/illustrated-transformer/
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Figure 2.12.: Transformer architecture. Figure from Jay Alammar6, licenced under CC
BY-NC-SA 4.0.

while the next decoder is provided with the output from the previous in addition to the
output of the encoder stack. This architecture is illustrated in figure 2.12.
With the encoder and the decoder parts of the Transformer being divided into sub-

parts, the model lends itself to parallelization. This is a significant improvement from
the previous state-of-the-art models employing RNNs, which were inherently serial or
sequential.

Self-Attention

Attention can be used to find similarities and correlations between two sentences, but it
can also be used to find correlations or other important words in the same sentence. When
the model pays attention to the input sequence itself and computes a representation of that
same sequence, it is called self-attention. Self-attention is also known as intra-attention.
Calculation of self-attention starts with creating three vectors from each of the word

embeddings: a query (q), key (k) and value (v) vector. Then, for each word embedding,
the dot-product is calculated between the query vector and the key vector of every word
in the input. This means that for the word in position 1, the dot product is calculated
between q1 and k1, k2, k3, and so on. These dot products make up the dot-product scores
used for later calculations. Figure 2.13 illustrates this self-attention. The dot-product
scores are here the values corresponding to the label “score”.

After the dot-product scores are computed, all scores are divided by
√
dk, where dk is

the dimension of the queries and keys. It is called a scaled dot-product attention because
of this scaling factor. The scaling factor is employed to scale down the values where
the dot products grow so large that the softmax function outputs values that result in
vanishing gradients of the network. The softmax function is then applied to produce the
weights of the values, before multiplying this score with the value vector of the word
embedding. Calculating the softmax of the dot-product score outputs a value between 0

6http://jalammar.github.io/illustrated-transformer/
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Figure 2.13.: Transformer self-attention example illustration. Figure from Jay Alammar7,
licenced under CC BY-NC-SA 4.0.

and ’, where a value closer to 0 signifies an unimportant word with regards to another,
and a value close to 1 signifies an important word. Here, unimportant and important
refer to the correspondence or match between two words, i.e. the word “it” corresponding
considerably to the word “child” in the sentence “The child was hyperactive because it
had just eaten too much sugar.”

All queries and corresponding key-value pairs are packed in matrices with the queries,
keys and values denoted with Q, K and V respectively. Scaled dot-product attention is
thus performed on the full matrices of the input sequence.
The Scaled Dot-Product Attention function can then be written as

Attention(Q,K,V ) = softmax(QKT
√
dk

)V , (2.13)

where its result is a matrix, denoted with Z.

Multi-Head Attention

In the architecture by Vaswani et al. (2017), the Scaled Dot-Product Attention is linearly
projected h times with different weight matrices, called Multi-Head Attention. This results
in h different, Zi, one for each head i. These resulting matrices are then concatenated
before multiplied with an additional weight matrix W O, which results in a resulting
matrix Z which thus contains a vector for each output word.

7http://jalammar.github.io/illustrated-transformer/
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Positional Encoding

The Transformer model also incorporates positional awareness by including a positional
encoding with the input embedding. This positional encoding includes information about
the relative or the absolute position of the tokens in the sequence. In Vaswani et al.
(2017) the model employed sine and cosine functions for the positional encoding because
it, amongst other reasons, gives the advantage that it can scale to unknown lengths of
sequences.

2.5.7. Bidirectional Encoder Representation from Transformers

A classic approach to language modelling is to predict the next word in a sequence based
on previous words. This approach is only unidirectional (i.e. only sees backwards) and
limits the information the model bases its prediction on. An enhancement to such an
approach is to make the model bidirectional, i.e. predict a word based on both previous
and subsequent words. The Bidirectional Encoder Representation from Transformers
(BERT) is an attention-based language model built on the Transformers architecture, and
is the first unsupervised language representation model that is deeply bidirectional. The
model encodes sequences into meaningful representations where attention is paid between
all words in the sequence, relatively. BERT tackles bidirectionality by employing an
unsupervised masked language modeling (MLM) pre-training task, while also employing
next sentence prediction task (NSP) for prediction of which of two sequences is subsequent
to the other.
BERT obtained state-of-the-art performance on eleven NLP tasks like The General

Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2018), The Multi-
Genre Natural Language Inference (MultiNLI) corpus (Williams et al., 2017), and The
Stanford Question Answering Dataset (SQuAD) v1.0 (Rajpurkar et al., 2016) and v2.0.
The GLUE benchmark is a collection of natural language understanding tasks, the
MultiNLI is a collection of sentence-pairs where the task is to label a hypothesis sentence
given a premise, and the SQuAD v1.0 is a question answering task where the answer to
the posed question might or might not exist in the presented text. SQuAD v2.0 extends
v1.0 in the way that the answer might exist in the given text, but not explicitly stated.

Soon after Devlin et al. (2018) published their paper introducing BERT, the code to
the model was open-sourced. Additionally a set of BERT models pre-trained on massive
datasets were also released. Thus, BERT was marked as the beginning of a new era in
NLP, where anyone without expertise in the field could effortlessly download and employ
these powerful language models.

Architecture

Devlin et al. (2018) employed two versions of different sizes of the model: BERTBASE

and BERTLARGE .

8http://jalammar.github.io/illustrated-bert/
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2. Theory and Background

Figure 2.14.: BERT architecture for BERTBASE . The encoder stack is made up of 12
encoders and each position of the input outputs a vector of the hidden size
of the encoders. Figure from Jay Alammar8, licenced under CC BY-NC-SA
4.0.

Although BERT is based on the Transformer architecture, the model only employs the
Transformer encoder. The encoders are stacked in the same manner as in the Transformer,
but the stacks are of size 12 and 16 for BERTBASE and BERTLARGE , respectively. Each
encoder layer (also called Transformer block) applies self-attention and passes the results
to its feed-forward network before sending the output to the next Transformer block. In
the last Transformer block, each position of the sequence outputs a vector of the same
size as the feed-forward neural networks in each layer. A simple illustration of the BERT
architecture is shown in figure 2.14.
BERTBASE has a total of 12 encoder layers, 12 attention heads per encoder, and

768 hidden units in its feed-forward network (i.e. hidden size). Consequently, the total
number of parameters is 110 million. On the other hand, the larger model, BERTLARGE ,
consists of 24 layers, 16 attention heads per encoder, and a hidden size of 1024. Thus,
the number of parameters for BERTLARGE is 340 million.

BERT can receive both a single, or a pair of input sequences. Additionally, to improve
the handling of rare or new words, BERT employs WordPiece embedding. Each embedding
is extended to include a position embedding for where in the sequence the embedding
is, and a segment embedding that signifies whether the token belongs to the first or the
second input sequence. This input representation can be seen in figure 2.15.

Pre-training

The BERT model is pre-trained on two unsupervised tasks: a Masked Language Model
(MLM) pre-training objective and Next Sentence Prediction (NSP). In MLM, random
WordPiece tokens are masked out (i.e. switched out) with the [MASK] token. The task of
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Figure 2.15.: BERT input representation. The inputs are composed of position embed-
dings, segment embeddings and token embeddings. Figure from Devlin
et al. (2018), with permission from Jacob Devlin.

the model is then to predict this masked word. This is different from other pre-training
tasks like next word prediction in that the model looks at both left and right context of
the word, and thus allows for a bidirectional pre-trained model.

In practice, 15% of all WordPiece tokens are masked out during pre-training. However,
because the token [MASK] does not exist during fine-tuning, there is a mismatch between
pre-training and fine-tuning. To mitigate this, the masked words were also replaced with
other words in the vocabulary (instead of the [MASK] token), or left unchanged. Thus,
for the 15% of WordPiece tokens to be masked out:

• 80% were replaced with the [MASK] token

• 10% were replaced with another word in the vocabulary

• 10% remained unchanged.

For the second pre-training task of BERT, Next-Sentence Prediction (NSP), the model
receives two input sequences, A and B, and predicts if B is a subsequent sequence of
A or not. 50% of the time, B is the successor, and 50% of the time it is not. The NSP
pre-training task was added to the model for enhancing its capabilities of handling the
relationship between multiple sentences.

Applications of BERT

BERT can be used for several tasks by employing a simple feed-forward network to the
model and fine-tuning this for the specific task at hand. Applications for BERT include
sentence classification for predicting which class a sentence belongs to (e.g. “spam” or
“not spam”), question answering as in SQuAD v1.0 and v2.0, and named entity recognition
(NER) for marking the entities within a sentence (e.g. person, date, action, etc.).

Moreover, BERT is not a natural choice for generating text due to its bidirectional
nature. However, this may be overcome if employed in conjunction with e.g. an LSTM,
as is explored in subsequent chapters.
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2.6. Automatic Generation of Image Captions

Automatic generation of image captions, called image captioning, is closely tied to T2I
synthesis in that they are, in essence, reverse processes. Moreover, it is especially relevant
for this work due to MirrorGAN employing re-generation of the image caption as an
extra objective function.
Throughout recent years, there has been multiple approaches to image captioning,

ranging from hand-crafted encodings through filling in appropriate words in an existing
template, to the generation of novel captions through employing deep neural networks.
As approaches such as the first are specific to certain types of tasks and can only create
a fixed-length caption, they are unsuitable for a more wide and diverse set of images.
On the other hand, deep learning-based techniques can generate novel captions which
also vary in length. Consequently, automatic generation of novel image captions through
employing deep neural networks has gained popularity as the field has progressed and
significantly surpassed the first type of approach. Moreover, image captioning through
deep learning connects the field of computer vision and natural language processing
through encoding visual features present in the input image, before translating these
features into a semantic representation
A typical architecture for deep learning image captioning is based on the encoder-

decoder structure discussed in section 2.5.4. As the process of image captioning can
be thought of as “translating” from image to text, it can be considered closely related
to neural machine translation, which task also often employs this architecture. This
encoder-decoder architecture typically uses a CNN for extracting features from the image,
and an RNN to generate the semantic caption. The major challenges of image captioning
include finding the central parts of an image, representing how these objects relate to
each other in context through natural language, and generating longer sequences (i.e.
sentences).
Xu et al. (2015) proposed an approach to image captioning through the use of deep

learning, encoder-decoder architecture, and employing an attention mechanism to choose
which area of the image to focus on at each time step. Their approach directly extends
the proposed attention mechanism by Bahdanau et al. (2014).
In the encoder, different features of the input image are extracted from an early

convolutional layer of a pre-trained CNN in order to keep a high dimension of features.
These extracted features are vectors denoted as

a = a1, ..., aL, ai ∈ RD, (2.14)

where i is a particular area of the input image. Subsequently, the decoder is an LSTM
with attention, which, for each time step, calculates the next output word of the output
image caption. The attention, or “weight” of each annotation vector, is calculated through
a multi-layer perceptron (i.e. a network with multiple layers) conditioned on the previous
hidden state of the LSTM for each time step. Then softmax is applied over the weights
to create a probability distribution where all weights sum to 1. The resulting values are
denoted as
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αti, i = 1, ..., L, (2.15)

where t is the current time step, and i denotes the corresponding annotation vector.
The authors thus propose two ways to use these attention vectors; through a stochastic

“hard” attention, and a deterministic “soft” attention. The soft attention is based on the
work of Bahdanau et al. (2014) and is essentially the weighted sum of all annotation
vectors ai of the input image, i.e.

∑L
i=1 aiαi for each time step, i. However, the hard

attention is different in that it provides a new feature at each time step, from which to
generate a corresponding word. These features are “randomly” chosen through sampling
their multinoulli (categorical) distribution. However, sampling within a neural network
prevents backpropagation. Simply put, in order for the gradient to be calculated for a
specific node, its function must be differentiable. This is not the case for randomly chosen
features. Consequently, the re-parameterization trick is applied, where the sampling, or
randomness, is separated out into it’s own node. Thus, the network learns a differentiable
function which receives the random variable as input, and backpropagation can then be
applied. Xu et al. (2015) proposed this to be a function of the features, ai, and their
locations, si, which are one-hot encoded vectors with the value 1 only for the current
location. This function then maximizes the probability of an image caption y.

Xu et al. (2015) employed their trained models (with hard and soft attention, respect-
ively) on several datasets, including the COCO dataset. The results were then evaluated
through both the BLEU and the METEOR (Denkowski and Lavie, 2014) metrics. Xu
et al. (2015) reported that both of their models outperformed previous image captioning
models on all datasets and using both metrics. Generally, the model trained using the
stochastic “hard” attention outperformed the “soft” version when evaluated through
the BLEU metric, while the “soft” model performed better when evaluated through the
METEOR metric.
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3. Related Work
This chapter presents key related work and the datasets they employ for training and
validation. As the main subject revolves around Text-to-Image synthesis based on the
architecture of Generative Adversarial Networks introduced by Goodfellow et al. (2014),
this chapter includes an overview of the main recent advances of T2I synthesis based on
this architecture. These advances or models are presented in chronological order, where
each model is based on the previous. Section 3.4 and 3.5 are based on the preliminary
studies conducted during the Fall of 2019, and are covered in greater detail than the
previous sections due to their importance for subsequent chapters. Additionally, section
3.1 provides an introduction to the three main datasets that are employed in the training
of the models described in this chapter.

3.1. Datasets

This section introduces the different object recognition datasets employed in the related
work explained in the rest of this chapter. The three datasets focus on different aspects
of object recognition; like image classification using labels, object localization using
bounding boxes and semantic segmentation in pixel-level.

3.1.1. The Oxford Flowers 102 Dataset

The Oxford Flowers 102 (Oxford-102) dataset provides a large number of classes within
the domain of flowers (Nilsback and Zisserman, 2008). The dataset contains 102 classes
of flowers commonly found in the United Kingdom. With each class consisting of between
40 and 258 images, the dataset contains in total 8,189 images. These images are separated
into 1,020 training images, 1,020 validation images and 6,149 test images.

Each image depicts either a single flower, or a small number of the same type of flower.
For each image, four different features or aspects of the flowers are also computed. These
features are: local shape/texture, shape of the boundary, overall spatial distribution of
petals and color. Examples of such images can be seen in figure 3.1a.

3.1.2. The Caltech-UCSD Birds-200-2011 Dataset

The Caltech-UCSD Birds-200-2011 (CUB Birds-200) dataset contains images and image
captions of 200 bird species. The dataset contains 8,855 training and 2,933 test images,
and there are 10 text descriptions per image (Wah et al., 2011). The images are all
annotated with bounding boxes (i.e. boxes showing where the bird is located in the
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(a) Oxford-102 Flowers dataset examples. Ex-
amples from Nilsback and Zisserman (2008),
with permission from Maria-Elena Nilsback.

(b) Caltech-UCSD Birds-200-2011 data-
set examples. Examples from Wah
et al. (2011), with permission from
Catherine Wah.

Figure 3.1.: Examples from the Oxford-102 and CUB Birds-200 datasets.

image), part locations and attribute labels. Examples from the dataset can be seen in
figure 3.1b.

3.1.3. The Microsoft Common Objects in Context Dataset

The Microsoft Common Objects in COntext (COCO) dataset contains 82,783 training
images and 40,504 validation images, and there are five text descriptions belonging to
each image (Lin et al., 2014). In contrast to the two datasets previously introduced, the
COCO dataset contains images depicting a wide range of categories, or objects. Instead
of only depicting one or more of the same type of objects in one image, the COCO dataset
contains images that show several objects at a time, i.e. showing objects in context as
shown in figure 3.2.

Through these attributes, the COCO dataset is the most diverse of the three datasets
presented. Moreover, the images in the dataset are sampled from the image and video
hosting service, Flickr1. Consequently, the creators of the dataset do not own the rights
to these images, although some are licensed under Attribution 4.0 International (CC BY
4.0), like the images in figure 3.2.

3.2. Generative Adversarial Network for Text-to-Image
Synthesis

Reed et al. (2016) were the first to move away from using properties of attribute
representations for generating images with their “Generative Adversarial Network for Text-
to-Image Synthesis”. Instead, they employed the power of natural language processing

1https://www.flickr.com/
2https://www.tensorflow.org/datasets/catalog/coco
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Figure 3.2.: Examples from the COCO dataset, taken from the TensorFlow website2.
The images are licensed under CC BY 4.0.

(NLP) for T2I generation through the use of the GAN architecture introduced by
Goodfellow et al. (2014). This was based on the understanding that natural language
provides a flexible interface for describing visual categories. As an extension to the original
GAN, they employed a version of a conditioned deep convolutional GAN (DCGAN).
The DCGAN was proposed by Radford et al. (2015) and is an improvement to the
original GAN in that it employs deep convolutional networks and batch normalization for
normalization and scaling of feature detection. Both the generator and the discriminator
of the T2I synthesis system proposed by Reed et al. (2016) are conditioned on learned
feature representations, encoded by deep convolutional and recurrent text encoders.

Reed et al. (2016) argued that the most straightforward way to evaluate the generated
images and corresponding text is to take in such pairs and judge if their combination is
real or fake. However, this is a naïve approach in that the discriminator has no way of
knowing if real images match the paired text or not. The approach implicitly contains
two sources of error where one is unrealistic images and the other is a mismatch between
the image and the text. With this in mind, Reed et al. (2016) wanted to separate these
error sources to make them more explicit, and thus introduced a new set of training
pairs to feed to the discriminator: real images with mismatched text. This, they argued,
would optimize the matching of images and text, in addition to the image realism loss,
and thus provide the generator with an additional learning signal.

This proposed architecture was trained on the CUB Birds-200 and the Oxford-102
datasets of flower images. Both datasets had five captions per image and the training
images were of size 64 x 64 pixels. The trained model provided plausible examples when
tested on descriptions of birds or flowers. When trained on a more diverse dataset, like
the COCO dataset, the model also generated images of low resolution (64 x 64 pixels)
and was not able to generate important details and the hierarchy of the objects in the
image. Example results of generated images on the Oxford-102 and CUB Birds-200
datasets can be seen in figure 3.3.
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Figure 3.3.: GAN for T2I example results on the Oxford-102 and CUB Birds-200 datasets.
Figure from Reed et al. (2016), with permission from Scott Reed.

3.3. Stacked Generative Adversarial Networks

Zhang et al. (2017) explored the usage of directly upsampling the generated image to
gain a higher resolution image. However, this led to training instability and output
that did not show real correspondence with the text input. Therefore, they proposed a
new architecture, Stacked Generative Adversarial Networks (StackGAN). The main idea
behind StackGAN was to employ two separate GANs (Stage-I and StageII GAN). This
was to generate images of higher resolution and of higher level of detail than previous
T2I architectures.

The Stage-I GAN is conditioned on the text input and generates a low resolution
image of 64 x 64. The Stage-II GAN is thereafter conditioned on the image that Stage-I
generated in addition to the text input. As seen in figure 3.4, Stage-II then increases the
resolution of the input image (e.g. to 256x256) and fills in details. The results of the
two different stages of StackGAN on the Oxford-102 and CUB Birds-200 datasets can be
seen in figure 3.5.

Zhang et al. (2017) saw that the model proposed in Reed et al. (2016) quickly collapsed
towards generating the same image when provided with the same sentence, called
mode collapse. According to them, this happened because of discontinuities in the
text embedding space, i.e. big distances between the encoded values of different words.
Therefore, the model, when provided with the same sentence, easily falls back to the
same values, or sentences. To remedy this problem, they introduced a Conditioning
Augmentation (CA) technique to smooth out these discontinuities or gaps. This is done
by randomly sampling latent text embedding variables from an independent Gaussian
distribution, N (µ(ϕt),Σ(ϕt)). Here, ϕt is the text embedding and µ(ϕt) and Σ(ϕt) are
the mean and the diagonal covariance matrix over ϕt, respectively. Thus, employing this
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Figure 3.4.: StackGAN architecture. The image caption is encoded into its text embedding
before being augmented by the CA. The Stage-I Generator then takes the
augmented embedding and noise vector and generates a 64 x 64 image.
The text embedding goes through the CA again before serving as input for
the Stage-II generator, together with the 64 x 64 image from the Stage-I
generator. Figure from Zhang et al. (2017), with permission from Han Zhang.

technique yields more training pairs. In addition to the CA, Zhang et al. (2017) added a
regularization term to the objective of the generator through the Kullback-Leibler (KL)
divergence to measure the difference between the standard Gaussian distribution and the
conditioning Gaussian distribution. This further enhanced smoothness and aided the
model in generalizing.

3.4. Attentional Generative Adversarial Network
Xu et al. (2018) saw that most T2I systems only employed a global sentence vector of the
input text when generating its corresponding image, without attending to the details of
the individual words. They therefore proposed a new model, the Attentional Generative
Adversarial Network (AttnGAN), which integrated attention and individual word vectors
to iteratively generate more details in the resulting image. As a part of this architecture,
they also proposed a Deep Attentional Multimodal Similarity Model (DAMSM), which is
a previously trained network for using attention to evaluate how well an image depicts
the semantic content of the input text. Thus, the model employs two loss functions: a
realism adversarial loss, and the DAMSM-loss.

The authors report that AttnGAN appreciably outperformed previous state-of-the-art
systems on both the CUB Birds-200 and the COCO datasets. Generated images from
both datasets can be seen in figure 3.7. Additionally, they proposed to use the R-Precision
score which is an evaluation metric commonly employed for ranking retrieval results
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Figure 3.5.: StackGAN example results. Examples from Zhang et al. (2017), with per-
mission from Han Zhang.

in information retrieval. This metric scores the retrieval based on r/R, where r is the
number of relevant documents of the total number of retrieved documents R. Similarly,
Xu et al. (2018) proposed to use this metric for T2I evaluation through querying relevant
image captions for the generated image.

3.4.1. Attentional Generative Network

The first part of AttnGAN, the Attentional Generative Network, employs m generators
which take m hidden states as input and generate m images, from small to large. For each
iteration, the hidden state is computed using an attention mechanism. As shown in figure
3.6, this attention mechanism takes the word and image features from the previous hidden
layer as input and computes a word-context matrix for the input image feature set. This
word-context matrix essentially contains information about which words are important
to focus on for the current iteration. The word-context matrix and corresponding image
features are then combined to generate the images at the next stage.

3.4.2. The Deep Attentional Multimodal Similarity Model

The main task of the DAMSM is to evaluate how well the generated image depicts
the input text through mapping the respective parts to a common semantic space and
computing their text-image similarity. The model employs two neural networks: a
text-encoder to encode the input text, and an image-encoder to encode the generated
image.

40



3.5. MirrorGAN

Figure 3.6.: AttnGAN architecture. The image caption is encoded into text feature
representations before divided into sentence and word features. The sentence
encoding is supplied to a conditioning augmentation, while the word features
are supplied to each stacked attention model. The DAMSM produces the
loss from matching word features and the generated image. Figure from Xu
et al. (2018), with permission from Tao Xu.

The text encoder is a bi-directional LSTM that maps both words and the global
sentence to features in semantic space. In this LSTM, each word corresponds to two
hidden states, one for each direction. The two hidden states are concatenated to represent
the semantic meaning of a word.

The image encoder maps images to semantic vectors. It is a CNN where the first layers
learn local features of sub-regions of an image, while the later layers learn global features.
It then maps these features to the common semantic space with the text encodings
through a perceptron layer.
The matching is then carried out based on an attention model between the image

and the text being evaluated. A similarity matrix is calculated through the dot-product
similarity for all possible pairs. For each word, it uses attention to build a context
vector for each region and computes a weighted average of these context vectors. This is
essentially an abstraction of the image’s abstraction of the token — the image’s attention
vector.

The similarity between this attention vector and the text encoding of the input text is
then calculated. The loss for the entire model is calculated in a semi-supervised manner,
where the only supervision is between the entire input texts and images.

3.5. MirrorGAN

In 2019, Qiao et al. (2019) introduced a new T2I model, MirrorGAN, built on the models
previously mentioned in this chapter. While directly expanding the AttnGAN model,
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(a) Images generated on the CUB Birds-200
dataset.

(b) Images generated on the COCO dataset.

Figure 3.7.: AttnGAN example results on the CUB Birds-200 and COCO datasets.
Figures from Xu et al. (2018), with permission from Tao Xu.

its main idea was heavily influenced by the CycleGAN model, as it revolves around
generating images from text with one GAN, before translating the image back to text
with another GAN. It then applies cycle-consistency on the re-generated and the original
text descriptions (see section 2.4.3).

The model incorporates the main breakthroughs from all previously mentioned T2I
models in this chapter. More specifically, it employs the conditional GAN architecture
presented in Reed et al. (2016), and stacks the image Generators and Discriminators
in the same way as first presented in Zhang et al. (2017). The model also employs the
Conditional Augmentation technique from Zhang et al. (2017), in addition to the attention
mechanism proposed in Xu et al. (2018). MirrorGAN differs from the AttnGAN model
mainly with regards to the generator loss as MirrorGAN employs the cycle-consistency
loss through text re-generation, while AttnGAN employs the generator loss provided by
the DAMSM.

The model was compared to other state-of-the-art models (such as AttnGAN) through
the R-Precision evaluation metric proposed by Xu et al. (2018), and the Inception Score
(IS). These metrics were employed to evaluate the MirrorGAN model trained on both
the CUB Birds-200 and COCO datasets. The results show that MirrorGAN achieved
new state-of-the-art performance for generating realistic images of high resolution. Addi-
tionally, the system was compared with AttnGAN through subjective visual comparisons
where it was also deemed superior. Results compared to the AttnGAN model can be
seen in figure 3.8.

All mathematical expressions in this section are shown as given by Qiao et al. (2019).
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Figure 3.8.: MirrorGAN example results in comparison to AttnGAN results. The left
half of the images are generated by the models trained on the CUB Birds-
200 dataset, while the right half are generated by the models trained on
the COCO dataset. Figure from Qiao et al. (2019), with permission from
Tingting Qiao. Repeated here for clarity.

3.5.1. Architecture

The architecture of MirrorGAN is comprised of three modules: A Semantic Text Em-
bedding Module (STEM), a Global-Local collaborative Attentive Module in Cascaded
Image Generators (GLAM), and a Semantic Text REgeneration and Alignment Module
(STREAM). These modules create word embeddings from the text, generate a corres-
ponding image and re-generate text from the generated image, respectively. All modules
and the overall architecture is depicted in figure 3.9.

1. STEM: In the STEM module, the text provided serves as input to an RNN that
extracts semantic embeddings from the provided text description. It creates both
word and sentence level embeddings as stated below:

w, s = RNN(T ). (3.1)

Where, w is the word embedding, s is the sentence embedding and T is the provided
text description. The conditioning augmentation function is then applied to the
sentence embedding, s, to create the augmented sentence embedding, sca.

2. GLAM: The second module in MirrorGAN is the GLAM module: a multi-stage
cascaded generator which consists of a sequential stack of three image generation
networks. The word- and sentence-level attention models generate attentive word-
and sentence-context features, respectively. These context features are then used
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Figure 3.9.: MirrorGAN architecture showing the STEM, GLAM and STREAM modules.
Figure from Qiao et al. (2019), with permission from Tingting Qiao.

to generate visual features that are employed by the image generators to generate
a resulting image.

3. STREAM: The third module of MirrorGAN, STREAM, is concerned with text
re-generation from the resulting image from the GLAM module and is explained in
further detail in section 3.5.3.

3.5.2. Generator and Discriminator Objective Functions

The MirrorGAN model aims to generate photo-realistic images through generator stacking
and minimizing two adversarial losses: a visual realism adversarial loss, and a text-image
paired consistency adversarial loss. The generator, G, and the discriminator, D, of the
MirrorGAN are trained alternately during each stage of training.

Generator

For the generator, the ith stage is trained by minimizing a version of the general GAN
generator loss, expressed as

LGi = −1
2EIi∼pIi

[log(Di(Ii))]−
1
2EIi∼pIi

[log(Di(Ii, s))]. (3.2)

The first term of the expression is the visual realism adversarial loss while the second is
the text-image paired semantic consistency adversarial loss. Gi and Di are the image
generator and discriminator at the ith stage, respectively. Ii is a generated image sampled
from the distribution pIi in the ith stage. In addition to the two adversarial losses, the
generator applies a cross-entropy based text-semantic reconstruction loss, called the
STREAM loss. This is to compare the underlying semantics of the re-generated image
caption of the generated image with original image caption, and is expressed as
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Lstream = −
L−1∑
t=0

log pt(Tt), (3.3)

where T is the provided text description and pt is the word probability distribution
generated from the image in the GLAM module. The resulting generator’s total objective
function is thus a combination of each ith stage generator’s adversarial loss and the
STREAM loss, as follows

LG =
m−1∑
i=0
LGi + λLstream. (3.4)

Discriminator

The objective function for the ith discriminator also consists of visual realism adversarial
loss and text-image paired semantic consistency adversarial loss. The loss function can
be expressed mathematically as

LDi = −1
2EIGT

i ∼p
IGT
i

[log(Di(IGT
i ))]

− 1
2EIi∼pIi

[log(1−Di(Ii))]

− 1
2EIGT

i ∼p
IGT
i

[log(Di(IGT
i , s))]

− 1
2EIi∼pIi

[log(1−Di(Ii, s))],

where IGT
i comes from the real image distribution pIGT

i
in the ith stage. Unlike the

ith stage generator which tries to maximize the probability of a generated image being
classified as real, the ith stage discriminator tries to minimize this likelihood. At the
same time, it also tries to maximize the probability of a real image being classified as
real.

The total objective function of the discriminator can then be expressed as

LD =
m−1∑
i=0
LDi .

3.5.3. Details of the STREAM Module

The STREAM module employs an encoder-decoder architecture where the encoder is a
CNN that translates from the generated image of the GLAM module to image features
representations. Subsequently, the encoder is an RNN (i.e. LSTM) that translates from
the image features to a predicted probability distribution of words. The probability
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Figure 3.10.: A simple overview of the original STREAM decoder architecture.

distribution thus makes up the predicted re-generated image caption. Figure 3.10 provides
a more detailed architectural overview of the STREAM module.

The encoder is made up of a pre-trained version of ResNet152 (see section 2.3.6), where
the last fully connected layer is exchanged for a linear transformation layer and a batch
normalization layer for re-scaling the parameters of the network. The decoder’s first
layer is an embedding layer, which acts as a lookup table for the vocabulary the model is
trained on. This lookup table is thus concatenated with the image features supplied by
the encoder, before serving as input to an LSTM. The last layer is a linear layer which
provides the predicted word probability distribution (i.e. image caption).
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This chapter introduces the overarching architecture and source code1 for the project, in
addition to a more detailed discussion on the integration of BERT. The project is directly
based upon the original implementation of MirrorGAN2. Consequently, the overarching
architecture of the project remains the same as discussed in section 3.5 and shown in figure
3.9 (see page 44). However, because this work proposes an integration of BERT with
MirrorGAN, section 4.1 describes possible integration approaches, and provides insight
to the approach chosen. Moreover, section 4.2 introduces the main software employed in
the implementation of this integration, while section 4.3 presents the methodology with
which the project was implemented.

The term architecture is henceforth referred to as the overarching setup of the system.
While the term is mostly used for the setup of the final model, it can also be used to refer
to the architecture of a sub-part of this final model. A module is a separate, stand-alone,
part of a bigger model, e.g. the different modules of MirrorGAN: STEM, GLAM and
STREAM. A model, on the other hand, is either a specific artificial neural network, or an
entire system as whole, e.g. the MirrorGAN model. Throughout this and its subsequent
chapters, the terms original and new are used for the two versions of the MirrorGAN
model; the original and the one integrated with BERT, respectively.

4.1. Integration of Bidirectional Encoder Representation
from Transformers with MirrorGAN

There are three main ways of integrating BERT with MirrorGAN. These approaches
include employing BERT for generating sentence and word-level embeddings from the
original image caption in the STEM module, evaluating the semantic consistency of the
original and the re-generated image captions, and re-generating the image caption from
the generated image in the STREAM module. This work will focus on the latter of these
approaches as it was suggested as a potential improvement to the STREAM module by
Qiao et al. (2019).

Furthermore, the proposed extension is built on the image captioning model proposed
by Xu et al. (2015), which is then combined with BERT. This combination is based on
work found on GitHub3, which was modified to work the rest of the project architecture.
The encoder of this implementation uses a pre-trained version of ResNet101 from which

1https://github.com/cammiida/masters-project/
2https://github.com/qiaott/MirrorGAN/
3https://github.com/ajamjoom/Image-Captions/
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Figure 4.1.: The new STREAM architecture. The encoder uses a pre-trained version of
ResNet101 for extracting features before performing an average pooling to
mitigate sensitivity to feature locations. The decoder takes these features,
calculates the BERT embedding values and performs soft attention inde-
pendently, before feeding the results to an LSTM. This happens for each
time step, where one time step produces the next word in the image caption.
The nodes “BERT E” and “SA” denote BERT embeddings and soft attention,
respectively.

it extracts the image features. Additionally, the encoder employs adaptive pooling to
downsample (i.e. reduce the size of) the feature mapping to mitigate the network being
sensitive to the location of the features. The decoder then takes these features, applies
the deterministic “soft” attention as described in 2.6 for each time step. Additionally, the
captions corresponding to each encoded image are valued through a pre-trained version
of BERT base and supplied to an LSTM along with the attention-weighted embeddings
for each time step. Figure 4.1 shows an unrolled (i.e. over time) and simplified overview
of the implementation of this integration.

4.2. Software

The project was implemented using Python 3.7.4 and PyTorch 1.4.04. As the original
implementation of MirrorGAN employed PyTorch for its implementation, this proved
to be the natural choice for which deep learning software library to use. The choice of
versions for both PyTorch and Python landed on the newest stable releases at the time
of implementation (version 1.4.0 and 3.7.4, respectively) for reasons like support, ease of
use and functionality. Because the original implementation employed older versions of
both library and language, some refactoring was required.

4https://pytorch.org/
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4.3. Methodology

This section explains the methodology followed when implementing the project. The main
focus of this methodology includes the flexibility and reproducibility of the implementation.
Consequently this section explains how this was approached.

4.3.1. Reproducibility

A modular approach was adopted, where easy application was the main focus. As the
project consists of several models that needed to be trained, the need for a simple overview
was prominent. With this in mind, the general structure consists of a few startup or
training scripts, one for each module in the architecture (e.g. the STEM module), and
one for each experiment. The different configuration settings and hyper-parameters
for the models are set through configuration files, which can be supplied as arguments
through the command line when running the model. All configuration files employed
can be found in Appendix C. Other important configuration parameters are also made
available through the command line, such as setting a random seed, and choosing which
additional configuration file to supply.
Important assets for the different models are separated into different folders. These

folders contain the dataset, the output (or results) from the training of the different
models, and the actual trained models. Other shared functionality between the different
files in the architecture, like loss and utility functions, are also separated into their own
folders and files.
The employed Python libraries are saved to a requirements.txt file with their

respective versions included. This provides a simple way for other developers to install
the correct version of the different Python libraries employed through a terminal command,
which consequently facilitates running the project correctly. Additionally, the project
is implemented in such a manner that it can resume training on a saved model, if
necessary. Given the large number of epochs and the time-consuming task of training,
this functionality simplifies the training of the generators and discriminators in that it
can be divided into smaller “chunks” of training.

Further instructions to run the code are included in the README.md file of the project.

4.3.2. Flexibility

To provide flexibility in the training of the different models, the use of different con-
figuration files was employed. Through these configuration files it is possible to set a
significant amount of configuration parameters and hyper-parameters for the models.
These parameters include the possibility of setting which version of the STREAM module
to use; the new or the original. Additionally, all paths to resources like the dataset are
set through these configuration files. This simplified an individual setup for storing the
resources.
Moreover, the project also incorporates a resizing module to create a smaller version

of the dataset having the same setup as the full version. Consequently, this resizing
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facilitates testing of the code due to the smaller amount of data employed.
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5. Experiments and Results
This chapter introduces the conducted experiments, including their corresponding results
and evaluation. Section 5.1 explains the experimental setup, while section 5.2 presents
the overarching plan for the experiments. Moreover, section 5.3 presents the results from
the conducted experiments.

As stated in the previous chapter, this and subsequent chapters use the terms original
and new models for the two versions of the MirrorGAN model. These two models
refer to the original implementation by Qiao et al. (2019), and the one integrated with
BERT. This integration is employed in the STREAM module, which re-generates the
image caption of the generated image. The implementation of the proposed model and
experiments can also be found on GitHub1.

5.1. Experimental Setup and Constraints

This section explains the setup for conducting the experiments. This includes a description
of the hardware employed to train the models and conduct the experiments, complications
regarding memory capacity in the GPUs employed and training time, and a description
of the input sentences which are used to generate the images supplied in Appendix B.

Most experiments were run through startup scripts which use the files supplied in the
experiments folder of the project. Moreover, the configuration parameters for all models
(i.e. hyper-parameters) and experiments are provided in Appendix C.

5.1.1. Hardware

The training and evaluation was performed on the NTNU IDUN computing cluster
(Själander et al., 2019). The cluster has more than 70 nodes and 90 GPGPUs. Each
node contains two Intel Xeon cores, at least 128 GB of main memory, and is connected
to an Infiniband network. Half of the nodes are equipped with two or more Nvidia Tesla
P100 or V100 GPGPUs. IDUN’s storage is provided by two storage arrays and a Lustre
parallel distributed file system.

5.1.2. Training Complications

At the beginning of training the GAN models, it was evident that the batch size of 64
employed in the original implementation of MirrorGAN2 was too big for single GPU on

1https://github.com/cammiida/masters-project
2https://github.com/qiaott/MirrorGAN/
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the IDUN cluster. To mitigate this problem, a DataParallel container in PyTorch3 was
implemented for the generator and discriminator models. This container parallelizes the
model through distributing the input batch over the available GPUs. The division of the
batch is implemented in such a manner that the output is gathered from the different
devices to one device once the computation ends.
Further, training of the new model proved to be more time-consuming than the

original version, with one epoch taking 40 minutes to finish for the new, and 25 for
the original model. Training over the full 600 epochs for the new model would require
600 ÷ (60÷ 40) = 400 hours, which in turn is 400 ÷ 24 ≈ 17 days. Moreover, for the
original model it would require 600÷ (60÷ 25) = 250 hours, which is 250÷ 24 ≈ 10 days.

Through e-mail correspondence, the main author of the MirrorGAN paper (Qiao et al.,
2019), Tingting Qiao, provided further helpful insight to their implementation of the
MirrorGAN model. While running the original model themselves, it took eight days
to run the entire model on the COCO dataset over 600 epochs. While the amount of
resources they had available is not known, this is relatively close to the training time
experienced in this work.

Moreover, due to time constraints at the end of this work, it was unattainable to train
over all 600 epochs for both versions of the model. Consequently, they were trained as
much as possible, and reached a total of 160 epochs. Both models were trained over the
exact same amount of epochs to ensure logical comparison.

5.1.3. Experiment Inputs

Two distinct sets of sentences were chosen as input for conducting the experiments. The
first set contains sentences taken from Qiao et al. (2019) where they serve as a comparison
to AttnGAN, while also demonstrating the limitations of a generalized T2I model at
the time of writing. Generalized means the ability to generate a wide range of realistic
images based on varying natural language input. In addition to these sentences, the set is
supplied with a selection of example captions from the COCO dataset that also describe
physical scenes.

While the first set of sentences describe physical scenes, the second set does not. The
terms “descriptive” and “non-descriptive sets” are used to refer to the separate sets of
sentences. The two sets can be found in tables 5.1 and 5.2. The difference between these
two sets of sentences is used to see how the models respond to the two types of text
input: one slightly ambiguous and the other very ambiguous. The word ambiguous is
used here for the multi-modality of the problem where a sentence “A car was standing in
the middle of the street” definitely yields for a car in the middle of a street, and “I felt
like wearing blue today” does not have any clear “guidelines” (except that it might be
appropriate to use the color blue).

3https://pytorch.org/docs/stable/nn.html#dataparallel/
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Table 5.1.: Experiment inputs: Descriptive sentences.
# Sentence

1 A skier with a red jacket on going down the side of a mountain.
2 The pizza is cheesy with pepperoni for the topping.
3 Boats at the dock with a city backdrop.
4 Brown horses are running on a green field.
5 A bunch of vehicles that are in the street.
6 A lamp with a shade sitting on top of an older model television.
7 A stationary train with the door wide open.
8 A street that goes on to a high way with the light on red.
9 A large white teddy bear sitting on top of an SUV.

Table 5.2.: Experiment inputs: Non-descriptive sentences.
# Sentence

1 I love going to art galleries and seeing all the
beautiful and strange creations they have there.

2 It is utterly terrific that he got accepted to that school.
3 The weather has been really horrible these last few days.
4 Today we are going to do some shopping for Lucy’s prom.
5 We are about five minutes late, I’m afraid.

5.2. Experimental Plan

Preliminary to the experiments, a set of four images for each sentence in the descriptive
and non-descriptive sets was generated for each of the models, and repeated over every
32nd epoch up to epoch 160. This yields five different epoch steps, and consequently
4 images · 14 sentences · 5 steps = 280 images per model. The total amount of images
is thus 280 · 2 models = 560 images. Due to this large amount of images, only a few
examples are included in this chapter. The full set of images can be found in Appendix
B.

The overarching plan for the experiments is divided in three. The first part is concerned
with comparing the two STREAM modules: the new and the original, employing the
1-, 2-, 3- and 4-gram versions of the Bilingual Evaluation Understudy (BLEU) metric.
As the change of the STREAM module is a core component of this work, it is natural
to investigate how the new module performs compared to the original version. The
second part of the experiments focuses on the computation of the FID score of the
images generated by the final two T2I models. The scores computed are then used to
compare the two models in a quantitative and objective manner. The third part of the
experiments revolves around generating images for the two distinct sets of sentences
introduced in section 5.1.3 by both models, before evaluating a subset of these images
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Scores New model Original Model

BLEU-1 0.780 0.357
BLEU-2 0.603 0.110
BLEU-3 0.477 0.037
BLEU-4 0.379 0.015

Table 5.3.: BLEU scores for both new and original STREAM models calculated and
averaged over the entire validation set of the COCO dataset.

through conducting a survey. This survey aims to serve as a qualitative support to the
FID metric, in addition to providing interesting thoughts on the generated images and
T2I synthesis in general.

5.3. Results

This section presents the results from the different experiments. These are presented in
the same order as introduced in section 5.2 starting with the BLEU scores of the compared
STREAM modules. Then, the FID scores of the two final versions of the MirrorGAN
model are presented, before the results from the conducted survey are summarized.

5.3.1. Comparing the STREAM Modules

The two STREAM modules were compared using the BLEU metric, which is commonly
employed to evaluate the quality of machine translated text, including I2T. The score
was calculated for each batch of the validation set of the COCO dataset and averaged
over all batches. The results for both models are presented in table 5.3 and show that the
new STREAM model clearly outperforms the original version when measured through
the BLEU metric.
As the change to MirrorGAN proposed in this work is confined to the STREAM

module, the comparison of the new and original versions of the module is central. This is
due to the generator loss being partly composed of the semantic similarity loss between
the input and the re-generated image caption, which suggests that an improvement
of the re-generation of the image caption means improved learning for the generator.
Consequently, change in this module might be the direct cause of any performance
differences of the two final MirrorGAN models.

5.3.2. Fréchet Inception Distance

The second part of the experiments is based on evaluating the performance of the two
versions of MirrorGAN using the Fréchet Inception Distance (FID) metric. The FID
metric was developed as an improvement to the commonly employed Inception Score
through, amongst other traits, basing its score on comparing the generated images to
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Runs
1 2 3 Average

New model 94.16 93.62 91.87 93.22
Original model 96.57 96.74 96.51 96.61

Table 5.4.: FID scores for both the new and the original model run multiple times on a
subset of the validation set.

real images. Consequently, this section employs the FID metric to approach an objective
evaluation of the generated images of both models as an addition to the conducted survey.

Due to the significant overhead of computing the FID score, a subset of the validation
set in the COCO dataset was created through the dataset resizing module of the project
(see section 4.3.2). For this resizing, a random sample of 5% from the validation set was
chosen, which resulted in a subset of 2,023 images with corresponding image captions.
Moreover, although the dataset contains five image captions per image, only the first
caption per image was chosen for this task to ensure that the amount of images generated
was the same as the amount of images in the validation set. All generated images
were saved to the same folder, before a PyTorch implementation of the FID score4 was
employed to calculate the FID between this folder and the folder containing the validation
images from the resized version of the dataset. The FID was computed on this subset
three times on both models for the last epoch and provides a clear indication of how the
models perform relative to each other.
The results of the calculations are shown in table 5.4. A lower FID score indicates

a “shorter distance” between the real and the generated images and is interpreted as a
better result. It is clear that the new model slightly outperforms the original in each
run. However, from subjective inspection, the images generated by the models trained
over 160 epochs were judged to be of lower quality than the images generated by the
models trained for fewer epochs. This was especially prominent for the original model.
Due to this observation, the FID score was also calculated for all intermediate steps
in the training, with step size 32. The results of this calculation is provided in table
5.5. This table indicates that the original version of MirrorGAN performed best overall
when trained over 64 epochs, and degraded with each epoch step after that. Moreover,
this is in accordance with the subjective evaluation of the quality of the images. Even
though the new model outperforms the original when trained over all epochs, any other
epoch step shows that the original version is superior. A further discussion is provided in
section 6.1.

5.3.3. Survey

The generated image sets from the last epoch (epoch 160) were included in a survey that
was conducted to supplement the quantitative measures of the two previous experiments

4https://github.com/mseitzer/pytorch-fid/
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Epochs
32 64 96 128 160

New model 95.42 93.08 106.50 93.28 93.94
Original model 75.69 72.71 80.93 85.56 97.55

Table 5.5.: FID scores for both the new and the original model run on a subset of the
validation set for each epoch step.

with a qualitative comparison of the generated images by the two models.
The initial section of the survey included questions about the respondents’ experience

in photography, visual arts and photo composition. This section was included to provide
context of what type of people were answering the survey. The second section of the
survey compared two sets of images generated by the new and original models for each
sentence in the descriptive set by asking the participants of the survey which of the image
sets corresponds best with the provided sentence. Furthermore, the third part compared
the image sets generated by the sentences in the non-descriptive set by asking which one
is more interesting.
The survey was designed to primarily compare the two models, while also providing

additional optional questions. This ensured that the survey could be completed in a short
amount of time while also providing the option of including more information. These
additional questions focused on the overall impression of the images, if any separate image
sets stood out from the rest, and in what ways a T2I system could be useful. Moreover,
the survey was posted on Facebook and the social news aggregation, web content rating,
and discussion website, Reddit5. The survey received a total of 33 responses and is
provided in Appendix A.
The first section included questions about the respondents’ experience within pho-

tography, visual arts and image composition. The values range from 1 for not experi-
enced/interested, to 5 for very experienced/interested. Table 5.6 shows the results from
this section of the survey. Each value cell in the table is the percentage of respondents
choosing a particular value for a corresponding question, represented as a decimal num-
ber. Consequently, all numbers for any one question sum up to 1. The table provides
a summary of what type of people have answered the survey. It indicates that most
of the respondents are fairly interested in photography and visual arts. Moreover, the
respondents also generally report a low to medium amount of knowledge and experience
in both photography and visual arts. However, it can also be seen that a few respondents
state to be very experienced in both fields. Moreover, many also report low to medium
knowledge of image composition.

By inspection of the answers to the second section, presented in table 5.7, it can be seen
that the image set generated by the original model (image set 2) scored higher than the
new (image set 1) 5/9 times. Furthermore, table 5.8 presents the results from the third

5Posted to the subreddits (i.e. channels): https://www.reddit.com/r/SampleSize/ and https://www.
reddit.com/r/takemysurvey/
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Table 5.6.: Survey section 1: Showing the questions and responses for section 1 of the
survey. An answer of 1 means low or poor, while 5 means great or high.

Experience 1 2 3 4 5

How would you rate your experience with
photography?

0.152 0.485 0.182 0.182 0.000

To what degree have you done photography? 0.242 0.515 0.152 0.061 0.030
How would you rate your knowledge in visual
art?

0.242 0.364 0.303 0.061 0.030

To what degree have you created visual art
(not photography)? (e.g. painting, drawing,
pottery)

0.212 0.364 0.273 0.061 0.91

To what degree would you rate your know-
ledge of image composition?

0.303 0.364 0.182 0.121 0.030

How interested are you in photography? 0.121 0.303 0.333 0.242 0.000
How interested are you in visual arts? 0.061 0.242 0.455 0.182 0.061

section, which addresses how interesting the images generated from the non-descriptive
set are. The results from this section show that the images generated by the original
model were again preferred over the new, having a higher score than the new for 3/5
questions.
The last part of the survey includes extra optional questions about the respondent’s

general perception of the images and if any image set stood out from the rest. More
specifically, the questions were as follows:

1. What do you think of the quality of the images you have been presented with?

2. Does any (one or several) image set(s) stand out to you?

3. Do you think a system that generates images based on text would be useful? If so,
what for?

The first question received answers ranging from “Quite poor” and “They seem very
abstract and surreal” to “It is not perfect, but it was surprisingly good. I expected it
to be lower.” Moreover, several respondents saw the generated images as interesting
and that some look like art, based on statements such as “I didn’t think they matched
very well the description, but some generated interesting art which kinda had elements
of what you wanted to generate” and “They looks like partly figurative art, not very
much like the text descriptions”. When asked if there were any images that stood out
from the rest in question 2, most respondents did not think so. However, one respondent
mentions “The first image of each pair seemed more vibrant and meaningful compared to
the second.” While it is not certain whether the respondent meant the first image of each
set or image set 1, another statement supports the latter interpretation through “Yeah,
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Table 5.7.: Survey section 2: Asking which image set corresponds best with the given
text description. Image set 1 refers to the images generated by the new model,
while image set 2 refers to the images generated by the original model.

Sentence Image set 1 Image set 2 Both image sets
equally fit the
description

A skier with a red jacket on
going down the side of a moun-
tain.

0.242 0.697 0.061

The pizza is cheesy with pepp-
eroni for the topping.

0.636 0.182 0.182

Boats at the dock with a city
backdrop.

0.576 0.242 0.182

Brown horses are running on a
green field.

0.242 0.364 0.394

A bunch of vehicles that are in
the street.

0.333 0.515 0.152

A lamp with a shade sitting on
top of an older model television.

0.061 0.485 0.455

A stationary train with the
door wide open.

0.939 0.030 0.030

A street that goes on to a high
way with the light on red.

0.788 0.152 0.061

A large white teddy bear sitting
on top of an SUV.

0.212 0.333 0.455

overall I found that when I was asked to consider images based on interest/aesthetics,
I preferred image set 1 consistently over image set 2.” Moreover, there were multiple
interesting suggestions provided for question 3. The answers convey a general positiveness
towards the usefulness of a well-functioning T2I system. A list of all responses to these
questions can be found in Appendix A. It is important to note that the questions were
optional, and thus the number of responses for these questions is not as high as the total
number of respondents.
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Table 5.8.: Survey section 3: Asking which image set is more interesting. The question is
supplied with the corresponding text description. Image set 1 refers to the
images generated by the new model, while image set 2 refers to the images
generated by the original model.

Sentence Image
set 1

Image
set 2

Both of them
are equally
interesting

Neither are
any

interesting

I love going to art galleries
and seeing all the beautiful
and strange creations they have
there.

0.273 0.515 0.091 0.121

It is utterly terrific that he got
accepted to that school.

0.182 0.394 0.091 0.333

The weather has been really
horrible these last few days.

0.303 0.364 0.091 0.242

Today we are going to do some
shopping for Lucy’s prom.

0.424 0.212 0.182 0.182

We are about five minutes late,
I’m afraid.

0.667 0.182 0.061 0.091
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6. Evaluation and Discussion
This chapter provides a final discussion of the work presented in previous chapters.
Evaluation of the results is an important part and a challenge of image generation. There
are no clear guidelines for evaluating what is a high quality generated image as there are
multiple ways of generating an image which can all be deemed equally good. Additionally,
the evaluation of the results is often highly subjective, although it may be argued that
generated images of high quality should exhibit some form of realism1. Specifically, in
the case of T2I synthesis, they should depict the objects mentioned in the input sentence.
Even so, this chapter aims to discuss the different results presented in section 5.3, through
both quantitative and qualitative measures, in an attempt to compare the two versions
of the MirrorGAN model.
Hence, sections 6.1 and 6.2 discuss the quantitative and qualitative results of the

experiments, respectively. Subsequently, section 6.3 aims to answer the research questions
through re-stating each question, before listing major findings that help answer the
question at hand. Moreover, after each research question has been discussed, this section
also includes a review of how the Thesis goal has been met. Additionally, as the last part
of this chapter, section 6.4 will discuss the limitations of this work.

6.1. Quantitative Evaluation

As observed in section 5.3.1, the new, proposed version of STREAM clearly outperforms
the original version. Consequently, it is natural to think that this would improve the
image generation in the final model. However, when comparing the final MirrorGAN
models over all epoch steps, as listed in table 5.5, it is evident that the original version
generally outperforms the new when measured through the FID score. This is true for all
but the last epoch step, as shown in table 5.4, where the new version slightly outperforms
the original in every computed iteration. However, this is not due to the new model
improving, but rather the deterioration of the original version. From the FID scores in
table 5.5, we can infer that neither of the two models learn after epoch 64, as their FID
scores do not decrease. Consequently, the question arises about why this happened.
In the training of a GAN, the two players (the generator and discriminator) are

competing in a zero sum game, also called a minmax game. This training is difficult
because the goal is not for either player to win, but rather have them reach a state
where neither player gains anything from changing its behaviour. Such a state is also
called a Nash equilibrium, and reaching it means that we have a stable, or converged,

1This is dependent on the application, but true for this work.
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(a) New model. VE: 32 (b) Original model. VE: 32

(c) New model. VE: 128 (d) Original model. VE: 128

Figure 6.1.: Comparison of the new and original models trained over 20 epochs with a
visual embedding size of 128. “VE” denotes the visual embedding size.

network. Reaching this state is theoretically feasible, although reasonably difficult to
achieve in practice. On the other hand, in an unstable network, the two players attempt
to “counteract” the move of the other player at each iteration, which contributes to
sub-optimal learning and the network not converging. Another frequent problem when
training GANs is called mode collapse means that the generator fails to generate varying
images (i.e. multiple modes). That is, if a generator is supposed to generate an image of
any number between 0 and 9, and it only generates the even numbers, it has fallen into a
partial mode collapse. In a full mode collapse, on the other hand, the generator would
only generate one out of the ten numbers. A third common problem is when one player
becomes much more powerful than the other, e.g. if the discriminator becomes too good
at detecting whether an image is real or fake. Research indicates that this hinders the
learning of the generator, as it contributes to vanishing gradients (Arjovsky and Bottou,
2017). Because of all aforementioned problems, the hyper-parameters of a GAN need to
be carefully constructed to create an optimal game.
When inspecting the loss plots for the new and original models, it is clear that the

discriminator loss approaches 0 in early stages of the training. The loss plots of the new
and the original model trained over 20 epochs are shown in figure 6.1a and 6.1b. They
are typical examples of the imbalance in the minmax game previously introduced, where
one player is exceedingly better than the other. As stated in Goodfellow et al. (2014),
vanishing gradients for the generator is a common problem when the discriminator’s job is
very easy. This is the case for T2I synthesis as it is a highly multi-modal problem, where
the generator performs poorly in the early stages of training (i.e. generates unrealistic
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(a) New model

(b) Original model

Figure 6.2.: Similar generated images for “The pizza is cheesy with pepperoni for the
topping”

images far from the target distribution). This is especially true for a generalized T2I task
as is explored in this work through employing the COCO dataset.
While there may be several causes for the discriminator exceedingly outperforming

the generator, a likely scenario is the sub-optimal setting of hyper-parameters of the
network. One such sub-optimal hyper-parameter may be the low visual embedding size
of 32. To investigate if this hyper-parameter adjustment might improve training, the
new and the original models were re-trained with an increased visual embedding size of
128 over 20 epochs. The loss plots of these models are shown in figure 6.1c and 6.1d.
When comparing all loss plots in figure 6.1, it is evident that in the loss plots for the
models with a higher visual embedding size, the discriminator loss has not yet approached
0. This is a clear indication that an increased visual embedding size may mitigate the
problem of vanishing gradients, and thus improve the learning of the generator. However,
this is only one example of a hyper-parameter change, and there may be various other
adjustments that could further improve training. Furthermore, other approaches have
been developed to mitigate the problem of vanishing gradients, including the Wasserstein
loss and a modified minmax loss, where, instead of minimizing log(1 −D(G(z))), the
generator maximizes logD(G(z)), as proposed by Goodfellow et al. (2014).

Further comparison of the generator losses of the new and the original model indicates
that the new model yields lower loss values. While inspecting the loss values of the
generator is generally not a good indicator for how well a GAN network performs, these
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(a) Visual embedding size: 32

(b) Visual embedding size: 128

Figure 6.3.: First epoch losses for the new model with visual embedding size 32 versus
128.

differences suggest that the new model might have some merit.
Through inspection of the generated images for all epoch steps, provided in Appendix

B, we can see that several of the images generated by both models in the later steps
are exceedingly similar. An example of this is shown in figure 6.2. These observations
strongly suggest that the individual GANs have entered a partial mode collapse. The
mode collapse indicates that the generator has one or a small sample of fixed images that
it deems as optimal to minimize its loss. Various approaches have been made to remedy
the problem of mode collapse, including the Wasserstein loss (Arjovsky et al., 2017) and
unrolling GANs (Metz et al., 2016). While it is unclear why mode collapses happen, a
partial cause in this case may be the low visual embedding size employed during training
of both models. However, due to time constraints the mitigation strategies for both
vanishing gradients and mode collapse are left for further research.

Moreover, the generator in MirrorGAN tries to minimize the visual realism adversarial
loss and the text-image paired semantic consistency adversarial loss. In addition to
these adversarial losses, it also applies a text-semantic reconstruction loss to evaluate
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the similarity of the original input and the re-constructed image caption, called the
STREAM loss (see section 3.5). While the STREAM loss is supplied to the generator’s
loss, it is not supplied to the discriminator’s loss. With a better image captioning model
(i.e. image caption re-generation), this might lead to a more accurate STREAM loss,
and thus help the generator learn. However, when the generator performs poorly in
generating realistic images, the re-generation of the image caption from the unrealistic
images will also perform poorly, regardless of how well the image captioning model proves
to perform on real images. Because the models trained in this work ran into problems
like vanishing gradients and mode collapse, in addition to not being trained enough, the
generators in the respective models were not able to generate realistic images. Therefore,
the real advantage of an improved STREAM model is not proved, and should be further
investigated in future work.

6.2. Qualitative Evaluation

The survey indicates that for slightly more than half of the image set comparisons, the
respondents prefer the images generated by the original model over the ones generated
by the new. However, through further inspection of the results, it can be argued that
the differences are not major. Also, while the results might favour the original model
for these particular images, they might change for different images, generated from a
different set of sentences. This is supported by the FID scores in table 5.4 in that these
scores also indicate that the difference between the two models is not great.
Moreover, through the answers of the survey, a question arises if a T2I system might

have other value apart from generating realistic images, such as generating creative art.
This, however, calls for a brief discussion on what creativity is, and how it relates to
computers. The rest of this paragraph is based on the pre-study of this work, conducted
during the Fall of 2019. Boden (2004) described creativity in several ways, one of which
defines an artefact as creative if it is surprising and valuable. Moreover, Colton and
Wiggins (2012) discussed the impact of the acts of the software or hardware in addition
to the output alone. In essence, they argue that a focus on the whole process is key when
it comes to creative generation, and explaining the process of production is essentially
framing the generated artefact with information that adds value.

Following these definitions, it can be argued that a T2I system based on neural networks
is itself creative. This is due to its inner workings, or that the network parameters
essentially make up a “black box”. This means that it is difficult to connect certain
parameter values to specific traits of the input, e.g. features in an image. Moreover, the
parameters can be seen as the network’s representation of what it has learned, which is
not directly controlled by humans. Consequently, through the definition of creativity by
Colton and Wiggins (2012), and observing that the images are described as “interesting”
in the conducted survey, it can be argued that the networks employed in this work are
creative. This is facilitated through the employment of the COCO dataset, in that it
provides a more complex base than the CUB Birds-200 and thus leaves room for a higher
degree of interpretation.
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Moreover, a few answers to the last question of the survey convey that the generated
images can look like art. These answers include statements that the images presented
“look really interesting”, “looks partly like figurative art ” and “the designs are interesting”.
Through this, it can be argued that the images are surprising, while having value through
being interesting and making people think, which follows the definition of creative artifacts
stated by Boden (2004).

6.3. Thesis Goal and Research Questions

Research question 1 How can the text-to-image system and the natural language model
be combined?
The natural language model, BERT, was integrated with the text-to-image model,
MirrorGAN, through the image caption re-generation in the STREAM module.
While there may exist additional ways to integrate BERT with MirrorGAN, three
major approaches have been discussed. These approaches revolve around employing
BERT for creating text embeddings in the STEM module, for semantic consistency
evaluation between the input and the re-generated image caption, and for re-
generation of the image caption in the STREAM module. The latter of these
approaches was chosen based on a suggestion for future work in Qiao et al. (2019).
The new version of the STREAM module clearly outperforms the original version
when compared through the BLEU metric, as presented in table 5.3. The new
STREAM model was built up of the approach proposed by Xu et al. (2015) which
is then integrated with BERT (Devlin et al., 2018). As the generator loss is partly
composed of the semantic similarity loss between the input and the re-generated
image caption, an improvement of the re-generation of the image caption suggests
improved learning for the generator.

Research question 2 How does the combination of the text-to-image system and the
natural language model affect image generation?
When measured through the FID metric, the new version of MirrorGAN only
outperforms the original in the last epoch step. However, this is only due to the
deterioration of the original model rather than an improvement of the new. These
results can be seen in table 5.4 and 5.5. It is not clear why the new model does not
deteriorate as much as the original, as both models seem to encounter the problem
of the discriminator loss approaching 0 (i.e. vanishing gradients for the generator)
in early stages of the training. This is shown in figure 6.1a and 6.1b. Additionally,
both generators show signs of a partial mode collapse through generating similar
images for the same sentence. Examples of such similar images are presented in
figure 6.2.
These problems impair the determination of possible merits of the new STREAM
module. This is because of the STREAM module not being able to re-generate high
quality image captions due to the lack of realism in the generated images, and not
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due to the quality of the STREAM module itself. However, the presented work does
not provide data to support this. Consequently, this should be investigated further
through measuring how well each STREAM module performs during training.
Moreover, through the results of the conducted survey, it can be argued that
the images generated by the new model can appear slightly more appealing and
pleasing than the images generated by the original model. However, this might
have happened by chance and the survey received too few responses to draw any
conclusions.

Research question 3 How does the combination of the text-to-image and the natural
language models perform when employing a dataset containing complex images?
Moreover, due to the complexity of the COCO dataset and the task of T2I synthesis,
in addition to the complications faced during training, the generated images do not
seem realistic. However, they do exhibit some resemblance of the input sentence,
although of low resolution and quality. As stated in the answers of the survey, the
image captions often needed to be supplied with the image to make it clear what it
was trying to depict. Although the training of the model encountered problems,
in addition to the model not being trained enough, the generated images do not
appear to be notably worse than the images generated by Qiao et al. (2019) trained
on the same dataset. These images can be seen in the last four columns of row
three in figure 1.1.
On the other hand, it can be argued that a GAN-based T2I system is creative and
has value apart from generating realistic images through the definitions of creativity
by Boden (2004) and Colton and Wiggins (2012). This is supported by a handful of
responses of the conducted survey indicating that several of the generated images
were visually pleasing or interesting.

Goal Explore the combination of a text-to-image synthesis system and a recent natural
language processing model employing a complex dataset
The goal of this Thesis has been focused on exploring how the MirrorGAN model
can be integrated with BERT, and how this combination compares to the original
version of MirrorGAN. This focus is based on related GAN-based T2I systems in
that they show promising results for generating images from descriptions of single
objects like birds or flowers, but struggle to generalize to more complex scenes and
generate images of high resolution. Consequently, the models were trained on the
large and complex COCO dataset. Additionally, the emergence of new and powerful
models in field of NLP provides new opportunities of exploring the possible merits
of employing such models in T2I synthesis.
Furthermore, the goal of this work has been reasonably open. This has been
deliberate to cater for the possibility of the work to take different directions, as the
direction was not clear from the beginning and the field was unfamiliar. Moreover,
it was not clear how to compare the two models, specifically. Consequently, the
different forms of comparison of the two models took form as the work progressed.
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These forms of comparison, or experiments, include a quantitative comparison of
the STREAM modules through the BLEU metric, a quantitative comparison of
the final T2I model versions through the FID metric and a qualitative comparison
of the generated images through a conducted survey.
It can be argued that the goal has been met through the aforementioned comparisons
and exploration, although the field needs further research. Additionally, this work
highlights the potential to explore other ways of including BERT or other natural
language models, possibly based on BERT, while also bringing up the question of
how the models would have performed were they trained on another dataset.

6.4. Limitations
The limitations of this work are manifold; this section serves to highlight these limitations,
in addition to providing context and mitigation approaches.
Firstly, it is uncertain how much BERT itself contributed to the improvement of the

STREAM module. This is due to the implementation of a combination of the image
captioning approach introduced by Xu et al. (2015) and BERT in the same module, which
makes it difficult to distinguish what merits the individual parts provide. Consequently,
an improvement would compare how this module performs with and without BERT.
Furthermore, due to the problems of vanishing gradients, mode collapse and non-

convergence during the training of the final T2I models, it is difficult to quantify the
merits of the new version. Consequently, different hyper-parameters and other techniques
to mitigate these problems and ensure proper training are important. Additionally, with
these problems mitigated, training over all 600 epochs is essential to investigate the full
potential of the new model.

Moreover, due to the difficulties faced during training of the T2I models, it is hard to say
how much of an impact an improved STREAM module has. It is hypothesized that it does
not considerably impact the models trained in this work because the images generated
are of low quality. Consequently, this ensures that the image caption re-generation is also
poor, which limits the learning of the generator. However, further quantitative inspection
must be performed to properly support this hypothesis.
Additionally, the survey only received a small number of responses, which limits its

leverage when it comes to comparing the two T2I models. Furthermore, the length of the
survey was limited, in addition to providing images solely from the last epoch. It would
have been interesting to see if the respondents may have preferred images generated by
the models trained over fewer epochs.
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This Master’s Thesis has compared the text-to-image synthesis model, MirrorGAN, with
a version of itself combined with the natural language model, Bidirectional Encoder
Representations from Transformers. BERT was integrated into the STREAM (i.e. image
captioning) module of the MirrorGAN model and the implementation was based on the
proposed image captioning model by Xu et al. (2015). Subsequently, the proposed new
version of the module and the original module were compared through employing the
Bilingual Evaluation Understudy (BLEU) metric. Through this metric, the new version
was deemed considerably superior to the original.

The two versions of the MirrorGAN model were then trained over 160 out of 600
epochs, before being compared through employing the Fréchet Inception Distance (FID)
metric, conducting a survey, and performing a subjective evaluation. The new model
showed to slightly outperform the original through both its FID score when trained over
160 epochs. However, the original version scored better through the FID metric on all
previous measured epoch stages to epoch 160, in addition to being slightly more preferred
in the conducted survey. A further study of the FID scores of both models indicates that
neither had improved after epoch 64. Moreover, this can be attributed to both models
encountering problems such as vanishing gradients due to the discriminator performing
too well, and mode collapse. These problems most certainly lead to sub-optimal learning.
Furthermore, this sub-optimal learning, in conjunction with the models not being

trained over all epochs, resulted in low quality of the generated images with regards to
realism for both models. Thus, when these images are of low quality it likely impairs the
performance of the STREAM, regardless of how well it is trained and performs on real
images. Consequently, it is challenging to determine the merits of the new STREAM
module applied in the MirrorGAN model from this work, although the comparison of the
STREAM modules through the BLEU metric is promising, and should be the subject of
further research.

In addition to the aforementioned findings, it can be argued that the images generated
by the T2I models are interesting, which is supported by claims from the conducted
survey. This indicates that a T2I system may have value apart from generating realistic
images. Moreover, through the definition of creativity by Colton and Wiggins (2012),
it can be argued that a GAN-based T2I system is inherently creative. Furthermore,
through the answers of the conducted survey, it can be inferred that several respondents
found the images surprising and interesting, which follows the definition of creativity by
Boden (2004) of that a creative artifact should be “surprising” and “valuable”.
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7.1. Contributions

The main contributions of this Thesis lie in the work of combining T2I with BERT.
This includes the initial discussion of how they can be combined, in addition to how
such a combination may be achieved. The work provides a versatile implementation of
the combination of MirrorGAN and BERT, which supports different configurations and
separate training of the STEM and the STREAM modules.
A comparison of the two STREAM modules through the BLEU metric show that

the new version integrated with BERT clearly outperforms the original version, and
implies that the combination of BERT and MirrorGAN might have merit. An overview
of related work and summary of the main GAN-based advances in the field of T2I is also
provided. Moreover, the two versions of MirrorGAN have been thoroughly compared
through calculating their FID scores, conducting a survey and performing subjective
analysis.
This work also provides a brief discussion of GAN-based T2I systems having value

apart from generating realistic images, such as being creative and interesting. Other
contributions include a module for resizing the COCO dataset, and the accommodation
for parallel training of the models over multiple GPUs.

7.2. Future Work

This section simplifies suggestions included in previous discussions and serves as a
summary of the distinct proposed items for future work. Additional items not previously
mentioned are also included. The potential future work is divided into two categories.
The first category revolves around improvements and extensions that can be made to the
work presented in this Thesis, as follows:

• Train both versions of the model with different hyper-parameter configurations
and employ mitigation strategies to avoid vanishing gradients, mode collapse and
non-convergence.

• Once the training problems are mitigated, train over an increased number of epochs
to evaluate if the differences in quality of the generated images of the two models
remain the same.

• Investigate how the STREAM module performs during training to evaluate how
much of an impact it has in the early stages of training before the model is able to
generate realistic images.

• Investigate how the STREAM module employing the technique proposed by Xu
et al. (2015) performs with and without the integration of BERT.

The second category targets a different direction than what has been investigated in this
work, as follows:
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• Experiment with other ways of combining BERT, such as employing BERT in
the Semantic Text Embedding Module (STEM) or for evaluating the semantic
similarity of the original and the re-generated image captions.

• Employ ALBERT (Lan et al., 2020) instead of BERT to examine any changes from
the original model or the model integrated with BERT. Additionally, it would be
interesting to explore how this affects training time.
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Appendices
A. Survey

The survey information and questions are included in this Appendix. Each subsection is
pursuant to the sections in the survey. All images are omitted in this overview, but can
be found in Appendix B as the images generated for epoch 160. Descriptions in italics
signifies that the text was supplied in the survey itself.

A.1. Introduction — Evaluating Images Automatically Generated
from Text

This is a survey for evaluating images for my Master’s Thesis in computer science at
the Norwegian University of Science and Technology (NTNU). All images have been
generated from text using machine-learning models. The models that have generated the
images are far from fully trained. Therefore, please note that the images will not be
realistic or of high quality. This survey serves as input to evaluate whether the proposed
approach may have merit.

The survey is completely anonymous. However, the first section includes a few questions
about experience within photography and visual arts.

It takes between 5 - 10 minutes to complete the survey.

Thank you so much for your contribution, it is highly appreciated!

A.2. Section 1 — Experience

Each question could be answered with a number in the range 1-5. A lower number signifies
uninterested/inexperienced, while a higher value signifies very interested/experienced.

• How would you rate your experience with photography?

• To what degree have you done photography?

• How would you rate your knowledge in visual art?

• To what degree have you created visual art (not photography)? (e.g. painting,
drawing, pottery)

77



Appendices

• To what degree would you rate your knowledge of image composition?

• How interested are you in photography?

• How interested are you in visual arts?

A.3. Section 2 — Comparing Image Sets

This section provides image sets containing four images each. All images are generated
from the provided text description using machine learning models. The images might
not correspond well to the text description, but please choose the image set you believe
corresponds best. Additionally, there is a text box provided for each question where you
can fill in any thoughts you might have about why you chose one image set over the other.

Each question was supplied with three options: “Image set 1”, “Image set 2”, and “Both
image sets equally fit the description.”

• Which of the image sets above fit the description “A skier with a red jacket on
going down the side of a mountain.” best?

• Which of the image sets above fit the description “The pizza is cheesy with pepperoni
for the topping.” best?

• Which of the image sets above fit the description “Boats at the dock with a city
backdrop.” best?

• Which of the image sets above fit the description “Brown horses are running on a
green field.” best?

• Which of the image sets above fit the description “A bunch of vehicles that are in
the street.” best?

• Which of the image sets above fit the description “A lamp with a shade sitting on
top of an older model television.” best?

• Which of the image sets above fit the description “A stationary train with the door
wide open.” best?

• Which of the image sets above fit the description “A street that goes on to a high
way with the light on red.” best?

• Which of the image sets above fit the description “A large white teddy bear sitting
on top of an SUV.” best?
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A.4. Section 3 — Which Image Sets Are the Most Interesting?

This section contains new image sets from the previous section. The images are generated
from the text provided in the question. Please choose which image set is the most
interesting out of the two. This could be because they include a lot of color, makes you
think, have interesting patterns, match the text in a different way than expected, or
anything else.

Each question is again supplied with an optional short description where you can write
down why you chose either of the image sets (or neither of them).

Each question was supplied with four options: “Image set 1”, “Image set 2”, “Both of
them are equally interesting.” and “Neither are any interesting.”

• “I love going to art galleries and seeing all the beautiful and strange creations they
have there.” Considering the images above, which set is more interesting?

• “It is utterly terrific that he got accepted to that school.” Considering the images
above, which set is more interesting?

• “The weather has been really horrible these last few days.” Considering the images
above, which set is more interesting?

• “Today we are going to do some shopping for Lucy’s prom.” Considering the images
above, which set is more interesting?

• “We are about five minutes late, I’m afraid.” Considering the images above, which
set is more interesting?

A.5. Closing Questions

This section contains optional additional questions about the images you have seen. They
do not need to be answered, but any answer is highly appreciated.

• What do you think of the quality of the images you have been presented with?
– “They seem very abstract and surreal.”
– “Warped”

– “Generally, they seem to be very artificial and I think they would benefit from
more time spent training the model. A lot of the pictures (particularly the
second in each pair) were unrecognisable.”

– “Creepy as hecc”
– “The images do not accurately describe the descriptions presented, although

the designs are interesting.”
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– “Most come nowhere near communicating the intended text description were
they to stand alone. I only begin to see connections by reading the supporting
text. It is interesting to see that some are starting to take forms from text.”

– “Quite low”
– “Poorly. Did not understand any of the pictures really”
– “Bad quality. Couldnt really see what was happening....”
– “I didn’t think they matched very well the description, but some generated

interesting art which kinda had elements of what you wanted to generate”
– “The content had no meaning to me”
– “It is not perfect, but it was surprisingly good. I expected it to be lower.”
– “They looks like partly figurative art, not very much like the text descriptions”
– “Quite poor”
– “Quite poor. But I don’t know what to expect.”
– “Some are able to depict what the sentence entails, but most seem to generate

scrambled images with some correlation to the words in the given input
sentence.”

– “Good quality on most of the photos”
– “Low”
– “Variable and impressive”
– “Depends on the definition of quality. They are high quality abstract images

where you can (sometimes) see hints of the text in the image without beeing
obvious. But low quality in what the text ask specifically.”

– “They look cool but I’m not sure what they are supposed to be.”
– “they make me feel like i’m having a stroke”
– “Kinda hard to see what they are supposed to be” without context, but very

interesting and almost creepy to see”

• Does any (one or several) image set(s) stand out to you?
– “No.”
– “The horses”
– “The first image of each pair seemed more vibrant and meaningful compared

to the second.”
– “The old teddy bear one when zoomed in looks like a waterbear and the

setting has a black mirroresque vibe to it”
– “Not really.”
– “Yeah, overall I found that when I was asked to consider images based on

interest/aesthetics, I preferred image set 1 consistently over image set 2.”
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– “I think it was image set 1of the “it’s terrific that he got accepted into that
school”. The description had the word “terrific” in it but the images looked
absolutely horrifying and creepy, which are the total opposite of terrific.”

– “Not really”
– “No”
– “Not really. I suspect that they are too random to be memorable.”
– “No.”
– “No”
– “Not that I can think of”
– “no”
– “I think I was presented with so much abstract odd images that none really

stood out. They became a blur near the end”
– “Yes, some of them looks really interesting.”

B. Generated Images
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Figure B.1.: New model generated images: “A skier with a red jacked on going down the
side of a mountain.”
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Figure B.2.: Original model generated images: “A skier with a red jacked on going down
the side of a mountain.”
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Figure B.3.: New model generated images: “The pizza is cheesy with pepperoni for the
topping.”
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Figure B.4.: Original model generated images: “The pizza is cheesy with pepperoni for
the topping.”
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Figure B.5.: New model generated images: “Boats at the dock with a city backdrop.”
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Figure B.6.: Original model generated images: “Boats at the dock with a city backdrop.”
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Figure B.7.: New model generated images: “Brown horses are running on a green field.”
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Figure B.8.: Original model generated images: “Brown horses are running on a green
field.”
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Figure B.9.: New model generated images: “A bunch of vehicles that are in the street11
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Figure B.10.: Original model generated images: “A bunch of vehicles that are in the
street.”
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Figure B.11.: New model generated images: “A lamp with a shade sitting on top of an
older model television.”
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Figure B.12.: Original model generated images: “A lamp with a shade sitting on top of
an older model television.”
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Figure B.13.: New model generated images: “A stationary train with the door wide
open.”
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Figure B.14.: Original model generated images: “A stationary train with the door wide
open.”
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Figure B.15.: New model generated images: “A street that goes on to a high way with
the light on red.”

96



B. Generated Images

Figure B.16.: Original model generated images: “A street that goes on to a high way
with the light on red.”
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Figure B.17.: New model generated images: “A large white teddy bear sitting on top of
an SUV.”
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Figure B.18.: Original model generated images: “A large white teddy bear sitting on top
of an SUV.”
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Figure B.19.: New model generated images: “I love going to art galleries and seeing all
the beautiful and strange creations they have there.”
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Figure B.20.: Original model generated images: “I love going to art galleries and seeing
all the beautiful and strange creations they have there.”
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Figure B.21.: New model generated images: “It is utterly terrific that he got accepted to
that school.”
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Figure B.22.: Original model generated images: “It is utterly terrific that he got accepted
to that school.”
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Figure B.23.: New model generated images: “The weather has been really horrible these
last few days.”
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Figure B.24.: Original model generated images: “The weather has been really horrible
these last few days.”
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Figure B.25.: New model generated images: “Today we are going to do some shopping
for Lucy’s prom.”

106



B. Generated Images

Figure B.26.: Original model generated images: “Today we are going to do some shopping
for Lucy’s prom.”
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Figure B.27.: New model generated images: “We are about five minutes late, I’m afraid.”
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Figure B.28.: Original model generated images: “We are about five minutes late, I’m
afraid.”

109



Appendices

C. Configuration Settings

This Appendix provides the full set of configuration files applied in the project of this
Thesis. The first configuration file serves as a basis, where the other configuration
files only change the settings that must differ from the base configuration file for the
specific task. Moreover, each subsection provides the name of the current file in the
implementation of the project.

C.1. Main Configuration File

config.py: The following configuration file is the main configuration file, and provides a
base for the subsequent configuration files.

from __future__ import division
from __future__ import print_function

import os.path as osp
import numpy as np
from easydict import EasyDict as edict

__C = edict()
cfg = __C

# Dataset name: flowers, birds
__C.DATASET_NAME = ’coco’
__C.CONFIG_NAME = ’’
__C.DATA_DIR = ’’
__C.DATA_SIZE = ’big’
__C.CUDA = False
__C.DEVICE = ’cpu’
__C.WORKERS = 8
__C.OUTPUT_PATH = ’’
__C.RNN_TYPE = ’LSTM’ # ’GRU’
__C.B_VALIDATION = False

__C.TREE = edict()
__C.TREE.BRANCH_NUM = 3
__C.TREE.BASE_SIZE = 64

# Training options
__C.TRAIN = edict()
__C.TRAIN.BATCH_SIZE = 64
__C.TRAIN.MAX_EPOCH = 600
__C.TRAIN.SNAPSHOT_INTERVAL = 5
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__C.TRAIN.DISCRIMINATOR_LR = 2e-4
__C.TRAIN.GENERATOR_LR = 2e-4
__C.TRAIN.ENCODER_LR = 2e-4
__C.TRAIN.RNN_GRAD_CLIP = 0.25
__C.TRAIN.FLAG = True
__C.TRAIN.NET_E = ’’
__C.TRAIN.NET_G = ’’
__C.TRAIN.B_NET_D = True

__C.TRAIN.SMOOTH = edict()
__C.TRAIN.SMOOTH.GAMMA1 = 4.0
__C.TRAIN.SMOOTH.GAMMA2 = 5.0
__C.TRAIN.SMOOTH.GAMMA3 = 10.0
__C.TRAIN.SMOOTH.LAMBDA = 0.0
__C.TRAIN.SMOOTH.LAMBDA1 = 1.0

# Caption_model_settings added by tingting
__C.CAP = edict()
__C.CAP.EMBED_SIZE = 256
__C.CAP.HIDDEN_SIZE = 512
__C.CAP.NUM_LAYERS = 1
__C.CAP.LEARNING_RATE = 0.001
__C.CAP.CAPTION_CNN_PATH = ’’
__C.CAP.CAPTION_RNN_PATH = ’’
__C.CAP.USE_ORIGINAL = False

# Modal options
__C.GAN = edict()
__C.GAN.DF_DIM = 64
__C.GAN.GF_DIM = 32
__C.GAN.Z_DIM = 100
__C.GAN.CONDITION_DIM = 100
__C.GAN.R_NUM = 2
__C.GAN.B_ATTENTION = True
__C.GAN.B_DCGAN = False

__C.TEXT = edict()
__C.TEXT.CAPTIONS_PER_IMAGE = 5
__C.TEXT.EMBEDDING_DIM = 256
__C.TEXT.WORDS_NUM = 18
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# Vocab indices
__C.VOCAB = edict()
__C.VOCAB.PAD = 0
__C.VOCAB.THRESHOLD = 4

def _merge_a_into_b(a, b):
"""Merge config dictionary a into config dictionary b,
clobbering the options in b whenever they are also specified in a.
"""
if type(a) is not edict:

return

for k, v in a.items():
# a must specify keys that are in b
if k not in b:

raise KeyError(’{} is not a valid config key’.format(k))

# the types must match, too
old_type = type(b[k])
if old_type is not type(v):

if isinstance(b[k], np.ndarray):
v = np.array(v, dtype=b[k].dtype)

else:
raise ValueError((’Type mismatch ({} vs. {}) ’

’for config key: {}’).format(
type(b[k]), type(v), k))

# recursively merge dicts
if type(v) is edict:

try:
_merge_a_into_b(a[k], b[k])

except:
print(’Error under config key: {}’.format(k))
raise

else:
b[k] = v

def cfg_from_file(filename):
"""Load a config file and merge it into the default options."""
import yaml
with open(filename, ’r’) as f:

yaml_cfg = edict(yaml.load(f, Loader=yaml.FullLoader))
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_merge_a_into_b(yaml_cfg, __C)

C.2. STEM Pre-Training

pretrain_STEM.yml: This configuration file serves to pre-train the STEM module.

DATASET_NAME: ’coco’

CONFIG_NAME: ’STEM’
DATA_DIR: ’../data/’
DATA_SIZE: ’big’
CUDA: True
OUTPUT_PATH: ’../output/’

TREE:
BRANCH_NUM: 1
BASE_SIZE: 299

TRAIN:
BATCH_SIZE: 48
FLAG: True
NET_E: ’’ # No pretrained model
ENCODER_LR: 0.002 # 0.0002best; 0.002good

TEXT:
WORDS_NUM: 15

C.3. STREAM Pre-Training: New Model

pretrain_STREAM.yml: This configuration file serves to pre-train the new version of the
STREAM module.

DATASET_NAME: ’coco’

CONFIG_NAME: ’STREAM_new’
DATA_DIR: ’../data/’
DATA_SIZE: ’big’
CUDA: True
OUTPUT_PATH: ’../output/’

TRAIN:
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BATCH_SIZE: 32
MAX_EPOCH: 4
RNN_GRAD_CLIP: 5.
FLAG: TRUE

CAP:
EMBED_SIZE: 256
HIDDEN_SIZE: 512
NUM_LAYERS: 1
LEARNING_RATE: 0.0004
CAPTION_CNN_PATH: ’’ # No pretrained model
CAPTION_RNN_PATH: ’’ # No pretrained model
USE_ORIGINAL: False

TEXT:
WORDS_NUM: 15

C.4. STREAM Pre-Training: Original Model

pretrain_STREAM_original.yml: This configuration file serves to pre-train the original
version of the STREAM module.

DATASET_NAME: ’coco’

CONFIG_NAME: ’STREAM_original’
DATA_DIR: ’../data/’
DATA_SIZE: ’big’
CUDA: True
WORKERS: 8
OUTPUT_PATH: ’../output/’

TRAIN:
MAX_EPOCH: 4
BATCH_SIZE: 32
RNN_GRAD_CLIP: 5.
FLAG: TRUE

CAP:
EMBED_SIZE: 256
HIDDEN_SIZE: 512
NUM_LAYERS: 1
LEARNING_RATE: 0.001
CAPTION_CNN_PATH: ’’ # No pretrained model
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CAPTION_RNN_PATH: ’’ # No pretrained model
USE_ORIGINAL: True

TEXT:
CAPTIONS_PER_IMAGE: 5
EMBEDDING_DIM: 256
WORDS_NUM: 15

C.5. MirrorGAN Training: New Model

train_coco.yml: This configuration file serves to train the new version of the MirrorGAN
model, specifically specifying the use of the new version of the pre-trained STREAM
module.

CONFIG_NAME: ’MirrorGAN_new’
DATASET_NAME: ’coco’
DATA_DIR: ’../data/’
CUDA: True
OUTPUT_PATH: ’../output/’

TREE:
BRANCH_NUM: 3

TRAIN:
BATCH_SIZE: 64 # 22
MAX_EPOCH: 650
SNAPSHOT_INTERVAL: 1
DISCRIMINATOR_LR: 0.0002
GENERATOR_LR: 0.0002
FLAG: True
NET_E: ’../models/big/STEM/text_encoder115.pth’
NET_G: ’’ # No pre-trained model

CAP:
EMBED_SIZE: 256
HIDDEN_SIZE: 512
NUM_LAYERS: 1
LEARNING_RATE: 0.001
CAPTION_CNN_PATH: ’../models/big/STREAM/new/encoder_epoch4’
CAPTION_RNN_PATH: ’../models/big/STREAM/new/decoder_epoch4’
USE_ORIGINAL: False
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C.6. MirrorGAN Training: Original Model

train_coco_original.yml: This configuration file serves to train the original version
of the MirrorGAN model, specifically specifying the use of the original version of the
pre-trained STREAM module.

CONFIG_NAME: ’MirrorGAN_original’
DATASET_NAME: ’coco’
DATA_DIR: ’../data/’
CUDA: True
OUTPUT_PATH: ’../output/’

TREE:
BRANCH_NUM: 3

TRAIN:
BATCH_SIZE: 64 # 22
MAX_EPOCH: 650
SNAPSHOT_INTERVAL: 1
DISCRIMINATOR_LR: 0.0002
GENERATOR_LR: 0.0002
FLAG: True
NET_E: ’../models/big/STEM/text_encoder115.pth’
NET_G: ’’ # No pre-trained model

CAP:
EMBED_SIZE: 256
HIDDEN_SIZE: 512
NUM_LAYERS: 1
LEARNING_RATE: 0.001
CAPTION_CNN_PATH: ’../models/big/STREAM/original/encoder_epoch4’
CAPTION_RNN_PATH: ’../models/big/STREAM/original/decoder_epoch4’
USE_ORIGINAL: True

C.7. Calculate BLEU: New Model

validate_STREAM.yml: This configuration file serves to calculate the BLEU scores of
the new STREAM.

DATASET_NAME: ’coco’

CONFIG_NAME: ’STREAM_new’
DATA_DIR: ’../data/’
DATA_SIZE: ’big’
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OUTPUT_PATH: ’../output/’
CUDA: True

TRAIN:
FLAG: False
BATCH_SIZE: 32
RNN_GRAD_CLIP: 5.

CAP:
EMBED_SIZE: 256
HIDDEN_SIZE: 512
NUM_LAYERS: 1
CAPTION_CNN_PATH: ’../models/big/STREAM/new/encoder_epoch4’
CAPTION_RNN_PATH: ’../models/big/STREAM/new/decoder_epoch4’
USE_ORIGINAL: False

TEXT:
WORDS_NUM: 15

C.8. Calculate BLEU: Original Model

validate_STREAM_original.yml: This configuration file serves to calculate the BLEU
scores of the original STREAM.

DATASET_NAME: ’coco’

CONFIG_NAME: ’STREAM_new’
DATA_DIR: ’../data/’
DATA_SIZE: ’big’
OUTPUT_PATH: ’../output/’
CUDA: True

TRAIN:
FLAG: False
MAX_EPOCH: 4
BATCH_SIZE: 32
RNN_GRAD_CLIP: 5.

CAP:
EMBED_SIZE: 256
HIDDEN_SIZE: 512
NUM_LAYERS: 1
LEARNING_RATE: 0.0004
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CAPTION_CNN_PATH: ’../models/big/STREAM/original/encoder_epoch4’
CAPTION_RNN_PATH: ’../models/big/STREAM/original/decoder_epoch4’
USE_ORIGINAL: True

TEXT:
WORDS_NUM: 15

C.9. Calculate FID: New Model

fid_new.yml: This configuration file serves to calculate the FID scores of the new
MirrorGAN model.

CONFIG_NAME: ’FID_new’
DATASET_NAME: ’coco’

DATA_DIR: ’../data/’
DATA_SIZE: ’small’
CUDA: True
OUTPUT_PATH: ’../output/experiments/’

TRAIN:
NET_E: ’../models/big/STEM/text_encoder115.pth’
NET_G: ’../models/big/MirrorGAN/new/netG_epoch_160.pth’
BATCH_SIZE: 32

C.10. Calculate FID: Original Model

fid_original.yml: This configuration file serves to calculate the FID scores of the
original MirrorGAN model.

CONFIG_NAME: ’FID_original’
DATASET_NAME: ’coco’

DATA_DIR: ’../data/’
DATA_SIZE: ’small’
CUDA: True
OUTPUT_PATH: ’../output/experiments/’

TRAIN:
FLAG: False
NET_E: ’../models/big/STEM/text_encoder115.pth’
NET_G: ’../models/big/MirrorGAN/original/netG_epoch_160.pth’
BATCH_SIZE: 32
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C.11. Generate Images: New Model

gen_imgs_new.yml: This configuration file serves to generate images from the specified
sentences through the new MirrorGAN model.

CONFIG_NAME: ’new’
DATASET_NAME: ’coco’

DATA_DIR: ’../../data/’
DATA_SIZE: ’big’
CUDA: True
OUTPUT_PATH: ’../../output/experiments/’

TRAIN:
NET_E: ’../../models/big/STEM/text_encoder115.pth’
NET_G: ’../../models/big/MirrorGAN/new’
BATCH_SIZE: 32

C.12. Generate Images: Original Model

gen_imgs_original.yml: This configuration file serves to generate images from the
specified sentences through the original MirrorGAN model.

CONFIG_NAME: ’original’
DATASET_NAME: ’coco’

DATA_DIR: ’../../data/’
DATA_SIZE: ’big’
CUDA: True
OUTPUT_PATH: ’../../output/experiments/’

TRAIN:
NET_E: ’../../models/big/STEM/text_encoder115.pth’
NET_G: ’../../models/big/MirrorGAN/original’
BATCH_SIZE: 32

119


