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Summary

In the realm of hydrocarbon exploration, net pay estimation is essential for the economic
calculation and valuation of the field. By definition, net pay is the reservoir interval with
economically producible hydrocarbons content. The traditional net pay estimation method
involves an interpretation of borehole image logs with a cutoff derived from core data. A
cutoff-dependent net pay estimation might inhibit further study of a particular field as the
cutoff itself might not be universally reliable for wells or reservoir intervals without core
data. In this study, an alternative net pay estimation method based on the implementation
of machine learning on borehole image logs interpretation was considered and optimized.
The cutoff-independent estimation is achieved through the use of a convolutional neural
network (CNN). The convolutional neural network is trained to generate a model which
maps the correlation between borehole image logs and net pay fraction from core ultravi-
olet (UV) photographs.

A convolutional neural network design and data processing procedures from a previous
study by the same author were optimized with several optimization approaches, to improve
the net pay estimation from borehole image logs. Image logs processing attempted to apply
the necessary corrections for an improvement in the image quality. Core UV photographs
processing aimed to convert core UV photographs into binarized images from which net
pay fraction values were derived. The optimized data processing procedures resulted in
several image log datasets and net pay fraction labels based on data from four exploration
wells in the Johan Castberg field. A set of net pay estimations with the processed data and
optimized CNN were conducted to evaluate the optimized net pay estimation method.

The estimation results showed that the net pay estimation method was able to generate
accurate and reliable estimations on unseen image logs. Evaluation of the estimation re-
sults proved that the optimization of the net pay estimation method was able to generate
a model with more accurate estimations compared to the earlier study. The results also
showed that the net pay estimation method has the potential to be implemented in a situa-
tion where core information was not available or not reliable. Several limitations of the net
pay estimation method were highlighted, i.e. limitation in image logs resolution and model
compatibility. Based on the limitations and results evaluation, several recommendations
for the continuation of the study were formulated, e.g. utilization of image logs with better
quality, the introduction of additional training samples from different wells or fields, and
net pay estimations on data from a different field.
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The study of petrophysics has existed for many years and contributed significantly to the
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Chapter 1
Introduction

1.1 Background

In the course of hydrocarbon exploration, net pay estimation is an integral part of the hy-
drocarbon volumetric evaluation. Net pay is defined as a reservoir interval with economi-
cally producible hydrocarbons content (Mæland, 2014). Traditionally, net pay estimation
is performed by the interpretation of Gamma Ray or borehole image logs. However, it
requires a cutoff generation using core data to differentiate sand and shale in a laminated
reservoir. A cutoff-dependent net pay estimation might inhibit further study of a particular
field as the cutoff itself might not be universally reliable for wells or reservoir interval
without core data.

The recent advance of modern data science studies and powerful computation hardware
enable the implementation of data science techniques as a solution for various practices in
the energy industry. In a previous study by the same author, an alternative net pay esti-
mation method was developed based on the implementation of machine learning on bore-
hole image logs interpretation (Figure 1.1). The cutoff-independent estimation is achieved
through the use of a convolutional neural network (CNN). The network is trained to gen-
erate a net pay estimation based on the correlation between borehole image logs and net
pay fraction from core ultraviolet (UV) photographs. In the preceding study, data from
four exploration wells in the Johan Castberg field were utilized, and several preliminary
net pay estimations were performed using the aforementioned data. The preliminary es-
timation results yielded several insights on the optimization approaches for the net pay
estimation method, which were implemented in this study.

This study served as a continuation of the alternative net pay estimation method devel-
opment and was focused on optimizing the method. By optimizing the data processing
procedures and evaluating the machine learning implementation, an optimized model was
generated to improve the net pay estimation from borehole image logs. The reliability
of the model was also evaluated through a statistical analysis to ensure that the estima-
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Chapter 1. Introduction

tion is independent of horizontal orientation within the image logs. The capability of this
optimized method was then demonstrated in estimating net pay of reservoir intervals with-
out core photographs. Based on the results evaluation and observed limitations of the net
pay estimation method, several recommendations for the continuation of this study were
formulated.

Net Pay Fraction Estimate
  0    100  %

XX10

XX15

Depth (m) Borehole Image Log

Figure 1.1: An example of net pay estimation of based on a borehole image log interpretation.

1.2 Objective
The objective of this study is to optimize a machine learning-based net pay estimation
method from borehole image logs interpretation. The optimization approaches were ap-
plied in the borehole image logs processing, core UV photographs processing and machine
learning implementation. Several net pay estimations were conducted to evaluate the per-
formance of the optimized method, and several recommendations for the continuation of
this study were formulated based on the evaluation of the results.

A workflow was formulated to achieve the objective. The workflow consisted of the fol-
lowing tasks:

1. Optimization of borehole image logs processing by implementing additional pro-
cessing procedures to improve the quality of the logs.

2. Optimization of core UV photographs processing to generate more accurate labels
for the machine learning technique.

3. Evaluation of different elements in the machine learning implementation, including
convolutional neural network design and training samples curation.

2



1.3 Outline

4. Conducting experiments using the optimized neural network design and data from
the optimized processing.

5. Evaluating the reliability of the optimized model by performing statistical analysis
on the results.

6. Demonstrating the optimized method capability in reservoir intervals without core
photographs.

7. Formulating recommendations for the continuation of the study based on the results
evaluation and observed limitations of the net pay estimation method.

1.3 Outline
The master thesis report is comprised of five chapters which discussed different topics.
The outline of the report is described as follows:

1. Chapter 1 - Introduction: The first chapter serves as the introduction to the study
and is comprised of the motivation and objective of the study.

2. Chapter 2 - Background: The second chapter is comprised of theoretical background
and fundamental principle of several elements in this study, e.g. the concept of net
pay in hydrocarbon volumetric evaluation; the principle of borehole image log and
core data; the fundamental principle of machine learning; and the outcomes of the
preceding study.

3. Chapter 3 - Methodology: This chapter talks about how the study is conducted
including general workflow of the study; optimized image log and core UV pho-
tographs processing; and the optimized machine learning technique implementation.

4. Chapter 4 - Results and Discussions: This chapter is composed of the results of the
study and the discussions regarding the results, e.g. optimized processing results;
net pay estimation results for each well; accuracy analysis and reliability evaluation
based on the results; a demonstration of net pay estimation on reservoir intervals
without core photographs; and recommendations for the continuation of the study.

5. Chapter 5 - Conclusion: The final chapter summarizes the main findings and recom-
mendations for continuation of the study.

Since this study is a continuation of a preceding study by the same author, several topics
discussed in the Background and Methodology chapter are similar to the topics discussed
in the preceding study. Those topics are essential for the integrity of this study; therefore,
they were included in this report.

3
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Chapter 2
Background

2.1 Hydrocarbon Volumetric Evaluation
In the scope of a petrophysical study, one of the objectives is to determine the hydrocar-
bon reserves through a series of volumetric calculation. After a thorough petrophysical
interpretation and analysis, a specific interval of the formation will be designated as the
reservoir zone and carefully investigated. Some volumetric elements, e.g. gross rock, net
sand, net reservoir, and net pay, are introduced during the volumetric evaluation of the
reservoir zone. The sequential derivation of those elements is necessary to obtain the hy-
drocarbon pore volume (HCPV) and eventually the hydrocarbon reserves.

Gross rock is essentially the total thickness of the evaluated interval, i.e. the total thick-
ness of rock in the reservoir zone. Net sand is notionally the thickness of rock with low
shaliness or low clay mineral content in the gross rock, which potentially contains hydro-
carbon. Net reservoir is a subinterval of net sand and can be delineated by applying a
porosity/permeability cutoff. Last but not least, net pay is defined as a subinterval of the
net reservoir, which is obtained by applying a saturation cutoff and contains economically
producible hydrocarbons for viable exploitation (Worthington, 2010). Figure 2.1 shows
how the volumetric elements are correlated to each other in the sense that one is the subin-
terval of the other.

The net pay subintervals are combined to form the total net pay (Tnet) (Mæland, 2014). As
shown in Equation (2.1), total net pay is an important parameter in calculating HCPV, be-
side porosity (φ), average reservoir area (A), and water saturation (Sw) (Wheaton, 2016).

HCPV = ATnetφ(1− Sw) (2.1)

Hydrocarbon reserve (R) can eventually be estimated by introducing the Formation Vol-
ume Factor (FV F ) and Recovery Factor (RF ), as seen in Equation (2.2). Formation
Volume Factor is defined as the ratio of the volume occupied by a hydrocarbon phase at

5
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Gross Rock Net Sand Net Reservoir Net Pay

Shale

Shale

Shaliness 

cutoff

Porosity/ 

permeability cutoff
Saturation 

cutoff

Total 

net pay

Tight/

cemented 

sand

Free Water 

Level

Contact

Tight/

cemented 

sand

Tight/

cemented 

sand

Figure 2.1: Correlation of the volumetric elements in a hydrocarbon volumetric evaluation.

reservoir conditions divided by the volume occupied by the hydrocarbon phase at surface
conditions (Fanchi, 2010). Recovery Factor is a term used for a fraction of the hydro-
carbons initially in place that can be recovered and depends on the effectiveness of the
production mechanism (Metwalli et al., 2017).

R =
ATnetφ(1− Sw)RF

FV F
(2.2)

Beside presenting net pay as a thickness in a unit length, it can also be presented as a ratio
in terms of percentage. The term net pay fraction (Fnet) refers to the ratio of total net pay
(Tnet) over the total gross interval (Tgross).

Fnet =
Tnet
Tgross

× 100% (2.3)

This term is also commonly known as the Net-To-Gross ratio (NTG). Net pay fraction can
simply be multiplied by the gross rock thickness to obtain total net pay.

The term ”net pay” is sometimes used interchangeably with ”net sand” or ”pay sand” in
various studies in the petroleum industry. In this study, the term net pay is strictly used to
denote hydrocarbon bearing rock to avoid confusion with other volumetric terms. On the
other hand, the term ”non-net pay” is used for the thickness of rock without hydrocarbon
content, either due to shaliness or low porosity/permeability (e.g. calcite cemented sands).
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2.2 Borehole Image Logging

2.2 Borehole Image Logging

2.2.1 Principle of Resistivity Based Borehole Image Logging
Borehole image logging is an attempt to visualize geological features of the formation
along the borehole wall for petrophysical evaluation and reservoir characterization. Gen-
erally, there are two different image logging techniques with different measurement prin-
ciples: resistivity and acoustic (ultrasonic) measurement. Both are complimentary when it
comes to data acquisition and interpretation.

Resistivity image logging is a pad-based measurement which is able to deliver a high res-
olution image with up to 80% borehole coverage. It has better tolerance on poor borehole
wall conditions and is not affected by the centralization of the tool. Resistivity image log-
ging does not cover the entire borehole due to the limited coverage of each pad (Figure
2.2). The spaces between the pads prevent pads from clashing if the borehole diameter
gets smaller due to swelling or thick mudcakes. Acoustic image logging is capable of pre-
senting a full coverage of the borehole because it relies on a rotating acoustic transducer
instead of pads. However, it is prone to poor borehole wall condition, poor tool central-
ization and heavy drilling fluid. The resolution of acoustic image logging is also relatively
lower than resistivity image logging (Shahinpour, 2013).

Resistivity 

Image Log

Acoustic 

Image Log

80% coverage 100% coverage

(a) Resistivity image log

Resistivity 

Image Log

Acoustic 

Image Log

80% coverage 100% coverage

(b) Acoustic image log

Figure 2.2: Comparison of a resistivity image log and acoustic image log. These figures are a
reworked version of Figure 4 in Leonard (2016).
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Chapter 2. Background

Technically, resistivity-based image logging is one of many logging techniques that em-
ploys resistivity measurement as its basis. It relies on wireline cable as the conveyance
system, although data acquisition is also possible through Logging While Drilling (LWD)
systems. Image logging tools generally measure formation microresistivity along the bore-
hole wall through a set of electrode arrays on its pad. Microresistivity is the resistivity
measured with a shallow depth of investigation into the formation. It measures the resis-
tivity of the flushed zone, where drilling fluid invasion is prevalent (Snedden, 1984).

The electrodes on image logging tools are arranged in several sets of arrays that are
mounted on a pad (Figure 2.3). These pads are located at the edge of a caliper arm.
The number of electrodes and pads depends on the type of the tool, but generally, it ranges
from 40 to 192 electrodes in 4 to 16 pads. As the pads are touching the borehole wall,
an alternating current (AC) flows into the formation between the button-shaped electrodes
(lower electrodes) and the upper tool steel housing (Schlumberger, 2013). The upper tool
steel housing serves as the upper electrode, and it also contains an inclinometer. The in-
clinometer provides information on the tool orientation (azimuth, deviation, and relative
bearing) in a magnetic earth reference.

Caliper

Arms

Electric

Current

Upper 

Electrode

Insulators

Lower 

Electrode

Pad

Flap

Electrodes

  24 Button 

Figure 2.3: Schematic of Fullbore Micro-Imager (FMI) tool. This schematic is redrawn from a
figure in page 3 from Schlumberger (2013).
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2.2 Borehole Image Logging

The resistivity image of the borehole wall is created from the current measured by the
lower electrodes. The measured resistivity changes according to lithological and petro-
physical variations in the rock. The information provided by the inclinometer will be
used in determining the orientation of geological features such as beds and faults. The
resistivity and inclinometry measurements are presented in an image log, and can be inter-
preted in terms of lithology, stratigraphic and structural features including dip and fractures
(Schlumberger, 2013).

Traditionally, image logging tools are only effective in a conductive environment such
as water based mud or highly conductive formations (Luthi, 2001). A conductive envi-
ronment will generally enhance the flows of the alternating current, and thus improve the
quality of the image. However, several modern image logging tools are capable of imaging
in a non-conductive borehole fluid provided a sufficiently high formation resistivity and a
low ratio of oil to water.

In terms of resolution, most image logging tools yield a 0.2 inch vertical resolution.
That implies it is sensitive enough to measure changes in the average formation resis-
tivity within a 0.2 inch interval (Schlumberger, 2013). Table 2.1 displays the measurement
specification of the Fullbore Micro-Imager (FMI) tool from Schlumberger, whose output
is used in this study.

Table 2.1: Fullbore Micro-Imager (FMI) tool specification (Schlumberger, 2013).

Specification Details

Range of measurement
Sampling rate: 0.1 inch
Borehole coverage: 80% in an 8 inch borehole

Resolution Vertical resolution: 0.2 inch
Depth of investigation High-frequency component (image details): 0.39 inch

Mud type
Water based mud (maximum mud resistivity = 50 ohm.m)
Oil based mud under specific conditions

Pads 8 Pads (4 pairs of pad and flap)
Button electrodes 192 electrodes (12 electrodes in each pad and flap)

2.2.2 Principles of Image Log Processing
Before interpretation, a series of quality control (QC) and processing is required to reduce
logging environmental effects, and also acquisition artefacts. Logging environmental ef-
fects include tool sticking, cable speed effect, while acquisition artefact includes noise and
dead button electrodes (Firdaus, 2010). This processing is necessary to transform the raw
data into an image log with enhanced quality.

Enhancing the quality of image logs are essential for in the interpretation of the logs as
the presence of logging environmental effects or image artefacts might hinder an accurate
interpretation. Table 2.2 outlines the necessary processing steps of the image log.

9



Chapter 2. Background

Table 2.2: Image log processing steps.

Processing Details
Quality Control Caliper and inclinometry QC

Basic processing
Speed correction
Image equalization

Image enhancement
Pads/buttons alignment
Dead button repair
Filtering

Image normalization
Static normalization
Dynamic normalization

Quality Control (QC)

The QC procedure includes investigation of caliper reading and inclinometer measure-
ment. Generally, a caliper check is performed during logging by opening the caliper arms
in the cased hole section. The value of caliper reading in the cased hole section must
be checked and corrected so that the value is close to the casing inner diameter (ID). In-
clinometer measurement is investigated by plotting the accelerometer and magnetometer
readings. Ideally, the accelerometer readings should lie in the middle of the plot, and the
magnetometer readings should form a circular shape in a vertical well (Figure 2.4). An
ideal plot guarantees that the tool is not rotating beyond the tolerance. If erratic read-
ings are observed, a correction must be performed in the petrophysical software (Kalukal,
2014).

X-Axis Accelerometer (M/S2) X-Axis Magnetometer (OER)

X-Axis Accelerometer (M/S2) X-Axis Magnetometer (OER)

(a) Plot of accelerometer readings

X-Axis Accelerometer (M/S2) X-Axis Magnetometer (OER)

X-Axis Accelerometer (M/S2) X-Axis Magnetometer (OER)

(b) Plot of magnetometer readings

Figure 2.4: Ideal plot of accelerometer and magnetometer reading in a vertical well (Schlumberger,
2019a).
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2.2 Borehole Image Logging

Basic Processing

The next step is basic processing, including speed correction and image equalization. If
the image logging tool gets stuck momentarily and then speeds up, a smearing effect might
be generated in the image log. A speed correction must be applied to correct the smearing
effect (Figure 2.5). Speed correction attempts to correct irregular tool movement which
generates artefacts in the image, by utilizing the cable speed measurement. If one or more
button electrodes display inconsistent responses that are not caused by lithological varia-
tion, image equalization can be implemented to regularize the button electrodes responses.
Image equalization is performed by replacing individual gain and offset of each electrode
by the average of all electrodes.

Before speed correction After speed correction

(a) Before speed correction

Before speed correction After speed correction

(b) After speed correction

Figure 2.5: Speed correction on image log corrects smearing effect due to tool sticking issue from
well 7220/7-3S image log which is used in this study.

Image Enhancement

Once basic processing is performed, image enhancement will be conducted. As the button
electrodes have different vertical placement on the pad or flap (see Figure 2.3), the raw
measurement might display a sawtooth effect in areas with strong contrast (Figure 2.6).
Sawtooth effects can be corrected by applying buttons alignment, which involves a vertical
shift of the readings from the individual button electrode. In addition to the sawtooth effect,
a faulty button electrode might fail to measure, which results in an empty measurement.
Missing values due to faulty buttons can be replaced by values computed from neighboring
button electrodes.
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Uncorrected sawtooth 

effect

Corrected sawtooth 

effect

Uncorrected dead 

button
Corrected dead 

button
(a) Image log with
sawtooth effect.
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button
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button
(b) Image log with
sawtooth effect cor-
rected.

Uncorrected sawtooth 

effect
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button

(c) Image log with
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effect
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button
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button

(d) Image log with
missing values cor-
rected.

Figure 2.6: Examples of image enhancement on image logs (Schlumberger, 2019a).

Image Normalization

The final processing step will be image normalization, which aims to increase image con-
trast for a better interpretation. Image normalization attempts to map each measurement
value to a position on a normalized color scale, e.g. a scale that ranges from 0 to 255
(Figure 2.7). There are two types of image log normalization: static and dynamic normal-
ization (Figure 2.8). Static image normalization will normalize the values over the entire
logged interval. A static image is purposed for large scale feature observation. In dynamic
normalization, the values are normalized over a 0.5 m window of the logged interval. This
will enhance a tiny detail such as sand shale lamination and is more suitable for small
scale feature observation (Donselaar and Schmidt, 2005). Static and dynamic normaliza-
tion possess a visual contrast for human eyes, but for a machine learning algorithm, it can
differentiate layers based only on the pixel values. The color distribution might still be
fairly similar between static and dynamic normalization, which implies that the machine
learning technique might not be significantly affected by the type of normalization.

2550

Resistive Conductive

Figure 2.7: An example of an image log color scale with values between 0 and 255. The scale
assigns a heated color map on the values which range from white, to orange and brown, to black.
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Static normalization Dynamic normalization

(a) Image log with static
normalization.

Static normalization Dynamic normalization

(b) Image log with dynamic
normalization.

Figure 2.8: Examples of static and dynamic normalization on image logs (Schlumberger, 2019a).

2.2.3 Image Log Display

As the product of borehole image logging, image logs present a high resolution visualiza-
tion of the formations, which enables interpretation in terms of lithology, structural, and
sedimentary analysis. It is also utilized as a supplement for core data, for example, in
core depth and orientation matching. In the interval where cores are not sampled, image
log acts as a substitute for core data, which enables rock textural analysis (Schlumberger,
2013). In some cases, the acquired cores might not be reliable due to the presence of soft
or unconsolidated formation, which may lead to the acquisition of poorly consolidated
cores which are easy to break apart (Bajsarowicz, 1992). In those cases, image logs may
serve as a supplement to aid the interpretation of unconsolidated formation.

Since image logging tools measure along the perimeter of the borehole, image logs must
be displayed as an unwrapped cylinder representing the borehole (Endres et al., 2008). It is
typically displayed in a color scale alongside the image orientation scale (Figure 2.9). The
color represents resistivity value, and the orientation scale is usually displayed in terms
of degree and cardinal direction. Traditionally, darker color represents a conductive layer
(shale, open fracture), while the lighter color represents a resistive layer (oil-bearing sands,
healed fractures). The vertical white stripes in the log represent the area of the borehole
wall not covered by the tool (c.f. Section 2.2.1).

Although it is common to display a borehole image log with image orientation information,
it is also possible to display it without orientation. For some specific purposes, such as
rock textural analysis and core depth matching, orientation information is not required. In
that case, image logs can be displayed without the orientation to enable a straightforward
interpretation (Figure 2.10).
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(a) A regular display of
borehole image log.

(b) An image log displayed as an
unwrapped cylinder representing the
borehole.

Figure 2.9: Figures showing (a) a regular display of borehole image log and (b) how an image
log is displayed as an unwrapped cylinder representing the borehole. Figure 2.9a is taken from
Schlumberger (2014), and Figure 2.9b is taken from Donselaar and Schmidt (2005).

Image log with orientation Image log without orientation

(a) Image log with orientation.

Image log with orientation Image log without orientation

(b) Image log without orientation.

Figure 2.10: Comparison of image log dsplay with and without orientation (Schlumberger, 2019a).

2.2.4 Net Pay Estimation Based on Borehole Image Log
Borehole image logs can be utilized for net pay estimation based on the interpretation of
sand and shale in the reservoir zone. Net pay estimation based on the image log requires a
resistivity curve, which is extracted from the image log. The extracted resistivity curve is
the average of resistivity values from each button electrodes for each depth. The interpre-
tation of sand and shale is performed by applying a cutoff on the resistivity curve (Figure
2.11). The cutoff is derived from a core comparison.

As shown in Figure 2.11, interval with a resistivity value above the cutoff will be marked
as net pay (hnet). The net pay intervals will be added up as the total net pay (Tnet).
Total net pay will be used in HCPV calculation. Furthermore, net pay fraction (Fnet)
can be estimated by averaging the total net pay over the total gross interval (Tgross) as in
Equation (2.4).

Fnet =
Tnet
Tgross

× 100% (2.4)
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Sand
Net pay 

(hnet)

Total gross 

interval 

(Tgross)
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Sand

Shale
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Net pay 

flag

Figure 2.11: An example of net pay estimation based on a borehole image log. A cutoff is applied
on the ”FMI Resistivity” curve, which is the extracted resistivity curve. This figure is a reworked
version of Figure 6 in Wang et al. (2016).

This method has several drawbacks (Gong et al., 2019):

• Cutoff accuracy is sensitive to the logging environment. In a mud with high salinity,
the resistivity of sand and shale is not contrasting enough. Besides that, if oil based
mud is used as the borehole fluid, we might have non-conductive mudcake, which
hinders the resistivity measurement.

• Derivation of cutoff requires a meticulous core comparison which might not be uni-
versal for wells without core data. This prevents the user from applying a universal
cutoff to uncored wells in a field-wide study.

In this study, a net pay estimation method is developed based on an image log without
reliance on an extracted resistivity curve and a resistivity cutoff.

2.3 Core Photograph

2.3.1 Core Acquisition

Core acquisition is an integral part of data acquisition during exploration drilling. In the
upstream sector, a core is defined as a cylindrical sample of rock from a certain interval
of the well, which is used in core analysis (Figure 2.12). Although wireline or LWD
logs can provide insight into the reservoir quality, a study of core samples is essential
in determining the commercial producibility of the reservoir (Archer and Wall, 1986).
With a higher resolution compared to a regular log, core analysis enables a more detailed
characterization of important reservoir properties, e.g. lithology, porosity, permeability,
and fluid saturation.
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Figure 2.12: Core sample from McArthur Basin, Australia (Revie, 2017).

Cores are acquired by drilling through the formation. Conventional coring system is the
most common technique to retrieve core samples. The core is cut with a rotating hollow bit
and passes into a barrel around which the drill string rotates (Figure 2.13). After the barrel
is full of the core, the core will be snapped free from the formation (Kennedy, 2015). Indi-
vidual cores are limited in length to prevent possible collapsing under its weight (McPhee
et al., 2015). The diameter of core samples is typically half of the bit size, e.g. for an 8.5
inches bit size, the diameter will be around 4 inches. In the conventional coring system,
the cores are taken disregarding the precise orientation.

Drill 

string

Working

Barrel

Stuffing

box Ball

seat

Outer

Barrel

Inner

Barrel

Upper core 

catcher

Lower core 

catcher
Hollow

bit

Formation
Core being cut

Figure 2.13: Schematic of a conventional coring system. This figure is a modified version of Figure
3.2 from Kennedy (2015).
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Once the cores are taken up to the surface, there are several procedures that need to be done
before transporting the core to the core laboratory. The first step is removing the core filled
liners from the barrels and marking them with depth. The next step will be cutting the liner
and core into a certain length, commonly 1 m. Since the physical condition of the core
and fluid saturation can be altered during pulling out of the hole, it is vital to preserve and
stabilize the core to prevent further alteration due to outdoor exposure and transportation.
A preservation technique which is commonly conducted before transportation is resin or
gypsum injection into the annulus between the core and the liner (McPhee et al., 2015).

2.3.2 Core Analysis
The goal of core analysis is to reduce uncertainty in reservoir evaluation and character-
ization by providing reservoir property through a set of laboratory measurements (Al-
Saddique et al., 2000). The diversity of information available from a core implies that core
analysis is fundamental for geologist and reservoir engineers alike.

A routine core analysis aims to determine fundamental reservoir properties of unpreserved
cores, e.g. porosity, permeability, fluid saturation, and grain density. Prior to analysis, a
whole core section will be preserved with wax or paraffin (seal peel) for a special core
analysis (SCAL), with a length of 25-30 cm. Several cylindrical core plugs (typically with
a diameter of 2.5 cm and length of 2.5-7.5 cm) will also be sampled. The core will also
be cut into different parts for different purposes (Figure 2.14). After core cutting, the core
slabs are photographed with white and ultraviolet (UV) light.

Core

Curation

Government

Core slab

Core photography

Thin sections

- Core photography

- Diagenesis

- Mineralogy

- X-ray and SEM analysis

Core Analysis

- Routine Core Analysis

- Special Core Analysis

Calibration of 

wireline log

Figure 2.14: Division of a core sample. This figure is a modified version of Figure 5.1 from Archer
and Wall (1986).

2.3.3 Net Pay Estimation Based on Core Photograph
One of the steps in core preparation prior to core analysis is the photography of core slabs.
Core photography produces high resolution digital images that enable remote observation
of the core and also digital interpretation using petrophysical software. Digital images
also serve as a visual record that enables a more straightforward data storage and man-
agement. The cores are photographed using white light and ultraviolet light (UV) (Figure
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2.15). Ideally, the UV photo will highlight oil bearing rock due to oil fluorescence. This
provides information on oil-water contact (OWC) or gas-oil contact (GOC) when log data
is inconclusive.

A standard color scale is applied to the resulting digital image. White light photo is com-
monly used for lithology, sedimentology, and stratigraphic examination. Under UV light,
oil will fluoresce with orange-brown shading for heavy oils; bright yellow for light oil;
and very light white to blue-white for condensate (McPhee et al., 2015). Shale, gas and
non-oil bearing rock does not fluoresce under UV light and therefore will have dark or
purple shading.

White light UV light(a) White light core photographs.White light UV light(b) UV light core photographs.

Figure 2.15: White light and UV light core photographs (McPhee et al., 2015).

Core photographs, especially ultraviolet core photographs, can be utilized as an alternative
method in net pay quantification. Core UV photos ideally show good contrast between oil
stained sands and shale or non-oil bearing rock. This enables a visual net pay quantifica-
tion by generating binary flags of net pay and shale, based on the color shading of core
UV photos (Anyaehie, 2015). As shown in Figure 2.16, interval with visible oil staining
in the UV photos will be marked as net pay (hnet). The net pay intervals will be added up
as the total net pay (Tnet).

The concept of distinguishing net pay based color intensity inspired the method of net pay
fraction labels generation in this study. Net pay fraction values were generated from core
UV photographs by converting them into binarized core UV images, which consists of
black and white color. White color represents net pay, and black color represents shale or
non-oil bearing rock. Further details on net pay fraction labels generation are explained in
Section 3.5.3.
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Figure 2.16: Net pay estimation based on core photographs. This figure is a reworked version of
Figure 4.1 in Anyaehie (2015).

2.4 Machine Learning for Continuous Value Estimation

2.4.1 Introduction to Machine Learning
In this modern era where digitalization has penetrated through various sectors, machine
learning is one of the data science techniques applied to extract knowledge and insights
from a dataset. By definition, machine learning is the process of generating models to
learn from available data in order to make predictions on future data, based on a certain
algorithm (Samanpour et al., 2018). Machine learning aims to produce a precise and auto-
mated prediction from densely packed information in a large dataset and transforms it into
a useful format.

In general, machine learning can be categorized as a subset of Artificial Intelligence (AI).
Typically, machine learning is divided into three types based on the learning characteristic:
unsupervised, supervised, and reinforcement learning (Figure 2.17).

Unsupervised Learning

Unsupervised learning attempts at finding hidden patterns or intrinsic structures in a dataset
(input) without correct answers or labels (output). The term ”unsupervised” refers to how
the model learns from the dataset without supervision or guideline from a ”teacher” which
is the correct label. Although correct labels are not provided, the algorithm attempts to
identify patterns within the data so that data with something in common are categorized
together (Marsland, 2014). Unsupervised learning includes any algorithm where the model
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Figure 2.17: Classification of machine learning based on the learning characteristic.

is only learning based on input data without the corresponding correct label, e.g. Principle
Component Analysis (PCA).

Supervised Learning

Supervised learning differs from unsupervised learning as it generates a model based on
a dataset (input) with correct answers/labels (output). The model serves as a mapping
function that will learn the correlation between input data and the labels. Based on a
model, the algorithm attempts to predict correct output to any unseen input data in the
future (Marsland, 2014). The prediction can either be an estimation of continuous value
(regression) or a prediction based on some certain classes (classification). Examples of
supervised learning include naive bayes and regression.

Reinforcement Learning

Reinforcement learning provides a distinct approach compared to supervised and unsu-
pervised learning. Contrasting with the aforementioned algorithms, evaluative feedback
is given to the model based on the prediction, without providing a correct answer/label
(Li, 2018). The algorithm attempts to explore and try out different possibilities until it
generates a correct prediction. Genetic algorithm is an example of the algorithm within
reinforcement learning.

Generally, machine learning techniques are executed with the aid of programming soft-
ware. In this study, implementation of machine learning technique for net pay estimation
is considered as supervised learning because the model was generated based on a dataset
(image logs) with correct labels (net pay fraction from core UV photographs). The ma-
chine learning technique in this study was implemented through the use of artificial neural
network principles, which is explained in the following section.

20



2.4 Machine Learning for Continuous Value Estimation

2.4.2 Artificial Neural Network

An artificial neural network (ANN) is a multi-layered computing system that consists of
a multitude of interconnected nodes (Figure 2.18). An artificial neural network is com-
posed of one input layer, one output layer with one or multiple hidden layers between
the input and output layer. The input layer is composed of independent variables from
the data, while the output layer is the prediction made by the network. The hidden layer
is comprised of multiple nodes or neurons which perform a series of computation on the
input data. An artificial neural network is comprised of several elements and computation
mechanism, which are explained in this subsection.

Input layer Hidden layers Output layer

Figure 2.18: General architecture of multilayered artificial neural network. This figure is a modified
version of Figure 1 in Miralles et al. (2016).

Neuron

An artificial neural network is comprised of multiple neurons that are connected by links
where interactions occur between the neurons (Goodfellow et al., 2016). Each neuron is
connected to a set of inputs through some weighted link and generates an output on the
other end (Figure 2.19). The inputs are independent variables from the dataset and rep-
resented by x1,x2,x3...xn. The independent variables come from a single observation,
e.g. for an observation of a reservoir rock, the variables can be porosity, permeability, and
grain density. A dataset comprises of a collection of observations with its corresponding
variables. Each input is multiplied by the weighted link or commonly referred to as a
synapse. The weights are represented by w1,w2,w3...wn and correspond to the strength of
the synapse.

Weights are pivotal in ANN as they determine the essential variables, and thus which input
signal will be passed through the neurons. Generally, if a particular weight is less than 1, it
will weaken the input signal; and if it is higher than 1, it will amplify the signal. Initially,
random values are assigned on the weights. Throughout the training process, the weights
are altered and updated to improve the performance of the model. The sum of input and
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weight multiplications (S) is computed by the neuron, using Equation (2.5).

S = x1w1 + x2w2 + ...+ xnwn

=

n∑
i=1

xiwi (2.5)
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Figure 2.19: Schematic of a neuron in artificial neural network. Each individual neuron operates as
a single computation unit of the network.

Activation Function

Beside summation, the neuron will also apply an activation function, f(x). The activation
function is a function that decides the activation of the neuron as a response to the weighted
inputs (Marsland, 2014). In this case, activation refers to the passing of the input signal
from one neuron to the neuron in the next layer. Contrasting with the linear summation
shown in Equation (2.5), the activation function is a non-linear function with a degree of
more than one. The complexity of a non-linear function will introduce non-linearity on
the output of the neuron. Non-linearity is important because it helps the model in learning
non-linearities in complex data.

As seen in Figure 2.19, besides the weighted input, there is also a bias (b) that is passed
into the neuron. Bias is an additional input for the neuron, which comprised of a bias
neuron and a bias weight. The bias neuron is added to each layer in the neural network
and linked to the neurons in the layer. Bias neuron stores the value of 1, and the weight
of the bias is usually initialized with zero values. Bias works by shifting the activation
function output to the left or right along the x-axis. The goal is to generate a better fit
with the data, which is critical for successful learning. The output of the neuron (ŷ) is
calculated by adding the summation result form each neuron with bias and then passing it
into an activation function, i.e. Equation (2.6). In general, weight influences the slope of
activation function, while bias is used to shift the activation function.

ŷ = f (S + b) (2.6)
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Generally, having an activation function with the best mapping of input to the output is
desirable. There are two important criteria for an activation function:

• Monotonically increasing: Monotonically increasing implies that the function is
entirely increasing. This characteristic helps the neural network to converge easier
into a more accurate prediction (Goodfellow et al., 2016). During the training phase,
back-propagation dictates the amount of influence of each neuron to the neurons in
the next layer through a weight update. Without a monotonically increasing func-
tion, increasing the weight might lead to less influence, which means the model is
unlikely to converge to a state that yields an accurate prediction.

• Differentiable: Differentiable implies that the function can be differentiated to a
lower order function instead of a constant. Back-propagation requires the gradients
of the activation function to be supplied alongside the error in updating weights and
biases. Weight optimization also utilizes gradient descent, which means the function
has to be differentiable.

The most commonly used activation functions are shown in Figure 2.20. Each function
possesses a different characteristic, as outlined in Table 2.3.

Step

Tanh ReLU

Sigmoid

(a) Step

Step

Tanh ReLU

Sigmoid

(b) Sigmoid
Step

Tanh ReLU

Sigmoid

(c) Tanh

Step

Tanh ReLU

Sigmoid

(d) ReLU

Figure 2.20: Commonly used activation functions for artificial neural networks.
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Table 2.3: Activation functions and their characteristics.

Activation Function Details

Step

- A threshold-based activation function which
activates the neuron if the input value is above
a certain threshold.
- The output is a binary signal (0 or 1).

Sigmoid

- Function with an s-shaped or sigmoid curve.
- The output ranges between 0 and 1.
- Monotonically increasing.
- Output is not zero centered, hence
gradient updates might go too far in different
direction which leads to a more difficult
optimization.
- Suitable for a probability prediction.

Hyperbolic tangent (Tanh)

- Function with an s-shaped or sigmoid curve.
- The output ranges between -1 and 1.
- Monotonically increasing.
- Output is zero centered, enabling a more fluid
optimization.

Rectified linear units (ReLU)

- Commonly used in modern artificial neural network.
- The output ranges between 0 and inifinite.
- Monotonically increasing.
- Efficient because not all neurons are activated
simultaneously.
- Output is not zero centered, similar to Sigmoid
function.

Forward-propagation

Forward-propagation is one of the mechanisms in the artificial neural network. The first
layer of ANN sends outputs to all the neurons in the second layer (the hidden layer). The
neurons in the second layer utilize the first layer outputs as input, and they will, in turn,
send outputs to the subsequent layer (Figure 2.21). This output propagation goes all the
way to the final output layer and is referred to as forward-propagation. The final output
layer will be the prediction.

The synapses which connect the neurons can either be weighted with zero or non-zero
values. The weight indicates the importance of the input, which goes through the synapse.
Zero value means the input will be discarded, while non-zero values indicate that the input
will be used by the neuron. The weights will be updated through the learning process
during back-propagation later on.
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Loss function

A loss function is a measure of error based on the difference between the prediction (ŷ)
and the correct answer or label (y). Every observation in a dataset is given a label that
serves as the ground truth in loss calculation. The final output layer in ANN will be the
prediction, which is the result of the computation and propagation in the network. The key
to evaluating the performance of the network is by computing the loss. The lower the loss,
the closer the prediction value to the actual value.

Commonly used loss evaluation metrics for prediction of a continuous value is outlined in
Table 2.4.

Table 2.4: Loss functions which are commonly used in ANN.

Loss Function Formula

Mean squared error (MSE) MSE =
1

n

n∑
i=1

(yi − ŷi)2

Mean absolute error (MSA) MAE =
1

n

n∑
i=1

|yi − ŷi|

Root Mean Squared Error (RMSE) RMSE =

√√√√ n∑
i=1

(yi − ŷi)2
n

Back-propagation

Once a loss is obtained, it is utilized in back-propagation. Back-propagation is an essential
part of the learning process, where a series of computations is performed backward along
the layers in order to update the weights in the network (Figure 2.21). It is conducted by
utilizing the loss value in a series of partial derivative computations in each neuron (Ya-
mashita et al., 2018). The computation is performed backward on every neuron from the
last hidden layer all the way to the first hidden layer. Back-propagation attempts to gen-
erate optimum weights, which will minimize the loss. Once back-propagation is finished,
the loss is re-evaluated to see if it is successfully minimized. An optimization algorithm
is required to achieve a minimum loss. The basic optimization algorithm in ANN is the
gradient descent method.

Gradient Descent

When applied in ANN, gradient descent attempts at obtaining the optimum weights, which
will give the minimum loss (Figure 2.22). It is achieved through a series of computations
in each neuron during back-propagation. In each neuron, the first computation is a partial
derivative of the loss function (J) with respect to weight (w), or commonly referred to as
loss function gradient (Goodfellow et al., 2016). The computation of loss function gradient

25



Chapter 2. Background
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Figure 2.21: Forward and back-propagation mechanism.

involves activation function output from each neuron (ŷ), and the sum of input and weight
multiplications from each neuron (S) as shown in Equation (2.7).

∂J

∂w
=
∂J

∂ŷ

∂ŷ

∂S

∂S

∂w
(2.7)

Once the loss function gradient is obtained, the updated weight (w+) of a certain synapse
can be computed. An additional parameter, learning rate (α) is introduced in Equation
(2.8). The learning rate regulates how fast the weight is updated, which implies if the
learning rate is too big or too small, the model will fail in learning the proper values for
the weights.

w+ = w + α
∂J

∂w
(2.8)

After the weights are updated, the cycle is repeated, beginning with computation on each
neuron, forward-propagation, and finally, loss re-evaluation. In back-propagation, opti-
mization of weights ideally leads to minimization of the loss. The goal is a minimization
of loss function through a series of learning iteration until it converges to a certain mini-
mum. Once the loss converges to a certain minimum, the model is ready to predict a future
unseen data. A prediction will be performed on a test set that contains data which is not
included in the training dataset. The prediction based on the test set will be evaluated to
investigate the accuracy and performance of the model.
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Figure 2.22: Gradient descent in the search of optimum weights.

2.4.3 Convolutional Neural Network
Convolutional neural network (CNN) is an extension of an artificial neural network, in
which convolutional and pooling layers are added to extract important features within
an image dataset. A convolutional neural network is suitable for both supervised and
unsupervised learning tasks. In supervised learning, it can be applied for the estimation
of continuous values (regression) or classification based on classes. It is also applied for
unsupervised learning tasks, e.g. dimensionality reduction of a large image dataset using
the principle of an autoencoder. The architecture of CNN is comprised of convolutional,
pooling, and fully connected layers (Figure 2.23).

PREDICTION

Figure 2.23: An example of a convolutional neural network architecture. This figure is a reworked
version of an image in MissingLink (2019a).

Input

A convolutional neural network is commonly used on a dataset which consists of images.
An image is an array of pixels with individual pixel values. The pixel values have a certain
range, which depends on the color scale, e.g. binary, grayscale, or Red-Green-Blue (RGB).
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• Binary image: Images with black and white color with pixel values of 0 or 1. The
shape of the array is two dimensional.

• Grayscale image: Images with pixel values between 0 and 255 in an 8-bit format.
The shape of the array is two dimensional.

• RGB image: Images with three color channels: red, green, and blue. The array
shape is three dimensional, and the third dimension represents the color channel.
The pixel values depend on the color depth, e.g. 8-bit RGB image will have pixel
values between 0 and 255.

Convolutional Layer

The convolutional layer is one of the building blocks of CNN. It operates convolution oper-
ations, a mathematical operation that merges two sets of information. Convolutional layers
aim to detect visual features in images such as edges, lines, curvatures, color variation and
layering (Yamashita et al., 2018). There are three essential elements in a convolutional
layer: image input, filter, and feature map. The convolution is implemented on the input
image by using a filter to produce a feature map.

Filters, or commonly referred to as kernel, acts as feature identifiers. A filter is an array
of values that will identify an essential feature, such as lines, edges, curves and colors.
These values act as the weight in CNN. Throughout the training, the values in each filter
are ideally converging towards the optimum values which will minimize the loss.

Convolution is performed by sliding the filter over the input image. As shown in Figure
2.24, it begins by placing the filter at the top left corner of the input image. The area
where the filter sits on the image is referred to as the receptive field. An element-wise
multiplication is performed in the receptive field. The multiplications are summed up, and
the result is stored in the first cell of the feature map. Each convolution value represents a
specific receptive field in the image. Once a convolution operation is stored, the filter will
be moved one column/row away, either horizontally or vertically. The movement of the
filter is referred to as stride. The second convolution value is stored in the second cell of
the feature map, which lies next to the first cell. This process is repeated until all areas of
the image is covered, and the feature map is entirely populated.

As in the artificial neural network, non-linearity is essential in CNN. A rectified linear
unit (ReLU) is generally introduced as the activation function at the end of a convolutional
layer. It will increase the non-linearity even further to achieve better prediction. The result
of the convolution operation will be passed through a ReLU activation function. The final
value in the final feature maps will be the output of the ReLU function. The feature map
will be the output of the convolutional layer which will be passed on to the next layer.

Since one filter will eventually learn only one specific feature, multiple filters are required
to learn all the important features in the image. In CNN, the first convolutional layer is
comprised of multiple filters, as shown in Figure 2.25. Multiple convolutional layers can
be added in CNN, to gain a better feature identification. Convolutional layers are capable
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of learning hierarchies of features by preserving the spatial relationship. For example, the
first convolutional layer learns basic patterns such as lines; while the second convolutional
layer learns feature composed of basic patterns learned from the first layer. This contin-
uous process allows CNN to learn increasingly complex features within an image dataset
through training.

Image input x filter Feature map

Image input x filter Feature map

Step 1

Step 2

Step n

Image input x filter Feature map

.

.

.

Figure 2.24: An example of convolution operation in a convolutional neural network. The green
box is the filter which is applied upon an image input. For each step, the computation result of the
convolution operation is stored in the feature map until it is fully populated. This figure is a reworked
version of an image in Dertat (2019).
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Prediction

Figure 2.25: An example of a convolutional layer output in convolutional neural network. This
figure is a reworked version of an image in MissingLink (2019a).

Pooling layer

Besides the convolutional layer, another integral part of the CNN is pooling layers. Pooling
layers take the feature maps from convolutional layers as the input and attempts to reduce
the dimensionality of the feature map. The goal is to train the network in learning features
in the image without being confused by spatial variation in the image, e.g. textures, fea-
ture position and angle. Pooling layers downsample each feature map independently by
reducing the size of the array while keeping the depth intact (Torres, 2016). This enables a
shorter training time, and prevents the generation of an excessively complex model which
leads to overfitting.

The common pooling method in CNN is max pooling. Similar to convolution, max pool-
ing is implemented by sliding a pooling window over the input image (Figure 2.26). The
pooling window will be placed over a particular area in the feature map. However, instead
of performing element-wise multiplications, the pooling window will identify the maxi-
mum value over a particular area. The maximum value will be stored in a new feature
map. The window will then be moved a certain row/column away, depending on the value
of stride. This process is repeated until the new feature map is fully populated. The new
feature map is commonly referred to as a pooled feature map.

The pooled feature map is a downsampling product of the initial feature map (Figure 2.27).
The creation of a pooled feature map implies that unimportant features on the initial fea-
ture map are disposed. This enables the network to work more efficiently. Max pooling
is applied to each of the feature maps from the previous convolutional layers separately.
Hence the amount of pooling windows in the pooling layer will be the same as the number
of filters in the convolutional layer. A regular CNN architecture might have more than one
pair of convolutional and pooling layer. The output of the last pooling layer will be passed
through the fully connected layer.
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Feature map Pooled feature map

Max pooling

-Pooling window 2x2

-Stride 2

Figure 2.26: An example of max pooling operation in a convolutional neural network. The pooling
window will be placed over a certain area in the feature map, and identify the maximum value over
a certain area. The maximum value will be stored in a pooled feature map. This figure is a reworked
version of an image in Dertat (2019).

Prediction

Figure 2.27: An example of a pooling layer output in a convolutional neural network. This figure is
a reworked version of an image in MissingLink (2019a).

Fully connected layer

The final part of the CNN architecture is the fully connected layer. A fully connected layer
is an artificial neural network that takes pooled feature maps as input and will eventually
output a prediction, which can either be a classification or estimation of continuous values.
As in artificial neural networks, the prediction will be based on a set of labels which serves
as the ground truth.

The output of a pooling layer is three dimensional. Therefore it must be transformed into
a one-dimensional array before being fed into a fully connected layer. The transformation
is performed by flattening the pooled feature maps into a 1D array (Figure 2.28). The
flattened pooled feature maps contain values that represent a probability that a particular
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feature belongs to a label (Yamashita et al., 2018). It is possible to have more than one
fully connected layer which works in the same manner as in ANN. The array will be
processed by the neurons through a series of computations through a forward-propagation
mechanism.

Flattening

Pooling layer Fully connected layer

Figure 2.28: An example of flattening operation, in which the final pooled feature map is re-arranged
into a 1D array. This figure is a reworked version of an image in MissingLink (2019b).

In the final layer, the activation function will generate the final output, which is the pre-
diction. For classification tasks, each neuron in the final layer corresponds to a particular
class. The activation function will generate a probability value for each class. The class
with the highest probability will be selected as the prediction (Figure 2.29). The prediction
will be evaluated with reference to the label. The loss will be utilized to update the filters,
feature maps, and the weights in a fully connected layer through a back-propagation mech-
anism. The whole process is iterated, and once the loss converges to a certain minimum,
the model is ready to predict unseen images in a test set.

Class 1             (0.01)
Class 2 (0.93)

Class 4    (0.02)
Class 3     (0.04)

Probability 
for each class

Label

Figure 2.29: An example of classification prediction generated by convolutional neural network.
This figure is a reworked version of an image in MissingLink (2019a).

The number of neurons, type of activation function, and loss function in the final layer
will vary depending on the task. For classification, the number of neurons in the final
layer corresponds to the number of classes; sigmoid or softmax is preferred as the acti-
vation function; and cross-entropy is used to measure the loss. For regression of a single
continuous value, there will only be one neuron in the final layer, which will generate the
prediction; the preferred activation function is a linear function; and mean squared error is
the preferred loss function.
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Hyperparameters of CNN

A hyperparameter is a parameter that is set before the learning process. In CNN, there are
several hyperparameters which are commonly set at the beginning:

• Number and size of filter: The number of filters specifies the number of features to
be learned in the image. A higher number of filters results in a more powerful model.
However, it increases the risk of overfitting due to increased parameter count (Torres,
2016). Generally, the first convolutional layer starts with a small number of filters,
and the number is progressively increased for the subsequent layers. Commonly
used filters are a square-shaped array with a size of 3x3, 5x5 or 7x7. The decision on
the filter size depends on the task performed. Small-sized filters are more suitable to
learn local features without much image overview. For large scale features learning,
larger size filters can be utilized.

• Stride: Stride specifies the amount of convolution filter movement at each step.
Generally, convolution introduces overlap between the receptive fields. If less over-
lap is preferred, a more substantial value of stride can be applied, and this results in
a smaller feature map.

• Padding: Padding refers to the addition of zero values around the input before
applying a filter/pooling window (Figure 2.30). Padding aims to preserve the size
of the feature maps. Normally, the size of the feature map is smaller than the input.
Therefore for CNN with many convolutional/pooling layers, the feature map might
shrink into an unwanted size. With the introduction of padding, the dimension of
the feature map is preserved.

2.4.4 Technical Aspects of Artificial Neural Network
An artificial neural network requires a considerable parameter tuning and practical prepa-
ration step on the data. Some of the technical aspects are outlined in this section.

Dataset Split

In ANN, the dataset is generally split into three types (Marsland, 2014):

• Training set: Training set is designated to train the algorithm in learning the pat-
terns/mapping the correlation. The samples in the training set are utilized by the
model for learning throughout the iteration.

• Validation set: The validation set is used to evaluate the model performance for
each iteration. The model does not learn from the dataset in this set, and the loss
from this set is not used in back-propagation. Instead, the validation loss will be
observed to fine-tune the hyperparameter.

• Test set: Test set is utilized to produce the final prediction. The samples in the
test set have not been seen before by the model, and it is used after all the training
iterations are completed.
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Figure 2.30: An example of padding mechanism which aims to preserve the size of the feature
maps by adding zero values around the input. This figure is a reworked version of an image in Dertat
(2019).

In supervised learning, each sample will be given a label that serves as the ground truth.
The dataset split normally follows a general rule, e.g. 64% of the samples for the training
set, 16% of the samples for the validation set, and 20% of the samples for the test set
(Figure 2.31).

Training Validation Test

Dataset

64% 16% 20%

Figure 2.31: An example of dataset split in artificial neural network.
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Weight initialization

Weight initialization attempts to give starting values for all the weights for the first itera-
tion. Generally, weights are assigned with random values as part of the weight initializa-
tion. Random initialization is preferred to introduce non-linearities in the initial training
iteration.

Advanced weight initialization methods, e.g. Xavier and He initialization, use a different
approach in initializing weights. Xavier and He initialization manipulate the weights dif-
ferently, but essentially they are setting the weights close to 1. The aim of using advanced
weight initialization is to mitigate computation problems during training, e.g. vanishing
and exploding gradients (Marsland, 2014). Vanishing gradients means that the gradient
of the loss function during the learning process becomes too small to flow backward dur-
ing back propagation for updating the weight. This results in a minor weight update and
slower minimization of the loss function. Exploding gradients is the exact opposite of a
vanishing gradient as the loss gradient becomes too large, and the minimization result will
oscillate around the minima. Oscillation around the minima might lead to unsuccessful
learning by the model, which is unwanted.

Optimization Algorithm

An artificial neural network employs an optimization algorithm (optimizer) in search of
optimum weights, which will minimize the loss. There are various optimizers which are
used in ANN, and they are mostly based on the gradient descent method. Beside utilizing
concept from gradient descent, many optimizers implement elements from stochastic gra-
dient descent (SGD) and mini-batch gradient descent.

Stochastic gradient descent updates weights by using a single observation instead of the
whole dataset as the input for every iteration. The observation is selected randomly, hence
the term ”stochastic” is used. In the conventional gradient descent method, the whole data
is used as an input for every iteration, and the weights are updated based on the whole
dataset. It often results in a long computation time due to the heavy use of computer mem-
ory to load and process the whole data. In SGD, a single observation is processed every
iteration. The weights of the network are updated based on the observation. It results in a
lighter algorithm with significantly faster computational time.

One of the main characteristics of SGD is the fluctuation, which is prevalent during the
search of the global minimum. The fluctuation is due to the random selection in SGD. A
single observation might not represent the whole data; therefore, it contains an element of
noisiness (Torres, 2016). The fluctuation is beneficial when SGD is stuck around a local
minimum (Figure 2.32). The smoothness of regular gradient descent makes it prone to
being stuck around a local minimum.

Stochastic gradient descent has the element of fluctuation, which might hinder its ability
to settle down around a global minimum. An alternative optimization method exists as
a trade-off between regular gradient descent and SGD. The method is referred to as the
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Figure 2.32: Avoiding local minima with stochastic gradient descent.

mini-batch gradient descent method. Instead of using a single observation as in SGD, it
utilizes a batch of observations. The weights are updated based on the batch.

Problems on Model Fit

By definition, a model is a system that maps the input to output. Model fit is a measure
of how well a machine learning model generalizes to unseen data (Torres, 2016). Model
fit can be observed by plotting the training and validation loss for every iteration in the
training process. For each iteration, training loss is the final loss based on prediction on
training data, while validation loss is the final loss based on prediction on validation sam-
ples. During training, the model does not learn from the validation set; therefore, it can
be regarded as unseen data for evaluating model performance during training. Ideally,
training and validation loss should converge to a certain minimum, which indicates it has
a good generalization on both seen and unseen data.

Underfitting Well fit Overfitting

(a) Underfitting

Underfitting Well fit Overfitting

(b) Well fit

Underfitting Well fit Overfitting

(c) Overfitting

Figure 2.33: Different types of model fit (Vieira and Paixao, 2018).
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A well-fitted model produces a more accurate prediction of unseen data (Figure 2.33).
However, the trained model does not always produce a good prediction due to problems in
the model fit. There are two types of problems commonly encountered when trying to fit
a model:

• Overfitting: Overfitting occurs when the model is unable to generate accurate pre-
dictions on validation samples, although it performs well on training samples. The
loss plot shows that the training loss converges to a minimum, but the validation
loss is minimized only to a certain point, before starting to increase (Figure 2.34).
Overfitting means the model is memorizing the data it has seen and is unable to
generalize to unseen data.

• Underfitting: Underfitting occurs when the model is unable to generate accurate
predictions on validation samples due to poor performance on training samples. The
loss plot generally shows that the training and validation loss have not converged to
a certain minimum, and there is still a room of improvement to minimize the losses
further (Figure 2.34). Underfitting means the model is not powerful enough; it is
over-regularized or has not been trained long enough.

Underfitting Overfitting

(a) Underfitting

Underfitting Overfitting

(b) Overfitting

Figure 2.34: Loss plot on model with underfitting and overfitting problem (Brownlee, 2017).

Rectification of Model Fit Problems

Model fit problems must be rectified in order to generate an accurate prediction. Overfit-
ting can be avoided by implementing these solutions:

• Adding regularization: Regularization attempts to discourage the generation of a
more complex model. Common regularization techniques include: Dropout, where
random neurons are terminated by setting them to zero; and L2 regularization, where
some constraints are added to the network by forcing its weights only to take on
small values.
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• Early stopping: In overfitting, the validation loss is minimized to a certain point
before starting to rise. With early stopping, the training process is terminated based
on the monitoring of validation loss. Once validation loss is not minimized even
further, the training is stopped. The last model with the lowest loss is used for
prediction on test results.

• Data augmentation: Data augmentation is a technique to enlarge training set by
generating new samples via random transformation of the existing samples. Com-
mon transformations include rescaling, zooming, flipping and contrast change.

On the other hand, underfitting can be avoided with the following solutions:

• Increasing hidden layers/neurons: Increasing the number of hidden layers leads
to more neurons computation might result in a more robust model. This allows the
model to learn more complex features within the data.

• Reducing regularization: It is common to overdo regularization during the recti-
fication of overfitting problem. When the loss plot shows a shift from overfitting
to underfitting, it is advised to reduce the regularization to remove the underfitting
effect.

• Increasing training iteration: More training iterations means the model is given
more time to self-optimize and learn all the important features.

• Data augmentation: Data augmentation might also be implemented to rectify un-
derfitting, as it allows the model to learn more variations with the addition of more
samples.

2.5 Outcomes of the Preceding Study
Previously, in the preceding study by the same author, a machine learning-based net pay
estimation method had been developed. The objective of the preceding study was com-
prised of the development of data processing procedures; development of machine learning
implementation; and also preliminary net pay estimations on data from the wells of Johan
Castberg field. The outcome of the preceding study served as the foundation for this study.

The outcomes of the preceding study was comprised of image logs processing procedures;
core UV photographs processing procedures; design of machine learning implementation;
and results of the preliminary net pay estimations. Each of the outcomes is outlined in the
following section.

2.5.1 Image Logs Processing Procedures
In this study, image logs were used as the input for the neural network to perform net pay
estimation. Image logs from Diskos database were raw unprocessed image logs. There-
fore a series of processing measures were required prior to further utilization. The image
logs processing steps were performed in Techlog software and aimed at reducing logging
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environmental effects and acquisition artefacts. Besides processing, an additional data
augmentation procedure using Python was also performed. Data augmentation aimed at
generating more samples of the data based on the available data. The general workflow
of image logs processing is outlined in Figure 2.35. Further details of the image logs
processing procedures are explained in Section 3.4.

Inclinometry 

QC
General QC
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Pad Image 

Creation

Image Based 
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Correction

Button 

Harmonization

Histogram 
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Image Logs 

Depth 

Correlation

Image Logs 

Augmentation

Figure 2.35: General workflow of image logs processing in the preceding study.

2.5.2 Core UV Photographs Processing Procedures
Core UV photographs were used in this study to generate net pay fraction labels for the
machine learning technique. To generate net pay fraction labels, several processing steps
must be performed. In general, core UV photographs were binarized using software called
ImageJ. After core UV photographs binarization, data augmentation was performed sim-
ilarly with image log augmentation. The final step was the net pay fraction calculation
for each binarized image based on the color of the image. The net pay fraction values
were used as the label for the machine learning technique. The general workflow of core
UV photographs processing is outlined in Figure 2.35. Further details of the core UV
photographs processing procedures are explained in Section 3.5.

Binarization of 

Core UV 

Photographs

Data 

Augmentation

Net Pay Fraction 

Calculation
Label Generation

Figure 2.36: General workflow of core UV photographs processing in the preceding study.

2.5.3 Machine Learning Implementation
Machine learning implementation for net pay estimation was achieved by developing a
convolutional neural network (CNN) algorithm. The convolutional neural network was
developed using the Keras package in Python. A series configuration and hyperparameter
tuning were performed to find a network design which gives optimum result in terms of
loss minimization, model fit, and estimation accuracy. The architecture of CNN is outlined
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in Table 2.5. Further details of the machine learning implementation are explained in
Section 3.6.

Table 2.5: Configuration and hyperparameter settings of convolutional neural network in the pre-
ceding study.

Configuration Description

Convolutional layer

Number of layer: 5
Number of filter: 16,32,64,128, and 256 (from layer 1 to 5)
Filter size: 3 x 3
Activation function: ReLU
Padding: Enabled

Pooling layer
Number of layer: 5
Pooling window size: 2 x 2
Padding: Enabled

Fully connected layer
Number of layer: 2
Number of neuron: 64 and 1
Activation function: ReLU and linear

Loss Type: Mean squared error (MSE)

Optimization
algorithm

Type: Adam
Learning rate: 0.0001
Batch size: 64

Other parameter

Data augmentation: Horizontal
and vertical flip
Early stopping: Stop training after 5 iterations
without loss minimization

2.5.4 Preliminary Net Pay Estimations Results

The capability of the net pay estimation method was observed through a set of preliminary
net pay estimations. The term preliminary refers to how these experiments were intended
to formulate optimization approaches that will be implemented in the continuation of the
study. There were two sets of preliminary net pay estimations: net pay estimation based
on data from the same well and net pay estimation on data from a different well.

Net Pay Estimation Based on Data From the Same Well

In this net pay estimation, the training, validation, and test samples were taken from well
7220/7-3 S. The dataset from well 7220/7-3 S was selected due to the significant presence
of both clean and shaly sand intervals in its reservoir. The model used in this net pay
estimation was referred as Model X. Table 2.6 outlines the details of the training process
and also the test loss of estimating samples from well 7220/7-3 S. The result of net pay
estimation based on data from well 7220/7-3 S in the preceding study is displayed in Figure
2.37.
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Table 2.6: Details of the training process of Model X and the test loss achieved in estimating net
pay based on data from well 7220/7-3 S.

Model Details Value

Model X

Iteration 14
Training loss 0.0459

Validation loss 0.0403
Test loss 0.0417
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Figure 2.37: Net pay estimation based on data from well 7220/7-3 S in the preceding study.

Net Pay Estimation on Data From a Different Well

In this net pay estimation, the training and validation samples were taken from well
7220/7-3 S and 7220/7-1. Two test sets were generated, one with samples from well
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7220/5-1 and the other with samples from well 7220/8-1. The model used in this net pay
estimation was referred to as Model Y. Table 2.7 outlines the details of the training process
and also the test loss of estimating samples from well 7220/5-1 and 7220/8-1. The result of
net pay estimation based on data from well 7220/5-1 and 7220/8-1 in the preceding study
is displayed in Figure 2.38.

Table 2.7: Details of the training process of Model Y and the test loss achieved in estimating net
pay based on data from well 7220/5-1 and 7220/8-1 .

Model Details Value

Model Y

Iteration 8
Training loss 0.0459

Validation loss 0.0276
Test loss

(7220/5-1) 0.0457

Test loss
(7220/8-1) 0.0740
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(a) Well 7220/5-1.
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(b) Well 7220/8-1.

Figure 2.38: Net pay estimation based on data from well 7220/5-1 and 7220/8-1 in the preceding
study.
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3.1 General Workflow
In the preceding study, a net pay estimation method from borehole image logs based on a
machine learning principle was developed. The object of study was several sets of image
logs and core data from exploration wells in the Johan Castberg field (c.f. Section 3.2). Im-
age datasets comprised of image log samples served as the input for the machine learning
technique, while core UV photographs were utilized to generate net pay fraction labels for
the input. A set of processing procedures were developed to generate the image datasets
from the raw image logs and net pay fraction labels from the core UV photographs. The
machine learning technique itself was designed and developed in Python based on convo-
lutional neural network (CNN).

The preliminary net pay estimations conducted in the preceding study provided several
insights on how the machine learning-based net pay estimation method could be opti-
mized. Based on those insights, several optimization approaches were formulated in this
study. The optimization approaches consist of optimization of the image logs and core UV
photographs processing procedures (c.f. Section 3.4 and 3.5) and an optimized machine
learning technique implementation (c.f. Section 3.6). The goal of implementing those
optimization approaches was to improve the estimation results in terms of accuracy and
reliability.

The optimization of the image logs and core UV photograph processing was achieved
by implementing modification on the existing processing procedures (c.f. Section 2.5.1
and 2.5.2) and introducing novel processing procedures. For the machine learning part,
the optimization was attained by implementing modification in the convolutional neural
network design; a better curation of samples in the training set; and introduction of an
alternative data augmentation technique.
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As seen in Figure 3.1, after the optimized data processing and machine learning imple-
mentation, a set of net pay estimations was conducted using the processed data and CNN
model. One of the goals of the estimations was to observe and analyze the capability of
the optimized CNN model in estimating the net pay of unseen image logs in the test set, in
terms of accuracy and estimation profile. The reliability of the model was also evaluated
through a series of estimations on test sets with a horizontal variation. Statistical analysis
based on the calculation of standard deviation was performed to ensure that the estima-
tion was independent of horizontal variation within the image logs. The optimized net
pay estimation method was also demonstrated in estimating net pay of reservoir intervals
without core photographs from one of the wells in the Johan Castberg field. Finally, based
on the results evaluation and observed limitation of the net pay estimation method, several
recommendations for the continuation of the study was formulated.
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machine learning technique implementation
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estimations
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logs processing
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Figure 3.1: General workflow of the study conducted in this study.
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3.1.1 Software
The software and programming languages which were utilized in this study were outlined
below:

Techlog

Techlog is a software developed by Schlumberger to aid in petrophysical interpretation and
analysis. Techlog enables basic and advanced petrophysical interpretation on all wellbore
data types, including log, core, images, photos, and thin sections (Schlumberger, 2019b).
Techlog allows the processing of all common data types from various logging tools and
vendors. A Techlog suite, Advanced Borehole Geology Suite, was used to process image
logs in this study. Advanced Borehole Geology Suite is designed for processing and inter-
pretation of borehole image logs. It contains eleven plugins to perform interpretation and
processing on borehole image logs, e.g. basic image log processing, facies analysis, rock
texture, and fractures analysis, rock matrix conductivity analysis, extraction of formation
dip, structural cross-section computation, and generation of 360-degree images (Schlum-
berger, 2019a). In this study, Techlog was used to perform the following tasks:

• Image log processing.

• Depth correlation between image logs and core UV photographs.

• Converting image logs into tabular array format in comma-separated values (CSV)
files.

The version of Techlog used in this study was Techlog 2018.2.

ImageJ

ImageJ is an open-source image processing program developed by the National Institutes
of Health and Laboratory for Optical and Computational Instrumentation (LOCI). ImageJ
is a Java-based program and designed for standard image processing functions such as
sharpening, smoothing, edge detection, median filtering, binarization, geometric transfor-
mation, contrast alteration, convolution, and Fourier analysis (NIH, 2019). ImageJ version
1.52a was utilized in this study for the following tasks:

• Core UV photographs scaling.

• Binarization of core UV photographs.

Python

Python is a high-level programming language developed by Python Software Foundation.
It enables multiple programming applications, including functional and object-oriented
programming. Machine learning scripts in this study were written in Python programming
language. One of the Python packages, which was utilized to implement machine learning
techniques in this study, was Keras. Keras is an open-source high-level neural networks
application programming interface (API) developed by François Chollet, a Google soft-
ware engineer. Python 3 and Keras 2.2.5 was used in this study for the following tasks:
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• Converting core UV images into CSV files and Python array.

• Data augmentation on image logs and core UV photographs.

• Application of machine learning technique for net pay estimation.

3.2 Object of Study

3.2.1 Data Criteria and Composition
In the preceding study, several sets of data from exploration wells in Norway were ac-
quired from the NPD Diskos database. Diskos is a Norwegian national data repository
for exploration and production-related data, which is shared by both authorities and oil
companies. It was initiated and designed by the Norwegian Petroleum Directorate (NPD)
and oil companies represented on the Norwegian continental shelf in 1995 (NPD, 2019a).
There were several criteria which were considered during the selection of the wells for
data acquisition:

• Exploration wells with clean sand and shaly sand reservoir intervals.

• Exploration wells with hydrocarbon discovery.

• Exploration wells with available core and image log data.

The composition of the data from each well is outlined in Table 3.1.

Table 3.1: Data composition and file format for each dataset.

Data Format Details

Core UV
photographs

Tagged Image
File Format (TIFF)

Served as the ground truth for
machine learning estimation.
Labels for the machine learning
algorithm were generated from this data.

Core
laboratory

report

Portable Document
Format (PDF)

Utilized in the identification of
core photo interval which
contained no core photograph due to
whole core preservation (seal peel).

Borehole
image

log

Digital Log Information
Standard (DLIS) and PDF

Served as the input for the machine
learning. Net pay estimation
was performed based on the image log.

3.2.2 Johan Castberg Field

The information in this paragraph was summarized from the Johan Castberg webpage
in the Norsk Petroleum website organized by the Norwegian Ministry of Petroleum and
Energy and NPD (NPD, 2019b). The Johan Castberg field is an oil field operated by
Equinor Energy AS and situated in the Barents Sea, Norway (Figure 3.2). It is located 100
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kilometers northwest of the Snøhvit field. Johan Castberg consists of three discoveries:
Skrugard, Havis, and Drivis. The discoveries were proven between 2011 and 2013. The
reservoirs contain oil with gas caps in three separate sandstone deposits from Late Triassic
to Middle Jurassic age in the Tubåen, Nordmela, and Stø Formations. They lie at depths
of 1350 to 1900 m. The field is currently under development, and production is scheduled
to start in late 2022.

Johan 
Castberg 

field Barents Sea

RUSSIA

FINLAND

Figure 3.2: Location of Johan Castberg field in Barents Sea, Norway (Ifinnmark, 2019).

Data from four exploration wells in Johan Castberg was chosen as the object of this study.
Johan Castberg field was selected due to its laminated sandstone reservoir characterized
by ripple lamination and silty layers (Knaust, 2017). Two of the wells, 7220/7-3 S and
7220/7-1, contain both clean and shaly sand sequences in the reservoir interval. The rest
of the wells, 7220/5-1 and 7220/8-1, contain mostly clean sand in the reservoir interval.
Wells with both clean and shaly sand sequences were chosen as the main training data.
This was done to ensure that the neural network model learns both clean and shaly sand
sequences during training.

In this study, image logs and core UV photographs were curated from the oil zone, which
is the interval between gas-oil contact (GOC) and oil-water contact (OWC). In the core
UV photographs, oil bearing sands fluoresce within the oil zone. Oil fluorescence is es-
sential for the generation of net pay fraction labels from core UV photographs. Further
information and details on the selected wells are outlined in Table 3.2.

Table 3.2: Selected exploration wells from Johan Castberg field

Well Name Discovery Year Total
Depth

Oil Zone
Interval

7220/8-1 Skrugard 2011 2222 m 43 m
7220/7-1 Havis 2011 1740 m 126 m
7220/5-1 Skrugard 2012 2097 m 32 m

7220/7-3 S Drivis 2014 2230 m 78 m
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3.3 Implemented Optimization Approaches
Several optimization approaches which were formulated in the preceding study were im-
plemented in this study. These optimization approaches were implemented in several ele-
ments of this study, e.g. data processing procedures and machine learning implementation.
Table 3.3 outlines the changes in the data processing procedures and the machine learn-
ing implementation due to the introduction of the optimization. Each of the optimization
approaches is discussed further in Section 3.3.1 to 3.3.3.

Table 3.3: Changes in the data processing procedures and in the machine learning implementation
due to the introduction of the optimization approaches.

Element Preceding Study This Study

Image logs
processing

Button harmonization
performed after image
based speed correcton.

Button harmonization
performed before and after
image based speed correcton.

Image log sub-intervals
were stitched together
during augmentation.
Image log augmentation
was performed on the
stitched image.

Image log sub-intervals
were not stitched together
during augmentation.
Image log augmentation was
performed on each individual
sub-intervals

Orientation augmentation
procedures: vertical and
horizontal flip.

Orientation augmentation
procedures: vertical flip,
horizontal flip, and
pixel based horizontal shift.

Core UV
photographs
processing

Image artefacts on core UV
photographs were still
present.

Image artefacts on
core UV photographs
were not present.

Core UV photographs
sub-intervals were
stitched together
during augmentation.
Core UV image
augmentation was
performed on the
stitched image.

Core UV photographs
sub-intervals were not
stitched together
during augmentation.
Core UV image
augmentation was
performed on each
individual sub-intervals

Machine
learning

implementation

Less complex CNN design:
5 convolutional and
pooling layers;
2 fully connected layers.

More complex CNN design:
6 convolutional and
pooling layers;
6 fully connected layers.

Calcite cemented sand
intervals were
present in the training set.

Calcite cemented sand
intervals were
removed in the training set.
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3.3.1 Optimization Approaches for Image Log Processing

The optimization approaches which were introduced in the image log processing consist of
the introduction of an additional button harmonization in the processing workflow; modifi-
cation of the image log augmentation procedures; and introduction of an additional image
log orientation augmentation parameter.

Introduction of an Additional Button harmonization

Generally, button harmonization is an effort to regularize the response of button electrodes
or correct missing values due to faulty buttons (c.f. Section 2.2.2). However, in the case of
excessive buttons misalignment, an additional button harmonization may be introduced to
rectify the artefacts (Schlumberger, 2019a).In this study, an additional button harmoniza-
tion was performed before image based speed correction. Image based correction itself
is a part of image enhancement procedure which attempts to rectify offsets in the buttons
(sawtooth effect) or pads misalignment (c.f. Section 2.2.2). By performing a button har-
monization before image based speed correction, the response of button electrodes was
regularized before the image log was corrected for sawtooth effect. Furthermore, another
button harmonization was performed after image based speed correction, which further
amplified the regularization of button electrodes response. Further details on button har-
monization and image based speed correction are discussed in Section 3.4.5 and 3.4.6.

Modification of the Image Log Augmentation Procedures

One of the purposes of image log augmentation was to increase the number of samples
from the available image log by introducing overlaps between each sample image. One
of the steps in image log augmentation was the removal of image log intervals which did
not possess corresponding core UV photographs due to seal peel intervals. Seal peel inter-
vals were shown as blank sections in the core UV photographs; therefore, net pay fraction
labels could not be generated from those intervals. This implies that there were some miss-
ing intervals within the image log, and the image log was divided into several unconnected
sub-intervals. In the preceding study, those sub-intervals were stitched together during
image log augmentation. Stitching those sub-intervals together produced an unrealistic
structure as two distinctive features cut by the seal peel intervals were stitched together
(Figure 3.3). This might cause CNN to learn unrealistic structures and thus result in an
inaccurate estimation.

A solution to avoid this issue was by treating each sub-interval as an individual image log
and performing image augmentation on each sub-interval. The image samples generated
from each sub-interval were then combined in the image dataset. This ensured that each
sample image did not contain combined structures, which was unrealistic. Further details
on image log augmentation are discussed in Section 3.4.9.
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Figure 3.3: An example of how image concatenation during image log augmentation produces an
unrealistic image log in the preceding study.

Introduction of An Additional Orientation Augmentation Procedure

Besides increasing the number of samples in an image dataset, image log augmentation
was also purposed for introducing more variation within training samples, especially in
terms of image orientation. By implementing image augmentation, image samples were
generated with a higher degree of variation in the orientation. More variation on the ori-
entation leads to a network which learns that the net pay was invariant to the orientation
of the sand-shale layer. Orientation augmentation was achieved by implementing random
orientation shift on each sample image, e.g. vertical shift, zooming, and horizontal flip.

In the preceding study, orientation augmentation was performed by implementing vertical
and horizontal flip. In this study, the orientation augmentation was optimized with the
introduction of pixel based horizontal shift. With pixel based horizontal shift augmenta-
tion, each sample was shifted horizontally based on a randomly chosen number of pixels.
Further discussion on the orientation augmentation is shown in Section 3.4.9.

3.3.2 Optimization Approaches for Core UV Photographs Processing

The core UV photograph processing was optimized by introducing an additional process-
ing step to improve the quality and accuracy of the net pay fraction labels. One of the
drawbacks of core UV photographs is the presence of core plug holes in the image, which
act as artefacts in the binarized image (Figure 3.4). Core plug holes were binarized into
black color due to their dark shading in the original core UV images. If a core plug hole
was present in a clean sand interval, it would be converted into a black circular area in
the binarized image, which might reduce the net pay fraction of that interval. Hence a
clean sand interval with a significant core plug hole might appear as a shaly interval in the
core. By interpolating the interval with core plug holes in the label generation process, the
generated net pay fraction label ideally became more accurate. The core plug holes were
interpolated with textures of the area surrounding the holes. Beside the interpolation of
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core plug holes, seal peel intervals were also removed as in the image log processing pro-
cedures. Further discussion on the core UV photographs processing is shown in Section
3.5.

Figure 3.4: An example of how binarization of a core plug hole resulted in a black circular area in
the binarized image. The image is taken from well 7220/5-1.

3.3.3 Optimization Approaches for Machine Learning Implementa-
tion

The machine learning implementation was optimized by implementing a more complex
neural network architecture and a better curation of samples in the training set.

Enhancement in CNN Architecture Complexity

One of the prevalent issues encountered in the preceding study was the model underfitting
problem. A possible solution for the underfitting issue is by increasing the complexity
of the CNN architecture. This was achieved by increasing the number of layers in the
CNN architecture, e.g. convolutional layer, pooling layer, and layers in the fully connected
layer. In the preceding study, the CNN architecture was comprised of five convolutional
and pooling layers, and also two fully connected layers. In this study, the CNN architec-
ture was comprised of six convolutional and pooling layers, and six fully connected layers.

The introduction of additional convolutional and pooling layers enabled the network to
learn more features by employing more convolutional filters and feature maps. With more
feature maps, the number of neurons required to perform the computation in the fully con-
nected layer would also increase. The necessity of more neurons to perform computation
and generate net pay estimation was fulfilled by introducing more fully connected lay-
ers. The CNN achieved better learning through the use of more complex architecture, and
underfitting was minimized because the generated model was able to generalize better to
unseen samples.

Better Curation of Samples in the Training Set

Generating a CNN model with a good generalization to different variation in the samples
is essential. In this study, the image log samples were composed of either clean and or
shaly sand intervals. To generate a model which was able to generate a good estimation
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on both clean or shaly sand intervals, the composition of training set had to be curated in
a way that it had a balanced composition of clean and shaly sand samples. An unbalanced
composition might cause the model to generalize better to one type of sample, and thus
resulting in underfitting and poor estimation of net pay.

The presence of calcite cemented sands layers might also reduce the accuracy of net pay
estimation. As discussed previously in Section 3.5.1, calcite cemented sands commonly
possess low porosity and low permeability due to precipitation of calcite cement in the
pore space (Worden et al., 2019). As seen in Figure 3.5, a calcite cemented interval in an
oil zone is generally displayed as a dark interval in core UV photograph because it does
not contain oil. However, it might be displayed as a high resistivity interval (bright orange)
in the image log due to the cemented pores inhibiting the flow of electric currents. Thus,
calcite cemented sands were displayed with a similar color intensity as oil-bearing sand.
The presence of samples with calcite cemented sands might confuse the network as it was
trained with samples where bright color correspond to high net pay fraction. This implies
that calcite cemented sands intervals must be identified and subsequently excluded from
the training set. By excluding samples with calcite cemented sands from the training set, a
better CNN learning was achieved, and a more accurate net pay estimation was produced.
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Figure 3.5: An interval of calcite cemented sands in well 7220/8-1 between XX86 – XX87 m with
the corresponding core UV photograph as a comparison. The interval was displayed as a dark area in
the core UV photograph. However, in the image log, it was displayed with a similar color intensity
as oil-bearing sand.

3.4 Optimized Image Logs Processing

In this study, image logs were used as the input for the neural network to perform net pay
estimation. These image logs were acquired using a Fullbore Micro-Imager (FMI) tool
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by Schlumberger. As mentioned in Section 2.2.1, it consists of four pads with 24 button
electrodes in each pad. The button electrodes are arranged into rows of 12 buttons, and
each row is arranged with offsets. Each pad has a flap attached to it, and the flap increases
the borehole coverage without introducing more caliper arms. The flaps function the same
way as pads, and they also contain the same number of buttons. Thus, FMI contains four
flaps (flap A-D), four pads (pad A-D) and 192 button electrodes.

The image logs from Diskos database were raw unprocessed image logs. Therefore a series
of processing measures were required before further utilization. The image log processing
steps were performed in Techlog and aimed at reducing logging environmental effects and
acquisition artefacts. Image log processing also produced a standard display of the image
log. Raw image log is comprised of 16 unprocessed stripes, and each stripe corresponds
to one row of buttons in a pad or flap (Figure 3.6). These stripes were unprocessed, which
means acquisition artefacts were still prevalent. The standard display of the image log
consisted of 8 processed stripes, and each stripe represents a measurement from one pad
or flap (Figure 3.7). Image log depth was also correlated with the depth of core photograph
as the reference using Techlog. This ensured a matching depth between image logs and
the corresponding core photographs.
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Figure 3.6: Raw image log from well 7220/8-1 showing 16 stripes of image.
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Figure 3.7: Processed image log from well 7220/8-1 showing 8 stripes of image.
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Besides processing, an image log augmentation procedure using Python was also per-
formed. Image log augmentation aimed at generating more samples and variation of the
image log based on the available data. The number of samples is pivotal during the training
process of a convolutional neural network. Ideally, the CNN model will have a better gen-
eralization with the introduction of more samples in the training set. The general workflow
of image log processing is outlined in Figure 3.8. The details of each processing procedure
are outlined in the following sections.
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Figure 3.8: General workflow of image logs processing using Techlog and Python.

3.4.1 General Quality Control
The first step of image log processing in Techlog is observing the overall quality of the log
and ensuring all necessary measurements were available. Generally, this step includes the
following tasks:

• Extraction of necessary measurements from the Digital Log Information Standard
(DLIS) file.

• General overview of the image log to ensure there were no missing intervals.

• Identification of zones with excessive noise or artefacts.

• Identification of zones with poor hole condition (washout or swelling).

• Caliper reading verification.

Individual measurements are referred to as channels in Techlog. The required channels
for image log processing are outlined in Table 3.4. Caliper readings were also verified
during general QC. Caliper correction is usually performed in the field by the oilfield
service company. The correction was verified by looking at the correction value in the log
remarks section to ensure that the correction had been performed.
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Table 3.4: Required channels for image log processing.

Channel Description
C1 Caliper 1
C2 Caliper 2

DEVIM Memorized Deviation
EV Electric voltage

FBGA Electronic gain
FCA1 Electrode buttons measurement from pad A, row 1
FCA2 Electrode buttons measurement from pad A, row 2
FCA3 Electrode buttons measurement from flap A, row 1
FCA4 Electrode buttons measurement from flap A, row 2
FCAX High resolution x-axis acceleration
FCAY High resolution y-axis acceleration
FCAZ High resolution z-axis acceleration
FCB1 Electrode buttons measurement from pad B, row 1
FCB2 Electrode buttons measurement from pad B, row 2
FCB3 Electrode buttons measurement from flap B, row 1
FCB4 Electrode buttons measurement from flap B, row 2
FCC1 Electrode buttons measurement from pad C, row 1
FCC2 Electrode buttons measurement from pad C, row 2
FCC3 Electrode buttons measurement from flap C, row 1
FCC4 Electrode buttons measurement from flap C, row 2
FCD1 Electrode buttons measurement from pad D, row 1
FCD2 Electrode buttons measurement from pad D, row 2
FCD3 Electrode buttons measurement from flap D, row 1
FCD4 Electrode buttons measurement from flap D, row 2
FTIM High resolution acquisition time

FX X-Axis magnetometer
FY Y-Axis magnetometer
FZ Z-Axis magnetometer

HAZIM Memorized hole azimuth
P1AZ Pad 1 azimuth in horizontal plane

RB Relative bearing

3.4.2 Inclinometry Quality Control
As mentioned in Section 2.2.2, inclinometry quality control (QC) attempts at verifying
and repairing inclinometer measurements. In Techlog, inclinometry QC is performed by
plotting accelerometer and magnetometer channels and observing the plot. Ideally, the
accelerometer readings should lie in the middle of the plot, and the magnetometer readings
should form a circular shape in a vertical well. Techlog would attempt at calculating the
correction needed if erratic readings were observed. It also recomputes the tool orientation
channels. The required channels for inclinometry QC are outlined in Table 3.5.
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Table 3.5: Required channels for inclinometry QC

Channel Description
DEVIM Memorized Deviation
FCAX High resolution x-axis acceleration
FCAY High resolution y-axis acceleration
FCAZ High resolution z-axis acceleration

FX X-Axis magnetometer
FY Y-Axis magnetometer
FZ Z-Axis magnetometer

HAZIM Memorized hole azimuth
P1AZ Pad 1 azimuth in horizontal plane

RB Relative bearing

The results from inclinometry QC were several reliable inclinometer channels, which was
utilized in the subsequent processing steps.

3.4.3 Speed Correction
After a series of QC, the next processing step is speed correction. Speed correction cor-
rects for the effect of tool sticking on the image log. Tool sticking happens when the tool
stops momentarily and move upward in an abrupt manner. Tool sticking might cause some
intervals of the log to appear smeared.

Speed correction was performed by utilizing a sticking detection threshold based on the z-
axis acceleration channel (FCAZ). If the variation on the FCAZ falls below this threshold,
the interval was considered to be potentially stuck. This was verified by checking for
deceleration before the stuck interval, and acceleration after the stuck interval. The default
value of stuck detection threshold is 0.01 m/s2. If sticking was detected, the tool velocity
would be set to zero over the stuck intervals, and the measurements acquired over the
stuck interval were shifted to the depth where the sticking started. The required channels
for speed correction are outlined in Table 3.6.

Table 3.6: Required channels for speed correction

Channel Description
FCA1 Electrode buttons measurement from pad A, row 1
FCA2 Electrode buttons measurement from pad A, row 2
FCA3 Electrode buttons measurement from flap A, row 1
FCA4 Electrode buttons measurement from flap A, row 2
FCAZ High resolution z-axis acceleration
FCB1 Electrode buttons measurement from pad B, row 1
FCB2 Electrode buttons measurement from pad B, row 2
FCB3 Electrode buttons measurement from flap B, row 1
FCB4 Electrode buttons measurement from flap B, row 2
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Table 3.6 (Continued)
Channel Description

FCC1 Electrode buttons measurement from pad C, row 1
FCC2 Electrode buttons measurement from pad C, row 2
FCC3 Electrode buttons measurement from flap C, row 1
FCC4 Electrode buttons measurement from flap C, row 2
FCD1 Electrode buttons measurement from pad D, row 1
FCD2 Electrode buttons measurement from pad D, row 2
FCD3 Electrode buttons measurement from flap D, row 1
FCD4 Electrode buttons measurement from flap D, row 2
FTIM High resolution acquisition time

The output from this processing step was image log channels, which had been depth shifted
based on the speed correction mechanism. Ideally, the application of speed correction
generates image logs with a reduced smearing effect.

3.4.4 Pad Image Creation
Pad based image logging tools have a variety of hardware designs that differs from one
vendor to another. Some tools have four caliper arms, while others have six arms. The
number and placement of the electrode buttons may vary. As a result, raw data measured
from the tools are stored using different conventions. As an example, Fullbore Micro-
Imager (FMI) tool by Schlumberger produces 16 image arrays, which corresponds to 16
rows of button electrodes (Figure 3.6). Meanwhile, Simultaneous Acoustic and Resistivity
Imager (STAR) tool from Baker Hughes produces eight image arrays in which one array
corresponds to two rows of button electrodes in a pad. Raw image logs still display offsets
between rows of button electrodes and offsets between pads and flaps. Therefore, a stan-
dardized display was required, and it was achieved through pad image creation.

Pad image creation generally converts raw image logs into image logs with a standardized
display. Pad image creation also enables visualization of the image log before the appli-
cation of orientation information into the log. Techlog uses the following conventions to
display image logs:

• All pads are ordered clockwise around the borehole when looking down the borehole

• All buttons are ordered clockwise around the borehole when looking down the bore-
hole

• All button and pad measurements are corrected for any depth offsets during acqui-
sition

• Processed image logs are displayed with eight stripes of image

The required channels for pad image creation are outlined in Table 3.7.
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Table 3.7: Required channels for pad image creation.

Channel Description
C1 Caliper 1
C2 Caliper 2
EV Electric voltage

FBGA Electronic gain
FCA1 S Speed corrected electrode buttons measurement from pad A, row 1
FCA2 S Speed corrected electrode buttons measurement from pad A, row 2
FCA3 S Speed corrected electrode buttons measurement from flap A, row 1
FCA4 S Speed corrected electrode buttons measurement from flap A, row 2
FCB1 S Speed corrected electrode buttons measurement from pad B, row 1
FCB2 S Speed corrected electrode buttons measurement from pad B, row 2
FCB3 S Speed corrected electrode buttons measurement from flap B, row 1
FCB4 S Speed corrected electrode buttons measurement from flap B, row 2
FCC1 S Speed corrected electrode buttons measurement from pad C, row 1
FCC2 S Speed corrected electrode buttons measurement from pad C, row 2
FCC3 S Speed corrected electrode buttons measurement from flap C, row 1
FCC4 S Speed corrected electrode buttons measurement from flap C, row 2
FCD1 S Speed corrected electrode buttons measurement from pad D, row 1
FCD2 S Speed corrected electrode buttons measurement from pad D, row 2
FCD3 S Speed corrected electrode buttons measurement from flap D, row 1
FCD4 S Speed corrected electrode buttons measurement from flap D, row 2

In this study, the raw image log data consists of 16 image arrays, and each consists of 12
array columns, which corresponding to 12 buttons. During pad image creation, they were
converted into eight image arrays, which consists of 24 array columns, which corresponds
to 12 buttons (Figure 3.7). The depth offset between the pads and button electrodes were
corrected through the process of pad image correction. Since orientation information was
not required for net pay estimation, the standard display from pad image creation was
sufficient for net pay interpretation.

3.4.5 Button Harmonization
Button electrodes might give irregular responses due to tool problems or borehole condi-
tions, such as poor pad contact or mudcake smears on the pads. Faulty button electrodes
might give no responses, which creates empty values in the image log array. Button har-
monization corrects issues of button electrodes responses and missing measurement values
due to faulty button electrodes.

If one or more faulty button electrodes displayed inconsistent responses that were not
caused by lithological variation, a button harmonization was implemented to regularize
the response of the faulty buttons by matching them to a global response of all the buttons.
Because the algorithm applied a shift and a gain to the data; and there was no interpolation
or filtering; there was only a little loss of resolution or data fidelity. In the case of faulty
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button electrodes, the algorithm attempts to find dead button electrodes by looking for in-
tervals where the button electrode measurements remain below a threshold over a defined
interval. If such values were found, they would be replaced by interpolation with their
neighbors.

In the case of excessive buttons misalignment or sawtooth effect, button harmonization can
also be performed twice, before and after image based speed correction. This implies that
the button electrodes response were regularized before supplying the image log to image
based speed correction, which attempted to correct buttons misalignment. Performing
button harmonization twice also amplified the regularization of button electrodes response
during the processing workflow. Button harmonization requires the following channels as
input:

Table 3.8: Required channels for button harmonization.

Channel Description
FLAP 1 Image array from flap A
FLAP 2 Image array from flap B
FLAP 3 Image array from flap C
FLAP 4 Image array from flap D
PAD 1 Image array from pad A
PAD 2 Image array from pad B
PAD 3 Image array from pad C
PAD 4 Image array from pad D

The result of button harmonization was an updated pad or flap image arrays, which were
used in the next processing step.

3.4.6 Image Based Speed Correction
Speed correction might not always manage to entirely correct for irregular tool movement.
Since button electrodes are geometrically arranged with offset, irregular tool movement
might display the offset as a sawtooth effect or buttons misalignment in the image log.
Irregular tool movement might also create a depth mismatch between pads along with a
certain depth. To correct those artefacts, image based speed correction was performed in
Techlog.

Image based speed correction utilizes a depth correlation algorithm based on the standard-
ized image arrays from pad image creation. The term ”image-based” refers to how the
algorithm attempts to correct sawtooth effect or pads misalignment based solely on image
arrays, without utilizing speed or accelerometer measurements. It requires the following
channels as input:

59



Chapter 3. Methodology

Table 3.9: Required channels for image based speed correction.

Channel Description
FLAP 1 H Image array of flap A from button harmonization
FLAP 2 H Image array of flap B from button harmonization
FLAP 3 H Image array of flap C from button harmonization
FLAP 4 H Image array of flap D from button harmonization
PAD 1 H Image array of pad A from button harmonization
PAD 2 H Image array of pad B from button harmonization
PAD 3 H Image array of pad C from button harmonization
PAD 4 H Image array of pad D from button harmonization

The result from image based correction was an updated pad or flap image arrays, which
were used in another button harmonization. The second button harmonization was per-
formed similarly as the first one (c.f. Section 3.4.5). It requires the following channels as
input:

Table 3.10: Required channels for the second button harmonization.

Channel Description
FLAP 1 H ISC Image array of flap A from image based speed correction
FLAP 2 H ISC Image array of flap B from image based speed correction
FLAP 3 H ISC Image array of flap C from image based speed correction
FLAP 4 H ISC Image array of flap D from image based speed correction
PAD 1 H ISC Image array of pad A from image based speed correction
PAD 2 H ISC Image array of pad B from image based speed correction
PAD 3 H ISC Image array of pad C from image based speed correction
PAD 4 H ISC Image array of pad D from image based speed correction

The result from second button harmonization was used in histogram equalization.

3.4.7 Histogram Equalization
Image log interpretation generally requires good image contrast to highlight the features
or layers in the formation. Image contrast can be enhanced by normalizing the image log
through the use of the histogram equalization technique. Histogram equalization accom-
plishes this by spreading out the most frequent color intensity values, i.e. stretching out
the intensity range of the image. This enables a contrast enhancement of the logs, which
aids visual interpretation by petrophysicists or geologists.

In histogram equalization, each measurement value is mapped to a position on a normal-
ized scale, e.g. a scale that ranges from 0 to 255. There are two types of normalization in
histogram equalization:

• Static normalization: Each measurement value is mapped to a scale normalized for
the entire logging interval. Global contrasts are enhanced as a result.
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• Dynamic normalization: Each measurement value is mapped to a scale defined
by the range in a window with pre-defined size (usually 1 m). Local contrasts are
enhanced as a result.

The required channels for histogram equalization are outlined in Table 3.11.

Table 3.11: Required channels for histogram equalization.

Channel Description
FLAP 1 H ISC H Image array of flap A from the second button harmonization
FLAP 2 H ISC H Image array of flap B from the second button harmonization
FLAP 3 H ISC H Image array of flap C from the second button harmonization
FLAP 4 H ISC H Image array of flap D from the second button harmonization
PAD 1 H ISC H Image array of pad A from the second button harmonization
PAD 2 H ISC H Image array of pad B from the second button harmonization
PAD 3 H ISC H Image array of pad C from the second button harmonization
PAD 4 H ISC H Image array of pad D from the second button harmonization

One of the drawbacks of dynamic normalization is it might show thin layers in the image
log, which are not physically present in the formation. That might lead to an incorrect
net pay estimation due to additional layers of sand or shale which are not present in the
corresponding core UV photograph. The advantage of using static normalization is to en-
sure a universal color assignment for the whole interval of the log, instead of local color
assignment in dynamic normalization. In static normalization, a specific color is assigned
to a particular pixel value, which is independent of depth. Thus, static normalization was
used in this study.

The result from histogram equalization was a set of updated image arrays that were ready
to be displayed for interpretation. The arrays can be displayed as a complete image log, as
shown in Figure 3.9.

Figure 3.9: An example of image log processed with static normalization from well 7220/7-3 S.
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3.4.8 Image Log Depth Correlation
Image logs and the corresponding core UV photographs had depth offsets, which had to be
corrected. The offset was corrected by correlating the depth of image logs with the depth
of core UV photographs as the reference. Depth correlation was performed by matching
the depth of visually distinct geological features in the oil zone (Figure 3.10). Table 3.12
outlines the geological features which were utilized for depth correlation in this study.

Core UV 

Photograph
XX

XX

XX

Figure 3.10: An example of depth correlation based on the top of clean sand interval at XX88.45 m
from well 7220/7-1.

Table 3.12: Geological features utilized in depth correlation and their characteristics in image logs
and core UV photographs

Geological
features

Characteristic in
image logs

Characteristic in
core UV photographs

Clean sand interval
High resistivity interval

(bright orange or yellow) Bright interval

Clean shale interval
Low resistivity interval

(dark brown) Dark interval

Shaly sand sequence
Alternating layers of high
and low resistivity interval

Alternating layers of bright
and dark interval

Calcite cemented
sand interval

High resistivity interval
(bright orange or yellow) Dark interval

After depth matching the top or bottom of a certain geological feature, a depth correction
value was computed for each well. Image log from each well was depth shifted by applying
the depth correction value in Techlog. Image log arrays from one well was combined into
an image array with 192 columns, and certain number of rows which varies for each well.
It was then exported from Techlog into a comma separated value (CSV) file for the final
processing step in Python.

3.4.9 Image Log Augmentation
In order to generate more samples with more variation within the image dataset, an image
augmentation procedure was a necessity during the generation of an image dataset. Im-
age log augmentation is an attempt to generate more image log samples to populate the
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image dataset, only with the available image logs. In this study, there were two goals of
implementing image log augmentation: image dataset enlargement and enrichment of the
variation within the dataset.

Image Dataset Enlargement

Before being used as the input for the machine learning technique, each processed im-
age log went through a set of image augmentation procedures, in which it was sliced into
smaller sized images with an overlapping portion between each image. By introducing
image overlaps, a larger image dataset with more images was achieved by using only the
available image logs. This implies that a particular layer might appear multiple times in
a series of consecutive images, albeit with different vertical position. Image overlaps also
enhance the CNN ability to learn the net pay of an image log sample regardless of the
layer position. A larger dataset enables the model to generalize better to unseen samples
and thus reducing model fitting problems such as overfitting and underfitting.

Image augmentation was conducted in Python and generated a dataset with a multitude of
images. The procedure of image augmentation is shown in Figure 3.11, and each step is
explained below:

1. Interval above the GOC and below the OWC was removed from the image log. This
was to remove image log intervals with no oil fluorescence in the corresponding
core UV photographs.

2. Image log intervals which correspond to seal peel intervals in the core UV pho-
tograph were removed. Seal peel intervals appear as blank sections in the core UV
photographs (Figure 3.12). Therefore, net pay fraction labels could not be computed
from those intervals. Image log sub-intervals were generated.

3. Each sub-interval was sliced into smaller sized images through the use of an image
slicing window. The slicing window size was 100 pixels long and 192 pixels wide.
The length of 100 pixels corresponds to 25 cm depth. Thus each image represents a
25 cm interval of the formation.

4. The slicing window moved 4 pixels (1 cm) down after slicing an image. The window
sliced another image after moving 4 pixels down. This implies that the top depth of
an image was not the same as the previous image bottom depth. As a result, each
image was overlapping with the subsequent image by 96%.

5. Each image was flattened from a 2D array of 100 x 192 pixels into a 1D array of 1 x
19200 pixels. Each array was stored as a single row in the final array, which served
as the input for the machine learning technique. The number of rows in the final
array corresponds to the number of images in each well.
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Figure 3.11: An illustration of processing steps for image logs augmentation.

64



3.4 Optimized Image Logs Processing

XX XX

XX XX

XX XX

Figure 3.12: An example of a core photograph with seal peel interval from well 7220/7-3 S. The
interval contains no core image; therefore, a net pay fraction label cannot be generated from that
interval.

Enrichment of the Variation Within a Dataset

Once an image dataset was generated with a sufficiently large number of samples, the
orientation of samples was altered and augmented by implementing another image aug-
mentation procedure. By augmenting the orientation of samples, more variation would
be embedded into the dataset. This was essential for the samples in the training set as it
taught the network that net pay was invariant to the orientation of the sand-shale layer.
Orientation variation within the training set was achieved by using an image augmentation
function in Python called Image Data Generator. This augmentation was implemented on
samples in training set during the training process.

The orientation procedures considered in this study were vertical flip, horizontal flip, and
pixel based horizontal shift. Image Data Generator randomly selected which procedure
would be applied to a sample image. This implies that each sample image in the training
set might have a different orientation, further enhancing the variation within the dataset.
Vertical flip flipped the samples along the x-axis, while the horizontal flip flipped the sam-
ples along the y-axis. With pixel based horizontal shift, each sample was shifted horizon-
tally based on a randomly chosen number of pixels. In this study, the range of pixels was
specified between -96 to +96 pixels. Several examples of images with orientation variation
implemented using Image Data Generator are shown in Figure 3.13.
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Figure 3.13: Several examples of artificial images with orientation variation implemented using
Image Data Generator, e.g. vertical flip, horizontal flip and pixel based horizontal shift.

3.5 Optimized Core UV Photographs Processing

Core UV photographs were used in this study to generate net pay fraction labels for the
machine learning technique. To generate net pay fraction labels, several processing steps
must be performed. In general, core UV photographs were binarized using ImageJ. After
core UV photographs binarization, data augmentation was performed similarly with image
log augmentation. The final step was the net pay fraction calculation for each binarized
image based on the color of the image. The net pay fraction values were used as the label
for the machine learning technique.

3.5.1 Binarization of Core UV Photographs

To generate the net pay fraction for a specific interval of core UV photograph, a visual
interpretation of sand and shale in the oil zone was needed (c.f. Section 2.3.3). Interpre-
tation of sand and shale based on core UV photographs was performed by observing the
color intensity of the image. In the oil zone, intervals with dark color were interpreted
as shales or calcite cemented sands, while bright intervals were interpreted as oil bearing
sands. Calcite cemented sands commonly possess low porosity and low permeability due
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to precipitation of calcite cement in the pore space (Worden et al., 2019). Hydrocarbons
such as oil generally do not migrate into layers of calcite cemented sands, and thus it is
shown with dark color in the core UV photographs.

Instead of using a manual interpretation to determine which interval was considered as
dark or bright, a binarization technique using ImageJ was utilized to convert the color in-
tensity of the image into two colors, black and white (Figure 3.14). In this case, black
pixels represent shale, and white pixels represent oil bearing sand. This enabled a straight-
forward net pay estimation for a specific interval, as the number of white pixels was only
summed up and divided by the total number of pixels of the interval to obtain net pay
fraction.

(a) Original (b) Binarized

Figure 3.14: Examples of (a) an original core UV photograph; and (b) a binarized core UV photo-
graph from well 7220/7-3 S.

Core UV photographs from the Diskos database consist of multiple images, and each
image represents 1 m interval of the core. The original dimension of each core UV image
from the Diskos database was 9000 x 992 pixels, and it was reduced to 1000 x 110 pixels in
ImageJ. This was to compress the size of the image and to enable a straightforward depth
matching as 1 pixel corresponds to 0.1 cm after compression. Prior to binarization, the UV
images were concatenated vertically into a single image using ImageJ. ImageJ binarized

67



Chapter 3. Methodology

the concatenated image by automatically setting a threshold based on the maximum and
minimum pixel value in the image. Any pixel values below the threshold were converted to
black, and pixel values above the threshold were converted to white. ImageJ binarization
assigns pixel value of 255 for black and 0 for white. The result was a concatenated image
for each well, with pixel values of 0 (oil bearing sand) or 255 (shale).

3.5.2 Core UV Images Augmentation

Similar to image logs processing, a set of image augmentation procedures were performed
on the binarized core UV images. Each binarized core UV image underwent an image
augmentation process where it was sliced into smaller sized images with overlaps (Figure
3.15). Image augmentation generated a dataset that contains a multitude of images using
Python. The processing steps for image augmentation is listed below:

1. Interval above the GOC and below the OWC was removed from the core UV image.
This was performed to remove the intervals with no oil fluorescence.

2. Seal peel intervals were removed as they were shown as blank sections. Net pay
fraction labels could not be computed from those intervals. Core plug holes were
also interpolated with textures of the area surrounding the holes. After the removal
of seal peel intervals and interpolations of core plug holes, core UV image sub-
intervals were generated.

3. Each sub-interval was sliced into smaller sized images through the use of an image
slicing window. The slicing window size was 250 pixels long and 110 pixels width.
The length of 250 pixels corresponds to 25 cm depth. Thus each image represents a
25 cm interval of the core.

4. The slicing window moved 10 pixels (1 cm) down after slicing an image. The win-
dow sliced another image after moving 10 pixels down. This implies that the top
depth of an image was not the same as the previous image bottom depth. As a
result, each image was overlapping with the subsequent image by 96%. The pur-
pose of the overlap was to enlarge the existing dataset as an improvement in neural
network model learning.

5. Each image was flattened from a 2D array of 250 x 110 pixels into a 1D array of 1 x
27500 pixels. Each array was stored as a single row in the final array. The number
of rows in the final array corresponds to the number of the image in a dataset. Each
well was represented by a dataset with a certain number of images.

The result from image augmentation was an array saved in CSV format.
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Figure 3.15: An illustration of processing steps for core UV images augmentation.
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3.5.3 Net Pay Fraction Label Generation
The result from core UV images augmentation was an array with 27500 columns and
multitude rows, in which each row represents one image. Each cell in the row had either
a pixel value of 0 (oil bearing sand) or 255 (shale). Therefore by a simple averaging, the
fraction of the cell with a value of 255 was determined. The fraction corresponds to the
fraction of image pixel, which represents oil bearing sand, and therefore it corresponds to
the net pay fraction of the image (Figure 3.16a). Since the cell values were either 0 or
255, net pay fraction (Fnet) was computed by summing up the cell values in a single row
(Scell) and dividing it by the number of cells in the row (Tcell) multiplied by 255 as shown
by Equation (3.1).

Fnet =
Scell

Tcell × 255
× 100% (3.1)
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(b) Label assignment to image log slices.

Figure 3.16: An illustration of (a) a net pay fraction label generation from core UV images and (b)
labels assignment to image log slices.

The net pay fraction values of each row were utilized as the label for the machine learning
training process. These values were saved in a separate 1D array in Python. Each image
log slice was assigned with a net pay fraction label from the label array (Figure 3.16b).
Each well was represented by a dataset that consisted of images from an image log and
their corresponding labels.
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3.6 Optimized Machine Learning Implementation
Machine learning implementation for net pay estimation was achieved by developing a
convolutional neural network (CNN) algorithm.

3.6.1 Convolutional Neural Network Design
A series of configuration and hyperparameter tuning were performed to find a network
design which gives an optimum result in terms of loss minimization, model fit, and esti-
mation accuracy. The design of CNN is shown in Figure 3.17 and outlined in Table 3.13.
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Figure 3.17: An illustration of convolutional neural network design in this study.

Table 3.13: Configuration and hyperparameter setting of the convolutional neural network in this
study.

Configuration Description

Convolutional layer

Number of layer: 6
Number of filter: 16,32,64,128, 256, 512 (from layer 1 to 6)
Filter size: 3 x 3
Activation function: ReLu
Padding: Enabled

Pooling layer
Number of layer: 6
Pooling window size: 2 x 2
Padding: Enabled

Fully connected layer
Number of layer: 6
Number of neuron: 512, 256, 128, 64, 32 and 1
Activation function: ReLu and linear

Loss Type: Mean squared error (MSE)

Optimization
algorithm

Type: Adam
Learning rate: 0.0001
Batch size: 64

Other parameter
Early stopping: Stop training if validation loss
was not minimized after 25 iterations.

The convolutional neural network used in this study consisted of the following elements
which are discussed in the following subsections.
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Dataset

The dataset for each well was split into training, validation, and test set. The training and
validation sets were composed of samples from well 7220/7-3 S as it has a significant
presence of both clean and shaly sand intervals in its reservoir. There were two different
types of net pay estimation: estimation on samples from the same well as the training set;
and estimation on samples from a different well. Therefore two different types of test set
exist in this study.

The first estimation was performed to observe the capability of the method in estimating
samples with the same logging environment as the samples in the training set. Even though
the test set in that estimation was composed of samples from the same well as the training
set, the test samples were unseen to the network during training. For the estimation on
samples from a different well, the test sets were composed of samples from well 7220/5-1,
7220/7-1 and 7220/8-1. This was an attempt to simulate the practical application of the
net pay estimation method, in which the CNN is trained on wells with core data and used
to estimate net pay on wells without core data.

For the reliability evaluation, a multitude of additional test sets were generated from the
existing test sets. Every sample in a test set was shifted horizontally between 24 to 168 pix-
els, thus generating seven different test sets from one test set (Figure 3.18). The horizontal
shift by 24 pixels corresponds to a shift by one pad/flap, as a pad or flap is composed of
24 pixels. In the reliability evaluation, eight different test sets were utilized for estimation
on each well. Those test sets contain different horizontal shift, and horizontal variation ex-
ists among the test sets. Since a borehole image log is essentially an unwrapped cylinder
representing the borehole (c.f. Section 2.2.3), horizontal shifting did not alter the interpre-
tation of the log. Thus, the net pay estimates across the different test sets should ideally be
similar.

A statistical analysis was performed by generating a standard deviation band based on the
estimates from the eight different test sets. Since the estimation across the eight different
test sets should ideally be similar, the width of standard deviation band should not be wide.
Through the generation and evaluation of the standard deviation band, the reliability of the
net pay estimation method was evaluated.

Input

The input was a multitude of images from the image log, which were passed into the first
convolutional layer. The pixel values of each image were also normalized from a greyscale
value between 0 to 255, to a scale between 0 and 1. Normalization was aimed to transform
features to be on a similar scale, to improve the performance and training stability of the
model.
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Test Set
Horizontal 

Shift
Illustration of the Image Log

Test Set 1 

(Original)
No shift Pad A Flap A Pad B Flap B Pad C Flap C Pad D Flap D

Test Set 2 24 pixels Flap A Pad B Flap B Pad C Flap C Pad D Flap D Pad A

Test Set 3 48 pixels Pad B Flap B Pad C Flap C Pad D Flap D Pad A Flap A

Test Set 4 72 pixels Flap B Pad C Flap C Pad D Flap D Pad A Flap A Pad B

Test Set 5 96 pixels Pad C Flap C Pad D Flap D Pad A Flap A Pad B Flap B

Test Set 6 120 pixels Flap C Pad D Flap D Pad A Flap A Pad B Flap B Pad C

Test Set 7 144 pixels Pad D Flap D Pad A Flap A Pad B Flap B Pad C Flap C

Test Set 8 168 pixels Flap D Pad A Flap A Pad B Flap B Pad C Flap C Pad D

Figure 3.18: An illustration on how the test sets with horizontal variation were generated.

Convolutional and Pooling Layer

Convolutional and pooling layers performed a convolutional and pooling operation on the
input to learn important features within the images. Each convolutional layer was assigned
with the following hyperparameters: a filter with 3x3 size, a stride of 1, padding operation
enabled and ReLU activation function. As an exception, the first convolutional layer was
assigned with a stride of 2, to reduce the computational time. The filters were initialized
with random values, and those values were updated during the training process. Adding
a larger stride for the first layer resulted in a faster training process without a degradation
in the estimation quality. Each pooling layer consisted of the following hyperparameters:
a pooling window with 2x2 size and padding operation enabled. The number of layers,
filters, windows, and hyperparameter settings were tuned to ensure all essential features
were learned, and minimization of loss during training is achieved.
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Fully Connected Layer

The fully connected layer performed computations on the flattened pooled feature map.
The first layer was assigned with 512 neurons and ReLU activation function. The subse-
quent layers were assigned with a decreasing number of neurons and also a ReLU activa-
tion function. The final layer consisted of a single neuron which output net pay estimation
for each image. A linear activation function was assigned in the final layer in order to out-
put a continuous value. Similar to convolutional and pooling layers, the number of layers
and neurons were tuned to ensure all essential features were learned, and minimization of
loss during training is achieved.

Training Process and Output

During training, the CNN model was evaluated with the validation samples, and the vali-
dation loss was calculated as a mean squared error (MSE) between estimates on the vali-
dation samples and the corresponding net pay fraction labels (c.f. Section 2.4.2). Through
a set of iterations during training, validation loss was minimized, and the model was up-
dated using an Adam optimizer. Adam is an optimization algorithm based on mini-batch
gradient descent method (c.f. Section 2.4.4). A learning rate of 0.0001 and a batch size of
64 were used to ensure that the loss was minimized properly without a long computation
process.

An early stopping mechanism was implemented in the training process to prevent over-
fitting problem. With early stopping, the training process was terminated based on the
monitoring of validation loss. If validation loss was not minimized within 25 iterations,
the training was stopped. The model with the minimum loss was used for estimation on
the test set. A test loss based on the test set was also computed as an MSE between es-
timates on the validation samples and the corresponding net pay fraction labels. A loss
plot consisted of training, and validation loss was also generated. The output of the trained
CNN model was an array containing net pay estimates for each image in the test set, which
was compared with test set labels to assess the model estimation capability.

3.7 Statistical Analysis of the Estimation Results

3.7.1 Statistical Analysis for Accuracy Evaluation
In the accuracy analysis of estimation results, an estimation error was calculated for each
net pay estimate. Estimation error (e) is an error between a net pay estimate (y) and its net
pay fraction label (ŷ), as seen in Equation (3.2).

e = y − ŷ (3.2)

Based on the estimation error calculation, a box plot was generated to plot the distribution
of estimation errors in each estimation (Figure 3.19). Box plot is a type of chart commonly
used to show the distribution of numerical data through displaying the data quartiles, me-
dian and mean (Lane, 2013). A box plot gives an indication of the spread or range of the
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data based on the width of the box. It also shows the presence of outliers within a data set.

A box plot is also used to display the skewness of data. Skewness is a measure of the lack
of symmetry in the data distribution. In data with positive skew, the mean is greater than
the median. In data with negative skew, the mean is smaller than the median. Skewness
gives an indication of where the majority of the data lies, either on the lower or higher side
of the distribution. The measures of data shown in a box plot are explained as follows:

• Minimum: The lowest value of a data, excluding outliers.

• Lower quartile: Twenty-five percent of the data fall below the lower quartile value

• Median: The median marks the mid-point of the data and is shown by the line that
divides the box into two parts. Half of the data are greater than or equal to this value,
and half are less.

• Upper quartile: Seventy-five percent of the data falls below the upper quartile value.
Therefore, 25% of the data are above this value.

• Maximum: The highest value of the data, excluding outliers.

• Whiskers: The upper and lower whiskers represent data which are located outside
the middle 50% of the data.

• Inter quartile range: This box shows the middle 50% of the data.

Maximum
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Lower 

Quartile

Upper 

Quartile

Inter 

Quartile 

Range ✕ Mean

Upper 

Outlier

Lower 

Outlier

Upper

Whisker

Lower

Whisker

Figure 3.19: Measures of a data shown in a box plot.

3.7.2 Statistical Analysis for Reliability Evaluation
The capability of the net pay estimation method in generating estimations which were
independent of horizontal orientation was evaluated through a set of net pay estimations
on eight test sets with varying horizontal orientation (c.f. Section 3.6.1). The variability
within the eight estimates from the test sets were observed by calculating the standard
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deviation of the estimates. Variability is a statistical terminology which refers to the extent
in which values differ from one another (Lane, 2013). Standard deviation (σ) is a measure
of variability and it is calculated using the following formula:

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (3.3)

In Equation (3.3), the number of observation is represented by N ; individual value is rep-
resented by xi; and the mean of the population is represented by µ.

Since the net pay estimates were a continuous value, a standard deviation band was gener-
ated to give a better visualization of the variability (Figure 3.20). The standard deviation
band (B) is basically an interval defined by the following equation:

B =

[
µ− σ , µ+ σ

]
(3.4)
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Figure 3.20: An example of a standard deviation band showing it as an interval with the population
mean at its center. The wider portion of the band indicates a higher variability within the population.

The width of a standard deviation band gives a hint on the variability within the popula-
tion. A population with large variability within its values has a wider band compared to a
population with small variability (Srivastava, 2008).
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Results and Discussions

4.1 Results of the Optimized Data Processing
In this study, optimizing the data processing procedures is one of the objectives in the
optimization of the machine learning-based net pay estimation method. The image logs
and core UV photographs processing procedures were aimed to generate the necessary
datasets which serve as input and labels for the machine learning technique. The following
two sections outline the results of the optimized image logs and core UV photographs
processing.

4.1.1 Image Logs Processing Results

Image logs processing began with a general quality control of the logs and also an incli-
nometry quality control (QC) in Techlog. Based on the general quality control, the DLIS
files obtained from Diskos contained image logs with all of the required channels and
without any missing interval. Having a complete interval is essential as the image logs
should ideally cover the intervals present in the corresponding core UV photographs. Vi-
sual observation of image logs did not find any interval with exceptionally poor borehole
condition or excessive noise in the reservoir zone. In all of the wells, the accelerometer
readings formed an ideal plot as the values of the x-axis and z-axis acceleration were close
to zero. The magnetometer readings also showed a circular shape in all of the wells. This
implies that based on the inclinometry QC, there is no correction needed for the inclinome-
ter measurements.

The optimized image logs processing procedures managed to rectify image artefacts present
in the raw image logs. The processing corrected several artefacts such as pads misalign-
ment, sawtooth effect, and pads smearing effect. Although some of the image artefacts
remained present in some intervals, the quality was still sufficient for net pay fraction es-
timation purposes. Several examples of image artefacts correction and other processing
results are shown in Figure 4.1.
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(b) Reduction of sawtooth effect with button harmonization and image
based speed correction from well 7220/8-1. The pixel value in the color
scale were altered due to the button harmonization.
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Figure 4.1: Several examples of image artefact corrections and contrast enhancement performed
during image logs processing.
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As shown by Figure 4.2, image logs with static normalization in a standardized display
were generated by the image logs processing. Through the depth correlation procedure, it
was observed that depth shifts were required to remove the offsets between the image logs
and core UV photographs (Table 4.1). The final result of image logs processing was four
image datasets from four exploration wells in Johan Castberg.
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Figure 4.2: Fully processed image logs from each exploration well in this study. Each image stripe
within the image log represents a measurement from one pad or flap.

Table 4.1: Details of depth shift values and number of samples in the image dataset for each well.

Well Depth
shift

Number
of Samples

7220/5-1 0.2 m down 1881
7220/7-1 1.05 m down 6400

7220/7-3 S 0.9 m down 5439
7220/8-1 1.5 m down 1773

4.1.2 Core UV Photographs Processing Results
Core UV photographs processing generated label datasets comprised of net pay fraction
values. The number of labels in each label dataset corresponds to the number of images
in the image dataset. Since the image dataset was composed of overlapping images, the
labels were displayed in a plot against image indices instead of depth, which represents
the number of labels or images in the dataset (Figure 4.3).
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(a) Well 7220/5-1.
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(b) Well 7220/7-1.
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(c) Well 7220/7-3 S.
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Figure 4.3: Plot of net pay fraction labels of each exploration well in the study.
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4.2 Net Pay Estimation Based on Data From The Same Well

As seen in Figure 4.3, well 7220/5-1 and well 7220/8-1 are composed of mostly clean
sand samples, while well 7220/7-1 and 7220/7-3 S are comprised of both clean and shaly
sand samples. Samples with a clean sand interval are indicated by the smooth curve with
net pay fraction values between 95-100%, while samples with a shaly sand interval are
indicated the fluctuating curve with net pay fraction values between 30-95%.

4.2 Net Pay Estimation Based on Data From The Same
Well

A series of net pay estimations were performed using the processed data, to evaluate the
capability of the optimized net pay estimation method. The optimized convolutional neural
network was trained based on data from one of the wells in the Johan Castberg field. The
optimized network generated a model that was used to estimate the net pay of unseen im-
age log samples. These unseen image log samples were acquired from either the same well
as the training and validation samples or from a different well (c.f. Section 3.6.1). The ac-
curacy and reliability of the developed net pay estimation method were evaluated through
a set of statistical analyses. The accuracy was evaluated by observing the loss plot and
analyzing the error on some specific lithologies, e.g. clean sand and shaly sand. The relia-
bility of the estimation was evaluated by performing estimation on test sets with different
horizontal orientation, and conducting a statistical analysis on the results (c.f. Section 3.7).

For the first net pay estimation, the training, validation, and test samples were acquired
from the same well. The purpose of performing net pay estimation based on data from the
same well is to observe the capability of the optimized method in estimating samples from
the same logging environment. The dataset from well 7220/7-3 S was selected due to the
significant presence of both clean and shaly sand intervals in its reservoir. That was done
to ensure that both types of lithology were involved in the training and estimation process.

The dataset split was conducted according to this rule: 64% of the samples for the training
set, 18% of the samples for the validation set, and 18% of the samples for the test set.
The dataset curation was performed carefully to ensure no overlap between the training,
validation, and test set. This implies that the test set remained unseen to the network during
training, and thus keeping the integrity of the training process. Each set also contained
both clean and shaly sand samples to ensure that the network was trained and generated
estimation on both types of lithology. This net pay estimation was conducted with data
listed in Table 4.2.

Table 4.2: Details of the datasets used in the net pay estimation based on data from the same well.
The training, validation and test samples were taken from well 7220/7-3 S.

Dataset Number of Samples Source
Training set 3486 7220/7-3 S

Validation set 971 7220/7-3 S
Test set 982 7220/7-3 S
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During the training process, the training and validation loss were calculated as a Mean
Squared Error (c.f. Section 2.4.2 and 3.6.1) and recorded. Once the minimum validation
loss had been reached, a net pay estimation was conducted on the test set. The test loss was
also calculated using MSE. The model generated by the trained network in this estimation
is referred to as Model A. Table 4.3 outlines the details of the training process, and also
the test loss of estimating samples from well 7220/7-3 S. The training and validation loss
of Model A were plotted as shown in Figure 4.4.

Table 4.3: Details of the training process of Model A and the test loss achieved in estimating net
pay based on data from well 7220/7-3 S.

Model Details Value

Model A

Iteration 52
Training loss 0.0149

Validation loss 0.0081
Test loss 0.0127
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Figure 4.4: Plot of Training and Validation Loss of Model A.

The net pay estimates were plotted together with the test set labels to observe the esti-
mation quality. The result of net pay estimation based on data from well 7220/7-3 S is
displayed in Figure 4.5.
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Figure 4.5: Net pay estimation based on data from well 7220/7-3 S.

Result Overview

The results showed that the optimized net pay estimation method was able to perform net
pay estimation based on data from the same well, and hence the same logging environment.
The test set consisted of both clean and shaly sand samples, and the network generated an
estimation with a test loss of 0.0127. The network was able to generate estimates which
followed the general trend of the net pay fraction labels. Through visual observation, Fig-
ure 4.5 shows that the estimates on clean sand samples were relatively closer to the label
values compared to the estimates on shaly sand samples.

Generally, the network tended to generate estimates which underestimated the net pay
fraction in the shaly sand intervals. The network managed to estimate the decline of net pay
fraction in a shaly sand interval. However, it did not generate estimates with fluctuation of
net pay fraction. This was possibly caused by a limitation in the logging tool resolution.
The resolution of the borehole image logging tool might not be sufficient in identifying
thin layers of sand or shale, which were identifiable in the core UV photographs (Figure
4.7).
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Analysis of Loss Plot

Based on the training process, a loss plot which consists of training and validation loss was
generated. The loss plot provides an insight of the model fit. It shows that the training and
validation loss were gradually decreasing through the iterations. Figure 4.4 and Table 4.3
show that after 52 iterations, the training loss was minimized to 0.0149, and the validation
loss was minimized to 0.0081. Since both of the losses were minimized and converged to
a certain minimum, it implies that there was no model fit problem in this estimation. The
early stopping mechanism prevented overfitting by stopping the training after 25 iterations
without further minimization of validation loss (c.f. Section 2.4.4). The absence of model
fit problem indicates that the model was able to generalize to unseen data.

The loss plot also shows that the validation loss was slightly lower than the training loss,
which indicates that the model was able to generate a more accurate estimation on the
validation set compared to the training set. This was possibly caused by the intense im-
age augmentation mechanism, which was implemented only on the training samples, but
not on the validation samples (c.f. Section 3.4.9). During training, image augmentation
induced more orientation variation in the training set. Therefore the training set would
contain samples that were more difficult to estimate compared to the validation set.

Evaluation of the Optimization Approaches

Compared to the results of the preceding study (c.f. Section 2.5.4), the optimized net pay
estimation method produced relatively more accurate results, when estimating net pay
based on data from the same well. In this study, the optimized network generated a model
with a significantly lower training and validation loss compared to the losses of Model
X from the preceding study (Table 4.4). Despite having more iterations in the training
process, the optimized network in this study generated an estimation with a lower test
loss than the network in the preceding study. Through visual observation, it can also
be observed that the estimates in this study followed the trend of the net pay fraction
labels better than the estimates in the preceding study. This implies that the optimization
approaches introduced in this study managed to generate a network with a better loss
minimization and thus producing a more accurate estimation.

Table 4.4: A comparison between the result of the preceding study and the result of this study in net
pay estimation based on data from well 7220/7-3 S.

Result of Net Pay Estimation Based on Data From Well 7220/7-3 S
Preceding Study This Study

Model Details Value Model Details Value

Model X

Iteration 14

Model A

Iteration 52
Training loss 0.0459 Training loss 0.0149

Validation loss 0.0403 Validation loss 0.0081
Test loss 0.0417 Test loss 0.0127
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4.2 Net Pay Estimation Based on Data From The Same Well

Accuracy Analysis

The estimation error for each sample was computed, and the distribution of the error was
plotted in a box plot (c.f. Section 3.7.1). Figure 4.6 shows the distribution of the estimation
error for each sample in the test set. Based on the net pay fraction label, the samples were
grouped into a certain lithology, i.e. clean sand and shaly sand. Samples with a net pay
fraction label above 95% were classified as clean sand samples. On the other hand, samples
with a net pay fraction label between 30% to 95% were classified as shaly sand samples.

 

 

✕

All 

Figure 4.6: Net pay estimation based on data from well 7220/7-3 S.

The box plot shows that the box of clean sand samples was significantly narrower com-
pared to the box of shaly sand samples. The wider box of shaly sand samples indicates
that the estimates in the shaly sand samples had a wider range of errors. In the clean sand
samples, the median of errors was closer to zero (-0.01) than the shaly sand samples (-
0.12). The errors in shaly sand samples had a significantly larger maximum and minimum
values at the end of the whiskers. This implies that the net pay estimation method was
generally more accurate in estimating clean sand samples than shaly sand samples. The
overall median of errors from the all of samples was close to zero (-0.03), which means
the estimation was generally accurate throughout the samples. The outliers in the clean
sand box possibly represent samples with a calcite cemented sand interval.

The poor performance of the net pay estimation method in shaly sand samples highlights
the limitation of borehole image logging tool resolution in differentiating thin layers of
sand or shale. Figure 4.7 shows that the thin layers of sand and shale in a shaly sand
interval is more visible in the core UV photographs compared to the corresponding image
log. A borehole image logging tool can identify a sand or shale layer as thin as 0.2 inch
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or 5.08 cm (c.f. Section 2.2.1), while a core UV photograph can clearly visualize a thinner
layer. Therefore, the net pay fraction labels fluctuated in the shaly sand interval due to
more identifiable thin layers of sand or shale. The image log samples in the shaly sand
interval did not have much variation in terms of color contrast and pixel value as it should
be due to less identifiable thin layers of sand or shale. However, they still had a contrasting
difference compared to the clean sand samples; therefore, the network still managed to
estimate the decline of net pay fraction in a shaly sand interval.

(m)
1:2

Reference
PAD_1_H_ISC_H_STATIC

  3.3    2.6e+2  

Heated
  20.40    240.47  Core UV 

Photograph
XX98.5

XX98.75

Figure 4.7: A comparison of a 25 cm interval of borehole image log and core UV photograph from
well 7220/7-1. The core UV photograph possesses a resolution advantage as it managed to visualize
a layer of sand or shale thinner than 5.08 cm.

In the box plot, a positive error value represents an overestimation of a sample’s net pay
fraction. On the other hand, a negative error value represents an underestimation of the
net pay fraction value of a sample. Figure 4.6 shows that the box of All Samples is located
below zero. This implies that generally, the net pay estimation method underestimated the
net pay fraction of a sample. The All Samples box also shows a negative skew, indicated by
a mean lower than the median. A wider lower skewer compared to the upper skewer, also
indicates a negative skew in the errors. This indicates that most of the errors are negative,
further confirming the tendency of net pay fraction value underestimation by the network.

Reliability Evaluation

Besides analyzing the accuracy of the estimation, the estimation’s reliability was evaluated
to ensure that the estimation was independent of horizontal variation in the image logs. As
previously discussed in Section 3.6.1, the reliability of the net pay estimation method was
evaluated by performing net pay estimation on eight test sets with varying horizontal orien-
tation. The variability within the eight estimates was observed by calculating the standard
deviation of the estimates in each image index. Since the net pay estimates were a contin-
uous value, a standard deviation band was generated to give a better visualization of the
variability (c.f. Section 3.7.2).
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4.2 Net Pay Estimation Based on Data From The Same Well

Seven additional test sets were generated from the original test set of well 7220/7-3 S.
Those test sets differed only in a horizontal orientation as each test set was shifted hor-
izontally by an increment of 24 pixels, corresponding to a shift by one pad or flap. An
interval of image log is essentially an unwrapped cylinder representing the borehole (c.f.
Section 2.2.3). Therefore horizontal shifting ideally does not alter the value of net pay of
the interval. The number of samples in every additional test set is the same as the number
of samples in the original test set. Model A was utilized to generate estimation on the eight
different test sets. The estimates from the eight test sets were shown in Figure 4.8a, and
the calculated standard deviation was plotted in Figure 4.8b.
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(a) Net pay estimation on eight different test sets from
well 7220/7-3 S.
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(b) Standard deviation band on the net pay estimation
on eight different test sets from well 7220/7-3 S.

Figure 4.8: Net pay estimation on eight different test sets and the standard deviation band from well
7220/7-3 S.

The plot of net pay estimation (Figure 4.8a) shows that the estimates from each test set
were visually similar in terms of trend and value. The test loss of each estimation is
outlined in Table 4.5, and the value of each test loss was close to each other, with a test
loss average of 0.0128. The plot of the standard deviation band also shows that the band
was generally narrow for most of the samples. An interval with a narrow standard deviation
band indicates that the variability within the eight different estimates on that interval was
low. This implies that the net pay estimation method was generally able to generate an
estimation independent of horizontal orientation in the image logs.
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Table 4.5: Test losses from net pay estimation on eight test sets of well 7220/7-3 S.

Model Test Set Test Loss

Model A

Test Set 1 (Original) 0.0127
Test Set 2 0.0125
Test Set 3 0.0125
Test Set 4 0.0135
Test Set 5 0.0128
Test Set 6 0.0126
Test Set 7 0.0133
Test Set 8 0.0125

Average 0.0128

Although the network was not affected by horizontal orientation within the image log sam-
ples, there were still several shaly sand intervals with varying net pay estimates. Figure
4.8b shows that the shaly sand intervals between 510 to 620 and 820 to 860 were having
slightly wider standard deviation bands than the rest of the samples. This was possibly due
to the limitation of the network performance in estimating shaly sand samples. However,
the variability on those intervals was still not high enough to render a wide standard de-
viation band. Thus, it indicates that the estimation method was generally not affected by
horizontal orientation in the image logs.

4.3 Net Pay Estimation on Data From a Different Well
This net pay estimation was an attempt to simulate the practical application of the ma-
chine learning-based net pay estimation method. The network was trained with samples
from one well, and the generated model was utilized to estimate unseen samples from a
different well. This implies that the image log samples in the test set might be acquired
from a well with a different logging environment compared to the training and validation
samples (Table 4.11). Similar to the previous net pay estimation, the accuracy and relia-
bility of the net pay estimation method was evaluated through a set of statistical analysis.

In this estimation, the training and validation samples were taken from well 7220/7-3 S,
and the test samples were taken from either well 7220/7-1, 7220/5-1, or 7220/8-1. Well
7220/7-1 is composed of both clean and shaly sand intervals, while well 7220/5-1 and
7220/8-1 are composed of mostly clean sand (c.f. Section 4.1.2). Each well was repre-
sented by a test set; therefore, three different test sets were utilized in this estimation.

Two different models were utilized to perform net pay estimation on three test sets. The
two models differed in the number of training samples used during the training process.
The first model was trained with 3486 samples. It was the same model which was used
in the previous net pay estimation, Model A. By utilizing Model A, the performance of
the model in estimating samples from a different well was compared with the performance
in estimating samples from the same well which was done in the previous section (c.f.
Section 4.2). The second model, Model B, was trained with 4468 samples. The training

88



4.3 Net Pay Estimation on Data From a Different Well

set of Model B was constructed by incorporating samples from the test set of well 7220/7-
3 S into the training set. This implies that all the available samples of well 7220/7-3 were
utilized in the training process of Model B. Table 4.6 outlines the datasets used in this net
pay estimation for both models.

Table 4.6: Details of the datasets used in the net pay estimation on data from a different well. The
training and validation samples were taken from well 7220/7-3 S, while the test samples were taken
from well 7220/7-1, 7220/5-1 and 7220/8-1.

Model Dataset Number of Samples Source

Model A

Training set 3486 7220/7-3 S
Validation set 971 7220/7-3 S

Test loss (7220/7-1) 6400 7220/7-1
Test loss (7220/5-1) 1881 7220/5-1
Test loss (7220/8-1) 1773 7220/8-1

Model B

Training set 4468 7220/7-3 S
Validation set 971 7220/7-3 S

Test loss (7220/7-1) 6400 7220/7-1
Test loss (7220/5-1) 1881 7220/5-1
Test loss (7220/8-1) 1773 7220/8-1

Each model generated three results from the three test sets. The details of the training
process, including the number of iteration, training, validation, and test loss for each model
is outlined in Table 4.7.

Table 4.7: Details of the training process of the two models and the test losses for the three test sets.

Model Details Value

Model A

Iteration 52
Training loss 0.0149

Validation loss 0.0081
Test loss (7220/7-1) 0.0123
Test loss (7220/5-1) 0.0009
Test loss (7220/8-1) 0.0107

Model B

Iteration 27
Training loss 0.0141

Validation loss 0.0075
Test loss (7220/7-1) 0.0090
Test loss (7220/5-1) 0.0006
Test loss (7220/8-1) 0.0036

The training and validation loss of each model were plotted and shown in Figure 4.9. The
net pay estimates of each well were plotted together with the corresponding test set labels
to observe the quality of the estimation. The results of net pay estimation from each well
are shown in Figure 4.10 to 4.12.
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Figure 4.9: Plot of Training and Validation Loss of Model A and B.
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Figure 4.10: Net pay estimation using Model A and B on data from well 7220/7-1.

90



4.3 Net Pay Estimation on Data From a Different Well

0 20 40 60 80 100

1

201

401

601

801

1001

1201

1401

1601

1801

Net Pay Fraction (%)

Image             
Index

Net Pay
Fraction
Label
Net Pay
Estimate of
Model A
Net Pay
Estimate of
Model B

Net Pay Estimation on 
Data From Well 7220/5-1

Figure 4.11: Net pay estimation using Model A and B on data from well 7220/5-1.
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Figure 4.12: Net pay estimation using Model A and B on data from well 7220/8-1.
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Result Overview

The result shows that generally, the optimized net pay estimation method was able to per-
form net pay estimation on data from a different well, which might have a different logging
environment with the training data. Through a visual observation of the net pay estimates
plots across the three different wells, the results showed that the estimates were generally
following the trend of net pay fraction labels.

The test set of well 7220/7-1 comprises both clean and shaly sand samples, similar to the
test set of well 7220/7-3 S in the previous net pay estimation. However, net pay estima-
tion on well 7220/7-1 (Figure 4.10) shows that the estimates on shaly sand samples were
better compared to the shaly sand sample estimates in the previous net pay estimation (c.f.
Section 4.2). One of the possible cause is the shaly sand samples in the test set of well
7220/7-1 is more similar to the shaly sand samples in the training set, in terms of formation
properties such as resistivity or lithology. This implies that for a model used on different
test sets with similar composition, the performance might vary. This limitation conforms
with the axiom that no model is universally suitable for every problem (Gómez and Rojas,
2015). The introduction of additional training samples with a larger degree of variation
might generate a model which is able to work better for a wider variety of image logs.

The test set of well 7220/5-1 and 7220/8-1 is comprised of clean sand samples. The esti-
mations on the test set of well 7220/5-1 (Figure 4.11) were quite accurate, with a relatively
low test loss compared to the test losses of the other estimations. The estimation on the
test set of well 7220/8-1 (Figure 4.12) shows that the network generally underestimated
the net pay of samples, especially on the result of Model A. For a test with mostly clean
sand samples. The estimates of well 7220/8-1 were not as smooth as the estimates of well
7220/5-1. This was possibly caused by a difference in the logging environment between
those two wells. The borehole fluid salinity in well 7220/5-1 was 35508 ppm, while the
borehole fluid salinity in well 7220/8-1 was 57921 ppm (Table 4.11). The significant dif-
ference of borehole fluid salinity might influence the response of the image logging tool,
as resistivity-based measurements are generally sensitive to borehole fluid salinity. Due
to the difference in salinity, the image logging tool might measure a different resistivity
value for rocks with a similar lithology. The difference in measured resistivity values was
reflected by the range of pixel values. This difference in pixel values range was interpreted
differently by the network, although the image logs might visually look similar to the hu-
man eye.

In general, the performance of Model B was better compared to Model A based on the
results across the three wells. Model B managed to produce better net pay estimations in
terms of loss and estimates trend. Table 4.7 shows that the validation loss of Model B was
lower than the validation loss of Model A. A lower validation loss indicates that Model
B achieved a better generalization to unseen data compared to Model A, which was also
reflected by the lower test losses of Model B in all the results. Besides having smaller
losses, Model B also generated net pay estimates which were closer to the net pay fraction
labels and thus having a more similar trend with the labels. Model B was trained with
more training samples; therefore it implies that the introduction of more training samples
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improved the loss minimization during training which led to a more accurate estimation.

Analysis of Loss Plot

Figure 4.9 shows that the losses were minimized and converged to a certain minimum dur-
ing the training process of both models. This implies that there was no model fit problem
in this estimation. With the implementation of early stopping mechanism, overfitting was
avoided by terminating the training on iteration 52 for Model A and iteration 27 for Model
B. It can also be observed that the training process of Model B was shorter indicated by
a smaller number of iterations. This implies the training process of Model B achieved
an earlier minimization of the validation loss. The loss plot of Model B shows a slightly
lower validation loss than the training loss, similar to model A. As previously discussed
in Section 4.2, a lower validation loss compared to training loss was possibly caused by
the intense image augmentation mechanism which was implemented only on the training
samples.

Evaluation of the Optimization Approaches

Compared to the results of the preceding study (c.f. Section 2.5.4), the optimized net pay
estimation method generated a relatively more accurate result, when estimating net pay on
data from a different well. In this study, the optimized network generated a model with a
significantly lower training and validation loss compared to the losses of Model Y from
the preceding study (Table 4.8). Although the training process was longer in this study,
the optimized network generated estimations with a lower test loss than the network in the
preceding study. In this study, the estimates on data from a different well followed the net
pay fraction labels’ trend better than the estimates in the preceding study. This confirms
the founding in the previous net pay estimation (c.f. Section 4.2), in which the optimization
approaches introduced in this study generated a network with a better minimization of loss
and thus producing a more accurate estimation.

Table 4.8: A comparison between result of the preceding study and result of this study in estimating
net pay on data from a different well.

Result of Net Pay Estimation on Data From a Different Well
Preceding Study This Study

Details Model Y Details Model A Model B
Iteration 8 Iteration 52 27

Training loss 0.0459 Training loss 0.0149 0.0141
Validation loss 0.0276 Validation loss 0.0081 0.0075

Test loss
(7220/5-1) 0.0457

Test loss
(7220/5-1) 0.0009 0.0006

Test loss
(7220/8-1) 0.0740

Test loss
(7220/8-1) 0.0107 0.0036
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Accuracy Analysis

A set of box plots were generated to plot the distribution of estimation errors of the results
across the three wells. Figure 4.12 to 4.14 show the distribution of the estimation errors
for each test set from net pay estimation using Model A and B.
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(b) Model B.

Figure 4.13: Distribution of estimation error in net pay estimation on data from well 7220/7-1.
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Figure 4.14: Distribution of estimation error in net pay estimation on data from well 7220/5-1.

94



4.3 Net Pay Estimation on Data From a Different Well

�����
�����
�����
�����

�����

����

�����

�����
�����

�����

���������������������

������������������

�
��
��

��
��
�
��
��
�
�

�����

�����

�����

�����

�����

����

����

����

����

����

����

������������ �� ���������� ����� ��
��� ��� ���������� ����� ����� �

�� ���� ���� ���� ������ �

���� 
�����
�����

����

�����
�����
�����

�����

���������������������

������������������

�
��
��

��
��
�
��
��
�
�

�����

�����

�����

�����

�����

����

����

����

����

����

����

������������ �� ���������� ����� ��
��� ��� ���������� ����� ����� �

�� ���� ���� ���� ������ �

✕����
�������

✕����
�������

�0.08

(a) Model A.

�����
�����
�����
�����

�����

����

�����

�����
�����

�����

���������������������

������������������

�
��
��

��
��
��
�
��
�
�

�����

�����

�����

�����

�����

����

����

����

����

����

����

������������ �� ���������� ����� ��
��� ��� ���������� ����� ����� �

�� ���� ���� ���� ������ �

���� 
�����
�����

����

�����
�����
�����

�����

���������������������

������������������
�
��
��

��
��
��
�
��
�
�

�����

�����

�����

�����

�����

����

����

����

����

����

����

������������ �� ���������� ����� ��
��� ��� ���������� ����� ����� �

�� ���� ���� ���� ������ �

✕����
�������

✕����
�������

�0.08

(b) Model B.

Figure 4.15: Distribution of estimation error in net pay estimation on data from well 7220/8-1.

The box plots of well 7220/7-1 (Figure 4.13) show that for both models, the box of shaly
sand samples was wider than the box of clean sand samples. This indicates a wider range
of errors in the shaly sand samples, similar to the distribution of errors in the shaly sand
samples of well 7220/7-3 S (c.f. Section 4.2). The median of errors in the clean sand sam-
ples was closer to zero (-0.01) compared to the median of errors in the shay sand samples
(-0.08), which implies that the net pay estimation method was generally more accurate
in estimating clean sand samples compared to shaly sand samples. The maximum and
minimum values at the end of the whiskers were smaller in the clean sand samples than
the shaly sand samples. This confirms the network’s tendency to generate a less accurate
estimation in shaly sand samples, which might be caused by a limitation on logging tool
resolution.

Well 7220/5-1 and 7220/8-1 contain mostly clean sand samples; therefore, their box plots
(Figure 4.14) only display the distribution of estimation error in the clean sand samples.
The box plots of well 7220/5-1 show that for both models, the errors were mostly close
to zero, indicated by the median and width of the boxes. The box plots of well 7220/8-
1 (Figure 4.15) shows a relatively wider box with larger maximum and minimum values
compared to the boxes of well 7220/5-1. This was possibly due to the influence of the log-
ging environment, which affected the logging tool response. Generally, the plots of both
wells show that the range of errors in clean sand samples was not wide. This was an ex-
pected result as the network was generally more accurate in estimating clean sand samples.

Across the three wells, the box plots showed a distribution of error with a negative skew.
This was indicated by a mean which was lower than the median and by the wider lower
skewer. This confirms the founding in the previous net pay estimation (c.f. Section 4.2),
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in which the network had a tendency of underestimating the net pay value of a sample.
Several outliers were present in the error distribution of clean sand samples. As in the
previous net pay estimation, these outliers might represent samples with a calcite cemented
sand interval.

Reliability Evaluation

As in the previous net pay estimation (c.f Section 4.2), the reliability of estimation was
evaluated to ensure that the estimation was independent of horizontal variation in the image
logs. The reliability of the net pay estimation method was evaluated by performing net pay
estimation on eight test sets with varying horizontal orientation. The variability within the
eight estimates was observed by calculating the standard deviation of the estimates in each
image index. Since the net pay estimates were a continuous value, a standard deviation
band was generated to give a better visualization of the variability (c.f. Section 3.7.2). The
standard deviation of each well based on the net pay estimations using Model A and B are
shown in Figure 4.16 to 4.17.
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Figure 4.16: Standard deviation band of the net pay estimations using Model A and B on data from
well 7220/7-1.
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4.3 Net Pay Estimation on Data From a Different Well
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(a) Model A.
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Figure 4.17: Standard deviation band of the net pay estimations on data from well 7220/5-1.
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(a) Model A.
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Figure 4.18: Standard deviation band of the net pay estimations on data from well 7220/8-1.
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The standard deviation bands across the three different well show that the variability within
the eight estimates for each well was generally low, indicated by the absence of excessively
wide standard deviation band. However, the standard deviation bands of well 7220/8-1
were relatively wider compared to the rest two wells. This was possibly caused by the
influence of a distinct structure such as fault, fractures, or a tilted layer boundary in the
formation. These structures were usually displayed as sinusoidal lines in the image log.
As the test sets were shifted by a certain pixel, the sinusoidal also got shifted and ended up
with a different sinusoidal shape compared to the original shape (Figure 4.19). Since the
network was trained based on the original shape, it might be confused by the presence of
a different sinusoidal shape, and thus generating net pay estimates with a slightly higher
variability on test sets with varying horizontal orientation. However, the eight estimates
on well 7220/8-1 were not exceptionally different from each other in terms of trend and
test losses. Therefore, the estimation on well 7220/8-1 was still regarded as a reliable es-
timation.
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Figure 4.19: An example of a tilted layer boundary from an interval in well 7220/8-1, which is
represented by the sinusoidal line in the image log. As the test set was shifted horizontally, the shape
of the boundary changed.
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4.4 Net Pay Estimation on Reservoir Intervals Without Core Photographs

A relatively narrow standard deviation band indicates that the estimates from each test
within the same well were relatively close to each other in terms of trend and values. This
is supported by the test losses of the eight estimations for each well, outlined in Table 4.9.
The test losses among the eight estimations on each well were generally close to each other.
By being able to generate net pay estimations with low variability in a horizontally shifted
test sets, it implies that the estimation method was generally not affected by horizontal
orientation in the image logs.

Table 4.9: Test loss from net pay estimation on eight test sets of well 7220/7-1, 7220/5-1 and
7220/8-1.

Test Loss of
Well 7220/7-1

Test Loss of
Well 7220/5-1

Test Loss of
Well 7220/8-1

Test Set Model A Model B Model A Model B Model A Model B
Test Set 1
(Original) 0.0123 0.0090 0.0009 0.0006 0.0107 0.0036

Test Set 2 0.0123 0.0090 0.0010 0.0007 0.0101 0.0028
Test Set 3 0.0121 0.0087 0.0009 0.0006 0.0138 0.0035
Test Set 4 0.0134 0.0089 0.0008 0.0007 0.0096 0.0027
Test Set 5 0.0136 0.0092 0.0009 0.0008 0.0133 0.0034
Test Set 6 0.0128 0.0100 0.0010 0.0009 0.0130 0.0047
Test Set 7 0.0121 0.0086 0.0009 0.0008 0.0173 0.0047
Test Set 8 0.0122 0.0082 0.0007 0.0009 0.0132 0.0040
Average 0.0126 0.0090 0.0009 0.0008 0.0126 0.0037

4.4 Net Pay Estimation on Reservoir Intervals Without
Core Photographs

In this net pay estimation, the capability of the optimized net pay estimation method was
demonstrated in estimating net pay of a selected interval from one of the wells in the Johan
Castberg field. This was an attempt to simulate the practical application of the machine
learning-based net pay estimation method in estimating the net pay of an uncored reser-
voir interval. The selected interval was comprised of several sub-intervals with or without
core photographs. The sub-intervals without core photographs refer to the seal peel inter-
vals, which were shown as blank spaces in the core UV photographs. The estimates in
the sub-intervals with core photographs were plotted alongside the net pay fraction label
from the corresponding core UV photograph of that portion. Therefore the accuracy of the
estimation can also be observed in the sub-intervals with core photographs.

A 15 m interval from well 7220/7-1 was selected in this net pay estimation. The selected
interval was comprised of both clean sand and shaly sand section. Model B from the
previous net pay estimation was utilized in generating the estimation, and the training
and validation samples were taken from well 7220/7-3 S. Model B was selected instead of
Model A because it had a better performance in terms of accuracy and estimates trend. Net
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pay estimation was performed every 25 cm of the interval; therefore, the selected image
log interval from well 7220/7-1 was split into 60 smaller intervals without overlap. The
details of the net pay estimation are outlined in Table 4.10.

Table 4.10: Details of the datasets used in the net pay estimation of reservoir intervals without core
photographs.

Dataset Number of image Source
Training set 4468 7220/7-3 S

Validation set 971 7220/7-3 S
Test set 60 7220/7-1

In this net pay estimation, the image log and core UV photograph were placed side by
side to visualize the similarity between them. The blank spaces in the core UV photo-
graph represent the sub-intervals without core photographs. The net pay fraction labels
and estimates were plotted together on the same track to observe the estimates’ accuracy
in intervals with core photographs. The net pay fraction label curve possessed several
missing values, which corresponds to missing core UV photograph sections due to seal
peel preservation. The absence of a core UV photograph in the seal peel interval implies
that the net pay fraction label could not be generated in that interval, thus creating a miss-
ing value in the net pay fraction label curve. The result of the estimation is shown in Figure
4.20.
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Figure 4.20: Net pay estimation of a reservoir interval in well 7220/7-1. The interval was comprised
of a clean and shaly sand section. The blank spaces in the core UV photograph represent sub-
intervals without core photographs.
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4.5 Limitation and Recommendations

The result shows that the net pay estimates were generally accurate in estimating the net
pay of the image log. The estimates were able to follow the trend of the net pay fraction
labels in the clean and shaly sand section. Although in the shaly sand section the estimates
did not reproduce the fluctuation in the labels, the estimates still show the net pay was
lower than in the clean sand section without excessively underestimating the values.

The result also shows the practical application of the net pay estimation method in esti-
mating a reservoir interval without core data. In the plot of net pay estimates and labels, it
is shown that the estimates were able to fill the missing net pay value due to the absence
of a core photograph. The estimation also did not involve any core comparison process or
resistivity threshold to estimate the net pay. This implies that the machine learning-based
net pay estimation method has the potential to be implemented as an alternative net pay
estimation method in a situation where core information was not available or not reliable.
Such situations may arise when drilling in an unconsolidated formation, which might lead
to the acquisition of poorly consolidated cores which are easy to break apart (Bajsarowicz,
1992). The net pay estimation method may also be implemented to estimate net pay on
development wells, where cores are not regularly acquired due to cost.

4.5 Limitation and Recommendations

4.5.1 Limitation of the Net Pay Estimation Method
In this study, the machine learning-based net pay estimation method was successfully op-
timized. Compared to the preceding study, the results showed improvements in terms of
loss minimization and estimation accuracy. Based on the accuracy analysis and reliability
evaluation of the results in Section 4.2 and 4.3, several limitations of the net pay estimation
method were observed. The limitations are outlined in this section.

Borehole Image Logging Tool Resolution

The resolution of the borehole image logging tool, which was used to generate the image
logs, clearly influenced the estimation quality and accuracy. This was indicated by the
estimation in shaly sand samples, which were generally less accurate than the clean sand
samples. The Fullbore Micro-Imager (FMI) tool used in this study has a resolution of
0.2 inch or 5.08 cm, which means structures or layers smaller than 5.08 cm will not be
clearly identified in the image log. On the other hand, the core UV photographs were
able to identify the layers thinner than 5.08 cm. Therefore, it was generally more difficult
to achieve a perfect correlation between image log samples and the net pay values in the
shaly sand interval.

Influence of Logging Environment on the Response of Image Logging Tool

The wells in the Johan Castberg field were drilled the same borehole fluid type with a
different fluid salinity. Table 4.11 shows that the borehole fluid salinity of well 7220/7-1
is significantly higher than the rest of the wells, and it possibly influenced the image log
measurement of that well. Although well 7220/8-1 was comprised of mostly clean sand
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samples, the estimations on its samples were generally less accurate than the estimations
on samples from well 7220/5-1, which was also comprised of clean sand samples.

Table 4.11: The logging environments of the Johan Castberg wells showing varying borehole fluid
salinity.

Well Borehole Fluid Type Borehole Fluid Salinity (ppm)
7220/5-1 Water Based Mud 35508
7220/7-1 Water Based Mud 45372

7220/7-3 S Water Based Mud 44801
7220/8-1 Water Based Mud 57921

A resistivity-based image logging tool is generally sensitive to the characteristic of the
borehole fluid. For example, the FMI tool used in this study was more suitable for wells
drilled with a water-based mud than wells drilled with an oil-based mud (Schlumberger,
2013). Measurement of formation resistivity in a less conductive environment, such as an
oil-based mud environment, is generally less accurate than in a water-based mud environ-
ment. Since the net pay estimation method relies heavily on image logs, a significantly
different image log response for a similar lithology might inhibit the generation of a more
accurate estimation.

Model Compatibility

One of the models generated by the optimized network, Model A, had a relatively better
estimation on the shay sand samples of well 7220/7-1 compared to the shaly sand samples
of well 7220/7-3 S. This indicates that there was a limitation in the model compatibility.
Although the model generated a relatively good estimation in samples from a particular
well, it does not imply that it will always be compatible for estimating any type of image
log samples. This agrees with the axiom which states that there is no model which is uni-
versally suitable for every problem (Gómez and Rojas, 2015).

A model generates estimations or predictions based on some assumptions formulated dur-
ing the training process. The effectiveness of a model is dependent on how well the as-
sumptions fit the true nature of the data. Therefore a good knowledge of the nature of the
data is essential as it will help determine which model will be compatible for some datasets
with some shared characteristics. In this net pay estimation case, several different models
can be generated with different specialization, e.g. models specialized for datasets with
mostly shaly sand samples or models specialized for datasets from a high salinity well.
Although the model generated in this study might not be universally compatible with any
image logs, the formulated workflow, optimization approaches, and insights gained from
the results might be useful for similar research.

4.5.2 Recommendations for the Net Pay Estimation Method
Based on the results evaluation and observed limitations of the optimized net pay estima-
tion method, several recommendations were formulated for the continuation of this study.
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Utilization of Image Logs With a Better Quality

More recent image logging tools with a better specification have been utilized by the in-
dustry. They can deliver image logs with better quality and resolution. One of the tools is
the Quanta Geo tool by Schlumberger, which is equipped with eight pads that can cover
up to 98% borehole coverage in a standard 8-in well (Schlumberger, 2014). The tool also
has a higher vertical resolution (0.24 inch) than the conventional image logging tool for
an oil-based mud environment (1.2 inches). Image logs with better borehole coverage and
better resolution might give a better correlation with the net pay value.

Introduction of Additional Training Samples From Different Wells or Fields

The net pay estimation results show that the introduction of additional image log samples
led to a better loss minimization and more accurate net pay estimations. The introduc-
tion of additional samples with different characteristics from different wells or fields may
generate a model with a better generalization to unseen data. This is due to the network’s
exposure to more variations in the image log samples, e.g. lithology or logging environ-
ment variation.

Net Pay Estimation on Data From a Different Field

The reservoir formation in wells from the same field may have a similar depositional envi-
ronment, which leads to a similar lithology or geological property. However, reservoir in-
tervals across different fields may have a different depositional environment, sedimentary
structures, or other geological properties. Wells across different fields might be different
in terms of logging environment, deviation, or other characteristics due to different drilling
program. By performing net pay estimation using the optimized method on samples from
a different field, the method’s capability in estimating image log samples with a wider
variation can be observed and evaluated.
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Chapter 5
Conclusion

An alternative net pay estimation method based on the implementation of machine learn-
ing on borehole image logs interpretation was successfully developed and optimized in this
study. Machine learning technique was implemented through the use of a convolutional
neural network (CNN), which will attempt to map correlations between the training data
(borehole image logs) and their corresponding labels (net pay fraction from core ultravio-
let photographs). The network was trained with data from one well in the Johan Castberg
field, and it was able to generate an accurate and reliable net pay estimation on unseen data
from the other wells in the field.

The data processing procedures from a preceding study were optimized with several opti-
mization approaches to improve the quality of the image log samples and net pay fraction
labels. The machine learning implementation was also optimized by implementing a more
robust CNN design and better curation of training samples. These optimization approaches
were aimed to improve the net pay estimation from borehole image logs.

Through a set of net pay estimations, the capability of the method was evaluated. The
results showed that the estimates were generally accurate with matching trends with the
net pay fraction labels. The estimations were also generally reliable, indicated by a low
variability in the estimates with varying horizontal orientation. Evaluation of the results
proved that the optimization managed to generate a model with more accurate estimations
compared to the preceding study. The net pay estimation method has the potential to be
implemented in a situation where core information was not available or not reliable.

The net pay estimations also highlighted several limitations of the net pay estimation
method, which were caused by image logs resolution, model compatibility, or variations
in the logging environment. Based on the limitations and results evaluation, several rec-
ommendations for the continuation of the study were formulated, e.g. utilization of image
logs with better quality, the introduction of additional training samples from different wells
or fields, and net pay estimations on data from a different field.
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Appendix

The script can be accessed in the following link:
https://github.com/mikaelyuan/A-Machine-Learning-Approach-for-
Net-Pay-Estimation-from-Borehole-Image-Logs

CNN Script

1 from numpy.random import seed
2 seed(33)
3 import numpy as np
4 import keras
5 from keras.layers import Input, Dense, Conv2D, MaxPooling2D, Flatten,

Reshape, Dropout↪→

6 from keras.models import Model, Sequential
7 from keras.callbacks import History
8 from keras.callbacks import CSVLogger
9 from keras.callbacks import EarlyStopping, ModelCheckpoint

10 from keras.preprocessing.image import ImageDataGenerator
11 from keras import regularizers, optimizers
12 import matplotlib.pyplot as plt
13 import matplotlib.ticker
14 import time
15 import os
16 import logging
17 logging.getLogger('tensorflow').disabled = True
18 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
19 os.system('cls')
20

21 t = time.time()
22

23 #Loading the dataset
24 TrainData = np.load('DataTrain.npy')
25 TrainLabel = np.load('LabelTrain.npy')
26 print('Training data: ',TrainData.shape)
27

28 ValidationData = np.load('DataValidation.npy')
29 ValidationLabel = np.load('LabelValidation.npy')
30 print('Validation data: ',ValidationData.shape)
31

32 TestData = np.load('DataTest.npy')
33 TestLabel = np.load('DataTest.npy')
34 print ('Test data: ',TestData.shape)
35

36 #Normalization of the array values
37 max_value1 = float(TrainData.max())
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38 max_value2 = float(ValidationData.max())
39 max_value3 = float(TestData.max())
40 TrainData = TrainData.astype('float32') / max_value1
41 ValidationData = ValidationData.astype('float32') / max_value2
42 TestData = TestData.astype('float32') / max_value3
43

44 #Reshaping & Data augmentation
45 TrainData = TrainData.reshape(-1, 100, 192, 1)
46 ValidationData = ValidationData.reshape(-1, 100, 192, 1)
47 TestData = TestData.reshape(-1, 100, 192, 1)
48

49 DataAugmentation = ImageDataGenerator(vertical_flip=True,
horizontal_flip=True, width_shift_range=97,fill_mode="wrap")↪→

50 DataAugmentation.fit(TrainData, augment=True)
51

52 #CNN Architecture
53 Model = Sequential()
54 #Convolutional layers
55 Model.add(Conv2D(16, kernel_size=(3, 3), strides=(2, 2), activation =

'relu', padding='same', input_shape=(100,192,1)))↪→

56 Model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
57 Model.add(Conv2D(32, kernel_size=(3, 3), activation = 'relu',

padding='same'))↪→

58 Model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
59 Model.add(Conv2D(64, kernel_size=(3, 3), activation = 'relu',

padding='same'))↪→

60 Model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
61 Model.add(Conv2D(128, kernel_size=(3, 3), activation = 'relu',

padding='same'))↪→

62 Model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
63 Model.add(Conv2D(256, kernel_size=(3, 3), activation = 'relu',

padding='same'))↪→

64 Model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
65 Model.add(Conv2D(512, kernel_size=(3, 3), activation = 'relu',

padding='same'))↪→

66 Model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
67 Model.add(Flatten())
68 #Fully connected layers
69 Model.add(Dense(512, activation='relu'))
70 Model.add(Dense(256, activation='relu'))
71 Model.add(Dense(128, activation='relu'))
72 Model.add(Dense(64, activation='relu'))
73 Model.add(Dense(32, activation='relu'))
74 Model.add(Dense(1, activation='linear'))
75

76 #CNN hyperarameter
77 adam_mod = keras.optimizers.Adam(lr=0.0001)
78 Model.compile(optimizer=adam_mod, loss='mean_squared_error')
79 Stop = EarlyStopping(monitor='val_loss',
80 mode='min',
81 patience=25,
82 restore_best_weights=True)
83 Batch = 64
84 csv_logger = CSVLogger('Loss Log.csv', append=True, separator=';')
85 Train = Model.fit_generator(DataAugmentation.flow(TrainData, TrainLabel,

batch_size=Batch),↪→

86 epochs=100,
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87 steps_per_epoch= TrainData.shape[0]//Batch,
88 validation_data= (ValidationData,

ValidationLabel),↪→

89 shuffle = True,
90 callbacks=[Stop, csv_logger])
91

92 Prediction = Model.predict(TestData)
93 np.save("Net Pay Estimation.npy", Prediction)
94 A=np.load('Net Pay Estimation.npy')
95 np.savetxt("Net Pay Estimation.csv", A, delimiter=",")
96

97 PredictionError = Model.evaluate(TestData, TestLabel)
98 print('Test loss (MSE):', PredictionError)
99

100 elapsed = time.time() - t
101

102 #Plot of loss function
103 loss = Train.history['loss']
104 val_loss = Train.history['val_loss']
105 plt.figure()
106 plt.plot(loss, 'b', label='Training loss')
107 plt.plot(val_loss, 'r', label='Validation loss')
108 locator = matplotlib.ticker.MultipleLocator(5)
109 plt.gca().xaxis.set_major_locator(locator)
110 formatter = matplotlib.ticker.StrMethodFormatter("{x:.0f}")
111 plt.gca().xaxis.set_major_formatter(formatter)
112 plt.title('Training and validation loss of the network')
113 plt.ylabel('Mean Squared Error (MSE)')
114 plt.xlabel('Iteration')
115 plt.legend()
116 plt.savefig('Loss PLot.jpg')
117

118 #Printing elapsed time
119 print("Elapsed time: %.2f" % (elapsed/60),"min")
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