
Design of a reversible pump
turbine for retrofitting at an
existing hydropower plant

June 2020

M
as

te
r's

 th
es

is

M
aster's thesis

Jan-Karl Lasse Escher

2020
Jan-Karl Lasse Escher

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f E
ng

in
ee

rin
g

De
pa

rt
m

en
t o

f E
ne

rg
y

an
d

Pr
oc

es
s

En
gi

ne
er

in
g

Design of a reversible pump turbine for
retrofitting at an existing hydropower
plant

Jan-Karl Lasse Escher

Energy and environment
Submission date: June 2020
Supervisor: Pål-Tore Selbo Storli
Co-supervisor: Helene Njølstad Dagsvik

Norwegian University of Science and Technology
Department of Energy and Process Engineering

First of all, I would like to thank my supervisor Pål Tore Storli and my co-supervisor
Helene Dagsvik for their continued support throughout the last two semesters, both

academical and moral. I would also like to thank all of my friends for keeping me going.
Especially the guys from NTNUI JuJitsu and from EMIL idrettskom deserve credit for
making the past five years memorable. Last but definitely not least I am grateful to my

family, both in Germany and in Norway for believing in me way more than I do.

Summary

In this thesis, an attempt is made to design a reversible pump-turbine for retrofitting in
an already existing power plant. Due to the design of the current power plant, the cross-
sectional area increases from inlet to outlet for a pump, which leads to separation. A script
to design the pump-turbine is written.

The pump-turbine is tested in CFD software, but no reliable results are obtained. Error
margins for the unreliable results are given and the results are discussed.

Finally, choices for a better design and more accurate simulations are suggested for
further work with the project.

A paper is also written and submitted for the conference “CRHT-X”. The paper is
added in appendix B.

i

Samandrag

I denne oppgåva vert det gjort ein freistnad på å formgje ein reversibel pumpeturbin til
innsetjing i eit allereie eksisterande kraftverk. På grunn av måten det det noværande kraft-
verket er forma utvidar det tverrsnittlege arealet seg frå innløp til utløp av pumpa, noko
som førar til så kalla separasjon. Eit skript vert skrive for å designe pumpeturbinen.

Pumpeturbinen vert testa ved hjelp eit numerisk strømningsbereknings-program men
ingen pålitelege resultat vert funne. Feilmarginar for resultata vert oppgjevne og fellestrekk
i resultata vert diskuterte.

Til slutt vert forbetringsforslag for ei forbetring av både pumpeturbinen og simulasjo-
nane gjort for framtidig arbeid med prosjektet.

Eit paper vert òg skrive og levert inn til konferansen “CRHT-X”. Paperet er lagt ved i
appendiks B.

ii

CONTENTS

Summary i

Samandrag ii

Table of Contents v

List of Tables vii

List of Figures x

Abbreviations xi

Nomenclature xi

Sub- and Superscripts xiii

1 Introduction 1
1.1 Previous work . 3
1.2 Scope of the thesis . 3

2 Theory 5
2.1 Fundamental physics . 5

2.1.1 Bernoulli’s equation and different kinds of pressure 5
2.1.2 Energy equation . 6
2.1.3 Euler’s equation for turbomachines 8
2.1.4 Circular flow . 8

2.2 Hydroelectric power plants . 9
2.3 Pumps . 11
2.4 Reversible pump turbines . 12
2.5 The case: Roskrepp Powerplant . 12
2.6 The runner . 13
2.7 Velocity triangles . 14
2.8 Slip . 15

iii

2.9 Power . 16
2.10 Characteristics . 17
2.11 Attached and separated flow . 19
2.12 Recirculation . 19
2.13 Cavitation . 20
2.14 Differences between pumps and turbines 21
2.15 Design philosophies for pump turbines 22
2.16 Computational fluid dynamics . 24

2.16.1 Convergence of steady state solutions 24
2.16.2 Transient solutions . 25
2.16.3 Turbulence models . 26
2.16.4 Wall models . 26
2.16.5 Considerations for simulations of turbomachines 27
2.16.6 Verification and validation . 27

3 Method and results 29
3.1 Geometry . 29

3.1.1 Meridional view . 29
3.1.2 Blade angles at the trailing edge 31
3.1.3 Blade angles at the Leading edge 32
3.1.4 Distribution of blade angles along the blade 32
3.1.5 Checking for cavitation . 33
3.1.6 Blade thickness and 3D . 33

3.2 Discussion of the design method . 34
3.3 CFD setup . 35

3.3.1 The computational domain and boundary conditions 35
3.3.2 The solver settings . 36
3.3.3 The grid and the grid refinement process 37

3.4 CFD Results . 40
3.4.1 Iterative convergence of the cases 40
3.4.2 Mesh refinement . 41
3.4.3 Separation . 42
3.4.4 Slip . 44
3.4.5 Cavitation . 46
3.4.6 Blade loading . 46
3.4.7 Recirculation . 47
3.4.8 Regions with large residual values 49
3.4.9 Transient simulations . 49

4 Conclusion 51
4.1 Further work . 51

Bibliography 52

Appendices 57

iv

A Description of the masters work 59

B Paper for CRHT-X 63

C Distribution of streamlines in the meridional plane 73

D G and H curves 75

E Handling of the loss models for the spiral casing and the stay- and guide vanes 79

F Failed attempts to reach convergence 85

G Matlab Scripts 87

v

vi

LIST OF TABLES

2.1 Empirical data for factors related to the values, collected from [5, page 46] 21

3.1 Mesh reefinement factors and corresponding cell counts 39
3.2 Results with mesh refinement . 42
3.3 Slip factor for different cases . 45

vii

viii

LIST OF FIGURES

1.1 Amount of renewable energy sources in Europe, collected from [29] . . . 1
1.2 Amount of renewable energy sources in Norway, collected from [29] . . . 2

2.1 The energy balance for a system including a pump and a turbine. Collected
from [6, page 208] . 7

2.2 Types of circular flow. 9
2.3 Schematic view of a hydro power plant. 10
2.4 The three main turbine types . 10
2.5 Top down schematic view of spiral casing, stay- and guide vanes. Note

that the figure is not correctly proportioned and only used for illustration
purposes . 11

2.6 Radial, mixed flow and axial pumps, collected from [40] 12
2.7 The current arrangement with changeable area indicated. 14
2.8 Velocity triangle at the pump outlet . 15
2.9 Illustration of the slip and its effects on the velocity triangle at the outlet

of a pump . 16
2.10 Sketch of characteristics for pumps with different blade outlet angles . . . 18
2.11 The streamlines and the velocity distributions in a separating flow. 19
2.12 Collapse of a cavitation bubble. 20
2.13 Disturbance of the flow with different leading edge shapes 22
2.14 The velocity triangles at 1 for a pump and a turbine at same Q and HE . . 22
2.15 Variation of head for fixed change in volume flow rate in idealized pump

characteristics with different slopes. 23
2.16 Dimensionless UCu curve along dimensionless streamwise location . . . 24

3.1 Meridional view of the runner with control points, streamlines and blades
indicated . 30

3.2 Predicted Characteristic of the blade . 31
3.3 The inlet of the pump at design conditions with irrotational inlet flow. . . 32
3.4 Distribution of the ucu values along the blade 33
3.5 Figure of the blade . 34
3.6 Meridional view of the entire domain. 37

ix

3.7 Mesh refinement close to the wall. 38
3.8 The significant amount of skewness of the mesh in the outlet domain. . . 39
3.9 The monitored values of the head factor and the residuals for a simulation

with q∗ = 1 and mesh refinement factor of 1.7 40
3.10 The characteristic and overall efficiency for different mesh refinement factors 41
3.11 Span=0.1 . 43
3.12 Span=0.5 . 43
3.13 The blade outlet angles and the exiting flow angles for the case q∗ = 1,

Mesh refinement factor=1.2. 44
3.14 Cavitation on the blade at q∗ = 1, . 45
3.15 The static pressure distribution along the blade surface 46
3.16 The static pressure distribution along the blade surface 47
3.17 The location at the inlet shroud where recirculation occurred. 48
3.18 Separation at q∗ = 1 . 48
3.19 Separation at q∗ = 0.7 . 49
3.20 The largest residual values in the inlet and the passage. 50

C.1 Details of the iterative process to find points on the next streamline 74

D.1 G and H lines on one streamline rotated around the axis. 76
D.2 Relation between θ, R and H . 77

E.1 Simplified geometry of guide vanes with rotation 80

x

NOMENCLATURE AND ABBREVIATIONS

List of Abbreviations

BEP Best Efficiency Point

CFD Computational Fluid Dynamics

NPSH Net Positive Suction Head

RMS Root Mean Square

RPT Reversible Pump Turbine

SST Shear Stress Transport

Nomenclature

α Kinetic energy correction factor

β Angle between runner velocity and relative flow velocity

βB Blade angle

∆t Timestep

∆x Element length

ε Turbulent dissipation

ηh Hydraulic efficiency

ηm Mechanical efficiency

ηo Overall efficiency

xi

γ Slip factor

ν1, ν2 Vibration orders

ω Rotational velocity

ω Specific dissipation

Ψ Head coefficient

ρ Density

τ Blade blockage factor

A Area

c Velocity of the flow

cu Circumferential fluid velocity

Co Courant number

d Runner diameter

e Blade Thickness

g Gravitational acceleration

H Head

HE Effective head

Hg Gross head

hL Friction head loss

k Kinetic turbulent energy

M Moment, Torque

P Power

Pd Dynamic pressure

Ps Static pressure

xii

Phead Static pressure head

Ptot Total pressure

Q Volumetric flow rate

R Radius

u Runner velocity

V Velocity

w Velocity of the flow relative to the runner

z Vertical location

zla Number of runner blades

zle Number of guide vanes

List of Sub- and Superscripts
′ Component with slip

θ Circumferential component

g Gross

in Property entering control volume

m Meridional component

out Property leaving control volume

p Pump mode

r Radial component

t Turbine mode

x Axial component

A Available

R Required

xiii

xiv

CHAPTER

ONE

INTRODUCTION

In recent years, Europe as a whole has started to rely more and more heavily on renew-
able energy sources like wind and solar power, as shown in figure 1.1. The drawback

Figure 1.1: Amount of renewable energy sources in Europe, collected from [29]

with these sources is that they are directly influenced by the weather, and thus cannot be
used on-demand. This necessitates good techniques for energy storage. One of the most
economical technology for storing energy is the application of pumped storage techno-
logy[15], where excess energy is taken from the grid and used to pump water to a higher
reservoir. When there is a demand for more energy in the grid the same water is run
through a turbine to regenerate the energy. However, to be able to use pumped storage
technology, one needs a reservoir pair and a height difference.

Norway has very good conditions for the application of pumped storage technologies,
as it has many mountain lakes with short aerial distance and large vertical distance to other
lakes or the sea. The country already has approximately 43% of Europes hydropower

1

Chapter 1. Introduction

reserves1 and has utilized water as its primary energy source for a long time, as shown
in figure 1.2. Therefore most of the available hydropower resources are either already

Figure 1.2: Amount of renewable energy sources in Norway, collected from [29]

utilized as regular hydropower plants or are protected due to environmental concerns2.
Furthermore, a significant portion of the remaining energy potential is not suitable for
regulatory operation, and thus would be weather dependent as well [13, figur 3.3]. There
are only 9 powerplants with pumping capability in Norway [25]. This means that there is
room for more pumped storage powerplants in the Norwegian grid [16].

One idea to make new pumped storage hydropower plants at low costs is to reuse
existing powerplants and retrofit them with reversible pump turbines which are to function
both as pumps and as turbines [37].

There are some problems connected to this approach. One is that pumps need larger
submergence than turbines to keep the fluid from evaporating due to low-pressure zones,
so-called cavitation, as will be shown later. A possible solution for this may be to insert
a booster pump downstream of the pump-turbine. Booster pump technology is currently
under development in a project parallel to this one.

The other problem is that a Francis turbine and a pump with the same dimensions
won’t satisfy the same criteria related to pressure and flow rate.

In this thesis, an attempt will be made to design a reversible pump-turbine which fits
the geometry and the pressure requirements of an already existing power plant.

The exact wording of the task description is added in appendix A.

1Reservoir Capacity in Europe ≈ 200TWh [1, page 17].
Reservoir capacity in Norway ≈ 86.9TWh [26].
86.9TWh/200TWh ≈ 0.43

2Although estimates of the remaining potential vary [19]

2

Chapter 1. Introduction

1.1 Previous work
This project is part of an ongoing series of projects, all aiming at fitting a new pump turbine
in the geometry of an already existing turbine and to facilitate this so-called retrofitting by
adding an additional pump on the downstream side of the runner to counteract cavitation3.
Earlier investigations have shown that a well-designed booster pump and a pump-turbine
in series should be able to cooperate without problems if inserted into Roskrepp Power
Plant [36]. Pål Dahle has made a program to design booster pumps and concludes with
an initial estimate of 6.2 m of lifting height for the pump. Rune Larsen [18] simulated a
reversible pump turbine and concluded with counterrotating inlet velocity being beneficial
for the head, but not for the efficiency. Fernando Perán and Ademir Suárez have performed
an economic study on the feasability of retrofitting existing powerplants with reversible
power plants [27]. They conclude that, in order for retrofitting to become feasible, research
must be done on reducing the cavitational requirements for the reversible pump turbines
and on bringing the pump discharge closer to the original turbine discharge.

To the author’s knowledge, no attempt has been made to retrofit a reversible pump
turbine without altering the external geometry of the runner.

1.2 Scope of the thesis
Ideally, the thesis would look at the entire hydraulic system, evaluate the structure of the
runner and have a look at the economical benefits and disadvantages of the project, as well
as comparing multiple different designs to find the best possible one. Unfortunately doing
so would by far exceed the resources available to the author.

Therefore the scope of this thesis will be to design a reversible pump-turbine which
should fit the geometry of a conventional Francis turbine and to test whether it can deliver
sufficient pressure to meet the system requirements. The work will only evaluate the fluid
dynamic part of the design, and disregard structural aspects. The testing will be performed
by use of numerical simulations and the numerical results will be evaluated

3Cavitation is when the fluid in a turbine evaporates due to low pressure. More about this will be explained
in the theory chapter.

3

Chapter 1. Introduction

4

CHAPTER

TWO

THEORY

This chapter will focus on the theory involved in the design process of a reversible
pump-turbine. First, an overview of the underlying physics will be given, then the rel-
evant components of a hydropower plant will be explained. Following this, the physical
phenomena related specifically to pumps and turbines will be explored. Finally, a brief
introduction to the ideas and processes of Computational Fluid Dynamics will be given.

2.1 Fundamental physics
To be able to understand the choices made in this thesis, it is important to have an under-
standing of some fundamental underlying physical principles related to fluid flow. This
section will give a brief overview of these.

2.1.1 Bernoulli’s equation and different kinds of pressure
Bernoulli’s equation is a form of energy conservation equation. It concerns itself with the
conservation of kinetic-, potential- and flow energy. It is derived in Çengel and Cimbala
[6, page 187] and if written in terms of pressure, it states that the total pressure, Ptot is
constant along a streamline1:

Ptot = Ps +
ρV 2

2
+ ρgz = constant (along a streamline) [Pa] (2.1)

Where Ps is the static pressure at any point along the streamline, ρ is the density of the
fluid, V is the velocity of the fluid, g is the gravitational acceleration, z is the vertical
location of the point which is evaluated.

1A streamline is a line which is everywhere tangent to the velocity field[6, page 129]

5

Chapter 2. Theory

The individual terms of equation (2.1) deserve a more thorough explanation, as they
are important to the performance of turbomachines and will be used frequently in later
chapters.

Pressure is defined as the force acting per area and thus is responsible for many of the
phenomena occurring in a flow. The three terms in Bernoulli’s equation are related to three
different kinds of pressure.

The static pressure, Ps is the pressure acting on all sides of a fluid particle. It is this
pressure which determines the chemical properties of a fluid, like its density and its phase.

The dynamic pressure, Pd is the kinetic energy of the fluid per fluid volume. It is given
by:

Pd =
1

2
ρV 2 [Pa] (2.2)

The static pressure head, Phead is the potential pressure relative to some datum eleva-
tion. It is given by

Phead = ρgz [Pa] (2.3)

and must always be viewed relative to the height.
The sum of the above pressures is the total pressure, Ptot. The total pressure is what is

constant along a streamline according to Bernoulli’s equation. In flow with no significant
change in elevation, the total pressure is also called the stagnation2 pressure, as it is the
static pressure of a fluid which is brought to rest. One should be cautious of the fact
that Bernoulli’s equation has to meet a number of requirements to be valid: Bernoulli’s
equation is only valid for flows which are steady3, do not include energy transfer, are
incompressible4 and are along a streamline.

2.1.2 Energy equation
The first law of thermodynamics states that energy is conserved [23, page 51]. This means
that all changes in energy for a system must be accounted for. For flows in which there is
a change from mechanical to thermal energy, or an in or outflux of energy to the system,
the Bernoulli equation does no longer hold and a different principle is required. In such
cases the energy equation is used as it includes terms to account for energy exchange
between the flow and the surroundings. For a fluid flowing through a control volume5, this
is conventionally expressed in the form of changes in the head, H . Head is a convenient
way to express the mechanical energy of a system. It describes energy as the height of a
fluid column with an equivalent potential energy, or in terms of total pressure:

H =
P

ρg
[m] (2.4)

As will be explained in section 2.2, hydro power plants operate due to differences in
water levels. The head gives an intuitive way of relating the energy to the water levels.

2A fluid with the same velocity as the reference system is called stagnated. Points with stagnated fluid in an
otherwise moving fluid are called stagnation points

3Steady flows do not vary with time
4Incompressible fluids have constant density
5A control volume is a “black box” for a flow. What happens inside is ignored and all calculations are

performed for forces acting on- and flow through the surface.

6

Chapter 2. Theory

Figure 2.1: The energy balance for a system including a pump and a turbine. Collected from [6,
page 208]

Most energy losses in fluid flows occur due to friction between the fluid and the sur-
rounding surface, or by disturbances of the fluid. These losses transform mechanical en-
ergy to heat. Other than this, the increase or decrease of the mechanical energy will occur
due to so called shaft work, which is work exerted by the fluid on a turbine, or by a pump
on the fluid. An explanation of turbines and pumps will be given in sections 2.2 and 2.3
respectively. The equation for the energy balance for such a system expressed in terms of
head is given by

Pin

ρing
+αin

V 2
in

2g
+ zin + hp

=
Pout

ρoutg
+ αout

V 2
out

2g
+ zout + ht + hL

[m] (2.5)

Where in and out denote properties respectively entering and leaving the control volume,
P is the static pressure and hL is the irreversible head loss due to friction. The factor α
is the kinetic energy correction factor which is necessary to correct for the velocity profile
of the flow6. For flow through a pipe it is 2 if the flow is laminar and between 1.04 and
1.11 for turbulent7 flows. For most cases the influence of α is however insignificant, either
because the values of kinetic energy are negligible or because the flow is turbulent and α
thus comes close to unity. hp and ht are changes in the head due to interaction between
the fluid and a pump or turbine, respectively. Note that the term hp actually adds energy to
the system as the pump exerts a work on the fluid. A diagram of the energy balance for a
flow with a turbine and a pump is shown in figure 2.1. The schematic includes mechanical
losses for pumps and turbines which will be explained in section 2.9.

6A velocity profile describes the velocity of the flow in direction perpendicular to the flow direction[7]
7Flows with lots of mixing are called turbulent. The opposite of a turbulent flow is a laminar flow where there

is very little mixing. The velocity profile of a laminar flow is much more pointy than that of a turbulent flow [7].

7

Chapter 2. Theory

2.1.3 Euler’s equation for turbomachines

The power, P , transferred between a shaft and a flow is given by

P = Mω [W] (2.6)

where M is the torque acting on the shaft and ω is the rotational velocity of the shaft
[7, page 216]. A convenient way to calculate this power expressed by the flow around
the shaft is by application of the equation for conservation of angular momentum[7, page
266]. For a turbomachine, it can be simplified by setting a cylindrical control volume
around the turbine. Then the following assumptions are made, as shown in [6, pages 254-
255]. Steady-state flow is assumed for the control volume, and it is observed that flow
flowing parallel or perpendicular to the axis does not contribute to the torque on the shaft.
When the result is combined with equation (2.6), the following equation emerges:

P = ρQ(uoutcu,out − uincu,in) [W] (2.7)

Where u is the velocity of the runner, cu is the circumferential fluid velocity and Q is the
volumetric flow rate8. This equation is commonly known as Euler’s turbine equation and
holds for all turbomachines9.

2.1.4 Circular flow

Flows which have a rotational component around a centre of rotation are called circu-
lar flows. They are also commonly referred to as vortices. There are two main types of
vortices, namely free and forced vortices [12, page 30]. The flow through a radial tur-
bomachine usually involves both free and forced vortices at some point. Free vortices are
vortices which occur purely due to initial rotation in the flow. Examples of free vortices
are the swirl which occurs when a sink is drained, or the flow observed in a tornado. They
are described by

cu =
K

R
[m s−1] (2.8)

Where R is the radial distance to the centre of the vortex and K is a constant defining the
strength of the vortex. It should be noted that a real free vortex deviates from equation 2.8
close to the centre of rotation. Otherwise, the rotation would approach infinity there.

Forced vortices occur when the flow is driven by a rotating object, like a spoon in a
cup of tea or the rotation of a turbine. Their velocity distributions take the same form as
the velocity distribution of solid body rotation:

cu = ωR [m s−1] (2.9)

The different vortices can be seen in figure 2.2.

8The volumetric flow rate describes the volume flowing in and out of a control volume. It originates from the
continuity equation and is constant for incompressible fluids like water [7, page 192]

9Turbomachines are defined by Dixon & Hall [30, page 1] as “...all those devices in which energy is trans-
ferred either to, or from, a continuously flowing fluid by the dynamic action of one or more moving blade rows”.

8

Chapter 2. Theory

(a) Flow with free rotation. (b) Flow with forced rotation.

Figure 2.2: Types of circular flow.

2.2 Hydroelectric power plants

With this, the reader should have a broad enough basis of fluid flows to be able to under-
stand the physics of turbomachines such as pumps and turbines, as well as the basics of
hydropower plants. Hydropower plants deliver electricity to the electric grid by utilizing
the energy contained in water moving between two reservoirs at different heights. The
difference in elevation between the two reservoirs is called the gross head Hg . The water
from the upper reservoir is led to the lower reservoir via a waterway called the penstock.
At the lower end of the penstock, there is a turbine through which the energy from the
water is transferred to a generator and then is delivered to the grid. This removed energy is
the term ht in the energy equation (2.5). A schematic view of a general hydro power plant
is shown in figure 2.3. The numbers indicated on the figure correlate with the subscripts
used in this thesis.

In the context of this thesis, the most interesting part of a hydropower plant is the
turbine.

The three most common types of hydraulic turbines are Pelton, Francis and Kaplan
turbines. The kind of turbine which should be used is decided by the relation between the
head of the turbine and the volume flow rate at which it operates.

Pelton turbines are applied for cases with high head and low volume flow rate while
Kaplan turbines are applied for cases with low head and high flow rates. Francis turbines
are usually used for cases in between the two others. The three turbine types are shown in
figure 2.4

9

Chapter 2. Theory

Figure 2.3: Schematic view of a hydro power plant.

(a) Kaplan turbine created with
Ansys BladeGen

(b) Francis turbine created with
Ansys BladeGen

(c) The pelton wheel in front of
the waterpower laboratory

Figure 2.4: The three main turbine types

Both Francis and Kaplan turbines are reaction turbines, which means that only part of
the drop in static pressure has occurred before the turbine, while the rest occurs in the run-
ner itself. They are driven due to lift10 and impulse on the blades. The turbine type which
exists in the hydropower plant used as a case for this thesis is a Francis turbine. Therefore
the components commonly found in a Francis turbine will be explained in greater detail in
the following.

When the water exits the penstock, it is first led into a spiral casing. The spiral casing

10Lift is the force working on a body perpendicular to the flow direction, due to pressure differences on the
sides of the body[12]. It is the same principle which makes planes fly.

10

Chapter 2. Theory

is a component which ensures that the water is guided into the turbine at a uniform volume
flow rate. The outlet of the spiral casing is equipped with so-called stay vanes, which are
streamlined bodies designed to keep the spiral casing from being deformed by the water
pressure. After passing through the spiral casing and the stay vanes, the flow is directed
into the turbine at an angle by use of guide vanes. Guide vanes are also streamlined bodies,
but they are mounted on stems which can be used to rotate them to change the inlet angle
of the flow, depending on the volume flow rate and the head. A schematic top-down view
of the spiral casing with guide vanes and stay vanes is shown in figure 2.5

Figure 2.5: Top down schematic view of spiral casing, stay- and guide vanes. Note that the figure is
not correctly proportioned and only used for illustration purposes

After passing through the runner, the flow is led into a draft tube. A draft tube is a
pipe with cross-section expanding towards the lower reservoir. This expansion leads to
a decrease in velocity and a corresponding increase in static pressure. This facilitates a
recovery of the energy remaining in the flow which otherwise would be lost [5, page 75].

2.3 Pumps
The pump is another kind of turbomachine. It adds energy to a system, and thus serves
to increase the pressure and lift a fluid upwards. The rotating part of a pump is called the
impeller. As with turbines, there are different kinds of pumps. The two extrema being
radial pumps and axial pumps. Axial pumps look like propellers and the flow both enters
and leaves the pump in the axial direction. In such pumps, head is generated only by
the lift of the pump blades. In radial pumps, on the other hand, the flow is purely radial
so it enters the pump at one radius and leaves at a greater one. The head is created by
centrifugal forces in the radial direction only.

Most pumps are however somewhere between the two extrema and produce head both
due to lift created by the blades and due to centrifugal forces. These pumps are called
mixed flow pumps, as they have flow in both the radial and the axial direction. Mixed flow

11

Chapter 2. Theory

Figure 2.6: Radial, mixed flow and axial pumps, collected from [40]

pumps have a general shape which is quite similar to the shape of Francis turbines with one
opening in the radial and one in the axial direction. The main difference is the rotational
direction of the pump, which reverses the flow and adds energy instead of extracting it.
These three kinds of pumps are illustrated in figure 2.6

2.4 Reversible pump turbines

Because the fundamental workings that allow radial, axial and mixed flow pumps to add
energy to a flow are the same as the ones that allow Francis and Kaplan turbines to extract
energy from a flow, a pump can be reversed to work as a turbine and vice versa. Unfor-
tunately, a reversed pump does perform worse as a turbine than a pump, as will be shown
in section 2.14. A turbomachine which works both as a pump and a turbine is called a
reversible pump-turbine or RPT for short. As mentioned in the introduction, RPTs can
be used to produce energy when there is a lack of energy in the grid and used as storage
devices when there is an energy surplus. To do this, the upper and lower reservoir has to be
sufficiently large so the turbomachine has a source to draw water from in both operational
modes.

2.5 The case: Roskrepp Powerplant

The powerplant which will be used as a basis for the calculations in this thesis is “Roskrepp
Powerplant”, owned by Sira-Kvina Kraftselskap[17]. Due to confidentiality concerns, all
dimensions and values connected to the powerplant will be given in dimensionless form

12

Chapter 2. Theory

as follows:

q∗ =
Q

QBEP
[-] (2.10)

R∗ =
R

RGV
[-] (2.11)

c∗ =
c

u1
[-] (2.12)

Ψ = 2g
H

u21
[-] (2.13)

where QBEP is the volume flow rate at the best efficiency11 point (BEP), RGV is the
radius of the guide vane stems, and u1,m is the mean runner velocity at the high pressure
side of the runner. The factor Ψ is the head coefficient, which is a common way to describe
the dimensionless head of a turbomachine. The turbine currently installed in Roskrepp is
a Francis turbine. It operates at a gross head coefficient of Ψg = 0.71 between the higher
and the lower reservoir and at a maximum volumetric flow rate of q∗ = 1.3725.

As mentioned in the introduction, the objective of this work will be focused on design-
ing an RPT which should fit the same external geometry as the current runner installed in
Roskrepp and at the same time produce enough head to satisfy the requirements of the site.
This means that the mean dimensions of the runner will remain the same. A sketch of the
runner is shown in figure 2.7. The area in which modifications can be made is indicated
by the shaded area.

2.6 The runner
As an RPT is both a pump and a turbine, the rotating component will be referred to as the
runner in the remainder of this document to avoid confusion.

The runner consists of a number of runner blades which serve to transfer the energy
from the fluid to the blade. The channel between two blades, through which the water
passes is referred to as the passage. The wall of the passage which is closest to the axis
is called the hub and the other wall is the shroud. Figure 2.7 shows the components of a
meridional12 projection of a runner.

The number of blades in the runner depends on whether the runner is designed for a
pump or a turbine. In either case one wants to avoid harmonic interference between the
runner blades and the guide vanes. The runner in this project will be designed as a pump,
as will be explained in chapter 2.15. For a pump it is recommended that the number of
runner vanes is less than 8.

To avoid interference, Gülich [14, page 342] recommends to ensure that m in equation
(2.14) fits the condition m 6= {0, 1} for integer values of ν1,2 up to 3.

m = |ν2 · zla − ν1 · zle| [-] (2.14)

11Efficiency is the rate of power input to useable power, described more extensively in section 2.9.
12A meridional projection of a turbine or a pump shows the cross section of the component, with all compon-

ents projected onto the same angular plane.

13

Chapter 2. Theory

Figure 2.7: The current arrangement with changeable area indicated.

ν1 and ν2 are vibration orders zla is the number of runner blades and zle is the number of
guide vanes.

2.7 Velocity triangles

A powerful tool when working with turbomachines is the velocity triangle. A velocity
triangle shows the relationship between the velocity of the fluid and the velocity of the
runner itself. The three main elements of a velocity triangle are the velocity of the flow,
c, the velocity of the runner, u and the relative velocity of the flow to the runner, w. As
such, w can be expressed as the difference between c and u. See figure 2.8 for a better
understanding.

The c and w components of a velocity triangle can be divided into their radial, axial
and circumferential components, denoted by subscripts r, x and θ, respectively. As the
u component is purely circumferential, there is no need to further decompose it. Another
commonly used component of the fluid velocity is the meridional velocity, subscript m.

14

Chapter 2. Theory

Figure 2.8: Velocity triangle at the pump outlet

The meridional velocity is the velocity in the axial and radial plane13, so

cm =
√
c2x + c2r [m s−1] (2.15)

When one again uses a cylindrical control volume around the runner, it can be seen that
the circumferential velocity components are everywhere tangential to the surface. There-
fore the meridional velocity is the only velocity relevant for the volume flow rate:

Q = cm ·Am [m3 s−1] (2.16)

where Am is the meridional area, so the area which cm is normal to.
The angle between u and w is labeled β.
Ideally, the angles of the runner blades at inlet and outlet would be the same as the

β angles of the flow to avoid incidence losses, which are losses originating because of
disturbances in the flow caused by the blades. This is only possible for one operation point
of a turbine and impossible for pumps, as will be explained in section 2.8.

2.8 Slip

Slip is a term which can have multiple meanings when referred to in a pump-context. One
meaning is the behaviour of flow along a wall, where no-slip signifies that the flow close
to a wall sticks to the wall due to intermolecular forces [41, page 8]. This is the most
common meaning of slip in fluid mechanics.

The other meaning of slip is more pump specific. In a pump, slip is a phenomenon
which occurs due to the pressure difference between the pressure side and the suction side
at the outlet14. It leads to the actual outlet angle of the flow being different from the blade
outlet angle as illustrated in figure 2.9.

13Also called the meridional plane
14All turbomachines create high pressure on one side of their blades and low pressure on the other side. These

are referred to the pressure and suction side of the blade, respectively

15

Chapter 2. Theory

Figure 2.9: Illustration of the slip and its effects on the velocity triangle at the outlet of a pump

While slip has a significant effect in pumps, it is negligible for turbines because the
pressure differences should be completely transferred to the runner at the outlet, in the
form of energy.

The slip is calculated by use of the slip factor γ, which relates the theoretical and actual
value of cu1 to u, as shown in figure 2.9. In the following, values with slip are denoted by
a ′. The slip factor can be found by the equation

γ = 1− cm
u1

(1

tanβ′1
− 1

tanβ1B

)
(2.17)

where τ1 is the blade blockage factor at the outlet of the pump and β1B is the blade angle
at the outlet of the pump. τ is given by:

τ1 =
(

1− zLae1
πd1 sinβ1B

)−1
[-] (2.18)

where e is the blade thickness and d1 is the diameter of the runner at 1.
The blade blockage factor depends on the amount of the blade passage which is blocked

due to the thickness of the blades and serves to increase the meridional velocity accord-
ingly.

While the slip factor depends on several conditions, it is usually in the range of 0.7 to
0.8 [14, page 147].

2.9 Power
A hydropower plant should utilize as much of the power accessible to it as possible. When
relating the energy equation, eq. (2.5), to the mass flow rate of a system, it can be seen
that the largest theoretical obtainable power, Pt,theoretical for the turbine is given by

Pt,theoretical = ρghtQ [W] (2.19)

Assuming an idealized system where the only losses in pressure are due to the turbine,
and evaluating the system between the higher and lower reservoir where the velocity may

16

Chapter 2. Theory

be assumed to be zero, yields the result that ht = z0 − z4 = Hg . Hg is the so called
gross head. When calculating the power of a turbomachine, one has to include losses in
the system. The losses in the waterway and in the turbine are usually treated separately.
The head losses in the waterway are added to the gross head to give the head which the
turbomachine is exposed to. This head is called the effective head, HE . Whether the ef-
fective head is larger or smaller than the gross head depends on whether the turbomachine
is a pump or a turbine:

HE = HG + hL(Q)

turbine→ hL < 0

pump→ hL > 0

[m] (2.20)

The curve describing HE as a function of Q is called the system characteristic.
The part of the losses occurring due to hydraulic phenomena in the turbomachine, that

is, in the spiral casing, guide- and stay vanes, draft tube and runner, are collected in the
form of the hydraulic efficiency, ηh. The hydraulic efficiency is the ratio of the turbine
head to the effective head for a turbine or the ratio of the effective head to the pump head
for a pump. This can be expressed by application of the Euler equation, 2.7, as

ηh,t =
uoutcu,out − uincu,in

gHE
[-] (2.21)

ηh,p =
gHE

uoutcu,out − uincu,in
[-] (2.22)

There are also losses connected to the energy transfer from the turbine to the generator
and to the grid. these are collected under the term mechanical efficiency, ηm The efficien-
cies are often combined as an overall efficiency, ηo thus the power delivered to the grid
becomes:

P = ρgHEQηo [W] (2.23)

and the power delivered to the flow by a pump becomes

P =
ρgHEQ

ηo
[W] (2.24)

2.10 Characteristics
A change in the head of a turbine always leads to a variation of the volume flow rate as well,
given that the rotational speed is fixed. The efficiency and power also vary with varying
H and Q values. A pump characteristic is a graphic representation of this variation of the
head and flow rate. The operation point will be at the flow rate where the pump or turbine
characteristic crosses the system characteristic (equation (2.20)). In a properly designed
turbine, the BEP, will coincide with the design point of the turbine. The relation between
the head and the volume flow of the turbomachine is obtained by combining Euler’s turbine
equation (2.7) and the continuity equation for a turbomachine (2.16) and relating these to

17

Chapter 2. Theory

Figure 2.10: Sketch of characteristics for pumps with different blade outlet angles

the geometry of the RPT. This yields the following equation for the pump head Hp

Hp =
ηhu

2
1

g

(
γ − τ1Q

A1u1 tanβ1B

)
[m] (2.25)

This equation is a simplified form of the one found in Gülich [14, page 348]. The equation
in the source material contained a term which would be zero in the current design process
and thus has been removed from this version of equation (2.25). By differentiation of
equation (2.25) it can be shown that the slope of the curve is dependant on β1B . More
specifically the curve is decreasing if β1B < 90°, constant if β1B = 90° and increasing
if β1B > 90°. This is however only true for the entire curve if the case has no losses.
In reality, the hydraulic efficiency will change with changing Q, and ultimately the losses
will become large enough to reduce the head to zero, regardless of β1B . A schematic view
of characteristics with different angles of β1B is sown in figure 2.10

If a pump has β1B > 90°, the characteristic will have a global maximum for some
value of Q > 0, and thus also have multiple different volume flow rates which result in
the same head. In such a case the flow rate could begin to oscillate between the two flow
rates, which is unwanted. To avoid this, pumps have to be designed with β1B ≤ 90°.

The other way to increase the head would be to increase the velocity, u1 of the RPT.
To do this either the diameter or the rotational speed of the turbomachine would have to be
increased. However, as the objective of this thesis is to keep everything outside the runner
constant, the diameter cannot be increased any further, and a change of rotational speed
would encompass modifications of the generator. Thus the main parameter of interest for
this work is β1B and the shape of the blade.

18

Chapter 2. Theory

2.11 Attached and separated flow
A flow which follows a geometry closely is called attached flow while flow which at some
point starts to deviate from the geometry is called separated flow. A flow is prone to sep-
arate when it is decelerating, as a decelerating flow is less restrictive than an accelerating
one [14, page 8].

Separation in a hydrofoil15 will lead to stall, which means that the foil does not produce
lift anymore[12, page 41]. In a radial runner, separation will lead to areas of recirculation
blocking parts of the passage, which again lead to large hydraulic losses.[14, page 8].
An RPT is a radial runner which applies both lift and centrifugal forces to produce head.
Therefore separation is a negative phenomenon which should be avoided.

Figure 2.11: The streamlines and the velocity distributions in a separating flow.

Because the Current arrangement at Roskrepp is designed for a turbine, the cross-
sectional area at 1 is larger than at 2. By relation to the continuity equation16, this means
that the velocity is larger at 2 than at 1. In turbine mode, this is no problem as the flow
will accelerate through the turbine. For pump mode however, the flow will decelerate and
separation will most likely occur. Therefore it will be easier to achieve good efficiency
for turbine mode than for pump mode. Separation in a flow due to an increase of the
cross-sectional area is shown in figure 2.11.

2.12 Recirculation
When a pump is operating against a closed valve, the volume flow rate will be zero and
the head will be the so-called shut off head. When this happens there will be recirculation
flow both at the runner inlet and outlet. This happens because the pressure at the shroud
of the rotor is larger than the pressure at the hub of the rotor. This creates an imbalance
between the pressure in the rotating and the stationary parts of the fluid. Thus the fluid
flows out of the runner at the shroud and enters at the hub. This happens for all pumps

15A hydrofoil is a body formed to produce lift in an incoming flow.
16For an incompressible fluid, the volume flow rate into a control volume is equal the volume flow out of a

control volume[7, page page 192]

19

Chapter 2. Theory

Figure 2.12: Collapse of a cavitation bubble.

with significant radial differences between the inner and outer streamline at either inlet or
outlet.

As such a flow pattern cannot simply appear out of nowhere, similar conditions must
develop already at higher volume flow rates. While there are no general indicators of when
recirculation will occur, it appears in all pumps operating at flow rates considerably lower
than their BEP flow rates. There are also two prerequisites to be fulfilled for recirculation
to occur, namely locally separated flow and strong pressure gradients perpendicular to the
mean flow direction [14, page 201].

2.13 Cavitation

A turbomachine may encounter problems if the static pressure in any place becomes too
low. As explained in section 2.1.1, the static pressure decreases if the flow velocity or the
elevation increases. If the static pressure decreases below the vaporisation pressure of a
fluid, the fluid will experience a change in phase from liquid to gas form. Such a phase
shift is called cavitation.

Cavitation is a serious problem in turbomachines. The vapour bubbles block part of
the runner opening and thus increase the fluid velocity of the surrounding flow, which
again leads to larger pressure losses. Furthermore, the bubbles collapse when they are
transported into an area with higher static pressure. When this happens tiny jets with high
velocities are formed which are capable of damaging the runner, tis is illustrated in figure
2.12. Therefore it is important to avoid cavitation in turbomachines.

To ensure that the pressure is high enough, one usually looks at the Net Positive Suc-
tion Head (NPSH). It describes the difference between the available head and the vapour
pressure, also expressed as a head, at the low-pressure side of the turbomachine.

Brekke [5, page 44] suggests the application of two different kinds of NPSH, namely
the required and the available NPSH, labeled NPSHR and NPSHA respectively. While the
available head can be readily found by application of the energy equation on the system,
the required NPSH is a machine property. Based on empirical data, Brekke suggests using

20

Chapter 2. Theory

the formula

NPSHR = a
c2m
2

+ b
u2

2
[m] (2.26)

where a and b are empirical variables defined for pumps and turbines as shown in table 2.1.
cm is the average value at the low pressure side and u is evaluated at the outer diameter at
the low pressure side. The requirement to avoid cavitation is that NPSHA > NPSHR.

Pump Turbine
1.6<a<2.0 1.05<a<1.15

0.2<b<0.25 0.05<b<0.25

Table 2.1: Empirical data for factors related to the values, collected from [5, page 46]

In the design of a new hydropower plant, sufficient NPSHA is ensured by moving the
runner far enough below the lower reservoir. However, as seen by the values in table 2.1,
the requirements are stricter for a pump than for a turbine because inflow at low pressure
is more likely to result in cavitation than outflow at low pressure [5, page 46]. Therefore
the problem of cavitation in the process of retrofitting will be solved by installing a booster
pump between the runner and the lower reservoir, which should produce enough head to
avoid cavitation.

The shape of the blades also has an impact on the cavitational behaviour. Abrupt
changes in the geometry lead to sharp increases in the velocity, which in turn reduce the
static pressure. One location where this may occur is the leading edge of the blade. If
the incoming flow does not have the same angle as the blade angle at the inlet, so-called
incidence17, high velocities will be generated around the leading edge. The low static
pressure values corresponding to the high velocities increase the risk of cavitation. The
profile of the blade leading edges has a lot to say for the entering flow, as seen in figure
2.13. The use of circular profile shapes is discouraged as it is very unfavourable in this
regard. While wedge-like shapes are optimal for zero incidence, they perform even worse
than circular ones for flow with incidence. The compromise is to use an elliptical shape,
which performs reasonable well both with incidence and with zero incidence.

2.14 Differences between pumps and turbines
Now that all relevant flow phenomena linked to turbomachines are explained, it is time to
take a step back and to look at runners and runner blades as a whole.

As mixed-flow pumps and Francis turbines look similar, one may believe that an RPT
should be able to operate at BEP under the same conditions for both pumping and turbine
operation. As shown in Brekke [5, pages 147-149] this is not the case. First of all, for
constant gross head the effective head will be different for pumps and turbines, as the
sign of the friction losses in equation (2.20) will change. Thus the operating conditions
experienced by the pump will differ from pump to turbine mode. In the case with a booster
pump installed it could be possible to increase the pressure on the suction side of the
pump to compensate for the difference in effective head. Even with the same HE for both

17The incidence angle is the difference between the blade inlet angle and the flow inlet angle.

21

Chapter 2. Theory

Figure 2.13: Disturbance of the flow with different leading edge shapes

Figure 2.14: The velocity triangles at 1 for a pump and a turbine at same Q and HE

cases, the operation conditions still wouldn’t be the same. Combination of the hydraulic
efficiencies for turbines and pumps, eq. (2.21) and (2.22), with identical effective head
and zero circulation at the low pressure side yields:

ηh,tηh,p|cu1,p| = |cu1,t| [m s−1] (2.27)

Here the subscripts p and t denote pump and turbine mode, respectively. The absolute
values of both sides have been taken to avoid confusion with sign conventions. In reality,
the hydraulic efficiencies will always be smaller than unity so there will be a discrepancy
between |cu1,p| and |cu1,t|. As illustrated in figure 2.14 the angle of β1 must be larger for a
pump than for a turbine. This effect is further amplified by slip as well, as it already forces
the pump blade angle to be larger than the flow angle.

2.15 Design philosophies for pump turbines
Due to the difference in velocity triangles as explained in section 2.14 a turbine operating
at its BEP will become a pump operating away from its BEP if it is reversed. Likewise, a

22

Chapter 2. Theory

Figure 2.15: Variation of head for fixed change in volume flow rate in idealized pump characteristics
with different slopes.

reversed pump at BEP will become an off-BEP turbine.
A reversed pump will always be able to produce some power at lower heads as well,

but a reversed turbine will not necessarily be able to produce sufficient head to pump
water from the lower to the higher reservoir. Therefore it is more important to ensure good
efficiency in pump mode than in turbine mode.

For this reason, the RPT will primarily be designed with sufficient lifting head in mind
while good efficiency in turbine mode will be of secondary concern.

As explained in section 2.10, a change in β1 leads to a change in the slope of the
characteristic, and thus to a change in head.

An increased slope is unfavourable for the operation of the RPT because a moderate
slope will lead to large variations of Q with small variations of Hp, as illustrated in figure
2.15. This may be problematic because the volume flow rate is decided by the effective
head which varies considerably as the reservoir level varies greatly throughout the year.
To keep the turbine operating close to the BEP flowrate, the variations in Q should be
insensitive to the variations in head. Therefore one wants to find a value for β1 which is
large enough to deliver sufficient head, but not larger, to avoid major variations in Q.

Two different design philosophies have been considered in this project. One is the
application of the energy distribution by application of ucu curves, as is customary at the
waterpower laboratory of NTNU [39, page 19]. As seen in Euler’s turbine equation (2.7),
the power transferred to or from the flow is proportional to the change of u · cu, this also
goes for the energy. This means that by controlling this coefficient, one can control where
along the blade the energy transfer will take place. To reduce slip in pump operation,
most of the energy should already be transferred from the runner to the fluid ahead of
reaching the outlet, so the pressure difference between the pressure and suction side has
the possibility to equalize. The ucu value should also be zero at the outlet of the turbine,
so all of the available power is transferred to the runner. Thus we want the distribution
of ucu to look approximately like shown in figure 2.16. The other method is to simply

23

Chapter 2. Theory

Figure 2.16: Dimensionless UCu curve along dimensionless streamwise location

distribute the values of β continuously from β1 to β2, as is recommended by Stepanoff [33,
page 99]. This second method grants no control over the power throughout the turbine, but
more direct control over the actual shape of the blade, and ensures the blade to be smooth
everywhere. It may be advisable to start by using the ucu distribution for an initial design
and to improve the hydrodynamic behaviour of the blade by altering the β values directly.

2.16 Computational fluid dynamics

To test the RPT without having to make a physical version of every geometry to be tested,
computational fluid dynamics, hereafter called CFD, are taken in use. As with all nu-
merical methods, CFD divides a fluid domain into smaller subdomains and approximates
partial differential equations by simpler algebraic equations. The boundariy conditions are
stated and the equations are solved iteratively for all elements in the domain. The CFD
solver wich will be used in this thesis is ANSYS CFX, so only theory appliccable to this
program will be treated in the following.

2.16.1 Convergence of steady state solutions

The kind of CFD-simulation which usually requires the least amount of computing power
is a steady-state solution. The premise of steady-state solutions is that the flow, if given
enough time, will arrive at the same, unchanging state, independent of the initial condition
of the flow. Therefore a steady-state solver does not concern itself with accuracy in time,

24

Chapter 2. Theory

which usually leads to quicker convergence, as the time step can be chosen arbitrarily
large[42].

In order to get rid of flow conditions originating due to the specified initial conditions
of the domain, it is common practice to run each simultaion at least long enough for the
flow to pass through the entire domain once.

It is important to determine whether a simulation has converged sufficiently before
accepting it. Most solvers, therefore, output the residual values of the cells, to give an
indication of the convergence. Residual values are the imbalances between the right-hand
side and the left-hand side of the equations being solved in the numerical approach[8,
chapter 11.2.2]. Usually the Root Mean Square18 (RMS) value of all of the residuals is
given, as well as the largest residual of the iteration. Generally speaking, the smaller
the residual values are, the more converged the equation will be. However, the residuals
always have to be viewed relative to the scale of the entire problem. Therefore residuals
are often written normalized to the scale of the entire domain.

Besides looking at the residual values of a simulation it is useful to monitor properties
relevant for the case. Such properties could be the thrust on runner blades or the head
difference between the outlet and the inlet. If the residual values have converged but the
other relevant properties are oscillating, it means that the simulation is either transient or
unstable due to poorly defined boundary conditions or poor grid quality. If the flow never
converges to one state, it could be inherently transient, which means that the actual flow
always will be changing. Then a transient solution should be run, to resolve the temporal
variation of the flow.

2.16.2 Transient solutions

If the simulation is transient, a transient solver must be used instead of a steady-state solver.
For transient solvers, the Courant number, Co is an important factor for convergence and
accuracy.

Co = c
∆t

∆x
[-] (2.28)

∆t is the value of the timestep chosen for the simulation, ∆x is the length of a grid cell and
c is the local velocity of the flow at the grid cell[3, chapter 1.1.3]. The allowable value for
the Courant number varies from solver to solver to solver and from case to case. The solver
used by ANSYS CFX is an implicit solver, which means that it can reach convergence with
any value of Co but smaller values tend to give more accurate results.

Transient solvers will work for steady-state solutions as well but they generally take
longer to converge and require larger amounts of memory to save states for different time
steps of the simulation. Therefore a steady-state solution is usually attempted first.

A transient solver uses an initial value for the flow field and then marches it forward in
time. Again the residuals are monitored to see if convergence has been reached and each
time step is iterated until the residuals have reached a sufficiently low level before the time
is incremented to the next time step.

18For n discrete elements with value x, the RMS value is found by xRMS =
√

1
n

∑n
i=1(x

2
n)

25

Chapter 2. Theory

Even if the residuals of each time-wise iteration are very small and the solution thus
converges, the accuracy of the simulation still has to be evaluated. This is done by use
of a so-called grid sensitivity study. This means that parameters like the convergence
tolerance, time step size and mesh size need to be changed to see whether it leads to
significant changes in the solution. If it does change, the case must be modified, usually
by either making the mesh finer or decreasing the timestep until further refinement leads
to insignificant changes in the flow.

2.16.3 Turbulence models

Turbulent flow includes flow phenomena of very varying length and time scales [34, pages
21-22]. If one would intend to solve equations for all scales this would require an ex-
tremely fine mesh and a small timestep. This would make even the simplest turbulent
simulations very costly in terms of computation capacity. Therefore most solvers use the
average values of the equations to be solved and apply models to adjust for the fluctuat-
ing components, so-called turbulence models. A large number of turbulence models have
been developed, all of which have their own advantages and disadvantages regarding com-
plexity, computation time and flow conditions. As separation is expected in the turbine,
stability with regard to pressure gradients and separation is important for the turbulence
model to be used.

Two commonly used turbulence models are the k-ε and the k-ω models, which use
equations for the kinetic turbulent energy k and either for the turbulent dissipation ε or
for the specific dissipation ω. The k-ε performs good in free shear layers, but struggles in
dealing with areas of separation, while the k-ω model performs better close to walls but
struggles with free shear layers and adverse pressure gradients.

To circumvent the weaknesses of these models, a hybrid approach, called the Shear
Stress Transport (or SST) k-ω model, has been developed. The SST k-ω is among the
most accurate turbulence models with regard to adverse pressure gradients [43] and is able
to handle separation quite well[21].

2.16.4 Wall models

No matter how fast a fluid flows past a surface, and how turbulent the mean flow is, the
flow will always become laminar if it is close enough to the wall. This is due to the no-slip
condition which ensures that the velocity at the wall is zero, so the turbulence at the wall
will be zero as well. Because of the sharp velocity gradient this creates, the flow at the
wall has to be modeled [22]. Most turbulence models require the flow to be outside of
the viscous sublayer due to difficulties with modelling the turbulence in this part of the
flow. Another advantage of the k-ω SST model is that an analytical equation for ω in
the laminar boundary layer is known. Therefore it can make use of automatic near-wall
treatment, which means that it does not matter if the first grid point is inside the laminar or
the turbulent part of the flow. In order to resolve the boundary layer sufficiently, it is still
advisable to have ten grid points inside the boundary layer19 [8, chapter 2.8.1].

19The boundary layer is defined as the part of the flow close to the wall which is slower than 0.99 times the
free stream velocity[41, page 149]

26

Chapter 2. Theory

2.16.5 Considerations for simulations of turbomachines
If a turbomachine can be assumed to be periodic in the circumferential direction, i.e. that
the flow is identical for all blades, this can be used to decrease the computational require-
ments of the turbine drastically. In such a case only one blade is simulated, and the flow
exiting the simulated domain on one of the circumferential boundaries enters the same
domain on the other side.

The simulation of flow through a turbomachine includes frame changes due to the
rotating parts. To be able to simulate these, a couple of different methods have been
developed. The frozen rotor approach assumes that the rotating and stationary domains of
the geometry are stationary relative to one another, but changes the frame of the flow in
the rotor-stator interface. The obvious disadvantage of using the frozen rotor approach is
that the flow is only calculated for one rotor-stator configuration, and thus is inaccurate if
the flow in the stator is not uniform in the circumferential direction.

Another way of transforming the flow components between rotor and stator is to use
circumferential averaging. When doing this the flow is averaged in circumferential slices
around the axis, and thus the average flow experienced by the runner is captured. The
second approach, called the mixing plane approach, is usually more correct than the frozen
rotor approach[20], but it performs poorly at off-design conditions for pumps and is a bit
slower than the frozen rotor approach.

The last option is to perform a fully transient rotor-stator simulation. The only assump-
tion made here is that the flow is periodic in the circumferential direction, so the flow in all
blade rows is the same. The rotor is then actually rotated around the axis and the domain
interfaces between rotor and stator are connected by periodicity. This option is the most
correct one, but it also requires the most computation time.

2.16.6 Verification and validation
One should keep in mind that CFD only is an approximation of a real flow. Therefore it
is important to remain sceptical to the results obtained by simulations. This is done in the
verification and validation parts of the simulation process.

Verification concerns itself with the mathematical aspect of a CFD code and serves to
find errors in the code and implementation of the equations to be solved. Verification is
sometimes described as making sure one is “solving the equations right”. The verification
process is divided into two aspects[32]: One aspect is the verification of a code where the
program itself is tested to find errors and bugs. The other is verification of a calculation,
which is focused on evaluating the error of a single calculation. While verification of the
code should be done by the software distributor prior to the release of the CFD software,
verification of the calculation has to be done by the user. It includes performing a grid
convergence study to determine how converged the solution is and how large the errors
are. While experimental solutions should not be used to compare the numerical solution
in the verification process, exact analytical solutions can be used.

The validation process serves to ensure that the simulation matches the physical con-
ditions which are to be studied[31]. In other words, validation is making sure the code
is “solving the right equations”. This is done by comparing the results obtained with the
CFD solver to experimental data.

27

Chapter 2. Theory

To reduce the errors found in the validation process it may be worthwhile to change
some of the model parameters of the simulation. Particularly the turbulence models are
known to have varying accuracy for different flow conditions[43].

28

CHAPTER

THREE

METHOD AND RESULTS

In this chapter, the method and results of the thesis are explained and presented.
First, the method used to design the blade is outlined, then the resulting shape of the blade
is presented, as well as the angles along the blade. Following this, the process for running
the CFD simulations is explained and the results are presented and discussed.

3.1 Geometry

As explained in section 2.15, the RPT will be designed mainly as a pump, but with minor
modifications to make it work at a better efficiency as a turbine as well.

This section will describe the design process of the geometry, beginning with the meri-
dional view of the pump and ending with a three-dimensional digital model which can be
interpreted by a CFD software. This process is the same as the one utilized in the scripts
supplied in appendix G.

3.1.1 Meridional view

The first step in defining the geometry is to find the outline of the meridional view. The
meridional view is a cross-section through the axis of the runner, on which the blade is
projected by means of radial projection, as shown in figure 3.1.

In this case, the main dimensions are already given by the current shape of the runner.
To digitalize the shape of the current runner, Bézier curves [28, page 11] are used together
with three control points through which the curves have to pass. First, the hub is defined.
The three points which it has to pass through are the point at the hub at which the guide
vane’s stem is located, the point where the runner meets stationary part and the point at
the centre of the runner, where the runner meets the draft tube. As the hub does not extend

29

Chapter 3. Method and results

Figure 3.1: Meridional view of the runner with control points, streamlines and blades indicated

entirely down to the draft tube, the last point will not be a part of the actual geometry but
is used to define the initial runner geometry.

When the hub is defined, a number of equidistant points are placed from the hub down
to the shroud at the guide vane. These points will be used to divide the entire passage into
lines which will be assumed to possess streamline1 properties. Thus it is assumed that the
flow follows the lines in the meridional plane. The area at the inlet and outlet of the runner
is known, but how and where it changes is up to the designer. Thus the cross-sectional area
at any streamwise location is found by letting the variation of the area from inlet to outlet
follow a smooth Bèzier curve. The process is explained in greater detail in appendix C.
The last streamline to be found is that of the shroud itself. The curve describing the change
in area is varied until the shroud streamline coincides with its control points. In addition to
giving good control over the cross-sectional area of the runner in the streamwise direction,
the streamlines are later used to shape the blade and to calculate velocity components along
it.

Following this the leading edge and trailing edge2 of the blades are defined in the
meridional view. For the trailing edge the runner hub and shroud are simply connected
close to the outlet. For the leading edge, close to the low-pressure side, the hub is ended at
the same diameter as the current geometry, and the blade ends at the same location.

In this way, the outline of the meridional view is found, as well as the cross-sectional
area of the passage.

1Streamlines are tangential to the velocity everywhere in a flow field, flow cannot pass through a streamline
and the volume flow rate between two streamlines is constant.[7, page 141]

2The leading edge is the edge of the blade which the water encounters first in pumping mode. The Trailing
edge is the edge which the water leaves.

30

Chapter 3. Method and results

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

q*

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h

Head with losses

System curve at
BEP

= 0.66

characteristic without losses

lossless characteristic with slip

Efficiency

Figure 3.2: Predicted Characteristic of the blade

3.1.2 Blade angles at the trailing edge

To find the angles of the blades, the mean diameter of the trailing edge is found. This
diameter is used as a reference for all other values at the outlet. Then the value for β1B is
found by application of the pump characteristic, equation (2.25), and the system charac-
teristic, equation (2.20). After adjusting for the losses between the runner and the lower
resevoir, and adding the assumed head of the booster pump, the required effective head
coefficient is found to be ΨE = 0.66. The values of the system characteristic are found by
empirical data for the gross head and the head losses in the current case and the efficiency
for the pump characteristic is found by use of an equation3 suggested in “Centrifugal
pumps” [14, page 166]. The slip factor is initially guessed to be γ = 0.7.

The value of β1B is to be kept as small as possible to obtain sufficiently steep curves
as discussed in section 2.15. The predicted characteristic is shown in figure 3.2.

While the head curve of the predicted characteristic does have a peak, the values used
in the source material to find the equation for the efficiency include lots of scatter, espe-
cially away from the BEP, so a predicted instability does not necessarily mean that the
actual pump is unstable and vice versa. Because the radius of the trailing edge varies from
hub to shroud, it has to be changed accordingly. This is done by assuming the flow between
the runner and the guide vanes to follow a free vortex. In other words, β1B is chosen by
using the mean radius and the corresponding circumferential velocity as reference for all
other values R and cu along the blade trailing edge:

Rcu = Rmcu,m (3.1)

3ηh/ηh,max = 1− 0.6(q ∗ −0.9)2 − 0.25(q ∗ −0.9)3 where q∗ is the design flow rate.

31

Chapter 3. Method and results

Figure 3.3: The inlet of the pump at design conditions with irrotational inlet flow.

In this way, the flow leaving the pump will be uniform and have the same velocity
components at equal radii, which is important to ensure shock-less entry to guide vanes.

3.1.3 Blade angles at the Leading edge

In order to find the head, equation (2.25) assumes irrotational flow at the inlet. The same
assumption is used when finding the blade angles at the leading edge, β2B . In order to
have shockless entry in pump mode, the relative velocity has to have the same angle as the
runner blades, as shown in figure 3.3, so:

β2B = arctan
(cm,2

u2

)
(3.2)

as the value u2 decreases with decreasing radius and the meridional velocity is assumed
to be constant, the angles increase close to the hub.

3.1.4 Distribution of blade angles along the blade

The blades are shaped by distributing the blade angles smoothly from leading edge to
trailing edge. This is done by once again using a quadratic Bézier curve while monitoring
the predicted shape of ucu values along the streamwise direction. Allowing the ucu curve
to get too steep at low spans4 leads to sharp changes in the blade which would further
reinforce the conditions supporting separation. The final ucu curve is shown in figure 3.4.
The x-axis of the figure describes the dimensionless distance from the pump inlet to the
pump outlet. The highest curve is the curve at the shroud and the lowest is at the hub.

4The span is the distance from the runner hub to a point of the blade. When nondimensionalized, the span is
0 at the hub and 1 at the shroud.

32

Chapter 3. Method and results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Streamwise location

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u
c

u
/(

u
c

u
) m

a
x

Figure 3.4: Distribution of the ucu values along the blade

3.1.5 Checking for cavitation
To do an initial check of whether the blade shape would lead to cavitation, the NPSHR
of the entire blade is compared to the sum of the empirical values for NPSHA and the
assumed head value of the booster pump. The velocities are found by use of velocity
triangles along the blade. The factors used to find NPSHR as in equation (2.26) are a = 2
and b = 0.25. These are the values which give the strictest NPSHR, in order to give a
conservative estimate of the cavitation for the runner. This gives

ΨNPSHR = 0.2085 < 0.2590 = ΨNPSHA (3.3)

Which means that cavitation requirements should be satisfied. However, the real flow is
three dimensional, and the calculated velocity compnents do not accoiunt for complex flow
patterns, so cavitation could still occur.

3.1.6 Blade thickness and 3D
With all of the values for beta known, the three-dimensional shape of the blades can be
found. First, the meridional projection of the blade is rotated around the axis correspond-
ing to the values of β for each streamline, as explained in appendix D.

Then thickness is added to the blade, according to the recommendations given by
Gülich[14, page 347]:

e ∈ [0.016 ·D1, 0.022 ·D1] (3.4)

The value chosen for the blade thickness is 0.019·D1, so in the middle of the two extremes.

33

Chapter 3. Method and results

Figure 3.5: Figure of the blade

The leading edge and trailing edge are then shaped like half ellipses with half lengths
equal to the blade thickness5

To easily export the design to the CFD solver, the geometry is written as .crv files,
one containing the data for the hub, one for the shroud and one for the blade. The finished
blade is shown in figure 3.5

3.2 Discussion of the design method
While distributing the starting points of the streamlines in the design process along the
stem of the guide vane is simple in terms implementation, it does lead to some differences
between the actual shape of the waterway and the shape used in the design. The actual
shape has a flat portion at the hub, so the guide vane can rotate unhindered. This is not
true for the digital model.

Another aspect is the blade loading. While the current design was modelled while
keeping the ucu distribution in mind, and viewing the shape of the blades to ensure no
sudden changes, there is no evidence for this to be the right procedure. The current method
resulted in rather short blades when comparing the geometry to other pumps. For the
pressure to equalize through the runner, longer blades would be beneficial. The blade
length could be increased by using other blade loading methods.

There is also the matter of choosing how the blade angles at the trailing edge behave.
As explained in section 3.1.2, the current design principle uses free vortex theory in the
area after the trailing edge. While this should yield flow with uniform circumferential

5So the ellipse is twice as long as it is thick.

34

Chapter 3. Method and results

velocity downstream of the runner, it leads to part of the blades trailing edge to be larger
than 90°, as the flow needs a larger circumferential component at small radii and the blade
trailing edge has smaller radius at smaller span. While this is not assumed to result in an
unstable characteristic, it can lead to disturbances in the flow, as will be shown in section
3.4.3

3.3 CFD setup
This section will describe the setup for the CFD-simulations, give reasons for why choices
were made and describe the uncertainties correlated to the simulations. It should be men-
tioned that no simulation has fully converged, although many different attempts to reach
convergence have been made.

3.3.1 The computational domain and boundary conditions
The geometry is simplified to only include the geometry of the runner itself and the draft
tube. The spiral casing is excluded as it is not axisymmetric and thus the entire circum-
ference would have to be meshed and simulated. Instead it is modelled by an empirical
model provided by Gülich[14, page 141]. The guide vanes have also been omitted and are
modelled by another empirical model. This is because the flow angle of the exiting flow
has to match the angle of the guide vanes to minimize the losses. While an approximation
of the flow angles can be found by use of velocity triangles and slip factors, the real flow
will likely have deviations from those. Thus every case would have to be simulated mul-
tiple times to find optimal angles for the rotor-stator interaction. With the empirical model,
on the other hand, the guide vane angles can just be input after the outlet velocity angles
are known. Additionally, replacing the guide vanes reduces the numbers of cells needed
for the simulation. The stay vanes are treated similarly as the guide vanes. As no reliable
data for the shape of the stay vanes was available, it was assumed that they were the same
shape as the guide vanes. The models and model assumptions are described in appendix E

The last simplification is that the centre of the draft tube is not included in the fluid
volume. This is again done to reduce the number of grid points in the domain, as the centre
part would either have to have very thin and long “pizza slice shaped” cells in the middle
or its entire cylindrical shape would have to be modelled. Either way, the cell count would
increase significantly in exchange for what is assumed to be a minor change in the head.

To obtain a pump characteristic for the RPT, there are two possible ways in which
the boundary conditions can be defined. Either the head could be defined by imposing
different pressures at the inlet and outlet, to calculate the resulting volume flow rate, or the
volume flow rate could be defined on one side, and a pressure at the other boundary, and
use this to measure the pressure rise over the runner.

There is no guarantee that the characteristic will be stable, so one head value could
result in multiple volume flow rates, which would make it difficult to obtain the right
Q-values. Therefore the second option is chosen. The mass flow rate corresponding to
the required volume flow rate is specified at the outlet. At the inlet, the total pressure is
known from average pressure data from Roskrepp Powerplant but the CFD solver “CFX”
requires the inlet velocity direction to be specified in order to use the total pressure option.

35

Chapter 3. Method and results

With static pressure, this is not a requirement. Therefore the inlet boundary is sat to static
pressure with constant gradient chosen for both the velocity and the turbulence. The static
pressure is found by use of the energy equation (2.5) with an energy correction coefficient
for turbulent flow of α = 1.075.

Simulations are performed for volume flow rates of q∗ = 0.7,q∗ = 1 and q∗ = 1.3 in
order to get an idea of the shape of the characteristic.

The walls at the hub, shroud and blade are specified to be either rotating or stationary
no-slip walls. The exception is the false wall at the centre of the inlet domain. This wall is
chosen to have free slip, i.e. it does not interact with the fluid by creating a boundary layer
or requiring any special form for wall treatment. It only prevents the flow from flowing
through.

CFX encounters problems when faced with flow entering an outlet boundary or exiting
an inlet boundary. The response of the software is to place an artificial wall where the fluid
would flow in the wrong direction. As this does not correspond to the actual physics of
the system, two possibilities exist to avoid it. The first one is to define the boundary con-
ditions as openings, which would allow for flow in both directions. However, the opening
condition does not allow for the flow passing through it to have zero gradient conditions.
In other words, one would have to specify the angle of the flow passing through, which
could influence the interaction between the pump and the incoming or leaving flow. The
second option is to move the inlet and outlet conditions far enough away from the RPT
that any recirculation caused by the runner has evened out prior to reaching the boundary.
The second option requires a larger computation domain, but will most likely yield a more
accurate result, and is therefore chosen.

The inlet is extended downward, following the expansion of the draft tube. While
Gülich states that recirculation can have a visible effect on the flow up to more than 10D1

away from the runner [14, page 200], some trial and error showed that 5D1 was sufficient
for the flow to be uniformly entering the runner.

The outlet is also extended, but as it is extended in the radial direction, the cross-
sectional area increases with increasing distance between the runner and the outlet. As
explained in section 2.11, an increase in area may lead to separation which could amplify
the problems with inflow at the outlet. To avoid separation, the outlet area is kept constant
by decreasing the height corresponding to the increase in radius. The meridional outline
of the geometry is shown in figure 3.6.

3.3.2 The solver settings
Due to the simplifications made to the geometry as explained in the previous section, the
only blade in the geometry is the rotor blade. The frozen rotor model only simulates the
rotor and stator at one relative location, but as the stator now is axisymmetric, the relative
location of the rotor and the stator is the same, independent of the rotational location of
the rotor. This means that the frozen rotor approach should be equally as correct as the
mixing plane approach, but the frozen rotor approach demands less computation than the
mixing plane. Therefore the frozen rotor approach is selected as the steady-state rotor-
stator model.

The buoyancy of the model was turned on in order to include hydrostatic pressure in
the calculation. The gravity was chosen to be −9.82 m s−2 in positive z-direction.

36

Chapter 3. Method and results

Figure 3.6: Meridional view of the entire domain.

The reference pressure was chosen to be 0 Pa, to avoid confusion with pressures in the
results, as all pressures would then be output relative to 0.

As the average air temperature at Roskrepp is approximately 5 ◦C [35] and there are
no temperature measurements available, the water temperature in the model is chosen to
be the same as the air temperature.

The discussion of turbulence models in the theory chapter leads to the conclusion that
the most sensible choice for the current simulation is the k-ω SST model with automatic
wall functions, to deal with the separation. For the automatic wall functions to work
properly, ten cells should be located inside the boundary layer. This is ensured by first
running a simulation with coarse mesh close to the blade, examining the boundary layer
thickness of the initial run and then performing a mesh refinement with enough mesh cells
inside the boundary layer.

The advection models for both the flow and the turbulence are set to high resolution.
The other option would be the first order upwind method which is known to introduce
large numerical diffusion to the case, which wouldn’t be there in a real flow. In other
words, the first-order upwind method smears out the values in the simulation, which is not
wanted[38, page 119].

3.3.3 The grid and the grid refinement process
The grid is generated in an iterative process, as the accuracy of the simulations depend on
the grid, and the grid should be finer where the simulations require more accuracy.

The grid is generated in the semi-automated meshing program ANSYS Turbogrid.
Turbogrid allows for a hexahedral mesh generation around a curved surface like a blade.
Hexahedral structured meshes have the advantage that they require lower memory than
unstructured meshes, as their structure makes it easier to index adjacent cells.

In Turbogrid, the user is given some control over the mesh close to the blade, like the
size of the smallest grid point close to the blade, and the number of cells in the spanwise
direction, as well as general fineness of the grid. The software also enables the generation
of the inlet and outlet region, but the only control over the grid given to the user in these
domains is the streamwise expansion from the grid cells close to the runner and to the

37

Chapter 3. Method and results

(a) More than 10 cells in boundary
(b) Close to a recirculating area, less than 10 cells
in boundary

Figure 3.7: Mesh refinement close to the wall.

boundary condition. Turbogrid does not allow for components with a radius close to or
equal zero, which also played a role in not creating a fluid volume for the centre of the
draft tube, mentioned earlier. The expansion factors for the inlet and the outlet are sat to
1.09 and 1.1, respectively.

As mentioned earlier, the grid close to the boundaries is found iteratively by inspecting
the boundary layer thickness and fitting ten cells inside of it. As the boundary layer became
very thin close to an area of separation, a compromise had to be made between fitting
sufficient grid cells inside the layer and keeping a low cell size and a reasonable mesh
quality.

A section of the mesh with a velocity contour is shown in figure 3.7. The velocity is
at its largest where it is the darkest. Thus ten cells have to fit inside the grid between the
wall and the darkest flow area. This is achieved in figure 3.7a, as the flow is approximately
parallel with the wall, but it is not achieved in figure 3.7b, as this is close to an area of
recirculation. In order to refine the entire mesh, the software offers a mesh refinement
factor. Increasing this increases the fineness of the mesh. The refinement factors of meshes
used for simulations are 1.2, 1.5 and 1.7 figure shows the mesh around the blade for a mesh
refinement factor of 1.2. Table 3.1 shows the mesh refinement factors together with the
number of cells in the inlet, outlet and passage of the blade.

A disadvantage of structured mesh is that it can become very skewed for complex
geometries[4, page 300]. This happens for the outlet mesh of the runner, as shown in figure
3.8, and no amount of mesh refinement has been able to solve the problem. Therefore the
assumption is made that the affected area is far enough downstream of the runner for not
to have significance for the head. Far upstream, the cells close to the wall got very thin
compared to the streamwise length of the cells. While this is usually problematic, it is

38

Chapter 3. Method and results

Cells in:
Mesh refinement factor passage inlet outlet

1.2 1 037 100 409 500 245 700
1.5 4 467 852 873 792 801 837
1.7 6 759 540 1 153 803 1 060 038

Table 3.1: Mesh reefinement factors and corresponding cell counts

Figure 3.8: The significant amount of skewness of the mesh in the outlet domain.

39

Chapter 3. Method and results

0 100 200 300 400 500 600 700 800 900 1000

Number of iterations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

(a) Iterative convergence of the head coefficient for
the case q∗ = 1, Mesh refinement factor=1.7

0 200 400 600 800 1000 1200

Number of iterations

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

RMS

Mass flow rate

U-Momentum

V-Momentum

W-Momentum

(b) The RMS values of the residuals

Figure 3.9: The monitored values of the head factor and the residuals for a simulation with q∗ = 1
and mesh refinement factor of 1.7

less of a problem close to walls, as the flow changes much more rapidly perpendicular to
the wall than tangential to it[2, chapter 6.3.3]. That means that the flow in the streamwise
direction does not have to be as fine as the mesh perpendicular to the flow.

3.4 CFD Results

As mentioned in section 3.3.1, the designed blade was simulated for three different volume
flow rates, q∗ = 0.7, q∗ = 1 and q∗ = 1.3. Complete convergence was never reached for
any of the cases, although multiple attempts have been made to improve the convergence
of the simulations. The attempts which led to the most converged results are discussed in
the remainder of this chapter. The less successful attempts and their results are described
in appendix F.

3.4.1 Iterative convergence of the cases

For a CFD case to be considered converged, all relevant properties should remain approx-
imately constant from one iteration to the other. Low residual values are also typically a
good sign for convergence.

The residuals of the simulated cases tended to decrease for a while, before oscillating
around one level. Similarily the monitored variables tended to converge to a level around
which they then oscillated. These oscillations appear to be due to numerical instability
rather than transient effects, as the frequency of the oscillations changes when the time
scale of the steady-state simulation is changed [9, chapter 1.2.1]. The monitored head
values and RMS residual values of a typical simulation are shown in figures 3.9a and 3.9b.
While the values of the residuals varied slightly from the shown case, none stabilized at
a level lower than 1× 10−4 for the momentum and 1× 10−5 for the RMS values of the
mass flow.

40

Chapter 3. Method and results

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

q
*

0.42

0.44

0.46

0.48

0.5

0.52

0.54

Refinement factor 1.2

Refinement factor 1.5

(a) Effective head with uncertainties indicated

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

q
*

0.65

0.7

0.75

0.8

0.85

0.9

0.95

o

Refinement factor 1.2

Refinement factor 1.5

(b) The average efficiency curves

Figure 3.10: The characteristic and overall efficiency for different mesh refinement factors

In order to produce approximate values regardless of the non-convergence of the mon-
itors, average values as well as maximal deviations are used. The values are found by
visually inspecting each monitor curve, finding the iteration number at which it converges
and using the head values from that point and to the end of the simulation in order to find
average, maximum and minimum values.

The characteristic resulting from the average values of the head monitors is shown in
figure 3.10, together with the overall efficiency.

The equation used to find the efficiency is a combination of equation (2.6) and (2.24):

ηo =
ρgHEQ

Mω
(3.5)

From the characteristic it seems like the curve does not have any instabilities in the
domain q∗ = 0.7 to q∗ = 1.3. It also seems like the overall efficiency is increasing
with increasing volume flow rate. This means that the BEP is at a larger location than the
design point. While the head factor does not reach the required head at any of the simulated
volume flow rates, the efficiency is still quite large. This is because the efficiency used in
the calculation of the turbine geometry assumes that the velocities in the euler equation
are actually reached, and thus has an other input power than the simulation does. In other
words, while the pump produces a lower head than expected, it also requires less power
than expected, and therefore gets a reasonable good efficiency. Another reason for the
good overall efficiency of the pump may be due to errors in the loss models for the guide
vanes and spiral casing. After all, the loss models are based on pumps which are initially
designed as pumps instead of turbines.

3.4.2 Mesh refinement

The mesh is refined once for the off-design conditions, and twice for the design conditions.
The number of grid cells, average head coefficients, max and min values as well as the
change from the baseline case are shown in table 3.2.

41

Chapter 3. Method and results

Frame
change

refinement
factor Mean Ψ

Amplitude
of Ψ

Ψ/Ψref

Frozen 1.2 0.4767 0.0209 1
Rotor 1.5 0.4985 0.0706 1.0457

1.7 0.5036 0.0660 1.1562
Mixing 1.2 0.4447 0.0014 0.9329
plane 1.7 0.55115 0.0094 1.1562

Table 3.2: Results with mesh refinement

It is clear from the values that the simulation is mesh dependent. Firstly the average
values of each simulation change significantly with an increasingly fine mesh. Secondly,
the difference between the max and min values generally increases with increasing mesh
refinement. The cases also tend to be more converged when mixing plane is used as stage
interface, in stead of frozen rotor because the large residual values originate from the
leading and trailing edge of the blade which is close to the rotor-stator interface. This
will be shown in section 3.4.8. When the flow is averaged at the interfaces, the conditions
leading to oscillations are smeared out as well, which leads to smaller variations of the
monitors. While the mixing plane is a much more promising approach than the frozen
rotor approach, it diverged when applied to the two other volume flow rates.

As the simulations do not converge, are mesh dependent and there is no actual geo-
metry to verify the results against, all results obtained are unreliable and most likely wrong.
With that in mind, the results will still be examined and discussed in order to make sug-
gestions for both the simulations and the blade design for further work with the project.
The next chapters will focus on inspecting the flow conditions through the runner and on
discussing the observations.

3.4.3 Separation
The figures of 3.11 and 3.12 show the streamlines along the blade at constant spans. Unless
otherwise specified, all of the figures in the rest of the chapter are for a volume flow rate
of q∗ = 1 and a mesh refinement factor of 1.7 (The finest mesh which was simulated).
As expected the flow separates on the suction side of the blade. This can be seen clearly
in figure 3.12. The separation leads to large slip angles and cavitating flow, as will be
discussed in the next two chapters. There is one other interesting property to be seen
in the streamlines. The flow at low span, i.e. close to the runner hub, has a stagnation
point close to the trailing edge of the blade’s pressure side. This appears because the
blade angle at the outlet is quite large. This sharp curvature means that the flow does not
get deflected smoothly enough, and meets the rear end of the blade perpendicularly. The
effect is enhanced by the separation taking place on the suction side, which deflects the
flow towards the pressure side. This stagnation point makes the blade behave more like a
bluff body6. Bluff bodies can cause vortex shedding7, which could explain the oscillations
in the simulations.

6Bluff bodies are objects which are not streamlined and thus do not create lift, but rather obstruct the flow
7The body creates circulations in the flow, which are transported downstream.

42

Chapter 3. Method and results

Figure 3.11: Span=0.1

Figure 3.12: Span=0.5

43

Chapter 3. Method and results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Spanwise location

0

20

40

60

80

100

120

A
n

g
le

 [
o
]

'

1B

Figure 3.13: The blade outlet angles and the exiting flow angles for the case q∗ = 1, Mesh refine-
ment factor=1.2.

3.4.4 Slip

The amount of slip at the runner outlet is larger than expected, and the fluid is flowing back
in to the runner at parts of the outlet. The difference between the flow angle β′ and the
blade angle β1B at the trailing edge is illustrated in figure 3.13. These angles are calculated
by taking circumferentially averaged values of the angles at the trailing edge. Therefore
all of the angles are positive, i.e. leaving the runner although it is obvious from the figures
of 3.12 that the flow is reentering the runner at the outlet at some places, which should
result in local negative angles. While figures 3.11, 3.12 and 3.13 are for the case with a
mesh refinement factor of 1.7 and q∗ = 1, average slip factors along the runner trailing
edge of all frozen-rotor cases are shown in table 3.3.

Notice that the table again shows a significant lack of convergence, as the slip factors
vary much both with changing q∗ and changing refinement.

As explained in section 2.8, the slip factor shows the difference between the theoretical
and actual circumferential velocity. The fact that most slip factors are smaller than 0 means
that this difference is larger than the circumferential velocity of the runner.

The reason why the slip values get so large is that the pressure does not get any oppor-
tunity to equalize across the passage, as shown in section 3.4.6, as well as the separation
which deflects the flow. Thus the outlet velocity angles are reduced and, consequently, so
is the head.

44

Chapter 3. Method and results

q∗ Refinement factor Average γ
0.7 1.2 -0.1303
0.7 1.5 0.2779
1 1.2 -0.418
1 1.5 -0.0221
1 1.7 -0.449

1.3 1.2 0.3487
1.3 1.5 0.347

Table 3.3: Slip factor for different cases

(a) Cavitation on trailing edge (b) Cavitation on Suction side

Figure 3.14: Cavitation on the blade at q∗ = 1,

45

Chapter 3. Method and results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Streamwise location

0

0.2

0.4

0.6

0.8

1

1.2

1.4
u

c
u
/(

u
c

u
) m

a
x

CFD analysis

Theoretical prediction

(a) ucu values at 20% span

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Streamwise location

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

u
c

u
/(

u
c

u
) m

a
x

CFD analysis

Theoretical prediction

(b) ucu values at 80% span

Figure 3.15: The static pressure distribution along the blade surface

3.4.5 Cavitation
The large slip factor has another disadvantage, namely an area at the trailing edge of the
blade where the pressure gradient from the suction side to the pressure side creates very
high velocities, accompanied by a drop in static pressure. The static pressure drops below
the vaporization pressure of water and causes cavitation. The size of the cavitation bubble
for q∗ = 1 is shown in figures 3.14a and 3.14b. The amount of cavitation increases
with increasing volume flow rate. This is as expected as the static pressure decreases
with increasing flow velocity. Cavitation bubbles also appear on the suction side of the
blade. As expected, the amount of cavitation increases with increasing volume flow rate.
The solver shows that the absolute pressure at this location drops below 0 Pa, which is
physically impossible. Nonphysical pressure is a major moment of uncertainty which
is purely numeric. It occurs because the solver used expects a single fluid, without phase
change. This nonphysical behaviour could be a contributing factor for why no convergence
is achieved. In order to get rid of the nonphysical pressure values, different solver settings
would have to be used. This has not been attempted, as other aspects of the flow are
prioritized, and the computational resources available are limited.

3.4.6 Blade loading
Figures 3.15a and 3.15b show the simulated values of the ucu curves at the pressure and
suction side of the blades at constant span, together with the theoretical values from the
geometry design. Both series are nondimensionalized against the largest predicted ucu-
value. While the average of the CFD results follows the general shape of the theoretical
values, the actual maximum and minimum values deviate significantly the higher the span
gets, and the flatter the curve gets at the outlet. In other words, the more the theoretical
results resemble the s-shaped curve discussed in chapter 2.15, the more the CFD results
deviate from these values. The deviation also grows significantly close to the trailing edge,
due to the large cu values appearing there because of the slip.

The blade loading curves, shown in figure 3.16, show the static pressure on the pressure

46

Chapter 3. Method and results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Streamwise distance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Blade loading curve at 20% span

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Streamwise distance

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b) Blade loading curve at 80% span

Figure 3.16: The static pressure distribution along the blade surface

side and the suction side of the blade. It can be seen that the pressure difference close to
the trailing edge is large for all cases before it encounters a sudden drop for both leading
edge and trailing edge. The drop occurs due to slip, as explained in section 2.8. The
static pressure difference which has built up over the streamwise direction of the blade
equalizes, and the static pressure is transformed to velocity in direction of the suction side.
While a large pressure difference between the two sides is positive, as it creates more
force and consequently torque on the blade, it should be reduced towards the trailing edge
to avoid the slip. Another thing which can be seen on the blade loading curves is that
the pressure on the pressure side decreases shortly after the leading edge, simultaneously
as the pressure on the suction side increases. This is due to a slight incidence of the on
the blade which creates a stagnation point with increased pressure on the suction side and
increases the velocity on the pressure side. This is also supported by the streamlines in
figure 3.12. The stagnation point being on the suction side means that the flow incoming
flow velocity is larger than expected, which likely is due to the center of the inlet not being
modelled. This leads to a smaller cross sectional area, which increases the flow velocity.

3.4.7 Recirculation

Figure 3.18 shows that there is flow exiting the runner at the leading edge, close to the
shroud. This is recirculation as described in chapter 2.12. The location of the recirculation
close to the shroud is indicated by the black area in figure 3.17. Although recirculation is
perfectly normal for runners operating at lower volume flow rates than the design flow rate,
recirculation at q∗ = 1 is unexpected. This may be a sign that the pump is ill designed,
and that the actual best efficiency point is at a higher q than it was designed for. This is
supported by the efficiency values of figure 3.10b. Otherwise the amount of recirculation
behaves as expected as it increases with decreasing volume flow rate and decreases with
increasing flow rate, as illustrated in figure 3.19

47

Chapter 3. Method and results

Figure 3.17: The location at the inlet shroud where recirculation occurred.

Figure 3.18: Separation at q∗ = 1

48

Chapter 3. Method and results

Figure 3.19: Separation at q∗ = 0.7

3.4.8 Regions with large residual values
To find out which areas cause the residual values to stay large, the residual values of the
solution is examined. The outlet has remarkable small maximum residual values, com-
pared to the rest of the domain. The highest residuals for both the outlet and the passage
are found close to the hub, immediately downstream of the trailing edge as seen in figure
3.20a. This supports the hypothesis that the stagnation point close to the trailing edge of
the blade creates unsteadiness in the flow. The highest residuals in the inlet domain are
present at the location where the incoming flow meets the recirculating flow as shown in
figure 3.20b.

3.4.9 Transient simulations
In order to test whether the simulation is steady or time dependent, a transient simulation
is run. The main settings of this simulation are the same as the settings of the steady state
simulations. The main difference is that the frame change model has is sat to transient
rotor-stator interface. The results of the frozen rotor case are used as initial conditions
for the transient simulation. The solution is found to be stable for a maximum Courant
number of approximately 5. As the case is only meant to be indicative and due to limited
resources, convergence of the simulation is sufficient and accuracy is of less concern for
this simulation. The results show a large amount of fluctuations in the flow at the runner
outlet, but whether these are due to actual transient behaviour or due to initial transient
effects is yet uncertain. The stagnation point at low span also fluctuates back and forth
along the streamwise location of the blade, but again, this could also be due to initial
disturbances of the flow.

49

Chapter 3. Method and results

(a) The largest residual values at the trailing edge

(b) The areas with the largest residual values at the Leading edge.

Figure 3.20: The largest residual values in the inlet and the passage.

50

CHAPTER

FOUR

CONCLUSION

Although complete convergence was never reached for the simulations, there is much evid-
ence that the blade design is far from optimal. The recirculation at what was supposed to
be the BEP, combined with a strictly increasing efficiency curve hints at the actual BEP
being at a larger volume flow rate than q∗ = 1. The slip is perhaps the most significant
deficit of the design, as it both reduces the delivered head and induces cavitation on the
pressure side of the RPT.

While the simulation ideally should converge before drawing conclusion based on it,
the unfavourable design of the turbine is likely to be the reason for the lack of convergence.
Upon examining the residual values of the simulation, they are largest at the shroud of the
inlet, where the area of recirculation appears and at the hub, downstream of the trailing
edge, where the stagnation point may induce a fluctuating flow.

Therefore a runner design which does not result in recirculation at the inlet, and with a
smoother blade shape which does not obstruct the flow close to the outlet will most likely
result in a better blade. A runner with longer blades will likely produce better convergence,
as well as give better blade performance.

The current design seems to exhibit transient behaviour, as well as cavitation. In order
to get a reasonable simulation for it, a transient multiphase simulation is required.

4.1 Further work
Future projects should aim to create a more favourable geometry than the current one. In
order to do this, the total length of the blade should be increased, so the pressure has the
opportunity to equalize prior to reaching the outlet. The sharpness of the blades close to the
hub should also be reduced further, to avoid transient behaviour. Looking into different
blade loading methods than the ucu distribution might also be useful, as the results of
section 3.4.6 indicate that specification of the ucu distribution does not yield the expected
results. If convergence is not reached for a blade design, it is recommended to examine
the semi-converged solution and make improvements to the blade based on the results in
order to make a blade which facilitates good convergence. The philosophy should be that

51

a blade for which convergence can be reached will have more favourable flow conditions
for a runner.

Future geometries should also be tested together with the guide vanes and spiral casing,
to evaluate their effects on the performance. The entire geometry of the draft tube should
also be included in the simulations. To do this, it is advisable to create the mesh for the
non-blade parts in other meshing software than Turbogrid, as Turbogrid does not allow for
geometries with zero radius and struggles with skewed grid cells far away from the blades.

If a geometry with sufficient head and sufficiently converged simulations is found, it
should be tested as a turbine as well, to ensure that the runner has a turbine-efficiency good
enough for it to be economically feasible to retrofit into a power plant.

The design should also be simulated together with the booster pump to ensure that
there are no pressure pulsations or similar effects, which could harm the power plant.

Finally, a physical model of the final geometry of the RPT and the booster pump should
be made and tested in a test rig, in order to validate the CFD simulations.

52

BIBLIOGRAPHY

[1] Jochen Aberle et al. Strategic Research Agenda of the EERA Joint Programme Hy-
dropower. URL: https://www.eera-set.eu/component/attachments/
attachments.html?task=attachment&id=264 (visited on 15/05/2020).

[2] ANSYS. CFX Reference guide. (Visited on 18/06/2020).

[3] Ansys CFX-Solver Theory Guide. 14.0. Southpointe, 275 Technology Drive, Can-
onsburg, PA 15317: Ansys, Inc., Nov. 2011.

[4] Marshall Bern and Paul Plassmann. “Structured two-dimensional meshes”. In: Hand-
book of Computational Geometry. ISBN: 978-0-444-82537-7.

[5] Hermod Brekke. Pumper og Turbiner. NTNU, 2003.

[6] Yunus A. Çengel and John M. Cimbala. Fluid mechanics: fundamentals and applic-
ations. McGraw-Hill series in mechanical engineering. Boston: McGraw-HillHigher
Education, 2006. 956 pp. ISBN: 978-0-07-247236-3.

[7] Yunus A. Çengel and John M. Cimbala. Fluid Mechanics: fundamentals and ap-
plications, Third edition in SI units. McGrawhill, 2014.

[8] CFX-Solver manual. (Visited on 22/05/2020).

[9] CFX-solver modeling guide. Ansys, Inc.

[10] John D’Errico. distance2curve. Library Catalog: se.mathworks.com. URL: https:
//se.mathworks.com/matlabcentral/fileexchange/34869-
distance2curve (visited on 22/06/2020).

[11] John D’Errico. interparc.m. 13th Jan. 2020. URL: https://www.mathworks.
com/matlabcentral/fileexchange/34874-interparc (visited on
13/01/2020).

[12] James R. Dawson, Jason R. Hearst and Jonas Moeck. Aerodynamics TEP4160,
course notes. 23rd Mar. 2019.

[13] Finansdepartementet. NOU 2019: 16. Regjeringen.no. Library Catalog: www.regjeringen.no
Publisher: regjeringen.no. 30th Sept. 2019. URL: https://www.regjeringen.
no/no/dokumenter/nou-2019-16/id2670343/ (visited on 28/04/2020).

[14] Johan Friedrich Gülich. Centrifugal Pumps. Second edition. Springer, 2010. ISBN:
978-3-642-12823-3.

53

https://www.eera-set.eu/component/attachments/attachments.html?task=attachment&id=264
https://www.eera-set.eu/component/attachments/attachments.html?task=attachment&id=264
https://se.mathworks.com/matlabcentral/fileexchange/34869-distance2curve
https://se.mathworks.com/matlabcentral/fileexchange/34869-distance2curve
https://se.mathworks.com/matlabcentral/fileexchange/34869-distance2curve
https://www.mathworks.com/matlabcentral/fileexchange/34874-interparc
https://www.mathworks.com/matlabcentral/fileexchange/34874-interparc
https://www.regjeringen.no/no/dokumenter/nou-2019-16/id2670343/
https://www.regjeringen.no/no/dokumenter/nou-2019-16/id2670343/

[15] Ioannis Hadjipaschalis, Andreas Poullikkas and Venizelos Efthimiou. “Overview of
current and future energy storage technologies for electric power applications”. In:
Renewable and Sustainable Energy Reviews 13.6 (1st Aug. 2009), pp. 1513–1522.
ISSN: 1364-0321. DOI: 10.1016/j.rser.2008.09.028. URL: http://
www.sciencedirect.com/science/article/pii/S1364032108001664
(visited on 24/02/2020).

[16] Ånund Killingtveit. “Norges ressurser/muligheter, magasiner, effekt, pumpekraft”.
Norge som Europas grønne batteri – visjoner og realiteter. Holberg Terrasse kurs- og
konferansesenter Stensberggaten 27, Oslo, 16th Nov. 2016. URL: https://www.
cedren.no/Portals/Cedren/3-Norges%20ressursermuligheter%
2C%20magasiner%2C%20pumpekraft%20etc-Seminar%20gront%
20batteri-16112016-Anund%20Killingtveit-NTNU.pdf (visited
on 15/05/2020).

[17] Sira-Kvina Kraftselskap. Roskrepp Kraftverk. URL: https://www.sirakvina.
no/roskrepp- kraftverk/roskrepp- kraftverk- article257-
921.html.

[18] Rune Larsen. “Pre-rotation of inlet flow for a reversible pump turbine in pump
mode”. Master’s Thesis. NTNU, 2019.

[19] Leif Lia and Ånund Killingtveit. Småkraftforeninga. Library Catalog: www.smakraftforeninga.no.
URL: https://www.smakraftforeninga.no/2020/02/05/stort-
potensial-for-ny-vannkraft/ (visited on 23/06/2020).

[20] Z Liu and D L Hill. “Issues Surrounding Multiple Frames of Reference Models for
Turbo Compressor Applications”. In: (2000), p. 11.

[21] F. Menter. “Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows”.
In: 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. eprint: https://arc.aiaa.org/doi/pdf/10.2514/6.1993-
2906. American Institute of Aeronautics and Astronautics. DOI: 10.2514/6.
1993-2906. URL: https://arc.aiaa.org/doi/abs/10.2514/6.
1993-2906 (visited on 01/06/2020).

[22] Bijan Mohammadi and Olivier Pironneau. “On wall laws in CFD”. In: Fourteenth
International Conference on Numerical Methods in Fluid Dynamics. Ed. by Suresh
M. Deshpande, Shivaraj S. Desai and Roddam Narasimha. Lecture Notes in Physics.
Berlin, Heidelberg: Springer, 1995, pp. 31–38. ISBN: 978-3-540-49228-3. DOI: 10.
1007/3-540-59280-6_97.

[23] Michael J Moran et al. Principles of engineering thermodynamics: SI version. OCLC:
1039264916. Hoboken, N.J.: John Wiley & sons, 2015. ISBN: 978-1-118-96088-2.

[24] Lakshmi Narasimhan. Bezier.m. 13th Jan. 2020. URL: https://www.mathworks.
com/matlabcentral/fileexchange/33828-generalised-bezier-
curve-matlab-code (visited on 13/01/2020).

[25] NVE Vannkraft utbygd og ikke utbygd. URL: https://gis3.nve.no/link/
?link=vannkraft (visited on 26/02/2020).

[26] Om magasinstatistikken - NVE. Library Catalog: www.nve.no. URL: https://
www.nve.no/energiforsyning/energiforsyningsdata/om-magasinstatistikken/
(visited on 15/05/2020).

54

https://doi.org/10.1016/j.rser.2008.09.028
http://www.sciencedirect.com/science/article/pii/S1364032108001664
http://www.sciencedirect.com/science/article/pii/S1364032108001664
https://www.cedren.no/Portals/Cedren/3-Norges%20ressursermuligheter%2C%20magasiner%2C%20pumpekraft%20etc-Seminar%20gront%20batteri-16112016-Anund%20Killingtveit-NTNU.pdf
https://www.cedren.no/Portals/Cedren/3-Norges%20ressursermuligheter%2C%20magasiner%2C%20pumpekraft%20etc-Seminar%20gront%20batteri-16112016-Anund%20Killingtveit-NTNU.pdf
https://www.cedren.no/Portals/Cedren/3-Norges%20ressursermuligheter%2C%20magasiner%2C%20pumpekraft%20etc-Seminar%20gront%20batteri-16112016-Anund%20Killingtveit-NTNU.pdf
https://www.cedren.no/Portals/Cedren/3-Norges%20ressursermuligheter%2C%20magasiner%2C%20pumpekraft%20etc-Seminar%20gront%20batteri-16112016-Anund%20Killingtveit-NTNU.pdf
https://www.sirakvina.no/roskrepp-kraftverk/roskrepp-kraftverk-article257-921.html
https://www.sirakvina.no/roskrepp-kraftverk/roskrepp-kraftverk-article257-921.html
https://www.sirakvina.no/roskrepp-kraftverk/roskrepp-kraftverk-article257-921.html
https://www.smakraftforeninga.no/2020/02/05/stort-potensial-for-ny-vannkraft/
https://www.smakraftforeninga.no/2020/02/05/stort-potensial-for-ny-vannkraft/
https://doi.org/10.2514/6.1993-2906
https://doi.org/10.2514/6.1993-2906
https://arc.aiaa.org/doi/abs/10.2514/6.1993-2906
https://arc.aiaa.org/doi/abs/10.2514/6.1993-2906
https://doi.org/10.1007/3-540-59280-6_97
https://doi.org/10.1007/3-540-59280-6_97
https://www.mathworks.com/matlabcentral/fileexchange/33828-generalised-bezier-curve-matlab-code
https://www.mathworks.com/matlabcentral/fileexchange/33828-generalised-bezier-curve-matlab-code
https://www.mathworks.com/matlabcentral/fileexchange/33828-generalised-bezier-curve-matlab-code
https://gis3.nve.no/link/?link=vannkraft
https://gis3.nve.no/link/?link=vannkraft
https://www.nve.no/energiforsyning/energiforsyningsdata/om-magasinstatistikken/
https://www.nve.no/energiforsyning/energiforsyningsdata/om-magasinstatistikken/

[27] Fernando Perán and Ademir Suárez. Trasformation of conventional hydro into pumped-
storage: an new future business line for the electricity sector. Published: Presented
at Hydro 2019. 2019.

[28] Hartmut Prautzsch, Wolfgang Boehm and Marco Paluszny. Bézier and B-spline
techniques. OCLC: 1120902461. 2002. ISBN: 978-3-662-04919-8.

[29] Renewable energy generation. Our World in Data. URL: https://ourworldindata.
org/grapher/modern-renewable-energy-consumption (visited on
26/02/2020).

[30] S.L.Dixon and C.A.Hall. Fluid Mechanics and Thermodynamics of Turbomachinery.
Butterworth-Heinemann, 2014.

[31] John W. Slater. Validation Assessment. URL: https://www.grc.nasa.gov/
WWW/wind/valid/tutorial/valassess.html (visited on 05/05/2020).

[32] John W. Slater. Verification Assessment. URL: https://www.grc.nasa.gov/
WWW/wind/valid/tutorial/verassess.html (visited on 05/05/2020).

[33] Alexey J. Stepanoff. Centrifugal and axial flow pumps. Johnn Wiley & Sons, inc.,
1948.

[34] Hendrik Tennekes, John Leask Lumley et al. A first course in turbulence. MIT press,
1972.

[35] Været for Roskreppfjord. yr.no. Library Catalog: www.yr.no. URL: https://
www.yr.no/nb/historikk/graf/1- 2605761/Norge/Agder/
Sirdal/Roskreppfjord?q=siste- 13- m%C3%A5neder (visited on
16/06/2020).

[36] John Valstad. “Simulation of a booster pump and a reversible pump turbine in
series”. Master’s Thesis. NTNU, 2018.

[37] Andrés Vargas-Serrano et al. “Economic benefit analysis of retrofitting a fixed-
speed pumped storage hydropower plant with an adjustable-speed machine”. In:
2017 IEEE Manchester PowerTech. 2017 IEEE Manchester PowerTech. ISSN: null.
June 2017, pp. 1–6. DOI: 10.1109/PTC.2017.7981008.

[38] H. K. Versteeg and W. Malalasekera. An introduction to Computational Fluid Dy-
namics, The Finite Volume Method. 1st. Essex CM0 2JE, England: Longman Sci-
entific & Technical, 1995. ISBN: 0-582-21884-5.

[39] Zhao Wei et al. “EP 8407High Pressure Hydraulic Machinery Autumn 2009”.

[40] What is the Difference Between Centrifugal & Rotodynamic Pumps. Pumps and
Systems Magazine. Library Catalog: www.pumpsandsystems.com. 27th Feb. 2019.
URL: https://www.pumpsandsystems.com/what- difference-
between-centrifugal-rotodynamic-pumps (visited on 14/06/2020).

[41] Frank M White and Isla Corfield. Viscous fluid flow. Vol. 3. McGraw-Hill New York,
2006.

55

https://ourworldindata.org/grapher/modern-renewable-energy-consumption
https://ourworldindata.org/grapher/modern-renewable-energy-consumption
https://www.grc.nasa.gov/WWW/wind/valid/tutorial/valassess.html
https://www.grc.nasa.gov/WWW/wind/valid/tutorial/valassess.html
https://www.grc.nasa.gov/WWW/wind/valid/tutorial/verassess.html
https://www.grc.nasa.gov/WWW/wind/valid/tutorial/verassess.html
https://www.yr.no/nb/historikk/graf/1-2605761/Norge/Agder/Sirdal/Roskreppfjord?q=siste-13-m%C3%A5neder
https://www.yr.no/nb/historikk/graf/1-2605761/Norge/Agder/Sirdal/Roskreppfjord?q=siste-13-m%C3%A5neder
https://www.yr.no/nb/historikk/graf/1-2605761/Norge/Agder/Sirdal/Roskreppfjord?q=siste-13-m%C3%A5neder
https://doi.org/10.1109/PTC.2017.7981008
https://www.pumpsandsystems.com/what-difference-between-centrifugal-rotodynamic-pumps
https://www.pumpsandsystems.com/what-difference-between-centrifugal-rotodynamic-pumps

[42] F.D. Witherden, A. Jameson and D.W. Zingg. “The Design of Steady State Schemes
for Computational Aerodynamics”. In: Handbook of Numerical Analysis. Vol. 18.
Elsevier, 2017, pp. 303–349. ISBN: 978-0-444-63910-3. DOI: 10.1016/bs.
hna.2016.11.006. URL: https://linkinghub.elsevier.com/
retrieve/pii/S1570865916300618 (visited on 21/06/2020).

[43] C.P. Yorke and Gary.N. Coleman. “Assessment of common turbulence models for
an idealised adverse pressure gradient flow”. In: European Journal of Mechanics
- B/Fluids 23.2 (Apr. 2004). Library Catalog: reader.elsevier.com, pp. 319–337.
DOI: 10.1016/j.euromechflu.2003.07.002. URL: https://www.
sciencedirect.com/science/article/pii/S0997754603001195#
! (visited on 05/05/2020).

56

https://doi.org/10.1016/bs.hna.2016.11.006
https://doi.org/10.1016/bs.hna.2016.11.006
https://linkinghub.elsevier.com/retrieve/pii/S1570865916300618
https://linkinghub.elsevier.com/retrieve/pii/S1570865916300618
https://doi.org/10.1016/j.euromechflu.2003.07.002
https://www.sciencedirect.com/science/article/pii/S0997754603001195#!
https://www.sciencedirect.com/science/article/pii/S0997754603001195#!
https://www.sciencedirect.com/science/article/pii/S0997754603001195#!

Appendices

57

APPENDIX

A

DESCRIPTION OF THE MASTERS WORK

59

Address Location Tel. +47 73 59 38 60 Page 1 of 2

N-7034 Trondheim K. Hejes vei 1b Fax +47 73 59 35 80

Norway Org. no. NO 974 767 880

Norwegian University of Faculty of Engineering
Science and Technology Department of Energy and Process Engineering

EPT-M-2020

MASTER WORK

for

student Jan-Karl Lasse Escher

Spring 2020

“Design of a reversible pump turbine”

“Design av reversible pumpeturbin”

Background

Norway has 50 % of the European hydro reservoir energy storage, and many of these sites are highly

suitable for retrofitting of pumped-storage capabilities. To be able to reuse existing power plants by

retrofitting with Reversible Pump Turbines (RPTs), the problem of cavitation in pumping mode must

be solved. Assuming this to be solved by an axial booster pump (on-going parallel work), the

challenge of designing an RPT suited for the operation within limitations on dimensions imposed by

the existing turbine unit existing must be resolved

Objective

The candidate shall develop a new RPT design to fit in the existing turbine arrangement in Roskrepp

hydropower plant for the relevant operational conditions at Roskrepp.

The following tasks are to be considered:

1. Literature review of reversible pump-turbines and design philosophy

2. Decide on a philosophy for designing the RPT and develop a numerical model of this

3. Perform numerical investigations using CFD on the numerical model obtained with the

objective of estimating the performance characteristics.

4. If the student will go to Nepal for an excursion, earlier and further work will be presented as a

publication and presented at the conference; 10th International symposium on Current

Research in Hydropower Technologies (CRHT-IX) at Kathmandu University

-- “ --

 Page 2 of 2

The master work comprises 30 ECTS credits.

The work shall be edited as a scientific report, including a table of contents, a summary in Norwegian,

conclusion, an index of literature etc. When writing the report, the candidate must emphasise a clearly

arranged and well-written text. To facilitate the reading of the report, it is important that references for

corresponding text, tables and figures are clearly stated both places.

By the evaluation of the work the following will be greatly emphasised: The results should be

thoroughly treated, presented in clearly arranged tables and/or graphics and discussed in detail.

The candidate is responsible for keeping contact with the subject teacher and teaching supervisors.

Risk assessment of the candidate's work shall be carried out according to the department's procedures.

The risk assessment must be documented and included as part of the final report. Events related to the

candidate's work adversely affecting the health, safety or security, must be documented and included

as part of the final report. If the documentation on risk assessment represents a large number of pages,

the full version is to be submitted electronically to the supervisor and an excerpt is included in the

report.

According to “Utfyllende regler til studieforskriften for teknologistudiet/sivilingeniørstudiet ved

NTNU” § 20, the Department of Energy and Process Engineering reserves all rights to use the results

and data for lectures, research and future publications.

Submission deadline: To be found in Inspera.

 Work to be done in lab (Water power lab, Fluids engineering lab, Thermal engineering lab)

 Field work

Department for Energy and Process Engineering 4/1 2020

Pål-Tore Storli

Supervisor

Co-Supervisor(s): Helene Njølstad Dagsvik

Appendix A

62

APPENDIX

B

PAPER FOR CRHT-X

The following is the work handed in for the 10th annual symposium on Current Research
in Hydropower Technologies, CRHT-X.

63

Design of a reversible pump turbine

J K L Escher, H N Dagsvik, P T S Storli

Waterpower laboratory, Alfred Getz’ vei 4, 7491 Trondheim, Norway

E-mail: jkescher@stud.ntnu.no, helene.n.dagsvik@ntnu.no, pal-tore.storli@ntnu.no

Abstract. The design of reversible pump turbines for the purpose of retrofitting existing
hydropowerplants has been investigated. A preliminary design for further analysis with
computational fluid dynamics has been made. As this is current work, the project has not
yet been finished, and the author does not yet know if the resulting pump turbine has good
efficiency or not.

1. Introduction
In recent years, Europe as a whole has started to rely more and more heavily on renewable
energy sources like wind and solar power, as shown in figure 1. The drawback with these sources

Figure 1. Amount of renewable energy sources in Europe, collected from [1]

is that they are directly influenced by the weather, and thus cannot be used on demand. This
necessitates good techniques for energy storage. The most economical technology for storing
energy is the application of pumped storage technology[2], where excess energy is taken from
the grid and used to pump water to a higher reservoir. When there is a demand for more energy

in the grid the same water is run through a turbine to regenerate the energy. However, to be
able to use pumped storage technology, one needs a reservoir pair and a height difference.

Norway has very good conditions for the application of pumped storage technologies. The
country already has approximately 50% of Europes hydropower reserves and has utilized water
as its primary energy source for a long time, as shown in figure 2. Therefore most of the

Figure 2. Amount of renewable energy sources in Norway, collected from [1]

available hydropower resources are either already utilized as regular hydropower plants or are
protected due to environmental concerns. There are only 9 powerplants with pumping capability
in Norway[3]. Therefore there is room for more pumped storage powerplants in the Norwegian
grid.

One idea to make new pumped storage hydropower plants at low costs is to reuse existing
powerplants and retrofit them with reversible pump turbines (RPTs) which are to function both
as pumps and as turbines.

There are some problems connected to this approach. One is that pumps need larger
submergence than turbines to avoid the fluid from evaporating due to low-pressure zones, so-
called cavitation. A possible solution for this may be to insert a booster pump downstream of
the RPT. Booster pump technology is currently under development in a project parallel to this
one.

The other problem is that a Francis turbine requires a lower radius to operate at best point
efficiency (BEP) for a given upstream water height than a radial pump requires to pump water up
to the same height, with the same volumetric flow rate. Additionally, there is a pressure height
difference created by the friction in the penstock which reduces the pressure height experienced
by a turbine and increases the pressure height a pump has to deliver.

In this paper, Roskrepp powerplant, owned by the Sira-Kvina Power company will be used as
a baseline for the design of an RPT for retrofitting. The turbine will be designed for H = 59 m.
This is not the maximum difference between the reservoirs but assumed to be a reasonable
height for the pump to operate in. While the maximum volumetric flow rate of the turbine is
Q = 70 m3 s−1, the actual design flow rate is Q = 50 m3 s−1. The current rotational velocity is
250 rpm.

Figure 3. Projection of the R-Z plane in a radial turbomachine

2. Theory and methodology
In the remainder of this text, the subscripts related to location in the RPT will be as shown in
figure 3. Inlet and outlet will be the inlet and outlet in pump mode, so 2 and 1, respectively.

2.1. Fundamental idea
In the context of turbomachines, pressure is usually called head and is given in meters of water
column [mWc]. The lifting head of a pump is given by the Euler equation for turbomachines:

Hth =
u1cu1 − u2cu2

g
[mWc] (1)

where g is the gravitational acceleration, Hth is the theoretical possible pumping head, u is
the peripheral velocity of the runner and cu is the peripheral velocity of the fluid[4]. A similar
equation can be used to find the power generated by a Francis turbine.

The main idea when designing an RPT is as follows: A radial pump can function as a Francis
turbine when put in reverse. While the power production of a pump put in reverse will be

sub-optimal, it will still produce some power. A Francis turbine will also work as a pump if it is
reversed, but there is nothing to guarantee that it will produce the required amount of head. For
this reason, an RPT will always be designed as a pump, to ensure that it behaves satisfactory
both in pump and turbine mode.

Because the main dimensions of the RPT are predefined by the current arrangement, these
cannot be freely designed and optimised as one would do if one were to design an entirely new
powerplant. If the booster pump works very well, it may make up for the lack of head on behalf
of the RPT, but as it is still under development, the booster pump performance is unknown.

The other possibility to increase the head of the pump is the internal design of the runner,
more precisely the design of the runner vanes.

By application of trigonometry to the velocity-diagram at the outlet and the assumption of
inlet flow without swirl, equation (1) may be rewritten to

Hth =
u21
g
− u1cm1

g tanβ1
[mWc] (2)

where cm is the meridional velocity component of the flow and β1 is the angle of the blade
relative to the radial direction.

A graph relating the volumetric flow rate and the head of a pump is commonly called a
pump characteristic. as seen in equation (2) is particularly important for the shape of the
characteristic, as it is related to the slope and the lifting height. The inlet angles also play an
important role, to make the swirl-free inlet flow shockless.

The peripheral outlet velocity is also influenced by the phenomenon of slip, which is deflection
of the outgoing flow due to pressure differences between the suction side and the pressure side of
the blade, as illustrated in figure 4. Slip is only a relevant phenomenon in pump mode. During
turbine operation, all pressure differences between the pressure side and the suction side should
be transferred to the runner in the form of energy, and so the outgoing flow should have uniform
pressure distribution. Another aspect influencing the pumping head is the hydraulic efficiency,

Figure 4. illustration of slip at the outlet of a pump, illustrated by use of velocity diagrams

ηh. Hydraulic efficiency is the ratio of the energy which may be utilized to the energy input to
the pump[5]. It can be written in terms of head as:

ηh =
H

Hth
[-] (3)

where H is the actual lifting head and Hth is the theoretical possible lifting head, assuming no
hydraulic losses between the suction and discharge nozzle of the pump. Hydraulic losses are
losses related to skin friction and turbulent dissipation[6],[7]. Some sources include the slip in
the models for slip factor, as incidence losses[8], while others use it as a separate value[5]. The
approach utilized in this paper applies a model for a slip factor, γ, to estimate the slip. γ is
shown in figure 4.

There are also hydraulic losses in the penstock of the powerplant. Those are not incorporated
in the hydraulic efficiency of the pump but are added to the system curve of the powerplant.
The system curve is the pump head as observed by the turbine at any volume flow rate, Q.
Thus the lifting height the pump has to overcome at the design conditions, Hrequired, is actually
given by:

Hrequired = ∆Hreservoir +Hloss(Q) [mWc] (4)

where ∆Hreservoir is the difference in height between the upper and the lower reservoir at the
design point, and Hloss(Q) is the head loss in the penstock as a function of Q. H(Q) has
previously been measured for the current powerplant.

2.2. Design
In the following, a process for the design of the blade is outlined[9].

One starts by designing the radial projection of the turbine, which is one blade in the Z-R
plane, as shown in figure 3. The outlet height is defined as b1, and is given by the existing
geometry, the same goes for the outlet radius, R1. This is used to define the projection of the
streamline along the hub. Initially, the hub is chosen to be shaped like part of an ellipse. then
the shape of the shroud is found by defining a number of streamlines, starting at the outlet,
and extending them to the inlet by using the hub as a reference point. When one does this,
one utilizes that the mass flow rate between two streamlines is always constant[10]. For water,
which is incompressible, this translates to a constant volume flow rate between the streamlines.

In regular pumps and turbines, one usually designs for the flow to accelerate through the
runner. This is to avoid separation in the flow due to adverse pressure gradients, so due to flow
which flows from a low-pressure area to a high-pressure area. Separation leads to stall in a radial
turbine, in the same way as it would lead to stall in regular airfoils.

In an RPT, however, the fluid has to flow in both directions. Therefore there can be no
significant acceleration of the flow through the runner in either direction, as this would lead to
retardation in the opposite direction. For a flow with constant volume flow rate, and constant
meridional velocity, the meridional area between the streamlines has to be constant along each
streamline. So:

cm1 = cm2 = cm m s−1 (5)

⇒Am1 = Am2 = Am m2 (6)

where Am is the meridional area. The new streamlines can, therefore, be found by discretizing
the initial streamline along the hub and defining the start of all the other streamlines along the
outlet. Then one requires the meridional area between the streamlines to be constant and thus
the distance between two streamlines at any given point can be found.

When the streamlines are found, the blades trailing edge (TE) and leading edge (LE) can be
defined. These are also projected in the R-Z plane. The shape of these are very much up to the
designer, and are initially chosen to be in the form of two Bezier curves, see figure 3

Now that the shape of the blade in the R-Z plane is fully designed, the distribution of the
angles throughout the blade may be defined.

First of all, the inlet and outlet angles have to be found. This is done by using a model for
the hydraulic efficiency and applying equations (2) and (3) to find a suitable value for the outlet
blade angle.

Requirements for the blade angle are that the desired pump head is achieved at the desired
volume flow rate and that the pump characteristic is as steep as possible. Steepness is desired
to be able to operate at many different head values while changing the volume flow as little
as possible. This is illustrated in figure 5. Because the steepness of the pump characteristic

Figure 5. Relation between steepness of pump characteristics, and change in Q to obtain the
desired value for H.

decreases with increasing blade outlet angle, β1B, the desired outlet blade angle will always
be the lowest angle which provides sufficient head. When finding β1B one uses values at an
average outlet radius, R1,avg. However, when the radius varies along the trailing edge, so will
the blade angle. To find the corresponding blade angles for a varying blade, one uses R1,avg

and the corresponding blade angle as reference values and applies free vortex theory to find the
remainder of the angles. A free vortex is defined by

cu =
K

R
[m s−1] (7)

where K is a constant.
The values for the blade angles can be found by

βB = arctan (
cm

u− cu
) [◦] (8)

Due to the requirement of no acceleration of the flow, cm will remain constant. u and cu will
both be dependent of the radius.

The angles at the inlet are defined by no pre-swirl in the incoming flow, i.e. cu2 = 0. The
angles are found by use of equation 8 there as well.

To find the angles from LE to TE for the initial guess, the only requirement for the distribution
of the angles along the blade is that they are changing smoothly from inlet to outlet.

To be able to transform the distribution of β along the blade into points in the radial plane,
an additional plane is defined to simplify the transformation, namely the G-H-plane. G is the
length of a streamline in the R-Z plane and H is the length of the streamline in the R-θ plane.
the length of G between two discrete points along a streamline is shown as ∆G in figure 3 and

Figure 6. Schematic of the R-θ plane.

the length of H between two discrete points is shown in figure 6. The values of G can be found
from the streamlines in the R-Z plane, and the values of H can be found as by using the values
for β along the blade[11].

When the streamlines are defined on the G-H plane, they can be defined on the R-θ plane by
using the knowledge about the values ofR and θ for each point, as in figure 6. By further applying
the known values of Z from the Z-R projection, the blade is modelled in three dimensions.

Now all that remains is to add thickness to the blade. This is done by adding a layer on both
sides of the blade, offset normally from the surface created by the streamlines. These two layers
are further connected at both the LE and the TE with an elliptical profile. While a regular
pump or a regular turbine would have an elliptical-shaped LE and a sharper TE, this would be
unfavourable for an RPT, as it would lead to less streamlined design in one operation mode.

3. Results
When assuming the design conditions to be Q = 50 m3 s−1, H = 59 mWc and n = 250 rpm, and
by following the steps outlined in the paper, the geometry for one blade was as shown in figure
7. The blade has the modelled characteristic as shown in figure 8. In the applied model the
hydraulic efficiency and the slip are found separately. The distribution of β along the blade is
shown in figure 9.

4. Discussion
There are many different philosophies for the design of a blade. The one outlined in this paper
is a very basic one, which takes hold in theoretic, idealized design methods, and utilizes models
for the slip and the hydraulic efficiency. The reason for this is that retrofitting RPTs has not
been done before, so empiric data for other kinds of pump turbines may not apply to the case.
Instead of empirical data, the further design of the RPT will be based on CFD analysis for
optimization.

Models for slip are usually quite uncertain. Therefore it might be more reasonable to make the
initial design of the turbine without accounting for slip and adjusting the outlet angle according
to the results from a CFD-analysis. The same may be valid for the efficiency.

Figure 7. The geometry of one blade. The red crosses denote the trailing edge, and the red
circles denote the leading edge. The values have been made dimensionless by dividing all by D1

Figure 8. Theoretical pump characteristic for the current design and modelled efficiency curve

Figure 9. Distribution of the values for β along the blade, plotted against dimensionless values
of G. Here G starts at the outlet and reaches Gmax at the inlet

5. Further work
With the initial geometry of the blade ready, it remains to test it with Computational Fluid
Dynamics (CFD).

Once the CFD results for the initial design are ready, the blade should be adjusted according
to the results. If the blade does not produce enough head, the angle of β1 must be increased. If
the blade has pressure zones below the critical pressure, these have to be removed by smoothing
out the β-distribution.

The behaviour of the RPT should also be examined at off-design conditions.
When a satisfactory design for the blade has been reached, it has to be simulated together

with the booster pump, to ensure good cooperation between the two machines, both in pump
mode and in turbine mode.

References
[1] Renewable energy generation URL https://ourworldindata.org/grapher/modern-renewable-energy-consumption

[2] Hadjipaschalis I, Poullikkas A and Efthimiou V 2009 Renewable and Sustainable Energy Reviews 13 1513–
1522 ISSN 1364-0321 URL http://www.sciencedirect.com/science/article/pii/S1364032108001664

[3] NVE Vannkraft utbygd og ikke utbygd URL https://gis3.nve.no/link/?link=vannkraft

[4] Brekke H, Rhrich A D and Finseraas K R 2000 Introduction to hydraulic machinery (NTNU)
[5] Gülich J F 2010 Centrifugal Pumps second edition ed (Springer) ISBN 978-3-642-12823-3
[6] White F M and Corfield I 2006 Viscous fluid flow vol 3 (McGraw-Hill New York)
[7] Tennekes H, Lumley J L and others 1972 A first course in turbulence (MIT press)
[8] Iliev I, Trivedi C and Dahlhaug O G 2018 Journal of Physics: Conference Series 1042 012003 ISSN 1742-

6588, 1742-6596
[9] Wei Z, Finstad P H, Olimstad G, Walseth E and Eltvik M EP 8407high Pressure Hydraulic Machinery

Autumn 2009
[10] Çengel Y A and Cimbala J M 2014 Fluid Mechanics: fundamentals and applications, Third edition in SI

units (McGrawhill)
[11] Stepanoff A J 1948 Centrifugal and axial flow pumps (Johnn Wiley & Sons, inc.)

APPENDIX

C

DISTRIBUTION OF STREAMLINES IN THE
MERIDIONAL PLANE

The streamlines are distributed by first seeding equally spaced points at the pressure side
of the RPT, assuming constant volumetric flow rate between these and then extending the
lines from the pressure side to the suction side. This is done in an incremental approach.
First the hub is divided into a number of points. Then the following equations are found
for various properties of the streamlines, as shown in figureC.1:

αi,j = arctan
(Zi−1,j − Zi+1,j

Ri−1,j −Ri+1,j

)
(C.1)

ri,j =
Ri,j +Ri,j+1

2
(C.2)

bi,j =
Ri,j+1 −Ri,j

sinαi.j
(C.3)

Ai,j = 2πri,jbi,j (C.4)
(C.5)

Where R is the radial position of a point, Z is the axial position, b is the distance between
two points and α is the gradient between the last and the next point of the streamline. The
indices i and j denote the location along a streamline and the streamline across the passage
respectively. i is unity at the pressure side and j is unity at the hub. then the equations are
combined into

Ri,j+1 =

√
R2

i,j +
Ai,j sinαi,j

π
(C.6)

and
Zi,j+1 = Zi,j − bi,j cosαi,j (C.7)

The value of Ai,j is found by utilizing continuity and specifying the velocity along
each streamline.

73

Appendix C

Figure C.1: Details of the iterative process to find points on the next streamline

When each point along the next streamline has been found, the points are redistributed
so they are spaced equidistant along the streamline. Then the same is done for the next
streamline until all points are found from the hub and down to the shroud.

74

APPENDIX

D

G AND H CURVES

In the design process, two additional curves are defined in order to distribute the blades
around the runner axis. These are the G and H curves. The G curve defines the length of
one of the streamlines, and is thus given as

∆Gi,j =
√

(∆Ri,j)2 + (∆Zi,j)2 [m] (D.1)

Where i is the point on the streamline starting from the pressure side of the runner and j is
the streamline number, starting with j = 1 at the hub. The length of streamline Gj is thus:

Gj =

i=iEnd∑
i=1

(∆Gi,j) [m] (D.2)

H on the other hand defines the distance in the radial plane, so the displacement of the
meridional planes in the circumferential direction. To better visualize this, inspect figure
D.1 where the G and H lines of one streamline are shown on a body of rotation based on
a streamline. βB is thus related to G and H by

βB =
∆G

∆H
[rad] (D.3)

When designing the turbine, the values of βB are decided upon first, and then the
values of H are found.

H can again be related to the angular position of a point by using the known points of
the radius R as shown in figure D.2, which results in values of θ:

∆θ = arcsin (
∆H

R
) [rad] (D.4)

And with this the geometry is known in cylindrical coordinates. The transform from
cylindrical to cartesian coordinates is straight forward:

X =r cos(θ)

Y =r sin(θ)
[m] (D.5)

75

Appendix D

Figure D.1: G and H lines on one streamline rotated around the axis.

76

Appendix D

Figure D.2: Relation between θ, R and H

77

Appendix D

78

APPENDIX

E

HANDLING OF THE LOSS MODELS FOR THE SPIRAL
CASING AND THE STAY- AND GUIDE VANES

The stayvanes, guide vanes and spiral casing of the power plant are modeled by the models
described in [14, page 141]. The equations will not be reproduced here, suffice to say that
the dimensions required for the calculations of the losses in the guide vanes are the inlet
and outlet dimensions of the passage between two guide vanes, as well as the velocity
components for the flow.

In order to simplify the model, the guide vanes are assued to be straight and flat. The
resulting simplification is shown in figure E.1. L1/2 and L2/2 are the lengths of the guide
vanes before and after the stem. r3 and r4 are the radiuses to the leading and trailing edges
of the guide vane, and a3 and a4 are the distance between the leading and trailing edge.
The height of the guide vanes is known and so is the distanceRGV to the stems. The angle
α is the angle between the radial direction and the guide vane. using trigonometry, it can
be shown that:

r3 =
√

(R− L1/2 cosα)2 + (L1/2 sinα)2 (E.1)

r4 =
√

(R+ L2/2 cosα)2 + (L2/2 sinα)2 (E.2)

a3 = 2 · r3 sin
360°
zLe · 2

(E.3)

a4 = 2 · r4 sin
360°
zLe · 2

(E.4)

Which is used to find the guide vane losses. The losses in the stay vanes are found sim-
ilarly, but with a larger Radius to the stems. As the geometry for the guide vanes is not
found in the supplied data, it is assumed that they have equal dimensions as the guide
vanes, but are fewer in number.

The losses in the spiral casing require the volumetric flow rate through it, as well as
data for the geometry. The data for the geometry is found by dividing the spiral casing into
parts, and assuming that the velocity in each part is constant.

79

Appendix E

Figure E.1: Simplified geometry of guide vanes with rotation

80

Appendix E

There is also a diffuser connected to the end of the spiral casing, which leads to the
penstock, which is also modelled by using the expansion from the diffuser inlet to outlet.

The scripts used to find the losses are supplied here: DiffuserData.m

%DiffuserData
%chemical properties
mu=1.002e-3;
rho=999.9;
roughness=0;
g=9.82;%gravitational acceleration
%The diameter at volute outlet is 2930mm
%Assuming constant velocity through the volute:
%Case specific properties
Q=51;
c2u=sum(cu(1,:))/jEllipse;%mean tangential velocity at outlet
c2m=sum(cm(1,:))/jEllipse;%meridional velocity at outlet
u2=mean(ufun(R(1,:)));%runner velocity at outlet
alpha=deg2rad(0);

%Dimensions
LGuideVane=%Length of first part of guide vane
LGuideVane2=%Length of second part of guide vane
LGuideVane1=LGuideVane-LGuideVane2;%Length of guide vane
zle=%number of guide vanes
DOutlet=%diameter of the volute at the inlet to the diffuser
D2Outlet=%diameter of the diffuser at the outlet to the penstock
LDiffuser=%length of the diffuser
RGuideVanes=%location of the guide vane stem
SpiralCasingRadii=%Radius of the outer volute wall
SpiralCasingDiameter=SpiralCasingRadii-RGuideVanes;%Diameter of

the volute
OuterSpiralCasingLengths=%length of each outer volute element

b3=%height guide vane inlet
b4=%height guide vane outlet

%Calculated dimenions
% assume the guide vanes to be flat
r3=sqrt((RGuideVanes-cos(alpha)*LGuideVane1)ˆ2+

(sin(alpha)*LGuideVane1)ˆ2);
r4=sqrt((RGuideVanes+cos(alpha)*LGuideVane2)ˆ2+

(sin(alpha)*LGuideVane2)ˆ2);

a3=2*r3*sin(2*pi/zle/2);%width guide vane inlet
a4=2*r4*sin(2*pi/zle/2);%width guide vane outlet

c_volute=4*Q/(pi*DOutletˆ2);%assuming constant velocity in the

81

Appendix E

entire volute

B=(SpiralCasingDiameter(1:end-1)./2+RGuideVanes);%Length from
turbine centre to volute centre

C=(SpiralCasingDiameter(2:end)./2+RGuideVanes);
a=OuterSpiralCasingLengths;%Renaming to make expression easier
b=SpiralCasingRadii(1:end-1);%same
c=SpiralCasingRadii(2:end);%same
A=sqrt(B.ˆ2+C.ˆ2+B.*C./b./c.*(a.ˆ2-b.ˆ2-c.ˆ2));%finding length at

the centre of volute, using law of cosineson two triangles
with one shared angle

meanSpiralCasingLengths=A;%Renaming to make sense
meanSpiralCasingDiameters=(SpiralCasingDiameter(1:end-1)+

SpiralCasingDiameter(2:end))/2;%finding mean diameter of each
element

%Losses
HDiffuser=DiffuserLossesPump(c2u,c2m,Q,a3,b3,a4,b4,LGuideVane,

mean(u2),zle,g);%calculating losses in the guide vanes
% HStayvanes=%Should calculate losses in stay vanes as well.
%%
AR=D2Outletˆ2/DOutletˆ2;%AR of volute outlet
fprintf(’\nGuelich, figure 1.19, L/R1= %.2f,

AR-1=%.2f\n’,2*LDiffuser/DOutlet,AR-1)
cp=0.55;%input(’\ninput cp:\n’);%cp of volute outlet
cx=c_volute;
HVolute=voluteLossesPump(roughness,

meanSpiralCasingLengths,c_volute,mu, rho
,meanSpiralCasingDiameters ,Q,u2,cx,cp,AR); %calculating
losses in the volute

DiffuserLossesPump.m

%Diffusor losses pump, eqns found on p 141 guelich
function H =

DiffuserLossesPump(c1u,c1m,Q,a3,b3,a4,b4,LGuideVane,u1,zle,g)
c2=sqrt(c1u.ˆ2+c1m.ˆ2);
c3q=Q./zle./a3./b3;
AR=a4*b4/a3/b3;
fprintf(’Read the value of c_p for L/h=%f and A_R-1=%f in

Guelich figure 1.18, page
28’,LGuideVane.*sqrt(pi./a3./b3),AR-1);

cp=input(’\nc_p: ’);
zetaLe=(c3q./u1).ˆ2.*(0.3.*(c2./c3q-1).ˆ2+1-cp-(1)./(AR.ˆ2));
H=zetaLe.*u1.ˆ2./2./g;

end

voluteLossesPump.m

82

Appendix E

function H =
voluteLossesPump(roughness,L,c,mu,rho,D,Q,u2,cx,cp,AR)
Area=pi.*D.*L;
zeta_spR=1/(Q.*u2.ˆ2).* (sum((getFrictionFactor(roughness,L,c

,mu ,rho)+0.0015).*c.ˆ3.*Area));
zeta_spD=cxˆ2/u2ˆ2.*(1-cp-1/ARˆ2);
H=zeta_spD+zeta_spR;

end

83

Appendix E

84

APPENDIX

F

FAILED ATTEMPTS TO REACH CONVERGENCE

Multiple attempts to reach better convergence of the simulations in this thesis, some with
better success than others. The less successful attempts are listed in this appendix. Keep
in mind that these results are more of a researchers log than actual results of the thesis.

Attempt: Transient solution

In case the solution should turn out to be transient, multiple transient solutions have been
run with different time steps. The hope ws that one solution would become periodic after
a while, and the transient results of this solution would then have been used as results.
One solution did become periodic after approximately 0.2 seconds simulation time, but it
turned out that the frozen rotor stage model was used for this, which is a transient model,
which rendered the simulation useless. Attempts with the same settings but with transient
blade rows have not yielded any periodic results. Although it is possible that the simulation
would turn periodic if given enough time, the time left to this thesis was not long enough
to attempt this.

Increased time step factor for steady state solutions

Increasing the time step factor of steady state solutions is essentially the same as to increase
the amount by which the simulation is changed in each iteration. This could potentially
get rid of false oscillations, but could also remove actual transient conditions. One attempt
run with a time step factor of 2 did converge, but the author has not been able to reproduce
this convergence with other simulations with changed geometries, changed grid sizes or
changed mass flow rate.

decreased time step factor

A decrease in the time step factor led to a decrease of the period of the oscillating monitor
values. The amplitude also decreased slowly with decreasing time step factor, but a time
step factor at 0.001 or lower led to divergence, most likely due to round off errors. The

85

Appendix F

lowest time step factor which was run was 0.005, but there were still significant oscillations
apparent in the flow.

Refinement of the inlet and outlet areas

The significance of the inlet and outlet domains for the convergence of the simulation was
evaluated by refining only these domains and leaving the passage unrefined. The result
was a slightly lower oscillation amplitude in exchange for a much finer mesh. It may
be worth looking more into this more, but the idea was dismissed in order to find a less
computational costly solution.

86

APPENDIX

G

MATLAB SCRIPTS

This appendix contains all of the scripts used to obtain the geometry which has been mod-
elled in the thesis. All user defined values are given in the getValues.m script. In
order to ensure confidentiality, the real turbine data are removed from the script. If the
reader is so inclined, they may input values of a geometry of their choice, and simulate
a corresponding RPT. The scripts are also added as a zip file to the handed in work. In
order to shorten the length of this appendix, the scripts which are selectible by changing
the options in the Choices.m file have been removed.
TurbinDesign2.m

%%TurbinDesign2
clear
close all
clc
figno=1;
%%
dir=’AnsysFiles’;
if˜exist(dir,’dir’)

mkdir(dir)
end
global g rho mu nu patm pvapour Values
%Choices%%%%%%%%%%%%%%%%
Choices; %the values for switch

statements
%%%%%%%%%%%%%%%%%%%%%%
%Physical quantities
g=9.82;
patm=101325; %Atmospheric pressure in Pa
rho=999.9; %density of water
mu=1.519e-3;
nu=mu/rho;
pvapour=872.1; %vapourization pressure of

water at T = 5 [deg]

87

Appendix G

%Geometry values
getValues;
%Arbitrarily chosen temperature: 5 degrees.
HeadDiffSubmergence=Values.HeadDiffSubmergence; %The height

difference between the average lower reservoir height and the
RPT

R1GuideVanes=Values.R1GuideVanes; %Radius of the
guideVanes %g in norway

Head=Values.Head; %The design head
Q=Values.Q; %The design Volume flow rate
D1=Values.D1;%2.877;%3.36]; %Current diameter at the

guide vanes
%D1=2*R1GuideVanes./1.05; %Rainpower, I think? D1

\approxeq 1.05D_guidevanes
b=Values.b;
Dhub=Values.Dhub;%.6; %hub diameter
A=pi.*D1.*b; %Area at 1, no blade blockage
D2=Values.D2; %Diameter imposed by

existing geometry
A2=pi*(D2.ˆ2-Dhub.ˆ2)./4;
acceleration=A/A2;
D2m=D2; %THIS SHOULD BE CALCULATED BY

sqrt(0.5*(D2minˆ2+D2maxˆ2), Geometric diameter
e=0.019*D1; %blade thickness

[0.016,0.022]*D1 Should be in the higher range for high heads.
n= Values.n; %current rotational

velocity increased by one syncronous vel.
iEllipse=Values.iEllipse;
jEllipse=Values.jEllipse;
ufun=@(R) (2.*pi.*R.*n)./(60);
R2=getDeltaX2(D2,Dhub,jEllipse);
runnerheight=Values.runnerheight; %From draft tube to top of

guide vane.
eta=getEta_h(Q,Q,n,Head); %By use

of equations from Guelich
Routlet(1)=Values.Routlet(1);

%Values from the supplied figure.
Zoutlet(1)=Values.Zoutlet(1);
Routlet(2)=Values.Routlet(2);
Zoutlet(2)=Values.Zoutlet(2);
RLe1=Values.RLe1;

%The target values for The leading edge
ZLe1=Values.ZLe1;
RLe2=Values.RLe2;
ZLe2=Values.ZLe2;
%% starting point for streamlines
aEllipse=R1GuideVanes; %The

half length of the ellipsis in the x-direction
bEllipse=runnerheight; %The

half length of the ellipsis in the y-direction

88

Appendix G

switch(Geometry)
case ’Ellipse’

xEllipse=linspace(0,-aEllipse); %to
-D1 etc. because are in the 2nd quadrant of ellipsis.

yEllipse= bEllipse.*sqrt(1-(xEllipse./aEllipse).ˆ2);
xyEllipse=interparc(iEllipse,xEllipse,yEllipse,’spline’);
xEllipse=xyEllipse(:,1);
xEllipse=R1GuideVanes+xEllipse;
yEllipse=xyEllipse(:,2);

case ’Bezier’
P1=[D1/2,runnerheight];
P2=Values.P2;%ginput();%[0,runnerheight];
P3=[0,0];
bezierpoints= [P1

P2
P3];

BezierCurve=extractBezierByPoints(0,bezierpoints);
BezierCurve=ppval(BezierCurve,linspace(0,R1GuideVanes));

% BezierCurve=Bezier(0,-aEllipse,bEllipse,’Plotnt’);
%Creating an arbitrary chosen bezier-curve to connect the
outlet and inlet
xyBezier=interparc(iEllipse,linspace(0,1.6),BezierCurve,

’spline’); %Dividing it into iEllipse equally spaced
parts

xBezier=xyBezier(:,1);
%Extracting data for the points as two vectors

yBezier=xyBezier(:,2);
xEllipse=xBezier(end:-1:1); %and

putting them in the same form as would have been used
for the Ellipsis

yEllipse=yBezier(end:-1:1);
case ’BezierDefByPoints’

P1=[D1/2,runnerheight];
%Defining start and stop of hub curve

P3=[0,0];
distLim=0.001;

%Criterium for when the curve is close enough to the
required point at the inlet of the current geometry

dR=0; %initial
value for iterative value for R

dZ=0.1*runnerheight;
%iterative change in Z

rPoint=Routlet(1)./2;
%Radius for the control point for the curve

zPoint=runnerheight; %z-value
for the bezier control point

if Recording
OuterStreamlineObj=VideoWriter(’outer.avi’);
OuterStreamlineObj.FrameRate=10;
open(OuterStreamlineObj);

89

Appendix G

end
while true

%do-while loop in matlab
rPoint=rPoint+dR; %change

the radius
P2=[rPoint,zPoint]; %Define

the control point
bezierpoints= [P1 %vector

with all the control points
P2
P3];

BezierCurve=extractBezierByPoints(0,bezierpoints);
BezierCurve=ppval(BezierCurve,linspace(0,R1GuideVanes));
xyBezier=interparc(iEllipse,linspace(0,1.6),

BezierCurve,’spline’); %Dividing it into iEllipse
equally spaced parts

xBezier=xyBezier(:,1);
%Extracting data for the points as two vectors

yBezier=xyBezier(:,2);
xEllipse=xBezier(end:-1:1);

%and putting them in the same form as would have been
used for the Ellipsis

yEllipse=yBezier(end:-1:1);
[pt,dist,t]=distance2curve([xEllipse,yEllipse],

[Routlet(1),Zoutlet(1)],’pchip’); %find the distance
to the hub line and the point on the line closest to
the required point

if dist<distLim %If the
distance is small enough, the solution has converged
if yEllipse(2)>yEllipse(1) %don’t

want the stream to flow upwards again.
zPoint=zPoint-dZ; %If it

does, reduce Z of the point
else
break %else

the solution has converged. Exit the loop
end

end
if pt(1)>Routlet(1)

dR=-1*dist;
else

dR=1*dist;
end
figure(figno)
hold off
plot(xEllipse./Values.DimensionlessRadius,yEllipse

./Values.DimensionlessRadius)
hold on
xlabel(’R/R_1’)
ylabel(’Z/R_1’)

90

Appendix G

title(’Streamline along the hub’)
figname.hubStreamline=figno;

plot([P1(1),P2(1),P3(1)]./Values.DimensionlessRadius,
[P1(2),P2(2),P3(2)] ./Values.DimensionlessRadius,’bo’)

plot(pt(1)./Values.DimensionlessRadius,pt(2)
./Values.DimensionlessRadius,’rd’)

plot(Routlet(1)./Values.DimensionlessRadius,Zoutlet(1)
./Values.DimensionlessRadius,’ks’)

line([P1(1),P2(1),P3(1)]./Value.DimensionlessRadius,
[P1(2),P2(2),P3(2)]./Values.DimensionlessRadius)

drawnow
if Recording
currFrame=getframe(gcf);
writeVideo(OuterStreamlineObj,currFrame);
end

end
if Recording

close(OuterStreamlineObj)
end
figno=figno+1;

otherwise
error(’ERROR: The variable "Geometry" has no matching

value.’)
end
%% Streamlines
% x2R=@(x) R1GuideVanes+x;

%Translation from x-coordinate to R-coordinate.
deltaYinlet=b/(jEllipse-1); %inlet

value spacing for all the other streamlines
deltaXoutlet=getDeltaX2(D2,Dhub,jEllipse); %outlet

value placing for all the other streamlines calculated with
same annular area at outlet

R=zeros(iEllipse,jEllipse);
%initializing matrix of R-values

Z=R;
%initializing matrix of Z-values

R(:,1)=xEllipse; %setting
values along the ring

Z(:,1)=yEllipse; %setting
values along the ring

Z(iEllipse,:)=0;
%Z-values at the outlet

R(iEllipse,:)=deltaXoutlet(1:1:end);
Z(1,:)=Z(1,1)-[0:deltaYinlet:b]; %I get

red lines, but it seems to work anyhow.
R(1,:)=D1./2;

%R-values at the inlet

91

Appendix G

alphaij=@(iv,jv,Rv,Zv) abs(atan((Zv(iv-1,jv)-
Zv(iv+1,jv))./((Rv(iv-1 ,jv)-Rv(iv+1,jv))))); %Function for
the angle alphaij

dA1=pi*D1*b/(jEllipse-1);
dA2=pi./4*(D2.ˆ2-Dhub.ˆ2)./(jEllipse-1);

%The meridional area is
constant for a RPT If acceleration is introduced, this would
have to change be a function of the distance along the blade.

bij=@(iv,jv,Rv,Zv)
abs((Rv(iv,jv)-Rv(iv,jv+1))/(sin(alphaij(iv,jv,Rv,Zv))));

figure(figno)
figname.meridionalProjection=figno;
figno=figno+1;
hold on
axis equal
GGeom=zeros(size(R));
%plot(R(1,:)./Values.DimensionlessRadius,

Z(1,:)./Values.DimensionlessRadius,’o’)
%plot(R(:,1)./Values.DimensionlessRadius,

Z(:,1)./Values.DimensionlessRadius,’o’)
switch Geometry

case ’BezierDefByPoints’
dist=0; %initial

distance between the blades
ax=Values.ax;

%initial x value to define the acceleration along the
blade

ay=Values.ay;
%same for y

dx=Values.dx;
%Value to change ax and ay with for each iteration

dy=Values.dy;
if Recording

shroudVideoObject=VideoWriter(’shroud.avi’);
shroudVideoObject.FrameRate=10;
open(shroudVideoObject)

end
while true %do-while

P.Aij= [%Define
Bezier control point which defines the change in
area along the blade

ax ay
ax ay
]; %At the

moment it is defined by two equal points,
because the algorithm didn’t converge with
only one point.

% plot(R(:,1)./Values.DimensionlessRadius,Z(:,
1)./Values.DimensionlessRadius,’-bo’)

for j=1:1:(jEllipse-1)

92

Appendix G

%jEllipse-1 that’s where we find the streamline nr
jEllipse.
for i=2:1:iEllipse

GGeom(i,j)=GGeom(i-1,
j)+sqrt((R(i-1,j)-R(i,j)).ˆ2+(Z(i-1,
j)-Z(i,j)).ˆ2);

end
for i=2:1:(iEllipse-1)
% plot(R(i,j)./Values.DimensionlessRadius,

Z(i,j)./Values.DimensionlessRadius,’-ro’)
R(i,j+1)=sqrt(R(i,j)ˆ2+((getdAij(GGeom(i,j),dA1,dA2,P.Aij,

max(GGeom(:,j)))*sin(alphaij(i,j,R,Z))/pi)));
Z(i,j+1)=Z(i,j)-bij(i,j,R,Z)*cos(alphaij(i,

j,R,Z));

end
%%%%%%%%%%%%%%%%%%%%%%%
RZInterp=interparc(iEllipse,R(:,j+1),Z(:,j+1),

’Spline’);
R(:,j+1)=RZInterp(:,1); % To NOT distribute the

points for every iteration, remove these three
lines.

Z(:,j+1)=RZInterp(:,2);
%%%%%%%%%%%%%%%%%%%%%%%
%plot(R(:,j+1)./Values.DimensionlessRadius,Z(:,

j+1)./Values.DimensionlessRadius,’-b’) %debugging
end
ptLast=pt; %To

check wether the line has changed the side of the
point

[pt,dist,t]=distance2curve([R(:,jEllipse),Z(:,jEllipse)]
,[Routlet(2),Zoutlet(2)],’pchip’); %nearest point on
the line, distance between the points and parametric
variable

if sign(ptLast(2)-Zoutlet(2))˜=sign(pt(2)-Zoutlet(2))
%If the line switches which side of the point it is
on
dy=.5*dy; %Reduce

the iterative increase by a factor of 0.5, to
ensure convergence

end
if dist<distLim %If the

line has converged sufficiently
break %Exit

the while loop
elseif Z(1,jEllipse)<Z(2,jEllipse) %if the

streamline goes upward at the outlet (1)
ax=ax+dx;

%increase the acceleration at the outlet (1)

93

Appendix G

elseif pt(2)>Zoutlet(2) %If the
point is greater than the curve
ay=ay-dy; %Need

less steep curve for acceleration in the start
else %If the

point is below the curve
ay=ay+dy; %Need

more acceleration in the start, to contract curve
end
if max(((getdAij(GGeom(:,jEllipse-1), dA1,

dA2,P.Aij,max(GGeom(:, jEllipse-1))))-dA1)./(dA2-
dA1))>1 %if the area has a local maximum which is
not at the inlet
ay=ay-dy; %reduce

the area
ax=ax-2*dx; %change

conditions and try again
end
figure(figno)
subplot(2,1,1)
hold off
plot(R./Values.DimensionlessRadius,

Z./Values.DimensionlessRadius)
hold on
xlabel(’R/R_1’)
ylabel(’Z/R_1’)
plot(pt(1)./Values.DimensionlessRadius,

pt(2)./Values.DimensionlessRadius,’rd’)
plot(Routlet(2)./Values.DimensionlessRadius,

Zoutlet(2)./Values.DimensionlessRadius,’ks’)
subplot(2,1,2)
hold off
plot(GGeom(:,jEllipse-1)./max(GGeom(:,

jEllipse-1)),((getdAij(GGeom(:, jEllipse-1), dA1
,dA2,P.Aij,max(GGeom(:,jEllipse-1))))-dA1)./(dA2
-dA1))

hold on
xlabel(’G/G_{max}’)
ylabel(’dA’)

plot(ax,ay,’dk’)
drawnow
if Recording

currFrame=getframe(gcf);
writeVideo(shroudVideoObject,currFrame)

end
end
if Recording

close(shroudVideoObject)
end

94

Appendix G

figname.shroudStreamline=figno;
figno=figno+1;

otherwise
P.Aij=Values.P.Aij;
for j=1:1:(jEllipse-1)%jEllipse-1 that’s where we find the

streamline nr jEllipse.
for i=2:1:iEllipse
GGeom(i,j)=GGeom(i-1,

j)+sqrt((R(i-1,j)-R(i,j)).ˆ2+(Z(i-1,j)-Z(i,j)).ˆ2);
end
for i=2:1:(iEllipse-1)

R(i,j+1)=sqrt(R(i, j)ˆ2+((getdAij(GGeom(i, j),dA1,dA2,
P.Aij,max(GGeom(:,j)))*sin(alphaij(i,j,R, Z))/pi)));

Z(i,j+1)=Z(i,j)-bij(i,j,R,Z)*cos(alphaij(i,j,R,Z));
end
%%%%%%%%%%%%%%%%%%%
RZInterp=interparc(iEllipse,R(:,j+1),Z(:, j+1),’Spline’);
R(:,j+1)=RZInterp(:,1); % To NOT distribute the points for

every iteration, remove these three lines.
Z(:,j+1)=RZInterp(:,2);
%%%%%%%%%%%%%%%%%%%%%%

end
end
dAij=getdAij(GGeom(i,j),dA1,dA2,P.Aij, max(GGeom(:,j)));
dAijMat=getdAij(GGeom,dA1,dA2,P.Aij);

GGeom(:,end)=GGeom(:,end-1)+sqrt((R(:,end)-R(:,end-1)).ˆ2+
(Z(:,end)-Z(:, end-1)).ˆ2);

for i=2:1:iEllipse
GGeom(i,jEllipse)=GGeom(i-1,jEllipse)+sqrt((R(i-1,

jEllipse)-R(i,jEllipse)).ˆ2+(Z(i-1,
jEllipse)-Z(i,jEllipse)).ˆ2);

end
figure(figname.meridionalProjection)
hold on
plot(R./Values.DimensionlessRadius,

Z./Values.DimensionlessRadius)
axis equal
xlabel(’R/R_1’)
ylabel(’Z/R_1’)
title(’Streamlines of the turbine in the R-Z plane’)
axis equal

%% QH calculation
%%%%%%%%%%%%%%%%%%%%%%% Angles below
%The entire design collapses if the trailing edge is too far down

the
%meridional view, so don’t do that.
%Cutting off the blades
%columns like this: [xvalue,yvalue;...]. decreasing x-values,

increasing

95

Appendix G

%y-values
switch Geometry

case ’BezierDefByPoints’
P.LEp=Values.P.LEp;%The points which generate the Leading edge by

use of Bezier curves
P.TEpmid=Values.P.TEpmid;
if isempty(P.TEpmid)

P.TEpmid=[Routlet(2)+(Routlet(1)-Routlet(2))/2
Zoutlet(2)+(Zoutlet(1)-Zoutlet(2))/2];

end

P.thetaTE1=atan((abs(Routlet(2)-
P.TEpmid(1)))./((abs(Zoutlet(2)-P.TEpmid(2)))));

P.TEp1=[P.TEpmid(1)+ 1.05*(sqrt((Routlet(2)-
P.TEpmid(1))ˆ2+(Zoutlet(2)-P.TEpmid(2))ˆ2))*sin(P.thetaTE1)
...
P.TEpmid(2)-1.05*(sqrt((Routlet(2)

-P.TEpmid(1))ˆ2+(Zoutlet(2)-
P.TEpmid(2))ˆ2))*cos(P.thetaTE1)];

P.thetaTE2=atan((abs(Routlet(1)-
P.TEpmid(1)))./((abs(Zoutlet(1)-P.TEpmid(2)))));

P.TEp2=[P.TEpmid(1)- 1.05*(sqrt((Routlet(1)-
P.TEpmid(1))ˆ2+(Zoutlet(1)-P.TEpmid(2))ˆ2))*sin(P.thetaTE2)
...
P.TEpmid(2)+1.05*(sqrt((Routlet(1) -P.TEpmid(1))ˆ2+

(Zoutlet(1)-P.TEpmid(2))ˆ2))*cos(P.thetaTE2)];

P.TEp=[
P.TEp1
P.TEpmid
P.TEp2
];%The points which generate the Trailing edge by use of

Bezier curves
otherwise

P.LEp=Values.P.LEp;%The points which generate the Leading
edge by use of Bezier curves

P.TEp=Values.P.TEp;
end
RGeom=R;
ZGeom=Z;
[R,Z]=cutOffBlade(RGeom,ZGeom,P.TEp,P.LEp,iEllipse,jEllipse);
figure(figname.meridionalProjection)
plot(R./Values.DimensionlessRadius

,Z./Values.DimensionlessRadius,’o’)
P.TERunner=Values.P.TERunner;
P.LERunner=Values.P.LERunner;
[RRunner,ZRunner]=cutOffBlade(RGeom,

ZGeom,P.TERunner,P.LERunner,iEllipse,jEllipse);

96

Appendix G

%% G-streamline
G=zeros(size(Z)); %Initializing the G matrix
for i=2:iEllipse

G(i,:)=G(i-1,:)+sqrt((R(i-1,
:)-R(i,:)).ˆ2+(Z(i-1,:)-Z(i,:)).ˆ2);

end
DeltaG=G(2:end,:)-G(1:end-1,:);

%Now we want to find beta1 and beta2 for all values along LE and
TE

%To find beta1 along TE, we assume free vortex theory:
cu*r=const, where

%the reference value is found at D1.
GToAdd=getGGeomAtG0(R(1,:),Z(1,:),RGeom,ZGeom); %Finds

the value of GGeom where G of the blade itself is 0.
cm=zeros(iEllipse,jEllipse);
for j=1:1:jEllipse

cm(:,j)=(Q./(jEllipse-1)./getdAij((G(:
,j)+GToAdd(:,j)),dA1,dA2,P.Aij,GGeom(end,j)));

end
QHCalculations
switch FindBetaBlade

case ’freeVortex’
beta1=getBeta1B(gamma,cm1,tau_1,D1,n,beta1B,R);

%finds values for beta1 corresponding to free vortex
theory

beta2=zeros(size(beta1));
%Initializing vector

for j=1:1:jEllipse
beta2(j)=atan((Q./(jEllipse-1)./getdAij((G(end,j)+GToAdd(j))

,dA1,dA2,P.Aij, GGeom(end,j)))./ufun(R(end,j)));
%finding beta2 according to the assumed cm at the
point in the runner.

end
% beta2=atan((4.*Q)./(ufun(R(iEllipse,

:)).*pi.*(D2.ˆ2-Dhub.ˆ2))); %values for beta2 if the
blades would end at the end of the geometry.

beta1=beta1+(beta1<0).*pi;
%if the angle gets larger than 90 degrees, trigonometry
leads to it being 180deg smaller than intended.
therefore we add 180deg (or pi radians) to fix this.

case ’streamlines’
beta2=zeros(size(beta1));

%Initializing vector
for j=1:1:jEllipse

beta2(j)=atan((Q./(jEllipse-1)./getdAij((G(end,j)+
GToAdd(j)),
dA1,dA2,P.Aij,GGeom(end,j)))./ufun(R(end,j)));%finding
beta2 according to the assumed cm at the point in
the runner.

97

Appendix G

end
otherwise

error(’ERROR, no matching value for variable FindBetaBlade’)
end

%% Energy distribution and finding beta along the blade
switch axialFlowAtOutlet %If the flow at the outlet has an axial

component, the radial and the meridional flow angle are
different.
case ’yes’%Then the value of beta1B has to be transformed

from the radial to the meridional plane.
epsilonOutlet=atan((Z(1,:)-Z(2,:))./(R(1,:)-R(2,:)));
epsilonInlet=atan((Z(iEllipse-1,

:)-Z(iEllipse,:))./(R(iEllipse-1,:)-R(iEllipse,:)));
beta1B=atan(tan(beta1B)./cos(mean(epsilonOutlet)));
beta1= atan(tan(beta1)./cos(epsilonOutlet))

+pi.*(atan(tan(beta1)./cos(mean(epsilonOutlet))) <0);
beta2=atan(tan(beta2)./sin(epsilonInlet))

+pi.*(atan(tan(beta2)./cos(mean(epsilonInlet))) <0);
case ’no’
otherwise

error(’ERROR: no matching values found for variable
axialFlowAtOutlet’)

end
switch bladeLoadingMethod

case ’UcU’
velAngular=n.*2.*pi./60;%is a scalar, angular velocity of

the turbine.
uAlongBlade=velAngular.*R;% get one value for each node,

peripheral velocity of the runner
FractionOfBladelength=G./G(end,:);%fraction of the

streamline along the blade
cmAlongBlade=zeros(iEllipse,jEllipse);
for j=1:1:length(cmAlongBlade)

cmAlongBlade(:,j)=Q./(jEllipse
-1)./getdAij((G(:,j)+GToAdd(:,j)),dA1,
dA2,P.Aij,GGeom(end,j));

end
UcU1=uAlongBlade(1, :).*(uAlongBlade(1,:)-(cmAlongBlade(1,

:))./(tan(beta1)));
UcU2=uAlongBlade(end,:).*(uAlongBlade(end,:)-

(cmAlongBlade(end,:))./(tan(beta2)));%Should be 0 (or
very close to 0.

P.UcU=Values.P.UcU;
UcUAlongBlade=getUcU(FractionOfBladelength,

UcU1,UcU2,iEllipse, jEllipse,P.UcU); %Should return a
distribution for UcU along the blade.

cuAlongBlade=UcUAlongBlade./uAlongBlade;
betaAlongBlade=atan(cmAlongBlade./(uAlongBlade-

cuAlongBlade)); %finding beta by use of velocity

98

Appendix G

triangles along the blade.
betaAlongBlade=betaAlongBlade+(betaAlongBlade<=0).*pi;%so

my theory is that the un-smoothness of the blade
originates from atan switching to the wrong quadrant.
adding pi to all negative values should solve this.

betaAlongBladeW=betaAlongBlade; %To make it compatible with
later updates, I think...

case ’BetaDistribution’
%This part is supposed to sketch a smooth curve for beta,

based on
%a guess.

P.BetaDist=Values.P.BetaDist;
P.Spanwise=Values.P.Spanwise; %To control how the blade

changes in the spanwise direction
switch betaEval

case ’lineSegment’ %To evaluate values of beta at line
segment between two nodes, and thus get more
accurate values of theta.

%The exception is at start and end,
because

%beta1 and 2 MUST be as calculated
FractionOfBladelength=G./G(end ,:);
betaAlongBladeW=getBetaDist(beta1,

beta2,iEllipse,jEllipse,
FractionOfBladelength,
’Node’,P.BetaDist,P.Spanwise);%So the
distribution seems to be equally spaced,
and not

FractionOfBladelength=(G(1:end-1,
:)+DeltaG./2)./G(end,:);

betaAlongBlade=getBetaDist(beta1,beta2,
iEllipse, jEllipse, FractionOfBladelength,
betaEval,P.BetaDist, P.Spanwise); %to
monitor relative velocity

case ’Node’
FractionOfBladelength=G./G(end,:);

betaAlongBlade=getBetaDist(beta1,beta2 ,
iEllipse,jEllipse ,
FractionOfBladelength,betaEval,P.BetaDist,P.Spanwise);

betaAlongBladeW=betaAlongBlade;%to monitor
relative velocity, w, later on.

otherwise
error(’ERROR: no fitting value for betaEval’)

end

otherwise
error(’ERROR: The variable "bladeLoadingMethod" has no

99

Appendix G

matching value.’)
end
w=sqrt(cm.ˆ2+(cm./tan(betaAlongBladeW)).ˆ2);
c=sqrt(cm.ˆ2+(ufun(R)-cm./tan(betaAlongBladeW)).ˆ2);
cu=ufun(R)-cm./tan(betaAlongBladeW);
%plotting c, w, and UCu
% ucu
figure(figno)
figname.UcU=figno;
figno=figno+1;
plot(G./max(G),(ufun(R).*cu)./max(ufun(R).*cu))
xlabel(’G/G_{max}’)
ylabel(’u \cdot c_u/max(u \cdot c_u)’)
title(’u \cdot c_u distribution’)
%w
figure(figno)
figname.w=figno;
figno=figno+1;
plot(G./max(G),w./Values.DimensionlessVelocity)
xlabel(’G/G_{max}’)
ylabel(’w/u_1’)
title(’w distribution’)
%c
figure(figno)
figname.c=figno;
figno=figno+1;
plot(G./max(G),c./Values.DimensionlessVelocity)
xlabel(’G/G_{max}’)
ylabel(’c/u_1’)
title(’c distribution’)
%cm
figure(figno)
figname.cm=figno;
figno=figno+1;
plot(G./max(G),cm./Values.DimensionlessVelocity)
xlabel(’G/G_{max}’)
ylabel(’c_m/u_1’)
title(’c_m distribution’)
%u
figure(figno)
figname.u=figno;
figno=figno+1;
plot(G./max(G),ufun(R)./Values.DimensionlessVelocity)
xlabel(’G/G_{max}’)
ylabel(’u/u_1’)
title(’u distribution’)
%% H-streamline
H=G;
switch betaEval

case ’Node’

100

Appendix G

DeltaH=DeltaG./tan(betaAlongBlade(1:end-1,:));%Not including the
last beta, because I get trouble with the sizes of the
matrices. maybe i should take the mean values of beta?
case ’lineSegment’

DeltaH=DeltaG./tan(betaAlongBlade);
end
for i=2:iEllipse

H(i,:)=H(i-1,:)+DeltaH(i-1,:);
end
%% G-H plane
figure(figno)
figname.GHplane=figno;
figno=figno+1;
plot(H./max(max(H)),G./max(max(G)),’o-’)
hold on
xlabel(’H/H_{max}’)
ylabel(’G/G_{max}’)
title(’Plot of the G-H plane’)
%% Polar coordinates
deltaTheta=2.*asin((DeltaH./2./R(2:end,:)));%More accurate in my

opinion
theta=zeros(size(R));%Initializing theta
for i=2:iEllipse

theta(i,:)=theta(i-1,:)+deltaTheta(i-1,:);%finding theta for
the domain by setting the initial value of theta equal to
zero

end
figure(figno)
figname.RThetaPlane=figno;
figno=figno+1;
polarplot(theta,R./Values.DimensionlessRadius)%Plotting theta in

polar coordinates
title(’Theta-R/R_{max} in polar coordinates’)
%% Back to cartesian coordinates
BladesPlotted=’all’;
figure(figno)
figname.streamPlane=figno;
figno=figno+1;
hold on
grid on
switch BladesPlotted

case ’one’
X=R.*cos(theta);
Y=R.*sin(theta);
mesh(X./Values.DimensionlessRadius

,Y./Values.DimensionlessRadius ,
Z./Values.DimensionlessRadius) %
(rad2deg(betaAlongBlade)>=90).*2)%or surf. Whatever you
prefer

case ’all’

101

Appendix G

for i=0:1:(zla-1)
X=R.*cos(theta+i*2*pi/zla);
Y=R.*sin(theta+i*2*pi/zla);
surf(X./Values.DimensionlessRadius

,Y./Values.DimensionlessRadius ,
Z./Values.DimensionlessRadius)
%(rad2deg(betaAlongBlade)>=90).*2) %or surf. Whatever
you prefer

end
[XH,YH,ZH]=cylinder(RGeom(:,1));
[XS,YS,ZS]=cylinder(RGeom(:,jEllipse));
surf(XH./Values.DimensionlessRadius

,YH./Values.DimensionlessRadius, ZGeom(:,
1).*ones(1,21)./Values.DimensionlessRadius)

surf(XS./Values.DimensionlessRadius
,YS./Values.DimensionlessRadius, ZGeom(:
,jEllipse).*ones(1,21)./Values.DimensionlessRadius)

otherwise
error(’ERROR: unrecognised value of BladesPlotted’)

end
xlabel(’X/R_1’)
ylabel(’Y/R_1’)
zlabel(’Z/R_1’)
title(’3D-plot of the streamlines’)
%% Plot of the UcU dist. and the beta dist.

figure(figno)
figname.betaDist=figno;
figno=figno+1;
hold on
% yyaxis left
switch betaEval

case ’Node’
for j=1:jEllipse
plot(G(:,j)./G(iEllipse,j),rad2deg(betaAlongBlade(:,j)));
end

case ’lineSegment’
for j=1:jEllipse

plot((G(1:end-1,j)+ DeltaG(:,j)./2)./G(iEllipse,j),
rad2deg(betaAlongBlade(:,j)));

end
otherwise

error(’ERROR: no matching betaEval’)
end
xlabel(’G/G_{max}’)
ylabel(’\beta’)
title(’Beta distribution’)

fclose(’all’);
% The shapes of the trailing and leading edges.

102

Appendix G

LEshape
TEshape
figname.LETE=figno;
figno=figno+1;
curveStart=3;
curveEnd=2;
BladeCurveX=Xup(curveStart:1:end-curveEnd,:);
for i=[1,29:-1:25,3,30:1:34,2]

BladeCurveX=[BladeCurveX;TE(:,1,i)’];
end
BladeCurveX=[BladeCurveX;Xdown(end-curveEnd:-1:curveStart,:)];
for i=[2,34:-1:30,3,25:1:29,1]%[2,34:-1:30,3,25:1:29,1]

BladeCurveX=[BladeCurveX;LE(:,1,i)’];
end
BladeCurveX=[BladeCurveX;Xup(curveStart,:)];

LeIndex=iEllipse-(curveStart-1)-curveEnd+1+5+1;%number of
elements in a str.line-elements removed at start and
end+elements up to, and including the LE

TeIndex=LeIndex+5+1+iEllipse-curveEnd- (curveStart-1)+1+
5+1;%Elements to the LE, +elements until streamline starts
again, -elements not included in streamline+elements at TE,
including TE.

BladeCurveY=Yup(curveStart:1:end-curveEnd,:);
for i=[1,29:-1:25,3,30:1:34,2]

BladeCurveY=[BladeCurveY;TE(:,2,i)’];
end
BladeCurveY=[BladeCurveY;Ydown(end-curveEnd:-1:curveStart,:)];
for i=[2,34:-1:30,3,25:1:29,1]

BladeCurveY=[BladeCurveY;LE(:,2,i)’];
end
BladeCurveY=[BladeCurveY;Yup(curveStart,:)];

BladeCurveZ=Zup(curveStart:1:end-curveEnd,:);
for i=[1,29:-1:25,3,30:1:34,2]

BladeCurveZ=[BladeCurveZ;TE(:,3,i)’];
end
BladeCurveZ=[BladeCurveZ;Zdown(end-curveEnd:-1:curveStart,:)];
for i=[2,34:-1:30,3,25:1:29,1]

BladeCurveZ=[BladeCurveZ;LE(:,3,i)’];
end
BladeCurveZ=[BladeCurveZ;Zup(curveStart,:)];

figure(figno)
figname.curveSurf=figno;
figno=figno+1;
surf(BladeCurveX./Values.DimensionlessRadius,

BladeCurveY./Values.DimensionlessRadius,
BladeCurveZ./Values.DimensionlessRadius)%, ’b’)

103

Appendix G

hold on
plot3(BladeCurveX(LeIndex,

:)./Values.DimensionlessRadius,BladeCurveY(LeIndex,
:)./Values.DimensionlessRadius,BladeCurveZ(LeIndex,
:)./Values.DimensionlessRadius,’ro’)

plot3(BladeCurveX(TeIndex,
:)./Values.DimensionlessRadius,BladeCurveY(TeIndex,
:)./Values.DimensionlessRadius,BladeCurveZ(TeIndex,
:)./Values.DimensionlessRadius,’rx’)

cb=colorbar;
cb.Label.String=’Z/D_1’;
xlabel(’X/R_1’)
ylabel(’Y/R_1’)
title(’The blade’)
axis equal
view(2)
%% If the TE is not willing to cooperate and you rather remove

one point at the edge than continue altering the curveStart
value:

switch axialFlowAtOutlet
case ’yes’

BladeCurveX=[BladeCurveX(2:35,:)
;BladeCurveX(37:end-1,:);BladeCurveX(2,:)];

BladeCurveY=[BladeCurveY(2:35,:)
;BladeCurveY(37:end-1,:);BladeCurveY(2,:)];

BladeCurveZ=[BladeCurveZ(2:35,:)
;BladeCurveZ(37:end-1,:);BladeCurveZ(2,:)];

case ’no’
otherwise

error(’ERROR: No matching value for axialFlowAtOutlet’)
end
%
%% This section should be commented out if you don’t want to

overwrite the files written for turbogrid
makeCurveFile
getVolume

%% BC for cfx and other output:
%clc
fprintf(’Pressure at 1: \t \t\t\t\t\t\t\t%.2f

\t\t[kPa]\n’,rho*g*(Head+hf(Q)-hBooster(Q))/1000)
fprintf(’Pressure at 2: \t\t\t\t\t\t\t\t%.2f \t\t[kPa] \n’,

(hBooster(Q) +HeadDiffSubmergence-
hfDraftTube(Q)).*rho.*g./1000)

fprintf(’Volume flow rate: \t \t\t\t\t\t\t%.2f \t\t[mˆ3/s]\n’, Q)
fprintf(’Meridional velocity at 1 boundary: \t\t\t%.2f

\t\t[m/s]\n’,Q/(pi*2*R1GuideVanes*b))
fprintf(’Meridional velocity at 2 boundary:

\t\t\t%.2f\t\t[m/s]\n’ ,Q/(pi*(D2.ˆ2)./4))
fprintf(’Mass flow rate: \t\t\t\t\t\t\t%.2f \t[kg/s]\n’,Q*rho)
fprintf(’Greatest value for c: \t\t\t\t\t\t%.2f \t\t[m/s]\n’,

104

Appendix G

max(max(c)))
fprintf(’Greatest value for w: \t\t\t\t\t\t%.2f \t\t[m/s]\n’,

max(max(w)))
fprintf(’Required head:\t\t\t\t\t\t\t\t%.2f \t\t[m]\n’,Hreq)
fprintf(’Time for one passing is:\t\t\t\t\t%.4f

\t\t[s]\n’,60/n/zla)
if exist(’V’,’var’)

fprintf(’\nApproximate volume of the geometry:
\t\t%.2f\t\t[mˆ3]\n’,V)

fprintf(’Time for flow to go from inlet to
outlet:\t%.2f\t\t[s]\n’,V/Q)

end

deHaller=(Q/(pi*2*R1GuideVanes*b)*sin(deg2rad(betaDim)))/(Q/(pi*(D2.ˆ2)./4));
%(DIXON page 85&86)

if deHaller <0.72
fprintf(’\nWARNING: The DeHaller criterion is not fulfilled:

(c1/c2) = %.2f <0.72\n’,deHaller)
else

fprintf(’\nThe DeHaller criterion is fulfilled: (c1/c2) = %.2f
>=0.72\n’,deHaller)

end
fprintf(’Smallest near wall grid size dS wrt. y+:\t%.2e

\t[m]\n’,min(min(getGridSize(200,rho,nu,max(max(G)),w))))
switch addDraftTube

case ’yes’
AIn=pi.*(max(ZDraft).*tan(draftTubeAngle)

+RGeom(iEllipse,jEllipse)).ˆ2;
VIn=Q./AIn;
PtotIn=patm+

rho*g*(HeadDiffSubmergence+hBooster(Q)-hfDraftTube(Q)
+LDraftTube);

REIn=rho*VIn*sqrt(AIn/pi)*2/mu; %Reynolds number at inlet
to draft tube

if REIn>2300
PstatIn=PtotIn-

Values.TurbulentEnergyCorrectionFactor.*rho.*VIn.ˆ2./2;
else

PstatIn=PtotIn-Values.LaminarEnergyCorrectionFactor.*rho.*VIn.ˆ2./2;
end
fprintf(’Static pressure at inlet:\

t\t\t\t\t%.2f\t\t[kPa]\n’,PstatIn./1000)
end
save(’P.mat’,’P’)%saves the struct with the points for later

reference. Should be moved to individual folder if you decide
to run a simulation with this design.

NPSHA=getNPSHA(hBooster(Q), patm,pvapour,HeadDiffSubmergence,
’pump’);

NPSHR=getNPSHR(cm,ufun(R),’pump’);
if NPSHA<=max(max(NPSHR))

105

Appendix G

fprintf(’Warning, cavitation will occur at some point\nNPSH_A=
%.2f < %.2f =max(NPSH_R)\n’, NPSHA,max(max(NPSHR)))

else
fprintf(’NPSHA= %.2f > %.2f =max(NPSHR)\n’,

NPSHA,max(max(NPSHR)))
end
fprintf(’Smallest boundary layer thickness:\t\t\t%f\t[m]\n’,

min(min(getBLThickness(w,(max(G)-G)))))
n_q=n*sqrt(Q/f)/((Head-hBooster(Q)+hf(Q)).ˆ0.75);
fprintf(’speed number n_q=\t\t\t\t\t\t\t%.2f\t\t[-]\n’,n_q)

Choices.m

Geometry=’BezierDefByPoints’;
Recording=false;
bladeLoadingMethod=’BetaDistribution’;
betaEval=’lineSegment’;
FindBetaBlade=’freeVortex’;
addDraftTube=’yes’;
addGuideVanes=’yes’;
addGuideVaneGeometry=’no’;
empiricalGamma=’no’;
nondimensional=’yes’;
axialFlowAtOutlet=’no’;

getValues.m

%Values
%All case specific values here have been redacted to avoid

disclosing sensitive data to
%the public.
global Values g rho mu nu patm pvapour
Values.ax=0.25; %initial

x value to define the acceleration along the blade
Values.ay=0.75; %same

for y
Values.b=%Height at the guide vane stem
%Values for cu1 from CFD:
Values.cu1CFD=[];
Values.D1=%Current diameter at the guide vanes
Values.D2=%Diameter imposed by existing geometry
Values.Dhub=%hub diameter
Values.dx=0.01; %Value to

change ax and ay with for each iteration
Values.dy=0.01;
Values.f=0.98; %Different for semi

axial turbine. not quite sure wether the pump is radial or
semi-axial (It’s not PURELY radial at least).

Values.gamma=0.8;

106

Appendix G

Values.hBooster=@(Q)%Assuming ideal slipless characteristic for
boosterpump, working in the same range of Q as the RPT.

Values.Head=%The design head
Values.HeadDiffSubmergence=%The height difference between the

average lower reservoir height and the RPT
Values.hf=@(Q)%friction losses for the penstock
Values.hfDraftTube=@(Q)%FrictionLosses from draft tube to the

lower reservoir.
Values.iEllipse=15;
Values.jEllipse=15;
Values.LaminarEnergyCorrectionFactor=2;%Energy correction factor

for laminar flow
Values.P2=
Values.P.Aij=[

0.0495 0.3134
0.3122 0.7536
0.8813 0.9694

];%Describes the initial variation of the cross sectional area.
Values.P.BetaDist=[0 1;0.7 0.8;0.7 0.1;1 0];%Points describing

the blade angle variation
switch Geometry

case ’BezierDefByPoints’
Values.P.LEp=[

%P for points
];%The points which generate the Leading edge by use of Bezier

curves
Values.P.TEpmid=[
];
otherwise
Values.P.LEp=[
];%The points which generate the Leading edge by use of Bezier

curves
Values.P.TEp=[

];
end
Values.P.LERunner=[

];
Values.P.TERunner=[

];
Values.P.Spanwise=[0 1;0.9 1;1 2];%To control how the blade

changes in the spanwise direction
Values.P.UcU=[0 1; 0.3 1 ;0.5 0; 1 0];
Values.R1GuideVanes=%Radius of the guideVanes
Values.RGuidevanes=%Distance from TE to points of extended runner

geometry
Values.RLe1=%The target values for The leading edge
Values.RLe2=
Values.Routlet(1)=%Values from the supplied

figure.Values.runnerheight=1.32;%0.527; %From draft tube to
top of guide vane.

107

Appendix G

Values.Routlet(2)=
Values.TurbulentEnergyCorrectionFactor=1.075;%Energy correction

factor for turbulent flow (approximate)
Values.n=250; %current rotational

velocity
Values.Q=%Design volume flow rate
Values.zla=8; %initial guess for runner blades. Has to be smaller

or equal to 8.
Values.zle=%number of guide vanes
Values.ZLe1=
Values.ZLe2=
Values.Zoutlet(1)=
Values.Zoutlet(2)=
switch nondimensional

case ’yes’
Values.DimensionlessRadius=Values.R1GuideVanes;%Value for

nondimenzionalization of lengths
Values.DimensionlessVelocity=

Values.DimensionlessRadius*Values.n/60*2*pi; %Value for
nondimenzionalization of velocities

Values.DimensionlessQ=Values.Q;%DesignFlowRate
Values.DimensionlessH=(Values.R1GuideVanes*Values.n/60*pi*2)ˆ2/g/2;

%u_1ˆ2/2g (head coefficient)
case ’no’

Values.DimensionlessRadius=1; %Value for
nondimenzionalization of lengths

Values.DimensionlessVelocity=1; %Value for
nondimenzionalization of velocities

Values.DimensionlessQ=1; %DesignFlowRate
Values.DimensionlessH= 1;

otherwise
error(’ERROR: no matching value for variable

"nondimensional". Must be either yes or no.’)
end

getDeltaX2.m

function deltaXoutlet=getDeltaX2(D2,Dhub,jEllipse)
%This function is supposed to output a vector for x-values (or

R-values for
%dividing a circular outlet into jEllipse-1 parts of equal area.

deltaAoutlet=pi*((D2./2).ˆ2-(Dhub./2).ˆ2)./(jEllipse-1); %outlet
area between two streamlines

deltaXoutlet=zeros(jEllipse,1);
deltaXoutlet(1)=Dhub/2;
deltaXoutlet(end)=D2/2;
for i=2:1:jEllipse-1

deltaXoutlet(i)=sqrt(deltaXoutlet(i-1).ˆ2+deltaAoutlet./pi);

108

Appendix G

end
end

getEta_h.m

function eta_h=getEta_h(Q,QBEP,n,HBEP)
nq=n.*sqrt(QBEP)./(HBEP.ˆ0.75);
m=0.08*0.5.*(1/QBEP).ˆ0.15.*(45./nq).ˆ0.06;
eta_hMax=1-0.055*(1/QBEP).ˆm-0.09.*(log(nq/45)).ˆ2.5; %Guelich

page 142
qRed=Q/QBEP;
eta_h=eta_hMax.*(1-0.6.*(qRed-0.9).ˆ2-0.25.*(qRed-0.9).ˆ3); %as

in Guelich page 166
end

The script extractBezierByPoints.m is an altered version of a script collected
from [24].

%Hello! this will plot Bezier curve for n control points
%This is a replacement of the program ’Parametic Cubic Bezier

Curve’
%submitted before ...Bezier for any number of points ...enjoy
function P=extractBezierByPoints(figNo,points)
%Outputs a bezier curve as pchip.
n=size(points,1);%input(’Enter no. of points ’);
w=2;%input(’Press 1 for entry through mouse or 2 for keyboard

repectively-->’);
n1=n-1;
if w==1

figure(figNo)
[p]=ginput(n);

end
if w==2

[p]=points;%input(’Enter co-odinates of points within brackets
->[x1 y1;x2 y2;x3 y3;...;xn yn] ’);

end

for i=0:1:n1
sigma(i+1)=factorial(n1)/(factorial(i)*factorial(n1-i)); % for

calculating (x!/(y!(x-y)!)) values
end
l=[];
UB=[];
for u=0:0.002:1
for d=1:n
UB(d)=sigma(d)*((1-u)ˆ(n-d))*(uˆ(d-1));
end
l=cat(1,l,UB); %catenation
end

109

Appendix G

P=l*p;
if figNo˜=0

line(P(:,1),P(:,2))
%line(p(:,1),p(:,2))

end
P=pchip(P(:,1),P(:,2));
end

% books for reference on the subject of cad/cam author Roger
Adams ,

% Ibrahim Zeid
%Prepared by Mechanical engg. student NIT Allahabad , India
% for any questions feel free to mail me at

slnarasimhan89@gmail.com

The script interparc.m was collected from [11]
the script distance2curve.m was collected from [10] getdAij.m

function dAij=getdAij(G,dA1,dA2,Pmid,Gmax)
if nargin==4%If G is a matrix/vector, we can use that to find the

maximal value of G
Gfrac=G./max(G);

else
Gfrac=G/Gmax;%Else we need a reference input to find G

end
P=[

0 0
Pmid
1 1
];%Some points by which the acceleration is defined in this

script. May be changed if necessary.
dAijChip=extractBezierByPoints(0,P);%Input these points to get a

bezier curve as pchip.
dAij=dA1+(ppval(dAijChip,Gfrac)).*(dA2-dA1);%evaluate the curve

at the points along the Length of the streamline.
end

cutOffBlade.m

function [Rout,Zout]=cutOffBlade(R,Z,TE,LE,iEllipse,jEllipse)
TEpchip=extractBezierByPoints(0,TE);
Rout=zeros(size(R));
Zout=zeros(size(Z));

for j=1:1:jEllipse
%Cut off at TE, first
Zpchip=pchip(R(:,j),Z(:,j)); %Piecewise

polynomial of streamline wrt r
rr=linspace(max(R(end,j),min(TE(:,1))),min(R(1,j) ,max(TE(:

110

Appendix G

,1)))); %Interval where both streamline and TE are
defined

zDiff=ppval(Zpchip,rr)-ppval(TEpchip,rr);
zDiffpchip=pchip(rr,zDiff);
Rcut=unique(fnzeros(zDiffpchip));
rz=interparc(iEllipse ,linspace(R(end,j),

Rcut),ppval(Zpchip,linspace(R(end,j),Rcut)),’pchip’);
Rout(:,j)=rz(:,1);
Zout(:,j)=rz(:,2);

end
R=Rout(end:-1:1,:);
Z=Zout(end:-1:1,:);
%Switch axis and cut off LE. Had problems with this one due to

vertical
%lines at the outlet.
LEpchip=extractBezierByPoints(0,LE(:,end:-1:1));
hold on

for j=1:1:jEllipse
Rpchip=pchip(Z(:,j),R(:,j)); %Piecewise

polynomial of streamline wrt r
zz=linspace(max(Z(end,j),min(LE(end,2),LE(1,2)))

min(Z(1,j),max(LE(1,2),LE(end,2)))); %Interval where
both streamline and TE are defined

rDiff=ppval(Rpchip,zz)-ppval(LEpchip,zz);
rDiffpchip=pchip(zz,rDiff);
Zcut=unique(fnzeros(rDiffpchip));
zr=interparc(iEllipse,linspace(Zcut,Z(1,j)),ppval(Rpchip

,linspace(Zcut,Z(1,j))) ,’pchip’);
Rout(:,j)=zr(:,2);
Zout(:,j)=zr(:,1);

end
Rout=Rout(end:-1:1,:);
Zout=Zout(end:-1:1,:);

end

GetGGeomAtG0.m

function GToAdd =
getGGeomAtG0(Rintersection,Zintersection,RGeom,ZGeom)

%gets the value of GGeom where G starts.
GToAdd=zeros(1,size(RGeom,2));

%initializing GToAdd
for j=1:size(GToAdd,2)

%Iterating
through the lines
i=2;

%Starting a t i=2 to include i=1 at i-1
while RGeom(i,j)>Rintersection

111

Appendix G

%While we are away
from the starting point
GToAdd(1,j)=GToAdd(1,j)+sqrt((RGeom(i-1,j)-RGeom(i,j)).ˆ2

+(ZGeom(i-1, j)-ZGeom(i, j)).ˆ2); %adding the length to
the value of G

i=i+1;

%incrementing index
end
GToAdd(1,j)=GToAdd(1,j)+sqrt((RGeom(i-1,j)-Rintersection(1,j)).ˆ2+

(ZGeom(i-1,j)- Zintersection(1,j)).ˆ2); %Adding the rest
of the line

end
end

QHCalculations.m

%% 5. Impeller blade number
%zla number of blades
%zle number of vanes
resonance=true;
zle=Values.zle;
zla=Values.zla;
nu1=[1,2,3].*[1;1;1];
nu2=nu1’;
m=zeros(3,3);
while resonance==true

m=abs(nu2.*zla-nu1.*zle);
if sum(sum((m==0)+(m==1)))==0

resonance=false;
else

zla=zla-1;
end

end
%% Initializing variables
switch FindBetaBlade

case ’freeVortex’
D2m=sqrt(0.5*((2*R(iEllipse,jEllipse))ˆ2

+(2*R(iEllipse,1))ˆ2));%Mean diameter at 2 (Suction
side)

%D1=(R(1,jEllipse) +R(1,1));%Assuming D1 is the arithmetic
average value.

D1=sqrt(0.5*((2*R(1,jEllipse))ˆ2+(2*R(1,1))ˆ2)); %assuming
that D1 ia supposed to be the geometric average as well.

switch nondimensional
case ’yes’

Values.DimensionlessH=(D1*Values.n/60*pi)ˆ2/g/2
;%u_1ˆ2/2g (head coefficient)

Values.DimensionlessVelocity=(D1*Values.n/60*pi);%u_1

112

Appendix G

case ’no’
Values.DimensionlessH=1;
Values.DimensionlessVelocity=1;

otherwise
error(’ERROR: no matching value for variable

"nondimensional"’)
end
ATE=0;%initializing area at the trailing edge
for j=1:1:jEllipse-1
ATE=ATE+

getdAij(GToAdd(:,j),dA1,dA2,P.Aij,max(GGeom(:,j)));
%Find the area at the runner outlet

end
u=(pi.*D1.*n)./(60); %tangential velocity at

1
switch nondimensional

case ’yes’
Values.DimensionlessH=uˆ2/g;%u_1ˆ2/2g (head

coefficient)
end
A2=pi.*(R(iEllipse,jEllipse).ˆ2-R(iEllipse,1).ˆ2); %Area

at 2
Hmax=(u).ˆ2./g; %Highest theoretical

shutoff height
lambdaLa=pi./2; %Angle between blades

and plates
alpha2=pi./2; %Angle between

circumferential direction and absolute velocity
Hfun=@(Q,beta1B,u,A1,A2,eta_h,gamma,tau_1,D2m,D1,alpha2,

f) (eta_h*u.ˆ2)/(g).*(gamma
-(Q)./(f*A1*u*tan(beta1B)).*(tau_1+
(A1*(D2m./D1)*tan(beta1B))/(A2*tan(alpha2)))); %p.133
Guelich

Hideal=@(u,Q,A,beta) u./g.*(u- Q./(A.*tan(beta)));
hf= Values.hf; %Friction losses of the

existing system
hfDraftTube=Values.hfDraftTube; %FrictionLosses from

draft tube to the lower reservoir.
hBooster=Values.hBooster;%Assuming ideal slipless

characteristic for boosterpump, working in the same
range of Q as the RPT.

%Beta with slip:
beta1B=deg2rad(10); %Setting initial value

for blade angle
deltaBeta=1;
bladeBlockage= @(beta1B,lambdaLa) 1./(1-(zla.*e

)./(pi.*D1.*sin(beta1B).*sin(lambdaLa)));%Guelich page
XXX

while true %Lifehack for "do
while" loop in matlab

113

Appendix G

beta1B=beta1B+deg2rad(deltaBeta);
f=Values.f; %Different for

semi axial turbine. not quite sure wether the pump
is radial or semi-axial (It’s not PURELY radial at
least).

% cm1=mean(cm(1,:));
cm1=Q/ATE;
c_1uB=u-(cm1)./(tan(beta1B));

switch empiricalGamma
case ’yes’

cu1CFD=Values.cu1CFD(1);%Not sure how I’ll extract
the values from CFX yet...

gamma=getGammaEmpirical(u,cu1CFD,c_1uB);
case ’no’

gamma=Values.gamma;%frequently between 0.7 and 0.8
otherwise

error(’ERROR: no valid value for variable
EmpiricalGamma’)

end
beta1Slip=atan(cm1/(u-(c_1uB-(1-gamma).*u)));
tau_1=bladeBlockage(beta1B,lambdaLa);
eta_h=getEta_h(Q,Q,n,Head);%finding the hydraulic

efficiency at Q=QBEP. therefore same Q twice.
Hreq=Hfun(Q,beta1B,u,ATE,A2,eta_h,gamma,tau_1,D2m,

D1,alpha2,f);
if (Head+hf(Q)-hBooster(Q)) <Hreq

break;
end

end
Qfun=@(Hfun) tan(beta1Slip).*ATE.*(u.ˆ2-Hfun.*g); %function

to find Q
steps=97;%number of Q-values to plot the head for.
figure(figno)%plotting the pump characteristic
figname.PumpChar=figno;
figno=figno+1;
hold on
yyaxis left
plot([0:1:steps]./Values.DimensionlessQ, Hfun(0:1:steps,

beta1B, u, ATE, A2, getEta_h(0:1:steps,Q,n,Head),
gamma, tau_1, D2m,D1, alpha2,
f)./Values.DimensionlessH);
%getGamma(beta1B,zla,D2m,D1,f),
tau_1,D2m,D1,alpha2,f));
%beta1B,u,A,getEta_h(0:1:105,Q,n,Head)));

plot([0:1:steps]./Values.DimensionlessQ,
(Head+hf(0:1:steps)-
hBooster(0:1:steps))./Values.DimensionlessH)

plot([0:1:steps]./Values.DimensionlessQ,
(Hideal(u,0:1:steps,ATE
,beta1B))./Values.DimensionlessH)

114

Appendix G

plot([0:1:steps]./Values.DimensionlessQ,
(Hideal(u,0:1:steps ,ATE,
beta1Slip))./Values.DimensionlessH)

switch nondimensional
case ’yes’

ylabel(’\Psi’)
ylh = get(gca,’ylabel’);
ylp = get(ylh, ’Position’);
set(ylh, ’Rotation’,0, ’Position’,ylp,

’VerticalAlignment’,’middle’,
’HorizontalAlignment’,’right’)

case ’no’
ylabel(’Head’)

end
yyaxis right
plot([0:1:steps]./Values.DimensionlessQ ,getEta_h(0:1:steps

,Q,n,Head),’-x’)
switch nondimensional

case ’yes’
legend(’Head with losses’,[’System curve at

\Psi_{BEP}=
’,sprintf(’%.2f’,(Head-hBooster(Values.Q)+hf(Values.Q))./Values.DimensionlessH)],’characteristic
without losses’,’lossless characteristic with
slip’ ,’Efficiency’,’Location’,’southwest’)

case ’no’
legend(’Head with losses’,sprintf(’System curve at

H=%.2f m’,Head),’characteristic without
losses’,’lossless characteristic with
slip’,sprintf(’Efficiency for
Q_{BEP}=%.2fmˆ3/s’,Q),’Location’,’southwest’)

end
ylabel(’\eta_h’)
ylh = get(gca,’ylabel’);
ylp = get(ylh, ’Position’);
set(ylh, ’Rotation’,0, ’Position’,ylp,

’VerticalAlignment’,’middle’,
’HorizontalAlignment’,’left’)

switch nondimensional
case ’yes’

xlabel(’q*’)
case ’no’

xlabel(’Q’)
end
betaDim=rad2deg(beta1B);

case ’streamlines’
beta1=zeros(1,jEllipse);
Qold=Q;
for j=1:1:jEllipse

D2m=2*R(iEllipse,j);% decided to use the raduius of the
streamlines as reference, and to use average data

115

Appendix G

from half the interval above nde half below for
calculations of volume flow rate etc.

D1=2*R(1,j);%Assuming D1 is the arithmetic average
value.=sqrt(0.5*((2*R(1,jEllipse))ˆ2+(2*R(1,1))ˆ2));
%assuming that D1 ia supposed to be the geometric
average as well.

u=(pi.*D1.*n)./(60); %tangential velocity
at 1

if j==1
A2=0.5.*(getdAij((G(iEllipse,j)+GToAdd(:,j)),

dA1,dA2,P.Aij,GGeom(end,j)));% using only half of
the area for first and last line

A1=0.5.*(getdAij((G(1,j)+GToAdd(:,j)),dA1,dA2,
P.Aij,GGeom(end,j)));

Q=Qold./(jEllipse-1)./2;
elseif j==jEllipse

A2=0.5.*(getdAij((G(iEllipse,j-1)+GToAdd(:,j-1)),dA1,
dA2,P.Aij,GGeom(end,j-1)));

A1=0.5.*(getdAij((G(1,j-1)+GToAdd(:,j-1)),dA1,dA2,
P.Aij,GGeom(end,j-1)));

Q=Qold./(jEllipse-1)./2;
else

A2=0.5.*(getdAij((G(iEllipse,j)+GToAdd(:,j)),dA1,
dA2, P.Aij,GGeom(end,j)) +getdAij((G(iEllipse,
j-1)+ GToAdd(:,j-1)), dA1 ,dA2,P.Aij,
GGeom(end,j-1)));%As the code uses dAij to find
the area between streamline j and j+1, the area
for each streamline is assumed to be the average
of the area for j and j+1

A1=0.5.*(getdAij((G(1,j)+GToAdd(:,j)),dA1,dA2 ,
P.Aij,GGeom(end,j))+getdAij((G(1,j-1)+GToAdd(:,j-1)),dA1,dA2,P.Aij,GGeom(end,j-1)));

Q=Qold./(jEllipse-1);
end
Hmax=(u).ˆ2./g; %Highest theoretical

shutoff height
lambdaLa=pi./2; %Angle between

blades and plates
alpha2=pi./2; %Angle between

circumferential direction and absolute velocity
Hfun=@(Q,beta1B,u,A1,A2,eta_h,gamma,tau_1,D2m,D1,

alpha2,
f)(eta_h*u.ˆ2)/(g).*(gamma-(Q)./(f*A1*u*tan(beta1B)).*(tau_1
+(A1*(D2m./D1)*tan(beta1B))/(A2*tan(alpha2))));%p.133
Guelich

Hideal=@(u,Q,A1 ,beta) u./g.*(u-Q./(A1.*tan(beta)));
hf=Values.hf; %Friction losses of the

existing system
hfDraftTube=Values.hfDraftTube; %FrictionLosses from

draft tube to the lower reservoir.
hBooster=Values.hBooster; %Assuming ideal slipless

116

Appendix G

characteristic for boosterpump, working in the same
range of Q as the RPT.

beta1B=deg2rad(10); %Setting initial
value for blade angle

deltaBeta=1;
bladeBlockage= @(beta1B, lambdaLa)

1./(1-(zla.*e)./(pi.*D1.*sin(beta1B).*sin(lambdaLa)));
%Guelich page XXX

while true %Lifehack for "do
while" loop in matlab
beta1B=beta1B+deg2rad(deltaBeta);
f=Values.f; %Different for

semi axial turbine. not quite sure wether the
pump is radial or semi-axial (It’s not PURELY
radial at least).
cm1=Q/ATE;

c_1uB=u-(cm1)./(tan(beta1B));
switch empiricalGamma

case ’yes’
gamma=getGammaEmpirical(u,cu1CFD(j),c_1uB);

case ’no’
gamma=Values.gamma;

otherwise
error(’ERROR: no matching values for variable

empiricalGamma’)
end
beta1Slip=atan(cm1/(u-(c_1uB-(1-gamma).*u)));
tau_1=bladeBlockage(beta1B,lambdaLa);
eta_h=getEta_h(Q,Q,n,Head);%finding the hydraulic

efficiency at Q=QBEP. therefore same Q twice.
Hreq=Hfun(Q,beta1B,

u,A1,A2,eta_h,gamma,tau_1,D2m,D1,alpha2, f);
if (Head+hf(Q)-hBooster(Q)) <Hreq

break;
end

end
Qmax=Q*1.5;
Qval=linspace(0,Qmax);
steps=97;%number of Q-values to plot the head for.
figure(figno)%plotting the pump characteristic
figname.PumpChar=figno;
figno=figno+1;
hold on
yyaxis left
plot(Qval./Values.DimensionlessQ,Hfun(Qval,beta1B,u,A1

,A2,eta_h,gamma,tau_1,D2m,D1,alpha2,f)./Values.DimensionlessH);
%getGamma(beta1B,zla,D2m,D1,f),tau_1,D2m,D1,alpha2,f));
%beta1B,u,A1,getEta_h(0:1:105,Q,n,Head)));

plot(Qval./Values.DimensionlessQ,
(Head+hf(Qval)-hBooster(Qval))./Values.DimensionlessH)

117

Appendix G

plot(Qval./Values.DimensionlessQ,Hideal(u,Qval,A1,
beta1B)./Values.DimensionlessH)

plot(Qval./Values.DimensionlessQ,Hideal(u,Qval,A1,
beta1Slip)./Values.DimensionlessH)

legend(’with slip’,’system curve’,’\eta=1 without
slip’,’\eta=1 with slip’)

ylabel(’Head’)
yyaxis right
ylabel(’Efficiency’)
xlabel(’Q’)
betaDim=rad2deg(beta1B);
beta1(j)=beta1B;

end
Q=Qold;

otherwise
error(’ERROR, no matching value for variable FindBetaBlade’)

end
switch axialFlowAtOutlet %If the flow at the outlet has an axial

component, the radial and the meridional flow angle are
different.
case ’yes’

epsilonOutlet=atan((Z(1,:)-Z(2,:))./(R(1,:)-R(2,:)));
beta1B=atan(tan(beta1B).*cos(mean(epsilonOutlet)));

%Transforming meridional blade angle to radial blade
angle

case ’no’
otherwise

error(’ERROR: no valid value for variable
axialFlowAtOutlet’)

end

getBeta1B.m

function beta1B=getBeta1B(gamma,c1m,tau1,D1m,n,beta1Bref,R)
%Code based on Johan Guelichs centrifugal pumps page 77
u1ref=pi*D1m*n/60;%Finding reference u at D1m
c1uRef=(gamma- (c1m.*tau1)/(u1ref.*tan(beta1Bref))).*u1ref;

%finding flow velocity at D1m
I=c1uRef.*(D1m./2);%assuming free vortex (cu/r=const)
c1u=I./R(1,:);%finding cu1 at all of the inlet nodes
u1=2.*pi.*R(1,:).*n/60;%finding u1 at all inlet nodes
beta1B=atan((c1m.*tau1)./(u1.*gamma-c1u));%finding beta1B for all

of the inlet nodes
end

getBetaDist.m

function betaAlongBlade=getBetaDist(beta1B,beta2B,iEllipse,
jEllipse,Fraction,option,P,PSpanwise)

118

Appendix G

if nargin==7
PSpanwise=[0 1;1 1];

end
switch option

case ’Node’
betaAlongBlade=zeros(iEllipse,jEllipse);

case ’lineSegment’
betaAlongBlade=zeros(iEllipse-1,jEllipse);

otherwise
error(’ERROR: "Option" not valid’)

end
TransversalChangeFactor=ppval(extractBezierByPoints(0,PSpanwise),

[0:1:jEllipse-1]./(jEllipse-1));%To change the blade by a
factor along its span

Pold=P;
for j=1:1:jEllipse

P(2:end-1,2)=Pold(2:end-1 ,2).*TransversalChangeFactor(j);
betaAlongBlade(:, j)=ppval(extractBezierByPoints(0,P),

Fraction(:,j)).*(beta1B(j)-beta2B(j)) +beta2B(j);
end
betaAlongBlade(1,:)=beta1B;
betaAlongBlade(end,:)=beta2B;
end

LEshape.m

%LEshape.m
% The creation of the thickness will be as in the powerpoint

supplied by
% Rainpower.
% Finding the normal to the surface created by the blades:

[Nx,Ny,Nz]=surfnorm(X,Y,Z);
Xup=X-Nx.*e./2;
Xdown=X+Nx.*e./2;
Yup=Y-Ny.*e./2;
Ydown=Y+Ny.*e./2;
Zup=Z-Nz.*e./2;
Zdown=Z+Nz.*e./2;
% Defining the ratios of the ellipses to be constructed later
bEllipse=1*e;
aEllipse=e/2;

LE=zeros(jEllipse,3,34);%will obtain coordinates for jEllipse
streamlines, 3 dimensions and 37 points pr streamline.

aAbs=sqrt((Xup(1,:)- Xup(2,:)).ˆ2+(Yup(1,:)-
Yup(2,:)).ˆ2+(Zup(1,:)- Zup(2,:)).ˆ2);

bAbs=bEllipse;

119

Appendix G

LE(:,1,1)=-bAbs./aAbs.*(Xup(1,:)-Xup(2,:))+Xup(1,:);
LE(:,2,1)=-bAbs./aAbs.*(Yup(1,:)-Yup(2,:))+Yup(1,:);
LE(:,3,1)=-bAbs./aAbs.*(Zup(1,:)-Zup(2,:))+Zup(1,:);

aAbs=sqrt((Xdown(1,:)-Xdown(2,:)).ˆ2+(Ydown(1,:)-Ydown(2,:)).ˆ2+(Zdown(1
,:)-Zdown(2,:)).ˆ2);

bAbs=bEllipse;
LE(:,1,2)=-bAbs./aAbs.*(Xdown(1,:)-Xdown(2,:))+Xdown(1,:);
LE(:,2,2)=-bAbs./aAbs.*(Ydown(1,:)-Ydown(2,:))+Ydown(1,:);
LE(:,3,2)=-bAbs./aAbs.*(Zdown(1,:)-Zdown(2,:))+Zdown(1,:);

aAbs=sqrt((Xup(1,:)-Xdown(1,:)).ˆ2 +(Yup(1,:)-Ydown(1,:)).ˆ2+
(Zup(1,:)-Zdown(1,:)).ˆ2);

bAbs=e/2;
LE(:,1,3)=-bAbs./aAbs.*(Xup(1,:)-Xdown(1,:))+Xup(1,:);
LE(:,2,3)=-bAbs./aAbs.*(Yup(1,:)-Ydown(1,:))+Yup(1,:);
LE(:,3,3)=-bAbs./aAbs.*(Zup(1,:)-Zdown(1,:))+Zup(1,:);

aAbs=sqrt((LE(:,1,1)-LE(:,1,2)).ˆ2+(LE(:,2,1)- LE(:,2,2)).ˆ2+
(LE(:,3,1)-LE(:,3,2)).ˆ2);

bAbs=e/2;
LE(:,:,4)=-bAbs./aAbs.*(LE(:,:,1)-LE(:,:,2))+LE(:,:,1);

% Should be able to construct both sides from knowledge of LE 1-4.
%upside:
bAbs=e/12;
LE(:,:,9)=LE(:,:,4);

%Points away from the tip
for i=5:1:9

aAbs=sqrt((LE(:,1,1)-LE(:,1,i-1)).ˆ2+(LE(:,2,1)-
LE(:,2,i-1)).ˆ2 +(LE(:,3,1)-LE(:,3,i-1)).ˆ2);

LE(:,:,i)=bAbs./aAbs.*(LE(:,:,1)-LE(:,:,i-1))+LE(:,:,i-1);
LE(:,:,i+5)=bAbs./aAbs.*(LE(:,:,2)-LE(:,:,(i +5)-1))+LE(:

,:,(i+5)-1);
end

%Points on the tip, but flat.
%upside
bAbs=e/12;
aAbs=e/2;
LE(:,1,15)=bAbs./aAbs.*(Xup(1,:)’-LE(:,1,3))+LE(:,1,3);
LE(:,2,15)=bAbs./aAbs.*(Yup(1,:)’-LE(:,2,3))+LE(:,2,3);
LE(:,3,15)=bAbs./aAbs.*(Zup(1,:)’-LE(:,3,3))+LE(:,3,3);

for i=16:1:19
aAbs=sqrt((Xup(1,:)’-

LE(:,1,i-1)).ˆ2+(Yup(1,:)’-LE(:,2,i-1)).ˆ2+(Zup(1,:)’-
LE(:,3,i-1)).ˆ2);

LE(:,1,i)=bAbs./aAbs.*(Xup(1,:)’-LE(:,1,i-1))+LE(:,1,i-1);

120

Appendix G

LE(:,2,i)=bAbs./aAbs.*(Yup(1,:)’-LE(:,2,i-1))+LE(:,2,i-1);
LE(:,3,i)=bAbs./aAbs.*(Zup(1,:)’-LE(:,3,i-1))+LE(:,3,i-1);

end
%downside
bAbs=e/12;
aAbs=e/2;
LE(:,1,20)=bAbs./aAbs.*(Xdown(1,:)’-LE(:,1,3))+LE(:,1,3);
LE(:,2,20)=bAbs./aAbs.*(Ydown(1,:)’-LE(:,2,3))+LE(:,2,3);
LE(:,3,20)=bAbs./aAbs.*(Zdown(1,:)’-LE(:,3,3))+LE(:,3,3);

for i=21:1:24
aAbs=sqrt((Xdown(1,:)’- LE(:,1,i-1)).ˆ2+ (Ydown(1,:)’-LE(: ,2

,i-1)).ˆ2+(Zdown(1 ,:)’- LE(:,3,i- 1)).ˆ2);
LE(:,1,i)=bAbs./aAbs.*(Xdown(1,:)’-LE(:,1,i-1))+LE(:,1,i-1);
LE(:,2,i)=bAbs./aAbs.*(Ydown(1,:)’-LE(:,2,i-1))+LE(:,2,i-1);
LE(:,3,i)=bAbs./aAbs.*(Zdown(1,:)’-LE(:,3,i-1))+LE(:,3,i-1);

end

%Continue from here with the ellipsis-form
j=0;
aAbs=bEllipse;
for i=25:1:29

j=j+1;
bAbs=sqrt(1-((j./6.*e./2)./(aEllipse)).ˆ2).*bEllipse;
LE(:,:,i)=bAbs./aAbs.*(LE(:,:,i-10)-LE(:,:,i-20))+LE(:,:,i-20);

end
j=0;
for i=30:1:34

j=j+1;
bAbs=sqrt(1-((j./6.*e./2)./(aEllipse)).ˆ2).*bEllipse;
LE(:,:,i)=bAbs./aAbs.*(LE(:,:,i-10)-LE(:,:,i-20))+LE(:,:,i-20);

end

figure(figno)
hold on
mesh(Xup,Yup,Zup)
mesh(Xdown,Ydown,Zdown)
for i=25:1:34

plot3(LE(:,1,i),LE(:,2,i),LE(:,3,i),’o’)
end

TEshape.m

%TEshape.m
%% Because the Blade Editor refused to be automatized, we’ll have

to define the thickness here, and just load stuff into
turboGrid ourselves.

[Nx,Ny,Nz]=surfnorm(X,Y,Z);

121

Appendix G

Xup=X-Nx.*e./2;
Xdown=X+Nx.*e./2;
Yup=Y-Ny.*e./2;
Ydown=Y+Ny.*e./2;
Zup=Z-Nz.*e./2;
Zdown=Z+Nz.*e./2;
% Defining the ratios of the ellipses to be constructed later
bEllipse=2*e;
aEllipse=e/2;
%Changing the order of the
Xup(1:end,:)=Xup(end:-1:1,:);
Yup(1:end,:)=Yup(end:-1:1,:);
Zup(1:end,:)=Zup(end:-1:1,:);

Xdown(1:end,:)=Xdown(end:-1:1,:);
Ydown(1:end,:)=Ydown(end:-1:1,:);
Zdown(1:end,:)=Zdown(end:-1:1,:);

TE=zeros(jEllipse,3,34);%will obtain coordinates for jEllipse
streamlines, 3 dimensions and 37 points pr streamline.

aAbs=sqrt((Xup(1,:)- Xup(2,:)).ˆ2+
(Yup(1,:)-Yup(2,:)).ˆ2+(Zup(1,:)-Zup(2,:)).ˆ2);

bAbs=bEllipse;
TE(:,1,1)=-bAbs./aAbs.*(Xup(1,:)-Xup(2,:))+Xup(1,:);
TE(:,2,1)=-bAbs./aAbs.*(Yup(1,:)-Yup(2,:))+Yup(1,:);
TE(:,3,1)=-bAbs./aAbs.*(Zup(1,:)-Zup(2,:))+Zup(1,:);

aAbs=sqrt((Xdown(1,:)-Xdown(2,:)).ˆ2+(Ydown(1,:)-Ydown(2,
:)).ˆ2+(Zdown(1,:)-Zdown(2,:)).ˆ2);

bAbs=bEllipse;
TE(:,1,2)=-bAbs./aAbs.*(Xdown(1,:)-Xdown(2,:))+Xdown(1,:);
TE(:,2,2)=-bAbs./aAbs.*(Ydown(1,:)-Ydown(2,:))+Ydown(1,:);
TE(:,3,2)=-bAbs./aAbs.*(Zdown(1,:)-Zdown(2,:))+Zdown(1,:);

aAbs=sqrt((Xup(1,:)-Xdown(1,:)).ˆ2+(Yup(1,:)-Ydown(1,:)).ˆ2+(Zup(1,:)-Zdown(1,:)).ˆ2);
bAbs=e/2;
TE(:,1,3)=-bAbs./aAbs.*(Xup(1,:)-Xdown(1,:))+Xup(1,:);
TE(:,2,3)=-bAbs./aAbs.*(Yup(1,:)-Ydown(1,:))+Yup(1,:);
TE(:,3,3)=-bAbs./aAbs.*(Zup(1,:)-Zdown(1,:))+Zup(1,:);

aAbs=sqrt((TE(:,1,1)-TE(:,1,2)).ˆ2+(TE(:,2,1)-TE(:,2,2)).ˆ2+
(TE(:,3,1)-TE(:,3,2)).ˆ2);

bAbs=e/2;
TE(:,:,4)=-bAbs./aAbs.*(TE(:,:,1)-TE(:,:,2))+TE(:,:,1);

% Should be able to construct both sides from knowledge of LE 1-4.
%upside:
bAbs=e/12;
TE(:,:,9)=TE(:,:,4);

122

Appendix G

%Points away from the tip
for i=5:1:9

aAbs=sqrt((TE(:,1,1)-TE(:,1,i-1)).ˆ2+(TE(:,2,1)-TE(:,2,i-1
)).ˆ2+(TE(:,3,1)-TE(:,3,i-1)).ˆ2);

TE(:,:,i)=bAbs./aAbs.*(TE(:,:,1)-TE(:,:,i-1))+TE(:,:,i-1);
TE(:,:,i+ 5)=bAbs./aAbs.*(TE(:,

:,2)-TE(:,:,(i+5)-1))+TE(:,:,(i+5)-1);
end

%Points on the tip, but flat.
%upside
bAbs=e/12;
aAbs=e/2;
TE(:,1,15)=bAbs./aAbs.*(Xup(1,:)’-TE(:,1,3))+TE(:,1,3);
TE(:,2,15)=bAbs./aAbs.*(Yup(1,:)’-TE(:,2,3))+TE(:,2,3);
TE(:,3,15)=bAbs./aAbs.*(Zup(1,:)’-TE(:,3,3))+TE(:,3,3);

for i=16:1:19
aAbs=sqrt((Xup(1,:)’-TE(:,1,i-1)).ˆ2+(Yup(1,:)’-TE(:,2,i-1)).ˆ2+(Zup(1,:)’

-TE(:,3,i- 1)).ˆ2);
TE(:,1,i)=bAbs./aAbs.*(Xup(1,:)’-TE(:,1,i-1))+TE(:,1,i-1);
TE(:,2,i)=bAbs./aAbs.*(Yup(1,:)’-TE(:,2,i-1))+TE(:,2,i-1);
TE(:,3,i)=bAbs./aAbs.*(Zup(1,:)’-TE(:,3,i-1))+TE(:,3,i-1);

end
%downside
bAbs=e/12;
aAbs=e/2;
TE(:,1,20)=bAbs./aAbs.*(Xdown(1,:)’-TE(:,1,3))+TE(:,1,3);
TE(:,2,20)=bAbs./aAbs.*(Ydown(1,:)’-TE(:,2,3))+TE(:,2,3);
TE(:,3,20)=bAbs./aAbs.*(Zdown(1,:)’-TE(:,3,3))+TE(:,3,3);

for i=21:1:24
aAbs=sqrt((Xdown(1,:)’ -TE(:,1,i-1)).ˆ2

+(Ydown(1,:)’-TE(:,2,i-1)).ˆ2
+(Zdown(1,:)’-TE(:,3,i-1)).ˆ2);

TE(:,1,i)=bAbs./aAbs.*(Xdown(1,:)’-TE(:,1,i-1))+TE(:,1,i-1);
TE(:,2,i)=bAbs./aAbs.*(Ydown(1,:)’-TE(:,2,i-1))+TE(:,2,i-1);
TE(:,3,i)=bAbs./aAbs.*(Zdown(1,:)’-TE(:,3,i-1))+TE(:,3,i-1);

end

%Continue from here with the ellipsis-form
j=0;
aAbs=bEllipse;
for i=25:1:29

j=j+1;
bAbs=sqrt(1-((j./6.*e./2)./(aEllipse)).ˆ2).*bEllipse;
TE(:,:,i)=bAbs./aAbs.*(TE(:,:,i-10)-TE(:,:,i-20))+TE(:,:,i-20);

end
j=0;

123

Appendix G

for i=30:1:34
j=j+1;
bAbs=sqrt(1-((j./6.*e./2)./(aEllipse)).ˆ2).*bEllipse;
TE(:,:,i)=bAbs./aAbs.*(TE(:,:,i-10)-TE(:,:,i-20))+TE(:,:,i-20);

end

figure(figno)
hold on
mesh(Xup,Yup,Zup)
mesh(Xdown,Ydown,Zdown)
for i=25:1:34

plot3(TE(:,1,i),TE(:,2,i),TE(:,3,i),’o’)
end

Xup(1:end,:)=Xup(end:-1:1,:);
Yup(1:end,:)=Yup(end:-1:1,:);
Zup(1:end,:)=Zup(end:-1:1,:);

Xdown(1:end,:)=Xdown(end:-1:1,:);
Ydown(1:end,:)=Ydown(end:-1:1,:);
Zdown(1:end,:)=Zdown(end:-1:1,:);

makeCurveFile.m

%makeCurveFile
%(this is the one used in BladeDesign2 written by Karl E. Not to

be confused
%with makeCurveFiles written by Helene N.D.
%% blade.crv
% Format: X, Y and Z. leading edge and trailing edge have a

fourth column
% indexed by "le1" and "te1",respectively. Blade curves are

separated by a
% single line with a #.
%The curves have to start at the hub and go towards the shroud
switch addGuideVaneGeometry

case ’yes’
makeGuideVaneCurves

otherwise
end
fidcsv=fopen([dir,’/blade.csv’],’w’);
fidBlade=fopen([dir,’/blade.crv’],’w’); %Opening

a txt file for the blade
for j=(1:1:size(BladeCurveX,2)) %For

number of streamlinse
fprintf(fidBlade,’#\n’); %# to

seperate blades
for i=1:1:length(BladeCurveX) %For

124

Appendix G

number of elements in each curve
if i==LeIndex %If this

is the curve element corresponding to le
string="le1"; %write

this in the file
elseif i==TeIndex %same

for te
string="te1";

else
string="";

%otherwise, just don’t write anything
end
fprintf(fidBlade,’%f\t%f\t%f\t%s\n’,BladeCurveX(i,j),BladeCurveY(i,j)

,BladeCurveZ(i,j),string);%print out the corresponding
X Y and Z values

fprintf(fidcsv,’%f,%f,%f\n’
,BladeCurveX(i,j),BladeCurveY(i,j),BladeCurveZ(i,j));
%Trying to create a polysurface for use in cfd Post

end
end
fclose(fidBlade); %Close

the file
fclose(fidcsv);
%% hub.crv
% format: The axial projection of the shroud and hub,

respectively(in
% R,theta,Z coordinates, but theta may remain 0)
figure(figno) %just to

see if it does what it should
figname.HubShroud=figno;
figno=figno+1;
hold on
fid=fopen([dir,’/hub.crv’],’w’); %open a

hub file
j=1;

%initialize j
i=iEllipse; %i

starts at the end, so at the circular outlet
switch addDraftTube

case ’yes’
LDraftTube=RGeom(iEllipse,jEllipse)*10;
ZDraft=linspace(LDraftTube,LDraftTube/20,20);
draftTubeAngle=deg2rad(4);
for iDraft=1:length(ZDraft)

fprintf(fid, ’%f\t%f\t%f\n’,R(iEllipse,j),0,ZGeom(i,j)
-ZDraft(iDraft));

plot(R(iEllipse,
j)./Values.DimensionlessRadius,(ZGeom(i,j)
-ZDraft(iDraft))./Values.DimensionlessRadius, ’o’)

end

125

Appendix G

otherwise
end
while(ZGeom(i,j)<Z(iEllipse,j)) %while

the hub has not reached the blade yet
fprintf(fid,’%f\t%f\t%f\n’,R(iEllipse,j),0,ZGeom(i,j)); %write

the coordinates of the hub
plot(R(iEllipse, j)./Values.DimensionlessRadius, ZGeom(i,

j)./Values.DimensionlessRadius,’o’)
i=i-1;

end
for i=iEllipse:-1:1 %Then

write all the elements along the blade(from inlet to outlet)
fprintf(fid,’%f\t%f\t%f\n’,R(i,j),0,Z(i,j));
plot(R(i, j)./Values.DimensionlessRadius,

Z(i,j)./Values.DimensionlessRadius,’o’)
end
iloop=iEllipse; %index to

find when the hub is not on the blade anymore
while(RGeom(iloop,j)<R(1,j)) %and

corresponding loop
iloop=iloop-1;

end
for i=iloop:-1:1 %Print

the remainder of the hub
switch addGuideVanes

case ’yes’
switch addGuideVaneGeometry

case ’yes’
if RGeom(i,j)<P.TipMin
fprintf(fid,’%f\t%f\t%f\n’,RGeom(i,j),0,ZGeom(i,j));
plot(RGeom(i,j)./Values.DimensionlessRadius,

ZGeom(i,j)./Values.DimensionlessRadius,’o’)
end

otherwise
fprintf(fid,’%f\t%f\t%f\n’,RGeom(i,j),0,ZGeom(i, j));
plot(RGeom(i, j)./Values.DimensionlessRadius,

ZGeom(i,j)./Values.DimensionlessRadius, ’o’)
end
otherwise

fprintf(fid,’%f\t%f\t%f\n’,RGeom(i,j),0,ZGeom(i, j));
plot(RGeom(i,j)./Values.DimensionlessRadius,

ZGeom(i,j)./Values.DimensionlessRadius,’o’)
end

end
switch addGuideVanes

case ’yes’
switch addGuideVaneGeometry

case ’yes’
fidGV=fopen([dir,’/hubGV.crv’],’w’);
RGuidevanes=[P.TipMin,P.TipMin+0.54,P.TipMin+1];

126

Appendix G

fprintf(fid,’%f\t%f\t%f\n’,RGuidevanes(1),0,
ZGeom(i,j));

plot(RGuidevanes(iGuidevanes)./Values.DimensionlessRadius,
ZGeom(i, j)./Values.DimensionlessRadius,’o’);

for iGuidevanes= 1:length(RGuidevanes)
fprintf(fidGV,

’%f\t%f\t%f\n’,RGuidevanes(iGuidevanes),
0,ZGeom(i,j));

plot(RGuidevanes(iGuidevanes)./Values.DimensionlessRadius,
ZGeom(i ,j)./Values.DimensionlessRadius, ’o’);

end
fclose(fidGV);

otherwise
RGuidevanes=Values.RGuidevanes;
AGuidevanes=2*pi*RGeom(1,j)*(Z(1,1)-Z(1,jEllipse));%want to

keep the area after guide vanes constant to avoid
separation

DeltaZGuidevanes=AGuidevanes./(2.*pi.*(RGeom(1,j)))
-AGuidevanes./(2.*pi.*(RGeom(1,j) + RGuidevanes)).*(1
-RGuidevanes./max(RGuidevanes).*0.1); %Making the area
smaller with increasing radius to avoid recirculation

for iGuidevanes=1:length(RGuidevanes)
fprintf(fid,’%f\t%f\t%f\n’

,RGeom(i,j)+RGuidevanes(iGuidevanes),0,
ZGeom(i,j)-DeltaZGuidevanes(iGuidevanes)./2);

plot((RGeom(i, j)
+RGuidevanes(iGuidevanes))./Values.DimensionlessRadius,
(ZGeom(i,j)-
DeltaZGuidevanes(iGuidevanes)./2)./Values.DimensionlessRadius,’o’);

end
end

otherwise
end
fclose(fid);
%% shroud.crv %Mostly the same as for hub.
fid=fopen([dir,’/shroud.crv’],’w’);
j=jEllipse;
i=iEllipse;
switch addDraftTube

case ’yes’
for iDraft=1:length(ZDraft)

RDraft=ZDraft(iDraft).*tan(draftTubeAngle);
fprintf(fid,’%f\t%f\t%f\n’,RGeom(i,j) +RDraft,0,

ZGeom(i,j)- ZDraft(iDraft));
plot((RGeom(i ,j)+RDraft)./Values.DimensionlessRadius,

(ZGeom(i,j)-ZDraft(iDraft))./Values.DimensionlessRadius,’o’)
end

otherwise
end
while(ZGeom(i,j)<Z(iEllipse,j))

127

Appendix G

fprintf(fid,’%f\t%f\t%f\n’, RGeom(i,j),0,ZGeom(i,j));
plot(RGeom(i,

j)./Values.DimensionlessRadius,ZGeom(i,j)./Values.DimensionlessRadius,’o’)
i=i-1;

end
for i=iEllipse:-1:1

fprintf(fid,’%f\t%f\t%f\n’,R(i,j),0,Z(i,j));
plot(R(i ,j)./Values.DimensionlessRadius,

Z(i,j)./Values.DimensionlessRadius,’o’)
end
iloop=iEllipse;
while(RGeom(iloop,j)<R(1,j))

iloop=iloop-1;
end
switch addGuideVaneGeometry

case ’yes’
fidGV=fopen([dir,’/shroudGV.crv’],’w’);
otherwise

end
for i=iloop:-1:1

switch addGuideVanes
case ’yes’
switch addGuideVaneGeometry

case ’yes’
if i==iloop

fprintf(fid,’%f\t%f\t%f\n’,RGeom(i,j),0,
ZGeom(i,j));

plot(RGeom(i,j)./Values.DimensionlessRadius,
ZGeom(i,j)./Values.DimensionlessRadius,’o’)

end
fprintf(fidGV,’%f\t%f\t%f\n’,RGeom(i,j),0,ZGeom(i,j));
plot(RGeom(i,j)./Values.DimensionlessRadius,

ZGeom(i,j)./Values.DimensionlessRadius,’o’)
otherwise
fprintf(fid,’%f\t%f\t%f\n’,RGeom(i,j),0,ZGeom(i,j));
plot(RGeom(i, j)./Values.DimensionlessRadius,ZGeom(i,

j)./Values.DimensionlessRadius,’o’)
end
otherwise
fprintf(fid, ’%f\t%f\t%f\n’,RGeom(i,j),0,ZGeom(i,j));
plot(RGeom(i,

j)./Values.DimensionlessRadius,ZGeom(i,j)./Values.DimensionlessRadius,’o’)
end

end
switch addGuideVanes

case ’yes’
switch addGuideVaneGeometry

case ’yes’
for iGuidevanes=2:length(RGuidevanes)

fprintf(fidGV,

128

Appendix G

’%f\t%f\t%f\n’,RGuidevanes(iGuidevanes),0,ZGeom(i,j));
plot(RGuidevanes(iGuidevanes)./Values.DimensionlessRadius,

ZGeom(i,j)./Values.DimensionlessRadius,’o’);
end
fclose(fidGV);

otherwise
for iGuidevanes=1:length(RGuidevanes)

fprintf(fid, ’%f\t%f\t%f\n’,RGeom(i,j)
+RGuidevanes(iGuidevanes),0,ZGeom(i,j)
+DeltaZGuidevanes(iGuidevanes)./2);

plot((RGeom(i,j)
+RGuidevanes(iGuidevanes))./Values.DimensionlessRadius,(ZGeom(i,
j)+DeltaZGuidevanes(iGuidevanes)./2)./Values.DimensionlessRadius,
’o’);

end
end

otherwise
end
axis equal
fclose(fid);

getVolume.m

%getVolume.m
%Finds the volume of the geometry, to use in transient simulation.
switch addDraftTube %Approximation of volume from leading edge of

the blade to the point added at the "inlet" in CFX
case ’yes’

VDraft=sum((Z(end,1:end-1)-(ZGeom(end,1:end-1)-max(ZDraft))).*pi.*(R(end,
2:end).ˆ2- R(end ,1:end-1).ˆ2));

case ’no’
VDraft=0;

otherwise
error(’ERROR: No valid value for addDraftTube’)

end
switch addGuideVanes %Approximation of volume of the part after

the blade and up to the "outlet" in CFX
case ’yes’

VGuide=sum(((RGeom(1,1:end-1)+RGuidevanes(end)).ˆ2-R(1,1:end-1).ˆ2).*(Z(1
,1:end-1)-Z(1,2:end)
+ZGeom(1,1:end-1)-ZGeom(1,2:end))./2.*pi);

case ’no’
VGuide=0;

otherwise
error(’ERROR: No valid value for addGuideVanes’)

end
dAijV=zeros(iEllipse,jEllipse-1); %The cross sectional area at

almost all streamlines
for j=1:1:jEllipse-1

129

Appendix G

dAijV(:,j)=getdAij((G(:,j)+ GToAdd(:,j)),dA1,dA2 ,P.Aij
,GGeom(end,j));

end
Vmain=sum(sum((G(2:end,1:end-1)-G(1:end-1,1:end-1)).*getdAij((G(2:end,1:end-1)+GToAdd(:,1:end-1)),

dA1,dA2,P.Aij,GGeom(end,1:end-1))));%multiplying the length
of an element with its area to get the volume

V=Vmain+VDraft+VGuide; %Adding all approximate volumes.

getGridSize.m

function deltaS=getGridSize(yPlusReq,rho,nu,L,U_inf)
Re=U_inf.*L./nu;
Cf=0.370.*(log10(Re)).ˆ(-2.584);%Schultz-Grunov,

https://www.cfd-online.com/Wiki/Skin_friction_coefficient
wallStress=0.5.*Cf.*rho.*U_inf.ˆ2;
u_wall=sqrt(wallStress/rho);
deltaS=yPlusReq.*nu./u_wall;
end

getNPSHA.m

function NPSHA=getNPSHA(hBooster,p_atm,p_vapour,
headDiffSubmergence,turbomachine)
global rho g
h_atm=p_atm./rho./g;
h_vapour=p_vapour./rho./g;
switch upper(turbomachine)

case ’TURBINE’
NPSHA=h_atm+hBooster+headDiffSubmergence-h_vapour;

case ’PUMP’
NPSHA=h_atm+hBooster+headDiffSubmergence-h_vapour;

otherwise
error(’ERROR: no matchig value for variable

"turbomachine"’)
end

getNPSHR.m

function NPSHR=getNPSHR(cm2,u2,Turbomachine)
global g
Turbomachine=upper(Turbomachine);
switch Turbomachine

case ’PUMP’
a=2; b=0.25;%Strictest

case ’TURBINE’
a=1.15;b=0.15;%Strictest

end
NPSHR=a.*cm2.ˆ2/(2.*g)+b.*u2.ˆ2/(2.*g);
end

130

Appendix G

getBLThickness.m

function delta=getBLThickness(U,x)
global mu rho
delta=5.5./sqrt(rho.*U.*x./mu).*x;

end

131

