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Abstract

The energy demand in current time increases significantly, the demand rises by 1.3%
each year to 2040, according to international energy agency(iea)[1]. Thus, it increases the
request for a sustainable and clean energy resource such as wind energy. Wind energy
technology is being exploited at significant commercial scales and established itself as a
primary source for renewable energy generation. Installing wind turbines on floating plat-
forms offshore maximizes the obtained wind power. However, locating a floating platform
out into the sea carries with it some technical challenges. One significant challenge is the
increased loads experienced by the turbine located on an offshore floating platform, due to
the addition of waves and wind coupling to the platform’s motion, etc. A number of con-
trol systems used to keep the turbine stable. The control systems’ design and optimization
require a reliable model that combines structural dynamics, hydrostatic, hydrodynamic,
and aerodynamic loads.
In this project, a dynamic model for control applications of floating offshore wind turbines
is developed. The equations of motion derived using the Newton Euler approach and for-
mulated in a linear state space form. The model considered hydrodynamic, hydrostatic,
and mooring forces for the platform and focused on deriving a new aerodynamic model
mainly based on the Kutta Jouski lifting theory. Resulted model is simple to implement,
where most of the calculations are predetermined in some geometrical parameters. The
derived aerodynamic are represented in vectorial form, that expresses the collective and
cyclic blade pitch forces in six DOF, and validated against experimental data.
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Sammendrag
Dagens energibehov øker betydelig, etterspørselen øker med 1,3 % hvert år innen 2040,
ifølge internasjonalt energibyrå (iea) [1]. Dermed øker det etterspørselen etter en bærekraftig
og ren energiressurs som foreksempel vindenergi. Vindenergiteknologi bruk øker bety-
delig i kommersiell skala og etablerer seg som en primær kilde for produksjon av forny-
bar energi. Installering av vindturbiner på flytende offshore plattformer maksimerer den
oppnådde vindkraften. Å lokalisere en flytende plattform ut i sjøen medfører noen tekniske
utfordringer. En betydelig utfordring er de økte kreftene som turbinen opplever på et off-
shore flytende plattform på grunn av kombinasjon av bølger og vindkobling på platformen.
Et antall styresystemer brukes for å holde turbinen stabil. Styresystemenes design og opti-
malisering krever en pålitelig modell som kombinerer strukturell dynamikk, hydrostatisk,
hydrodynamisk og aerodynamisk belastning.
I dette prosjektet er det utviklet en dynamisk modell for bruk i utvikling av styringssys-
temer av flytende havvindturbiner. Bevegelsesligningene er utledet ved hjelp av New-
ton Euler tilnærmingen og formulert i en lineær tilstandsromsform. Modellen inkluderer
hydrodynamiske, hydrostatiske og fortøyningskrefter for plattformen og fokuserer på å
utlede en ny aerodynamisk modell hovedsakelig basert på Kutta Jouski løfteteori. Resul-
tatmodell er enkel å implementere, der de fleste av beregningene er forhåndsbestemt i noen
geometriske parametere som er utledet i dette prosjektet. Den utledede aerodynamikken
er representert i vektorform, som beskriver kreftene i seks frihetsgrader, og valideres mot
eksperimentelle data.
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Chapter 1
Introduction

1.1 Bakground
The energy demand in current time increases significantly, the demand rises by 1.3% each
year to 2040, according to international energy agency(iea)[1]. Thus, it increases the re-
quest for a sustainable and clean energy resource such as wind energy. Among the renew-
able energy technologies, wind energy appears to be leading as a renewable alternative.
Wind energy technology is being exploited at significant commercial scales and estab-
lished itself as a primary source for renewable energy generation. Installing wind turbines
on floating platforms far offshore, in deeper water, where the wind is stronger and stead-
ier, maximizes the obtained wind power. Floating Offshore Wind Turbines technology is
growing rapidly as the offshore wind resource has enormous potential and is advantageous
in many countries with the technology solutions becoming more cost competitive.

However, locating a floating platform out into the sea carries with it some technical chal-
lenges. One significant challenge is the increased loads experienced by the turbine located
on an offshore floating platform. Tower load an offshore turbine would experience in-
creases compared to onshore wind turbines due to the addition of waves and coupling to
the motion of the platform etc.

A number of control systems used to keep the turbine stable. The design and optimization
of the control systems require a reliable model that combines structural dynamics, hydro-
static, hydrodynamic, and aerodynamic loads to predict the dynamic system behavior.

1.2 Assignment
The assignment is to develop a model amenable to effective control development. This
model should encompass the turbine platform’s motion, the gyroscopic effects due to the
spinning rotor, and an effective aerodynamic model that describes the blade pitch in terms
of collective and cyclic pitch. The resulted model should be presented as a linear state
space model.
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Chapter 1. Introduction

1.3 Modeling practice
Combining the aerodynamic, hydrodynamic, and mooring system dynamics on the float-
ing offshore wind turbines (FOWT) creates highly complex dynamics. Methods used in
modeling the fixed bottom turbines are no longer sufficient to describe the dynamics and
new approaches considered for the design of the floating platform. Several models have
been developed for FOWT, where most of hydrodynamic and mooring system codes and
techniques are adopted from the oil and gas industry and the aerodynamic adopted from
the aircraft and helicopter industry. However, those models are not readily applicable for
integrated FOWT simulations[5]. Advanced numerical simulation tools such as FAST[6]
and HAWC2[7] are also used. Those models give an accurate and good approximation for
the physics, but unfortunately, are way too complex and not always practical for control
development.

It is important to note that there is no one exact solution for the modeling problem;
the best one can obtain is an approximation that is ”good enough” for the purpose. This
work follows the Einstein quote that says ”models should be as simple as possible but no
simpler”, and aim to develop a simplified model that is accurate enough.
The model developed in this thesis finds its utility in the control development and gives
an accurate description needed for individual pitch control design. The modeling process
may be summarized elegantly by figure 1.1

c

�wind

tG

pG

Figure 1.1: Components of the turbine modeled
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1.4 Thesis outline

1.4 Thesis outline
In chapter 2, the modeling platform kinematic and kinetics forces are presented. The tower
and platform are considered as one rigid body when deriving the equations. The Newton
Euler approach is used to derive the equation of motion. The system stiffens forces such
as hydrostatic and mooring are presented as a linear equation. Morison equation is used
here to derive the hydrodynamic force.

In chapter 3, a new model for the aerodynamic is presented. The rotor modeling includes
some transformation rules based called twist and screw, and those have been defined in
this chapter. Using the transformation rules together with Kutta Jouski lifting theory, an
aerodynamic model, have been derived. The derived model provides an accurate estima-
tion of the aerodynamic using collective and cyclic are validated against experimental data.

In chapter 4, the modeled systems from chapters 2 and 3 are integrated into the final
model. All of the complex derivations done in the chapters before are presented in the
most preferred and known form, the sate space form. The system is linearized about an
operation point and described as a function of the deviation.

In chapter 5, several load cases are used to compare the modeled system against available
simulation data. Systems controllability using the modeled collective and cyclic pitch
model have been examined.

3



Chapter 2
Modeling turbine platform &
hydrodynamic

In this chapter, the turbine platform and tower are modeled in six degrees of freedom, as
described in table 2.1. The equation of motion is derived using the Newton Euler approach
and represented in a matrix form, which allows the future implementation of the system
easier. The modeling approaches and notation are based on modeling methods presented
in the Fossen[2020][8]. The vectorial form in [8] seems very useful in FOWT modeling.

2.1 Platform kinematic and geometry

2.1.1 Reference frames
To derive the equation of motion of a moving body, it is convenient to define the equation
relative to an inertial reference frame. Consider the platform depicted in figure 2.1, three
reference frames are defined to characterize the displacement and rotation of the platform.
The reference frames in this case are:

• The inertial reference frame {i}: The newton’s law of motion is valid on an inertial
frame, and the frame needs to be fixed. For simplicity, the inertial is defined to be
coincident to body frame {b} when the turbine is in the equilibrium position.

• The body-fixed reference frame {g}: This frame is fixed to the body with origin
og fixed to the center of mass CM. The z axis points in the longitudinal direction
through the turbine (directed from bottom to top ), while the x axis points sideways
to the turbine.

• The body-fixed reference frame {b}: The final equation of motion is defined in the
rotor frame. This frame is fixed to the body with origin at the top of the tower with
distance rbg = [0 , 0 , rg,z]

>

4



2.1 Platform kinematic and geometry

CO

CG

x

x

x

z

z

z y

CO

CO

i
i

i

Figure 2.1: platform geometry and coordinates

2.1.2 Generalized coordinates and velocities
As mentioned earlier, the body is moving in six independent generalized coordinates. The
generalized position, denoted by η, is chosen as:

η =
[
piib Θib

]>
=
[
xi yi zi φ θ ψ

]>
(2.1)

Here piib and Θib are the position and angle of the body relative to inertial frame. The
generalized velocities are the time derivatives of the generalized coordinates of the system:

η̇ =
[
ṗiib Θ̇ib

]>
=
[
ẋi ẏi żi φ̇ θ̇ ψ̇

]>
(2.2)

Where ṗiib and Θ̇ib are the linear velocity and angular velocity of the body relative to
inertial frame.

Body forces Body linear and Displacement and
DOF and moments angular velocities Euler angles
1 motions in the x-direction (surge) fx u xn

2 motions in the y-direction (sway) fy v yn

3 motions in the z-direction (heave) fz w zn

4 rotation about the x-axis (roll) mx p φ
5 rotation about the y-axis (pitch) my q θ
6 rotation about the z-axis (yaw) mz r ψ

Table 2.1: Platform Degrees of freedom

5



Chapter 2. Modeling turbine platform & hydrodynamic

The angles φ, θ, ψ are often referred to as the Euler-Angles, also referred to as the roll,
pitch, yaw-angles. The Euler angles is a rotation sequence that describe platform rotation
kinematic and is commonly used for marine and flight vehicles[8]. The rotation sequence
contains the three simple rotations around the x, y and z axes. These are respectively:

Rx(φ) =

 1 0 0
0 cφ −sφ
0 sφ cφ

 ,Ry(θ) =

 cθ 0 sθ
0 1 0
−sθ 0 cθ

 ,Rz(ψ) =

 cψ −sψ 0
sψ cψ 0
0 0 1


(2.3)

The corresponding rotation matrix from body to inertial frame Rib is

Rib =

 cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ


where s(·) = sin(·) and c(·) = cos(·) . Furthermore, it is advantageous to express the
velocities in the body frame. The relationship between the velocities can be expressed as:

ṗiib = Ri
bv
b
ib (2.4)

for the linear velocity, and

Θ̇nb = T (Θnb)ω
b
nb =

 1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

pq
r

 (2.5)

for the angular velocities. The transformation is summarized in equation form in equation
2.6

η̇ = Jθ(η)v

m[
ṗnnb
Θ̇nb

]
=

[
R (Θnb) 03×3

03×3 T (Θnb)

] [
vbnb
ωbnb

]
(2.6)

2.2 Kinetics

2.2.1 Newton–Euler equations of motion
The equation of motion win turbine are derived around the center of gravity CG, using the
Newton–Euler formulation. The Newton Euler equation of motion gives:

id

dt
m~vig = ~fg

id

dt
Ig~ωig = ~mg (2.7)

6



2.2 Kinetics

Where ~F and ~M are the sum of forces and moments acting on the CG, Ig the moment
of inertia about the center of gravity and

id
dt is the time differentiation in inertial frame

{i}. Using the equation for time differentiation of a vector in rotating body frame gives
the equations for the translational rotational motion:

id

dt
m~vig =

bd

dt
(m~vig) +m~ωig × ~vig (2.8)

= m~̇vig +mS(~ωig)× ~vig

id

dt
I~ωig =

bd

dt
(Ig~ωib) + ~ωib × (Ig~ωib) (2.9)

= Ig ~̇ωib − S(Igωib)ωib

Where (·) is the skew symmetric matrix of the vector (·). For an arbitrary vector a =
[a1 a2 a3]>, S(a) is expressed as

S(a) =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 (2.10)

The skew symmetric matrix has several useful properties and simplifies cross product rep-
resentation, and it is frequently used in the rest of the modeling in this report.
Summarizing the Newton–Euler equations 2.8 and 2.9, the equation can be expressed in
the matrix form:

MRBν̇ + CRB(ν)ν = τ (2.11)

m

[
mtI3×3 03×3

03×3 Ig

]
︸ ︷︷ ︸

MCG
RB

[
v̇big
ω̇bib

]
+

[
mtS(ωbib) 03×3

03×3 −S(Igω
b
ib)

]
︸ ︷︷ ︸

CCGRB

[
vbig
ωbib

]
=

[
f bg
mb
g

]
(2.12)

2.2.2 Newton–Euler equations of motion about an arbitrary origin

To simplify the further analysis of different forces formulated in different points about the
body, it is desirable to derive the equation of motion for an arbitrary origin b with distance
rbg to the center of gravity. Transformation of the forces from an arbitrary point to CG can
be expressed by the simple relation:

f bb = f bg

mb
b = S(rbg)f

b
b (2.13)

7



Chapter 2. Modeling turbine platform & hydrodynamic

The transform of velocities can be derived as:

vbig = vbib + ωbig × rbg

= vbib + S>(rbg)ω
b
ig (2.14)

Having established the transformation rule, the equation 2.12, will be transformed to
the CO coordinate system by equation 2.15.

H>(rbg)M
CG
RBH︸ ︷︷ ︸

MCO
RB

[
v̇bib
ω̇bib

]
+ H>(rbg)M

CG
RBH︸ ︷︷ ︸

CCORB

[
vbib
ωbib

]
= H>(rbg)

[
f bg
mb
g

]
(2.15)

WhereH(rbg) is transformation matrix defined as:

H(rbg) :=

[
I3×3 S>(rbg)
03×3 I3×3

]
, H>(rbg) :=

[
I3×3 03×3

S(rbg) I3×3

]
(2.16)

The matrices MCO
RB and CCO

RB is the mass and Coriolis matrices , mt is the platform
and tower mass and Ig is the inertia tensor in the center of mass.

MCO
RB =

[
mtI3×3 −mtS(rbg)
mtS(rbg) Ig −mtS

2(rbg)

]
(2.17)

CCO
RB =

[
mtS(ωbib) −mtS(ωbib)S(rbg)

mtS(rbg)S(ωbib) −S(Ig −mtS
2(rbg))ω

b
ib)

]
(2.18)

I =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 (2.19)

The kinetics summarized in CO frame

MCO
RB ν̇

b + CCO
RB(νb)νb = τ b (2.20)

8



2.3 Platform forces

2.3 Platform forces

In this section the most significant forces on the platform are modeled, this chapter is
largely based on chapter 4 in [8], the same principles for ships modeling are assumed
to apply for FOWT modeling. The external forces and moment considered is shown in
figure2.2 those are the hydrostatic, hydrodynamic and mooring loads.

τRB = τhys + τhyd + τmor (2.21)

Figure 2.2: Component of hydrodynamic modeling

2.3.1 Hydrostatic forces

The hydrostatic forces considered in this derivation are the gravitational and buoyancy
forces, which called restoring forces. Buoyancy is an upward force exerted by a fluid on
an immersed object in a gravity field. The buoyancy force denoted by B, can be calculated
by the Archimedes formula:

B = ρg∇ (2.22)

For a floating platform at rest, Archimedes stated that buoyancy and weight are in balance
such that:

mg = ρg∇

where ∇ and z is the displaced volume and displacement in heave direction and z = 0 is
the equilibrium position.

9



Chapter 2. Modeling turbine platform & hydrodynamic

CG

M

B

fb

fg

GM

Figure 2.3: Buoyancy and gravitational force pair

The hydrostatic force in heave is the difference of the gravitational and buoyancy
forces:

fz = mgρg(∇+ δ∇(z))

= −ρgδ∇(z) (2.23)

where δ∇(z) =
∫ z

0
A(ζ)dζ is the change in displaced water, and A(ζ) is the waterplane

area as a function of the heave position, A(ζ) can be assumed to be constant for small
perturbations in z. The restoring hydrostatic forces are written as:

f ihys =

 0
0

−ρgAz

 (2.24)

in the inertial frame, which can be transformed to the body frame such that:

f bhys = R>ibf
i
hys = −ρgAz

 −sin(θ)
cos(θ)sin(φ)
cos(θ)cos(φ)

 (2.25)

From figure 2.3, it is seen that the force pair store a moments with arms equal to -GMsin(θ)
and GMsin(φ), where GM defined as the distance between the metacenter and center of

10



2.3 Platform forces

gravity. The restoring moment can then described as:

mb
hys = rbGM × f bb

=

 GMsin(φ)
−GMsin(θ)

0

× −ρg∇
 −sin(θ)
cos(θ)sin(φ)
cos(θ)cos(φ)


= −ρg∇

 GMsin(φ)cos(θ)cos(φ)
GMsin(θ)cos(θ)cos(φ)

GM(sin(φ)sin(θ)− cos(θ))

 (2.26)

The restoring forces and moments can be summarized and written as:

τhys = −
[

f bhys
mb
hys

]
(2.27)

Assuming small angle pitch, and small z gives:

τhys ≈ diag(0, 0ρgA, ρg∇GM, ρg∇GM, 0)


x
y
z
φ
θ
ψ

 (2.28)

2.3.2 Mooring forces
The mooring is limiting the horizontal and vertical movement of the platform. For sim-
plicity, mooring forces are modeled as linear position dependent force, as shown in figure
2.4. The mooring is modeled as a mass-spring system with components in horizontal, ver-
tical, and yaw direction. This is shown to be a good approximation for the system stiffness.

The forces and moments equations are given
by equation (2.29) about the fixing point a
with distance rbmoor = [0, 0, rz]

> to the body
frame CO:[
f imoor
mi
moor

]
= diag(Kx,Ky,Kz, 0, 0,Kψ)︸ ︷︷ ︸

:=Kmoor

[
pimoor

Θib

]
(2.29)

m

Kx/2 Kx/2

Kz

Figure 2.4: mooring mass-spring system
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Chapter 2. Modeling turbine platform & hydrodynamic

Since the equations of motion are derived about frame {b}, the mooring forces must
be transformed into to {b} frame. The transformation are are done by use of the transfor-
mation rule derived in section 2.2. This is shown in equation (2.30):

[
fCOmoor
mCO
moor

]
= H>(rbmoor)KmoorH(rbmoor)

[
piCO
Θib

]
(2.30)

[
fCOmo
mCO
mo

]
=

[
I3×3 03×3

S (rmo) I3×3

] [
diag(Kx,Ky,Kz) 03×3

03×3 diag (0, 0,Kψ)

] [
I3×3 −S (rmo)
03×3 I3×3

] [
piCO
Θib

]
=

[
diag(Kx,Ky,Kz) −diag(Kx,Ky,Kz)S (rmo)

S (rmo) diag(Kx,Ky,Kz) −S (rmo) diag(Kx,Ky,Kz)S (rmo) + diag (0, 0,Kψ)

] [
piCO
Θib

]

The system stiffness is then defined as the sum of hydrostatic and mooring forces
and denoted by the matrixG. The stiffens force is equal to:

Gη =


Kx 0 0 0 Krz 0
0 Ky 0 −Krz 0 0
0 0 Kz+ρgAwp 0 0 0

0 −Krz 0 ρg∇GM−Kxr2
z 0 0

Krz 0 0 0 ρg∇GM−Kyr2
z 0

0 0 0 0 0 Kψ


 x
y
z
φ
θ
ψ

 (2.31)

2.3.3 Hydrodynamic forces
For the underwater structure of a floater consisting of a slender buoyant cylinder, the Mori-
son equations can be used to evaluate the hydrodynamic loads[9]. The Morison’s equation,
eq. 2.32 calculate the forces resulting from the normal flow; these forces act normal to the
cylindrical axis.

For this problem, the relative form of Morison’s equation is utilized. This equation
gives the force dfhyd acting on a cylindrical strip of length dz [10] the equation is shown
in equation 2.32:

dfhyd = ρ
πD2

4
dzν̇c + ρ

πD2

4
dzCa(ν̇c − ν̇) +

1

2
ρCdDdz(νc − ν)|νc − ν| (2.32)

Where:
D : Cylinder diameter
Ca : Added mass coefficient
CD : Drag coefficient
ν̇c : Wave acceleration at strip mid-point
νc : Wave velocity at mid-point

12



2.3 Platform forces

The term
(
πD2

4 dz
)

is the displaced volume of fluid over time, and it’s assumed to be
constant. Then the total force are formulated such as :

fhyd = −ρ∇Caν̇︸ ︷︷ ︸
added mass

+ ρ∇Cmν̇c︸ ︷︷ ︸
Froude-Krylov force

+
1

2
ρACdνr|νr|︸ ︷︷ ︸
Viscous Drag

(2.33)

Where Cm = 1 +Ca is the inertia coefficient and νr = νc− v is the relative velocity. As
the Morison’s just considering the horizontal forces the heave force assumed to be zero,
the yaw moment is also equal to zero because a cylinder is axisymmetric.

The added mass term of equation 2.33 is a function of the platform velocities and it is often
shifted to the left hand side of the equation of motion,the remaining terms are function of
the waves dynamic, it will be denoted as τhyd∗ . The added mass is then formulated in
matrix for and transformed to CO frame where the equation of motion defined:

[
I3×3 03×3

S (rhyd) I3×3

] [
diag (−ρ∇Ca,−ρ∇Ca, 0) 03×3

03×3 03×3

] [
I3×3 −S (rhyd)
03×3 I3×3

]
(2.34)

The added matrix at the CO frame is then defined as:
A11 0 0 0 A15 0

A22 0 A24 0 0
0 0 0 0

sym A44 0 0
A55 0

0

 (2.35)

The elements of the added mass matrix are

A11 = A22 = ρ∇Ca A15 = −A24 = A11rhyd , A44 = A55 = A11r
2
hyd

Chapter summary:
Summarizing all force derived in this chapter, the equation of motion is:

(M +A)ν̇ +Cν +Gη = τhyd∗ (2.36)
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Chapter 3
Modeling turbine rotor &
aerodynamic

Figure 3.1: Components of the rotor model [4]

In this chapter, an accurate model for the rotor and aerodynamic load is developed.
The rotor modeling is summarized elegantly in figure3.1. Unlike most of the developed
models, the developed model is not based on the blade element theory (BEM). The model
in this chapter is based on the Jouwski rotor and vectorial vortex theory. However, this
model will be validated against BEM developed codes.
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3.1 Rotor kinematic

3.1 Rotor kinematic
Rotor modeling include some complex derivations and transformations; thus, it is impor-
tant to have the transformation rules established.

3.1.1 Twists and screws
A twist is a generalized velocity containing both translational and rotational velocity. We
shall denote such objects by

v =

[
v
ω

]
(3.1)

Twists are used to generate a vector field using six parameter such as:

v(x) =
[
I −S(x)

]
v (3.2)

Screws are generalized forces that contain both force and torque. This type of object will
be denoted by

τ =

[
f
m

]
(3.3)

Screws use a vector field to generate six parameters by

τ =

∫ [
I

S(x)

]
f(x)dx (3.4)

Without going in detail of derivation, two important transformation rules are used here.
The transformation matrix for twists and screws in two reference frames are defined as:

v′ = Tv, T ,

[
R S(r)R
0 R

]
, τ = T̃ τ ′, T̃ ,

[
R 0

S(r)R R

]
(3.5)

Twists are dual to screws in the following sense:

v>τ = (Tv′)
>
(
T̃ τ ′

)
= v′>T>T̃ τ ′ = v′>τ ′ (3.6)

These results show to be very useful when transforming the wind vector fields between
the frames. The results of screw and twist include several mathematical steps discussed in
[11].

3.1.2 Reference frames
For rotor modeling, three different Reference frames are used.

• Inertial frame denoted {I}

• Rotor frame denoted {r}

• Blade frames denoted {bi} for each blade

Rotation between frames is described by Euler angles in a similar approach used for
the platform kinematic.

15



Chapter 3. Modeling turbine rotor & aerodynamic

3.1.3 Flow representation
The flow model used for deviation of the aerodynamic forces is the relative velocity of the
rotor. The flow is composed of:

• External wind and wind shear flow ν0

• Wake induced flow νi

• Flow from the platform and rotor motion ν

The relative flow vector denoted µ can then be expressed such that:

µ = ν0 − νi − ν (3.7)

Hereµ is the 6x6 velocity twist that describes relative flow on rotor frame. The relative
flow will be transformed into a 3 × 3 matrix in the blade frame. The forces are found in
the blade frame after that transformed back to the rotor frame. The transformation of
velocities and forces can be elegantly summarized by figure 3.2. These transformations
give us a simple representation of forces in 6 degrees of freedom.

µ [

I −S(r)
]

Twist: Frame {r} to {b}

µ(r)
Aerodynamic model f(r)

[

I

S(r)

]

Srew: Frame {b} to {r}

τ

{r}
{r}

Figure 3.2: Caption
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3.2 Aerodynamic forces

3.2 Aerodynamic forces

Figure 3.3: Caption

3.2.1 Kutta–Joukowski relation
The airflow impacts the rotor blades and induces friction on them, which produces an
aerodynamic force. The force is decomposed into two components called the lift and drag
forces, perpendicular and parallel to the inflow, respectively. The vorticity carried by the
airfoil is responsible for the lift force, and the Kutta–Joukowski theorem gives the relation
between the airfoil circulation and the steady lift force[12], by equation

flift(x) = ργ(x)× µ(x) (3.8)

3.2.2 Geometric blade element method
In this section, the aerodynamic forces on a straight lifting line are considered. Consider
Figure 3.5, which shows a coordinate system attached at the root of a blade. The coordi-
nates in this frame will be denoted by x = col(x, r, z) and denote the position along t, l, and
n, respectively. Airfoil sections with a twist θ(r) and chord length c(r) are placed along the
lifting line.

17



Chapter 3. Modeling turbine rotor & aerodynamic

Figure 3.4: The coordinate system of the blade

Lift forces
The vectorial Kutta–Joukowski theorem informs us that lift is given by the relation

flift(x) = ρS(γ(x))µ(x) (3.9)

Here, ρ is the air density, γ the vorticity and µ the relative flow. The lifting line approxi-
mation concentrates all vorticity along a lifting line, therefore

γ(x) = elΓ(r) (3.10)

where el = [0, 1, 0]>. This implies the concentrated lift distribution given by

flift (x) = ρΓ(r)S (el)µ(x) (3.11)

Drag forces
Drag can be modeled in an analogous manner with the following formula

fdrag(x) = ρδ(r)
(
I − ele>l

)
µ(x) (3.12)

Here, δ(r) serves as a coefficient in a drag formula following Hoerner’s crossflow-principle.
We shall let

δ(r) = dc(r)|µ(x)| (3.13)

18



3.2 Aerodynamic forces

where d is constant. This choice implies the following energy dissipation due to drag.

µ(x)>fdrag(x) = ρdc(r)|µ(x)|µ(x)>
(
I − ele>l

)
µ(x) (3.14)

Figure 3.5: The blade 2D section and velocity definition

The forces for lift and drag derived in equations 3.11 and 3.12 are the the forces on
the 2D section as shown in figure 3.5. The complete force for the blade are obtained by
integrating over the blade length.

Integration of lift
One can integrate over the lift expression to arrive at a screw which accounts for all forces
and torques on the blade.

τ lift = ρ

∫ R

0

[
I

S(elr)

]
Γ(r)S(el)µ(r) dr (3.15)

We shall assume that the relative flow can be captured by a twist employed via the follow-
ing expression.

µ(x) =
[
I −S(x)

]
µ (3.16)

Thus, the lift force in blade frame are formulated as

τ lift = ρ

(∫ R

0

[
I

S(elr)

]
S(el)

[
I −S(elr)

]
Γ(r) dr

)
µ (3.17)

This is a linear relationship which may be written as

τ lift = Λµ (3.18)
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Chapter 3. Modeling turbine rotor & aerodynamic

Employing the identity S2(v) = vv> −
(
v>v

)
I , the integrals in the lift matrix may be

taken in the following fashion.

Λ , ρ

∫ R

0

[
Γ(r)S(el) −Γ(r)rS2(el)

Γ(r)rS2(el) −Γ(r)r2S3(el)

]
dr = ρ

[
g0S(el) −g1S

2(el)
g1S

2(el) −g2S
3(el)

]
(3.19)

The following integrals were defined, and referred to as circulation parameters.

g0 ,
∫ R

0

Γ(r) dr, g1 ,
∫ R

0

Γ(r)r dr, g2 ,
∫ R

0

Γ(r)r2 dr (3.20)

Circulation is determined by the flow perpendicular to the airfoil µc and is proportional to
the airfoil chord length. Let en = [1, 0, 0]>. The normal crossflow at a blade twisted with
the angle θ is given by

Γ(r) = πc(r)µc(r) (3.21)

= πc(r)(R(θ(r))en)>
[
I −S(elr)

]
µ (3.22)

= πc(r)
[
cos(θ) 0 − sin(θ) −r sin(θ) 0 −r cos(θ)

]
µ (3.23)

s0 ,
∫ R

0

πc(r) sin(θ(r)) dr (3.24)

c0 ,
∫ R

0

πc(r) cos(θ(r)) dr (3.25)

s1 ,
∫ R

0

πrc(r) sin(θ(r)) dr (3.26)

c1 ,
∫ R

0

πrc(r) cos(θ(r)) dr (3.27)

s2 ,
∫ R

0

πr2c(r) sin(θ(r)) dr (3.28)

c2 ,
∫ R

0

πcr2(r) cos(θ(r)) dr (3.29)

s3 ,
∫ R

0

πr3c(r) sin(θ(r)) dr (3.30)

c3 ,
∫ R

0

πr3c(r) cos(θ(r)) dr (3.31)

(3.32)
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3.2 Aerodynamic forces

These parameters are referred to as the geometrical lifting parameters.

κ0 ,


c0
0
−s0

−s1

0
−c1

 , κ1 ,


c1
0
−s1

−s2

0
−c2

 , κ2 ,


c2
0
−s2

−s3

0
−c3

 (3.33)

g0 = κ>0 µ, g1 = κ>1 µ, g2 = κ>2 µ, (3.34)

This leads to the final expression for the forces on a single blade, as measured in the blade
frame.

τ lift = Λ(1, 4)µ, Λ(µ) = ρ

[
(κ>0 µ)S(el) −(κ>1 µ)S2(el)
(κ>1 µ)S2(el) −(κ>2 µ)S3(el)

]
(3.35)

Integration of drag:

τ drag = ρ

∫ R

0

[
I

S (elr)

]
δ(r)

(
I − ele>l

)
µ(r)dr

= ρ

(∫ R

0

[
I

S (elr)

] (
I − ele>l

) [
I −S (elr)

]
δ(r)dr

)
µ (3.36)

Now let
τ drag = ∆µ (3.37)

where

∆ , ρ

∫ R

0

[
−δ(r)S2 (el) −δ(r)rS (el)
δ(r)rS (el) −δ(r)r2S2 (el)

]
dr = ρ

[
−a0S

2 (el) −a1S (el)
a1S (el) −a2S

2 (el)

]
(3.38)

Here,

a0 ,
∫ R

0

δ(r)dr, a1 ,
∫ R

0

δ(r)rdr, a2 ,
∫ R

0

δ(r)r2dr (3.39)

Now, δ(r) = dc(r)|µ(x)| which implies that

δ(r) = dc(r)

√
µ>
[

I −rS (el)
rS (el) rS2 (el)

]
µ (3.40)

Let a normalized twist be introduced with

µ̃ ,

[
v
ωR

]
(3.41)

This quantity puts velocities and rotation-rates on equal footing and makes for a reasonable
inner product. A conservative estimate for the (positive) drag coefficient may be obtained
via the following device.

21



Chapter 3. Modeling turbine rotor & aerodynamic

0 ≤ µ̃>
[

I −(r/R)S (el)
(r/R)S (el) (r/R)2S2 (el)

]
µ̃ ≤ λmax

([
I −rS (el)

rS (el) (r/R)2S2 (el)

])
µ̃>µ̃

=

(
1 +

( r
R

)2
)
|µ̃|2 (3.42)

It follows that

δ(r) ≤ dc(r)
√

1 +
( r
R

)2

|µ̃| (3.43)

Hence,

a0 = d|µ̃|
∫ R

0

c(r)

√
1 +

( r
R

)2

dr (3.44)

a1 = d|µ̃|
∫ R

0

c(r)r

√
1 +

( r
R

)2

dr (3.45)

a2 = d|µ̃|
∫ R

0

c(r)r2

√
1 +

( r
R

)2

dr (3.46)

Individual Pitch
Before transforming the forces to the rotor frame, the concept of individual pitch has to be
presented. The pitch angle α may vary between when using the individual pitch control, a
common way to express the individual pitch on the blades is through cyclic pitch. Cyclic
pitch control is well represented in the field of helicopter control[13]. The pitch angle for
each blade will be presented as

αi = α0 + αc cos(φ) + αs sin(φ) (3.47)

where the angle α0 is the collective pitch, while αc and αs are the cyclic pitch. The col-
lective pitch is the averaged pitch for which is the same for all the blades and control the
total thrust on the rotor, while the cyclic pitch angles are a function of the rotor azimuth
angle and control the flap moment about the rotor plane.

3.2.3 Transformation to rotor frame
We now proceed to assemble several identical blades to produce a rotor. In the blade’s
local frame it holds that

τ ′lift = Λ (µ′)µ′ (3.48)

Consider now a fixed frame about which the blade may rotate. The coordinate trans-
formation from the checked blade frame to the stationary frame is given by x = Rx′

where

R(φ, α) =

 1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

 =

 cos(α) 0 sin(α)
0 1 0

− sin(α) 0 cos(α)


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3.2 Aerodynamic forces

By replacing the pitch angle α by collective and cyclic angles in equation3.47, the
transformation is then fully determined by φ, and one may write

R(φ) =

 cos(α) 0 sin(α)
0 1 0

− sin(α) 0 cos(α)


 cos(α0 + αccos(φ) + αssin(φ)) 0 sin(α0 + αccos(φ) + αssin(φ))

0 1 0
−sin(α0 + αccos(φ) + αssin(φ)) 0 cos(α0 + αccos(φ) + αssin(φ))

 (3.49)

Since there is no frame offset, the twist and screw transformation matrices reduce to

T(φ) = T̃ =

[
R(φ) 0

0 R(φ)

]
(3.50)

Using the transformation rules derived in section 3.1, the lift and forces for single blade in
the rotor frame are expressed by

τ lift = T̃Λ(q′)q′ = T̃Λ(T−1µ)T−1µ (3.51)

τ drag = T̃∆T−1µ (3.52)

One may proceed by averaging the contribution from each blade over one cycle of rotation,
yielding the force

τ lift =

(
1

2π

∫ 2π

0

(T̃(φ)Λ(T−1(φ)µ)T−1(φ)

)
µ (3.53)

τ drag =

(
1

2π

∫ 2π

0

(T̃(φ)∆T−1(φ)

)
µ (3.54)

Multiplying this expression with the number of blades yields, the final expression for the
forces are

τ lift ≈ B
[
Λ̄(µ) + α0Λ0(µ) + αcΛc(µ) + αsΛs(µ)

]
µ (3.55)

τ drag ≈ B∆̄µ (3.56)

Here the B is the number of blades. In this expression, the pitch angle is assumed
small, and the small angle approximation is used here.

23



Chapter 3. Modeling turbine rotor & aerodynamic

The matrices in equation 3.55 and 3.56 are. defined as

Λ̄(µ) =


0 1

2 (c1(−µ5)−µ2s0) 1
2 (c1(−µ6)−µ3s0) c1µ1−µ4s2 0 0

1
2 (c1µ5+µ2s0) 0 0 0 1

2 (c1µ1−µ4s2) 0
1
2 (c1µ6+µ3s0) 0 0 0 0 1

2 (c1µ1−µ4s2)

µ4s2−c1µ1 0 0 0 1
2 (c3(−µ5)−µ2s2) 1

2 (c3(−µ6)−µ3s2)

0 1
2 (µ4s2−c1µ1) 0 1

2 (c3µ5+µ2s2) 0 0

0 0 1
2 (µ4s2−c1µ1) 1

2 (c3µ6+µ3s2) 0 0


(3.57)

Λ0(µ) =


0 1

2 (µ5s1−c0µ2) 1
2 (µ6s1−c0µ3) c2(−µ4)−µ1s1 0 0

1
2 (c0µ2−µ5s1) 0 0 0 1

2 (c2(−µ4)−µ1s1) 0
1
2 (c0µ3−µ6s1) 0 0 0 0 1

2 (c2(−µ4)−µ1s1)

c2µ4+µ1s1 0 0 0 1
2 (µ5S3−c2µ2) 1

2 (µ6S3−c2µ3)

0 1
2 (c2µ4+µ1s1) 0 1

2 (c2µ2−µ5S3) 0 0

0 0 1
2 (c2µ4+µ1s1) 1

2 (c2µ3−µ6S3) 0 0


(3.58)

Λc(µ) =


0 0 1

2 (c1(−µ4)−µ1s0) 1
2 (µ6s2−c1µ3) 0 0

0 0 0 0 1
8 (µ6s2−c1µ3) 1

8 (µ5s2−c1µ2)
1
2 (c1µ4+µ1s0) 0 0 0 1

8 (µ5s2−c1µ2) 3
8 (µ6s2−c1µ3)

1
2 (c1µ3−µ6s2) 0 0 0 0 1

2 (c3(−µ4)−µ1s2)

0 1
8 (c1µ3−µ6s2) 1

8 (c1µ2−µ5s2) 0 0 0

0 1
8 (c1µ2−µ5s2) 3

8 (c1µ3−µ6s2) 1
2 (c3µ4+µ1s2) 0 0


(3.59)

Λs(µ) =


0 1

2 (c1µ4+µ1s0) 0 1
2 (c1µ2−µ5s2) 0 0

1
2 (c1(−µ4)−µ1s0) 0 0 0 3

8 (c1µ2−µ5s2) 1
8 (c1µ3−µ6s2)

0 0 0 0 1
8 (c1µ3−µ6s2) 1

8 (c1µ2−µ5s2)
1
2 (µ5s2−c1µ2) 0 0 0 1

2 (c3µ4+µ1s2) 0

0 3
8 (µ5s2−c1µ2) 1

8 (µ6s2−c1µ3) 1
2 (c3(−µ4)−µ1s2) 0 0

0 1
8 (µ6s2−c1µ3) 1

8 (µ5s2−c1µ2) 0 0 0


(3.60)

∆̄ =


a0 0 0 0 0 0
0 a0

2 0 0 0 0
0 0 a0

2 0 0 0
0 0 0 a2 0 0
0 0 0 0 a2

2 0
0 0 0 0 0 a2

2

µ (3.61)
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3.2 Aerodynamic forces

3.2.4 Induced velocity
The dynamic inflow model that are used to determine the wake induced velocity are pro-
posed by Pedersen in [2]. Through a set of concepts and mathematical theories, a dynamic
inflow model describing the averaged inflow are being represented by convolution [2].

νi(t) =

∫ t

0

G (t, t′)F (t′) dt′ (Dynamic inflow relation)

G (t, t′) ,
Θ (t− t′)

ρA

∫ ∞
0

J1(lR)2e−l|z(t,t
′)|dl (Vortical impulse response)

The theory presented is derived based on conservation of momentum and vortex ring con-
sideration. It is shown that thee theory is equal to the Rankine-Froude momentum theory at
steady state response [2]. Through a frequency domain exploration the presented dynamic
wake model was realized as a nonlinear ODE. It is also derived a first order model with
low frequency limit of the general theory, the low frequency approximation will be useful
for this work. Equation 3.62 shows the final model with a low frequency approximation
that is used in the further analysis in this project.

2ρARµvi(t) + 2ρA|v|vi(t) = F (t) (3.62)

µ ,
8

3π

Hhere µ plays the role of a dimensionless ”virtual inertia”. The model can be compared
to other existing models such as Øye’s vortex model, and it is shown in figure 3.6 that the
model 3.62 compares well to the Øye model.

Figure 3.6: The low frequency model approximation model given in [2].
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3.2.5 Validation of the aerodynamic model
In this section, the nonlinear aerodynamic model is tested and validated against reference
models. Since most of the reference models available in the literature don’t have an ex-
pression for the aerodynamic forces in six degrees of freedom, a sub-model of the derived
system is used to validate against available models. The reduced model used is shown in
equation 3.63. In this case, the NREL 5MW reference rotor [14] has been implemented
for the test of the model. The rotor specification is discussed in detail in chapter 5. A set of
velocities were tested and compared against data determined by a BEM model presented
in [2].

τ hyd,(1,4) = ρB
[
Λ̄(1,4) + α0Λ0,(1,4)) + ∆̄(1,4)

]
µ (3.63)

where the subscript 1,4 represent the thrust in x axis and the torque about x axis. The sub
matrices of the model are defined as

Λ̄(1,4) =

[
0 c1µ1 − µ4s2

µ4s2 − c1µ1 0

]
,

Λ0,(1,4) =

[
0 −c2µ4 − µ1s1

c2µ4 + µ1s1 0

]
, ∆̄(1,4) =

[
a0 0
0 a2

]
(3.64)
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3.2 Aerodynamic forces

Wind
Speed
(m/s)

Thrust
(model)(kN)

Power
(model)
(MW)

Thrust
(BEM)
(kN)

Power
(BEM)
(MW)

Thrust
Errors
(%)

Power
Errors
(%)

5.0 160 0.47 180 0.44 15.60 3.88
6.0 222 0.81 260 0.78 12.92 8.01
7.0 300 1.29 360 1.24 9.94 6.92
8.0 390 1.93 420 1.92 7.31 4.25
9.0 500 2.70 570 2.68 5.08 4.37
10.0 590 3.7 600 3.6 2.01 4.42
11.4 710 5.2 730 5.17 3.91 0.73

Table 3.1: Simulation values from the modeled system compared against simulation done in [2]

As shown in the table 3.1, the steady state simulation for the tested set of velocities
shows an excellent result compared to the BEM data. Further, for the wind velocity greater
than 11.4 (the rated speed), the model has been tested using a pitch controller. The pitch
controller is used to keep the power at the rated power. The mean objective of simulating
the controlled system in this case is to validate the blade pitch modeling. The controlled
thrust and power curves are shown in figure 3.7.
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Figure 3.7: Steady state thrust and power curve and collective pitch angle as a function of wind
speed
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Chapter 3. Modeling turbine rotor & aerodynamic

3.3 Dynamic model of the rotor
The equation of motion for the rotor is derived in a similar approach as that for modeling
of turbine platform. The equation may be summarized as

M rν̇ +Cr(ν)ν = τ aer − τgen (3.65)

m[
mrI3×3 03×3

03×3 Ir

] [
v̇rir
ω̇rir

]
+

[
mrS(ωrir) 03×3

03×3 −S(Irω
r
ir)

] [
vrir
ωrir

]
=

[
fr

mr

]
(3.66)

Here mr is the rotor mass, Ir is the inertia tensor of the rotor and τgen is the generator
torque. The generator torque is defined with the relation

Ir,xΩ̇ = e>φ τ aer − τgen (3.67)

Here Ω is the rotation speed of the rotor and eφ is a selection vector defined such that

eφ ,
[
0 0 0 1 0 0

]>
Finally the equation derived in this chapter are summarized by

Aerodynamic force:

τ aer = τ lift + τ drag = ρB
[
Λ̄(µ) + α0Λ0(µ) + αcΛc(µ) + αsΛs(µ) + ∆̄

]
µ

(3.68)

Induced flow

2ρARµv̇i + 2ρA|µ1|vi = e>x τ aer (3.69)

Generator equation

IRx Ω̇ = e>φ τ aer − τgen (3.70)

Rotor equation

M rν̇r +Cr(ν
r)νr = τ aer − τgen (3.71)
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Chapter 4
Integrated state-space model

y
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pG
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y

I
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z

Figure 4.1: The floating win turbine geometri

In this chapter, the modeled platform in chapter 2 and the modeled rotor are integrated
and presented as a linear state space model.
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Chapter 4. Integrated state-space model

4.1 System integration

To sum up the platform and rotor model, some transformation has to be done. Now that
the platform and the rotor are coordinate systems are coincident when the rotor is still, the
relation between the generalized velocities can be expressed as:

νr = νp + eφΩ (4.1)

The rotor equation of motion can then be expressed as

M r(ν̇
p + eφΩ̇) +Cr(ν

p + eφΩ) = τ aer − τgen (4.2)

By subtracting the generator equation, the rotor system are described by the two equation

M rν̇p +CrB(νr)ν = τ aer − eφe
>
φ τ aer

=
(
I6×6 − eφe

>
φ

)︸ ︷︷ ︸
, K

τ aer (4.3)

IRx Ω̇ = e>φ τ aer − τgen (4.4)

That allows us to summarize the rotor and platform equation of motion as shown in
equation

(Mp +M r +A)ν̇p + (Cp +Cr)ν
r +Gη = τhyd∗ + Kτ aer (4.5)

4.2 State space formulation

It is not convenient to perform the control analysis of the system directly in the form of
equation 4.5. It is preferable to transform the model into a state space model. A state space
model can be written in the standard form

ẋ = Ax+Bu (4.6)
y = Cx+Du (4.7)

where x is a vector of the states, u is the inputs and y is a vector of outputs. States and
inputs vectors for the turbine analysis is chosen such that:

x =
[
η ν vi Ω

]>
(4.8)

u =
[
α0 αs αc τgen

]>
(4.9)
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4.2 State space formulation

4.2.1 Linearization of the dynamic equation
The dynamic system derived in equation 4.5 is a second-order nonlinear system, where
the coriolis, lift, and drag forces depend on the velocity squared. As mentioned earlier in
the report, the main target is to derive a linear state-space model equation for linear con-
trol development. In this section, the equation of motion is linearized about an operating
point; the resulting linear model defines the system’s dynamic behavior about the specific
operating point. The linear system is then expressed as function of the perturbed states and
input such as

d

dt
(x− x0) =

∂f

∂x

∣∣∣∣
x0,u0

(x− x0) +
∂f

∂u

∣∣∣∣
x0,u0

(u− u0) (4.10)

= Āδx+ B̄δu (4.11)

Equilibrium Point: The operating points are chosen such that the system in equilib-
rium,the system desired equilibrium points are obtained by solving the following equa-
tions:

νo = 0 , ν̇o = 0, Ω̇o = 0, ν̇i = 0 (4.12)

0 = −Gηo + Kτ aer,o −→ ηo = G−1Kτ aer,o

0 = e>φ τ aer,o − τgen,o −→ τgen,o = e>φ τ aer,o

0 = e>x τ aer,o − 2ρA|µ1,o|vi,o −→ vi,o =
e>x τ aer,o

2ρA|µ1,o|

Linearization of coriolis matrix:

C(ν)ν =

[
mrS(ωrir) 03×3

03×3 −S(Irω
r
ir)

] [
vrigr
ωrir

]

C(ν)ν ≈ C(νo)νo +
∂C(ν)ν

∂x

∣∣∣∣
νo

δν

= C(Ωo)δν (4.13)

Here, the remaining term is the gyroscopic moment caused by the rotor spin. It is
described as  0 0 0

0 0 Ir,xΩo
0 −Ir,xΩo 0

 δφ̇

δθ̇

δψ̇

 (4.14)
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Chapter 4. Integrated state-space model

Linearization of lift matrices

τ lift ≈ B
[
Λ̄(µ) + α0Λ0(µ) + αcΛc(µ) + αsΛs(µ)

]
µ (4.15)

Λ̄(µ)µ ≈ Λ̄(µ0)µo +
∂Λ̄(µ)µ

∂µ

∣∣∣∣
µo

δµ

(4.16)

Where µo =
[
µ1,o 0 0 µ4,o 0 0

]>
, that gives the matrices

Λ̄(µo)µo =
[
(c1µ1,o − µ4,os2)µ4,o 0 0 (µ4,os2 − c1µ1,o)µ1,o 0 0

]>
(4.17)

∂Λ̄(µ)µ

∂µ

∣∣∣∣
µo

=
c1µ̄4 0 0 c1µ1,o−2µ4,os2 0 0

0
µ̄1S0

2 0 0 1
2 (2c1µ1,o−µ4,os2) 0

0 0
µ̄1S0

2 0 0 1
2 (2c1µ1,o−µ4,os2)

µ4,os2−2c1µ1,o 0 0 µ̄1s2 0 0

0 1
2 (2µ4,os2−c1µ1,o) 0 0

c3µ̄4
2 0

0 0 1
2 (2µ4,os2−c1µ1,o) 0 0

c3µ̄4
2


︸ ︷︷ ︸

,Λ̄x

(4.18)

By assuming small perturbation for velocities and pitch angle,
the term [α0Λ0(µ) + αcΛc(µ) + αsΛs(µ)]µ can simply be linearized to

=


−µ4,o (µ4,oc2 + µ1,os1) 0 0

0 − 1
2µ1,o (µ4,oc1 + µ1,os0) 0

0 0 1
2µ1,o (µ4,oc1 + µ1,os0)

µ1,o (µ4,oc2 + µ1,os1) 0 0
0 − 1

2µ4,o (µ4,oc3 + µ1,os2) 0
0 0 1

2µ4,o (µ4,oc3 + µ1,os2)


︸ ︷︷ ︸

,Λ̄u

δα0

δαs
δαc



(4.19)

The linearized lift is then expressed as

τ lift ≈ ρB
[
Λ̄o + Λ̄xδµ+ Λ̄uδα

]
(4.20)
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4.2 State space formulation

Linearization of drag matrix:

∆̄(µ̃)µ =


a0 0 0 0 0 0
0 a0

2 0 0 0 0
0 0 a0

2 0 0 0
0 0 0 a2 0 0
0 0 0 0 a2

2 0
0 0 0 0 0 a2

2

µ (4.21)

a0 = d|µ̃|
∫ R

0

c(r)

√
1 +

( r
R

)2

dr, a2 = d|µ̃|
∫ R

0

c(r)r2

√
1 +

( r
R

)2

dr (4.22)

∆̄(µ̃)µ ≈ ∆̄(µ̃o)µo +
∂

∂µ
∆̄(µ̃)µ

∣∣∣
µ=µo

δµ (4.23)

∆̄(µ̃)µ = |µ̃o|


a′0µo,1

0
0

a′2µo,4
0
0

+

1

|µ̃o|



a′0(2µ2
o,1 +R2µ2

o,4) 0 0 a′0(R2µo,4µo,1) 0 0

0
a′0
2 |µ̃o|

2 0 0 0 0

0 0
a′0
2 |µ̃o|

2 0 0 0
a′2(µo,4µo,1) 0 0 a′2(2R2µ2

o,4 + µ2
o,1) 0 0

0 0 0 0
a′2
2 |µ̃o|

2 0

0 0 0 0 0
a′2
2 |µ̃o|

2


︸ ︷︷ ︸

,∆̄x

δµ

(4.24)

a′0 = a0

|µ̃| = d
∫ R

0
c(r)

√
1 +

(
r
R

)2
dr, a′2 = a0

|µ̃| = d
∫ R

0
c(r)r2

√
1 +

(
r
R

)2
dr The

linearized drag is then expressed as

τ drag ≈ ρB
[
∆̄o + ∆̄xδµ

]
(4.25)

Linearization of the induced flow

v̇i =
e>x τ aer

2ρARµ
− 2ρA|µ1|vi

Rµ
(4.26)

δv̇i = −2ρA|µo,1|
Rµ

δvi −
2ρAµo,1v̄i
Rµ|µo,1|

δµ1 +
e>x

2ρARµ
δτ aer (4.27)
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Chapter 4. Integrated state-space model

Finally, the relative velocities are expanded by equation

δµ = δν0 − δν − δeφΩ− δνi (4.28)

and the system can be summarized in a linear state space form

= Āδx+ B̄δu+ Ēδν0


δν
δν̇
δv̇i
δΩ̇

 =

 06×6 I6×6 06×1 06×1

−M−1G −M−1C−M−1K(Λ̄x+∆̄x) −M−1K(Λ̄x+∆̄x)eφ −M−1K(Λ̄x+∆̄x)ex

01×6 −e>x (Λ̄x+∆̄x) −e>x (Λ̄x+∆̄x)eφ −e>x (Λ̄x+∆̄x)eφ

01×6 −(IRx )−1e>φ (Λ̄x+∆̄x) −(IRx )−1e>φ (Λ̄x+∆̄x)ex −(IRx )−1e>φ (Λ̄x+∆̄x)eφ



δη
δν
δvi
δΩ



+


06×4

M−1KΛ̄u

e>φ Λ̄u
1

2ρARµe>x Λ̄u

0
0
1




δα0

δαs
δαc
δτgen

+


06×6

M−1K(Λ̄x + ∆̄x)
(IRx )−1e>φ (Λ̄x + ∆̄x)

e>x (Λ̄x + ∆̄x)

 δν0 (4.29)
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Chapter 5
Model Validation and simulation

5.1 OC3-Hywind
The validations analysis is based on the horizontal axis 5MW reference wind turbine, de-
signed by National Renewable Energy Laboratory(NREL). The specification for the tur-
bine is based on NREL published results. The turbine dimensions and specifications are
presented in Table 5.1.

Parameter Value
-Water Depth 320 m
-Draft 120 m
-Water displacement 8029 m
-Tower height over water level 90 m
-Mass, including ballast 7 466 000 kg
-Center of gravity location of the platform below still water level 89.92 m
-Pitch inertia about center of gravity 4229000000 kg/m2

-Depth to fairleads, anchors 70 m
-Center of buoyancy,location of the platform below still water level 62.06 m
-Metacentric hight GM, above the center of mass 27.86 m
-Mooring stiffness veritcal direction 11940 N/m
-Mooring stiffness horizontal direction 41180 N/m

Table 5.1: OC3-Hywind Platform Specifications

The values are gathered from the technical report Definition of the Floating System for
Phase IV of OC3, by J. Jonkman[15] and the paper Experimental Comparison of Three
Floating Wind Turbine Concepts[16].
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Chapter 5. Model Validation and simulation

NREL 5MW
The OC3 wind turbine rotor, is the NREL 5MW reference rotor

Node RNnodes Blade chord Blade twist
1 2.8667 3.542 13.308
2 5.6000 3.854 13.308
3 8.3333 4.167 13.308
4 11.7500 4.557 13.308
5 15.8500 4.652 11.480
6 19.9500 4.458 10.162
7 24.0500 4.249 9.011
8 28.1500 4.007 7.795
9 32.2500 3.748 6.544
10 36.3500 3.502 5.361
11 40.4500 3.256 4.188
12 44.5500 3.010 3.125
13 48.6500 2.764 2.319
14 52.7500 2.518 1.526
15 56.1667 2.313 0.863
16 58.9000 2.313 0.370
17 61.6333 1.419 0.106

Table 5.2: NREL 5MW rotor specifications

5.2 Numerical simulation
The developed linear state space model is implemented in MATLAB [17] for numerical
simulation. The simulation result is used to validate the model against simulation data
developed with numerical tools FAST and HAWAC2 [6][7]. Several load cases are defined
in [3] for system validation. Two load cases are used to validate defined in table ?? the
model against data in [3].

Load case (LC) Wind condition Wave condition Analysis type
1.2 None None (still water) Eigen frequencies
1.4 None None (still water) Free decay test

Table 5.3: Load cases specified in [3]
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5.2 Numerical simulation

5.2.1 Load Case 1.2
As described in the table above, in this load case, the wind and wave loads are set to zero to
examine the system’s eigen frequencies. The result of the simulation is shown in figure 5.1.
The eigen frequencies predicted by the model are higher than the other simulation codes
but lie in a reasonable range. The deviations are not unexpected and could be attributed to
the different modeling techniques used to model the turbine and the linearization.

Model

Model

Model

Model

Model

Model

Model

Figure 5.1: System natural frequencies

5.2.2 Load Case 1.4
Load case 1.4 is called free decay test and describes the platform behavior after starting in
some non equilibrium points. The aerodynamic and wave loads are zero in this case also,
the test case shows if the elements such as hydrostatic, hydrodynamic and mooring forces
are modeled correctly. The result of the simulation in surge and Heave are in the same
range as the given data, while the pitch seems to have a slower convergence. That may be
explained by the neglected effect of radiation damping in the modeling. The results are
illustrated in figure 5.2
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Chapter 5. Model Validation and simulation

Model

HAWC2

FAST

Figure 5.2: System Free decay test

The result in plots combines the modeled system simulation, the data plots from in [18]
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5.3 Controllablity validation

5.3 Controllablity validation
The modeled linear state space system has four control inputs to the system, generator
torque, collective pitch, and cyclic pitch angles. It is important to examine if the control
inputs enough to control the system. One of the methods that can be used to examine the
system controllability is the PBH test, which is used in this case.

PBH Test:
(A,B) is controllable if and only if Rank[A−λI B] = n for all eigenvalues λ ofA[19].

Examining the PBH test show that the system is controllable using the four control input.
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Chapter 6
Conclusion and further work

6.1 Conclusion
A 7-DOF rigid body dynamic model was developed to analyze the dynamics for use in de-
veloping a control system. The model considered hydrodynamic, hydrostatic, and mooring
forces for the platform and focused on deriving a new aerodynamic model mainly based
on the Kutta Jouski lifting theory.

The integration of the forces over the rotor blade length was expressed explicitly in
different geometrical integral parameters. That approach of derivation included a lot of
complicated mathematical calculations compared to the most used method BEMT. How-
ever, the resulted model is simple to implement, where most of the calculations are pre-
determined in these geometrical parameters. The derived aerodynamic was represented in
vectroial form, that express the collective and cyclic blade pitch forces in six DOF, and
was validated against experimental data.

Finally, the complete model of the floating wind turbine has been presented in the simple
and well known state space form. The state space model is one of the most used forms in
control development, and it is easy to implement. The model has 14 states, and four control
inputs for the collective, cyclic pitch and the generator torque, the system controllability
using those were tested by checking the PBH controllability criteria. Several simulation
cases have been made to validate the system against experimental simulation with good
agreements.
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6.2 Further work
The derived model performed well in the analyses and simulation done in this work. How-
ever, the system is not tested in the development of a control strategy, which may be done
as the next step for model validation.

As mentioned early in the report, the blade element method is the most used approach
for aerodynamic modeling, augmentation of the nonuniform, and unsteady wind using this
approach is a challenging task. However, the way that retaliative velocities described in
the modeled aerodynamic in this work makes it possible to augment the nonuniform wind
explicitly, while retaining the underlying structure of the model presented in this work.
The augmentation of the nonuniform wind loads will be an improvement for the model
and gives more realistic representation, this can be subject to further work on this topic.
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