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Problem Description

The goal of the project is to develop IP cores for use in a real-time emulator of a
permanent magnet motor running on an FPGA. This emulator will be used for de-
velopment and testing of control software for permanent magnet motor drives. By
emulating the dynamic behaviour of the motor and mechanical load the emulator will
allow for testing of the drive control system without using a physical test setup.

The IP cores are to be developed using Xilinx System Generator for DSP and tested in
Simulink.

The tasks to be performed in the thesis are:

• Develop discrete-time equations for three-phase and six-phase PM synchronous
motors and mechanical load.

• Develop IP cores to implement discrete-time motors using System Generator for
DSP by Xilinx.

• Test IP cores in Simulink by implementing them into a Simulink motor drive
system model and compare simulation outputs to equivalent continuous-time
system model.

• Identify differences between the discrete-time models using the IP cores and the
continuous-time models.

Supervisor: Prof. Roy Nilsen
Co-supervisor: Aravinda Perera

i





Preface

This thesis report is the final work in my master degree in "Electric Power Engineering"
at the Department of Electric Power Engineering at NTNU.
Working on this project has been has been very challenging but equally rewarding. It has
given me valuable insight in a range of topics, especially in programming and digital sys-
tems.

I would like to thank my supervisor, Roy Nilsen for sharing his knowledge of motor drives
and digital systems and for great help in the interpretation of the simulation results. I
would also thank my co-supervisor Aravinda Perera for his invaluable assistance in the
IP core programming and for providing feedback and encouragement.

Anders Moldskred

June 24, 2020
Trondheim

ii





Abstract

The thesis is part of a project at the Department of Electrical Power Engineering at
NTNU to develop a real-time FPGA-based emulator of a permanent magnet motor
drive running on the NTNU Programming Platform.

Real-time emulation of motor drive systems allows for development and testing of
digital drive control systems without requiring any hardware test setup, which re-
duces the cost and equipment needed for development. With advancements in FPGA
technology and high-level synthesis tools for HDL programming, this is becoming an
increasingly popular and accessible development tool for industrial motor drive con-
trol systems.

In this thesis, IP cores for emulation of three-phase and six-phase permanent magnet
synchronous motors are developed using Xilinx System Generator for DSP and tested
in Simulink. The simulation results from the three-phase and six-phase IP core based
emulators are compared to the outputs from continuous-time motor models in Sim-
ulink with identical parameters. The effects of changing the discrete sampling time of
the IP cores and the FPGA clock speed on the accuracy of the simulation are examined.

The results from the simulations show that the three-phase motor drive system model
containing the discrete-time IP cores perform very similar to the continuous-time ref-
erence model. In the six-phase model however, there are some oscillations in the elec-
trical torque of the IP core model which are not present in the reference model. The
amplitude of the oscillations is reduced by reducing the discrete sampling time on the
IP cores. Increasing the FPGA clock period from 10ns to 100ns, thereby reducing the
clock frequency, also seem to dampen the oscillations somewhat. An analysis of the
eigenvalues of the motor models show that the discrete system is stable, but may be
poorly damped. Comparing the frequency of oscillations to the damped frequency of
the eigenvalues at different motor speeds, it is found that they are similar, which in-
dicates that the oscillations are linked to the eigenvalues.

Further analysis of the complete drive system, including the control loops is needed
to determine the cause of the oscillations in the model containing the IP cores.
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Sammendrag

Denne oppgaven er del av et prosjekt på Institutt for elkraftteknikk ved NTNU for
utvikling av en sanntids FPGA-basert emulator av en permanent-magnet synkronmo-
tordrift som skal kjøres på NTNU Control Platform.

Sanntids-emulering av motordrifts-systemer gjør det mulig å utvikle og teste det di-
gitale kontrollsystemet uten å ha tilgang på en fysisk testrigg. Dette er med på å re-
dusere kostnadene og utstyret som trengs for utvikling av kontrollsystemet for mo-
tordriften. De siste årene har fremskritt innen FPGA-teknologi og nye programvar-
everktøy for høy-nivå HDL-programmering gjort dette til et stadig mer populært og
tilgjengelig utviklingsverktøy for motordrifter i industrien.

I denne oppgaven har det blitt utviklet IP-kjerner for emulering av trefase og seks-
fase permanent-magnet synkronmotorer ved bruk av Xilinx System Generator for DSP.
Disse IP-kjernene har deretter blitt testet ved simulering i Simulink. Simuleringsres-
ultatene fra trefase og seksfase IP-kjernebaserte emulatorer sammenlignes med res-
ultatene fra referansemodeller laget i Simulink med identiske parametere. Effektene
av å endre den diskrete sampling-tiden til IP-kjernene og FPGA-klokkehastigheten på
nøyaktigheten til simuleringene blir undersøkt.

Resultatene fra simuleringene viser at trefase-modellen der IP-kjernene er implemen-
tert som motor og mekanisk last gir omtrent samme resultat som referansemodellen. I
seksfase-modellen er det imidlertid en del oscilleringer i det elektriske dreiemomentet
til IP-kjernemodellen som ikke er til stede i referansemodellen. Amplituden til os-
cilleringene reduseres ved å redusere den diskrete sampling-tiden på IP-kjernene. Å
øke FPGA-klokkeperioden fra 10 ns til 100 ns, og dermed redusere klokkefrekvensen,
ser også ut til å dempe oscilleringene noe. En analyse av egenverdiene til motormod-
ellene viser at det diskrete systemet er stabilt, men kan være dårlig dempet. Ved å
sammenligne frekvensen av oscilleringene med svingefrekvensen til egenverdiene ved
forskjellige motorhastigheter er det funnet at de er ganske like, noe som styrker teorien
om at oscilleringene oppstår som følge av egenverdiene i systemet.

Ytterligere analyse av det komplette motordrifts-systemet, inkludert kontrollsløyfene,
er nødvendig for å bestemme årsaken til svingningene i modellen som inneholder IP-
kjernene.
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Chapter 1

Introduction

1.1 Background and Motivation

A modern variable speed AC motor drive consists of two main components: the con-
troller stage and the power stage. The power stage consists of the motor which is fed
by a voltage source converter, whereas the controller stage includes a digital controller
and a PWM modulator, which generates the switching gate signals for the converter. In
the development process of an electric motor drive, the controller stage is thoroughly
tested in a range of different operating scenarios to ensure that it performs optimally.
Traditionally, these tests have required the use of a mechanical test facility with motor-
generator sets, converter, sensors and switchgear to test the performance of the drive
control system. Such a test facility can be costly to build and maintain[1]. The motor
and converter may also be under development in parallel with the control system and
are therefore not available for use in the control system tests.

In recent years, improvements in FPGA technology have made the use of real-time
hardware emulators a viable alternative to the mechanical test beds. By running a
simulation of the motor drive power stage on an FPGA, the drive controller can be
tested without the need for any test setup. This makes the development of the drive
control system cheaper and more efficient.

A common control platform for motor drive systems is under development at the De-
partment of Electric Power Engineering at NTNU, called the NTNU Control Platform.
The platform hardware is made up of a control board from Avnet and a process in-
terface board developed by SINTEF. The control platform software consists of a drive
routine which runs on a CPU and is written in C++ and an FPGA, which is programmed
using Vivado. Vivado is a programming tool developed by Xilinx which lets the user de-
velop IP cores for the FPGA without having to learn hardware description languages,
such as VHDL. This control platform is intended to serve as a foundation for future
master and PhD projects in the field of electric motor drives[2].

1



Chapter 1. Introduction

1.2 Scope of Work

The aim of this thesis is to develop and test IP cores for use in a real-time emulator
of a permanent magnet synchronous motor. The IP cores are developed using Xilinx
System Generator for DSP and tested in Simulink. These IP cores will in further work
be implemented as part of a complete real-time emulator of a PMSM drive system,
running on the NTNU Control Platform.

IP cores for simulation of both three-phase and six-phase PM synchronous motors as
well as mechanical load are designed. The IP cores are tested by implementing them
in previously developed Simulink models for three-phase and six-phase motor drive
systems, replacing the continuous-time Simulink motor and mechanical load blocks.
The outputs from the models containing the discrete-time IP cores are compared to
the original models, which are used as reference.

The motor torque and speed outputs from the models using the System Generator
IP cores are compared to the outputs from the reference models to test the accuracy
and performance of the IP cores.

1.3 Thesis Outline

The thesis report is divided into 7 main chapters:

• Chapter 2 - Theoretical Background
This chapter gives an overview of the theory on FPGAs, modelling of three-phase
and six-phase PM motors, numerical methods of discretization and system sta-
bility analysis.

• Chapter 3 - Programming Structure
In this chapter, the NTNU Control Platform structure is discussed, as well as the
procedure for design of IP cores using System Generator for DSP.

• Chapter 4 - Development of Emulator IP Cores
The equations used for the modelling of the emulator IP cores are shown, as well
as the method for implementing these equations in the IP cores.

• Chapter 5 - Simulation Results
The IP cores which emulate the PM motors are implemented in three-phase and
six-phase PM motor drive system models. The performance and output of the
discrete IP cores are compared to the output of the reference Simulink models.

• Chapter 6 - Discussion
The results from chapter 5 are discussed, and an eigenvalue analysis of the three-
phase and six-phase motor is conducted.

2



Chapter 1. Introduction

• Chapter 7 - Conclusion
The main findings and conclusion for the thesis report is presented.

• Chapter 8 - Further Work
Propositions are made for further work which can be conducted.

3



Chapter 2

Theoretical Background

2.1 Field Programmable Gate Array

An FPGA (Field Programmable Gate Array) is an integrated circuit that consists of
an array of logic blocks that are connected via programmable interconnects. These
logic blocks are made up of two basic components: flip-flops and lookup tables. By
interconnecting these logic blocks, the FPGA can be programmed to perform different
tasks. The FPGA logic is programmed using a hardware description language such as
VHDL or Verilog. The FPGA can therefore be considered as a reconfigurable circuit[3].
The fact that the hardware is programmable makes it highly flexible and separates
the FPGA from ASICs (Application Specific Integrated Circuits), which have a fixed
circuit layout and are customized for one specific use. FPGAs have taken over many of
the tasks that were previously only handled by ASIC (Application-Specific Integrated
Circuits). They can be re-programmed and are thus more flexible than ASICs, which
have a fixed circuit layout and are costly to develop.

FPGAs can run multiple operations in parallel on a single clock pulse. This separates
them from microprocessors or CPUs, which executes a program based on instructions
stored in memory, and executes their code sequentially. FPGAs can therefore process
data at higher rates and are ideal for tasks which require fast computing and can be-
nefit from performing several operations at once.

Most of the logic in the FPGA is synchronous, meaning that the logic must be en-
capsulated between registers, which store values for the next enable pulse. The logic
between the registers has a certain time delay or latency depending on their complex-
ity. This is known as the propagation delay, or the delay for a signal to travel between
registers. To maintain synchronicity in the operations, all inputs to registers must be
stable before the next enable pulse. There are two clocks to consider in the design
of FPGA hardware code: the FPGA clock period, which is the rate at which the pro-
grammable logic operates, and the sample time, which is the period of the pulse signal
which enable the registers in the IP cores. If the latency in one of the parallel paths
between registers is too high, the calculation will not reach the output register in time.
The rate at which the circuit can run is therefore limited by the parallel path with the
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highest latency[4].

Figure 2.1: Synchronous digital circuit[5]

2.2 Permanent Magnet Synchronous Motor

When selecting an AC motor for a motor drive application, the choice stands between
two main types: the asynchronous motor and the synchronous motor. The asynchron-
ous motor is widely used and is known as the workhorse of the industry. It is relatively
cheap and reliable. However, it has some disadvantages compared to the synchron-
ous motor; reactive power for magnetization must be supplied from the drive and the
power loss is higher due to rotor slip.

Synchronous motors in the kW-MW range come in two main types: wire wound sep-
arately magnetized motors, which require an external power source for supply of the
DC magnetizing current, and permanent magnet synchronous motors, where magnets
in the rotor create the magnetic field. Permanent magnet synchronous motors are be-
coming an increasingly popular choice for variable speed applications due to their high
power to weight ratio, efficiency and reliability[6].

PM synchronous motors can be classified into two categories, depending on how the
magnets are mounted on the rotor: surface mounted (PMSM) or internal (IPMSM).
In the PMSM, the magnets are mounted on the rotor surface, while in the IPMSM the
magnets are embedded in the rotor. The air gap between the rotor and stator in an
IPMSM is therefore smaller than for a PMSM. The relative permeability of the perman-
ent magnets are close to the relative permeability of air, therefore the effective air gap
counts both the actual air gap and the space that the permanent magnets occupy in
the rotor. A larger effective air gap gives a smaller inductance. The PMSM therefore
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has a similar inductance in both the d-axis and q-axis, whereas the IPMSM has a large
q-axis inductance and a smaller d-axis inductance due to the low permeability of the
magnets.

To achieve field weakening in a PM motor, a negative d-axis current must be applied to
counteract the field created by the magnets. For the IPMSM this negative current also
contributes to the motor torque, which is not the case for the PMSM. Therefore the
IPMSM has a wider field weakening speed range and is the preferred choice for applic-
ations where a large field-weakening region is required, such as in electric vehicles[6].

Figure 2.2: Cross-section of surface mounted PM motor versus internal PM motor[7]
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2.3 Modelling of Three-Phase PMSM

This section gives an overview of the modelling method for a three-phase PMSM syn-
chronous motor, as presented in [6]. The following simplifications are made in the
modelling of the motor:

• Stator windings are modelled as concentrated windings and the magnetic flux
in the machine is sinusoidal.

• Magnetic saturation and core losses are neglected.
• Eddy current losses are neglected.
• Resistances and inductances are assumed to be identical for all phases, and in-

dependent of changes in temperature and frequency.
• Field from permanent magnets is constant and independent of changes in tem-

perature and frequency.

The stator layout and equivalent circuit of a three-phase motor is shown in figure 2.3.

(a) Three-phase motor with 120° separ-
ation between concentrated stator wind-
ings[6].

(b) Equivalent circuit of three-phase synchronous
PM motor[8]. vs j is the phase voltage for phases j ∈
{1,2, 3}.

Figure 2.3: Modelling of three-phase PM motor.

By applying the voltage balance equation for each winding in the motor and represent-
ing the field created by the permanent magnets in the rotor as a field winding fed by
a constant current source, the following voltage balance equations are given in matrix
form as:

U sr = Rsr · I sr +
dΨsr

d t
(2.1)

Where:

I sr = [Ia Ib Ic I f ]
T , U sr = [Ua Ub Uc U f ]

T , Ψsr = [Ψa Ψb Ψc Ψ f ]
T (2.2)
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The flux linkages can be expressed as the product of the stator currents and the rotor
position dependent inductance matrix, containing the self-inductances and mutual
inductances between stator and rotor windings:

Ψsr = Lsr(θ ) · I sr (2.3)

The resistance and inductance matrices are given as:

Rsr = diag[Rs Rs Rs R f ] , Lsr(θ ) =
�

Ls
s s Ls

s r (θ )
Ls

r s(θ ) Ls
r r

�

(2.4)

The three-phase system model described in equation 2.1, with its position-dependent
inductance matrix and three independent variables is quite complex to simulate. It is
therefore desirable to develop a simplified model where the three-phase machine is
represented as a two-phase machine and analyzed in a reference frame in which the
inductances are independent of the rotor position.

2.3.1 Three-Phase to Two-Phase Transformation

A balanced three-phase machine can be represented as a two-phase machine, thereby
reducing the number of state variables in the model from three to two. This is also
known as αβ- or Clarke-transformation.

Transformation matrix

The transformation of three-phase stator currents by use of the Clarke transformation
matrix is shown in equation 2.5. The resulting two-phase currents are scaled to be
equal in magnitude to the original three-phase currents.

�

Iα
Iβ

�

=
2
3
·

�

1 −1
2

−1
2

0
p

3
2

−
p

3
2

�

·





Ia

Ib

Ic



 (2.5)

The resulting two-phase system is orthogonal with the alpha-component aligned with
the a-component and the beta-component leading by 90°.

Iα = Îs cos (ωt) , Iβ = Îs sin (ωt) (2.6)

Transformation of system model

Applying the transformation to equation 2.1 yields the following voltage expressions
for the two-phase machine, where superscript s or r indicates if the winding is fixed
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to the stator or rotor reference frame:

U s
sα = Rs · I s

sα +
dΨs

sα

d t

U s
sβ = Rs · I s

sβ +
dΨs

sβ

d t

(2.7)

Since there is no winding along the rotor q-axis, the flux linkages can be expressed as:

Ψs
sα = Lsαsα(θ ) · I s

sα + Lsαsβ(θ ) · I s
sβ +Ψα f (θ )

Ψs
sβ = Lsβsα(θ ) · I s

sα + Lsβsβ(θ ) · I s
sβ +Ψβ f (θ )

(2.8)

The procedure for calculating the two-phase machine inductances from the actual
three-phase machine inductance parameters is outlined in [6].

2.3.2 Rotating Reference Frame Transformation

Next, the model is transformed into a model where the system quantities are DC at
steady state, and where the inductance matrix is constant. This is done by replacing
the stator windings of the two-phase machine with fictitious windings, which rotates
at the same speed as the rotor. This is also known as Park or dq transformation.

(a) Three-phase IPMSM represented as a two-
phase machine[6].

(b) Relation between two-phase stationary refer-
ence frame and synchronous rotating reference
frame[6].

Figure 2.4: Two-phase and rotating reference transformations of three-phase machine.
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Transformation matrix

The transformation between is achieved by multiplying the two-phase stator reference
frame parameters with the Park transformation matrix, as shown below for the stator
currents:

Is
r = T r

ss · Is
s ⇒

�

I r
sd

I r
sq

�

=
�

cosθ sinθ
− sinθ cosθ

�

·
�

I s
sα

I s
sβ

�

(2.9)

Where angle θ is the electrical angle of the motor: θ = p · θmech.

Transformation of system model

Transformation of the voltage equations in 2.7 to the rotor reference frame is achieved
by multiplication with the transformation matrix:

U r = T r · U sr , T r =
�

T r
ss 0

0 I

�

(2.10)

Which gives the following expressions for the d-axis and q-axis components of the
stator voltage, as shown in [6]:

Usd = Rs · Isd +
dΨsd

d t
−ω ·Ψsq

Usq = Rs · Isq +
dΨsq

d t
+ω ·Ψsd

(2.11)

The electric motor torque is calculated from the stator currents and flux linkages as:

Te =
3
2

p
�

Ψsd · Isq −Ψsq · Isd

�

(2.12)

Given the electrical motor torque, the motor speed is calculated by using Newton’s
second law for rotation:

dΩ
d t
=

Te − TL

J
(2.13)

Where TL is the torque of the mechanical load the motor is moving and J is the inertia
of the rotating system.
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2.3.3 Per Unit Scaling

After transformation of the motor model to the rotating reference frame, the model is
scaled using the per unit (pu) system. There are several advantages of using the pu
system. Since the motor is scaled using the rated motor parameters as base values, it
becomes easier to detect if any parameters exceed the rated values of the motor. In
addition, simpler model can be achieved by correct selection of base values. The base
values for the motor are chosen as:

Is,base = În , Us,base = Ûn , Ψs,base =
Ûph,n

ωn
=

Ûph,n

2π · fn
(2.14)

The rated apparent power of the motor is used as base power while the torque base is
calculated by dividing the base power with the rated motor speed in rad/s.

Sbase = Sn =
3
2
· Ûs,base · Îs,base =

p
3ULL,n · Is,n , Tbase =

Sn

Ωn
(2.15)

As there is no rotor current in the PMSM motor, the s-subscript indicating a stator
parameter is redundant and will therefore not be used in the further expressions. Ap-
plying the pu-transformation to equation 2.11 yields[6]:

ud = rsid +
1
ωn

dψd

d t
− nψq

uq = rsiq +
1
ωn

dψq

d t
+ nψd

(2.16)

Insertingψd = xd id+ψm andψq = xqiq, the pu model can be expressed with currents
as state variables:

ud = rsid +
xd

ωn

did

d t
− nxqiq

uq = rsiq +
xq

ωn

diq
d t
+ nxd id + nψm

(2.17)

The electric motor torque in pu is calculated as:

τe =ψd · iq −ψq · id (2.18)

The mechanical load equation in pu with mechanical time constant Tm is written as:

dn
d t
=
τe −τL

Tm
, Tm =

JΩ2
n

Sn
(2.19)
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Figure 2.5: Simulink block diagram of dq-frame per unit 3-phase motor[6].

2.4 Modelling of Six-Phase PMSM

There are two main stator winding configurations for a six-phase machine: split-phase
asymmetrical configuration or symmetrical configuration. In this thesis, an asymmet-
rical winding configuration is used, where two three-phase winding sets are displaced
by an angle of 30° from each other. In general, for machines with n total windings,
it is found that the ideal angular spacing between winding sets is π/n for an even
number of sets and 2π/n for an odd number of sets. In addition, the neutral points of
the winding sets are isolated from each other. This configuration has been shown to
eliminate 6-th harmonic pulsations in the motor torque[9].

This section gives an overview of the modelling of a six-phase PMSM synchronous
motor with the configuration described above, as presented in [10]. The simplifica-
tions listed for the modelling of the three-phase PMSM also apply for the six-phase
PMSM.
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Figure 2.6: Layout of six-phase motor with 30° phase shift between stator winding
sets[11].

The voltage balance equation for the six-phase motor is developed the same way as
for three-phase, only with six stator components and one rotor component.

U sr = Rsr · I sr +
dΨsr

d t
(2.20)

Where:

I sr = [Ia1 Ia2 Ib1 Ib2 Ic1 Ic2 I f ]
T

U sr = [Ua1 Ua2 Ub1 Ub2 Uc1 Uc2 U f ]
T

Ψsr = [Ψa1 Ψa2 Ψb1 Ψb2 Ψc1 Ψc2 Ψ f ]
T

(2.21)

The variables of the second three-phase set lags the first set by 30°. As in the three-
phase model, the flux linkages are still expressed by the currents and system induct-
ances as:

Ψsr = Lsr(θ ) · I sr (2.22)

The resistance and inductance matrices are given as:

Rsr = diag[Rs Rs Rs Rs Rs Rs R f ] , Lsr(θ ) =
�

Ls
s s Ls

s r (θ )
Ls

r s(θ ) Ls
r r

�

(2.23)
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2.4.1 Rotating Vector Space Decomposition

Like for the three-phase motor model, it is desirable to transform the six-phase model
equation into one with fewer state variables and where inductances are independent
of rotor position. In this thesis, the model is transformed by a method called Rotating
Vector Space Decomposition, as outlined in [10]. The six-phase variables are mapped
onto two two-dimensional subspaces and a zero sequence subspace. For the motor
configuration used in this thesis, the zero-sequence subspace will not be excited and
can therefore be exempt from modelling. Additionally, Park transformation is applied
on the system, which transforms the AC variables in the first subspace into DC quant-
ities, similar to the dq-transformation performed on the three-phase motor.

The two subspaces are here referred to as the dq subspace and the z1z2 subspace.
The dq subspace model all the torque-producing harmonics, that is, the fundamental
and the kth order harmonics (k = 12m+ 1, m= 1,2, 3...). The other non-torque pro-
ducing harmonics are modelled in the z1z2 subspace[12].

Using the rotating vector space decomposition method as presented in [10], the amplitude-
invariant VSD transformation matrix for the six-phase system is:

U r = T r · U sr , T r =
�

T r
ss 0

0 T r
r r

�

(2.24)

Where:

T r
ss =

1
3
·





















cosθ cos
�

θ − π
6

�

cos
�

θ − 2π
3

�

− sinθ − sin
�

θ − π
6

�

− sin
�

θ − 2π
3

�

cosθ cos
�

θ − 7π
6

�

cos
�

θ − 2π
3

�

− sin (θ −π) − sin
�

θ − π
6

�

− sin
�

θ − 5π
3

�

1 0 1

0 1 0

· · ·

· · ·

cos
�

θ − 5π
6

�

cos
�

θ − 4π
3

�

cos
�

θ − 3π
2

�

− sin
�

θ − 5π
6

�

− sin
�

θ − 4π
3

�

− sin
�

θ − 3π
2

�

cos
�

θ − 11π
6

�

cos
�

θ − 4π
3

�

cos
�

θ − π
2

�

− sin
�

θ − 5π
6

�

− sin
�

θ − π
3

�

− sin
�

θ − 3π
2

�

0 1 0

1 0 1





















(2.25)

and:
T r

r r = I (2.26)
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2.4.2 Per Unit Scaling

The base stator current, voltage and flux linkage for the pu scaling of the six-phase
motor are chosen as the rated peak phase values, same as for the three-phase model.

Is,base = În , Us,base = Ûn , Ψs,base =
Ûph,n

ωn
=

Ûph,n

2π · fn
(2.27)

The rated apparent power of the motor is used as base power, and the base torque is
calculated by dividing the base power with the rated motor speed in rad/s.

Sbase = Sn = 3 · Ûs,base · Îs,base =
p

3ULL,n · Is,n , Tbase =
Sn

Ωn
(2.28)

After scaling of the six-phase motor model, the voltage expressions for the dq and
z1z2 subspaces are expressed as shown in equation 2.29. The pu scaling procedure is
explained in detail in [10].

ud = rs · id +
xd

ωn

did

d t
− nxqiq , uq = rs · iq +

xq

ωn

diq
d t
+ nxd id + nψm

uz1 = rs · iz1 +
xsσ

ωn

diz1

d t
+ nxsσiz2 , uz2 = rs · iz2 +

xsσ

ωn

diz2

d t
− nxsσiz1

(2.29)

The system equations for the dq subspace are identical to the three-phase system
model. This is also the case for the electric torque equation, since torque production
occurs only in this subspace:

τe =ψd · iq −ψq · id (2.30)

dn
d t
=
τe −τL

Tm
, Tm =

JΩ2
n

Sn
(2.31)

2.5 Numerical Methods

The dynamic behaviour of a system can be described as a set of first order ordinary
differential equations(ODEs), which represents the states of the system at a given
point in time. Simulating such a system requires the use of numerical methods for
solving the equations, since an exact analytic solution is harder to calculate and often
cannot be found at all. These numerical methods work by computing the approximate
solution of the equations at successive time steps, given the initial values of the system
states.
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2.5.1 Forward and Backward Euler Methods

One of the simplest numerical methods is the forward Euler method, which approx-
imates the solution at the next time step by taking a small step along the tangent line
of the function.

yn+1 = y(tn + Tsamp)≈ y(tn) + Tsamp · y ′(tn) (2.32)

Where the step size or sample time Tsamp = tn− tn−1. The Euler method can be derived
by considering the Taylor series expansion of the function y(t) around tn[13]:

y(tn + h)≡ yn+1 = y(tn) +
Tsamp · y ′(tn)

1!
+

T 2
samp · y

′′(tn)

2!
+ ... (2.33)

By only evaluating the first order derivative and recognizing that y ′(tn) = f (yn, tn),
the forward Euler method is given as:

yn+1 = yn + Tsamp · f (yn, tn) +O(T 2
samp) (2.34)

Due to the truncation of the Taylor series, an error is introduced to the solution for
every time step. This is known as the local truncation error (LTE). The exact error for
each step is not known if the analytical solution of the equation is unknown, but it is
evident from the Taylor series that the LTE is approximately proportional to (Tsamp)2

for small values of Tsamp. The total accumulated (global) error scales with nTsamp for a
fixed time step, and since the total number of steps taken is proportional to (Tsamp)−1,
it follows that the global error is approximately proportional to Tsamp[14]. In general,
a numerical method is classified as k-th order if the LTE scales with (Tsamp)k+1 and
the total accumulated error scales with (Tsamp)k[13]. Higher order methods therefore
converge faster to the exact solution when sample time is reduced than a first order
method.

The forward Euler method is an explicit method, meaning that it calculates the next
state of the system based on the current state of the system. Implicit methods can also
be used, in which yn+1 is given as the solution to an algebraic equation[14]. The im-
plicit counterpart to the forward Euler method is the backward Euler method:

yn+1 = yn + Tsamp · f (yn+1, tn+1) +O(T 2
samp) (2.35)

Since f (yn+1, tn+1) is not known, this equation is implicit, and must be solved by some
root-finding algorithm like Newton-Rhapson. It is therefore more computationally de-
manding than the explicit method. The advantage of using implicit methods is that
they are inherently stable, whereas the implicit methods may become numerically un-
stable for some problems unless the time step is very short. In real-time applications,
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explicit methods are preferred over implicit methods, since no time-consuming itera-
tions are required to solve the expression.

2.5.2 Numerical Stability

As previously mentioned, explicit methods may become numerically unstable for some
problems if the time step is too high. This means that the numerical solution diverges
from the exact solution and becomes wildly inaccurate. This can be further examined
by considering the first order ordinary differential equation[13]:

d y
d t
= −λy , y(0) = 1 (2.36)

Where λ > 0. The exact solution for this differential equation is:

y(t) = e−λt (2.37)

The value of y starts at 1 at t = 0, then exponentially approaces 0 as time increases,
with a time constant of 1/λ. Discretizing the equation using the forward Euler method
yields:

1
Tsamp

(yn+1 − yn) = −λyn ⇒ yn+1 = yn(1−λTsamp) (2.38)

Which can be expressed with the initial value as:

yn+1 = yn(1−λTsamp) = yn−1(1−λTsamp)
2 = · · ·= y0(1−λTsamp)

n+1 (2.39)

In order to prevent amplification of errors in the iteration process which will lead to
instability, the following criterion is given, which gives an upper bound for the sample
time for the forward Euler method[13]:

|1−λTsamp|< 1 ⇒ 0< λTsamp < 2 (2.40)

For complex values of λ, the forward Euler method will be numerically stable if the
product λTsamp falls within a circle with radius 1 on the complex plane with center in
(-1,0), as shown in figure 2.7.
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Figure 2.7: Stability region for forward Euler method. Figure adapted from [15].

2.6 System Stability Analysis

2.6.1 Continuous System

A first-order linear time-invariant (LTI) system consisting of inputs, outputs and state
variables can be represented as shown in equation 2.41.

ẋ(t) = A · x(t) + B · u(t)

y(t) = C · x(t) + D · u(t)
(2.41)

Where:

x(t) : Vector of state variables
ẋ(t) : Vector of state variable derivatives
u(t) : Vector of inputs
A : System matrix
B : Input matrix
C : Output matrix
D : Feed-forward matrix
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Figure 2.8: Block diagram representation of first order state-space system.

An LTI system can be classified by three different degrees of stability, depending on its
behaviour when an impulse signal is applied as input:

• Asymptotically stable
The system returns asymptotically to its previous state after impulse is applied.

• Marginally stable
The system does not return to its previous state, but the output does not go to
infinity. A permanent offset or standing oscillations with bounded amplitude ap-
pear on the output.

• Unstable
The system output "blows up", i.e., it diverges to infinity.

The solution for the differential state equation is[16]:

x(t) = eA(t−t0) · x(t0) +

∫ t

t0

eA(t−τ) · B · u(t)dτ (2.42)

The stability of the system is dependent upon its natural response, i.e., the system
response to a bounded initial condition with no external inputs, which from 2.42 is
given as:

x(t) = eAt · x(t0) (2.43)

If the exponent has a negative sign, it will decay to zero as time increases. If it is posit-
ive however, it will go to infinity. The stability of such a system can thus be studied by
evaluating the eigenvalues of system matrix A. The system eigenvalues are all values
of λ that satisfy the following characteristic equation:

det(λI − A) = 0 (2.44)

Where I is the identity matrix, equal in dimensions to system matrix A. The stability of
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a continuous-time LTI system is determined by the sign of the real part of the eigenval-
ues of the system. If all eigenvalues lie in the left half of the complex s-plane, i.e., the
real parts are negative, the system is asymptotically stable. Marginal stability occurs
when the real part is zero, i.e., the eigenvalue is purely imaginary. If any eigenvalues
lie in the right half plane, the system is unstable. The imaginary part of the eigenvalue
determines the damped oscillation frequency of the mode in [rad/s][17].

λ= α± jβ (2.45)

The value of the relative damping ratio of the eigenvalues determines how well the
system is damped. It is given as:

ζ=
−α

p

α2 + β2
(2.46)

If ζ > 0, the system is stable. If ζ = 0, the system is marginally stable. If ζ < 0, the
system is unstable.

Eigenvalues for Continuous Three-Phase Motor Model

The system equations for the transformed motor models described earlier in this chapter
can be analysed in this manner. Rewriting equation 2.17 for the three-phase model in
the format of equation 2.41 yields:

�

i̇d

i̇q

�

=

� −ωnrs
xd

ωnnxq

xd
−ωnnxd

xq

−ωnrs
xq

�

·
�

id

iq

�

+

�ωn
xd

0

0 ωn
xq

�

·
�

ud

uq

�

+

�

0
−ωnnψm

xq

�

(2.47)

The characteristic equation for the three-phase system becomes:

det

��

λ+ ωnrs
xd

−ωnnxq

xd
ωnnxd

xq
λ+ ωnrs

xq

��

= 0 (2.48)

Defining time constants Td =
xd
ωnrs

, Tq =
xq

ωnrs
and writing out the determinant expres-

sion yields the quadratic equation:

λ2 +λ

�

1
Td
+

1
Tq

�

+
1

Td Tq
+ (ωnn)2 = 0 (2.49)

Applying the quadratic formula, the eigenvalue pair for this system is found as:

λ1,2 =
−1
2

�

1
Td
+

1
Tq

�

±

√

√

√

�

1
2

�

1
Td
−

1
Tq

��2

− (ωnn)2 (2.50)

From equation 2.50, it can be seen that the continuous three-phase motor model will
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always be asymptotically stable, since the real part is always negative. When the mo-
tor speed is zero, the eigenvalues are purely real. As the motor speed increases, so do
the imaginary value of the eigenvalues.

Eigenvalues for Continuous Six-Phase Motor Model

The six-phase model consists of two decoupled subspaces, and the stability of the sys-
tem can therefore be evaluated by considering each subspace separately.
As shown earlier, the dq subspace for the six-phase motor model is identical to the
three-phase model, so the eigenvalues for this subspace are calculated in the same
way as for the three-phase model. For the z1z2 subspace, the system equation in the
format of equation 2.41 becomes:

�

˙iz1
˙iz2

�

=

�−ωnrs
xsσ

−ωnn

ωnn −ωnrs
xsσ

�

·
�

iz1

iz2

�

+

� ωn
xsσ

0

0 ωn
xsσ

�

·
�

uz1

uz2

�

(2.51)

The characteristic equation then becomes:

det

��

λ+ ωnrs
xsσ

ωnn

−ωnn λ+ ωnrs
xsσ

��

= 0 (2.52)

Defining the time constant Tσ =
xsσ
ωnrs

and writing out the determinant expression yields
the quadratic equation:

λ2 +
2λ
Tσ
+

1
T 2
σ

+ (ωnn)2 = 0 (2.53)

Using the quadratic formula, the eigenvalues for the z1z2 system are found as:

λ1,2 =
−1
Tσ
±

√

√

√ 1
T 2
σ

−
�

1
T 2
σ

+ω2
nn2

�

=
−1
Tσ
± jωnn (2.54)

2.6.2 Discrete-time system

Using the forward Euler method of discretization, the continuous system can be ap-
proximated as a discrete-time system. Discretizing equation 2.41 using this method
turns the differential equation into a difference equation[16]:

x[k+ 1] = x[k] + (Ax[k] + Bu[k])Tsamp

= (I + ATsamp)x[k] + BTsampu[k]
(2.55)
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Where u[k] is the vector of system inputs sampled at time kTsamp. The discretized sys-
tem matrix is then related to the continuous system matrix as:

Ad = I + ATsamp (2.56)

The discrete-time eigenvalues are found by setting up the characteristic equation for
the discrete system matrix:

det(λd I − (I + ATsamp)) = det(λd I − Ad) = 0 (2.57)

The relation between the continuous-time eigenvalues and the forward Euler discrete-
time system eigenvalues is:

λd = Tsamp ·λ (2.58)

2.6.3 Mapping Continuous-Time Eigenvalues to Z-Plane

The criterion for stability of the discrete system is that all eigenvalues are inside the
unit circle on the complex z-plane[18]. The left half-plane in the continuous s-plane
it thus mapped inside the unit circle of the z-plane, and the imaginary axis of the
s-plane is mapped around the circumference of the unit circle in the z-plane. The re-
lation between the continuous s-plane and the discrete z-plane is:

z = esTsamp (2.59)

Using the forward Euler method of discretization, this relation is approximated as:

z = esTsamp ≈ 1+ sTsamp (2.60)

In order for a continuous eigenvalue to map within the stability region in the z-plane,
it must be inside a circle of radius 1

Tsamp
with origin of (-1, 0) on the s-plane, as illus-

trated in figure 2.9.

22



Chapter 2. Theoretical Background

Figure 2.9: Mapping of continuous-time eigenvalues in s-plane to discrete-time eigen-
values in z-plane[18].

This leads to the following stability criterion for a continuous-time system discretized
by forward Euler method:

−2
Tsamp

< Re{λ}< 0 (2.61)

In some cases it is convenient to instead consider the product of the eigenvalues and
the sample time. In which case, to achieve discrete system stability, the product of ei-
genvalues and sample time must lie within the unit circle with origin of (-1, 0) on the
λTsamp-plane, as shown in figure 2.7 in section 2.5.2. In the case the stability criterion
for the real part of the product becomes:

− 2< Re{λ} · Tsamp < 0 (2.62)
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Programming Structure

3.1 NTNU Control Platform

A control platform for electric motor drives is currently under development at the de-
partment of Electric Power Engineering at NTNU. The control platform will be used
for teaching and serve as a foundation for future research projects in motor drives
at NTNU. The control platform hardware consists of an picoZed 7030 control board
from Avnet mounted on a process interface board developed by SINTEF. The process
interface board allows for the control of two two-level three-phase inverters and up
to eight input measurements.

The control board is equipped with a Zynq-7030 SoC which contains two ARM floating-
point processors (CPUs) and one programmable logic (FPGA) device. One of the CPUs
runs a Linux program provided by The Switch Marine Drives, which is used for pro-
gramming and monitoring of the remaining CPU and the FPGA. The remaining CPU
and FPGA is available for programming by the user of the control platform[2]. The
motor control system and creation of modulation signals is handled in the CPU, while
the PWM modulator is run on the FPGA. The motor drive emulator which is the focus
of this thesis will also be programmed on the FPGA.

3.2 Design of IP Cores in Xilinx System Generator

The code in the FPGA is built up of interconnected IP (Intellectual Property) cores
which each performs different tasks. The IP cores developed in this thesis are made
in Xilinx System Generator for DSP, which is an add-on for Simulink. The plug-in con-
tains blockset libraries with blocks for creating IP core designs in Simulink. It allows
for block diagram design and testing of HDL (Hardware Description Language) code
in the Simulink environment. For implementation of the IP cores in the FPGA, the
design is exported from System Generator to Vivado, from which the IP core design
can be synthesized into HDL code and run on an FPGA. This is out of the scope for this
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thesis however, as the IP cores will only be developed and tested in System Generator.

Figure 3.1: Generic IP core design in System Generator

Common components for all IP cores developed in this thesis are: gateway in/out
blocks, input/output registers and sequencer for trigger pulse generation. A generic
IP core design is shown in figure 3.1. A brief description of components used in IP core
generation follows below.

System Generator token
All Simulink models with System Generator components must contain a System Gen-
erator token, which serves as a control panel for the simulation parameters for the
Xilinx blockset elements. It can also be used to compile the System Generator design
into HDL code. The FPGA clock period used in the simulation is also specified here.

Gateway In/Out
The Gateway In and Gateway Out blocks act as input/output ports to the IP core.
The Gateway In block converts an external signal to the specified signal type, either
boolean, fixed-point or floating point. In this thesis, floating point representation will
not be used. The FPGA and processor on the control board communicate by the AXI4-
Lite IP interface, which is a 32-bit communication protocol. This means that the word
length is limited to 32-bit for data sent from processor to IP cores and vice versa. For
this thesis, the internal logic in the IP cores is allowed to run with full output precision
where possible. For future development of the emulator, the internal accuracy of the
IP cores may also be limited to 32 bits in order to save computational resources in the
FPGA.

Sequencer and registers
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All IP cores contain a sequencer block which creates the enable pulses for the enabled
components in the IP cores, like the input and output registers. The sequencer creates
two pulse signals based on the input signal from the Pulse Generator clock in Sim-
ulink: the CSV pulse, which enables the input registers and other registers in the IP
core, and the USV pulse, which enables the output registers and is delayed by half a
period compared to the CSV pulse. At the enable pulse, the registers sample and hold
the input signal until the next pulse. The period of the pulse signals define the discrete
sampling time of the IP core.

To maintain synchronicity in the IP core, it is important that the maximum delay or
latency in the paths between input and output registers in the IP core is shorter than
the delay between the CSV and USV enable pulses[4]. The pulse period is defined in
the Pulse Generator Simulink block as Tsamp/Tclk. For the default parameters used in
this thesis, Tsamp = 1µs and Tclk = 10ns, the result is a pulse period of:

Tsamp

Tclk
=

1µs
10ns

= 100 (3.1)

Since the USV pulse which enables the output registers comes half a period after the
CSV pulse, it follows that the maximum latency for the default FPGA clock speed and
sample time is:

1
2
·

Tsamp

Tclk
=

1
2
·

1µs
·10ns

= 50 (3.2)
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Development of Emulator IP Cores

The motor and load IP cores are modelled using the per unit (pu) system, which uses
the rated data of the motor as base values. The most important advantage of using the
pu system when using fixed-point representation is that the value ranges for different
rated motors will be the same. The number of bits reserved for the integer part and for
the fractional part can thus be set to give high resolution and accuracy without risking
bit overflow.

In order to make the IP core designs generic, all parameter values are taken as in-
puts to the IP core instead of being "hardcoded" into the design. Parameters can then
be easily changed if needed. Base value and per unit calculations are made in the local
mask environment where the IP core is located in the Simulink model.

4.1 Three-Phase PMSM Motor

This modelling of the 3-phase motor consists of three separate IP cores: the dq trans-
formation IP core, the motor IP core and the inverse dq transformation IP core. The
connections between the IP cores and their internal logic are shown in appendix A.

4.1.1 Motor IP Core

The three-phase motor IP core is derived from the dq-frame differential equation set
developed in section 2.3. Rearranging equation 2.17 yields the expressions:

did

d t
=
ωn

xd

�

ud − rsid + nxqiq
�

diq
d t
=
ωn

xq

�

uq − rsiq − nxd id − nψm

�

(4.1)
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Discretizing 4.1 using the forward Euler method yields:

id[k+ 1] = id[k] + Tsamp ·
ωn

xd

�

ud[k]− rsid[k] + n[k]xqiq[k]
�

iq[k+ 1] = iq[k] + Tsamp ·
ωn

xq

�

uq[k]− rsiq[k]− n[k]xd id[k]− n[k]ψm

�

(4.2)

The electric motor torque is calculated as:

τe =ψd · iq −ψq · id (4.3)

Where the flux linkages are related to the currents as:

ψd = xd id +ψm , ψq = xqiq (4.4)

The SysGen implementation of the three-phase motor is shown in figure A.4 in ap-
pendix A.

4.1.2 Synchronous Reference Frame Transformation IP Cores

The three-phase synchronous motor is modelled in the synchronous rotating (dq) ref-
erence frame. The three-phase voltage signals from the inverter must therefore be
transformed to the dq plane to be used as inputs for the motor IP core. Likewise, the
current outputs from the motor are transformed from the dq frame back into three-
phase. Two IP cores are constructed for this purpose, one for dq-transformation of
voltages and one for the inverse transformation of currents.

dq Transformation

The three-phase to dq transformation is the product of two transformations: Clarke
(αβγ) transformation and Park (dq0) transformation. The amplitude invariant Clarke
transform is used, with the alpha-component aligned with the a-phase vector. Since
the three-phase system is considered to be balanced the γ-component will always be
zero and can therefore be neglected. The Clarke transformation for voltages is shown
below:

�

uα
uβ

�

=
2
3
·

�

1 −1
2

−1
2

0
p

3
2

−
p

3
2

�

·





ua

ub

uc



 (4.5)

Where:

ua = û cosωt , ub = û cos
�

ωt −
2π
3

�

, uc = û cos
�

ωt +
2π
3

�

(4.6)
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and:

uα = û cosωt , uβ = û sin(ωt) (4.7)

For amplitude-invariant transformation of a balanced three-phase system, it also fol-
lows that the alpha component is identical to the phase a component. Therefore, only
the beta component needs to be calculated. This saves some computational resources
in the transformation. The alpha and beta components can then be expressed as:

uα = ua , uβ =
1
p

3
· (ub − uc) (4.8)

The Park transformation transforms the two-component AC system by rotating the
reference frame counter-clockwise at the AC frequency. In this synchronously rotating
reference frame, the two components appear as stationary DC values. The transform-
ation is expressed as:

�

ud

uq

�

=
�

cosθ sinθ
− sinθ cosθ

�

·
�

uα
uβ

�

(4.9)

Where the angle θ is the rotational angle of the alpha component, which is aligned
with phase a in the original three-phase system. The sine and cosine of this angle
which is needed for transformation is calculated in a separate IP core, see section 4.3.
The dq transformation implemented in System Generator is shown in figure A.5 in
appendix A.

Inverse dq transformation

Transforming the output dq currents from the motor back into three-phase currents is
achieved by using the inverse Park and Clarke transformations. Combining the inverse
transformation Park and Clarke matrices yields:





ia

ib

ic



=




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cosθ − sinθ

cos
�

θ − 2π
3

�

− sin
�

θ − 2π
3

�
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�

θ + 2π
3

�

− sin
�

θ + 2π
3

�






·
�

id

iq

�

(4.10)

Which yields the expression for the three-phase currents as a function of the dq cur-
rents and the electrical angle:
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ia = id cosθ − iq sinθ

ib = id cos
�

θ −
2π
3

�

− iq cos
�

θ −
2π
3

�

ic = id cos
�

θ +
2π
3

�

− iq cos
�

θ +
2π
3

�

(4.11)

Since calculating the sine/cosine of an angle is computationally demanding in FPGA,
it is desirable to rewrite the equations for phase b and c so that the constant phase
shift can be separated from the electrical angle. This is done by using the trigonomet-
ric identities:

sin(x ± y) = sin(x) cos(y)± cos(x) sin(y)

cos(x ± y) = cos(x) cos(y)∓ sin(x) sin(y)
(4.12)

The three-phase currents can then be expressed by the dq currents and angle θ as:

ia = id cosθ − iq sinθ

ib = id
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−
1
2

cos(θ ) +
p

3
2

sin(θ )

�

− iq

�

−
1
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3
2

sin(θ )

�

− iq

�

−
1
2

cos(θ ) +
p

3
2

sin(θ )

�

(4.13)

In this form, only the sine/cosine of the electrical angle is needed for the inverse trans-
formation. These are calculated in the electrical angle computation IP core, which is
discussed in section 4.3.
The inverse dq transformation System Generator IP core is shown in appendix figure
A.6.

4.2 Six-Phase PMSM Motor

The modelling of the six-phase motor consists of four separate IP cores: the VSD trans-
formation IP core, the motor IP core, the two inverse VSD transformation IP cores. The
inverse VSD transformation IP cores transforms the dq and z1z2 subspace motor para-
meters into three-phase currents and two-phase flux linkages, respectively.
The complete IP cores and their connections are shown in appendix B.

4.2.1 Motor IP core

In section 2.4, the six-phase per unit motor model equations are developed. Rearran-
ging equation 2.29 yields the differential expressions for the dq and z1z2 subspaces:
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did

d t
=
ωn

xd

�
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diq
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�

diz1
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xsσ
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diz2

d t
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xsσ
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(4.14)

The equations for the dq subspace are identical to the three-phase motor. Discretizing
the expressions in 4.14 using the Forward Euler method yields:

id[k+ 1] = id[k] + Tsamp ·
ωn

xd

�

ud[k]− rsid[k] + n[k]xqiq[k]
�

iq[k+ 1] = iq[k] + Tsamp ·
ωn

xq

�

uq[k]− rsiq[k]− n[k]xd id[k]− n[k]ψm

�

iz1[k+ 1] = iz1[k] + Tsamp ·
ωn

xsσ
(uz1[k]− rsiz1[k]− n[k]xsσiz2[k])

iz2[k+ 1] = iz2[k] + Tsamp ·
ωn

xsσ
(uz2[k]− rsiz2[k] + n[k]xsσiz1[k])

(4.15)

The z1z2 subspace does not contribute to electric torque production, so the expression
for the electric torque is the same as for the three-phase motor, seen in equation 4.3.
The System Generator IP core of the six-phase motor is shown in figure B.3 in appendix
B.

4.2.2 Vector Space Decomposition IP Core

By using the rotating vector space decomposition method presented in [10], the six-
phase system can be decoupled into three orthogonal subsystems. The transformation
from six-phase to the dq, z1z2 and zero sequence subspaces is done by multiplying
the six-phase vector with the VSD transformation matrix.
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(4.16)
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The transformation matrix is expressed as:

T r
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(4.17)

The system is balanced, so the zero-sequence subspace will not be excited and is there-
fore neglected from the transformations and modelling. Writing out the expressions
for the dq subspace yields the expressions:
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(4.18)
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(4.19)

Similarly, for the z1z2 subspace:
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Using the trigonometric identities in equation 4.12 to rewrite the dq subspace expres-
sions yields:
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And, for the z1z2 subspace:
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The VSD transformation System Generator IP core is implemented using equations
4.22-4.25 and is shown in figure B.5 in appendix B.

4.2.3 Inverse Vector Space Decomposition IP cores

Two inverse VSD IP cores are needed for the model, one to transform the motor cur-
rents back to the six-phase stationary reference frame, and one to transform the motor
flux linkages to the two-phase stationary reference frame. These flux linkages are used
for decoupling and sensorless estimation of rotor position in the drive control system.

dqz1z2 -> 2xabc transformation IP core

The inverse VSD transformation matrix is used to develop the expressions for the cur-
rents used in this IP core.
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The inverse transformation matrix is given as[10]:
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Writing out the expressions for the six-phase currents, disregarding the zero-sequence
subspace and using the trigonometric identities in equation 4.12 to separate the phase
shifts from the electrical angle yields:
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(4.28)

The dqz1z2 -> 2xabc transformation IP core is implemented using the expressions in
4.28 and is shown in figure B.6 in appendix B.

dqz1z2->alphabeta transformation IP core

The relation between the dq and z1z2 subspace flux linkages and the two-phase sta-
tionary reference frame is given as:
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(4.29)

The dqz1z2->alphabeta transformation IP core is implemented based on 4.29, as
shown in figure B.7 in appendix B.
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4.3 Electrical Angle Computation IP Core

This IP core performs two tasks. Firstly, it computes the electrical motor angle by in-
tegrating the motor speed. Secondly, it calculates the sine and cosine of the electrical
angle, which are needed for the transformations performed in the motor IP cores. The
SysGen block diagram IP core is shown in figure 4.1.

Figure 4.1: Block diagram of angle computation IP core in System Generator.

4.3.1 Computing Electrical Angle by Integrating Motor Speed

The motor speed is input to the IP core in pu.

n[pu] =
N
Nn
=
Ωmech

Ωn,mech
=

p
ωn
·Ωmech (4.30)

The electrical angle is found from the motor speed as:

θ (t) = p · θmech(t) = p ·
∫ t

t0

Ωmech(t)d t + θ (t0) = p ·
∫ t

t0

ωn

p
· n(t)d t + θ (t0)

=ωn ·
∫ t

t0

n(t)d t + θ (t0)

(4.31)

Discretizing equation 4.31 using the forward Euler method yields:

θ[k+ 1] = θ[k] + Tsamp (ωn · n[k] + θ (0)) (4.32)
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Wrapping Integrator in System Generator

The integrator is implemented in SysGen as shown in figure 4.1. An adder-block adds
its input, scaled by Tsamp with its previous output which is passed through a feed-
back register. This is the discrete implementation of an integrator, also referred to as
an accumulator. The CORDIC block used for calculation of sine/cosine of the angle
discussed in the next section only accepts inputs between −π and π. Therefore, the
integrator output must wrap between these limits. This can be done by making some
logic which compares the integrator output to the minimum threshold and maximum
threshold values [−π,π] and sets the value of the feedback register accordingly. How-
ever, the added logic increases the hardware resources necessary for the design and
adds a delay of Tsamp for every wrap.

The more efficient method of achieving the wrapping is to exploit the overflow of
the signed fixed-point binary numbers. Since the most significant bit is used to repres-
ent the sign of the number, the maximum positive value for a signed 32.28-bit binary
number is 0111.11 · · · 11 = 7.99... If the adder block is set to wrap at overflow, the
following will occur when adding the smallest possible number to the maximum value:

0111.11 · · · 11+ 0000.00 · · · 01= 1000.00 · · · 00= −8 (4.33)

The output wraps between [−8,7.99..]. By scaling the speed input to the accumulator
by a factor of 8/π, and the scaling the accumulator output by π/8, the accumulator
can be made to wrap the angle between the desired values.

4.3.2 Calculating sine/cosine of Angle With CORDIC

The sine and cosine of the electrical angle theta must be calculated as part of the
transformations for the 3-phase and 6-phase motor models. Computing the sine and
cosine of an angle can be done in the FPGA in two main ways. One approach is to use
a look-up table. This is simple, but requires the table to be stored in memory. Higher
accuracy will require a bigger table. The DDS Compiler block in the Xilinx blockset can
be used for this purpose. The other approach is to use a CORDIC SINCOS block from
the Xilinx Reference blockset. This block utilizes a fully parallel CORDIC (COordinate
Rotating DIgital Computer) algorithm in Circular Rotation mode to calculate the sine
and cosine of the electrical angle[19]. In this thesis, the choice was made to use the
latter method.

The CORDIC algorithm is an iterative vector rotation method of calculating hyper-
bolic and trigonometric functions. Created by Volder[20] in 1956, it is widely used in
hand calculators and other applications where methods like look-up tables or power
series are not efficient due to limited computing resources[21]. The algorithm calcu-
lates these functions in a hardware-efficient way by only using shift operations and
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additions. The hardware complexity of CORDIC is roughly equivalent to a single mul-
tiplier with the same word size, and the result converges by one bit per rotation or
iteration[21].

The CORDIC algorithm is derived from the general rotation transform which rotates
a vector by angle θ :

�

x ′

y ′

�

=
�

cosθ − sinθ
sinθ cosθ

�

·
�

x
y

�

(4.34)

Which can be rewritten as:
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·
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(4.35)

By recognizing that rotation of a vector by an arbitrary angle θ is the same as rotating
by several smaller angles φi which sum up to the total angle, and choosing the smaller
angles so that tanφi = 2−i, the multiplication of the tangent function can be achieved
by a simple bit shift operation[21].
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(4.36)

The direction of rotation is decided based on the sign of the residual angle. Since
cosφi = cos(−φi), it is constant regardless of direction of rotation and can be con-
sidered as a scaling factor.
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= Ki
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1 −di · 2−i

di · 2−i −1

�

·
�

x i

yi

�

(4.37)

Where: Ki = cos(tan−1 · 2−i) = 1p
1+2−2i and di = ±1.

The product of the scaling factors for each iteration Ki converges to 0.6072 as num-
ber of iterations approaches infinity, and can be multiplied at the end of the process to
achieve the correct scaling of the vector. For calculation of sine and cosine of the angle,
the initial coordinate values are set to x0 = 1 and y0 = 0. After n number of rotations,
the sine and cosine are found as sinφn = Ki · yn and cosφn = Ki · xn. Alternatively,
the initial coordinate values can be set to x0 = 0.6072 and y0 = 0 to account for the
scaling from the beginning. Then, no multiplication is needed in the computation.
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Figure 4.2: Iterative vector rotation to find angle in CORDIC algorithm[22]. The vector
magnitude scales with cosφi for each iteration.

The CORDIC algorithm is implemented in the CORDIC SINCOS System Generator
block in three steps[19]:

1. Coarse angle rotation
The CORDIC algorithm only converges for angles between −π

2 and π
2 , i.e. the

angle must lie in the first or fourth quadrant. If this is not the case, the angle is
reflected to the first or fourth quadrant by adding/subtracting π

2 .
2. Fine angle rotation

This is the iterative vector rotation method described above. The initial vector
magnitudes are set to yin = 0 and x in = 0.6072 to avoid having to multiply with
scaling factor.

3. Angle correction
If the angle was reflected in step 1, the necessary corrections are made here.
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4.4 Mechanical Load IP Core

The mechanical load IP core calculates the motor speed based on the input motor
torque and the load torque. Two load torque profile choices are available: either a
constant load torque independent of motor speed or a load torque which is propor-
tional to the square of the speed. Mechanical losses are neglected in the model, and
the load is connected directly to the motor shaft, i.e. no gearbox. The speed calculation
is based on Newton’s second law for rotational motion:

J
dΩ
d t
= Te − TL (4.38)

Where:

Ω : Rotational speed of shaft [rad/s]
J : Total moment of inertia [kg ·m2]
Te : Electrical motor torque [Nm]
TL : Mechanical load torque [Nm]

As for the motor IP cores, it is convenient to scale the parameters in the mechan-
ical load IP core using the per unit system, as different rated motors can have vastly
different speed and torque ranges. Scaling the values to per unit allows for high bit
precision, as more of the 32 bits available can be used without risking overflow.
In per unit, equation 4.38 can be expressed as[6]:

Tm
dn
d t
= τe −τL (4.39)

Where:

n : Speed in per unit
Tm : Mechanical time constant [s]
τe : Electrical motor torque in per unit
τL : Mechanical load torque in per unit

Discretizing 4.39 using the forward Euler method yields:

n[k+ 1] = n[k] + Tsamp

�

τe[k]−τL[k]
Tm

�

(4.40)

The same base values used for the motor is used for per unit scaling of the mechanical
load IP core. The base power and speed of the motor is needed for calculation of
the pu torque and speed and is calculated in the mechanical load mask initialization
commands. The mechanical time constant is calculated as[6]:

Tm =
J ·Ω2

n

Sn
(4.41)

Where Sn is the motor base power and Ωn is the motor base speed in [rad/s].
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In the case where the load torque is speed dependent, it is calculated as:

τL = kn · si gn(n) · n2 (4.42)

Where kn is a constant. The information on the direction of rotation is lost when squar-
ing the speed, so si gn(n) is included to ensure that the load torque is opposing the
motor torque regardless of direction of rotation.

Figure 4.3: Mechanical load implementation in System Generator.

The choice of load profile in SysGen is made by using a multiplexer which selects its
output based on the select-port input value, which is either 0 or 1. This value can
be set in the dialog window of the mask. As seen in Figure 4.3, the speed dependent
load torque is calculated in a feedback loop where the speed is squared and multiplied
by the speed-torque constant kn and the sign of n. Since the word length after each
full-precision multiplication is doubled, the load torque is converted down to 64 bits
before entering the multiplexer to prevent excessively large word lengths.
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Simulation Results

In order to test the performance of the developed System Generator IP cores, a three-
phase and a six-phase motor drive Simulink model developed for the motor drives
course at the Department of Electric Power Engineering at NTNU is used. Both mod-
els consists of power electronic inverters supplying power from a DC link to a motor,
which drives a mechanical load. The switching of the inverters are controlled by PWM
signals. Blanking time and turn-off time of switching components in the inverters are
also accounted for in the PWM modulation.

The discrete IP cores for motor and mechanical load are inserted into these Simulink
models, replacing the existing continuous Simulink blocks used in the models. The
modified three-phase and six-phase models are then simulated and their output is
compared to the original models. Henceforth, the modified models containing the
System Generator IP cores will be referred to as the "SysGen models", and the original
models as the "reference models".

If nothing else is stated, the SysGen models are run with a discrete sample time Tsamp

of 1 microsecond and FPGA clock speed Tclk of 10 nanoseconds. The models are run
for 1 second, starting at zero speed and accelerating up to the motor nominal speed.
The electrical motor torque, mechanical load torque and speed from the simulations
are logged with a resolution of 1 microsecond and plotted.
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Three different cases are studied for both the three-phase and the six-phase models:

• Case 1: SysGen model vs. reference model
Compare the torque and speed outputs from the SysGen models with default
sample time Tsamp and FPGA clock time Tclk to the reference models.

• Case 2: Comparing SysGen model sample times
Compare output from SysGen models with three different sample times: Tsamp =
0.5µs, Tsamp = 1µs and Tsamp = 2µs.

The forward Euler method used in discretization of the model is cheap to im-
plement, but requires very low sample times to be accurate and stable. In order
to examine the effect of changing the discrete sample time Tsamp on the simula-
tion accuracy, the SysGen models are simulated with both half and double the
default sample time: Tsamp = 2µs and Tsamp = 0.5µs.

• Case 3: Comparing SysGen model FPGA clock speeds
Compare output results from SysGen models running at FPGA clock speed Tclk =
100ns with default, Tclk = 10ns.

The models are run with an FPGA clock speed of 100ns, which is 10 times slower
than the default value. Using this new clock speed leads to a significant reduc-
tion in the simulation time for the Simulink SysGen models: from around 12
hours to 2 hours for the six-phase model. The simulation output of the models
with different clock speeds are therefore compared.
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5.1 Three-Phase Model

The three-phase model consists of a three-phase two-level voltage source inverter with
a DC-link voltage of 1155V connected to a three-phase motor, which drives a mech-
anical load.

The control system consists of an asymmetrical PWM modulator with the reference
signals generated by a digital current controller operating in the dq-frame. The trian-
gular PWM carrier signal frequency is 1.5kHz. There are no outer control loops, such
as a speed controller in the control system. A torque reference signal is given as input
to the controller, which is then converted to d-axis and q-axis current reference signals.

The motor and load parameters used in the simulations of the reference and SysGen
model are shown in table 5.1.

5.1.1 Model Parameters

Table 5.1: Motor and mechanical load parameters used in simulation of three-phase
model. Per unit base for the mechanical load is the same as for the motor.

Three-phase IPMSM motor

Nominal line-line voltage, Un 690 Vrms

Nominal current, In 478 Arms

Nominal frequency, fn 50 Hz

Nominal speed, Nn 3000 rpm

Stator resistance, rs 0.009 pu

d-axis reactance, xd 0.4 pu

q-axis reactance, xq 1.0 pu

Magnet flux linkage, ψm 0.66 pu

Mechanical load

Mechanical time constant, Tm 0.5 s

Torque-speed constant, kn 1 pu

As mentioned above, the control system for the three-phase model does not contain a
speed controller, so a reference speed can not be set directly. Instead, a torque refer-
ence is explicitly given, which is used for calculation of the current reference signals in
the controller. In order to achieve nominal motor speed in the simulation, the torque-
speed constant kn of the mechanical load is set to 1 pu, so that the load torque at rated
speed is also equal to 1 pu. A torque reference signal, shown in figure 5.1a was created
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and used as input to the torque controller. The torque reference signal for the control-
ler starts at maximum torque 1.4 pu for fast acceleration. At t=0.6s it steps down to
0.8 pu before stepping back up to 1 pu at 0.7s. This was done to create some dynamics
in the electrical motor torque, emulating the behaviour of a speed controller and to
test the capability of the SysGen model to follow sudden changes in reference. The
resulting simulation output from the three-phase reference model is shown in figure
5.1b.

(a) Torque reference signal in per unit for three-phase motor controller.
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(b) Electrical torque, mechanical load torque and speed output from 3-phase con-
tinuous reference model

Figure 5.1: Torque reference signal for three-phase models and reference model output
values.
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5.1.2 Case 1: SysGen Model vs. Reference Model

The speed and torque outputs from the three-phase SysGen and reference model are
plotted in figure 5.2a. The difference between reference and SysGen outputs is shown
in figure 5.2b.
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(a) Torque and speed output for reference model
and SysGen model.
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Figure 5.2: Case 1: Electrical motor torque, load torque and speed output of three-
phase SysGen and reference model.
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Figure 5.3: Case 1: Electrical torque of 3-phase continuous reference model and Sys-
Gen model

As seen from the plots above, the output electrical torque motor torque from the Sys-
Gen model is very similar to that of the reference model. The peak-to-peak torque
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ripple is very similar, around 125Nm for both models.

The average value of the torque seems to be slightly lower for the SysGen model
however, which results in a speed difference of around 4 rpm after the motor reaches
stationary speed, as seen in the speed subplot in figure 5.2b.

5.1.3 Case 2: Comparing SysGen Model Sample Times

The simulation outputs from the SysGen model with three different discrete sample
times are shown in figure 5.4, along with the reference model output.

(a) Torque and speed output of three-phase Sys-
Gen model with different sample times.
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(b) Speed of 3-phase continuous reference model
and SysGen model with different sample times.

Figure 5.4: Case 2: Electrical torque, mechanical load torque and speed of 3-phase
continuous reference model and SysGen model with different sample times Tsamp.

The shape of the electrical torque plots are very similar for all three sample times
tested, but it can be seen from figure 5.4b that the speed difference increases for higher
sample times. The speed difference is decreased by around 1 rpm for Ts = 0.5µs and
increased by around 2 rpm for Ts = 2µs, compared to Ts = 1µs. The difference in
average motor torque appears to increase with the increase in sample time. This in-
dicates that the speed/torque difference between the reference and SysGen models is
a property of the discrete sample time and not due to truncation errors in the fixed-
point logic in the IP cores.
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5.1.4 Case 3: Comparing SysGen Model FPGA Clock Speeds

The simulation results from running the SysGen model at a clock speed of 100 ns are
plotted in figure 5.5, along with the outputs from the reference and default clock speed
SysGen model.

(a) Torque and speed output of three-phase Sys-
Gen model with different FPGA clock speeds.
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(b) Speed of three-phase reference model and Sys-
Gen model with different FPGA clock speeds.

Figure 5.5: Case 3: Electrical torque, mechanical load torque and speed of three-phase
continuous reference model and SysGen model with FPGA clock speed of 10ns and
100ns.

The 100 ns simulation is very similar to the 10 ns simulation. There is an additional
speed deviation of 1 rpm at nominal motor speed.
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5.2 Six-Phase Model

The six-phase model consists of two three-phase two-level voltage source inverters
with a DC-link voltage of 1000V connected to a six-phase motor, which drives a mech-
anical load.

The switching of each inverter is controlled by an asymmetrical PWM modulator which
gets its reference signal from a digital current controller, same as for the three-phase
model. The triangular PWM carrier signal frequency is 3kHz. In addition to the inner
current control loop, the control system also contains an outer speed control loop and
field-weakening controller. A speed reference signal is given as input to the controller.
For the simulations conducted in this thesis, the speed reference is set as constant,
equal to nominal speed.

5.2.1 Model Parameters

The motor and load parameters used in the simulations of the reference and SysGen
model are shown in table 5.2.

Table 5.2: Motor and mechanical load parameters used in simulation of six-phase
model. Per unit base for the mechanical load is the same as for the motor.

Six-phase PMSM motor

Nominal line-line voltage, Un 601 Vrms

Nominal current, In 1310 Arms

Nominal frequency, fn 125 Hz

Nominal speed, Nn 500 rpm

Stator resistance, rs 0.009 pu

d-axis reactance, xd 0.3558 pu

q-axis reactance, xd 0.3558 pu

Leakage reactance, xσ 0.1 pu

Magnet flux linkage, ψm 0.9255 pu

Mechanical load

Mechanical time constant, Tm 0.437 s

Torque-speed constant, kn 0.916 pu

The torque and speed simulation output for the continuous reference model is shown
in figure 5.6. After controller is enabled at 5 milliseconds, the motor torque climbs
rapidly and settles at around 1.2 pu (62 kN). When nominal speed is reached, the
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torque drops and settles at just below 1 pu. The ripple in motor torque is around 3 kN,
or 0.06 pu.
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Figure 5.6: Electrical torque, mechanical load and speed of 6-phase continuous refer-
ence model

5.2.2 Case 1: SysGen Model vs. Reference Model

The simulation output from the six-phase SysGen model is plotted along with the
reference model outputs in the figures below.
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(a) Torque and speed output for reference model
and SysGen model.
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Figure 5.7: Case 1: Electrical torque, mechanical load torque and speed of six-phase
continuous reference model and SysGen model.
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Figure 5.8: Case 1: Electrical torque plot of 6-phase continuous reference model and
SysGen model

The plots for SysGen and reference starts out very similar, but oscillations in the elec-
trical motor torque in the SysGen model starts appearing as the speed increases. As
seen in figure 5.8 the oscillations are especially large at around 0.4 seconds when the
motor speed is about 300 rpm, around 11 kN peak-to-peak at the most. As seen from
figure 5.6, the reference model also show some torque oscillations at this time, but at
a much lower amplitude.

The approximate frequency of the oscillations at different times in the simulation,
found by counting the oscillation peaks between time intervals, are listed in table 5.3.
As seen from the table, the frequency of oscillations starts out at around 80 Hz and
climbs to around 130 Hz as the motor speed increases.

Table 5.3: Approximate oscillation frequency of electrical motor torque and approx-
imate motor speed of six-phase SysGen model at different simulation time intervals.

Time Number of Oscillation Motor speed

interval cycles frequency [Hz] [rpm] [pu]

0.2s - 0.3s 8 80 300 0.6

0.3s - 0.4s 9 94 390 0.78

0.4s - 0.45s 4 114 430 0.86

0.5s - 0.58s 9 123 490 0.98

0.72s - 0.8s 9 130 508 1.016

0.83s - 0.9s 8 121 502 1.004

0.9s - 1s 12 131 500 1
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Chapter 5. Simulation Results

The speed difference between models is much smaller than for the three-phase simu-
lations. This is likely because the six-phase control system includes a speed controller,
which sets the torque reference to achieve the desired speed.

5.2.3 Case 2: Comparing SysGen Model Sample Times

The torque outputs for the 6-phase SysGen model with three different sample times
are plotted in figure 5.9, along with the torque output from the continuous model.

Figure 5.9: Case 2: Electrical torque plot of 6-phase motor with different sample times

The results show that adjusting the sample time has a significant impact on the amp-
litude of the oscillations in the electrical torque. Doubling the sample time increases
the oscillation amplitude over almost the entire speed spectrum. The torque is es-
pecially inaccurate in the moments after the motor reaches the rated speed and the
torque reference from the controller changes. Halving the sample time has the oppos-
ite effect, dampening the oscillations and bringing the result closer to the continuous
reference model torque. The frequency of the oscillations seem to be around the same
for all three sample times.

5.2.4 Case 3: Comparing SysGen Model FPGA Clock Speeds

The simulation results from running the SysGen model at a clock speed of 100 ns are
plotted in figure 5.10, along with the outputs from the reference and default clock
speed SysGen model.
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Chapter 5. Simulation Results

Figure 5.10: Case 3: Electrical torque plot of 6-phase continuous reference model and
SysGen model with FPGA clock period of 10ns(default) and 100ns

Surprisingly, the maximum amplitude of the electrical motor torque oscillations is ac-
tually lower for the 100ns simulation compared to the 10ns simulation, around 9 kN
at t=0.34 s.
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Discussion

6.1 Simulation Results

The simulation results show that even though the electrical torque is more accurate
in the three-phase SysGen model than in the six-phase SysGen model, the three-phase
SysGen model has a speed deviation of around 4 rpm at stationary speed for the de-
fault clock speed and sample time. This difference in speed is caused by a lower av-
erage electrical torque value for the SysGen model, which in turn results in a lower
speed. This deviation is dependent on the sample time used; a higher sample time
causes a higher speed difference. Reducing the FPGA clock speed also increases this
deviation slightly. The reason why a similar speed deviation is not observed in the six-
phase model is likely because this model contains a speed-controller, which adjusts
the torque reference in order to reach the desired speed.
Since the speed deviation increases with increasing sample times, it is likely caused by
error in the numerical method used. As discussed in section 2.5, the global error for
the forward Euler method scales proportionally with the sample time. At the very end
of the simulation, t=1s, the speed of the reference model is 3012.3 rpm. The SysGen
model is slower than the reference model by: 2.1 rpm for Ts = 0.5µs, 3.6 rpm for
Ts = 1µs and 7 rpm for Ts = 2µs. It seems like the increase in global error is relatively
close to proportional with the increase in sample time. It is hard to say for sure with
only three different sample times used however, so more tests with a wider range of
sample times should be conducted to confirm this.

Reducing the FPGA clock speed from maximum value of 10ns to 100ns drastically re-
duces simulation time of SysGen models in Simulink, from around 12 hours to around
2 hours. The accuracy of the simulations do not seem to be drastically worse either.
The three-phase model had an increase in stationary speed deviation of 1 rpm, while
the six-phase model actually had significantly lower amplitude in the oscillations. The
reduced simulation time makes the verification of the IP core designs in Simulink more
efficient. On the FPGA, the emulator runs in real-time, so changing the clock speed
will not make a difference in this regard. However, reducing the clock frequency might
reduce the power consumption of the FPGA.
A possible downside of reducing the clock speed to 100ns is that synchronization prob-
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lems could occur at latencies between input and output registers above 5, instead of
50 for Tclk = 10ns and Tsamp = 1µs. This happens because the Pulse Generator block
sets a pulse period of Ts/Tclk. This might affect the accuracy of the simulation in IP
cores with higher latency than 5 between registers, for example in the VSD transform-
ation IP cores[5]. The models seem to run fine at 100ns anyway, but it is something
that should be kept in mind.

One possible explanation for the oscillations observed in the electrical torque in the
six-phase SysGen model is that the input voltage signal is not sampled often enough,
leading to an error in the average dq voltage which is manifested at the output as
an AC on top of the electrical torque. The fact that the switching frequency in the
six-phase model is twice as high as in the three-phase model may explain why the
oscillations do not occur here.
However, as can be seen in figure 6.1, running the three-phase model at double the
default switching frequency does not cause any similar oscillations to appear here, so
this does not seem to be a likely explanation.
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Figure 6.1: Electrical torque output for reference and SysGen three-phase models with
double switching frequency, 3kHz.
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6.2 Eigenvalue Analysis

In this section, an eigenvalue analysis of the three-phase and six-phase motor is per-
formed in order to determine if the torque oscillations in the six-phase model are
caused by instability of the discrete motor model, and explain why no such similar
oscillations are observed in the simulations for the three-phase model.

6.2.1 Three-Phase Motor Model

As shown in section 2.6.1, the eigenvalues for the three-phase dq reference frame
motor model are:

λ1,2 =
−1
2

�

1
Td
+

1
Tq

�

±

√

√

√

�

1
2

�

1
Td
−

1
Tq

��2

− (ωnn)2 (6.1)

Inserting the model parameters used in the simulations, this gives the following ei-
genvalues for the motor at rated speed (n= 1pu):

λ1,2 =
−1
2

�

1
141.5ms

+
1

353.7ms

�

±

√

√

√

�

1
2

�

1
141.5ms

−
1

353.7ms

��2

− (2π · 50Hz · 1)2

= −4.95± j314.15

(6.2)

The relative damping ratio is:

ζ=
4.95

p
4.952 + 314.152

= 0.0157 (6.3)

The damped frequency for the system is equal to the imaginary part of the eigenvalue
in rad/s. For the rated motor speed, this is:

ωd = Im{λ}= 314.15rad/s = 50Hz (6.4)

In figure 6.2, the eigenvalues of the three-phase motor model are plotted for speeds
between 0 and 1 pu, both in the s-plane (left) and λTs-plane (right). Of the complex
eigenvalue pairs, only the positive imaginary part is plotted.
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(a) Continuous-time eigenvalues. (b) Eigenvalues mapped to λTsamp-plane.

Figure 6.2: Eigenvalues of three-phase motor model for speeds between 0 and 1 pu,
Tsamp = 1µs.

From the plots, it is evident that the eigenvalues are within the stability limits for the
discretized system. The imaginary component increases proportionally with the speed.

6.2.2 Six-Phase Model

dq Subspace

The eigenvalues for the dq subspace are found using the same expression as for the
three-phase model, only with different parameters:

λ
dq
1,2 =

−1
2

�

1
50.3ms

+
1

50.3ms

�

±

√

√

√

�

1
2
· 0
�2

− (2π · 125Hz · 1)2

= −19.87± j785.4

(6.5)

Since the d-axis and q-axis reactance is equal for the six-phase motor, the only para-
meters affecting the imaginary value is ωn and n. The relative damping ratio is:

ζdq =
19.87

p
19.872 + 785.42

= 0.0253 (6.6)

The damped frequency for rated motor speed is:

ω
dq
d = 785.4rad/s = 125Hz (6.7)
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(a) Continuous-time eigenvalues. (b) Eigenvalues mapped to λTsamp-plane.

Figure 6.3: Six-phase model dq-system eigenvalues for speeds between 0 and 1 pu,
Tsamp = 1µs.

From figure 6.3b it can be seem that the eigenvalues map inside the unit circle in the
λTs-plane. The discrete system is therefore stable for the sample time used for speeds
up to (and well beyond) rated motor speed.

z1z2 Subspace

From section 2.6.1, the eigenvalues for the z1-z2 subspace found as:

λz
1,2 =

−1
Tσ
±

√

√

√ 1
T 2
σ

−
�

1
T 2
σ

+ω2
nn2

�

=
−1
Tσ
± jωnn (6.8)

Inserting the model parameters used in the simulation yields:

λz
1,2 =

−1
14.15ms

± j(2π · 125Hz · 1) = −70.69± j785.4 (6.9)

The relative damping ratio is:

ζz =
70.69

p
70.692 + 785.42

= 0.0896 (6.10)

The imaginary part of the eigenvalue is the same in the z1-z2 system as for the d-q
system, therefore the damped frequencies at rated speed are also the same for both:

ωz
d =ω

dq
d = 785.4rad/s = 125Hz (6.11)
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(a) Continuous-time eigenvalues. (b) Eigenvalues mapped to λTsamp-plane.

Figure 6.4: Six-phase model z1z2-system eigenvalues for speeds between 0 and 1 pu,
Tsamp = 1us.

From figure 6.4b, it is observed that the eigenvalues map inside the unit circle in the
λTs-plane, and the system is therefore stable for the default sample time used in the
simulations.

6.2.3 Eigenvalue Analysis Conclusion

Both the three-phase motor and the six-phase model have fairly low damping ratios,
which means that oscillations in the output may take a long time to dissipate. But the
three-phase model has a lower damping ratio than the six-phase model and no oscil-
lations are present in the electrical torque, so this is necessarily not a problem on its
own. Also, the damping factor is the same for the continuous and the discrete system,
so it does not explain why the oscillations are that much larger in amplitude in the
SysGen model simulations.

The fact that the control system for the three-phase model only includes an inner loop
current controller, whereas the six-phase control system also contains an outer loop
speed controller may explain why the oscillations are only seen in the six-phase model.

Looking at the oscillation frequencies in the six-phase model at different speeds from
table 5.3, they seem to fit well with the damped frequencies of the six-phase d-q and
z1-z2 models. A comparison between the damped frequencies and the oscillation fre-
quencies are shown in table 6.1.
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Table 6.1: Comparison of the oscillation frequencies in the electrical torque from the
six-phase SysGen model simulation to the damped frequency of the eigenvalues in the
six-phase motor model.

Motor
speed [pu] 0.6 0.78 0.86 0.98 1.016 1.004 1

Oscillation
frequency [Hz] 80 94 114 123 130 121 131

Eigenvalue damped
frequency [Hz] 75 97.5 107.5 122.5 127 125.5 125

Since the frequency of oscillations fit well with the damped frequency of the eigenval-
ues, this indicates that the oscillations are indeed related to excitation of the modes in
the system. However, a more thorough analysis of the complete system, including the
system controllers and PWM modulator is needed to draw further conclusions about
the source of oscillations and how they are connected to the sample time and discret-
ization of the motor model.

The six-phase model could also be run with the outer loop controllers disabled, to
test if the torque oscillations are caused by some form of resonance between the dis-
crete motor model and the control system. Perhaps the oscillations can be damped by
tuning of the controller parameters, such as the PI controller gains.
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Chapter 7

Conclusion

The focus of this master thesis has been to develop IP cores for use in a real-time
emulator of a motor drive system on an FPGA. The emulator will be implemented on
the NTNU control platform which is under development at the Department of Elec-
tric Power Engineering at NTNU. IP cores for simulation of three-phase and six-phase
motors as well as mechanical load have been designed in Simulink using System Gen-
erator for DSP and tested by inserting the IP cores into existing Simulink models of
motor drive systems.

The simulation results show that the System Generator models perform well compared
to the continuous reference models. The three-phase SysGen model torque and speed
outputs are very similar to the continuous reference model. There is some difference
in the stationary speed between the SysGen and reference model, possibly caused by
error in the numerical integration method used in the IP cores. The error is reduced
when reducing the discrete sample time Ts, indicating that the difference is related to
the inherent error of the numerical discretization method.

There is a fair amount of oscillations in the electrical motor torque of the six-phase
SysGen model compared to the reference model. The sampling time has a clear effect
on the amplitude of these oscillations; a higher sampling time causes larger oscilla-
tions. Eigenvalue analysis of motor the motor shows that motor model is stable, but
the eigenvalues have a fairly low relative damping factor. The frequency of the oscilla-
tions at different speeds and the damped frequency of the eigenvalues at these speeds
are quite similar, which indicates that the oscillations may indeed be related to the
eigenvalues.

Changing the FPGA clock speed from 10ns to 100ns reduces the time it takes to run
the Simulink SysGen models by a factor of around 10. The accuracy of the simula-
tions do not seem to be particularly worse either. The speed error in the three-phase
model is increased by around 1 rpm. In the six-phase model however, the motor torque
oscillations are actually lower in amplitude in some places, compared to the 10ns sim-
ulation. It therefore seems that a clock speed of 100ns is sufficient for simulation of
the IP cores.
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Further work

For further investigation into what causes the oscillations in the six-phase SysGen
model, the model should be run with a simpler control system without outer loop
speed controller, similarly to the three-phase model control system. Also, the three-
phase SysGen model could be tested with added speed controller in the control system.

A more complete system analysis of the six-phase model, where the control system
and mechanical load is included along with the motor could be performed in order to
examine the stability of the model in further detail.

For further development of the emulator, the IP cores should be exported to Vivado
and tested on the FPGA.

If the electrical torque oscillations observed in the six-phase SysGen model are caused
by insufficiently fast sampling of inverter input voltage, then using a moving average
filter to sample the input might be a good solution. This should be further investigated.

In this thesis, the system equations are discretized and implemented in the IP cores
using the forward Euler method. This method is simple to implement and compu-
tationally efficient, but it is not as accurate or stable as other methods for the same
sample time. The system can be discretized using other methods, such as second order
Runge-Kutta, and compared to the forward Euler method to test if the added cost of
computation is worth the increased accuracy.
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Appendix A

3-phase model block diagrams

The first figure in this appendix shows the connections between the IP cores in the
3-phase System Generator motor model in Simulink, whereas the following figures
show the internal blocks and connections for each IP core.
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Figure A.1: Top level of three-phase SysGen model in Simulink
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Figure A.4: Inside of 3-phase per unit motor IP core.
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Figure A.6: Inside of dq->abc transformation IP core.
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Appendix B

6-phase model SysGen block diagrams

The first figure in this appendix shows the connections between the IP cores in the
6-phase System Generator motor model in Simulink, whereas the following figures
show the internal blocks and connections for each IP core.
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Figure B.4: Inside of 6-phase per unit motor IP core.
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Figure B.5: Inside of 2xabc->dqz1z2 transformation IP core.
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Figure B.6: Inside of dqz1z2->2xabc transformation IP core.
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Figure B.7: Inside of dqz1z2->alphabeta transformation IP core.
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Mechanical load SysGen block
diagrams

tL_const

Constant	load
torque	[pu]

	In	 	

te

tL_const

1/Tm

kn

Select

Trigger

n

tL

Load	(pu)
dn/dt	=	1/Tm*(te-tL)

	 	Out	

	In	 	

Tm_inv

Mech	time
const	1/Tm

	In	 	

sel

0:	Const	load	torque
1:	tL=kn*sign(n)*n^2

	In	 	

kn_pu

Torque	load
constant	[pu]

	In	 	

	In	 	

Trigger

1
Te	[Nm]

1
N	[rpm]

1/Tbase

Nn

	 	Out	 2
TL	[Nm]

Tbase

Figure C.1: Mechanical load IP core.
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Appendix C. Mechanical load SysGen block diagrams
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Figure C.2: Inside of mechanical load IP core.
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