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Abstract

In most age-hardenable alloys, the precipitation of second-phase particles is often of
a non-spherical configuration. However, in Kampmann Wagner Numerical (KWN)
models for predicting the particle size distribution, the particles are assumed to
be spherical. In this thesis, a framework for modeling the coupled nucleation,
growth, and coarsening of cylindrical-shaped particles was implemented. Using
a Lagrangian approach, the particle size distribution was discretized into several
particle classes where each class contained a number of particles with identical
size. Further, a distinction between the cylindrical particle’s end and side surface
were made in terms of interfacial compositions and growth rates of the respective
surfaces. This was achieved by solving the diffusion problem around the cylindrical
particle to find the solute current into the respective surfaces. In addition, the
axisymmetric Gibbs-Thomson effect was derived for the end and side surfaces of
the particle. The evolution of each particle class was then tracked through time
by the use of an ODE-solver and a mass balance equation to keep track of the
amount of solute atoms in the matrix.

By implementing a function for the surface energy of the end surfaces that is
dependent on the radius of the particle, the proposed KWN-model was successful
in attaining elongated needles that achieve increasing aspect ratios throughout the
time evolution.
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Sammendrag

I de fleste utherdbare legeringer oppst̊ar det partikler av sekundærfaser som ofte er
av ikke sfærisk karakter. I Kampmann Wagner Numerical (KWN) modeller som
brukes for å forutse partikkeldistribusjoner, er partiklene antatt å være sfæriske.
I denne avhandlingen blir et rammeverk for å modellere de koblede prosessene
nukleasjon, vekst og forgroving for sylinder-formede partikler utviklet. Ved å
bruke en Lagrange tilnærming kan man diskretisere partikkeldistribusjonen i flere
partikkelklasser hvor hver klasse inneholder et antall partikler med identisk størrelse.
Videre blir det gjort en differensiering mellom ende- og sideflater for den sylindriske
partikkelen med tanke p̊a grenseflatekonsentrasjon og veksthastighetene til de
respektive overflatene. Dette er mulig ved å løse diffusjonsproblemet rundt en
sylindrisk partikkel for å finne strømmen av atomer inn gjennom de respektive
overflatene. I tillegg blir den aksesymmetriske Gibbs-Thomson effekten utledet for
ende- og sideflater. Evolusjonen av hver partikkelklasse gjennom tid blir deretter
fulgt ved hjelp av en ordinær differensialligningløser og en massebalanse for å holde
rede p̊a hvor mye oppløste atomer det er i matrix.

Ved å innføre en funksjon for endeflateenergien som er avhengig av radiusen til
partikkelen, er den foresl̊atte KWN-modellen i stand til å utvikle forlengete n̊aler
som har en økende aspekt rate gjennom tidsforløpet.
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1 Introduction

Heat treatment of Aluminium and other heat-treatable alloys is of utmost impor-
tance due to the precipitation of particles of nanometer size. These second-phase
particles are often of non-spherical shape due to their anisotropic nature with
relation to misfit strains in the lattice and interfacial energies as seen for platelet-
shaped θ′ in Al-Cu [1], and needle-shaped β′′ in Al-Mg-Si [2]. The key attribute
of these non-spherical precipitates is their ability to inhibit dislocation movement
as they act as pinning points [3]. This gives rise to a significant strengthening
mechanism where the size, volume fraction, and morphology of the particle are
important parameters. The need for predictive computer tools for these parameters
is therefore of great interest for the industry.

Extensive research has been made to develop numerical models that can predict
precipitation behavior for age-hardenable alloys. From the literature there exist
two different approaches towards precipitation models, where the first approach
is based on a direct detailed numerical approach that utilizes the phase-field
method [4–6]. This approach have shown to give very detailed descriptions of phase
transformations and their constituents, but due to the difficult implementation
of such models and the exceedingly high computation times, they are not as
suited for industrial purposes where time and usability are important factors. The
other approach presented in the literature is one based on Frequency Distribution
Function (FDF) approaches. These approaches rely on the work of Kampmann-
Wagner [7] and Myhr-Grong [8], where they employ a statistical approach towards
the evolution of the precipitate distribution in the material. Here, the particle dis-
tribution is divided into discrete size classes which are tracked over time to follow
each classes’ evolution. These models excel in providing solutions for precipitation
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1. Introduction

as they can handle several phenomena related to precipitation such as nucleation,
growth, and coarsening. The FDF approaches have shown to yield promising
results and offer a much easier implementation and the ability to address more
complex systems.

In the Kampmann-Wagner Numerical (KWN) model [7], the diffusion problem is
solved individually for each particle surrounded by an infinite matrix. Therefore,
each particle interacts with one another through the interaction with the mean
concentration field of the matrix. It is also assumed that the growth of each
particle is entirely controlled by diffusion. One critical assumption of the KWN
model is that the precipitates are of spherical morphology. As mentioned, the
precipitates that form in a wide variety of alloys are not spherical and it, therefore,
exists a demand for models that can generalize the model to account for non-
spherical particles. To do so the diffusion problem has to be solved for the non-
spherical configuration. This has been done by Holmedal et al. [9] for cuboid
particles and the author [10] for cylindrical particles, where it is implemented two
correction factors to account for the influence of the non-spherical configuration on
the growth rate and the Gibbs-Thomson effect. These correction factors allow one
to utilize the spherical KWN-model. However, this approach does not distinguish
the particle surfaces in terms of interfacial concentration and is unable to describe
the individual growth rates of the migrating surfaces of a non-spherical particle.
In this thesis, a mathematical model is formulated for extending the KWN-model
for a cylindrical particle where the growth of the respective end and side surfaces
will be accounted for. The particle size distribution of the system will be evaluated
using a Lagrangian approach.

2



2 Theory

The theoretical background regarding the Kampmann-Wagner Numerical model
and its constituents will be examined in this chapter. First, to understand the
nature of diffusional phase transformations in alloys, a review of the process of
diffusion and the Gibbs-Thomson effect will be given in sections 2.1 and 2.2,
respectively. Thereafter, a thorough review of the background of diffusional phase
transformations in solids will be given in section 2.3, before finalizing the theory
by examining different techniques of implementing the KWN-model as found from
the literature.

2.1 Diffusion

The phenomenon of atomic migration within solids or other phases is known as
diffusion. Diffusion is an important process within material science and plays a key
role in many of the different processes and phase transformations that occur at the
microscale in a material. As mentioned, diffusion is the process of atomic migration
and is accountable for mass transport of atoms from high to low chemical potential
regions. As with most mechanisms related to achieving chemical equilibrium in a
material, the motivation for diffusion is to minimize the Gibbs free energy of the
system [11].

There exist two types of diffusion, interstitial- and substitutional diffusion. In-
terstitial diffusion is relevant for smaller interstitial atoms, where these atoms
can migrate through the material by interstitial sites in the lattice. Whereas
substitutional diffusion occurs by the migration of larger substitutional atoms
through vacancies in the material. An illustration of the two types of diffusion are

3



2. Theory

given in Figure 2.1. A significant feature of diffusion is its temperature dependency.
The atomic migration is initiated by vibrations of the atoms which can cause an
atomic jump. This is in turn related to the thermal energy present in the atoms.
In addition, for substitutional diffusion, there has to exist vacancies for the atoms
to jump. The number of vacancies in a material is greatly enhanced at elevated
temperatures, which results in a higher probability of substitutional diffusion.

Figure 2.1: Illustration of (a) substitutional diffusion and (b) interstitial diffusion [12].

The rate at which the concentration in an alloy change over time, was first described
by Fick’s 2. law of diffusion and is depicted in equation (2.1), where D is the
diffusion coefficient.

∂c

∂t
= D∇2c (2.1)

Equation (2.1) is the foundation of diffusional phase transformations and deter-
mines the rate at which the diffusional transformations advances. As a part of the
KWN model, it is beneficial to review the steady-state diffusion equation which
transforms equation (2.1) into equation (2.2).

4



2. Theory

∇2c = 0 (2.2)

The above equation is also referred to as Laplace’s equation which exhibits proper-
ties of a harmonic function [13]. As a consequence, solutions of equation (2.2) can
be superposed to address more complex problems by summing up problems with
simpler boundary conditions. The boundaries and extension of equation (2.2) to
a cylindrical configuration will be given in the next section.

2.1.1 Steady State Diffusion For Cylindrical Particles

The steady-state diffusion problem for a cylindrical particle was solved in a project
work by the author [10], where the concentration c = ci at the particle surface
at both the side and end surfaces. When addressing the steady-state diffusion
problem for a cylindrical shaped particle, equation (2.2) can be transformed into
the cylindrical coordinate system. If one also assumes an axisymmetric specimen
with angular symmetry, equation (2.2) can be rewritten as depicted below.

1
r

∂c

∂r
+ ∂2c

∂r2 + ∂2c

∂z2 = 0 (2.3)

Here, r is the radial component and z is the axial component. Due to the
assumption of angular symmetry, the diffusion problem is effectively reduced into
a 2-dimensional problem. An illustration of the 2D domain is shown in Figure 2.2.
Here, an axisymmetric specimen of length L and radius R is shown, where the
stapled lines indicate the boundaries of the domain.
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2. Theory

R

L
r

z

Figure 2.2: Illustration of the domain for the diffusion problem for an axisymmetric
cylindrical particle.

Solutions to the 2D axisymmetric diffusion problem are not trivial and require
a numerical treatment. Such a treatment was done in a project work by the
author [10], which implemented a dimensionless solution to generalize the diffusion
problem for all kinds of alloys. The dimensionless axial and radial components are
shown in equation (2.4), in addition to an expression for the aspect ratio of the
selected particle. The spatial coordinates are scaled by the particle radius.

r̂ = r

R
, ẑ = z

R
, α = L

2R (2.4)

Further, the dimensionless concentration can be expressed as shown below.

ĉ = c− cm

ci − cm
(2.5)

Here, cm is the concentration of the matrix, while ci is the concentration of the
particle at its interfaces. Also, a new expression for the 2D axisymmetric problem
with the addition of dimensionless variables is needed.

6



2. Theory

1
r̂

∂ĉ

∂r̂
+ ∂2ĉ

∂r̂2 + ∂2ĉ

∂ẑ2 = 0 (2.6)

From Figure 2.2, one can also assign boundary conditions to the diffusion problem
as presented below.

ĉ = 0 when r̂ or ẑ →∞ (2.7)

ĉ = 1 at

r̂ = 1, 0 ≤ ẑ ≤ α

ẑ = α, 0 ≤ r ≤ 1
(2.8)

∂ĉ

∂r̂
= 0 when r̂ = 0, ẑ > α (2.9)

∂ĉ

∂ẑ
= 0 when ẑ = 0, r̂ > 1 (2.10)

Where the boundary conditions from equation (2.9) and (2.10) arise from the
symmetry of the domain. From the numerical model implemented in the project
work [10], the concentration fields were found for the diffusion problem around a
cylindrical particle for an aspect ratio of 1 and 20, respectively. As evident from
Figure 2.3, the concentration profile around a cylindrical particle degenerates to
the spherical case further out from the particle.

Flux of Solute for Cylindrical Particles

After solving the diffusion problem around the cylindrical particle [10], acquired
the dimensionless concentration flux at the interface. The flux of solute is crucial
in the context of deriving growth rate equations for a cylindrical particle. For
general shapes, the flux can be shown as the following.

I =
¨

particle interface

∂c

∂n
dS (2.11)

7



2. Theory

By dividing the total flux into the particle as I = Iends + Iside, one can achieve an
expression for the total flux for a cylindrical particle [10].

Iside =
2πˆ

0

L
2ˆ

−L
2

D
∂c

∂r

∣∣∣∣∣
r=R

Rdzdθ = 4πDR
(
cm − ci

) αˆ

0

∂ĉ

∂r̂

∣∣∣∣∣
r̂=1

dẑ (2.12)

Iends = 2
2πˆ

0

R̂

0

D
∂c

∂z

∣∣∣∣∣
z= L

2

r drdθ = 4πDR
(
cm − ci

) 1ˆ

0

∂ĉ

∂ẑ

∣∣∣∣∣
ẑ=α

r̂dr̂ (2.13)

Further, one can introduce a dimensionless flux Î which results in the following
expression for the total flux.

I = RD
(
cm − ci

)
Î , Î = Îside + Îends (2.14)

Hence, the dimensionless flux from the side and ends of the considered particle are
defined in equation (2.15) and (2.16), respectively.

Îside =4π
αˆ

0

∂ĉ

∂r̂

∣∣∣∣∣
r̂=1

dẑ (2.15)

Îends =4π
1ˆ

0

∂ĉ

∂ẑ

∣∣∣∣∣
ẑ=α

r̂dr̂ (2.16)
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2. Theory

(a)

(b)

Figure 2.3: (a) The concentration field for α = 1. (b) The concentration field for
α = 20 [10].
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2. Theory

2.2 The Gibbs-Thomson Effect for Axisymmetric
Particles

An important factor in modeling phase transformations is to account for the Gibbs
free energy of the system, and the significance the curvature of precipitates has on
this energy. The influence of curvature on the Gibbs free energy is known as the
Gibbs-Thomson effect and affects the interfacial composition given by the phase
diagram [14]. This is crucial in the context of nucleation and coarsening where the
Gibbs-Thomson effect might have a large influence. An illustration of this effect
on a second-phase particle β in a primary α matrix is shown in Figure 2.4 [11].
As demonstrated by Figure 2.4, the Gibbs-Thomson effect alters the equilibrium
concentration adjacent to the particle from Xe to Xr and effectively changes the
concentration gradient that drives the diffusion-controlled growth of particles.

Figure 2.4: Schematic sketch of the Gibbs-Thomson effect [11]. (a) Gibbs free energy
curves at T1. (b) Corresponding phase diagram.

10



2. Theory

For spherical particles, the curvature is in essence constant around the interface
which results in a constant interfacial concentration. For a spherical particle β
in a diluted binary alloy, the Gibbs-Thomson effect can be expressed as shown in
equation (2.17) [8, 11,14].

Xr = Xe exp
2γvβm
RkT

 (2.17)

Here, Xr is the interfacial composition, Xe is the equilibrium composition in the
matrix, γ is the surface energy, vβm is the molar volume of the β phase, k is the
Boltzmann constant and T is the temperature.

Equation (2.17) is the most famous form of the Gibbs-Thomson equation, but
it is only valid for a pure spherical precipitate β, i.e Xp = 1. However, the
precipitate morphology of some alloys is often of non-spherical character and is
often a compound [1, 15, 16]. For non-spherical particles, the interfacial curvature
is essentially not constant around its interface and a rework of the classical Gibbs-
Thomson equation is needed to account for a non-spherical morphology. Holmedal
et al. [9] introduced a shape factor g to account for the non-spherical configuration
which utilizes an extension of the spherical Gibbs-Thomson equation in equation
(2.17). In order to extend the spherical Gibbs-Thomson relation, a set of assumptions
is required. First, it is assumed that the precipitates take a prescribed shape,
second, that their aspect ratio changes sufficiently slow so that one can consider
the problem as quasi-constant when deriving the equation for the modified Gibbs-
Thomson effect.

For an ordered precipitate β in a diluted binary alloy, the Gibbs energy of nβ

atoms can be expressed as,

Gβ = nβµβ + γ Sβ (2.18)

where µβ is the chemical potential of each atom, and Sβ is the interface surface
area. Additionally, the volume of the β particle can be expressed as the following.

V β = nβV β
m (2.19)

11



2. Theory

Here, V β
m is the molar volume of the β phase. Further one can express the partial

derivative of equation (2.18) with respect to nβ.

∂Gβ

∂nβ
= µβ + γ

∂Sβ

∂nβ
(2.20)

With the assumption of a prescribed shape, one can relate the volume and surface
area of the precipitate which results in the following relations for a non-spherical
particle.

∂Gβ

∂nβ
= µβ + γ

dSβ
dV β

V β
m = µβ + 2gγV β

m

R
(2.21)

As evident from equation (2.21), a shape factor g is introduced. This shape factor is
scaled so that the expression simplifies to the spherical case when g = 1. Therefore,
the variable R is the radius of an equivalent sphere whose volume is identical to
the non-spherical particle shape. The general expression for the shape factor is
given below.

g = 1
2R

dSβ

dV β
(2.22)

From equation (2.22), one can derive shape factors for all kinds of particle mor-
phologies. Further, one can derive the Gibbs-Thomson equation by following the
treatment done by Perez [14] on equation (2.21) which results in the following
Gibbs-Thomson equation, where Xi is the interfacial concentration.

Xi = Xm exp
2gγvβm
RkT

 (2.23)

The shape factor for a volume equivalent cylindrical particle was derived during a
project work [10]. For a cylindrical particle, there exists the following volume and
surface area.

Sβcyl = 2πR2
cyl + 4παR2

cyl, V β
cyl = 2παR3

cyl (2.24)
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2. Theory

Consequently, the shape factor g can be derived from equation (2.22) by inserting
the derivatives of the surface area and volume. The shape factor g for a cylinder
is then depicted in equation (2.25) [10].

g (α) = 2α + 1

3α
(

2
3α

) 1
3

(2.25)

The presented shape factor and Gibbs-Thomson equation for a cylindrical configu-
ration can easily be implemented in already existing models for spherical particles.
However, these extensions of the spherical KWN model does not account for a
distinction of solute concentration at the bases and sidewalls of the cylindrical
particle.

2.3 Diffusional Transformations in Solids

Diffusional transformations are phase transformations that are initiated by the
thermal migration of atoms. These transformations usually occur when heating
the material to a region where more phases are stable, or when cooling down
with a slow cooling rate. For the case of precipitation, the reaction is due to a
supersaturated metastable α′-phase which decomposes into a stable α-phase and
a precipitate β-phase [11]. An illustration of the corresponding phase diagram for
a material that exhibits precipitation transformations is shown in Figure 2.5 [17].
As seen from the figure, precipitation reactions typically occur after heating the
material into the single-phase region and then quench the material to obtain a
supersaturated phase. By the following heat treatment in the two-phase region,
the supersaturated phase decomposes and small precipitates are formed.

13



2. Theory

Figure 2.5: Phase diagram of the age-hardenable Al-Cu alloy [17].

As with all phase transformations, the process of diffusional transformations is
dictated by the three coinciding events, nucleation, growth, and coarsening. It is
these three processes that decide the distribution of precipitates over time in a
material undergoing a diffusional phase transformation. A typical timeline that
describes the evolution of the distribution of precipitates is shown in Figure 2.6.
The evolution is categorized into four different sections [18]:

I. Incubation period τ . The time required to achieve steady-state nucleation.

II.. The steady-state nucleation with the number of particles increasing linearly.

III. Nucleation rate drops off due to a decrease in solute concentration. As the
particles grow, more and more solute atoms are being tied up in the particles.

IV. The larger particles grow at the expense of smaller particles, also known as
coarsening. The effect is driven by the Gibbs-Thomson effect, which affects the
interfacial concentration of the particles and effectively changes the critical radius
of the particles.

14



2. Theory

Figure 2.6: Schematic sketch of the evolution of the precipitate number density over
time for a phase transformation. [18].

2.3.1 Nucleation

At the root of diffusional transformations lies the process of nucleation. The
typical precipitation phase transformation consists of a metastable supersaturated
α′ phase which transforms into a stable α phase and a metastable or stable β

phase as shown in Figure 2.5. For this reaction to take place, there has to arise
small aggregates of the β phase in the α′ phase. Therefore, nucleation is the
process of which the smallest survivable aggregate of the more stable phase arises
from the parent phase [19]. A special characteristic of the nucleation process is
that it arises solely from fluctuations in the parent phase and is the only process
that travels up a free energy gradient involving more than one atom [19]. This is
possible due to the size scale of the process, which ranges from a few atoms and
up. After an aggregate is formed, it can grow further by statistical fluctuations of
solute atoms or dissolve back into the parent phase. The aggregate is said to be
a nucleus when it reaches a critical size which is large enough to be stable [19].
The process of nucleation can occur in two different ways, homogeneous- and
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heterogeneous nucleation. Whereas homogeneous nucleation appears in a perfect
matrix in which there are no defects, heterogeneous nucleation appears at defects
in the lattice. The two types of nucleation will be summarized in the two following
sections.

Homogeneous Nucleation

As mentioned, homogeneous nucleation appears in a perfect matrix. While almost
all nucleation in solids is heterogeneous [11], it is beneficial to review the homoge-
neous case first. As said, aggregates grow by a random fluctuation of solute atoms
in the matrix. However, as the aggregate grows to form a stable nuclei, several
factors concerning the free energy of the process occur.

1. The creation of a volume V of the more stable β phase results in a free energy
reduction equal to V∆Gv [11].

2. By assuming that the α/β interface is isotropic, there is an increase of free
energy equal to Aγ due to the creation of new particle surface [11].

3. The creation of a volume of β phase in the matrix will in general give rise to
lattice strains due to lattice misfit. Therefore, an increase of the free energy
is proportional to the volume of the β phase equal to V∆Gs [11].

Adding all of the terms above gives the general equation for the free energy change
in homogeneous nucleation.

∆G = −V∆Gv + Aγ + V∆Gs (2.26)

In reality, the interfacial energy term should be a summation of all the interfaces
of the particle as the surface energy might differ substantially depending on if the
interfaces are coherent or incoherent. For simplicity, the interfaces are commonly
assumed to exhibit the same surface energy. Further, it is commonly assumed that
the nucleus is of spherical character. Equation (2.26) is then transformed into the
following equation.

∆G = −4
3πr

3 (∆Gv −∆Gs) + 4πr2γ (2.27)
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An illustration of the variation of the Gibbs free energy, and its terms, as a function
of the radius of the nucleus is shown in Figure 2.7.

Figure 2.7: Illustration of the variation of the Gibbs free energy for homogeneous
nucleation of a spherical nucleus [11].

As evident from Figure 2.7, there exists a critical radius r∗ and a critical activation
energy ∆G∗ when ∂∆G/∂r = 0. When an aggregate has reached this critical
radius, it is denoted as a nucleus, as mentioned.

The rate at which these nuclei appear is of great importance in precipitation
models. As shown by Aaronson et al. [19], the equilibrium concentration of critical
nuclei is proportional to exp

(
−∆G∗/kT

)
and can be expressed as,

C∗ = N0 exp
(
−∆G∗
kT

)
(2.28)

where C∗n is denoted as the equilibrium number of critical nuclei per unit volume,
and N0 is the number of atomic nucleation sites per unit volume. Then, if each
nucleus can be made supercritical at a rate of f per second, one can express the
homogeneous nucleation rate as depicted below [11].
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dNhom

dt
= fC∗ (2.29)

As f depend on several factors like the rate of diffusion of solute to the critical
nuclei, temperature and the size of the nuclei, one can rewrite the term as
ω exp

(
−∆Gm/kT

)
[11]. Here, ω is a variable related to the vibrational frequency

of the atoms, and ∆Gm is the required Gibbs free energy for atomic migration per
atom. Therefore, the homogeneous nucleation rate can be expressed in the form
depicted below in equation (2.30) [11].

Nhom

dt
= ωN0 exp

(
−∆Gm

kT

)
exp

(
−∆G∗hom

kT

)
(2.30)

In equation (2.30) the incubation period depicted in Figure 2.6 is neglected.

Heterogeneous Nucleation

Heterogeneous nucleation is the process in which the nuclei are formed on defects in
the material, due to that it is energetically favorable. Nearly all nucleation taking
place in a diffusional phase transformation of a solid, appear from heterogeneous
sources. The most common heterogeneous nucleation sites are vacancies, disloca-
tions, grain boundaries, stacking faults, inclusions, and free surfaces [11]. As with
the homogeneous case, one can express an equation for the change in Gibbs free
energy related to heterogeneous nucleation.

∆Ghet = −V (∆Gv −∆Gs) + Aγ −∆Gd (2.31)

In this equation the new term ∆Gd has been added. Defects present in the matrix
contributes to higher free energy of the system. Nucleation on these sites therefore
effectively reduces the free energy of the system and gives a negative contribution
in the form of ∆Gd. The sites which contribute to higher defect energies are the
most favorable sites. In order from lower to higher ∆Gd are given below [11].

1. Homogeneous sites

2. Vacancies
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3. Dislocations

4. Stacking faults

5. Grain boundaries and interphase boundaries.

6. Free surfaces.

Nucleation will most likely occur at the sites at the bottom of the list. However,
the nucleation process is highly susceptible to the material and the circumstances.
For instance, while homogeneous nucleation is the least likely nucleation site, still,
the material experiences very high driving forces for nucleation, nearly every atom
in the matrix can potentially be a homogeneous nucleation site. Compared to the
homogeneous case, the rate equation for heterogeneous nucleation is altered due
to a lower concentration of nucleation sites, but also a lower activation energy [11].
The heterogeneous nucleation rate is then depicted below in equation (2.32) [11].

dNhet

dt
= ωN1 exp

(
−∆G∗het

kT

)
exp

(
−∆Gm

kT

)
(2.32)

An appropriate expression for the heterogeneous nucleation barrier ∆G∗het has been
used by Myhr et al. [8] for the case of spherical particles.

∆G∗het = (A0)3

(RT )2 [ln(cm/ceq)
]2 (2.33)

Here, A0 is a constant related to how potent the heterogeneous nucleation sites
are, and ceq is the equilibrium solute content given by the phase diagram at the
particle interface. A combination of equation (2.32) and (2.33), yields the following
heterogeneous nucleation rate [8]:

dNhet

dt
= j0 exp

−( A0

RT

)3 ( 1
ln
(
cm/ceq

))2
 exp

(
− Qd

RT

)
(2.34)

Where, j0 is a numerical constant, and Qd is the activation energy for diffusion.
As one can see from equation (2.34), the nucleation rate starts to decline as the
concentration of the matrix is approaching the equilibrium concentration.
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2.3.2 Growth

As emphasized in section 2.3.1, the nucleation of the β phase requires random
fluctuations of solute atoms before acquiring a critical size, thereafter diffusion
of solute atoms to the nucleus ensures further growth of the precipitate. After
reaching a sufficient size of the nucleus, so that the probability of losing atoms to
fluctuations are negligible, the nucleus is said to have entered the growth stage [19].
In contrast to the nucleation process, which occurs in a near-constant solute con-
centration, the growth stage is characterized by mass transport of solute atoms to
the precipitate. While the shape of the nucleus is determined by the interfacial
energies, the shape of the precipitate is determined by the relative growth rates of
each interface [19]. In many diffusional phase transformations, the growth is said
to be diffusion-controlled, i.e, limited by the flux of solute atoms to the migrating
interface. This will be the assumption in this work.

Growth of Spherical and Non-spherical Precipitates

For a spherical precipitate, the growth rate was first proposed by Zener [20] for
invariant field approximations, i.e, that one can use the steady-state equation as
shown in equation (2.2), and an assumption of small supersaturation. The growth
rate can be found by doing a simple flux balance at the particle surface. Figure
2.8 gives an illustration of the proposed flux balance. For a spherical particle
with radius R, the incoming flux of solute atoms to the interface is as depicted in
equation (2.35).

I = 4πD
(
cm − ci

)
R (2.35)

Where cm is the bulk concentration and ci is the interfacial concentration. The
amount of solute atoms entering the particle to yield growth can then be expressed
as,

Idt = dV
(
cp − ci

)
(2.36)

where cp is the concentration of the particle. Consequently, the particle can expand
in the radial direction by a volume element dV = 4πR2dR. Inserting for dV and
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R dRcp
ci

dV = 4𝜋R²dR

Figure 2.8: Flux balance at the interface of a spherical particle.

combining equation (2.35) and (2.36), results in the growth rate of a spherical
particle under steady-state conditions.

dR

dt
=
D
(
cm − ci

)
R (cp − ci) (2.37)

The interfacial concentration ci is determined by the Gibbs-Thomson effect which
can have large impact on the growth rate, and consequently, the coarsening process.
Equation (2.37) is frequently used in precipitation models for spherical precipitates
[8, 21, 22].

An extension of the spherical precipitation models to account for non-spherical
precipitates can be done by introducing a shape factor f to account for the
changes in growth rates due to a non-spherical morphology. This methodology
was, amongst others, introduced by Holmedal et al. [9] by utilizing an extension of
the spherical growth rate in equation (2.37). For general shapes one can use
equation (2.11) to express an equation for the flux from the considered non-
spherical particle [9].

I = 4πD
(
cm − ci

)
fR (2.38)

Here, f is the introduced shape factor depending on precipitate morphology and R
is the radius of a volume equivalent sphere. A scaling factor 4π is also introduced
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so that f = 1 yields the spherical case. Consequently, an expression for the
growth rate of an equivalent spherical particle with an identical volume as the
non-spherical particle can be found from combining equation (2.36) and (2.38) [9].

dR

dt
= f

D
(
cm − ci

)
R (cp − ci) (2.39)

Where a shape factor of 1 deduces equation (2.39) to the ordinary spherical growth
rate as seen in equation (2.37).

An expression for the shape factor for a cylindrical particle was deduced from a
project work [10]. For a cylinder, the following relationship exists for a volume
equivalent sphere.

R = 3

√
3
4R

2
cyl L = 3

√
3
2αRcyl (2.40)

Further, by inserting the radius R of a volume equivalent sphere into equation
(2.14), one obtains the following relation.

I = D

(
2

3α

) 1
3

R
(
cm − ci

)
Î (α) (2.41)

Comparing equation (2.38) and (2.41), one can obtain the shape factor f for a
cylindrical particle as a function of its aspect ratio [10].

f (α) =

(
2

3α

) 1
3 Î (α)
4π (2.42)

As mentioned for the shape factor for the Gibbs-Thomson effect, the shape factor
accounting for particle morphology on the growth rate can easily be implemented
into already existing spherical particle models. However, this approach is unable
to depict the individual growth rates of the side and end surfaces of a cylindrical
precipitate. As the two types of surfaces might experience different surface energies
and consequently, different interfacial concentrations. The distinction between the
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surfaces becomes increasingly important as the coarsening phase arises where the
Gibbs-Thomson effect is especially important.

2.3.3 Coarsening

The coarsening process is related to the final stage of the time evolution of the
precipitate number density as seen in Figure 2.6. Here, the total number density of
particles decreases with time. This effect is controlled by the Gibbs-Thomson effect
which effectively changes the equilibrium concentration adjacent to the particle.
An illustration of the nature of coarsening is given in Figure 2.9 [11].

Figure 2.9: Illustration of the onset of coarsening [11].

In Figure 2.9a, two spherical precipitates of radius r1 and r2 exists. As a con-
sequence of the Gibbs-Thomson effect, the equilibrium concentration adjacent to
the smaller particle (r2) will effectively be larger than that for the larger particle.
Therefore, the larger particle will grow at the expense of the smaller one due to a
concentration gradient which will cause solute atoms to migrate to the more stable
particle with radius r1 [11]. The coarsening effect leads to an increase in particle
mean radius and a decrease of the particle number density.
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2.4 Implementations of Nucleation and Growth
Theories

To predict and better understand the underlying nature of diffusional phase trans-
formations, the three coinciding processes nucleation, growth and, coarsening can
be implemented in various mathematical models and solved numerically using
computers. The most relevant parameters for precipitation in alloys are their
number density, size, the precipitate volume fraction, morphology, and crystallog-
raphy. One of the first models to implement the three processes as proposed by
Langer and Schwartz for droplet formations in fluids [23], it utilized a so-called
mean radius approach where the number density and mean radius of the droplets
were tracked. Later, this was extended for precipitation in supersaturated alloys
by Kampmann and Wagner, utilizing the same mean radius approach [24]. While
the mean radius approach is successful in predicting the mean radius and the
number density, it does not account for the precipitate size distribution. This was
later resolved when Kampmann and Wagner introduced a new approach, where
the continuous precipitate size distribution was divided into several size classes.
Each class consisted of a set of identical spherical precipitates. The time evolution
of the precipitate size distribution was tracked by calculating the size evolution
of each size class. This multi-class approach is known as the Kampmann-Wagner
Numerical model (KWN) [7]. The multi-class approach can further be divided into
the Eulerian and the Lagrangian approaches. An introduction to the three types
of implementation of classical nucleation and growth theories will be given in the
next sections and is based on Perez et al. [21] and Myhr et al. [8].

2.4.1 The Mean Radius Approach

As the name suggests, the time evolution of the precipitates is tracked using
the mean radius, R̄, of the precipitates. As the size evolution is described by
a single parameter R̄, the spherical growth equation in equation (2.37) has to
be modified to include the nucleation of new precipitates with a critical radius
R∗. The simultaneous growth and nucleation of the mean radius are depicted as
proposed by Perez et al. [21].
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dR̄

dt

∣∣∣∣∣
growth

= D

R̄

cm − ci

χcp − ci
+ 1
N

dN

dt

(
R∗ − R̄

)
(2.43)

Here, χ is the ratio of matrix to precipitate atomic volume, N is the total number
density of precipitates, and dN/dt is the nucleation rate. However, equation (2.43)
does not take into account the coarsening effect. This is due to the fact that one
only tracks the mean radius of the precipitates, hence, one does not track the
relative radius between the precipitates in the particle size distribution. In order to
account for the coarsening of the precipitates, a new expression for the evolution of
the mean radius has to be introduced. The including of the coarsening mechanism
to the growth rate reported in equation (2.37), was simultaneously discovered by
Lifchitz and Slyosov [25] and Wagner [26]. They discovered that the particle size
distribution reduces to a so-called Lifshitz–Slyozov–Wagner(LSW) distribution.
From equation (2.41) and a linearized form of the Gibbs-Thomson equation, leads
to the following expression for the growth rate of the mean radius in the coarsening
regime [21].

dR̄

dt

∣∣∣∣∣
coars

= 4
27

ci

χcp − ci
R0D

R̄2
(2.44)

R0 =
2γvβp
kT

(2.45)

2.4.2 Multiclass Approach

In the multiclass approach, the particle size distribution is divided into several
size classes. By assuming spherical precipitates, each size class exhibits a radius
Ri and the number of particles of size Ri is Ni. The total number density of the
particle size distribution is then given as:

N =
∑
i

Ni (2.46)

In addition, the mean radius is depicted as:
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R̄ =
∑
iNiRi∑
iNi

(2.47)

For spherical precipitates, the precipitate volume fraction can also be found as
depicted below.

fp = 4
3π

∑
i

NiR
3
i (2.48)

To keep track of the bulk concentration as the particle size distribution progresses
through time, a mass balance to depict the amount of solute atoms tied up in the
particles is required.

cm = c0 − χcpfp
1− χfp

(2.49)

Where c0 is the initial concentration of the matrix. As mentioned, for the multiclass
approach there exist two choices for modeling the particle size distribution. The
Eulerian or Lagrangian approach. The two approaches will be further explained
in the two following sections.

Eulerian Approach

The use of a Eulerian coordinate system stems from fluid mechanics, where it
implies observing the fluid properties at fixed positions [27]. Hence, for precipita-
tion models, one considers the change of particle density for a fixed radius R, i.e
a size class R ± dR/2, with flux in and out at the infinitesimal control volume.
In addition, nucleation occurs within the control volumes. Mathematically, the
Eulerian approach can be expressed as proposed by Myhr et al. [8].

∂N

∂t
+ ∂ (Nv)

∂R
= S (2.50)

Here, N is the number density within the control volume R±dR/2, v is the particle
growth or dissolution rate as defined by equation (2.37). Nv is then equal to the
particle flux through the control volume. S is a source term that describes the
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formation of new particles and is therefore equal to the nucleated particles per
time.

Lagrangian Approach

In a Lagrangian coordinate system, the fluid properties are determined by observ-
ing the trajectories of individual pieces of the fluid [27]. Therefore, in precipitation
models, the Lagrangian approach follows the time evolution of each particle, or
a number of particles with the same size, i.e a particle size class. Each class is
nucleated and given a constant set of particles. Mathematically, this corresponds
to:

dN

dt
= S,

dR

dt
= v (2.51)

A translation between the Eulerian and Lagrangian coordinate system is then
possible.

dN

dt︸︷︷︸
Lagrangian

= ∂N

∂t
+ ∂ (Nv)

∂R︸ ︷︷ ︸
Eulerian

= S (2.52)

A consequence of the Lagrangian approach is that it enables one to directly use
growth equations for a spherical particle since it follows each particle size evolution
through time. The methodology of this approach for precipitation models is
inspired by Maugis et al. [22]. A schematic illustration of the nucleation and
growth process in the Lagrangian approach is shown in Figure 2.10 [21].

Figure 2.10: An illustration of the nucleation and growth in the Lagrangian-like
approach [21].
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Kernel Density Estimator

Due to the nature of the Lagrangian approach, the particle size distribution cannot
readily be available from the size classes, in contrast to the Eulerian approach.
As one knows how many particles of each size, to find the statistical density
distribution one needs a density estimator. The simplest method is to use bins, and
a viable method is utilizing a kernel density estimator(KDE). A KDE is a method
of finding the probability density function of data set [28]. A kernel is placed on
each data point in the set and is ultimately summed up to create a probability
density function. The kernel estimator can be expressed as the following [28].

f(x) = 1
nh

n∑
i=1

K

(
x− xi
h

)
(2.53)

Here, n is the number of data points, h is bandwidth, K is the kernel function
and x − xi determines how far apart the data point x is from the point xi. The
kernel estimator may be thought of as a sum of narrow distributions placed at
each observation [28]. Then the kernel determines the shape of the bumps and
h determines the width. It is also noted that

´
K(t)dt = 1, to ensure that f(x)

also integrates equal to 1. A common kernel function is the standard normal
distribution. Therefore, the kernel density estimator can be described as shown
below [29].

f(x) = 1
nh

n∑
i=1

1√
2π

exp
−1

2

(
x− xi
h

)2
 (2.54)

An illustration of the kernel density estimation with Gaussian kernels are shown
in Figure 2.11 [29].
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Figure 2.11: An illustration of the kernel density estimation with Gaussian kernels
with two different h-values [29].
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In this thesis, a mathematical model is formulated and a numerical algorithm is
formulated to solve the equations. The framework of the model is implemented
in the language Fortran. The model uses a Lagrangian approach to evaluate the
distribution in terms of the precipitates radius, length, and number densities.

3.1 Diffusion Problem and Rate Law

At the foundation of a numerical precipitation model lies the diffusion problem
of solute around the particle which determines the growth speed of said particles.
An illustration of the concentration field around a cylindrical particle was given
in Figure 2.3. In this model, the particle growth will be assumed to be diffusion-
controlled and will, therefore, be limited by the diffusion of solute atoms in solid
solution to the particle’s surface. The diffusion problem is further simplified
by assuming that the particles are sufficiently spread out so that they do not
have interacting diffusion fields, but rather interact through the same solute con-
centration in the matrix, which is said to be constant in some region between
neighbouring particles. Moreover, the diffusion solutions near the particles and
the concentration of the matrix in between the particles are assumed to change
adequately slow so that one can treat the diffusion problem as quasi-steady state.
The basis for the numerical model for solving the steady-state diffusion problem
was solved for a non-dimensional system during a project work and will be further
explained in section 3.4 [10]. As already mentioned in equation (2.2), the steady-
state diffusion problem can be expressed as the following.
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∇2c = 0 (3.1)

Where C is the molar concentration in moles per volume of A atoms in a solid
solution of A and B atoms in the primary matrix phase α. As mentioned, an
axisymmetric specimen of length L and radius R is considered. A modification of
the boundary conditions presented in section 2.1 is done by distinguishing the local
concentrations at the end and side surfaces of the cylindrical particles. Hence, the
new boundary conditions are presented below.

c = cside, r = R, −L2 < z <
L

2 (3.2)

c = cend, z = ±L2 , 0 < r < R (3.3)

c = cm,
√
r2 + z2 >> R (3.4)

As seen above, cside is the local concentration at the sides of the particle, cend is the
local concentration at the two ends of the cylinder, and cm is the concentration
of the matrix far away from the particles. The same scaling into dimensionless
spatial coordinates as in section 2.1.1 can be used to transform the system into a
non-dimensional problem which allows a compact representation of the numerical
solutions.

r̂ = r

R
, ẑ = z

R
, α = L

2R (3.5)

Due to the change of the boundary conditions in equation (3.2), a new expression
for the dimensionless concentration will be defined.

c = cm +
(
cend − cm

)
ĉend +

(
cside − cm

)
ĉside (3.6)

As mentioned, equation (3.1) can be written as a linear combination of any function
that satisfies Laplace’s equation. Therefore, ĉend and ĉside can be solved indepen-
dently. The notation ĉend corresponds to a solution of the diffusion problem around
a cylindrical particle where the ends of the cylinder have a concentration cend,
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while the side walls exhibit a concentration c = 0. Moreover, ĉside corresponds
to a solution when the concentration of the side walls is equal to cside, while the
end surfaces correspond to a concentration c = 0. As mentioned in section 2.1.1,
due to the symmetry of the domain, only half of the axisymmetric length needs
to be calculated. A summary of the new boundary conditions and the governing
equation for the two diffusion solutions are given below.

∇2ĉend = 0 (3.7)
ĉend = 0, r̂ = 1, 0 ≤ ẑ ≤ α (3.8)
ĉend = 1, ẑ = α, 0 ≤ r̂ ≤ 1 (3.9)
ĉend = 0,

√
r̂2 + ẑ2 >> 1 (3.10)

∂ĉend
∂ẑ

= 0, ẑ = 0, r̂ ≥ 0 (3.11)
∂ĉend
∂r̂

= 0, r̂ = 0, ẑ ≥ 0 (3.12)

Similarly, for the diffusion problem of ĉside, the following boundaries and Laplace’s
equation exists.

∇2ĉside = 0 (3.13)
ĉside = 0, r̂ = 1, 0 ≤ ẑ ≤ α (3.14)
ĉside = 1, ẑ = α, 0 ≤ r̂ ≤ 1 (3.15)
ĉside = 0,

√
r̂2 + ẑ2 >> 1 (3.16)

∂ĉside
∂ẑ

= 0, ẑ = 0, r̂ ≥ 0 (3.17)
∂ĉside
∂r̂

= 0, r̂ = 0, ẑ ≥ 0 (3.18)

The numerical implementation of the two diffusion problems will be further clari-
fied in section 3.4. From the diffusion solution around the considered precipitate,
one can find the current of solute through the particle surface. Therefore, the
number of atoms per time moving through the particle interface can be expressed
as shown below.
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I =
¨

particle interface

D
∂c

∂n
dS (3.19)

Consequently, by distinguishing the particles end and side surfaces, equation (3.19)
can be transformed into the following equation.

I = 4π
ˆ R

r=0
D
∂c

∂z

∣∣∣∣∣
z= L

2

rdr + 4π
ˆ L

z=0
D
∂c

∂r

∣∣∣∣∣
r=R

dz (3.20)

Further, by introducing the dimensionless variables previously defined in this
section, the concentration flux is converted into the following relation.

I = 4πRD
(
cside − cm

)ˆ 1

r̂=0

∂ĉside
∂ẑ

∣∣∣∣∣
ẑ=α

r̂dr̂ + 4πRD
(
cend − cm

) ˆ 1

r̂=0

∂ĉend
∂ẑ

∣∣∣∣∣
ẑ=α

r̂dr̂

+ 4πRD
(
cside − cm

)ˆ α

ẑ=0

∂ĉside
∂r̂

∣∣∣∣∣
r̂=1

dẑ + 4πRD
(
cend − cm

) ˆ α

ẑ=0

∂ĉend
∂r̂

∣∣∣∣∣
r̂=1

dẑ

=RD
(
cside − cm

) (
Îendside + Îsideside

)
+RD

(
cend − cm

) (
Îendend + Îsideend

)
(3.21)

Here, Î represents the dimensionless flux found from a numerical solution of the
diffusion problem. The definition of the different flux terms is depicted below.

Îendside = 4π
ˆ 1

r̂=0

∂ĉside
∂ẑ

∣∣∣∣∣
ẑ=α

r̂dr̂ (3.22)

Îendend = 4π
ˆ 1

r̂=0

∂ĉend
∂ẑ

∣∣∣∣∣
ẑ=α

r̂dr̂ (3.23)

Îsideside = 4π
ˆ α

ẑ=0

∂ĉside
∂r̂

∣∣∣∣∣
r̂=1

dẑ (3.24)

Îsideend = 4π
ˆ α

ẑ=0

∂ĉend
∂r̂

∣∣∣∣∣
r̂=1

dẑ (3.25)
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To clarify, Îendside and Îendend are the flux from the end surfaces of the considered particle
with a ĉside-field and ĉend-field, respectively. Similarly, Îsideside and Îsideend are the flux
from the side walls of the particle with a ĉside-field and ĉend-field, respectively.

Moreover, the current of solute to the cylindrical particle surface will yield growth
rates. These growth rates can be found by applying a flux balance at the interfaces
of the cylinder. An illustration of the two types of growth for a cylindrical particle
is shown in Figure 3.1.

dR

dL

Figure 3.1: An illustration of the two migrating interfaces of a cylindrical particle.

As seen from Figure 3.1, the particle can either lengthen in the axial direction equal
to πR2dL, or expand in the radial direction equal to 2πRLdR. A flux balance at
the end surfaces yields the following relation.

Iend dt =
(
χcp − cend

)
πR2dL (3.26)

Here, Iend is denoted as the first term in equation (3.20) which denotes the current
of solute atoms from the end surfaces, and χ = V B

p /V
B
m , where V B

m is the average
atomic volume per mole B atoms in the matrix, while V B

p is the average atomic

34



3. Modeling

volume per mole B atoms in the particle. Similarly, a flux balance at the sidewalls
of the particle exists with Iside denoting the second term of equation (3.20).

Iside dt =
(
χcp − cside

)
2πRLdR (3.27)

By introducing equation (3.21) with the respective fluxes into equation (3.26) and
(3.27), one can express the axial and radial growth rates of the considered particle.

dL

dt
=
D
(
cside − cm

)
Îendside(α) +D

(
cend − cm

)
Îendend (α)

πR
(
χcp − cend

) (3.28)

dR

dt
=
D
(
cside − cm

)
Îsideside (α) +D

(
cend − cm

)
Îsideend (α)

2πL
(
χcp − cside

) (3.29)

As seen from equation (3.28) and (3.29), in order to successfully calculate the
growth rate of the particle one needs to both include the Gibbs-Thomson effect
for cend and cside, but also solve the diffusion problem for a wide range of aspect
ratios since the dimensionless flux is a function of the aspect ratio. The diffusion
solution will be further explained in section 3.4, while the Gibbs-Thomson effect
will be reviewed in section 3.2.

3.2 The Gibbs-Thomson Effect

To successfully implement a precipitation model for cylindrical particles, the Gibbs-
Thomson equation for spherical particles which is shown in equation (2.17), needs
to be modified to account for a cylindrical configuration. By following Perez’s [14]
work one can adjust the derivation of the Gibbs-Thomson equation to allow for a
cylindrical particle with a distinction between the cylinder’s side and end surfaces.

In the presented model there exists a primary α phase which consists of a binary
solution of na mol A atoms and nb mol B atoms. By assuming the free energy is
due to the bond energy of adjacent atoms which is equivalent to a regular solution,
one can express the Gibbs free energy of the phase as following,
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Gα = na

GA + kT ln
(

na
na + nb

)+ nb

GB + kT ln
(

nb
na + nb

)+ Ωnanb
na + nb

(3.30)

where GA and GB are the molar free energies of the pure A and B phase, respec-
tively, k is the Boltzmann constant, T is the temperature in kelvin and Ω is a
regular solution constant depending on bond energies and coordination numbers.

Similarly there exists a second-phase particle β which consists of a known compo-
sition of AxBx, where the molar concentration of B in the β particle is equivalent
to Xp = y/(x+ y). Consequently, an expression for the Gibbs free energy of the β
phase can be made. Assuming that the β particle is perfectly ordered and without
configurational entropy, the resulting Gibbs free energy including surface energy
of the side and end of the cylindrical particle is shown below.

Gβ = nβGβ
n + 2πRLγside + 2πR2γend (3.31)

Here, Gβ
n is the Gibbs free energy per atom of β phase, nβ is the number of

atoms in the β phase, R and L is the radius and length of the cylindrical particle,
respectively and γside and γend are the surface energies of the side and end surfaces,
respectively. Further, one can deduce that if the α phase is in equilibrium with
the β phase, a small transfer of β phase molecules dnβ across a surface element
with normal vector ~n, from the particle into the surrounding α phase matrix as(
1−Xp

)
dnβ A atoms and Xp dn

β B atoms will not change the energy of the
system. Consequently, one can show that the following expression in equation
(3.32) exists.

∂Gβ

∂nβ
dnβ = ∂Gα

∂nαA

(
1−Xp

)
dnβ + ∂Gα

∂nαB
Xp dn

β (3.32)

As seen from equation (3.32), an expression for the chemical potential for the
particle, Gβ

n, can be derived by considering that the β phase is in equilibrium with
the primary α phase of composition X∞eq . By assuming a dilute regular solution,
i.e X∞eq << 1, the following expression for Gβ

n can be derived.
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Gβ
n =

(
1−Xp

)(
Gα
A + kT ln

(
1−X∞eq

))
+Xp

(
Gα
B + Ω + kT ln

(
X∞eq

))
(3.33)

Additionally, the total volume of the particle is described as Vp = πR2L = nβV β
p .

When the particle receives atoms across the sides, the length L remains constant,
while the radius R is altered. Consequently, the radius of the particle can be
expressed as shown in equation (3.34).

R =

√
V β
p nβ

πL
(3.34)

Hence, the derivative of equation (3.31) with respect to nβ at a constant length,
results in equation (3.35).

∂Gβ

∂nβ

∣∣∣∣∣
L=const

−Gβ
n = 2π (Lγside + 2Rγend)

∂R

∂nβ
=

(
L
R
γside + 2γend

)
V β
p

L
(3.35)

Similarly, when atoms are transferred across the ends of the particle, the radius R
remains constant, while the length L is altered. The length of the particle can be
expressed as following,

L =
V β
p n

β

πR2 (3.36)

and ultimately, the derivative of equation (3.31) with respect to nβ at a constant
radius, is given in equation (3.37).

∂Gβ

∂nβ

∣∣∣∣∣
R=const

−Gβ
n = 2πRγside

∂L

∂nβ
=

2γsideV β
p

R
(3.37)

Further, by applying the same assumption of a regular solution as equation (3.30)
and assumption of local equilibrium at each particle surface from equation (3.32),
i.e diffusion-controlled interface motion, one can show that the following equilib-
rium conditions hold,
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Gβ
n +

2
(
L
R
γside + 2γend

)
V β
p

L
=(

1−Xp

)(
Gα
A + kT ln

(
1−Xside

eq

))
+Xp

(
Gα
B + Ω + kT ln

(
Xside
eq

))
(3.38)

Gβ
n +

2γsideV β
p

R
=(

1−Xp

)(
Gα
A + kT ln

(
1−Xend

eq

))
+Xp

(
Gα
B + Ω + kT ln

(
Xend
eq

))
(3.39)

where Xside
eq and Xend

eq are the equilibrium compositions at the side and end surfaces
of the particle, respectively. Also, one can obtain the general form of the Gibbs-
Thomson equation, albeit modified to account for a cylindrical particle, by intro-
ducing equation (3.33) into equation (3.38) and (3.39). The general form is then
given for the side and end surfaces below in equation (3.40) and (3.41), respectively.

2
(
L
R
γside + 2γend

)
V β
p

LkT
=
(
1−Xp

)
ln
1−Xside

eq

1−X∞eq

+Xp ln
Xside

eq

X∞eq

 (3.40)

2γsideV β
p

RkT
=
(
1−Xp

)
ln
1−Xend

eq

1−X∞eq

+Xp ln
Xend

eq

X∞eq

 (3.41)

In order to solve the general Gibbs-Thomson equations for Xside
eq and Xend

eq , one
needs to introduce some approximations. Two simple and relevant approximations
are when Xp ≈ 1, i.e pure precipitates, or the case of diluted solid solutions
where Xside

eq , Xend
eq << 1 and X∞eq << 1 [14]. By applying the most common

approximation of Xp ≈ 1, equation (3.40) and (3.41) are reduced to the following
equations for Xside

eq and Xend
eq .

Xside
eq = X∞eq exp


(
γside + 2R

L
γend

)
V β
p

RkT

 (3.42)
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Xend
eq = X∞eq exp

2γsideV β
p

RkT

 (3.43)

In addition, the approximation proposed by Perez [14] for the case of diluted
solid solutions where Xside

eq , Xend
eq << 1 and X∞eq << 1, can be used to derive an

expression for the equilibrium concentrations at the surfaces of the particle. In
this case the first term of equation (3.40) and (3.41) are negligible to the second
one, except when Xside

eq , Xend
eq ≈ X∞eq . One can rearrange equation (3.40) as the

following through doing a series expansion of the logarithmic terms.

2
(
L
R
γside + 2γend

)
V β
p

LkT
=

(
1−Xp

)
ln
1 +

X∞eq −Xside
eq

1−X∞eq

+Xp ln
1 +

Xside
eq −X∞eq
X∞eq

 =

(
1−Xp

) X∞eq −Xside
eq

1−X∞eq
+Xp

Xside
eq −X∞eq
X∞eq

(3.44)

By letting ε = Xside
eq − X∞eq , equation (3.44) is then transformed into equation

(3.45)

2
(
L
R
γside + 2γend

)
V β
p

LkT
=
(
1−Xp

)
(−ε) +Xp

ε

X∞eq
(3.45)

As can be seen from equation (3.45), the first term is also negligible here compared
to the second one. A similar treatment can be done for equation (3.41). Therefore,
equation (3.40) and (3.41) are deduced to the following two expressions for the
Xside
eq and Xend

eq for the particle side and end surfaces, respectively.

Xside
eq = X∞eq exp


(
γside + 2R

L
γend

)
V β
p

XpRkT

 (3.46)

Xend
eq = X∞eq exp

2γsideV β
p

XpRkT

 (3.47)
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Equation (3.46) and (3.47) are the most versatile of the two proposed solutions as
both equations reduce to equation (3.42) and (3.43) when Xp = 1. Thus, equation
(3.46) and (3.47) are the ones implemented in the numerical model.

An implication rarely described in the literature is that the derivation of the Gibbs-
Thomson equations yields an expression for atomic fraction X, while the growth
equations demand volume fractions. The volume concentration cm of atom type
B in the matrix is expressed:

cm = V B
m nB

V B
m nB + V A

m nA
= V B

m

V B
m + V A

m
nA

nB

=
V B
mX

∞
eq

V B
mX

∞
eq + V A

m

(
1−X∞eq

)
=

X∞eq

X∞eq + V A
m

V B
m

(
1−X∞eq

) (3.48)

For dilute solutions, one can simplify the expression in equation (3.48):

cm ≈ V B
m

V A
m

X∞eq (3.49)

Similar treatments can be done for the other concentration parameters. For
simplification, this thesis will assume a V B

m /V
A
m -ratio approximately equal to 1.

This implies that one can directly use the atom fractions found from the Gibbs-
Thomson equations in the mathematical model.

3.2.1 Non-Constant Surface Energies

The derivations in the previous section assumed constant surface energies. One
can also imagine that the surface energy of the side or end surfaces changes with
increasing length or radius. For needle-like precipitates, the growth rate in the
length direction should be higher than the radial growth rate to facilitate long
needles. As the growth rates are influenced by the Gibbs-Thomson relation, it is
beneficial to derive a Gibbs-Thomson equation that can account for changes in
the surface energies. For needles, the most relevant is when γend varies with the
radius of the cylindrical particle. Hence, equation (3.35) is transformed into the
following relation when γend is a function of R.
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∂Gβ

∂nβ

∣∣∣∣∣
L=const

−Gβ
n = 2π

(
Lγside + 2Rγend(R) +R2dγend

dR

)
∂R

∂nβ

=

(
L
R
γside + 2γend(R) +Rdγend

dR

)
V β
p

L
(3.50)

Using the same treatment as in the previous section, one can obtain an expression
for the new Gibbs-Thomson equation with a non-constant end surface energy.

Xside
eq = X∞eq exp


(
γside + R2

L
dγend

dR + 2R
L
γend(R)

)
V β
p

XpRkT

 (3.51)

3.2.2 Surface Energy Function

A proposed equation for γend is one that ramps up when the radius of the precipitate
increases. This is due to the fact that the interfacial energy of, for instance β′′ in
Al-Mg-Si, is size dependent due to gradual losses of coherency [30]. As seen from
Murayama and Hono [31], the nuclei are of spherical character and later grows
into needles for the Al-Mg-Si alloys. Therefore, the γend function should be equal
to γside at nucleation to facilitate a more spherical character. From there γend can
be ramped up to a threshold value. An illustration of the proposed upramp of
γend and the accompanying suggestion for γend(R) is shown in Figure 3.2. Here,
the linear upramp and γend(R) is as described below:

γ =


γ1, R < R1

γ1 + γ2−γ1
R2−R1

R, R1 ≤ R ≤ R2

γ2, R > R2

(3.52)

γ(R) = γ1 + 1
2 (γ2 − γ1)

1 + tanh
((γ2 − γ1)

(
R− 1

2R1 − 1
2R2

)
2 (R2 −R1)

) (3.53)

Equation (3.53) can then be used in the model for varying γend. The proposed
equation is only an educated guess and is not a representation of the actual surface
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energy of the end surfaces. However, this can be used to create qualitative results
for needle-like precipitates.

R
1

R
2

1

2

Figure 3.2: An illustration of the linear upramp of γend and proposed equation for
γend.

3.3 Critical Nucleus

The critical radius R∗ and length L∗ can both be found from the growth equations.
They are defined as the minimum radius and length of the precipitate to achieve
a stable critical nucleus. If the radius or length is below R∗ or L∗, the nuclei
will achieve a negative growth rate and will readily shrink and disappear. From
equation (3.28) and (3.29), the following condition has to be satisfied for R∗ and
L∗.

0 =
D
(
cside − cm

)
Îendside(α) +D

(
cend − cm

)
Îendend (α)

πR
(
χcp − cend

) (3.54)
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0 =
D
(
cside − cm

)
Îsideside (α) +D

(
cend − cm

)
Îsideend (α)

2πL
(
χcp − cside

) (3.55)

An obvious solution arise when cm = cside = cend which satisfies both equations.
Thus, the following relation exist when inserting equation (3.47) and cm = cend.

cm = ceq exp
2γsideV β

p

cpR∗kT

 (3.56)

Which leads to an appropriate equation for R∗.

R∗ =
2γsideV β

p

ln
(
cm

c∞eq

)
cpkT

(3.57)

Similarly, an expression for L∗ is obtainable by inserting equation (3.46) or equation
(3.51) depending on if the surface energy γend is constant or not. For a constant
γend the following expression arises when cside = cend.

γside + 2R
∗

L∗
γend = 2γside (3.58)

Further, introducing the aspect ratio α into equation (3.58) yields an expression
for the critical aspect ratio, and consequently, an expression for the critical length.

α∗ = γend
γside

, L∗ = 2α∗R∗ (3.59)

For a non-constant γend, equation (3.58) transforms into the following equation.

γside + R∗
2

L∗
dγend
dR

∣∣∣∣∣
R=R∗

+ 2R
∗

L∗
γend(R∗) = 2γside (3.60)

Which results in a new expression for L∗ as shown in equation (3.61).
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L∗ = R∗
2

γside

dγend
dR

∣∣∣∣∣
R=R∗

+ 2γend(R
∗)

γside
R∗ (3.61)

As one can observe from equation (3.61), L∗ reduces to equation (3.59) when γend
is constant.

3.4 Algorithm for Numerical Diffusion Solution

The foundation of the numerical model used to calculate the resulting concentra-
tion field around a cylindrical particle was built in the computing language Fortran
during a project work [10], and will only be briefly summarized in this section with
the new boundary conditions set in section 3.1. To numerically solve the diffusion
field around a cylindrical particle, a finite difference scheme was implemented to
solve equation (3.7) or (3.13) by the use of a line-by-line method where the domain
is swept column- and row-wise. Each sweep is then calculated using a tridiagonal
matrix solver. In addition, the concentration flux at the interfaces was calculated
using a trapezoid method. As mentioned, an assumption of quasi-steady conditions
is used which enables one to use the Laplace form of the diffusion equation.

3.4.1 Grid and Computational Domain

For evaluating the diffusion problem, a computer domain consisting of a grid of
nodes in which each node exhibits a concentration value. From the boundary
conditions in section 3.1, the concentration values range from 1 at the particle
interface to 0 in the matrix far away from the considered particle. An illustration
of the computation domain is shown in Figure 3.3 [10].
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r̂

ẑ

r̂=1

ẑ=𝛼

Nrmax

Nzmax

Rmax

Zmax

Δr

Δz
Δz∙q

Δz∙q2

O

N

S

W Ei,j

i,j+1

i+1,j

i,j-1

i-1,j

Figure 3.3: An illustration of the computational domain and grid for the diffusion
model [10].

Here, Rmax and Zmax is the length of the grid in the radial and axial direction,
respectively. Additionally, Nrmax andNzmax is the number of nodes in the respective
directions. To accurately satisfy the outer boundary condition presented in equation
(3.10) and (3.16), a stretched grid is used where the distance between neighbouring
nodes is increased by a factor q, where ∆r and ∆z is the initial nodal spacing used
near the particle interface.

3.4.2 Finite Difference Scheme

To numerically obtain the diffusion field, equation (3.7) and (3.13) has to be
discretized into nodal equations. As shown in section 2.1.1, the Laplace equation
becomes the following equation in dimensionless cylindrical coordinates with angular
symmetry.
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1
r̂

∂ĉ

∂r̂
+ ∂2ĉ

∂r̂2 + ∂2ĉ

∂ẑ2 = 0 (3.62)

Due to the boundary conditions of the outer nodes, a distinction between the inner
and outer nodes is necessary. The governing equations of the diffusion problem
can be categorized into the outer and inner nodal equations and will be reviewed
in the following two sections.

Inner Nodal Equations

An illustration of the stencil for the inner nodes of the domain is shown in Figure
3.4. For the inner nodes a Taylor series expansion of ĉi+1,j and ĉi−1,j around ĉi,j

is done. From the Taylor series expansion, an expression for the second derivative
with respect to r̂ was found to be as shown in equation (3.63).

i,j

i,j+1

i,j-1

i-1,j i+1,j

Figure 3.4: An illustration of the stencil for the inner nodes [10].

∂2ĉ

∂r̂2

∣∣∣∣∣
i,j

= 2
∆r̂E (∆r̂E + ∆r̂W ) ĉi+1,j + 2

∆r̂W (∆r̂E + ∆r̂W ) ĉi−1,j

− 2
∆r̂E ∆r̂W

ĉi,j

(3.63)

Here, ∆r̂E = r̂i+1,j − r̂i,j and ∆r̂W = r̂i,j − r̂i−1,j. A truncation error appearing
from the Taylor series expansion was found to be as depicted below.
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ε = 1
3 (∆r̂E −∆r̂W ) ∂

3ĉ

∂r̂3

∣∣∣∣∣
i,j

+ · · · (3.64)

Similarly, the same treatment can be done for the second derivative with respect
to ẑ. The Taylor series expansion was then made of ĉi,j+1 and ĉi1,j−1 around ĉi,j.
The resulting nodal equation was then found to be:

∂2ĉ

∂ẑ2

∣∣∣∣∣
i,j

= 2
∆ẑN (∆ẑN + ∆ẑS) ĉi,j+1 + 2

∆ẑS (∆ẑN + ∆ẑS) ĉi,j−1

− 2
∆ẑN ∆ẑS

ĉi,j

(3.65)

Where ∆ẑN = r̂i,j+1 − r̂i,j and ∆ẑS = r̂i,j − r̂i,j−1. The related truncation error is
depicted below.

ε = 1
3 (∆ẑN −∆ẑS) ∂

3ĉ

∂ẑ3

∣∣∣∣∣
i,j

+ · · · (3.66)

From the same Taylor series expansion as used for equation (3.63), an expression
for the first derivative of equation (3.62) can be found as shown in equation (3.67).

∂ĉ

∂r̂

∣∣∣∣∣
i,j

= ∆r̂W
∆r̂E (∆r̂E + ∆r̂W ) ĉi+1,j −

∆r̂E
∆r̂W (∆r̂E + ∆r̂W ) ĉi−1,j

−∆r̂W −∆r̂E
∆r̂W∆r̂E

ĉi,j

(3.67)

With the corresponding truncation error as shown below.

ε = ∆r̂W∆r̂E
∂3ĉ

∂r̂3

∣∣∣∣∣
i,j

+ · · · (3.68)

Adding equation (3.63), (3.65) and (3.67) together yields the discretized form of
equation (3.62). The discretized equation is shown in equation (3.69) in the form
used in the Fortran program.
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3r̂i − r̂i−1

r̂i (r̂i−1 − r̂i+1) (r̂i − r̂i+1) ĉi+1,j+

3r̂i − r̂i+1

r̂i (r̂i−1 − r̂i+1) (r̂i−1 − r̂i)
ĉi−1,j+

2(
ẑj+1 − ẑj

) (
ẑj+1 − ẑj−1

) ĉi,j+1+

2(
ẑj − ẑj−1

) (
ẑj+1 − ẑj−1

) ĉi,j−1+
 r̂i−1 − 4r̂i + r̂i+1

r̂i (r̂i−1 − r̂i) (r̂i − r̂i+1) −
2(

ẑj+1 − ẑj
) (
ẑj − ẑj−1

)
 ĉi,j = 0

(3.69)

Outer Nodal Equations

As a consequence of the symmetry of the domain, the governing equations at
r̂ = 0 and ẑ = 0 exhibits a Neumann boundary as described in equation (3.11)
and (3.12). However, as can be seen from equation (3.62), a singularity appears
when r̂ and ∂ĉ/∂r̂ reaches zero. A solution was to evaluate the first derivative
term as it approaches zero. One can achieve this by applying L’Hôpitals rule.

lim
r̂=0

1
r̂

∂Ĉ

∂r̂
= lim

r̂=0

∂
∂r̂

(
∂Ĉ
∂r̂

)
∂
∂r̂

(r̂)
= ∂2Ĉ

∂r̂2

∣∣∣∣∣
r̂=0

(3.70)

As a consequence, the governing equation is transformed into the following form
for the boundary nodes at r̂ = 0:

2∂
2Ĉ

∂r̂2 + ∂2Ĉ

∂ẑ2 = 0 (3.71)

The stencil for the leftmost nodes at r̂ = 0 is shown in Figure 3.5. Through a
”ghost” point technique, one can assign a central difference scheme to the boundary
nodes as done with the inner nodes. Utilizing the boundary condition presented
in equation (3.12), one can express the ĉ0,j node, as seen from Figure 3.5, to be
equal to the ĉ2,j node. Therefore, the resulting discretized equation for the leftmost
nodes are as depicted in equation (3.72).
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4(
r̂2,j − r̂1,j

)2 Ĉ2,j−

2(
ẑ1,j+1 − ẑ1,j

) (
ẑ1,j+1 − ẑ1,j−1

) Ĉ1,j+1+

2(
ẑ1,j − ẑ1,j−1

) (
ẑ1,j+1 − ẑ1,j−1

) Ĉ1,j−1+
 4(

r̂2,j − r̂1,j
)2 + 2(

ẑ1,j+1 − ẑ1,j
) (
ẑ1,j − ẑ1,j−1

)
 Ĉ1,j = 0

(3.72)

ẑ

1,j 2,j0,j

1,j-1

1,j+1

Figure 3.5: An illustration of the stencil for the leftmost nodes [10].

The same ”ghost” point technique can be utilized on the bottom nodes at ẑ = 0.
The stencil for the bottom nodes are shown in Figure 3.6. As seen from the figure,
the boundary conditions of ∂ĉ/∂ẑ = 0, yields that ĉi,2 = ĉi,0, and the discretized
equation for the bottom nodes are as depicted in equation (3.73).
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2
(ẑ2 − ẑ1)2 Ĉi,2+

3r̂i − r̂i−1

r̂i (r̂i−1 − r̂i+1) (r̂i − r̂i+1) Ĉi+1,1+

3r̂i − r̂i+1

r̂i (r̂i−1 − r̂i+1) (r̂i−1 − r̂i)
Ĉi−1,1+ r̂i−1 − 4r̂i + r̂i+1

r̂i (r̂i−1 − r̂i) (r̂i − r̂i+1) −
2

(ẑ2 − ẑ1)2

 Ĉi,1 = 0

(3.73)

r̂
i,1

i,2

i,0

i-1,1 i+1,1

Figure 3.6: An illustration of the stencil for the bottom nodes [10].

3.4.3 Dimensionless Concentration Flux

After obtaining a concentration field around the cylindrical particle, the concentration
flux at the interface of the particle is achievable. As mentioned in section 3.1, the
dimensionless flux can expressed as:

Îend = 4π
ˆ 1

r̂=0

∂ĉ

∂ẑ

∣∣∣∣∣
ẑ=α

r̂dr̂ (3.74)

Îside = 4π
ˆ α

ẑ=0

∂ĉ

∂r̂

∣∣∣∣∣
r̂=1

dẑ (3.75)

The flux is then obtainable from the concentration field. For calculating fluxes at
an interface, a forward Taylor series expansion is done which results in equation
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(3.76) and (3.76) for ∂ĉ/∂ẑ and ∂ĉ/∂r̂. As noted from Figure 3.3, the stretching
of the grid is constant at the two adjacent nodes next to the interface.

∂ĉ

∂r̂

∣∣∣∣∣
NR, j

= −3ĉNR, j + 4ĉNR+1, j − ĉNR+2, j

2∆r̂0
(3.76)

∂ĉ

∂ẑ

∣∣∣∣∣
i,NZ

= −3ĉi,NZ
+ 4Ĉi,NZ+1 − ĉi,NZ+2

2∆ẑ0
(3.77)

With the following truncation error.

ε = −1
3∆ r̂2

0
∂3ĉ

∂r̂3 (3.78)

The stencil used for the side flux is shown in Figure 3.7.

r̂=1

z=𝛼̂

NR N +1R N +2R

Figure 3.7: An illustration of the stencil used for flux calculations of the side of the
particle [10].

3.5 Algorithm for Lagrangian for KWN-Model

The model presented in this thesis is utilizing a Lagrangian-like approach for
calculating the resulting particle size distribution for the cylindrical particles. As
mentioned, in the Lagrange-like approach the particle size distribution is divided
into several sub-classes where each class exhibits a constant number of particles,
and a radius R and length L. The mean radius, mean length and total number
density of the particle size distribution are then as depicted below.
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3. Modeling

N =
∑
i

Ni, R̄ =
∑
iNiRi∑
iNi

, L̄ =
∑
iNiLi∑
iNi

(3.79)

The volume fraction of the cylindrical precipitates in the material can also be
expressed.

fp = π
∑
i

NiR
2
iLi (3.80)

Also, a continuity equation exists which keeps track of how much solute atoms
are tied up in the precipitates and how much is left in the matrix. For cylindrical
precipitates, this mass balance is equal to equation (2.49) and is repeated here for
the sake of readability.

cm = c0 − χcpfp
1− χfp

(3.81)

As mentioned in section 2.4.2, a new class is nucleated each time step with a set
number density and a critical nucleus with a radius R∗ and length L∗. As R∗

and L∗ signifies the critical size for zero growth, a growth margin ∆R∗/R∗ has
to be imposed to ensure that the nucleated particles initiate growth. A typical
growth margin found from Myhr et al. [8], suggests a reasonable value of 0.05 for
∆R∗/R∗. As L∗ is dependent on R∗, the growth margin is also transferred to the
critical length. The number density of the newly nucleated class is determined
from equation (3.82).

Ni = dN

dt
∆t (3.82)

Where the nucleation rate dN/dt is given by equation (2.34). Typically a new
class is only created if Ni is in the magnitude of 10−10 times or higher than the
total number density N . At each time step, the growth of all current classes is
also evaluated. The new radius and length of the precipitate class are then given
as:

L(t+ ∆t) = L(t) + dL

dt
∆t (3.83)
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3. Modeling

R(t+ ∆t) = R(t) + dR

dt
∆t (3.84)

Where dL/dt and dR/dt is given by equation (3.28) and (3.29), respectively.
Equation (3.83) and (3.84) are calculated using a variable-coefficient ordinary
differential equation (VODE) solver developed by Brown et al. [32]. The current
version implemented in the Fortran model utilize the double precision extension
named DVODE.

After conducting a time step, the model checks whether any classes have disappeared
by comparing R and L to a set threshold value where the precipitate is deemed
to be small enough to have disappeared from the system. Therefore, in the
Lagrangian-like approach, the number of classes in the system is continuously
changing. During the nucleation stage the number of classes increases, while it
decreases once the coarsening stage has been met. A flowchart describing the
pseudo-code for the model implemented in Fortran can be viewed in Figure 3.8.

53



3. Modeling

Nucleation

Update	cm

Growth	of	particles

Removing	of	classes

No

Yes

Nucleate	and	add	particles
with	growth	margin

Update	mass	balance

New	radius	and	length	of	all
particles	are	calculated

using	DVODE

Checks	if	R*	does	not	vary
more	than	1%	and	that	all
concentrations	are	within

legal	bounds

Particle	sizes	below	a
thershold	value	is	removed

Update	mass	balance,	mean
radius	and	mean	length

Check	for	legal	time	step

Update	cm,				and	

Write	to	file Save	data	and	compute
PSD

Restore	state	of
system	to	prior
time	step

Checks	if	the	total	number
of	time	steps	is	achievedi<imax	?

Start Define	material	and	solver
parameters

Stop

Yes

No

Figure 3.8: A flowchart describing the calculation steps for the precipitation model.
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3.5.1 Adaptive Time Step

Each time step of the simulation is described by a time increment ∆t. For the
Lagrangian-like approach, the time step is of considerable importance as it controls
the number of classes introduced to the system, and how often the mass balance
in equation (3.81) is recalculated. The time increment therefore effectively affects
the precision of the simulations. It is beneficial to introduce a logarithmic time
increment as the simulation is solved for a large span in time. To ensure that
special occurrences such as coarsening or other processes are accurately described,
the time step is validated by requiring thatR∗ do not change more than a maximum
of 1% and that all solute concentrations are within legal limits between 0 and 1 [21].
If these requirements are not met, a while-loop in the model is activated and the
time step is run again at a lower time step, typically ∆t = ∆t/2. This requires
that the simulation is saved before the time step so that one can refresh the state
of the system when conducting the time step again.

3.5.2 Kernel Density Estimator in 2D

For visualizing the shape of the particle size distribution, a Gaussian kernel density
estimator is implemented in the model. As mentioned, the distribution consists of
classes with Ni precipitates and radius Ri and length Li. The mean radius, mean
length, and total number density are previously defined in equation (3.79). From
these parameters, one can express the standard deviation σR and σL for R and L,
respectively.

σR =

√√√√√∑
i

Ni

(
R− R̄

)2

N − 1 , σL =

√√√√√∑
i

Ni

(
L− L̄

)2

N − 1 (3.85)

For a 1-dimensional representation of the size distribution for R, the kernel density
estimator converts into the following expression by superimposing the normal
distributions.

f(R) =
∑
i

Ni

h
√

2π
exp

−1
2

(
R−Ri

h

)2
 (3.86)
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Since the integral of each normal distribution is equal to 1,
´
f(R)dR = N . A

suitable choice of the parameter h must also be done. A simple and quick way of
finding the bandwidth is to use Scott’s estimate [28].

h ≈ i−0.2
tot σ (3.87)

Where itot is the total number of classes. A similar expression for the 1-dimensional
distribution for L can be found. Additionally, one can extend the KDE to account
for 2-dimensional data. This way one can visualize the 2D particle size distribution
as a function of R and L. The extension to 2D data is shown in the equation below.

f(R,L) =
∑
i

Ni

hRhL
√

2π
exp

−1
2

(
R−Ri

hR

)2

− 1
2

(
L− Li
hL

)2
 (3.88)

Similarly, hR and hL can be found using Scott’s estimate.

hR ≈ i−0.2
tot σR, hL ≈ i−0.2

tot σL (3.89)
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4 Results

In this section, the concentration fields for ĉend and ĉside will be shown, in addition
to the dimensionless flux found from solving the diffusion problem for a large
variety of aspect ratios. The proposed solution to the Gibbs-Thomson effect for
cylindrical particles will also be investigated. At last, the proposed KWN-model
will be validated by comparing it to the literature and used in several simulations
relevant for needle-like precipitates.

4.1 Concentration Fields

A key assumption of the proposed model is that the steady-state diffusion equation
can be superposed and that one can solve for a ĉend- and ĉside-field independently.
Therefore, it is of importance to confirm this assumption. In Figure 4.1, the
dimensionless concentration fields for both ĉend and ĉside are shown. Additionally,
the superposed concentration field is shown in Figure 4.2. As observed from Figure
4.2, the superposed concentration field is identical to the one where c = ci at both
surfaces as seen in Figure (2.3) which was found from a project work [10].
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Figure 4.1: (a) The concentration field for ĉend with α = 1. (b) The concentration
field for ĉside with α = 1.
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Figure 4.2: Plot of the dimensionless concentration field when combining ĉend- and
ĉside-field.

4.2 Diffusion Solution For Needle-like Particles

To acquire the growth rates of the side and end surfaces of the cylindrical particle,
the diffusion solution around particle has to be found. Once found, the dimen-
sionless flux into the respective surfaces of the particle is also attainable which can
be utilized in the growth equations (3.28) and (3.29). Since this flux depends on
the aspect ratio of the considered particle, the diffusion problem was solved for a
wide variety of aspect ratios. The computations were carried out using resources
provided by the NTNU IDUN/EPIC computing cluster [33]. In Figures 4.3 and
4.4 one can see the resulting flux for Îsideside (α) and Îendend (α), respectively. In addition,
a line fitting performed in Matlab yielded equation (4.1) and (4.2) for Îsideside (α) and
Îendend (α), respectively.
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Îsideside (α) =−
[
1.6259× 10−5α5 − 0.004801α4 + 2.5067α3 + 83.9911α

+ 379.6569α + 170.6609
]/[

α2 + 14.7673α + 14.6144
] (4.1)

Îendend (α) = −4.2618× 10−5α3 + 15.9496α2 + 266.1683α + 17.0092
α2 + 16.6917α + 1.3963 (4.2)
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Figure 4.3: Plot of dimensionless flux at the side with a ĉside-field.
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Figure 4.4: Plot of dimensionless flux at the ends with a ĉend-field.

Further, the results for Îsideend (α) and Îendside(α) is shown in Figure 4.5. Consequently,
a line fitting produced the following equations for Îsideend (α) and Îendside(α).

Îsideend (α) =−
[
3.0154× 10−5α4 − 0.005534α3 − 12.8684α2

− 81.3180α− 20.7693
]/[

α2 + 6.9381α + 2.5473
] (4.3)

Îendside (α) =−
[
0.07117α4 − 27.1158α3−3.7298× 104α2

−3.0131× 105α−1.0421× 105
]/

[
α3 + 2.9140× 103α2 + 2.5590× 104α + 1.2121× 104

] (4.4)
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Figure 4.5: Plot of dimensionless flux at the ends with a ĉside-field, and at the sides
with a ĉend-field.

4.3 Diffusion Solution For Disk-like Particles

The diffusion solution were also computed for disk-like particles were the aspect
ratio is below 1. The dimensionless flux for Îsideside (α) and Îendend (α) are shown in
Figure 4.6. To easily compare the flux values for needle- and disk-like particles,
the inverse aspect ratio is plotted on the x-axis. The resulting line fitting yielded
equation (4.5) and (4.6) for Îsideside (α) and Îendend (α), respectively.

Îsideside

(
1
α

)
= −−1.0498× 10−4α2 + 16.5676α + 6.1457

α + 0.0832 (4.5)

Îendend

(
1
α

)
=−

[
9.4596× 10−4α5 + 23.7154α4 + 580.3917α3

−2.6179× 103α2 + 1.0822× 103α + 4.9366× 103
]/

[
α4 + 28.5534α3 − 103.3915α2 − 64.8390α + 394.2475

] (4.6)
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Figure 4.6: Plot of dimensionless flux at the ends with a ĉend-field, and at the side
with a ĉside-field.

Similarly, the results for Îsideend (α) and Îendside(α) for disk-like particles is shown in
Figure 4.7. The line fitted equation for Îsideend (α) and Îendside(α) are depicted below.

Îsideend

(
1
α

)
=−

[
−16.7103α4−5.6667× 103α3−4.4500× 104α2

+ 1.5558× 105α + 8.0314× 104
]/[

α4 + 360.2312α3

+ 3.5066× 103α2−9.9724× 103α−1.0834× 104
] (4.7)

Îendside

(
1
α

)
=−

[
−3.1704× 10−4α5 − 16.1876α4 − 422.8250α3

+ 1.9161× 103α2−984.1365α−3.0602× 103
]/

[
α4 + 29.6572α3 − 109.8029α2 − 45.5430α + 360.2118

] (4.8)
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Figure 4.7: Plot of dimensionless flux at the ends with a ĉend-field, and at the side
with a ĉside-field.

4.4 The Gibbs-Thomson Effect

In the work of implementing a precipitation model for cylindrical precipitates,
a new expression for the Gibbs-Thomson effect for the end and side surfaces of
the precipitate was proposed in equations (3.47) and (3.46), respectively. An
interesting case to examine is the new equation for cside. The input parameters
to the Gibbs-Thomson equations and later for the particle size distributions are
from Myhr et al. [8] and are shown in Table 4.1. The solution of equation (3.46)
for low to high aspect ratios, i.e disk-like and needle-like precipitates, are shown
in Figure 4.8.

64



4. Results

Table 4.1: Input data at 180◦C from Myhr et al. [8].

Parameter Value

cp 0.634
ceq 3.54× 10−5

c0 0.0063
D [m2s] 2.278× 10−19

A0 [J/mol] 16220
j0 [#/m3s] 9.66× 1034

Qd [J/mol] 130000
γside [J/m2] 0.2
γend [J/m2] 0.2
V β
p [m3] 6.559× 10−29
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Figure 4.8: Plot of cside with varying α.

The Gibbs-Thomson equation with varying end surface energy was also proposed.
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As equation (3.47) does not depend on γend, only the equation for the interfacial
concentration at the side surface were altered and is shown in equation (3.51). For
equation (3.51), the Gibbs-Thomson effect is also dependent on the function for
γend. The variation in cside with γend-functions with increasing γend/γside ratio is
shown in Figures 4.9 with α = 1 and 4.10 with α = 1.2. The respective γend-
functions are shown in Figure 4.11 and is based on equation (3.53).
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Figure 4.9: Plot of cside with increasing γend/γside ratio and α = 1.
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Figure 4.10: Plot of cside with increasing γend/γside ratio and α = 1.2.
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Figure 4.11: Plot of γend as a function of R with increasing γend/γside ratio.
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4.5 Particle Distributions by the KWN-Model

4.5.1 Validation of Model

To validate that the proposed KWN-model yields satisfactory results, a comparison
to the KWN-model utilized in Myhr et al. [8] for spherical particles in an Al-Mg-Si
alloy is done. Here, the quasi-binary Al-Mg2Si section of the phase diagram is used.
Letting γside = γend results in a critical aspect ratio of 1 for the nucleated particles
as seen in equation (3.59), which yields comparable results to a spherical particle
where the surface energy is constant around its interface. The input parameters
to the KWN-model are summarized in Table 4.1. The nucleation rate and total
particle number density are shown in Figure 4.12, mean and critical radius are
shown in Figure 4.13, and the particle size distribution is shown in Figure 4.14.
All three figures show a very close resemblance to the results presented in Myhr
et al. [8] for the isothermal case of spherical particles at 180◦C.
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Figure 4.12: Change of nucleation rate dN/dt and total particle number density N

with time.
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Figure 4.13: Change of critical radius R∗ and mean radius R̄ with time.
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Figure 4.14: Particle size distribution at various times.
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4.5.2 Dependence of Number of Classes

In the Lagrangian approach, the number of classes in the particle size distribution
is dependent on how large the time step dt of the system is. The accuracy of
the resulting particle size distribution is therefore linked to the time step. The
simulations for the particle size distribution in Figure 4.14, contained close to
1600 size classes before the onset of coarsening. When operating with a large
number of classes, the calculation times increase drastically. Therefore, it is of
importance to check the influence of implementing a larger time step dt, which
effectively reduces the total number of classes in the system. In Figure 4.15, one
can see a comparison between the results for a system containing 1600 classes at
most, to a system containing around 500 classes at most. The simulation with a
higher time step is indicated with stapled lines. Although the simulations with
a larger time step had considerably fewer size classes, the resulting particle size
distribution shows a close resemblance to the case with a higher amount of size
classes.
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Figure 4.15: Particle size distribution at various times. The dotted lines represents
the distribution using a larger dt.
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4.5.3 Constant Surface Energy

Needle-Like Precipitates

The surface energy of the side or end surfaces of the particle can be changed
to stimulate needle- or disk-like particles. By increasing γend, one increases the
critical aspect ratio as seen by equation (3.59) which effectively results in needle-
like precipitates. The following simulations was run with the same parameters as
Myhr et al. [8], which is shown in Table 4.1, except for the surface energy of the
ends, where γend = 10 γside. The results for R∗ and R̄ is shown in Figure 4.16 which
shows a much lower and slower growth compared to the case where γend = γside.
Further, L∗ and L̄ is shown in Figure 4.17. An interesting note from Figure 4.17
is that L∗ that is given from R∗ and α∗, is surpassing the mean length of the
precipitates, yet the precipitates continue to lengthen.

It is also beneficial to review the aspect ratio of the precipitates. A parameter β is
defined as β = L̄/2R̄, and the evolution of β through time is shown in Figure 4.18.
An interesting remark is that the aspect ratio of the precipitates decreases during
the nucleation and growth stage as seen in Figure 4.18. As the critical aspect ratio
is 10, the nucleated particles start with an aspect ratio of 10 but readily decrease
to half that when nucleation stops. At the onset of coarsening, the aspect ratio of
the precipitates increases again up to nearly the initial value.

Finally, the 2D particle size distribution is plotted at various times in Figure 4.19.
The particle size distributions seem to mostly appear in a straight line in the R-L
plane.
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Figure 4.16: Change of critical radius R∗ and mean radius R̄ with time for γend =
10 γside.
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Figure 4.17: Change of critical length L∗ and mean length L̄ with time for γend =
10 γside.
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Figure 4.18: Change of β = L̄/2R̄ with time for γend = 10 γside.

Figure 4.19: The particle size distribution at various times when γend = 10 γside.
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Disk-Like Precipitates

In addition to needles, one can facilitate the creation of disk-like particles by
adjusting γside relative to γend. The simulation for disk-like particles was run
by letting γside = 10 γend, and the other parameters as presented in Table 4.1.
The mean and critical radii of the disk-like particles are shown in Figure 4.20.
Unsurprisingly, both R∗ and R̄ has a much more profound growth for this case. In
contrast to the needle-case, the critical radius does not surpass the mean radius,
but rather follows it closely. Further, L∗ and L̄ is shown in Figure 4.21.

The disk-like particles also show a similar trend as the needle-like with regards to
β. From Figure 4.22 one can see that the aspect ratio increases during nucleation
and growth, before decreasing again at the onset of coarsening to approximately
the critical aspect ratio of 0.1.

At last, the 2D particle size distributions are shown at various times in Figure
4.23. As for the needles, the disk-like particles tend to arrange in a nearly straight
line in the R/L plane.
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Figure 4.20: Change of critical radius R∗ and mean radius R̄ with time for γside =
10 γend.

74



4. Results

10
0

10
2

10
4

10
6

10
8

Time [s]

0.5

1

1.5

2

2.5

3

3.5

4

L
e
n
g
th

 [
m

]

10
-9

Figure 4.21: Change of critical length L∗ and mean length L̄ with time for γside =
10 γend.
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Figure 4.22: Change of β = L̄/2R̄ with time for γside = 10 γend.
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Figure 4.23: The particle size distribution at various times when γend = 0.1 γside.

4.5.4 Variation of Surface Energy

While introducing a constant γend gives needle-like particles, it is not realistic to
nucleate very long needles as in the case when α∗ = 10. Also, the change in the
aspect ratio of the needle-like particles with constant γend does not seem realistic.
By introducing an equation γend(R) as described in section 3.2.2, one can facilitate
both the nucleation of near-spherical nuclei and an increase in aspect ratio as the
needles grow. The surface energy function for γend used in the following simulations
are on the form presented in equation (4.9). The proposed parameters for the
equation are shown in Table 4.2. Additionally, the other material parameters are
shown in Table 4.1.
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Table 4.2: Input data to γend-function.

Parameter Value Comment

γside 0.2 From Ref. [8]
γmax 15× γside Threshold value for γend
Rst 1× 10−9 m Start of rampup
Rsp 4× 10−9 m End of rampup

γend(R) = γside + 1
2 (γmax − γside)

1 + tanh
((γmax − γside)

(
R− 1

2Rst − 1
2Rsp

)
0.3

(
Rsp −Rst

) )
(4.9)

With an up ramping function, the simulations show a very different story than for
the constant surface energies presented in the previous section. In Figure 4.24, one
can see the change of R∗ and R̄ over time. Here, the radius of the precipitates does
not grow to the same extent as previously and the rapid growth of R occurs sooner
in the time evolution. The mean radius also shrinks slightly before following the
critical radius of the system at the onset of coarsening.

A promising feature by introducing the γend -function can be seen in Figure 4.25.
Here, both the mean length and mean aspect ratio is shown over time. With
increasing surface energy of the end surface, the precipitates start to lengthen to
become needles. As evident from Figure 4.25, the increase in β is mainly due to
the increase in length, as the radius of the precipitates changes rather slowly in
the coarsening regime.

At last, the 2D particle size distributions are plotted at various times in Figure
4.26. The particle size distributions show a nearly straight line in the R/L plane
as seen for the particle size distributions for constant surface energies. However,
the up leftmost particle size distribution at an earlier stage in the nucleation and
growth process shows a different shape. It appears to divide into two lines in the
plane. One from roughly 1-1.5 nm radius, and the other from 1.5 up to 2 nm.
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Figure 4.24: Change of critical radius R∗ and mean radius R̄ with time with a non-
constant γend.
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Figure 4.25: Change of mean length L̄ and β with time with a non-constant γend.
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Figure 4.26: The particle size distribution at various times with γend-function.

Influence of Ramp up Function

The ramp-up function for γend can have a large influence on the particle size
distribution. For instance, as shown in Section 4.4, the Gibbs-Thomson equation
is sensitive to the slope of the ramp-up function. Therefore, it is of interest to
examine the influence of the γend-function on the particle distribution. In Figure
4.27, β is plotted for various ramp up functions. The parameters used are the
same as in Tables 4.1 and 4.2, except for Rsp that signifies the radius where the
γend-function starts to flatten and become constant. Therefore, the three cases in
Figure 4.27 shows the influence of the slope of the ramp-up function on β. As
observed, a higher slope yields larger aspect ratios of the precipitates.
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Figure 4.27: Influence of the steepness of the ramp up function for γend on the aspect
ratio of the precipitates.

Influence of Nucleation Rate

Another important aspect of the resulting particle distributions is the nucleation
rate of the system. In this section, the influence of the nucleation rate is examined.
The parameters used in the following simulations is shown in Table 4.1, except
for the numerical constant j0 that is used in equation (2.34). By varying this
constant, one can achieve different nucleation rates and ultimately change the
number of particles in the system. In Figure 4.28 one can see the influence of a
higher nucleation rate on the mean radius of the precipitates. As seen, the growth
in the radial direction is suppressed when the system contains a higher amount of
particles. Further, β is plotted for the same three cases in Figure 4.29. Here, the
aspect ratio is mostly affected in the early coarsening regime and ultimately leads
to the same aspect ratio at longer times.
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Figure 4.28: Change of mean radius R̄ for different nucleation rates with a non-
constant γend.
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Figure 4.29: Change of β for different nucleation rates with a non-constant γend.
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Comparison to Experimental Data

To see if the proposed KWN-model yields realistic results, the model will be
compared to experimentally found data. In Du and Holmedal et al. [30], the mean
cross-section area and mean length of precipitates in an Al-0.52wt%Mg-0.75wt%Si
was found as shown in Figure 4.30. The plot displays a proportional relationship
between the mean cross-section area and the mean length of the precipitates. In
Figure 4.31, the resulting mean cross-section area and mean length is plotted from
the proposed model. The input parameters used are the same as in Tables 4.1
and 4.2, except for Rsp which is reduced to 3 nm. As seen from Figure 4.31, when
L̄ is around 30 nm, the model also yields a proportional relationship. However,
before L̄ = 30 nm, the model does not show the same relationship. In addition, the
experimentally found cross-section area is smaller for shorter needles in Figure 4.30,
and the linear relation has a higher slope than our model. However, the reported
cross-section area in Du and Holmedal et al. [30] might be too low for short needles
as Sunde et al. [34] report much higher cross-section area at 10±1nm2 for a mean
length of 13± 1nm.

Figure 4.30: Experimental values of mean cross section area and mean length of β′′

precipitates [30].
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Figure 4.31: Plot of mean cross section area and mean length of the precipitates.
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5 Discussion

5.1 Diffusion Solutions

The solutions for the dimensionless fluxes in section 4.2, are crucial in determining
the growth rate of the respective surfaces of a cylindrical particle. As observed
from Figures 4.3-4.5, by dividing the linear Laplace equation into two cases of
ĉend and ĉside, the particle will experience two currents with opposite signs. For
instance, with a ĉside-field, the side surface will experience a negative flux, while
the end surfaces experience a positive flux. Due to the definition of ĉside and the
dimensionless fluxes in section 3.1, the negative flux signifies a net current into the
particle. Therefore, with a ĉside-field, there is a net current of atoms into the side
surface, and a net current of atoms out of the particle at the end surfaces. The
same trend is observed for a ĉend-field, where there is a current of atoms into the end
surfaces and a current of atoms out of the side surface. This is however intuitive
as the surface either has a concentration higher or lower than the surrounding
concentration field.

Another remark on the diffusion solution is that Îsideside for a needle-like particle
shows a different trend than the other dimensionless fluxes for needles. While the
other fluxes seemingly reaches an asymptotic solution at higher aspect ratios, Îsideside

does not seem to converge to an asymptotic solution. However, this is due to the
scaling of the system. The model introduced in section 3.4 scales with the aspect
ratio in the axial direction. This can be seen in equation (3.14) and (3.15), where
ĉside = 0 at r̂ = 1, and ĉend = 1 at ẑ = α. Hence, the needle becomes longer
and longer with higher aspect ratios. Instead, the dimensionless flux divided by α
reaches a constant value when α→∞ . An illustration of this is shown in Figure
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5.1, where Îsideside/α is plotted as a function of α.
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Figure 5.1: Plot of Îsideside/α as a function of α.

For disks, however, the radius is constant while the length is decreased until it
diminishes. The contribution of flux from its sides is negligible as the aspect ratio
reaches zero, while the flux from its ends is constant. Therefore, the dimensionless
fluxes for a disk reach a constant value as α→ 0.

5.2 The Gibbs-Thomson Effect

The proposed Gibbs-Thomson equation for cside was investigated for both constant
and non-constant γend. With a constant γend, the influence of aspect ratio on
equation (3.46) was investigated. As seen in Figure 4.8, α has a large influence on
the interfacial concentration at the side surface. Higher aspect ratios shifted the
Gibbs-Thomson curves towards the left side of Figure 4.8. This signifies that the
interfacial concentration at the side surface reaches the equilibrium concentration
at a lower radius. This can readily be seen from equation (3.46) as the γend term
scales with 1/L and a higher aspect ratio gives a smaller contribution from γend.
Consequently, a smaller aspect ratio increases the contribution from γend.
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An inherent problem with the Gibbs-Thomson equations, which is rarely addressed
in the literature, is that the equations readily increase to concentration values
which are not valid when R is too low. For instance, this is shown in Figure 4.8,
where the interfacial concentration quickly starts to increase when R < 1 nm for
an aspect ratio of 1. At a radius of around 4.3×10−10 nm, cside has nearly reached
cp and at a even lower radius cside will exceed a concentration of 1. An interfacial
concentration over 1 is, however, not possible. Also, a complication appears in the
coarsening regime if cside > cp, since equation (3.29) changes sign and the fast-
shrinking precipitates with low radii suddenly switch to an enormous growth. To
avoid this complication, the threshold value at which the precipitates are removed
from the system must not be too low and preferably at several burgers vector
length.

The Gibbs-Thomson equation for cside with a non-constant γend was also inves-
tigated for α = 1 and α = 1.2. As seen from Figure 4.9, the influence of
the different γend(R) functions from Figure 4.11 can have a large influence on
the Gibbs-Thomson effect. Figure 4.9 depicts the influence of several γend(R)
with increasing γend/γside-ratios where the start and endpoint of the up ramp is
approximately the same. By using a γend function with a high derivative as for
the case of γend/γside = 6.25, the interfacial concentration rapidly increases as the
up ramp starts. Using a γend function with a slightly less derivative decreases
the sharp increase for cside. To illustrate that equation (3.51) is most sensitive
to the steepness of the γend function and not the threshold γend value, Figure 4.9
also depicts a γend function with the same γend/γside-ratio, but with a less steep
gradient as shown by the stapled lines. This is correlated to the fact that the
derivative is scaled with R/L, whilst γend is scaled with 1/L in addition to the
derivative being of a much higher magnitude. Therefore, the same complication of
too high interfacial concentration discussed in the previous paragraph also arises
if the ramp-up of γend is too high as seen in Figure 4.9. However, as seen in
Figure 4.10, the aspect ratio also have a large effect on equation (3.51). With a
slightly higher aspect ratio at α = 1.2, suppresses the quickly increasing cside at the
up ramping of γend. Thus, the problem of invalid interfacial concentrations only
appears if the aspect ratio of the considered precipitate reaches 1. However, this
can be a problem depending on the coarsening characteristic of the system. If the
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precipitates shrink in the axial direction and are not removed before approaching
an aspect ratio of 1, the interfacial concentration might reach invalid values.

5.3 Particle Distributions by the KWN-Model

To ensure that the framework around the proposed KWN-model is viable, a
comparison to the Eulerian approach of Myhr et al. was shown in section 4.5.1.
As seen in Figure 4.12, the nucleation rate is approximately constant for most of
the time-span which is a consequence of neglecting the incubation period. The
nucleation rate then quickly decreases as cm approaches ceq as can be seen in
equation (2.34). As the nucleation rate quickly fades away, the total number of
particles in the system reaches a maximum value before the system enters the
coarsening regime. From Figure 4.13 one can see that the precipitates experience
rapid growth under the nucleation and growth phase, before gradually reaching
the critical radius of the system in which the total number of particles begins to
decrease due to coarsening.

5.3.1 Constant Surface Energy

To facilitate the creation of needle-like particles, the surface energy of the end
surfaces were increased in section 4.5.3. The increase of surface energy implies a
higher resistance to create new surface area. Therefore, an increased γend relative
to γside would imply a lower motivation to grow in the radial direction. However,
as seen in Figure 4.18, the aspect ratio of the precipitates readily decreases after
nucleation. This is a consequence of a higher growth rate in the radial direction
which is also visible in Figures 4.16 and 4.17 where R̄ has increased by a factor
2.5 while L̄ only has grown a factor 1.5. The increased surface energy of the
end surfaces only becomes prominent when the system has reached the coarsening
regime where the effect of the Gibbs-Thomson equation sets in.

The implementation of a constant γend also influences the nucleation process as
mentioned in section 4.5.3. Due to a much higher end surface energy, the critical
nuclei will have to be nucleated with a high aspect ratio to ensure growth in both
directions. However, as stated, this is not realistic as the nuclei would need to
arrange in long needles before entering the growth stage. Another remark regarding
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α∗ and L∗ is that one can see from Figure 4.17 that the critical length surpasses the
mean length of the system. Still, the particles keep growing in the axial direction.
While this may seem strange, the solution for the critical dimensions as proposed in
section 3.3 is only one of multiple possible solutions. Another solution to consider
as seen from equation (3.28), is when

(
cend − cm

)
Îendend +

(
cside − cm

)
Îendside = 0. As

seen from Figures 4.4 and 4.5, Îendend and Îendside exhibit opposite signs and can yield
alternative solutions depending on cend, cside and the aspect ratio of the considered
particle.

A case for disk-like particles with constant surface energies was also simulated.
As for the case of needles, the disk-like particles also deviate from the nucleated
aspect ratio as the precipitates grow. As seen in Figures 4.20 and 4.21, the disk-
like particles achieves a higher growth in the axial direction compared to the radial
and therefore increases in aspect ratio during the nucleation and growth stage. At
the onset of coarsening, the growth rate of the side surface increases more rapidly
and the aspect ratio approaches its initial value.

5.3.2 Variation of Surface Energy

To succumb to the difficulties that arrive in utilizing constant surface energies,
the model was extended to account for a function for γend that depends on the
radius of the precipitate. Implementing an equation for γend resulted in facilitating
both the nucleation of precipitates of spherical character, i.e α ≈ 1, and a subse-
quent increase of aspect ratio for the particles as they grow. As seen from Figure
4.24, the growth of the radius of the precipitates is suppressed when applying an
increasing γend -function. This is reasonable as an increased γend inhibits growth in
the radial direction. The critical radius of the system also appears to grow slower
which signifies that the concentration of the matrix also decreases slower than for
the case of constant surface energies shown in Figure 4.16. The mean length of
the precipitates also seem to grow slowly at first, but as seen in Figures 4.25 and
4.26, the growth rate in the axial direction suddenly increases when the radius
of the particles reach a certain point. This is easily seen in Figure 4.26 where
the up leftmost particle size distribution experience an upward bend at around 2
nm. This could be because γend(R) has a steep slope at this point in which the
interfacial concentration of the sidewalls increases as seen from Figures 4.9 and
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4.10.

The importance of the slope of the function for γend is further strengthened when
assessing the aspect ratios of the precipitates for various up ramp functions. In
Figure 4.27, three cases with increasing slopes are shown. The three functions for
γend is essentially the same except for Rsp. For the function with the greatest slope,
i.e Rsp = 3 nm, β has a much higher value throughout the evolution. As noted, the
interfacial concentration at the sidewalls increases rapidly when γend has a greater
slope which constrains the growth of the particle in the radial direction.

Another important element of the evolution of the particles through time is the
nucleation rate which determines how many particles are introduced to the system.
As seen in Figure 4.28, higher nucleation rates yields a lower mean radius of the
particles at intermediate times. This can be linked to the fact that the equilibrium
precipitate volume fraction is sooner met for the high nucleation case. Therefore,
the precipitates have less time for growth before the coarsening regime enters.
While the radius of the precipitates is suppressed with higher nucleation rates, β
is also lower as seen in Figure 4.29 which signifies that the growth in the axial
direction is also restrained.

The comparison to the experimental data in terms of mean cross-section area and
mean length of the precipitates yields promising results for the proposed KWN-
model in this thesis as seen in Figure 4.31. A linear relationship between mean
cross-section area and mean length was also seen for the implemented model, albeit
not for low L̄. As previously discussed, the function for γend is of great influence
on the resulting particle size distribution. Therefore, it can be imagined that one
can tailor the input parameters to the model to achieve an even better correlation
with experimental data. For instance, the slope of the linear relationship can be
adjusted by adjusting the function for γend.

5.3.3 Improvements to the Model

Several improvements can be done to either increase the accuracy of the proposed
model, or its computational efficiency. For instance, in the Lagrangian approach
of this model, a new class is introduced to the system at each time step until
nucleation has stopped. Therefore, the amount of equations to solve for the growth
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of the radius and length of the precipitates increases by a factor 2 at each time
step. However, one can implement an algorithm that checks if the newly nucleated
class does not differ from the class nucleated at the prior time step. If the two
classes are reasonably similar, one can combine the classes to effectively reduce
the number of equations that need to be solved in the system.

Another important aspect to consider is that accurate values for γend are not
easily found and the values used in this thesis are essentially fitted parameters.
As such, the presented results in this thesis are qualitative in nature and accurate
values for the surface energies are needed to accurately describe the particle size
distribution. A possible way to acquire reasonable values can be to do extensive
atomistic simulations to find the appropriate surface energies for a precipitate.

The model implemented in this thesis also utilizes a simple heterogeneous nucle-
ation equation. Bear in mind that the adopted equations for the nucleation rate
do not reflect the actual complexity of the nucleation event and is in essence a
fitted equation.

Due to time limitations, an expression for γside as a function of L was not im-
plemented. But, the framework for the model has been built. By deriving new
equations for interfacial concentration at the end and side surface with a non-
constant γside, one can test the proposed KWN-model for the growth of disk-like
particles.
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6 Conclusion

In this thesis, the Kampmann Wagner Numerical model was successfully imple-
mented for a cylindrical particle using a Lagrangian approach. A distinction
between the particle’s end and side surfaces were made in terms of interfacial
compositions and growth rates. This was achieved by performing a detailed
numerical solution of the surrounding diffusion field around the particle, and a
derivation of the axisymmetric Gibbs-Thomson equation for the end and side
surfaces of the cylindrical particle. Further, an equation for the surface energy
of the sidewalls of the considered particle was suggested to facilitate the growth of
elongated needles.
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7 Further Work

To further extend the proposed KWN-model for a cylindrical particle, the following
measures can be done.

• Obtaining accurate values for the surface energies as a function of the particle
radius and/or length.

• Extending the proposed KWN-model by deriving new Gibbs-Thomson equa-
tions for cside and cend with a non-constant γside.

• Implement more sophisticated nucleation equations to the model.

• Testing the model for non-isothermal cases such as welding or other non-
isothermal transformations.
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A Fortran Code

A.1 Algorithm for Numerical Diffusion Solution

1 !Masteroppgave.f90
2 program Masteroppgave
3 use DISPMODULE !module used for plotting matrices
4 implicit none
5 !Declaration of variables
6 integer, parameter :: ikind=selected real kind(p=15) !15digit precision(6 is default)
7 real (kind=ikind), parameter :: pi = 3.141592653589793
8 integer :: i, j, allstat, count, N R, N Z, N Rmax, N Zmax !N = grid size, N R/N Z nodes in

particle in r and z direction
9 real (kind=ikind), allocatable :: dcr(:), dcz(:), a(:), s(:), r(:), z(:), d(:), Q(:), dtemp(:), C(:,:),

temp(:,:), errLaplace(:,:)
10 real (kind=ikind) :: alpha, Rmax, Zmax, r0, z0, q z, q r, err, I end, I side, I sum, temp2
11

12 read(∗,∗) alpha !Read in aspect ratio(L/2R)
13 !Define variables related to grid
14 !N R = 81
15 N Z = 81 !Either assign value to N R or N Z
16 Rmax = 150 !length of grid, set equal to 1 if q is known
17 Zmax = 150
18 !r0 = 1.D0/(N R−1) !For needles
19 !N Z = ceiling((alpha/r0)+1) !For needle
20 z0 = alpha/(N Z−1) !initial grid spacing at particle + 2 node
21 N R = ceiling((1/z0)+1) !for plate
22 r0 = 1.D0/(N R−1) !initial grid spacing at particle + 2 node
23 q r = 1.05 !stretching factors
24 q z = 1.05
25
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26 N Rmax = ceiling(log(−N R∗q r+((Rmax∗(q r−1))/r0)+N R+1)/log(q r)+N R+1) !
calculate the required number of nodes in each direction

27 N Zmax = ceiling(log(−N Z∗q z+((Zmax∗(q z−1))/z0)+N Z+1)/log(q z)+N Z+1)
28 allocate(C(N Zmax,N Rmax),temp(N Zmax,N Rmax), errLaplace(N Zmax,N Rmax),r(

N Rmax),z(N Zmax),d(N Rmax), &
29 Q(N Rmax),dtemp(N Rmax),a(N Rmax−1),s(N Rmax−1),dcr(N Z),dcz(N R), STAT =

allstat) !allocate memory according to input
30 If (allstat /= 0) STOP ”∗∗∗ Not enough memory ∗∗∗”
31

32 call grid2(N R,N Rmax,r0,q r,Rmax,r) !Defines the grid vector in each direction.
33 call grid2(N Z,N Zmax,z0,q z,Zmax,z)
34

35 !initial C with dirichlet boundaries
36 C(1:N Z−1,1:N R−1) = 1. !particle
37 C(N Z,1:N R−1) = 1. !top of particle
38 C(1:N Z−1,N R) = 0. !side of particle
39 C(N Z,N R) = (C(N Z−1,N R)+C(N Z,N R−1))/2 !corner node of particle −−> avg of top

and side
40 errLaplace(1:N Z,1:N R) = 0
41

42 I sum = 15 !first guess of flux
43 err = 1.
44 count = 0
45

46 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
47 do while (err > 5e−6)
48

49 do i = 1,N Rmax !updating the boundaries of domain with the flux calculated.
50 C(N Zmax,i) = I sum/(4∗pi∗sqrt(r(i)∗∗2+z(N Zmax)∗∗2))
51 end do
52

53 do i = 1,N Zmax !updating the boundaries of domain with the flux calculated.
54 C(i,N Rmax) = I sum/(4∗pi∗sqrt(r(N Rmax)∗∗2+z(i)∗∗2))
55 end do
56

57 temp = C !to check if diverged
58 temp2 = I sum
59 count = count + 1
60 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
61 !Row−wise sweep of grid
62 !a − subdiagonal −−> C i−1
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63 !d − diagonal −−> C i,j
64 !s − superdiagonal −−> C i+1
65 !Q − right hand side −−> C i,j+1 + C i,j−1
66 !a and s is independent of j and can be found for the whole row sweep
67 do i = 2,N Rmax−1
68 a(i−1) = (3∗r(i)−r(i+1))/ & !C i−1
69 (r(i)∗(r(i−1)−r(i))∗(r(i−1)−r(i+1)))
70

71 s(i) = (3∗r(i)−r(i−1))/ & !C i+1
72 (r(i)∗(r(i−1)−r(i+1))∗(r(i)−r(i+1)))
73

74 dtemp(i) = (r(i−1)−4∗r(i)+r(i+1))/ & !part of d that is independent of j
75 (r(i)∗(r(i−1)−r(i))∗(r(i)−r(i+1)))
76 end do
77

78 a(N Rmax−1) = 0. !since last element of row has dirichlet boundary
79 s(N R) = 0. !Dirichlet at particle
80 s(1) = 4/((r(2)−r(1))∗∗2) !at r=0
81 d((/N R, N Rmax/)) = 1. !Dirichlet boundary
82 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
83 !Bottom row
84 Q(N R) = C(1,N R)
85 Q(N Rmax) = C(1,N Rmax)
86 do i = N R+1,N Rmax−1
87 d(i) = dtemp(i)−2/((z(2)−z(1))∗∗2) !C i,j
88

89 Q(i) = −(2∗C(2,i))/((z(2)−z(1))∗∗2) !C i,j+1
90 end do
91 call tdma(N Rmax−N R+1,a(N R:N Rmax−1),d(N R:N Rmax),s(N R:N Rmax−1),Q(N R:

N Rmax),C(1,N R:N Rmax)) !call subroutine to calculate C
92 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
93 !Second row up to N Z
94 do j = 2,N Z
95 Q(N R) = C(j,N R)
96 Q(N Rmax) = C(j,N Rmax)
97 do i = N R+1,N Rmax−1
98 d(i) = dtemp(i)−2/((z(j+1)−z(j))∗(z(j)−z(j−1))) !C i,j
99

100 Q(i) = −(2∗C(j+1,i))/((z(j+1)−z(j))∗(z(j+1)−z(j−1))) & !C i,j+1 + C i,j
−1

101 −(2∗C(j−1,i))/((z(j)−z(j−1))∗(z(j+1)−z(j−1)))
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102 end do
103 call tdma(N Rmax−N R+1,a(N R:N Rmax−1),d(N R:N Rmax),s(N R:N Rmax−1),Q(

N R:N Rmax),C(j,N R:N Rmax))
104 end do
105 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
106 !Row N Z+1 up to N−1
107 s(N R) = (3∗r(N R)−r(N R−1))/ & !Need to recreate S

at N R, s not 0
108 (r(N R)∗(r(N R−1)−r(N R+1))∗(r(N R)−r(N R+1)))
109 do j = N Z+1,N Zmax−1
110 d(1) = −(4/((r(2)−r(1))∗∗2)+2/((z(j+1)−z(j))∗(z(j)−z(j−1)))) !Neumann

boundary
111 Q(1) = −(2∗C(j+1,1))/((z(j+1)−z(j))∗(z(j+1)−z(j−1))) &
112 −(2∗C(j−1,1))/((z(j)−z(j−1))∗(z(j+1)−z(j−1)))
113 Q(N Rmax) = C(j,N Rmax)
114 do i = 2,N Rmax−1
115 d(i) = dtemp(i)−2/((z(j+1)−z(j))∗(z(j)−z(j−1))) !C i,j
116

117 Q(i) = −(2∗C(j+1,i))/((z(j+1)−z(j))∗(z(j+1)−z(j−1))) & !C i,j+1 + C i,j
−1

118 −(2∗C(j−1,i))/((z(j)−z(j−1))∗(z(j+1)−z(j−1)))
119 end do
120 call tdma(N Rmax,a,d,s,Q,C(j,1:N Rmax))
121 end do
122 deallocate(d,Q,dtemp,a,s, STAT = allstat) !deallocate memory from row−wise sweep
123 If (allstat /= 0) STOP ”∗∗∗ Deallocation not succesful ∗∗∗”
124 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
125 !Column−wise sweep of grid
126 allocate(d(N Zmax),Q(N Zmax),dtemp(N Zmax),a(N Zmax−1),s(N Zmax−1), STAT =

allstat) !allocate memory according to input
127 If (allstat /= 0) STOP ”∗∗∗ Not enough memory ∗∗∗”
128 !a and s is independent of i and can be found for the whole column sweep
129 do j = 2,N Zmax−1
130 a(j−1) = 2/((z(j)−z(j−1))∗(z(j+1)−z(j−1))) !C j−1
131

132 s(j) = 2/((z(j+1)−z(j))∗(z(j+1)−z(j−1))) !C j+1
133

134 dtemp(j) = 2/((z(j+1)−z(j))∗(z(j)−z(j−1))) !part of d that is independent of i
135 end do
136 a(N Zmax−1) = 0. !since last element of column has dirichlet boundary
137 s(N Z) = 0. !Dirichlet at particle
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138 s(1) = 2/((z(2)−z(1))∗∗2) !at z=0
139 d((/N Z, N Zmax/)) = 1. !Dirichlet boundary
140 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
141 !Left column
142 Q(N Z) = C(N Z,1)
143 Q(N Zmax) = C(N Zmax,1)
144 do j = N Z+1,N Zmax−1
145 d(j) = −(dtemp(j)+4/((r(2)−r(1))∗∗2)) !C i,j
146

147 Q(j) = −(4∗C(j,2))/((r(2)−r(1))∗∗2) !C i,j+1
148 end do
149 call tdma(N Zmax−N Z+1,a(N Z:N Zmax−1),d(N Z:N Zmax),s(N Z:N Zmax−1),Q(N Z:

N Zmax),C(N Z:N Zmax,1))
150 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
151 !Second column to N R
152 do i = 2,N R
153 Q(N Z) = C(N Z,i)
154 Q(N Zmax) = C(N Zmax,i)
155 do j = N Z+1,N Zmax−1
156 d(j) = −dtemp(j)+(r(i−1)−4∗r(i)+r(i+1))/ & !C i,j
157 (r(i)∗(r(i−1)−r(i))∗(r(i)−r(i+1)))
158

159 Q(j) = −((3∗r(i)−r(i+1))/ & !C i−1 + C i+1
160 (r(i)∗(r(i−1)−r(i))∗(r(i−1)−r(i+1))))∗C(j,i−1) &
161 −((3∗r(i)−r(i−1))/ &
162 (r(i)∗(r(i−1)−r(i+1))∗(r(i)−r(i+1))))∗C(j,i+1)
163 end do
164 call tdma(N Zmax−N Z+1,a(N Z:N Zmax−1),d(N Z:N Zmax),s(N Z:N Zmax−1),Q(N Z

:N Zmax),C(N Z:N Zmax,i))
165 end do
166 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
167 !Column N R+1 up to N−1
168 s(N Z) = 2/((z(N Z+1)−z(N Z))∗(z(N Z+1)−z(N Z−1))) !s not equal to 0

anymore
169 do i = N R+1,N Rmax−1
170 d(1) = (r(i−1)−4∗r(i)+r(i+1))/ & !Neumann boundary
171 (r(i)∗(r(i−1)−r(i))∗(r(i)−r(i+1)))− &
172 2/((z(2)−z(1))∗∗2)
173 Q(1) = −((3∗r(i)−r(i+1))/ & !C i−1 + C i+1
174 (r(i)∗(r(i−1)−r(i))∗(r(i−1)−r(i+1))))∗C(1,i−1) &
175 −((3∗r(i)−r(i−1))/ &
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176 (r(i)∗(r(i−1)−r(i+1))∗(r(i)−r(i+1))))∗C(1,i+1)
177 Q(N Zmax) = C(N Zmax,i)
178 do j = 2,N Zmax−1
179 d(j) = −dtemp(j)+(r(i−1)−4∗r(i)+r(i+1))/ & !C i,j
180 (r(i)∗(r(i−1)−r(i))∗(r(i)−r(i+1)))
181

182 Q(j) = −((3∗r(i)−r(i+1))/ & !C i−1 + C i+1
183 (r(i)∗(r(i−1)−r(i))∗(r(i−1)−r(i+1))))∗C(j,i−1) &
184 −((3∗r(i)−r(i−1))/ &
185 (r(i)∗(r(i−1)−r(i+1))∗(r(i)−r(i+1))))∗C(j,i+1)
186 end do
187 Call tdma(N Zmax,a,d,s,Q,C(1:N Zmax,i))
188 end do
189 deallocate(d,Q,dtemp,a,s, STAT = allstat) !deallocate memory from row−wise sweep
190 If (allstat /= 0) STOP ”∗∗∗ Deallocation not succesful ∗∗∗”
191 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
192 !Error of laplace equation
193 allocate(d(N Rmax),Q(N Rmax),dtemp(N Rmax),a(N Rmax−1),s(N Rmax−1), STAT =

allstat) !allocate memory according to input
194 If (allstat /= 0) STOP ”∗∗∗ Not enough memory ∗∗∗”
195

196 a(N Rmax−1) = 0. !since last element of row has dirichlet boundary
197 s(N R) = 0. !Dirichlet at particle
198 s(1) = 4/((r(2)−r(1))∗∗2) !at r=0
199 d((/N R, N Rmax/)) = 1. !Dirichlet boundary
200 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
201 !Bottom row
202 Q(N R) = C(1,N R)
203 Q(N Rmax) = C(1,N Rmax)
204 do i = N R+1,N Rmax−1
205 a(i−1) = (3∗r(i)−r(i+1))/ & !C i−1
206 (r(i)∗(r(i−1)−r(i))∗(r(i−1)−r(i+1)))∗C(1,i−1)
207

208 s(i) = (3∗r(i)−r(i−1))/ & !C i+1
209 (r(i)∗(r(i−1)−r(i+1))∗(r(i)−r(i+1)))∗ &
210 C(1,i+1)
211

212 d(i) = ((r(i−1)−4∗r(i)+r(i+1))/ &
213 (r(i)∗(r(i−1)−r(i))∗(r(i)−r(i+1)))−2/((z(2)−z(1))∗∗2))∗C(1,i) !C i,j
214

215 Q(i) = −(2∗C(2,i))/((z(2)−z(1))∗∗2) !C i,j+1
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216

217 errLaplace(1,i) = a(i−1)+d(i)+s(i)−Q(i)
218 end do
219 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
220 !Second row up to N Z
221 do j = 2,N Z
222 Q(N R) = C(j,N R)
223 Q(N Rmax) = C(j,N Rmax)
224 do i = N R+1,N Rmax−1
225 a(i−1) = (3∗r(i)−r(i+1))/ & !C i−1
226 (r(i)∗(r(i−1)−r(i))∗(r(i−1)−r(i+1)))∗C(j,i−1)
227

228 s(i) = (3∗r(i)−r(i−1))/ & !C i+1
229 (r(i)∗(r(i−1)−r(i+1))∗(r(i)−r(i+1)))∗ &
230 C(j,i+1)
231 d(i) = ((r(i−1)−4∗r(i)+r(i+1))/ &
232 (r(i)∗(r(i−1)−r(i))∗(r(i)−r(i+1)))−2/((z(j+1)−z(j))∗(z(j)−z(j−1))))∗C(j,i) !

C i,j
233

234 Q(i) = −(2∗C(j+1,i))/((z(j+1)−z(j))∗(z(j+1)−z(j−1))) & !
C i,j+1 + C i,j−1

235 −(2∗C(j−1,i))/((z(j)−z(j−1))∗(z(j+1)−z(j−1)))
236

237 errLaplace(j,i) = a(i−1)+d(i)+s(i)−Q(i)
238 end do
239 end do
240 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
241 !Row N Z+1 up to N−1
242 s(N R) = (3∗r(N R)−r(N R−1))/ & !Need to recreate S

at N R, s not 0
243 (r(N R)∗(r(N R−1)−r(N R+1))∗(r(N R)−r(N R+1)))
244 do j = N Z+1,N Zmax−1
245 d(1) = −(4/((r(2)−r(1))∗∗2)+2/((z(j+1)−z(j))∗(z(j)−z(j−1)))) !Neumann

boundary
246 Q(1) = −(2∗C(j+1,1))/((z(j+1)−z(j))∗(z(j+1)−z(j−1))) &
247 −(2∗C(j−1,1))/((z(j)−z(j−1))∗(z(j+1)−z(j−1)))
248 Q(N Rmax) = C(j,N Rmax)
249 do i = 2,N Rmax−1
250 a(i−1) = (3∗r(i)−r(i+1))/ & !C i−1
251 (r(i)∗(r(i−1)−r(i))∗(r(i−1)−r(i+1)))∗C(j,i−1)
252
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253 s(i) = (3∗r(i)−r(i−1))/ & !C i+1
254 (r(i)∗(r(i−1)−r(i+1))∗(r(i)−r(i+1)))∗ &
255 C(j,i+1)
256 d(i) = ((r(i−1)−4∗r(i)+r(i+1))/ &
257 (r(i)∗(r(i−1)−r(i))∗(r(i)−r(i+1)))−2/((z(j+1)−z(j))∗(z(j)−z(j−1))))∗C(j,i) !

C i,j
258

259 Q(i) = −(2∗C(j+1,i))/((z(j+1)−z(j))∗(z(j+1)−z(j−1))) & !
C i,j+1 + C i,j−1

260 −(2∗C(j−1,i))/((z(j)−z(j−1))∗(z(j+1)−z(j−1)))
261

262 errLaplace(j,i) = a(i−1)+d(i)+s(i)−Q(i)
263 end do
264 end do
265 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
266 !Flux calculations
267 !Side of cylinder
268 do j = 1,N Z
269 dcr(j) = (−3∗C(j,N R)+4∗C(j,N R+1)−C(j,N R+2))/(2∗r0)
270 end do
271

272 I side = −4∗pi∗r0∗(0.5∗(dcr(1)+dcr(N Z))+sum(dcr(2:N Z−1))) !dimensionless flux
from cylinder side. Trapezoid method

273

274 !End of cylinder
275 do i = 1,N R
276 dcz(i) = ((−3∗C(N Z,i)+4∗C(N Z+1,i)−C(N Z+2,i))/(2∗z0))∗r(i)
277 end do
278

279 I end = −4∗pi∗z0∗(0.5∗(dcz(1)+dcz(N R))+sum(dcz(2:N R−1))) !dimensionless
flux from cylinder end. Trapezoid method

280 I sum = I side + I end
281 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
282 !Error term with sum of error + the highest error in conc.field
283 err = 1./(min(N Rmax,N Zmax)∗∗2.)∗sum(abs(C−temp))+ maxval(abs(C−temp)) +

1./15∗abs((I sum−temp2)) + &
284 1./(min(N Rmax,N Zmax)∗∗2.)∗sum(abs(errLaplace)) + maxval(abs(errLaplace))
285 !Prints iterations, flux and error each 100 iteration
286 if ((count/100)∗100 == count) then
287 print ∗, count, I sum, err
288 end if
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289 end do
290 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
291 open(10,file=’C field2.txt’)
292 call disp(C,UNIT=10,DIGMAX=15) !module that prints matrix in regular format
293

294 open(11,file=’r vec.txt’)
295 call disp(r,UNIT=11,DIGMAX=15)
296

297 open(12,file=’z vec.txt’)
298 call disp(z,UNIT=12,DIGMAX=15)
299

300 print ∗, N Rmax, N Zmax, alpha, I side, I end, I sum, count, r0, q r, Rmax, Zmax
301

302 end program Masteroppgave
303

304 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
305 subroutine grid(N R,N max,delta,q,Rmax,r) !function for finding Rmax/q
306 implicit none
307 !Declaration of variables
308 !N R − #nodes for particle
309 !N max − max # nodes
310 !delta − initial grid spacing
311 !q − stretch factor for grid
312 !Rmax − length of grid
313 !r − grid coordinate vector
314 integer, parameter :: ikind=selected real kind(p=15) !15digit precision(6 is default)
315 integer, intent(in) :: N R, N max
316 real (kind=ikind), intent(in) :: delta
317 real (kind=ikind), intent(inout) :: Rmax, q
318 real (kind=ikind), dimension(N max), intent(out) :: r
319 !local variables
320 real (kind=ikind) :: const, q old, f old, f, test
321 integer :: i
322

323 if (Rmax == 1 ) then !When Rmax is not given
324 Rmax = delta∗((N R+1)+(q∗∗(N max−N R−1)−q)/(q−1))
325 else if (q == 1) then
326 Rmax = delta∗(N max−1)
327 else
328 q old = 1.1 !Initial guess
329 f old = Rmax − delta∗((N R+1)+(q old∗∗(N max−N R−1)−q old)/(q old−1))
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330 q = 1.01
331 f = 1.
332 do while (abs(f) > 1e−8) !secant method
333 if (abs(q−1.) < 1e−10) then
334 f = Rmax − delta∗((N R+1)+(N max−N R−2)) !Limit when q −−> 1
335 else
336 f = Rmax − delta∗((N R+1)+(q∗∗(N max−N R−1)−q)/(q−1)) !else when q is not

too near 1
337 end if
338 if (f == f old) then
339 const = 0.
340 f = 0.
341 end if
342 const = −f∗(q−q old)/(f−f old)
343 q old = q
344 q = q + const
345 f old = f
346 end do
347 test = delta∗((N R+1)+(q∗∗(N max−N R−1)−q)/(q−1)) !Have to test if solution has

diverged (because of poor initial values or non−meaningful input)
348 if (abs(Rmax−test)>1) then
349 STOP ’ERROR DETECTED! SUBROUTINE GRID NOT SUCCESSFUL’
350 end if
351 end if
352

353 !Define grid coordinates
354 r(1) = 0
355 do i = 2,N R+2
356 r(i) = r(i−1) + delta
357 end do
358 do i = N R+3, N max
359 r(i) = r(i−1) + delta∗q∗∗(i−N R−2)
360 end do
361 end subroutine grid
362 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
363 subroutine grid2(N R,N max,delta,q,Rmax,r) !function for finding Rmax/q
364 implicit none
365 !Declaration of variables
366 !N R − #nodes for particle
367 !N max − max # nodes
368 !delta − initial grid spacing
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369 !q − stretch factor for grid
370 !Rmax − length of grid
371 !r − grid coordinate vector
372 integer, parameter :: ikind=selected real kind(p=15) !15digit precision(6 is default)
373 integer, intent(in) :: N R, N max
374 real (kind=ikind), intent(in) :: delta
375 real (kind=ikind), intent(inout) :: Rmax, q
376 real (kind=ikind), dimension(N max), intent(out) :: r
377 !local variables
378 real (kind=ikind) :: const, q old, f old, f, test
379 integer :: i
380

381 Rmax = delta∗((N R+1)+(q∗∗(N max−N R−1)−q)/(q−1))
382 !Define grid coordinates
383 r(1) = 0
384 do i = 2,N R+2
385 r(i) = r(i−1) + delta
386 end do
387 do i = N R+3, N max
388 r(i) = r(i−1) + delta∗q∗∗(i−N R−2)
389 end do
390 end subroutine grid2
391 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
392 subroutine tdma(N,a,d,s,Q,phi) !tridiagonalsolver
393 implicit none
394 !Declaration of variables
395 !N − size of diagonal
396 !a − subdiagonal
397 !d − central diagonal
398 !s − superdiagonal
399 !Q − right hand side
400 !phi − unknowns
401 integer, parameter :: ikind=selected real kind(p=15) !15digit precision(6 is default)
402 integer, intent(in) :: N
403 real (kind=ikind), intent(in), dimension(N−1) :: a,s
404 real (kind=ikind), intent(in), dimension(N) :: d,Q
405 real (kind=ikind), intent(out) :: phi(N)
406 !Local variables
407 integer :: i
408 real (kind=ikind) :: const
409 real (kind=ikind), dimension(N) :: d new,Q new
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410 d new = d
411 Q new = Q
412 !Forward elimination
413 do i = 2,N
414 const = a(i−1)/d new(i−1)
415 d new(i) = d new(i) − const∗s(i−1) !diagonal
416 Q new(i) = Q new(i) − const∗Q new(i−1) !right hand side
417 end do
418 phi(N) = Q new(N)/d new(N) !last equation of matrix
419 !Backward substitusion
420 do i = N−1, 1, −1
421 phi(i) = (Q new(i)−s(i)∗phi(i+1))/d new(i)
422 end do
423 end subroutine tdma

A.2 Algorithm for Lagrangian for KWN-Model

1 !Precipitation model.f90
2 program Precipitation model
3 implicit none
4 external JEX, precipitation
5 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6

7 !Declaration of parameters:
8 integer, parameter :: ikind=selected real kind(p=15) !15digit precision(6 is default)
9 real(kind=ikind), parameter :: k = 1.380648813D−23, Rg = 8.314462175 !Boltzmann constant

[J/K] and universal gas constant [J/K mol]
10 real(kind=ikind), parameter :: pi = 3.1415926535897932384626433
11

12 integer, parameter :: idist = 600 !Number of points for kernel density estimator(kde)
13 integer, parameter :: imax = 3900 !Number of timesteps
14

15 logical C e test, C s test, negative check !Logicals for if tests
16

17 integer, parameter :: NEQ = imax∗2 !Number of ODEs
18 integer, parameter :: NWDIM=22+9∗NEQ+2∗NEQ∗∗2, IWDIM=30+NEQ !ODE solver

parameters
19

20 !strings for write to file
21 Character(len = 25) :: str r, str l, str i, str g, str rate r, &
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22 str rate l, str N, str r crit, str t, &
23 str dist r, str dist l, str dist 2d
24

25 !Integers for solver and do loops
26 integer :: n step, i step, i, j, m, ITASK, ISTATE, IOPT, ITOL, MF, &
27 LRW, LIW, step, IFLAG, index, a, b, count, N check, &
28 t var, index temp, gamma funct
29

30 ! Real Constants and parameters
31 real (kind=ikind) :: asp, I end end0, I end side0, I side side0, &
32 I side end0, C m, C p, C 0, C eq, gamma s, &
33 gamma e, xi, t0, q, t res, Temp, V, khi, D, &
34 dtime, t, t out, j0, A0, Q d, f p, r check, &
35 asp check, check, C m res, C m temp, r stop, &
36 gamma stop, d gamma, r start, gamma e r, rand nucl
37

38 !Integer arrays
39 integer :: IWORK(IWDIM), IPAR(2)
40

41 !Real arrays
42 real (kind=ikind) :: r(imax+1), l(imax+1), N(imax+1), RPAR(17+NEQ), &
43 ATOL(1), RWORK(NWDIM), f p save(imax+1), &
44 RTOL(1), part(NEQ), part der(NEQ), &
45 r save(imax+1), l save(imax+1), t save(imax+1), &
46 l check(imax+1), r crit(imax+1), N rate(imax+1), &
47 mean r(imax+1), mean l(imax+1), N tot(imax+1), &
48 C e(imax+1), C s(imax+1), C m save(imax+1), &
49 r crit nucl(imax+1)
50

51 !Arrays for kde
52 real (kind=ikind) :: phi(idist,idist), phi r(idist), phi l(idist), &
53 r dist(idist), l dist(idist)
54 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
55

56 !Material constans and parameters
57 C 0 = 0.0063D0 !initial solute conc.
58 C m = C 0 !solte conc in matrix, vol−fraction
59 C p = 0.634D0 !solute conc in particle
60 C eq = 3.54D−05 !equilibrium solute conc
61 gamma s = 0.2∗0.6D0 !Surface energy of side, J/mˆ2
62 gamma e = 0.2∗0.6D0 !Surface energy of ends, J/mˆ2
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63 Temp = 180D0+273.15D0 !Temperature, K
64 V = 6.559D−29 !Atomic volume precipitate, assume same as in matrix −−> xi =

V B p/V B m = 1
65 D = 2.278D−19 !Diffusion coefficient, mˆ2/s
66 j0 = 9.66D34 !Numerical constant for nucleation rate, #/mˆ3 s
67 A0 = 16220.0D0 !Energy barrier in nucleation equation, J/mol
68 Q d = 130000.0D0 !Activation energy for diffusion, J/mol
69 xi = 1.0D0 !V B p/V B m
70 N = 0.0D0 !Initializing N and N tot
71 N tot(1) = 0.
72

73

74 !First order diff.eq solver constants and parameters, See DVODE−documentation for more
information

75 t0 = 1.0D0 !t0 for strecthed timesteps
76 q = 1.002D0 !Stretching factor for timestep
77 ATOL(1) = 1.D−14 !Absolute tolerance parameter (scalar or array)
78 RTOL(1) = 1.D−10 !Relative tolerance parameter (scalar)
79 ITOL = 1 !1 if ATOL is scalar and 2 is ATOL is array
80 ITASK = 1 !1 for normal computation of output values of Y at t = TOUT
81 ISTATE = 1 !Integer flag (input and output). Set ISTATE = 1
82 IOPT = 0 !0 to indicate no optional input used
83 MF = 22 !Method flag, 22 is standard
84 LRW = NWDIM !Declared length of RWORK
85 LIW = IWDIM !Declared length of IWORK
86

87 t = 0.0D0 !Initial time
88 t out = 0.0D0 !Initializing t out
89

90

91 !Variables for printing output, while loop and, gamma end function
92 b = 30
93 check = 1
94 N check = 0
95 index = 0
96 gamma funct = 1
97 r start = 1D−9
98 r stop = 4D−9
99 gamma stop = 15∗gamma s

100

101
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102

103 !Defining IPAR vector for inout in ODE−solver and other subroutines
104 IPAR(1) = imax
105

106 !Defining RPAR−vector for input in ODE−solver and other subroutines
107 RPAR(1) = D
108 RPAR(2) = C m
109 RPAR(3) = V
110 RPAR(4) = xi
111 RPAR(5) = C p
112 RPAR(6) = r start
113 RPAR(7) = A0
114 RPAR(8) = gamma funct
115 RPAR(9) = Temp
116 RPAR(10) = C eq
117 RPAR(11) = Q d
118 RPAR(12) = gamma s
119 RPAR(13) = gamma e
120 RPAR(14) = gamma stop
121 RPAR(15) = r stop
122 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
123

124 !Loop which each time step nucleates a new class and calculates the growth of all the current
classes

125 do i = 1,imax
126

127 !Calculate timestep and saving system if dt is too large
128 t out = t out + t0∗q∗∗(i−1)
129 t res = t
130 step = 2
131 C m res = C m
132

133

134 !Checks if timestep was succesful
135 do while (check == 1)
136

137 N(i) = (t out−t)∗j0∗exp(−((A0/(Rg∗Temp))∗∗3)∗((1/(log(C m/C eq)))∗∗2))∗exp(−Q d
/(Rg∗Temp)) !Number of nucleated classes

138

139 N rate(i) = j0∗exp(−((A0/(Rg∗Temp))∗∗3)∗((1/(log(C m/C eq)))∗∗2))∗exp(−Q d/(Rg∗
Temp)) !dN/dt
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140

141 r crit(i) = (2.0∗gamma s∗V)/(log(C m/C eq)∗C p∗k∗Temp) !Critical radius for particle
142

143 !if N(i) is too low no class is created !
144 if (i > 1 .and. N(i) < N tot(i)∗1.0D−10 .or. N check == 1) then
145 N(i) = 0
146 r(i) = 0
147 l(i) = 0
148 N check = 1
149 else
150

151 r(i) = 1.05∗(2.0∗gamma s∗V)/(log(C m/C eq)∗C p∗k∗Temp) !Overcritical radius
to ensure growth

152

153 !Critical L is dependent on if gamma e is constant or not
154 if (gamma funct == 1) then
155

156 gamma e r = gamma s + 0.5∗(gamma stop−gamma s)∗ &
157 (1+tanh(((gamma stop−gamma s)∗(r(i)−0.5∗r stop−0.5∗r start)) &
158 /(0.3∗(r stop−r start))))
159

160 d gamma = −(1.66667∗(gamma s − gamma stop)∗∗2∗ &
161 (1/(cosh((3.33333∗(−gamma s + gamma stop)∗ &
162 (−0.5∗r start − 0.5∗r stop + r(i)))/ &
163 (−r start + r stop))∗∗2)))/(r start − r stop)
164

165 l(i) = (d gamma∗r(i)∗∗2)/gamma s + (2∗r(i)∗gamma e r)/gamma s
166 asp = l(i)/(2∗r(i))
167

168 else
169

170 asp = gamma e/gamma s !Critical aspect ratio
171

172 l(i) = 2.0∗asp∗r(i) !L determined by critical aspect ratio
173

174 end if
175

176

177 !Update part−vector and RPAR−vector. Part is the output vector from DVODE.
RPAR is the input−vector to the growth subroutine.

178 part(i∗2−1) = r(i)
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179 RPAR(15+i∗2−1) = r(i)
180

181 part(2∗i) = l(i)
182 RPAR(15+i∗2) = l(i)
183

184 end if
185

186

187 !Finding index of first zero in N
188 index = findloc(N, VALUE = 0., DIM = 1) − 1
189

190

191 !Running ODE−solver. Checks if any classes has dissapeared or if no new class was
nucleated

192 if (index /= 0 .and. index < i) then
193

194 !Classes dissapeared/not nucleated. Reset part−vector if dt was too big
195 part(1:(index∗2−1):2) = r(1:index)
196 part(2:(index∗2):2) = l(1:index)
197 RPAR(16:15+index∗2−1:2) = r(1:index)
198 RPAR(17:15+index∗2:2) = l(1:index)
199 IPAR(2) = index
200

201 !Precipitate volume fraction
202 f p = pi∗sum(N(1:index)∗(part(1:(index∗2−1):2)∗∗2)∗part(2:(index∗2):2))
203

204 !Mass balance equation
205 C m = (C 0−xi∗f p∗C p)/(1−xi∗f p)
206 RPAR(2) = C m
207

208 r crit nucl(i) = (2.0∗gamma s∗V)/(log(C m/C eq)∗C p∗k∗Temp)
209

210 ISTATE = 1 !ISTATE needs to be reset to 1 since number of equations increases/
decreases

211

212 !DVODE calculate growth in R and L direction
213 call DVODE(precipitation,index∗2,part(1:index∗2),t,t out,ITOL,RTOL,ATOL, &
214 ITASK,ISTATE,IOPT,RWORK,LRW,IWORK,LIW,JEX,MF,RPAR,IPAR)
215

216 !Finds dR/dt and dL/dt
217 call DVINDY(t,1,RWORK(21),index∗2,part der,IFLAG)
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218

219 !Subroutine which removes too small classes, sorts the vectors and calculates new
C m for the timestep test

220 call sort calc(index, part(1:(index∗2−1):2), part(2:(index∗2):2), N(1:index), &
221 C e(1:index), C s(1:index), index temp, C m temp, C 0, xi, C p, C eq, &
222 temp, gamma s, gamma e, V, gamma stop, r stop, r start, gamma funct)
223

224 !Returns a logical statement if C e/C s is within legal limits
225 C e test = all(0 < C e(1:index temp) < 1,1)
226 C s test = all(0 < C s(1:index temp) < 1,1)
227

228 !Checks that no classes has dissolved into a particle with negative values
229 negative check = all(0 < part(1:index),1)
230

231 else
232

233 !Reset part−vector if dt was too big
234 part(1:(i∗2−1):2) = r(1:i)
235 part(2:(i∗2):2) = l(1:i)
236 RPAR(16:15+i∗2−1:2) = r(1:i)
237 RPAR(17:15+i∗2:2) = l(1:i)
238 IPAR(2) = i
239

240 !Precipitate volume fraction
241 f p = pi∗sum(N(1:i)∗(part(1:(i∗2−1):2)∗∗2)∗part(2:(i∗2):2))
242

243 !Mass balance equation
244 C m = (C 0−xi∗f p∗C p)/(1−xi∗f p)
245 RPAR(2) = C m
246

247 r crit nucl(i) = (2.0∗gamma s∗V)/(log(C m/C eq)∗C p∗k∗Temp)
248

249 ISTATE = 1 !ISTATE needs to be reset to 1 since number of equations increases/
decreases

250

251 !DVODE calculate growth in R and L direction
252 call DVODE(precipitation,i∗2,part(1:i∗2),t,t out,ITOL,RTOL,ATOL,ITASK, &
253 ISTATE, IOPT,RWORK,LRW,IWORK,LIW,JEX,MF,RPAR,IPAR)
254

255 !Finds dR/dt and dL/dt
256 call DVINDY(t,1,RWORK(21),i∗2,part der,IFLAG)
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257

258 !Subroutine which removes too small classes, sorts the vectors and calculates new
C m for the timestep test

259 call sort calc(i, part(1:(i∗2−1):2), part(2:(i∗2):2), N(1:i), C e(1:i), C s(1:i),&
260 index temp, C m temp, C 0, xi, C p, C eq, temp, gamma s, gamma e, V, &
261 gamma stop, r stop, r start, gamma funct)
262

263 !Returns a logical statement if C e/C s is within legal limits
264 C e test = all(0 < C e(1:index temp) < C p,1)
265 C s test = all(0 < C s(1:index temp) < C p,1)
266

267 !Checks that no classes has dissolved into a particle with negative values
268 negative check = all(0 < part(1:i),1)
269

270 end if
271

272

273 !Calculate difference between old and new r crit
274 r check = abs(1−(r crit nucl(i)/((2.0∗gamma s∗V)/ &
275 (log(C m temp/C eq)∗C p∗k∗Temp))))
276

277

278 !Checking if all solute conc. are within accepted regions and that r∗ does not vary more
than 1%

279 if (C e test == .true. .and. C s test == .true. .and. negative check == .true. &
280 .and. 0 < C m temp < 1 .and. r check < 0.01) then
281

282 !Timestep was succesful and program exits while
283 check = 0
284

285 else
286

287 !If infinite loop print out values
288 if (step > 500) then
289

290 open(100,file=’GrowthErrorR.dat’)
291 open(101,file=’GrowthErrorL.dat’)
292 open(102,file=’GrowthErrorN.dat’)
293 open(103,file=’GrowthErrorRateR.dat’)
294 open(104,file=’GrowthErrorR crit.dat’)
295 open(105,file=’GrowthErrorTime.dat’)
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296 open(106,file=’GrowthErrorN tot.dat’)
297 open(107,file=’GrowthErrorC e.dat’)
298 open(108,file=’GrowthErrorC s.dat’)
299 open(109,file=’GrowthErrorRateL.dat’)
300 open(110,file=’GrowthErrorN Rate.dat’)
301 open(111,file=’GrowthErrorC m.dat’)
302 open(112,file=’GrowthErrorR crit2.dat’)
303

304 do j = 1,i
305 write(100,’(ES24.17)’) r(j)
306 write(101,’(ES24.17)’) l(j)
307 write(102,’(ES24.17)’) N(j)
308 write(103,’(ES24.17)’) part der(j∗2−1)
309 write(104,’(ES24.17)’) r crit(j)
310 write(105,’(ES24.17)’) t save(j)
311 write(106,’(ES24.17)’) N tot(j)
312 write(107,’(ES24.17)’) C e(j)
313 write(108,’(ES24.17)’) C s(j)
314 write(109,’(ES24.17)’) part der(j∗2)
315 write(110,’(ES24.17)’) N rate(j)
316 write(111,’(ES24.17)’) C m save(j)
317 write(112,’(ES24.17)’) r crit nucl(j)
318 end do
319

320 print ∗, i
321 check = 0
322

323 else
324

325 !Timestep too big. Reset time and assign new timestep
326 check = 1
327 t = t res
328 t out = t + (t0∗q∗∗(i−1))/step
329 step = step + 2
330

331 !Have to reset C m since dt was to big
332 C m = C m res
333 RPAR(2) = C m
334

335 end if
336
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337 end if
338

339 end do
340

341

342 !Reset check for while loop
343 check = 1
344

345

346 !Saving t and C m for printing to output
347 t save(i) = t
348 C m save(i) = C m
349

350

351 !Updating r− and l−vector
352 if (index /= 0 .and. index < i) then
353

354 r(1:index) = part(1:(index∗2−1):2)
355 l(1:index) = part(2:(index∗2):2)
356

357 else
358

359 r(1:i) = part(1:(i∗2−1):2)
360 l(1:i) = part(2:(i∗2):2)
361

362 end if
363

364

365 if (asp >= 1) then
366

367 !Checking if classes has dissapeared
368 if (r crit nucl(i)∗1.05 > 0.6D−9) then
369

370 !When r∗ is larger than a threshold value the removing requirment shift
371 where (l<0.6D−9 .or. r<0.6D−9)
372 N = 0
373 r = 0
374 l = 0
375 end where
376

377 else
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378

379 !When r∗ is small at the nucleation phase, most likely no particles dissapears in this
phase

380 where (l<r crit nucl(i)/2 .or. r<r crit nucl(i)/2)
381 N = 0
382 r = 0
383 l = 0
384 end where
385

386 end if
387

388 else
389

390 !Checking if classes has dissapeared
391 if (2∗asp∗r crit nucl(i) > 0.6D−9) then
392

393 !When l∗ is larger than a threshold value the removing requirment shift
394 where (l<0.6D−9 .or. r<0.6D−9)
395 N = 0
396 r = 0
397 l = 0
398 end where
399

400 else
401

402 !When l∗ is small at the nucleation phase, most likely no particles dissapears in this
phase

403 where (l<asp∗r crit nucl(i) .or. r<asp∗r crit nucl(i))
404 N = 0
405 r = 0
406 l = 0
407 end where
408

409 end if
410

411 end if
412

413

414 !Sorting algorithm to move all zeroes(removed classes) to end of array
415 count = 1
416
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417 do a = 1,size(N)
418 if (N(a) /= 0) then
419

420 N(count) = N(a)
421 r(count) = r(a)
422 l(count) = l(a)
423 count = count + 1
424

425 end if
426 end do
427

428 do while (count <= size(N))
429 N(count) = 0
430 r(count) = 0
431 l(count) = 0
432 count = count + 1
433 end do
434

435

436 !Finding index of first zero in N
437 index = findloc(N, VALUE = 0., DIM = 1) − 1
438

439 !Checking if the aspect ratio of any of the current classes are outside the accepted region
440 do m = 1,i
441

442 if (r(i)/=0 .and. l(i)/=0) then
443

444 asp check = l(i)/(2∗r(i))
445 if (asp check > 100 .or. asp check < 0.01) STOP ’∗∗∗ ASPECT RATIO IS

OUTSIDE ALLOWED REGION ∗∗∗’
446

447 end if
448

449 end do
450

451 !Updating concentration in matrix
452 if (index /= 0 .and. index < i) then
453

454 f p = pi∗sum(N(1:index)∗(r(1:index)∗∗2)∗l(1:index)) !Precipitate volume fraction
455 C m = (C 0−xi∗f p∗C p)/(1−xi∗f p)
456
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457 else
458

459 f p = pi∗sum(N(1:i)∗(r(1:i)∗∗2)∗l(1:i)) !Precipitate volume fraction
460 C m = (C 0−xi∗f p∗C p)/(1−xi∗f p)
461

462 end if
463

464 !Save for output
465 f p save(i) = f p
466

467 !Updating total number of prarticles
468 N tot(i+1) = sum(N)
469

470 !Turns off nucleation if classes is starting to dissapear
471 if (index < i) then
472 N check = 1
473 end if
474

475 !Saving mean radius/length of particles
476 mean r(i) = sum(r∗N)/sum(N)
477 mean l(i) = sum(l∗N)/sum(N)
478

479 !Prints out values every 100th iteration
480 if ((i/100)∗100 == i) then
481 print ∗, i, t, f p, N tot(i)
482

483 !Defining strings for output names
484 str g = ’Growth’
485 str r = ’r.dat’
486 str l = ’l.dat’
487 str N = ’N.dat’
488 str rate r = ’RateR.dat’
489 str rate l = ’RateL.dat’
490 str r crit = ’r crit.dat’
491 str t = ’time.dat’
492 str dist r = ’r dist.dat’
493 str dist l = ’l dist.dat’
494 str dist 2d = ’dist 2D.dat’
495

496 write(str i,’(i0)’) i
497

120



A. Fortran Code

498 !Opening output files
499 open(b,file=trim(str g)//trim(str i)//trim(str r))
500 open(b+1,file=trim(str g)//trim(str i)//trim(str l))
501 open(b+2,file=trim(str g)//trim(str i)//trim(str N))
502 open(b+3,file=trim(str g)//trim(str i)//trim(str rate r))
503 open(b+4,file=trim(str g)//trim(str i)//trim(str rate l))
504 open(b+5,file=trim(str g)//trim(str i)//trim(str r crit))
505 open(b+6,file=trim(str g)//trim(str i)//trim(str t))
506 open(b+7,file=trim(str g)//trim(str i)//trim(str dist r))
507 open(b+8,file=trim(str g)//trim(str i)//trim(str dist l))
508 open(b+9,file=trim(str g)//trim(str i)//trim(str dist 2d))
509

510 !Writing to files if classes has dissapeard
511 if (index /= 0 .and. index < i) then
512

513 !Calculating kde for PSD
514 call kde(index, r(1:index), mean r(i), l(1:index), mean l(i), N(1:index), N tot(i), &
515 phi, phi r, phi l, r dist, l dist)
516

517 do j = 1,index
518

519 write(b,’(ES24.17)’) r(j)
520 write(b+1,’(ES24.17)’) l(j)
521 write(b+2,’(ES24.17)’) N(j)
522 write(b+3,’(ES24.17)’) part der(j∗2−1)
523 write(b+4,’(ES24.17)’) part der(j∗2)
524

525 end do
526

527 !Writing to files when no classes has dissapeared
528 else
529

530 !Calculating kde for PSD
531 call kde(i, r(1:i), mean r(i), l(1:i), mean l(i), N(1:i), N tot(i), phi, phi r, &
532 phi l, r dist, l dist)
533

534 do j = 1,i
535

536 write(b,’(ES24.17)’) r(j)
537 write(b+1,’(ES24.17)’) l(j)
538 write(b+2,’(ES24.17)’) N(j)
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539 write(b+3,’(ES24.17)’) part der(j∗2−1)
540 write(b+4,’(ES24.17)’) part der(j∗2)
541

542 end do
543

544 end if
545

546 do j = 1,i
547

548 write(b+5,’(ES24.17)’) r crit nucl(j)
549 write(b+6,’(ES24.17)’) t save(j)
550

551 end do
552

553 !Writing 1D and 2D PSD to file
554 do j = 1,idist
555

556 write(b+7,’(ES28.17E3)’, ADVANCE=”NO”) phi r(j)
557 write(b+7,’(ES28.17E3)’, ADVANCE=”NO”) r dist(j)
558 write(b+8,’(ES28.17E3)’, ADVANCE=”NO”) phi l(j)
559 write(b+8,’(ES28.17E3)’, ADVANCE=”NO”) l dist(j)
560

561 do m = 1,idist
562 write(b+9,’(ES28.17E3)’) phi(m,j)
563 end do
564

565 write(b+7,∗)
566 write(b+8,∗)
567

568 end do
569

570 !counting variable for output files
571 b = b + 10
572

573 end if
574

575 end do
576

577 !Opening and writing to files in vector−format
578 open(14,file=’R final.dat’)
579 open(15,file=’L final.dat’)
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580 open(16,file=’t final.dat’)
581 open(17,file=’N final.dat’)
582 open(18,file=’N rate final.dat’)
583 open(19,file=’r crit final.dat’)
584 open(20,file=’N tot final.dat’)
585 open(21,file=’GrowthRateR final.dat’)
586 open(22,file=’GrowthRateL final.dat’)
587 open(23,file=’Cm final.dat’)
588 open(24,file=’mean r final.dat’)
589 open(26,file=’mean l final.dat’)
590 open(27,file=’f p final.dat’)
591

592 if (index /= 0 .and. index < i) then
593

594 do j = 1,index
595

596 write(14,’(ES24.17)’) r(j)
597 write(15,’(ES24.17)’) l(j)
598 write(17,’(ES24.17)’) N(j)
599 write(21,’(ES24.17)’) part der(j∗2−1)
600 write(22,’(ES24.17)’) part der(j∗2)
601

602 end do
603

604 else
605

606 do j = 1,i
607

608 write(14,’(ES24.17)’) r(j)
609 write(15,’(ES24.17)’) l(j)
610 write(17,’(ES24.17)’) N(j)
611 write(21,’(ES24.17)’) part der(j∗2−1)
612 write(22,’(ES24.17)’) part der(j∗2)
613

614 end do
615 end if
616

617 do j = 1,i
618

619 write(16,’(ES24.17)’) t save(j)
620 write(18,’(ES24.17)’) N rate(j)
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621 write(19,’(ES24.17)’) r crit nucl(j)
622 write(20,’(ES24.17)’) N tot(j)
623 write(23,’(ES24.17)’) C m save(j)
624 write(24,’(ES24.17)’) mean r(j)
625 write(26,’(ES24.17)’) mean l(j)
626 write(27,’(ES24.17)’) f p save(j)
627

628 end do
629

630 !Prints out input data to the model
631 RPAR(14) = i
632 open(25,file=”input precipitation.dat”)
633 do j = 1,14
634

635 write(25,’(ES24.17)’) RPAR(j)
636

637 end do
638

639 print ∗, t, C m, C eq, ISTATE
640

641 end program Precipitation model
642 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
643

644 !Growth subroutine used in DVODE−solver
645 subroutine precipitation(neqn, t, y, ydot, RPAR, IPAR)
646 !Declaration of variables
647 integer, parameter :: ikind=selected real kind(p=15) !15digit precision(6 is default)
648 integer, intent(in) :: neqn, IPAR(2)
649 real (kind=ikind), intent(in) :: t, RPAR(17+neqn)
650 real (kind=ikind), intent(in) :: y(neqn)
651 real (kind=ikind), intent(inout) :: ydot(neqn)
652 !Local Variables
653 real(kind=ikind), parameter :: k = 1.380648813D−23, Rg = 8.314462175 !Boltzmann

constant [J/K] and universal gas constant [J/K mol]
654 real (kind=ikind), parameter :: pi = 3.1415926535897932384626433
655 integer :: i, j, gamma funct
656

657 real (kind=ikind) :: D, C m, C e, C s, C p, I end side0, I end end0, I side side0, xi, &
658 I side end0, j0, A0, temp, C eq, Q d, gamma s, gamma e, r, l, asp, &
659 r stop, gamma stop, d gamma
660
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661 !Input from RPAR and IPAR
662 j = IPAR(2)
663

664 D = RPAR(1)
665 C m = RPAR(2)
666 V = RPAR(3)
667 xi = RPAR(4)
668 C p = RPAR(5)
669 r start = RPAR(6)
670 A0 = RPAR(7)
671 gamma funct = RPAR(8)
672 temp = RPAR(9)
673 C eq = RPAR(10)
674 Q d = RPAR(11)
675 gamma s = RPAR(12)
676 gamma e = RPAR(13)
677 gamma stop = RPAR(14)
678 r stop = RPAR(15)
679

680

681 !Calculates dr/dt and dl/dt
682 do i = 1,j
683

684 r = RPAR(15+i∗2−1)
685 l = RPAR(15+i∗2)
686

687 !New gamma e to be calculated if non−constant
688 if (gamma funct == 1) then
689

690 gamma e = gamma s+0.5∗(gamma stop−gamma s)∗(1+tanh(((gamma stop−gamma s)∗
&

691 (r−0.5∗r stop−0.5∗r start))/(0.3∗(r stop−r start))))
692

693 d gamma =−(1.66667∗(gamma s − gamma stop)∗∗2∗ &
694 (1/(cosh((3.33333∗(−gamma s + gamma stop) &
695 ∗(−0.5∗r start − 0.5∗r stop + r))/ &
696 (−r start + r stop))∗∗2)))/(r start − r stop)
697

698 end if
699

700 asp = l/(2∗r)
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701

702 if (1 <= asp < 100) then
703

704 !Subroutines which calculate numerically found flux from a fitted equation
705 call I end end0fit(asp,I end end0)
706 call I end side0fit(asp,I end side0)
707 call I side end0fit(asp,I side end0)
708 call I side side0fit(asp,I side side0)
709

710 elseif (0.01 < asp < 1) then
711

712 !Subroutines which calculate numerically found flux from a fitted equation
713 call I disc end end0fit(asp,I end end0)
714 call I disc end side0fit(asp,I end side0)
715 call I disc side end0fit(asp,I side end0)
716 call I disc side side0fit(asp,I side side0)
717

718 end if
719

720

721 if (r>0 .AND. l>0) then
722

723 C e = C eq∗exp((2∗gamma s∗V)/(r∗C p∗k∗temp)) !Gibbs−Thomson effect interfacial
concentration at ends

724

725 if (gamma funct == 1) then
726

727 C s = C eq∗exp(((gamma s+2∗(r/l)∗gamma e+((r∗∗2)/l)∗d gamma)∗V) &
728 /(r∗C p∗k∗temp)) !Gibbs−Thomson effect interfacial concentration at side
729

730 else
731

732 C s = C eq∗exp(((gamma s+2∗(r/l)∗gamma e)∗V)/(r∗C p∗k∗temp)) !Gibbs−
Thomson effect interfacial concentration at side

733

734 end if
735

736 end if
737

738

739 ydot(i∗2−1) = (D∗(C s−C m)∗I side end0 + D∗(C e−C m)∗I side side0)/ &

126



A. Fortran Code

740 (2∗pi∗l∗(xi∗C p−C s)) !dR/dt
741

742 ydot(i∗2) = (D∗(C e−C m)∗I end side0 + D∗(C s−C m)∗I end end0)/ &
743 ((pi∗r)∗(xi∗C p−C e)) !dL/dt
744

745

746 end do
747

748 end subroutine precipitation
749 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
750

751 !Removes too small classes, sorts the vectors and calculates new C m
752 subroutine sort calc(NEQ, r, l, N, C e, C s, index, C m, C 0, xi, C p, C eq, temp, gamma s, &
753 gamma e, V, gamma stop, r stop, r start, gamma funct)
754

755 !Declaration of variables
756 integer, parameter :: ikind=selected real kind(p=15) !15digit precision(6 is default)
757 integer, intent(in) :: NEQ, gamma funct
758 real (kind=ikind), intent(in) :: r(NEQ), l(NEQ), N(NEQ)
759 real (kind=ikind), intent(in) :: C 0, xi, C p, C eq, temp, gamma s, gamma e, V, &
760 gamma stop, r stop, r start
761 real (kind=ikind), intent(out) :: C e(NEQ), C s(NEQ)
762 real (kind=ikind), intent(out) :: C m
763 integer, intent(out) :: index
764

765 !Local Variables
766 real(kind=ikind), parameter :: k = 1.380648813D−23 !Boltzmann constant [J/K]
767 real (kind=ikind), parameter :: pi = 3.1415926535897932384626433
768 real (kind=ikind) :: r temp(NEQ), l temp(NEQ), N temp(NEQ), f p, d gamma, &
769 gamma e r(NEQ)
770 integer :: a, count, allstat, i
771

772 r temp = r
773 l temp = l
774 N temp = N
775

776 !Checking if classes has dissapeared
777 where (l temp<1.5D−10 .or. r temp<1.5D−10)
778 N temp = 0
779 r temp = 0
780 l temp = 0
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781 end where
782

783 !Sorting algorithm to move all zeros to end of array
784 count = 1
785

786 do a = 1,size(N temp)
787 if (N temp(a) /= 0) then
788

789 N temp(count) = N temp(a)
790 r temp(count) = r temp(a)
791 l temp(count) = l temp(a)
792 count = count + 1
793

794 end if
795 end do
796

797 do while (count <= size(N temp))
798 N temp(count) = 0
799 r temp(count) = 0
800 l temp(count) = 0
801 count = count + 1
802 end do
803

804 index = findloc(N temp, VALUE = 0., DIM = 1) − 1
805

806 if (index > 1 .and. index < NEQ) then
807

808 !Calculate conc. at interfaces to check that they are within legal limits
809 C e(1:index) = C eq∗exp((2∗gamma s∗V)/(r temp(1:index)∗C p∗k∗temp)) !Gibbs−

Thomson effect interfacial concentration at ends
810

811 do i = 1,index
812

813 if (gamma funct == 1) then
814

815 !Gamma end(R)
816 gamma e r = gamma s + 0.5∗(gamma stop−gamma s)∗ &
817 (1+tanh(((gamma stop−gamma s)∗ &
818 (r temp(i)−0.5∗r stop−0.5∗r start))/ &
819 (0.3∗(r stop−r start))))
820
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821 !dgamma end/dR
822 d gamma = −(1.66667∗(gamma s − gamma stop)∗∗2∗ &
823 (1/(cosh((3.33333∗(−gamma s + gamma stop)∗ &
824 (−0.5∗r start − 0.5∗r stop + r temp(i)))/ &
825 (−r start + r stop))∗∗2)))/(r start − r stop)
826

827 !Gibbs−Thomson effect interfacial concentration at side
828 C s(i) = C eq∗exp(((gamma s+2∗(r temp(i)/l temp(i))∗gamma e r(i)+ &
829 ((r temp(i)∗∗2)/l temp(i))∗d gamma)∗V)/(r temp(i)∗C p∗k∗temp))
830

831 else
832

833 !Gibbs−Thomson effect interfacial concentration at side
834 C s(i) = C eq∗exp(((gamma s+2∗(r temp(i)/l temp(i))∗gamma e)∗V)/ &
835 (r temp(i)∗C p∗k∗temp))
836

837 end if
838

839 end do
840

841 !Calculate C m to check that it is within legal limits
842 f p = pi∗sum(N temp(1:index)∗(r temp(1:index)∗∗2)∗l temp(1:index))
843 C m = (C 0−xi∗f p∗C p)/(1−xi∗f p)
844

845 else
846

847 !Calculate conc. at interfaces to check that they are within legal limits
848 C e(1:NEQ) = C eq∗exp((2∗gamma s∗V)/(r temp(1:NEQ)∗C p∗k∗temp)) !Gibbs−Thomson

effect interfacial concentration at ends
849

850 do i = 1,NEQ
851

852 if (gamma funct == 1) then
853

854 !Gamma end(R)
855 gamma e r = gamma s + 0.5∗(gamma stop−gamma s)∗ &
856 (1+tanh(((gamma stop−gamma s)∗ &
857 (r temp(i)−0.5∗r stop−0.5∗r start))/ &
858 (0.3∗(r stop−r start))))
859

860 !dgamma end/dR
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861 d gamma = −(1.66667∗(gamma s − gamma stop)∗∗2∗ &
862 (1/(cosh((3.33333∗(−gamma s + gamma stop)∗ &
863 (−0.5∗r start − 0.5∗r stop + r temp(i)))/ &
864 (−r start + r stop))∗∗2)))/(r start − r stop)
865

866 !Gibbs−Thomson effect interfacial concentration at side
867 C s(i) = C eq∗exp(((gamma s+2∗(r temp(i)/l temp(i))∗gamma e r(i)+ &
868 ((r temp(i)∗∗2)/l temp(i))∗d gamma)∗V)/(r temp(i)∗C p∗k∗temp))
869

870 else
871

872 !Gibbs−Thomson effect interfacial concentration at side
873 C s(i) = C eq∗exp(((gamma s+2∗(r temp(i)/l temp(i))∗gamma e)∗V)/ &
874 (r temp(i)∗C p∗k∗temp))
875

876 end if
877

878 end do
879

880 !Calculate C m to check that it is within legal limits
881 f p = pi∗sum(N temp(1:NEQ)∗(r temp(1:NEQ)∗∗2)∗l temp(1:NEQ)) !Precipitate volume

fraction
882 C m = (C 0−xi∗f p∗C p)/(1−xi∗f p)
883

884 index = NEQ
885

886 end if
887

888 end subroutine sort calc
889 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
890

891 !Kernel density estimation for both 1D and 2D
892 subroutine kde(index, r, mean r, l, mean l, N, N tot, phi, phi r, phi l, r dist, l dist)
893 implicit none
894 !Declaration of variables
895 integer, parameter :: ikind=selected real kind(p=15) !15digit precision(6 is default)
896 integer, parameter :: idist = 600
897 real (kind=ikind), parameter :: pi = 3.1415926535897932384626433
898 integer, intent(in) :: index
899 real (kind=ikind), intent(in) :: r(index), l(index), N(index), mean r, mean l, N tot
900 real (kind=ikind), intent(out) :: phi(idist,idist), phi r(idist), phi l(idist), r dist(idist), l dist(
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idist)
901 !Local variables
902 real (kind=ikind) :: sigma r, sigma l, hr, hl, rmax, lmax
903 integer :: i, j, k
904

905 rmax = maxval(r)
906 lmax = maxval(l)
907

908 !Calculating the std for r and l
909 sigma r = sqrt((sum(N∗(r−mean r)∗∗2)/(N tot−1.)))
910 sigma l = sqrt((sum(N∗(l−mean l)∗∗2)/(N tot−1.)))
911

912 !Calculating steps size h for kde
913 hr = sigma r∗index∗∗(−0.2)
914 hl = sigma l∗index∗∗(−0.2)
915

916 !1D kde for r and l
917 do i = 1,idist
918

919 r dist(i) = (rmax+3.∗sigma r)∗(i−1)/(idist−1)
920 l dist(i) = (lmax+3.∗sigma l)∗(i−1)/(idist−1)
921

922 phi r(i) = sum((N/(hr∗sqrt(2∗pi)))∗exp(−0.5∗((r dist(i)−r)/hr)∗∗2))
923 phi l(i) = sum((N/(hl∗sqrt(2∗pi)))∗exp(−0.5∗((l dist(i)−l)/hl)∗∗2))
924

925 end do
926

927 !2D kde for r and l
928 do j = 1,idist
929

930 do k = 1,idist
931

932 phi(k,j) = sum((N/(hr∗hl∗2∗pi))∗exp(−0.5∗((l dist(k)−l)/hl)∗∗2− &
933 0.5∗((r dist(j)−r)/hr)∗∗2))
934

935 end do
936

937 end do
938

939

940 end subroutine kde
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941 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
942

943 subroutine I disc side side0fit(y,I side side0) !subroutine for finding I end end0 values for asp
< 1

944 implicit none
945 !Declaration of variables
946 integer, parameter :: ikind=selected real kind(p=15) !15digit precision(6 is default)
947 real (kind=ikind), intent(inout) :: y
948 real (kind=ikind), intent(out) :: I side side0
949 !Local variables
950 real (kind=ikind) :: p1, p2, p3, p4, p5, q1, q2, q3, q4, x
951

952 !curvefit based on inversed aspect ratio
953 x = 1./y
954

955 !Fitting equation coefficients
956 p1 = −16.7103
957 p2 = −5.6667e+03
958 p3 = −4.4500e+04
959 p4 = 1.5558e+05
960 p5 = 8.0314e+04
961 q1 = 360.2312
962 q2 = 3.5066e+03
963 q3 = −9.9724e+03
964 q4 = −1.0834e+04
965

966 ! NB! only valid for aspect ratio 1 − 1/100
967 I side side0 = −(p1∗x∗∗4 + p2∗x∗∗3 + p3∗x∗∗2 + p4∗x + p5)/(x∗∗4 + q1∗x∗∗3 + q2∗x∗∗2 +

q3∗x + q4)
968 end subroutine I disc side side0fit
969 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
970

971 subroutine I disc side end0fit(y,I side end0) !subroutine for finding I end end0 values for asp <

1
972 implicit none
973 !Declaration of variables
974 integer, parameter :: ikind=selected real kind(p=15) !15digit precision(6 is default)
975 real (kind=ikind), intent(inout) :: y
976 real (kind=ikind), intent(out) :: I side end0
977 !Local variables
978 real (kind=ikind) :: p1, p2, p3, q1, x
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979

980 !curvefit based on inversed aspect ratio
981 x = 1./y
982

983 !Fitting equation coefficients
984 p1 = −1.0498e−04
985 p2 = 16.5676
986 p3 = 6.1457
987 q1 = 0.0832
988

989 ! NB! only valid for aspect ratio 1 − 1/100
990 I side end0 = −(p1∗x∗∗2 + p2∗x + p3)/(x + q1)
991 end subroutine I disc side end0fit
992 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
993

994 subroutine I disc end side0fit(y,I end side0) !subroutine for finding I end end0 values for asp <

1
995 implicit none
996 !Declaration of variables
997 integer, parameter :: ikind=selected real kind(p=15) !15digit precision(6 is default)
998 real (kind=ikind), intent(in) :: y
999 real (kind=ikind), intent(out) :: I end side0

1000 !Local variables
1001 real (kind=ikind) :: p1, p2, p3, p4, p5, p6, q1, q2, q3, q4, x
1002

1003 !curvefit based on inversed aspect ratio
1004 x = 1./y
1005

1006 !Fitting equation coefficients
1007 p1 = 9.4596e−04
1008 p2 = 23.7154
1009 p3 = 580.3917
1010 p4 = −2.6179e+03
1011 p5 = 1.0822e+03
1012 p6 = 4.9366e+03
1013 q1 = 28.5534
1014 q2 = −103.3915
1015 q3 = −64.8390
1016 q4 = 394.2475
1017

1018 ! NB! only valid for aspect ratio 1 − 1/100
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1019 I end side0 = −(p1∗x∗∗5 + p2∗x∗∗4 + p3∗x∗∗3 + p4∗x∗∗2 + p5∗x + p6)/(x∗∗4 + q1∗x∗∗3 +
q2∗x∗∗2 + q3∗x + q4)

1020 end subroutine I disc end side0fit
1021 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1022

1023 subroutine I disc end end0fit(y,I end end0) !subroutine for finding I end end0 values for asp <

1
1024 implicit none
1025 !Declaration of variables
1026 integer, parameter :: ikind=selected real kind(p=15) !15digit precision(6 is default)
1027 real (kind=ikind), intent(in) :: y
1028 real (kind=ikind), intent(out) :: I end end0
1029 !Local variables
1030 real (kind=ikind) :: p1, p2, p3, p4, p5, p6, q1, q2, q3, q4, x
1031

1032 !curvefit based on inversed aspect ratio
1033 x = 1./y
1034

1035 !Fitting equation coefficients
1036 p1 = −3.1704e−04
1037 p2 = −16.1876
1038 p3 = −422.8250
1039 p4 = 1.9161e+03
1040 p5 = −984.1365
1041 p6 = −3.0602e+03
1042 q1 = 29.6572
1043 q2 = −109.8029
1044 q3 = −45.5430
1045 q4 = 360.2118
1046

1047 ! NB! only valid for aspect ratio 1 − 1/100
1048 I end end0 = −(p1∗x∗∗5 + p2∗x∗∗4 + p3∗x∗∗3 + p4∗x∗∗2 + p5∗x + p6)/(x∗∗4 + q1∗x∗∗3 +

q2∗x∗∗2 + q3∗x + q4)
1049 end subroutine I disc end end0fit
1050 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1051

1052 subroutine I end end0fit(x,I end end0) !subroutine for finding I end end0 values for asp > 1
1053 implicit none
1054 !Declaration of variables
1055 integer, parameter :: ikind=selected real kind(p=15) !15digit precision(6 is default)
1056 real (kind=ikind), intent(in) :: x
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1057 real (kind=ikind), intent(out) :: I end end0
1058 !Local variables
1059 real (kind=ikind) :: p1, p2, p3, p4, p5, q1, q2, q3
1060

1061 !Fitting equation coefficients
1062 p1 = 0.07117
1063 p2 = −27.1158
1064 p3 = −3.7298e+04
1065 p4 = −3.0131e+05
1066 p5 = −1.0421e+05
1067 q1 = 2.9140e+03
1068 q2 = 2.5590e+04
1069 q3 = 1.2121e+04
1070

1071 ! NB! only valid for aspect ratios 1−100
1072 I end end0 = −(p1∗x∗∗4 + p2∗x∗∗3 + p3∗x∗∗2 + p4∗x + p5)/(x∗∗3 + q1∗x∗∗2 + q2∗x + q3)
1073 end subroutine I end end0fit
1074 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1075

1076 subroutine I end side0fit(x,I end side0) !subroutine for finding I end side0 values for asp > 1
1077 implicit none
1078 !Declaration of variables
1079 integer, parameter :: ikind=selected real kind(p=15) !15digit precision(6 is default)
1080 real (kind=ikind), intent(in) :: x
1081 real (kind=ikind), intent(out) :: I end side0
1082 !Local variables
1083 real (kind=ikind) :: p1, p2, p3, p4, q1, q2
1084

1085 !Fitting equation coefficients
1086 p1 = 4.2618e−05
1087 p2 = 15.9496
1088 p3 = 266.1683
1089 p4 = 17.0092
1090 q1 = 16.6917
1091 q2 = 1.3963
1092

1093 ! NB! only valid for aspect ratios 1−100
1094 I end side0 = −(p1∗x∗∗3 + p2∗x∗∗2 + p3∗x + p4)/(x∗∗2 + q1∗x + q2)
1095 end subroutine I end side0fit
1096 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1097
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1098 subroutine I side side0fit(x,I side side0) !subroutine for finding I side side0 values for asp > 1
1099 implicit none
1100 !Declaration of variables
1101 integer, parameter :: ikind=selected real kind(p=15) !15digit precision(6 is default)
1102 real (kind=ikind), intent(in) :: x
1103 real (kind=ikind), intent(out) :: I side side0
1104 !Local variables
1105 real (kind=ikind) :: p1, p2, p3, p4, p5, q1, q2
1106

1107 !Fitting equation coefficients
1108 p1 = 3.0154e−05
1109 p2 = −0.005534
1110 p3 = −12.8684
1111 p4 = −81.3180
1112 p5 = −20.7693
1113 q1 = 6.9381
1114 q2 = 2.5473
1115

1116 ! NB! only valid for aspect ratios 1−100
1117 I side side0 = −(p1∗x∗∗4 + p2∗x∗∗3 + p3∗x∗∗2 + p4∗x + p5)/(x∗∗2 + q1∗x + q2)
1118 end subroutine I side side0fit
1119 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1120

1121 subroutine I side end0fit(x,I side end0) !subroutine for finding I side end0 values for asp > 1
1122 implicit none
1123 !Declaration of variables
1124 integer, parameter :: ikind=selected real kind(p=15) !15digit precision(6 is default)
1125 real (kind=ikind), intent(in) :: x
1126 real (kind=ikind), intent(out) :: I side end0
1127 !Local variables
1128 real (kind=ikind) :: p1, p2, p3, p4, p5, p6, q1, q2
1129

1130 !Fitting equation coefficients
1131 p1 = 1.6259e−05
1132 p2 = −0.004801
1133 p3 = 2.5067
1134 p4 = 83.9911
1135 p5 = 379.6569
1136 p6 = 170.6609
1137 q1 = 14.7673
1138 q2 = 14.6144
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A. Fortran Code

1139

1140 ! NB! only valid for aspect ratios 1−100
1141 I side end0 = −(p1∗x∗∗5 + p2∗x∗∗4 + p3∗x∗∗3 + p4∗x∗∗2 + p5∗x + p6)/(x∗∗2 + q1∗x + q2)
1142 end subroutine I side end0fit
1143 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1144

1145 !If supplying jacobi directly. Not relevant here, only dummy subroutine
1146 SUBROUTINE JEX (NEQ, T, Y, ML, MU, PD, NRPD, RPAR, IPAR)
1147 DOUBLE PRECISION PD, RPAR, T, Y
1148 DIMENSION Y(NEQ), PD(NRPD,NEQ)
1149

1150 ! PD(1,1) = −.04D0
1151 ! PD(1,2) = 1.D4∗Y(3)
1152 ! PD(1,3) = 1.D4∗Y(2)
1153 ! PD(2,1) = .04D0
1154 ! PD(2,3) = −PD(1,3)
1155 ! PD(3,2) = 6.D7∗Y(2)
1156 ! PD(2,2) = −PD(1,2) − PD(3,2)
1157

1158 end
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