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Abstract

Under certain circumstances, acoustic measurements are remarkably challenging because
there isn’t a practical way for a measurement system to perform reproduction and acqui-
sition simultaneously (for example, when measuring the transmission loss between two
rooms). A solution to this problem is the use of distributed acoustic acquisition, in which
several nodes communicate wirelessly and assume either playback or acquisition tasks.

The following report describes a prototype of such a measurement system, which relies
on a Raspberry Pi as processing unit, LoRa transceivers for wireless synchronization, a
high-quality audio codec for conversion between the analog and the digital domains, and
a custom printed circuit board to provide an analog front-end for microphone polarization
and signal amplification. The prototype focused on the measurement of impulse responses
using the swept-sine technique, which allows the measurement of impulse responses with
a high SNR while not requiring a tight synchronization between the clocks involved in
playback and acquisition.

At a lower cost and reduced size, the implemented prototype showed audio quality com-
parable to that of a measurement system composed of a commercial USB sound card and
a laptop computer. Node synchronization proved to be limited, as the lack of precision
restricted the use of the prototype to measurement scenarios in which sample-accurate
acquisition is not a requirement. Overall, the prototype offers a base platform that can
be further improved, and that opens the door for the implementation of a wide variety of
acoustic measurements using a low-cost but capable platform.
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Chapter 1
Introduction

Perhaps one of the fundamental measurements in acoustics is the measurement of im-
pulse responses (IR), as they provide a vast amount of information about acoustic systems.
The characterization of a loudspeaker, the measurement of frequency-dependent insulation
against noise between rooms, or even the use of Room Impulse Responses (RIR) to detect
modes at low frequencies, denotes how useful it can be for a measurement system to im-
plement IR acquisition and analysis.

Nevertheless, a challenge commonly faced when conducting acoustic measurements is the
use of equipment that is either inflexible or very expensive. Something true even for rela-
tively straight forward measurements as most measurement systems rely on a single device
to handle both playback and acquisition of test signals, for example, a personal computer
with an audio interface connected to microphones and loudspeakers (see Fig.1.1).

Figure 1.1: Schematic diagram of a non-distributed measurement system.
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Chapter 1. Introduction

With more complex measurement scenarios such as outdoor sound propagation experi-
ments, the situation becomes even more challenging as having a wired connection between
the electroacoustic transducers and the device handling signal playback and acquisition be-
comes physically impossible due to the distance between source and receiver. Something
that also occurs in other scenarios such as the measurement of the acoustical parameters
of a room partition where source and receiver must be physically separated to perform an
adequate measurement (see Fig.1.2 and Fig.1.3).

Figure 1.2: Usage scenario of a distributed measurement system (Complex sound propagation ex-
periments such as measurements inside a cave).

Therefore, the design of a measurement system that somehow allows for distributed acqui-
sition and playback presents an intriguing research opportunity if it’s possible to keep it
low cost and flexible. The latter meaning that the system is open for further development
and doesn’t rely on proprietary software to perform any of its related tasks (signal acqui-
sition, processing, etc.).

The following report presents a prototype of such a system that builds upon the work done
for a specialization project titled ”Distributed acoustic acquisition with low-cost embedded
systems” [1], which relies on the Raspberry Pi platform and the use of LoRa technology
to provide wireless synchronization between the nodes.
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1.1 Background

Figure 1.3: Usage scenario of a distributed measurement system (Partition).

1.1 Background

1.1.1 Impulse response measurement techniques

One of the most common tasks associated with acoustics is the measurement of transfer
functions. It is a common task because it gives acousticians a tool to characterize a wide
variety of systems that can range from rooms to loudspeakers and amplifiers. It has a such
a broad span of applications in fields such as electroacoustics, room acoustics and build-
ing acoustics, that as early as 1967 researchers have proposed measurement techniques
[2]. Up until the late 1990s, the most commonly used measurement techniques to ob-
tain an impulse response (and its associated transfer function) were a technique known as
Time-Delay Spectrometry (TDS) and a technique based on the use of Maximum Length
Sequences (MLS).

The main issue with these methods is that they relied on the assumption that the measured
system was perfectly linear and time-invariant. The use of Maximum Length Sequences
was particularly troublesome as it also required a tight synchronization between the exci-
tation signal and the digital sampler used to record the system’s response [3]. Something
that limited the use of distributed audio acquisition to obtain impulse responses.

These shortcomings led to the development of a technique known as the swept-sine tech-
nique, which not only solved the issues but also improved other features such as the signal
to noise ratio (SNR) of the measurement [3]. In this technique, the system (with its as-
sociated time-domain and frequency-domain effects) is modeled as a single-input single-
output black box with some added noise to the output of the system. By simultaneously
feeding the system with an excitation signal and capturing the output of the system, it is
possible to use a deconvolution process to obtain the impulse response of the system. Ad-
ditionally, if the excitation signal has a particular frequency-dependent temporal envelope,
it is also feasible to derive a series of impulse responses (separated in time) corresponding
to the linear response of the system and the different orders of harmonic distortion.

3



Chapter 1. Introduction

Last but not least, given that it’s not a requirement to have a strict synchronization be-
tween the generation of the excitation signal and the device doing the digital sampling of
the output of the system, the technique opened the possibility to use a measurement device
composed by distributed nodes. In this case, each node handles a specific task (i.e., play-
back of the excitation signal or acquisition of the output of the system).

Nevertheless, the technique is not one without any issues. Therefore, since its proposal,
work has been done to identify and solve many of its weaknesses [4][5]. A particular
shortcoming in distributed acquisition systems relates to the skewing of the measured im-
pulse responses when the playback clock and the recording clock are mismatched.

If the mismatch between the clocks is high enough, or if there is a small mismatch, but the
duration of the excitation signal is long enough, the obtained impulse response will have a
sloped (skewed) appearance when analyzed using a spectrogram [5].

An approach to diminish this problem consists in performing a reference measurement of
the system’s impulse response in a loop-back configuration, and then using the Kirkeby
algorithm to compute an inverse filter. This inverse filter is then used to remedy the effects
of the clock mismatch in impulse responses measured with the distributed system [5]. The
main limitation of this approach is that it assumes that the clock mismatch between clocks
is time-invariant, and should this assumption not the true, the inverse filter might create
more issues than it solves.

One final comment concerning the swept-sine technique relates to its versatility. Consider
measuring impulse responses in rooms where some form of stationary noise is present (for
example, the acoustic noise coming from an air conditioner). The noise spectrum will
have a particular shape, which means that when measuring the impulse response of the
room, the signal to noise ratio (SNR) of the measurement will vary significantly between
frequency bands.

By using a recursive method, it is possible to shape the measurement signal, adapting it
to not only the background noise spectrum but also to the recursively estimated transfer
function of the system itself. A technique known as constant-SNR swept-sine (CSN-SS)
which results in a constant SNR independent of frequency over the target frequency band
[6][7].

1.1.2 Practical approaches to acoustic measurements
There are several ways to do an acoustic measurement, but more often than not, an acoustic
measurement system considers only two approaches. On the one hand, there are measure-
ment systems based on a computer which runs specially made software to provide control
of a sound card, and the required signal processing. And on the other hand, there are
those measurement systems that use dedicated hardware and software for the generation,
acquisition, and processing of acoustic data. Which approach is better suited for a specific
application depends on aspects such as flexibility, cost, portability, and accuracy.
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1.1 Background

The first approach can be considered low-cost and perhaps more flexible. It is low-cost
because it is possible to use generic/consumer hardware, and the market price is driven
mostly by the software used to control the acquisition process and the signal processing.
And it is flexible as any general-purpose computer and external sound card can be used as
hardware front-end for the system. These two advantages come at the expense of having a
measurement system that might not produce the same results when using different sound
cards, resulting in a decrease of precision. Besides, a system like this might not be suit-
able for distributed acoustic acquisition unless two computers are available and wirelessly
synchronized, increasing cost and decreasing portability.

Examples of commercial solutions are EASERA (Electronic and Acoustic System Evalu-
ation and Response Analysis), manufactured by AFMG Technologies GmbH, and Dirac,
manufactured by Acoustics Engineering and commercialized by Brüel & Kjær. These
tools provide the conventional measurements associated with room acoustic parameters
such as EDT, T30, D50, C80, STI, and in most cases, rely on the use of the swept-sine
technique. Furthermore, the user is free to use any computer and sound card as long as
there are appropriate drivers to control the sound card. Finally, the signal processing ful-
fills the specifications of international standards such as ISO 3382 (Measurement of room
acoustic parameters) and ISO 18233 (Application of new measurement methods in build-
ing and room acoustics) [8][9].

It is worth mentioning that a measurement system based on a general-purpose computer
and external sound card does not require the use of commercial acoustics software. A full-
fledged system can be implemented using either proprietary programming languages such
as MATLAB, a permissive free programming language such as Python, or a standardized
programming language such as C. This ultimately means that the measurement system can
be continuously developed to fit the needs of the user.

The second approach considers a system designed strictly for acoustic measurements,
meaning that the manufacturer establishes hardware and software interrelationships, al-
lowing a tight integration between the application layer and the system layer, which leads
to a much more accurate and precise measurement system. It also allows the manufacturer
to have full control of the features and characteristics of the system. The main disadvan-
tage of this type of system (at least to the end-user) is its high cost and its lack of flexibility
when it comes to giving the end-user a system they can modify or adapt to measurement
scenarios.

A wide variety of manufacturers offer this type of measurement solutions with different
capabilities and at different price ranges. For instance, Norsonic offers a multichannel
system (Nor850) capable of connecting a configurable number of individual measurement
units to do simultaneous measurements. An approach that relies on either a Local Area
Network (LAN) interface or a router attached to the LAN connector. Composed of a rack
that contains up to 10 measurement channels, the system can even configure some chan-
nels as signal generator outputs [10].
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Alternatively, Brüel & Kjær has proposed a modular analyzer platform (LAN-XI Data Ac-
quisition Hardware) that provides users with a front end for channels and portable systems
[11]. The basic idea behind the system is to distribute each module of the system close
to the test object to keep transducer cables short, thus avoiding noise. The connection
between modules can be accomplished either by the LAN interface or wirelessly using a
so-called Wireless LAN Frame. Other manufacturers such as 01dB have even integrated
built-in 3G modems to provide control features and automatic transmission of data to re-
mote servers.

1.2 Scope of work
Considering the advantages and disadvantages of each measurement approach, the possi-
bility of designing a measurement system that lies somewhere in between constitutes an
appealing research topic. Such a measurement system must be low-cost and must be ca-
pable of doing signal acquisition and generation in a distributed way. Finally, the system
should be flexible enough to allow further development according to the needs of the end-
user. The main objective of the work presented in this report is to evaluate the possibility
of such a measurement system. To this end, it is necessary to determine the functional and
non-functional requirements of the design, and then, propose a system’s architecture and
implement a prototype of the system, and finally, perform some measurements to evaluate
the capabilities of the system.

As mentioned before, the work presented in this report builds upon the academic work
done during a specialization project titled ”Distributed acoustic acquisition with low-cost
embedded systems”[1]. In this specialization project, some technical decisions were made
related to the specifications and architecture of the measurement system. The system was
partially implemented, but several hardware components and software features were put
aside due to the time constraints associated with the project. This report presents a full de-
scription of the measurement system and describes the entire design and implementation
process. The main objective of this work is to serve as a first step towards an open acous-
tic measurement platform, which ideally is flexible enough to allow further development
adjusting to the needs of the user.

1.3 Outline of Report
Chapter 2 describes the system from an embedded system’s point of view. It presents
the prototype design methodology (i.e., components of the system, how they interact and
communicate with each other, and the reasons behind their selection). Critical aspects of
the system such as signal acquisition and conditioning, impulse response calculation, and
node synchronization, are also described in this chapter. Chapter 3 covers the implemen-
tation of the system with the selected components with a focus on hardware and software
design. And given that a critical aspect of the system is its distributed acquisition capabil-
ities, both the stand-alone and the distributed modes of operation are explained. Chapter
4 deals with an evaluation of the measurement system related to its audio quality and its
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overall performance. Chapter 5 delves on the obtained results, the shortcomings, and the
possible improvements to the system. And finally, Chapter 6 concludes the work presented
and offers some insights into future work.
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Chapter 2
Specification of the Measurement
System

Given that the project involves the design and implementation of a physical product, it is
useful to divide the development work into distinct phases. This allows the designer to go
from a high-level view to a low-level view of the system, where it’s easier to identify the
specific units that the system requires to operate according to its specification.

This chapter presents a brief description of each of the phases considered in the design
of the measurement system. First, a general specification of the system is presented in
the form of functional and non-functional requirements. Second, the systems architecture
is synthesized through a block diagram. Third, each of the components of the system’s
architecture is described. And finally, considering the scope of the measurement system,
impulse response calculation and node synchronization are thoroughly described.

2.1 Functional and non-functional requirements

A critical part of the development process is the definition of the specification of the sys-
tem. If this is not clear from the start, mistakes will happen when going from the high-level
view to the low-level view of the system. Therefore, a common approach to determine the
specification of the measurement system consists of analyzing the needs of the user to
describe aspects related to the system’s functionalities, interface, and performance. This
process concludes with the statement of what is known as functional and non-functional
requirements.

In simple terms, functional requirements describe what the system should do, while non-
functional requirements place constraints on how the system will do so. An example of a
functional requirement is:

9
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• The system must send a message whenever a certain condition is met (e.g., the
temperature rises above 10 degrees Celsius).

A related non-functional requirement for the system may be:

• Messages should be sent with a latency no greater than 30 minutes after such an
activity.

The functional requirements describe the behavior of the system, while the non-functional
requirement elaborates on a performance characteristic of the system. This means that
non-functional requirements fall into areas such as response time, efficiency, fault toler-
ance, reliability, quality, etc.

The following list of system requirements comes from discussions with the project su-
pervisor regarding some of the issues faced by the NTNU’s Acoustics Group when using
PC-based Measurement Systems in uncommon measurement scenarios.

2.1.1 Functional requirements
• The measurement system must be composed by at least two nodes which must be

able to interact with each other wirelessly through the use of simple messages. One
of these nodes must act as a master node while the other must act as a slave node.
Only the master node can initiate a measurement.

• The nodes that compose the system must have playback and audio acquisition ca-
pabilities to ensure that each node can operate in a stand-alone mode.

• The system must be low-cost when compared to other commercial systems.

• The measurement system must have enough processing capabilities to allow some
basic post-processing on the obtained signals.

• The system must have enough memory to store a significant amount of impulse
responses (more than one thousand).

• The system must allow the extraction of data for further processing and analysis in
another system, using a removable memory.

• The system must allow the use of condenser microphones, implying that a polariza-
tion power supply must be part of the system.

• The measurement system must be portable and more energy efficient when com-
pared to a measurement system that relies on a laptop computer.

2.1.2 Non-functional requirements
• The communication protocol for the nodes should include a header which identifies

both the sender and the recipient of the message. And it should also include an
identifier of the payload of the message.

• The timeout time it takes for a node to send two sequential messages should be less
than two seconds, to ensure the system’s responsiveness.

10



2.2 System’s Architecture

• The wireless communication between nodes should at least support distances of 50
meters in Non-line-of-sight propagation conditions.

• Audio I/O should provide a way to control parameters such as throughput and la-
tency, sampling frequency and bit depth. This taking into consideration the possible
trade off required for the system to work properly.

• The code produced for data analysis should not rely on a proprietary environment
or programming language.

• Audio I/O should at least have the capability to use a sampling frequency of 44.1
kHz and a bit depth of 16 bits.

• Data extraction from the measurement system should be in the form of Waveform
Audio File Format (.WAV) files.

• When possible, the measurement system should use readily available hardware, and
custom hardware should only be developed when nothing suitable is available off
the shelf.

2.2 System’s Architecture
From a design point of view, an embedded system can be described at different levels of
abstraction. Which level of abstraction is useful depends a lot on the application and what
the designer needs to see to implement the system.

For instance, if one is designing a pure hardware accelerator, it might be useful to describe
the system at the register level in which the system’s building blocks are multiplexers,
decoders, arithmetic logic units (ALUs), registers, counters, etc. But, if the desired em-
bedded system involves a complex interaction between hardware and software, a system’s
level view (the highest abstraction level) might be more useful. It allows the designer to
think in terms of processors/MCUs, memory modules, control modules, and network in-
terfaces, while also considering the different boundaries between application and system
[12].

Since the design problem associated with the acoustic measurement system includes among
others the interaction between software and hardware, and the different interrelationships
between modules (i.e., interfaces, audio I/O, processors, etc.), the best way to describe the
system is by using a system’s level view.

A simple block diagram can describe with sufficient detail the different components of the
system and how they relate and interconnect (see Fig.2.1).

One relevant question that comes to mind when analyzing the block diagram in Fig.2.1,
is why each node has playback and recording capabilities. To have an Analog-to-Digital
Converter (ADC) and a Digital-to-Analog Converter (DAC) increases the cost and com-
plexity of the system. And in most distributed measurement scenarios, it is expected to
use a node as either a playback node or as an acquisition node.
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Figure 2.1: System’s Architecture - Single node.

The reason is that not much complexity is added to the system (by having both the ADC
and the DAC), and a lot is gained since each node can now also operate in a stand-alone
mode. The proposed system could then consider applications related to the principle of
acoustic reciprocity, or serve as a cheaper alternative to using a computer and an external
sound card in regular measurement scenarios.

2.2.1 Processing unit

A critical part of the embedded design process is the selection of the processor. As the
brains of the system, the processor not only executes the sequence of instructions stored in
the computer’s program memory, but it also controls all other components of the system.
When selecting the processor, it’s necessary to consider the purpose and specification of
the system, and also the conditions under which the system will operate.

For instance, in scenarios in which energy efficiency is a fundamental feature, the designer
may choose a simple Micro Controller Unit (MCU). It may lack processing power, but
it might allow the system to operate continuously for months with just a small battery.
The designer may also choose a full-fledged System-on-Chip (SoC) that would provide
a higher level of processing power while also integrating all the usual components of a
computer such as CPU, memory, and I/O ports (See Table 2.1).

Depending on the application, the designer could even choose to use a Digital Signal
Processor (DSP) with its specific instruction set architecture optimized for digital signal
processing. Or design a system from scratch based on a hybrid platform that incorpo-
rates the flexibility of a Field Programmable Gate Array (FPGA) with the simplicity of a
general-purpose processor.

12
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Without any doubt, a significant amount of time in the development process goes into de-
sign space exploration, in which the viability of each approach is evaluated. Nevertheless,
given that the prime focus of this research is to test a concept (i.e., the feasibility of low-
cost distributed acoustic acquisition), the selection of the processing unit was limited to
platforms that would allow rapid prototyping.

The selection of the processing unit was limited to Micro Controller Units (MCUs) or
System-On-Chips (SoCs). The remaining issue is that even by limiting the selection of
a processing unit to MCUs and SoCs, there are still too many possibilities to consider.
Manufacturers such as NXP Semiconductors, Texas Instruments, Silicon Labs, or ST Mi-
croelectronics offer a broad range of products that vary in cost, power, capabilities, etc. So
how should the designer choose the appropriate option?

In most cases, the decision to use one product over another ultimately comes from the pre-
vious experience that the designer has. The more familiar the designer is with a platform,
the easier it is to make progress in a shorter amount of time. Something that is critical
when doing rapid prototyping.

Additionally, another aspect that needs consideration is the so-called community support,
and the different Software Development Kits (SDKs) and Software Stacks that are avail-
able for a specific platform. One platform may very well be superior to another, but if
the time it takes to develop running code for that platform is much higher due to lack of
tools and community support, the development process will suffer and the amount of im-
plemented functionalities will be fewer than expected.

An example of this is the Sony Spresense single-board development kit. Equipped with
Sony chipsets CXD5602 & CXD5247, it features a multi-core microcontroller with high-
resolution audio playback and recording [13]. Such a platform would be appropriate for an
acoustic measurement system as it supports high-resolution audio out-of-the-box. Never-
theless, since the platform was released to market less than a year and a half ago, not many
projects have been implemented with it. And although the manufacturer has published
documentation, should problems arise when developing with the platform, not much sup-
port from the community will be available.

It is worth mentioning that of the five platforms considered, two correspond to systems
based on a System-on-Chip, and three correspond to systems based on a Micro Controller
Unit. The Tinker Board and the Raspberry Pi are the two systems based on a System-on-
Chip. They both have powerful processors with enough processing capabilities to function
as single board computers (SBC). They are complete computers built on a single circuit
board. The main benefit of this is the ability to use a Linux-based operating system and its
ALSA (Advanced Linux Sound Architecture) drivers to provide a low-level interface with
audio hardware. Therefore, reducing the amount of work necessary to have high-quality
audio acquisition and reproduction.
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STM32F7 Discovery SAM V71 Xplained Tinker Board Raspberry Pi 3 Spresence

Manufacturer STMicroelectronics Microchip Asus RPi Foundation Sony

Type Dev. Board Dev. Board SBC SBC Dev. Board

Processor STM32F7 SAM V71 Rockchip RK3288 Broadcom BCM2837 CXD5602

Core Type ARM Cortex-M7 ARM Cortex-M7 ARM Cortex-A17 ARM Cortex-A53 ARM Cortex-M4

Memory 128 MB (SRAM) 2 MB (SRAM) 2 GB (SRAM) 1 GB (SRAM) 1.5 MB (SRAM)

Audio Codec CL WM8994 CL WM8904 RTL ALC4040 Unspecified Unspecified

Audio Inputs 2 2 2 0 4

Audio Outputs 4 2 2 2 2

OS Type RTOS RTOS Linux-based Linux-based RTOS (NUTTX)

Support High Medium-High Low High Low

Price [EUR] 79 193 59 35 100

Table 2.1: Overview of considered platforms.

Nevertheless, the other platforms have good capabilities too. And even though these plat-
forms don’t use a Linux-based operating system, it is possible to use a real-time operating
system (RTOS) that ensures deadline determinism when executing tasks. This is a desir-
able feature as a tight control of timing and scheduling is convenient when dealing with
audio applications.

When it comes to community support and available software tools for development, the
reviewed platforms differ a lot. For instance, when considering the platforms based on
a Micro Controller Unit (MCU), the STM32F7 Discovery is superior to other options.
Mainly because ST Microelectronics has a large community of developers who have used
its products in a broad range of applications. On the other side of the spectrum is the Sony
Spresence board. A quick inspection of public forums related to development with the
platform indicates that as of today, not a lot of projects have been done outside of those
made by the manufacturer to show the capabilities of the board.

Something similar occurs when comparing the platforms based on System-on-Chips (SoC).
Even though the Tinker Board seems to have better specifications than the Raspberry Pi
3, the use of the platform doesn’t seem to be as widespread as one would expect. Without
any doubt, the Raspberry Pi is a platform that has attracted a lot of attention since its first
release in 2012. Not only that, but several product iterations have been introduced, making
it a platform that has evolved and improved with each iteration.

After a careful analysis of all possibilities, it was determined that the prototype of the mea-
surement system would use the Raspberry Pi as the development platform (see Fig.2.2).
Even though it doesn’t have an audio codec suitable for acoustic measurements, it’s a well-
supported platform for which exists not only a diverse amount of additional HW, but also
plenty of support when it comes to code, drivers, libraries, etc.

It also has enough processing resources to handle some relatively heavy tasks while main-
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Figure 2.2: Selected platform for measurement system - Raspberry Pi (actual size).

taining a small form factor, and most importantly, a low price. Finally, it allows the use
of a wide range of programming languages, some of which are suitable for rapid develop-
ment and prototyping. One shortcoming is that since the Raspberry Pi is a single-board
computer with relatively good processing capabilities, energy consumption is much higher
when compared to MCU-based platforms.

2.2.2 Audio I/O
The selection of the Raspberry Pi 3 as the base platform for the system has some imme-
diate consequences. Since audio I/O is limited to only two outputs, it is necessary to add
additional hardware to have acquisition capabilities. And just as with the selection of the
processing unit, it is advisable to review the different options available.

In most embedded applications, a device known as audio codec handles audio I/O. This de-
vice has the task of encoding analog signals as digital signals, and decoding digital signals
as analog signals. Essentially, the audio codec uses a clock signal to control an analog-to-
digital converter (ADC) and a digital-to-analog converter (DAC) to transform signals from
the analog domain to the digital domain and vice versa.

Digitizing of the analog signals is done by the ADC, which then sends the digitized signal
to a processing unit through the use of peripheral buses such as Inter-Integrated Circuit
(I2C), Inter-IC Sound (I2S), and Serial Peripheral Interface (SPI). Correspondingly, digital
signals sent from the processing unit are received and converted into analog signals by the
DAC.

With that said, there are two possibilities when it comes to audio I/O. The first possibility
is to design specific hardware for the application, which in this case would need to ful-
fill the specifications of the measurement system and also the specifications related to the
compatibility with the Raspberry Pi platform. Something that is a challenge in itself, and
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requires a fair amount of experience to ensure low-noise and high-quality audio. And the
second possibility is to use an available product which already complies with both require-
ments.

A ready-made audio I/O solution can range from external sound cards communicating to
the Raspberry Pi via USB ports, to something more suitable for the platform, such as the
so-called HATs (Hardware Attached on Top). Given that the Raspberry Pi has a standard-
ized GPIO (General-Purpose Input/Output) header, many manufacturers have designed
boards for specific applications, one of them being audio. Needless to say, an external
USB sound card defeats the purpose of the system (portability), so only solutions based
on HAT boards were analyzed (see Table 2.2).

Fe-Pi Audio V1 ReSpeaker 2-Mics pHAT PiSound HiFiBerry DAC+ADC

Manufacturer Fe-Pi Seeed Blokas Labs HiFiBerry

Outputs 2 2 2 2

Inputs 2 2 2 2

SNR of ADC[dB] 90 95 110 110

SNR of DAC [dB] 100 98 110 112

THD+N in ADC [dB] -72 -82 - -85

THD+N in DAC [dB] -85 -84 - -93

Max. Bit depth [bits] 24 24 24 24

Max. Sampling rate [kHz] 48 48 192 192

Price [EUR] 15 9.9 99 49

Table 2.2: Overview of considered audio I/O boards.

Something worth mentioning is that there is plenty of hardware solutions for audio I/O
currently offered for the Raspberry Platform. Some of them extremely low-cost, and some
of them with high-quality audio codecs. Price may range from 10 Euros to more than 100
Euros. There’s even the possibility to use an open-source hardware design, in which the
only cost associated with the hardware is the manufacturing of the printed circuit board
(PCB) and the components involved (e.g., capacitors, integrated circuits, etc.).

Nevertheless, one aspect that needs to be thoroughly considered is the availability and the
development status of the audio I/O solution. The use of obsolete or unsupported hardware
is a serious problem when designing a system.

Suppose, for example, that an open-source hardware solution is chosen. The hardware
employs a high-quality audio codec and works just as expected. But after a while, it is
necessary to update the operating system of the platform, and the open-source audio I/O
board stops working due to incompatibility with the new operating system. There would
be only two options to solve this problem. The first option would be to develop or upgrade
the firmware and drivers of the audio I/O hardware, something which takes significant
effort and time. And the second option, which would be to replace completely the audio
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I/O hardware, something which also takes time and more importantly money.

Figure 2.3: HifiBerry DAC+ADC on top of Raspberry Pi.

The HifiBerry DAC+ADC board was the optimal choice for the measurement system (see
Fig.2.3), as it offers high-quality audio by using an audio codec, which has the highest
signal-to-noise ratio (SNR) values of the considered boards [14][15]. It also has the lowest
amount of total harmonic distortion and noise (THD+N) of all other options, and it is
priced relatively low. And finally, the manufacturer can be considered reliable by offering
ongoing customer support (drivers have been continuously updated which each software
update of the Raspberry Pi).

2.2.3 Wireless Network Interface and Transceiver

Other than the audio I/O, a critical aspect of the measurement system is that it must have
the capability of performing distributed audio acquisition. The nodes that comprise the
system must use some form of wireless communication to share settings and synchronize
audio acquisition and reproduction.

How complex or capable the wireless interface needs to be, depends as always on the
specification of the system. For this particular application, the use of the wireless interface
would be mostly the synchronization between nodes. Something that doesn’t involve the
need for high data rates or even full-duplex communication between the nodes. Therefore,
there are several options worth considering.

The simplest option would be to use radio transceivers that operate on the 433 MHz band.
This is an ultra-high frequency (UHF) band which is available license-free for amateur ra-
dio communications often used in home automation applications such as garage openers,
or RF-based switchable sockets. Communication is achieved using frequency modulation
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covering the frequency range between 433.050 MHz to 434.790MHz. Given a channel
spacing of 25kHz, a total of 69 channels are available. Since it is an unlicensed band,
there are some restrictions when using the frequency band for data applications. These
mostly deal with the amount and periodicity of data transmission. With a maximum legal
power output of 10 mW, the distance range is below 40 meters, making it suitable only for
particular applications.

Perhaps a more appropriate technology would be Zigbee. Zigbee is an IEEE 802.15.4-
based specification for a suite of high-level communication protocols. It finds its use in
personal area networks in which small, low-power radios are a necessity, and it provides
most of the basic features a digital communication system requires (connectivity, range,
security). With a range that goes from 10 to 100 meters depending on line-of-sight condi-
tions, it even supports the encryption of data.

Another technology worth mentioning is LoRa. Based on spread spectrum modulation
techniques, it uses license-free frequency bands like 433 MHz and 868 MHz to enable
long-range data transmission with low power consumption. With good line-of-sight con-
ditions, it is possible to transmit as far as 10 kilometers, making it superior to other tech-
nologies such as Zigbee.

Figure 2.4: RFM9x LoRa Transceiver on top of Raspberry Pi with Hifiberry DAC+ADC.

From a software point of view, these technologies (i.e., Zigbee and LoRa) are similar in the
sense that for rapid prototyping, it is good enough to use previously developed libraries
to have communication between the processing unit and the microcontroller unit of the
transceiver. These libraries often provide the designer with an additional abstraction layer,
in such a way that controlling the hardware in the transceiver can be done with straight-
forward functions. Considering this, it was decided that transceivers based on LoRa were
a better choice for the implementation of the wireless network interface (see Fig.2.4).
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2.2.4 Other I/O
Since the Raspberry Pi was selected as a base platform, peripherals such as secondary
memory, random access memory (RAM), and general-purpose I/O are already included.
Therefore, no additional description of these peripherals is needed.

In fact, given that the Raspberry Pi is a single board computer (SBC), plenty of other
peripherals are available. For instance, the Raspberry Pi has four USB ports, an Ethernet
port, and an HDMI port. It also implements the most common communication interfaces,
such as Serial Peripheral Interface (SPI), Inter-Integrated Circuit (I2C) and Inter-IC Sound
(I2S). Therefore, all the necessary interfaces to control and interchange data with all other
components of the system’s architecture, such as the ADC, DAC, and wireless transceivers,
are available.

2.3 Signal acquisition and conditioning
One particular block from the system’s architecture (see Fig.2.1) requires a more detailed
description, since it relates more to analog system design than digital system design. The
microphone pre-amplifier and the polarization power supply are two fundamental compo-
nents that require careful design. If the input to the digital system (through the ADC) does
not behave as expected, the overall quality of the measurements done with the system will
suffer significantly. This is particularly true for audio applications where it’s necessary
to achieve a very high signal-to-noise ratio (SNR) and very low total harmonic distortion
(THD).

To understand why these two components are so important, it is necessary to first compre-
hend how a measurement microphone operates. The most common types of microphones
used in high-quality measurements are:

• MEMS microphones: Low-cost microphones with a sensitivity in the range of 10
mV·Pa−1 to 100 mV·Pa−1, and a moderate to poor signal-to-noise ratio (SNR).

• Condenser microphones: Medium to high cost microphones with a sensitivity typi-
cally not higher than 50 mV·Pa−1. Very high dynamic range and low noise (high
signal-to-noise ratio).

• Electret microphones: Low-cost pre-polarized condenser microphones with a sensi-
tivity typically bellow 10 mV·Pa−1). Low dynamic range and poor signal-to-noise
ratio (SNR).

Independent on the type of microphone, most measurement microphones share the same
operating principle, which consists of a pressure wave deflecting a conductive plane (mem-
brane) that leads to a change of the sensor capacitance. This change of capacitance causes
the generation of a small electric signal, which is so small (in the range of tens of milli-
volts) that most applications require an amplification stage of at least 40 dB to reach an
adequate input level, so that the ADC can digitize the signal.
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Not only that, but given that the capacitance of such microphones is in the range of tens of
pico-farads (pF), the impedance at lower acoustic frequencies is at the level of giga-ohms
(GΩ), meaning that a high-impedance input amplifier is necessary to use such micro-
phones. This pre-amplifier allows the conversion of the high-impedance sensor signal to a
low-impedance (of not more than a few kΩ) output signal [16]. All this, while also aiming
for the lowest possible noise.

Furthermore, unless an electret microphone is used, condenser microphones require a po-
larization voltage. This polarization voltage comes from a specially designed power sup-
ply, and ranges from 24 volts in inexpensive microphones to 200 volts in high-quality mi-
crophones used in specialized measurement applications. The design of the power supply
is, therefore, critical since one of the figures of merit used to evaluate an analog front-end
is the power supply rejection ratio (PSRR), which indicates how much variations of the
supply voltage are transferred to the signal path.

With this in mind, there are two possible paths that can be taken to implement both the
polarization power supply and the microphone pre-amplifier.

Perhaps the simplest approach is to buy the two components. Manufacturers offer exter-
nal sound cards that include both a standardized polarization power supply of 48 volts,
known as phantom power supply (standardized in IEC EN 61938 [17]), and a microphone
pre-amplifier. The problem with this approach is that as mentioned before, it defeats the
purpose of a low-cost and portable system, as there are no commercially available HAT-
based solutions that feature both a polarization power supply and a low noise microphone
pre-amplifier.

The second approach is to design and implement both components from scratch, meaning
that they are custom-made for the measurement system. Without a doubt, this is a more
challenging approach, but it’s preferable as it gives more flexibility and simplifies the mea-
surement system (should it work).

Given that analog design is not a trivial task and plenty of experience is necessary to
implement something that works, the focus was put not on the design of the power supply
and pre-amplifier, but the design and implementation of a printed circuit board (PCB). The
printed circuit board design would need to follow proper PCB design guidelines related to
signal quality and noise rejection, while being compatible with the Raspberry Pi platform
and the HifiBerry DAC+ADC.

2.3.1 Polarization power supply
As mentioned before, a power supply is required to provide polarization voltage to con-
denser microphones. The required voltage depends a lot on the type of microphone and
the application, with possible polarization voltages ranging from 12 volts to 200 volts.
Naturally, it is not viable to design a ”one size fits all” power supply, so the focus was put
on the design of the relatively common polarization power supply of 48 volts.
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Linear design Switch-mode

Operating
principle

A power transformer is used to raise or lower
the voltage and rectifiers and RC filters are
used to produce a stable DC output.

AC is converted directly into a DC voltage without
a transformer. The raw DC voltage is then converted
into a higher frequency AC signal, which is used in a
regulator circuit to produce the desired voltage and
current.

Size and
weight

Since the size of the transformer is proportional
to the frequency of operation, this type of power
supply is heavier and larger.

No actual transformer is needed, making it light and
portable.

Efficiency Normally at around 60% efficiency for a 24V
output.

Normally at around 80% efficiency for a 24V output.

Noise Low noise. Possible presence of electric hum if
design guidelines are not followed.

Medium to high noise. Special attention must be given
to the frequency at which the switching regulator
operates as it might affect other equipment, or even
produce noise in the audible range (i.e., below 20 kHz).

Table 2.3: Comparison between linear power supplies and switching power supplies.

The word phantom power derives from what is known as a phantom circuit. A phantom
circuit is an electrical circuit in which one or more conductive paths conform a circuit
themselves while at the same time acting as a conductor to another circuit. In the case
of a phantom power supply, the direct current is applied equally through the two signal
lines present in a balanced audio connector. To ensure a good common-mode rejection in
the circuit, the signal conductors are fed through resistors of equal value which must be
matched to within 0.1%.

When it comes to the actual design of a phantom power supply, there are two distinct ap-
proaches. The first one relies on the use of regular voltage transformers, and it’s known as
linear design. And the second relies on the use of switching regulators. Given that power
supply design is not the topic of this project, it is enough to present a basic comparison of
the two technologies to understand which one is more suitable for the desired application
(see Table 2.3).

From this comparison, it is possible to see that two desirable features clash with each other.
A switching power supply is portable and lightweight, making it suitable for the measure-
ment system. But it is also noisy, thus affecting the quality of the measurements done with
the system. On the other hand, a linear power supply does not produce much electrical
noise, but its size makes it unsuitable for the application.

After a thorough review of different schematics and open-source designs, it was decided
that a switching power supply would be preferable if the proper design precautions are
taken. Mainly the printed-circuit-board (PCB) design must be done in such a way that
electrical noise is kept to a minimum so that the power-supply rejection ratio (PSRR) is
high.

Among the reviewed designs, one based on the MC34063A switching regulator was se-
lected given that it was low-cost, and that it was particularly suited for audio applications
(the operating frequency of the DC-DC converter is in the range of 30kHz to 60kHz). The
designer (Petre Tzv Petrov), a researcher and assistant professor at the Technical Univer-
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sity of Sofia, published the design (see Fig.2.5) with a thorough description of the operat-
ing principle of the supply and all the components necessary to make it work [18].

The input voltage to the power supply goes from 5V to 7V, and the output voltage is 48V
with an output current around 50mA, which is more than enough to power at least two
condenser microphones. Furthermore, the use of an LC filter at the output guarantees a
low-ripple output, something critical to keep the power-supply rejection ratio high.

Figure 2.5: Phantom power supply design. Adapted from [18].

Given that it is important to verify the operation of the circuit before its physical imple-
mentation, a SPICE (Simulation Program with Integrated Circuit Emphasis) software was
used to model the circuit. The analysis focused on the output of the power supply and the
transient characteristics of the switching regulator (see Fig.2.6 and Fig.2.7).

Figure 2.6: Behavior of the output voltage in the phantom power supply (simulation).

It was determined that the power supply reaches its steady-state after approximately 320
ms and that the switching frequency is close to 34.4 kHz (period of 29.14 µs). These are
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acceptable values since the audible range of frequencies goes from 20 Hz to 20 kHz, and
no special requirements are related to the transient time of the power supply. Furthermore,
the output voltage is stable once the power supply reaches its steady-state.

Figure 2.7: Switching behavior of the current in the main inductor L1 (simulation).

Having said this, this phantom power design complies with the requirements of the mea-
surement system, and as long as the physical implementation of the design is done accord-
ing to the general guidelines of the manufacturer of the switching regulator (MC34063A),
it should operate as expected.

2.3.2 Microphone Pre-amplifier
Just as with the polarization power supply, there are plenty of topologies and amplifier
designs. Some of these designs focus on aspects such as constant gain across the desired
frequency range, while others focus on features such as noise immunity, maximum gain,
input impedance, etc. Early on, it was decided that the emphasis would be given to a spe-
cific pre-amplifier technology known as transformerless solid-state amplifiers.

This, mainly because the technology is affordable, and unlike other technologies, the main
design focus is to have an output that is transparent to the signal coming from the micro-
phone. In simpler terms, the pre-amplifier doesn’t add any tonalities or color to the signal.
It just amplifies it. This is a critical factor if the pre-amplifier is used in a measurement
system.

A review of different designs lead to an amplifier design from manufacturer Texas Instru-
ments which uses the INA217 instrumentation amplifier. The design, published in the
data-sheet of the amplifier, is specifically suitable for the pre-amplification of balanced
audio signals coming from a condenser microphone (see Fig.2.8).

The design features a maximum gain of 60 dB with low noise (1.3 nV/
√
Hz at 1kHz) and
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low total harmonic distortion (0.004% at 1kHz). It also provides common-mode rejection
(CMR) higher than 100 dB. Furthermore, an inexpensive FET-input operation amplifier is
used in a feedback loop to drive the DC output voltage to 0V. A slightly modified version of
this design uses fixed resistors and jumpers to control the gain of the pre-amplifier instead
of using a variable resistor that is more vulnerable to drift.

Figure 2.8: Microphone pre-amplifier design. Adapted from [19].

Just as with the polarization power supply, it necessary to verify the behavior of the circuit
before its actual implementation. A first test involved calculating the Bode gain plot of
the amplifier with the fixed resistor values used to define the gain of the pre-amplifier.
Additionally, given the importance of harmonic distortion on audio systems, a simulation
with a pure tone of 1kHz was done to determine what sort of behavior is expected from
the real implementation of the pre-amplifier.
When it comes to the frequency response of the system (see Fig.2.9), it is possible to infer
that if the physical implementation of the pre-amplifier is successful, the gain will be (flat)
across the entire audible frequency range (i.e., from 20Hz to 20kHz). Furthermore, even
though there appears to be several harmonic components, these seem to be below 45 dB,
indicating that the total harmonic distortion (THD) is reasonable (see Fig.2.10).

2.4 Impulse Response Calculation and Processing
Even though a brief introduction to impulse response measurement was presented in a
previous chapter of this report, it is essential to deepen on the particularities of the mea-
surement process. Understanding how the test signals are generated and processed, and
how the impulse response is derived, is critical since it is the principal function of the
measurement system.

2.4.1 Swept-sine technique for the derivation of impulse responses
As mentioned before, from all the existing methods for the measurement of impulse re-
sponses (IRs), sine sweeps with a constant frequency-dependent temporal envelope pro-
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Figure 2.9: Bode plot (magnitude) of the pre-amplifier with the different gain resistors (simulation).

Figure 2.10: Harmonic distortion for a 1kHz tone with a gain setting of 48 dB (simulation).

vided the best signal-to-noise ratio (SNR) while also allowing the exclusion of all har-
monic distortion products. By simply convolving the excitation signal with an appropriate
inverse filter, the impulse response of the system could be obtained, and all harmonic
distortion products would be pulled to negative times relative to the direct sound. The
mathematical formulation for the exponential sine sweep was defined by Farina in [3]:
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in which T is the time length of the signal x(t), and ω1 and ω2 define the frequency range
of the signal. The inverse filter was also defined by Farina as the time-reversal of the sine
sweep, equalized with a slope of 6dB/oct, with an exact mathematical derivation given by
Novák in [20]:
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Moreover, given that the convolution theorem affirms that under proper conditions, the
Fourier transform of a convolution of two signals is the pointwise product of their Fourier
transforms, it is possible to implement the deconvolution process as a frequency domain
operation. Something that leads to a significant reduction of the calculation times as the
computational complexity is reduced from O(n2) to O(n log n).

To illustrate how the sine sweep technique allows to separate the harmonic distortion prod-
ucts is enough to do a closed-loop test on an external sound card (connect output to input
directly) and raise both the input level and the output level so that the system saturates.
This isn’t something that should be done in a real measurement as the measurement sys-
tem is pushed above its linear limit, but it provides a good illustration of this phenomenon.
First, by plotting a spectrogram of the recorded sweep, it is possible to identify the linear
response of the system (which has more energy). Furthermore, it is also possible to iden-
tify some of the non-linear harmonic distortion orders, which have a similar time behavior
but less energy. At this point, the system’s response is captured, but it isn’t possible to sep-
arate the linear response from the harmonic distortion components as they are indivisible
in the time domain.

By using an inverse filter (see Eq.2.2), it is possible to separate the linear response and the
different orders of harmonic distortion in the time domain, and then truncate the impulse
response so that only the linear response of the system is analyzed.
It is important to mention that in a real measurement scenario, the measurement system
should operate in its linear region, so that harmonic distortion is minimized, and kept ac-
cording to the reported THD+N (total harmonic distortion plus noise) value of the different
components of the system.
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Figure 2.11: Spectrogram of a measured sine sweep with artifacts of harmonic distortion.

Figure 2.12: Spectrogram of a calculated impulse response with time separation of linear response
and harmonic distortion.

2.4.2 Clock mismatch and its effect on measured impulse responses

Another aspect mentioned in the previous chapter is the possibility of having a clock mis-
match when performing measurements with two different devices. Even if the same sam-
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pling frequency is used on both devices, there might be some clock differences between
them, which will cause the obtained impulse response to have a skewed appearance.

To illustrate the effect of a clock mismatch is enough to perform a purely-electrical mea-
surement by connecting two devices (which now constitute a system) and measuring the
impulse response of the entire system (with and without clock mismatch). In this case,
the clock mismatch was manually controlled by setting the sampling frequency of one of
the devices to be 0.1% higher than the other (i.e., one device had a sampling frequency
of 44100 Hz, and the other had a sampling frequency of 44151Hz). An exponential sine
sweep with a duration of 30 seconds was used as a test signal, so that it would be possible
to visualize the effects of the clock mismatch (see Fig.2.13 and Fig.2.14).

Figure 2.13: Spectrogram of an impulse response (without clock mismatch).

Figure 2.14: Spectrogram of an impulse response (with clock mismatch).
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2.4.3 Derivation of the Impulse Response to Noise Ratio (INR)
Finally, there is one concept that has some particular implications when dealing with room
impulse responses (RIRs). When it comes to impulse responses, the signal-to-noise ratio
(SNR) is defined as the ratio (expressed in dB) between the average power of the signal
recorded by the microphone, and the average power of the noise and distortions present in
the tail of the deconvolved (linear) impulse response [21]. The problem with this defini-
tion is that it’s somewhat vague as it doesn’t specify what constitutes the tail of the impulse
response.

Such an ambiguous definition becomes problematic when dealing with room impulse re-
sponses, given that a common post-processing task is to derive the reverberation time from
the calculated impulse response, and for this, it is necessary to have a minimum decay
range or more specifically a particular signal-to-noise ratio.

One proposed parameter that serves as an estimator for the decay range is known as im-
pulse response to noise ratio (INR) [22]. The INR is defined as:

INR = LIR − LN [dB] (2.4)

where LIR is the maximum RMS level in dB of the impulse response and LN is the noise
level in dB. To calculate LIR it is necessary to obtain the maximum impulse response
value h0, and use the backward integration method by Schroeder to estimate the decay
time T60. LIR is defined mathematically as:

LIR = S (0) + 10 · log

[
6 ln 10

T60

]
[dB] (2.5)

where S(0) is:

S(0) = 10 · log

[
T60

6 ln 10
· h20
]

[dB] (2.6)

As an example of the calculation process and the expected result, it’s enough to take a room
impulse response of one of the reverberation chambers at NTNU (previously measured for
the specialization project basis of this work), and perform the steps given in [22]:

1. Determine LN from the tail of the measured impulse response, defined as the part
of p(t) where the energy level of p(t) is essentially constant in time.

2. Determine the Schroeder curve S(t) in the usual way, with or without noise com-
pensation.

3. Estimate T60 from the initial decay of the Schroeder curve (see Fig.2.15).
4. Calculate LIR.
5. Calculate INR (see Fig.2.16).

Among other things, the impulse response to noise ratio (INR) helps to identify whether
or not it is necessary to repeat the measurement with different settings to ensure that an
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Figure 2.15: Schroeder curve of a room impulse response (measured at one of NTNU’s reverbera-
tion chamber).

Figure 2.16: Energy-Time curve. Logarithm of a low-pass filtered version of a room impulse re-
sponse (NTNU’s reverberation chamber).

adequate signal-to-noise ratio (SNR) has been achieved. If it hasn’t, it’s enough to perform
a new measurement (with an increment in either the signal level of the output amplifier, or
an increase in the duration of the sine sweep) until the SNR requirements are fulfilled.

Taking this into account, the calculation of the impulse response to noise ratio (INR) is
considered important in the implementation of the measurement system as it provides
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valuable information on the measurement done.

2.5 Node synchronization
Node synchronization can be understood in several ways. For instance, a strict definition
of node synchronization would be to have a distributed system capable enough to start
audio acquisition (in the acquisition node) at the same time that audio playback begins on
the other node. If there is no clock mismatch between the two devices, each subsequent
acquisition sample will be synchronized with its corresponding playback sample through-
out the acquisition process. Such a level of synchronization is useful in experiments where
a tight control of timing is required. For example, in outdoor sound propagation experi-
ments where it is essential to know precisely at which time (or sample) something occurs.

A less strict definition of node synchronization would be to have a distributed acquisition
system in which there is no clock mismatch between the acquisition node and the playback
node, making it possible to measure impulse responses using the swept-sine technique
[5][23][24].

One approach to handle node synchronization is the use of a synchronization protocol
known as Timing-sync Protocol for Sensor Networks, which was first proposed in [25].
The protocol aims to provide network-wide time synchronization in a sensor network, and
is capable of achieving synchronization with an average accuracy of less than 20µs.

Synchronization is achieved in two phases. In the first phase, a hierarchical structure is de-
fined in the network, and in the second phase, pairwise synchronization is performed along
the edges of the structure until a global timescale throughout the network is established.

Figure 2.17: Message exchange for pairwise synchronization in TPSN.

The critical part of the synchronization lies in the pairwise synchronization (see Fig.2.17),
which uses a sender-receiver synchronization approach. By sending synchronization pulses
with specific timestamps, it is possible to calculate the clock drift and also the propagation
delay.

Consider two nodes in the network, A and B. First, at time T1, the node A sends a message
to node B, which contains the timestamp for T1. Node B receives the message at time T2,
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and replies with an acknowledge message at time T3, which contains both timestamps for
T2 and T3. This acknowledge message is received by node A, which saves the reception
time as T4, and with these four values, node A can now calculate the clock drift ∆ and the
propagation delay d.

∆ =
(T2 − T1)− (T4 − T3)

2
(2.7)

d =
(T2 − T1) + (T4 − T3)

2
(2.8)

When it comes to audio applications, the TPSN synchronization protocol has seen its use
in a couple of applications. It has been previously applied in underwater sensor networks
where communication is primarily done via acoustic telemetry. And it has also been pro-
posed for the execution of acoustic measurements with a quadcopter [26][27].

In theory the pairwise synchronization process is pretty straightforward. Nevertheless, in
practice problems occur due to the non-determinism associated with the latency estimates
of the message delivery delay.

Aspects such as the interrupt handling time (i.e., the time it takes for the processing unit
to respond to the interrupt raised by the transceiver when a message has been received)
and the sending time (i.e. the delay associated with the assembly of the message at the
application layer down to the MAC layer of the OSI model) have a strong influence on the
level of synchronization [26].

2.6 Hardware/Software Organization
One final aspect that needs to be described before the implementation of the measurement
system is Hardware/Software organization. HW/SW organization refers to the structure of
the embedded system in terms of layers. In an idealized model, four layers communicate
through clearly defined interfaces. From bottom to top there will be a Hardware Layer, a
Firmware Layer, an Operating System Layer, and an Application Layer (see Fig.2.18).
The hardware layer has been previously described as it relates to the description of the sys-
tem’s architecture. On the other hand, the firmware layer mostly deals with the software
that provides the low-level control of the hardware.

Consider the case of the LoRa transceivers used for the wireless synchronization between
the nodes. These transceivers must communicate with the processing unit using an inter-
face, such as SPI or I2C. The purpose of the firmware layer is to contain all the code that is
needed to first enable communication through the SPI or I2C lines, and then to handle the
functionalities of the transceiver such as low-level functions to send and receive messages.

The third layer is the Operating System Layer. The operating system is a piece of software
designed to manage the resources of the system. It handles the critical aspects of the sys-
tem, such as scheduling of tasks, and memory management and allocation.
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Figure 2.18: Software layers in a complex embedded system. Adapted from [28].

When it comes to embedded systems, the idea is to have light-weight operating systems
capable of being resource-efficient and reliable. This is the main reason behind the use of
real-time operating systems (RTOS).

Given that in real-time operating systems, task scheduling is done considering well-defined
fixed time constraints, the operating system can meet deadlines deterministically. The
main issue with the use of real-time operating systems is that this determinism comes at
the expense of loss of functionality, making it suitable only for certain applications.

Finally, the last layer is the Application Layer. The application layer deals with the ac-
tual functionality of the embedded system. In this particular system, the application layer
deals with the code that implements functions to acquire and send audio signals from/to
the ADC/DAC, and the functions that process the received information to do some actual
work.

In this layer, it is necessary to determine which programming language and tools are going
to be used. All of this while considering aspects such as development speed, programming
paradigm, abstraction level, etc.
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Chapter 3
Implementation of the
Measurement System

This section of the report describes the different steps necessary to implement the mea-
surement system.

First, a brief description of the initial setup of the base platform is presented. This process
involves the initial configuration of the Raspberry Pi, and also the installation of additional
software necessary to control the hardware in the system.

Second, the hardware design methodology is described with a detailed account of the steps
necessary to design and assemble the printed circuit board that provides the system with
phantom power and microphone pre-amplification.

Finally, the software design methodology is presented, and all aspects related to code,
routines, and scripts are explained. Furthermore, the two modes of operation of the system
are described, corresponding to the stand-alone mode and the distributed acquisition mode.

3.1 Initial Setup and Configuration
The first step of the initial configuration is the installation of the operating system that runs
on the Raspberry Pi. The official operating system provided by the Raspberry Pi Founda-
tion is Raspbian. A Debian-based operating system, highly optimized for the Raspberry
Pi. Of course, there are other options such as RISC OS, Lakka, Windows IoT Core, but
Raspbian was chosen given that it’s officially supported by the Raspberry Pi Foundation,
and it has active community support.

Depending on what the user requires, two versions of Raspbian are available. There is a
full installation that has a desktop environment, and that offers the usual computer expe-

35



Chapter 3. Implementation of the Measurement System

rience. And there is a light installation that lacks a desktop environment, meaning that
control of the system is done via command line. Both installations are suitable for the
measurement system, but if a graphical user interface (GUI) is to be used to control the
parameters of the measurement system, the best option is to use the full installation and
remove unnecessary software afterward.

In embedded systems, the usual development process consists of writing code in a separate
computer, and use a set of tools that includes a cross-compiler and a debugger to compile
and test the code in the embedded platform.

This process differs to some extent when using a single board computer (SBC) such as
the Raspberry Pi. It is more useful to think of the Raspberry Pi as a regular computer. So
instead of using a cross-compiler on another machine to produce code that is executable
in the Raspberry Pi, it is enough to just use the default compiler in the Raspberry Pi to
compile code.

Of course, if an interpreted, high-level programming language is used, the process is
greatly simplified as everything is done the same way independent of the platform that
will run the code.

This is the main reason for choosing Python as the programming language for the mea-
surement system. Not only that, but given that Python is a high-level language, working
prototypes can be built quickly, testing can be done faster, and the proof of concept is
easier to achieve. Finally, Python has a variety of open-source modules and libraries that
make it easy to add new functionalities to the system.

3.1.1 Headless Setup

Given that the Raspberry Pi behaves like a regular computer, in most cases, it will require
the same external I/O peripherals (i.e., display, keyboard, mouse, etc.) that a common
computer needs. Something which is not only impractical but also expensive. Nonethe-
less, there exists one configuration known as a ”headless” setup, in which the use of these
peripherals becomes unnecessary, at least for the time being.

A ”headless” computer can be defined as a computer that operates without a display, a
keyboard, or a mouse. In order to control the computer, another computer is connected to
the Raspberry Pi in one of three possible ways.

• Serial Terminal: This method for controlling the Raspberry Pi requires extra hard-
ware in the form of a serial-to-USB adapter. It provides a robust way to control the
Raspberry Pi, as it doesn’t rely on any network setup.

• Ethernet with Static IP Address: This method requires to change some files on the
Raspberry Pi’s operating system image, so that a static IP address is given to it. Then
through the use of an Ethernet cable (or WiFi) connection between the two systems
is achieved.
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• WiFi with DHCP: This option also requires changing some files on the the Rasp-
berry Pi’s operating system image. Then by identifying the Raspberry Pi’s IP ad-
dress, it is possible to use a computer to control the Raspberry Pi via Secure Shell
(SSH) or Virtual Network Computing (VNC).

Given that most of the work was done in an environment with a robust WiFi connection,
VNC was used as the main way to control the Raspberry Pi.

Finally, a fundamental part of the process consists of enabling the peripherals for later use.
By default, the Raspbian operating system disables SPI, I2C, and SSH. Given that SPI is
used for the communication with the LoRa transceivers and that I2C is used for configura-
tion of the HiFiBerry DAC+ADC board, it is necessary to enable these peripherals before
connecting the external hardware to the Raspberry Pi.

3.1.2 Real-Time Kernel patch

Even though the Raspbian operating system is not a real-time operating system (RTOS),
some work has been done to add some level of real-time performance to the platform. This
is accomplished by applying a patch to the Linux kernel of the system known as Preempt-
RT [29].

The kernel patch reduces the latency of the kernel by making all kernel code (that is not ex-
ecuting in a critical section) preemptible (i.e., interruptible to let it resume at a later time).
This allows a reduction in the reaction time associated with interactive events. Among the
main benefits is that tasks such as audio I/O are handled more efficiently.

Nevertheless, it worth mentioning that this patch does not change the way tasks are sched-
uled by the operating system, and this is the main cause of non-determinism in non-real-
time operating systems. The objective of a real-time operating system is not to react as fast
as possible to a given event, but to respond predictably to tasks and provide deterministic
guarantees concerning response times.

3.1.3 Library installation and configuration

The default installation of Raspbian already comes with Python installed. Therefore, when
it comes to Python libraries, it’s enough to install libraries associated with signal pro-
cessing, audio handling, and the LoRa transceivers. The following python libraries are
necessary for the implementation of the system:

• General purpose: Numpy, Scipy, Matplotlib, Time, Queue, Math, Tkinter, Thread-
ing, Sys, Contextlib.

• Audio acquisition and reproduction: Python-sounddevice

• GPIO control: Busio, Digitalio, Board, RPI.GPIO

• LoRa transceivers: Adafruit rfm9x
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Noteworthy is the python-sounddevice module, which provides a binding for the PortAu-
dio C library that is necessary to play and record audio signals. Through the use of a
simple API, the python-sounddevice module allows the creation of PortAudio streams for
recording and reproducing audio in a full-duplex configuration. These functionalities can
be extended using callbacks and threads to handle all the tasks associated with the mea-
surement system. It is worth mentioning that there was no need to install any drivers for
the HifiBerry DAC+ADC board, as the current drivers where already included in the Rasp-
berry Pi kernel.

When it comes to the LoRa transceivers, a library implemented by the manufacturer
Adafruit is employed. This library, although somewhat basic, provides all the necessary
functions to control the transceivers, and send and receive messages. It even implements
interrupt handling, which is required for the implementation of the TPSN pairwise syn-
chronization.

3.2 Hardware Design Methodology
Something that may already be clear for the reader is that the proposed measurement
system relies mostly on the use of commercial hardware. The critical components of
the system such as the processing unit, the ADC/DAC, and the transceivers, were read-
ily available, diminishing the amount of work necessary to build a functioning prototype.
This decision was made considering the time constraints associated with the project, and
also the technical challenges that hardware design brings.

The design of a measurement system is particularly troublesome because it can be consid-
ered a mixed-signal application, which means that it involves digital circuitry and analog
circuitry. Not only that, but given that a polarization power supply is needed, extra care
must be taken to ensure that the switching elements of the power supply don’t affect the
other circuitry. The following goals were defined for the printed circuit board (PCB) de-
sign:

• The PCB must be designed such that it is compatible with Raspberry Pi HAT (hard-
ware attached on top) standard. It must conform to the add-on board requirements,
and it must follow the HAT mechanical specification.

• The PCB must be designed such that it is compatible with the pins of the HifiBerry
DAC+ADC board. Mainly because the PCB will rest on top of the HifiBerry board.

• Both the polarization power supply and the microphone pre-amplifier must be in the
same PCB.

• Circuit board layout techniques must be used when designing the PCB to avoid
electromagnetic interference and noise between the components.

• The PCB should use relatively common component footprints so that PCB manu-
facturing and assembly does not require special equipment (other than a soldering
station).
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• The PCB should be designed so that a single power supply can be used to power the
entire system.

3.2.1 PCB design layout guidelines
Circuit board design is more of an art than a science. Even if there is a well-defined set of
guidelines to design working PCBs, each PCB design is different, and each designer has
a different idea about how components should be placed and connected. It is even quite
usual for a PCB designer to create several versions of the same PCB. Having said this, it
is always a good idea to start any design following a specific layout technique, and then
iterate until the best design is reached.

Given the type of circuitry involved in the project, it was determined that a layout tech-
nique for mixed-signal designs would be the most appropriate. This layout technique,
proposed by engineers from Texas Instruments, has one main rule, which is to keep the
ground planes separate [30].

This is perhaps one of the simplest and most effective methods to suppress noise in a PCB
design. It’s natural to think that the electrical ground of a circuit is the same everywhere.
Nevertheless, this is only an idealized model that does not consider aspects such as return
currents and the behavior of digital and analog signals. This doesn’t mean that the grounds
are electrically separate in the system. It merely means that it is desirable to have a single,
low impedance common point where both ground planes meet.

From this main rule, several others can be derived:

1. It is important to isolate power planes as well. Mainly because ground planes and
power planes are at the same AC potential due to decoupling capacitors and dis-
tributed capacitance.

2. Do not overlap digital and analog planes. Always place digital power coincident
with digital ground, and analog power coincident with analog ground (see Fig.3.1).

3. All current returns should be connected together at a single point, which corresponds
to the system’s ground.

4. Digital signals must be routed around analog circuitry, and not overlap analog ground
and power planes. This is to ensure that the system does not act as an antenna.

5. Analog circuitry should be as close as possible to the I/O connections of the board.
This is done to avoid coupling the noise coming from the digital ground an power
planes into the analog circuitry.

A simplified example of a careful circuit layout illustrates these design rules. In this layout,
the power supply, the digital circuitry, and the analog circuitry are on the same PCB, but all
power and ground planes are separate. Depending on the frequency at which the different
components operate, the designer selects an appropriate location for the components (see
Fig.3.2). It is worth mentioning that this might not always be possible, as routing can
become increasingly complex.
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Figure 3.1: Digital and analog plane placement. Adapted from [30].

Figure 3.2: Careful circuit board layout. Adapted from [30].

3.2.2 Proposed PCB design
Once the layout technique is properly understood, the next step is to review the schematics
(or produce them if they don’t exist), and analyze the possible location of components, as
there are components that should not be placed together.

Since this process involves a well-controlled environment where schematics must be trans-
lated into PCB designs, it is advisable to use an electronic design automation tool to fa-
cilitate the process. Kicad was chosen for this purpose, as it is open-source and includes
several tools for the creation of the bill of materials (BOM), artwork, Gerber files, and 3D
views of the PCB and its components.

A particular challenge when designing the PCB was the fact that it was necessary to ac-
commodate a total of three power supplies. One for the polarization of microphones (i.e.,
Phantom power supply of 48V) and two regulated power supplies for the microphone pre-
amplifier (+5V and -5V).

The PCB design consisted of a simple two-layer PCB with most components using surface
mount technology (SMT). And the layout of the DC/DC converter used in the polarization
power supply was done according to specific design rules from the manufacturer, to en-
sure that the return currents from the switching power supply wouldn’t affect the analog
circuitry in the PCB.
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Figure 3.3: PCB Layout for polarization power and microphone pre-amplifier.

Furthermore, the audio inputs of the microphone pre-amplifier (corresponding to XLR
connectors in the PCB) were kept as close as possible to the instrumentation amplifiers to
guarantee that no electrical noise affects the input of the pre-amplifier.

Figure 3.4: Top view of PCB render.
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Fig.3.3 shows the top copper layer (red) and the bottom layer (green) of the PCB. Most of
the connections between the components used the top layer to avoid disrupting the ground
plane on the bottom layer. Additionally, the use of ground copper fills on both layers in
the top area of the PCB diminished the problems associated with the use of the switching
regulator of the polarization power supply. Furthermore, a single trace was used to connect
the ground planes of the switching regulator, the digital circuitry and the analog circuitry.

Finally, it is important to mention that the PCB was designed so that it would fit on top of
the HifiBerry DAC+ADC board (see Fig.3.4). Therefore, a set of pin headers were placed
on the bottom layer to provide the electrical connections between both boards.

3.3 Software Design Methodology
The development approach used for software was somewhat different from the approach
used for hardware. The main advantage of developing software is that there isn’t a defined
production stage, or at least not to the same extent that there is one in hardware.

For example, once a PCB is sent to the manufacturing process, there is some dead time
associated with the manufacturing and assembling. The problem is that it isn’t possible to
use this time to add new functionalities to the design, because there is no certainty that the
PCB design is correct, and that it will work as expected. Additionally, once the PCB is
ready, a significant amount of time is necessary to check for errors, and test the behavior
of the circuit board. And since hardware errors are not easily fixed, an entire redesign of
the PCB might be necessary, increasing development time.

On the other hand, software development allows more flexibility. There is no dead time as-
sociated with code production, so it is feasible to test the code at the same rate that it is pro-
duced. This opens the possibility to use agile development methodologies, such as feature-
driven development. Feature-driven development (FDD) is an iterative, lightweight, and
incremental software development process, in which the idea is to decompose projects into
small features.

Figure 3.5: Basic activities in feature-driven development.

Once all the features are clearly defined, the programmer assigns each of them some de-
velopment time. And as soon as the feature is implemented, the programmer promotes
it into the main build of the project. This technique proved to be remarkably convenient
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when working on the project, as features such as node synchronization, signal processing,
audio acquisition, and graphical user interface (GUI) development, could be implemented
simultaneously without one feature affecting the other.

Taking this into account, it was useful to divide the project into the following development
tasks:

• Sine sweep generation
• Audio playback
• Audio acquisition
• Dispatch of messages with LoRa transceivers
• Reception of messages with LoRa transceivers
• Design of graphical user interface (GUI)
• Derivation of impulse response
• Calculation of impulse response to noise ratio (INR)
• Synchronization with Timing-sync Protocol for Sensor Networks (TPSN)

These development tasks integrate and shape the two main operation modes, i.e., the stand-
alone mode of operation and the distributed mode of operation.

3.3.1 Sine sweep generation
As a general rule of development, often reused code was defined as a function with defined
arguments and return values. This was the case with the generation of sine sweeps and the
corresponding inverse filter (see Fig.3.6, Fig.3.7, and Fig.3.8).

From Eq.2.2 and Eq.2.3, it is clear that the main arguments of these functions are the start
frequency (ω1), the stop frequency (ω2), and the time length of the signal (t). Furthermore,
it is also necessary to consider two additional arguments. One is the sampling frequency
(fs), and the other is the time length of a ”silence” signal that follows the sine sweep.
Something that is needed to avoid truncating the impulse response during the calculation.

Listing 3.1: Python function for sine sweep generation.

d e f g e t s i n e s w e e p ( f1 , f2 , Ti , s i l , f s ) :
’ ’ ’
G e n e r a t e s an e x p o n e n t i a l S i n e Sweep w i t h f r e q u e n c y range ( f1 , f 2 ) , d u r a t i o n T i
and s a m p l i n g f r e q u e n c y f s .

: param f 1 : S t a r t f r e q u e n c y f o r t h e s i n e s w e e p .
: param f 2 : S top f r e q u e n c y f o r t h e s i n e s w e e p .
: param Ti : Du r a t i o n i n s e c o n d s o f t h e s i n e s w e e p .
: param s i l : Du r a t i o n i n s e c o n d s o f t h e s i l e n c e a f t e r t h e s i n e s w e e p .
: param f s : Sampl ing f r e q u e n c y
: r e t u r n sweep : Numpy a r r a y t h a t r e p r e s e n t s t h e s i n e s w e e p .

’ ’ ’
f i n = f o u t = 0 . 1
t = np . a r a n g e ( 0 , Ti∗ f s ) / f s
L = round ( Ti∗ f1 / math . l o g ( f2 / f1 ) )
Li = ( 1 / f1 )∗L
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sweep = np . s i n ( ( ( 2∗ np . p i )∗L )∗np . exp ( ( f1∗ t ) / L )−1)
f a d e i n = np . l i n s p a c e ( 0 , 1 , num = i n t ( f i n ∗ f s ) )
f a d e o u t = np . l i n s p a c e ( 1 , 0 , num = i n t ( f o u t ∗ f s ) )
sweep [ 0 : i n t ( f i n ∗ f s ) ] = sweep [ 0 : i n t ( f i n ∗ f s ) ] ∗ f a d e i n
sweep [ l e n ( sweep ) − i n t ( f o u t ∗ f s ) : l e n ( sweep ) ] = sweep [ l e n ( sweep ) − i n t ( f o u t ∗ f s

) : l e n ( sweep ) ] ∗ f a d e o u t
sweep = np . pad ( sweep , ( 0 , i n t ( s i l ∗ f s ) ) , ’ c o n s t a n t ’ )

r e t u r n sweep

It is worth mentioning that the fin and fout parameters are associated with the duration in
seconds of the fade in and fade out, which are necessary at the beginning and the end of
the signal. They must be defined carefully as an inappropriate length causes aberrations in
the calculation of the impulse response (e.g., pre-ringing) [5].

Listing 3.2: Python function for inverse filter generation.
d e f g e t i n v e r s e f i l t e r ( f1 , f2 , Ti , s i l , f s ) :

’ ’ ’
G e n e r a t e s t h e i n v e r s e f i l t e r n e c e s s a r y t o per form t h e d e c o n v o l u t i o n .

: param f 1 : S t a r t f r e q u e n c y f o r t h e s i n e s w e e p .
: param f 2 : S top f r e q u e n c y f o r t h e s i n e s w e e p .
: param Ti : Du r a t i o n i n s e c o n d s o f t h e s i n e s w e e p .
: param s i l : Du r a t i o n i n s e c o n d s o f t h e s i l e n c e a f t e r t h e s i n e s w e e p .
: param f s : Sampl ing f r e q u e n c y
: r e t u r n i n v e r s e s w e e p : Numpy a r r a y t h a t r e p r e s e n t s t h e i n v e r s e f i l t e r .

’ ’ ’
f i n = f o u t = 0 . 1
t = np . a r a n g e ( 0 , Ti∗ f s ) / f s
L = round ( Ti∗ f1 / math . l o g ( f2 / f1 ) )
Li = ( 1 / f1 )∗L
sweep = np . s i n ( ( ( 2∗ np . p i )∗L )∗np . exp ( ( f1∗ t ) / L )−1)
f a d e i n = np . l i n s p a c e ( 0 , 1 , num = i n t ( f i n ∗ f s ) )
f a d e o u t = np . l i n s p a c e ( 1 , 0 , num = i n t ( f o u t ∗ f s ) )
sweep [ 0 : i n t ( f i n ∗ f s ) ] = sweep [ 0 : i n t ( f i n ∗ f s ) ] ∗ f a d e i n
sweep [ l e n ( sweep ) − i n t ( f o u t ∗ f s ) : l e n ( sweep ) ] = sweep [ l e n ( sweep ) − i n t ( f o u t ∗ f s

) : l e n ( sweep ) ] ∗ f a d e o u t
i n v e r s e s w e e p = ( f1 / Li )∗np . exp (−1∗( t / Li ) ) ∗( sweep [ : : −1 ] )
i n v e r s e s w e e p = np . pad ( i n v e r s e s w e e p , ( i n t ( s i l ∗ f s ) , 0 ) , ’ c o n s t a n t ’ )

r e t u r n i n v e r s e s w e e p

Figure 3.6: Amplitude envelope of sine sweep.
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Figure 3.7: Amplitude envelope of inverse filter.

Figure 3.8: Magnitude of the Fourier transform of the sine sweep and the inverse filter.

3.3.2 Derivation of the impulse response
It is possible to derive the impulse response in two ways. The first option consists of a
convolution between the time domain versions of the sine sweep and the inverse filter.
The second option is to do the equivalent of this operation in the frequency domain. Even
though both options produce the same results, the second option is simpler to compute,
resulting in a significant reduction (more than tenfold) of computation times.

Listing 3.3: Python functions for the derivation of an impulse response.
d e f nextpow2 ( L ) :

’ ’ ’
S i mp le f u n c t i o n t o c a l c u l a t e t h e n e x t power o f two .
: param L : I n p u t v a l u e .
: r e t u r n N: Nex t power o f two o f L .
’ ’ ’

N = 2
w h i l e N < L : N = N ∗ 2
r e t u r n N

d e f f a s t c o n v v e c t ( x , h ) :
’ ’ ’
Fas t c o n v o l u t i o n done u s i n g t h e FFT .
Use as : y1 = f a s t c o n v v e c t ( x1 , h1 ) . r e a l
: param x : Array c o r r e s p o n d i n g t o t h e f i r s t s i g n a l i n t h e t i m e domain .
: param h : Array c o r r e s p o n d i n g t o t h e second s i g n a l i n t h e t i m e domain .
: r e t u r n y : Array c o r r e s p o n d i n g t o t h e o u t p u t i n t h e t i m e domain .
’ ’ ’
# s e a r c h e s f o r t h e amount o f p o i n t s r e q u i r e d t o per form t h e FFT
L = l e n ( h ) + l e n ( x ) − 1 # l i n e a r c o n v o l u t i o n l e n g t h
N = nextpow2 ( L )
# FFT ( X , N) i s t h e N p o i n t s FFT , w i t h z e r o padding i f X has l e s s than N p o i n t s and
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t r u n c a t e d i f has more .
H = f f t ( h ,N) # F o u r i e r t r a n s f o r m o f t h e i m p u l s e
X = f f t ( x ,N) # F o u r i e r t r a n s f o r m o f t h e i n p u t s i g n a l
Y = H ∗ X # s p e c t r a l m u l t i p l i c a t i o n
y = i f f t (Y) # t i m e domain aga in
r e t u r n y

By using these functions directly on a sine sweep and its inverse filter it is possible to
obtain an impulse response close to a Dirac pulse (see Fig.3.9 and Fig.3.10).

Figure 3.9: Result of the convolution between a sine sweep and its inverse filter.

Figure 3.10: Magnitude of the Fourier transform of the result of the convolution between a sine
sweep and its inverse filter.

3.3.3 Audio playback and audio acquisition
A critical aspect of the acoustic measurement system is its ability to adequately control
the HifiBerry DAC+ADC board to guarantee high-quality audio acquisition and playback.
The key thing to understand is that there are several layers between the developed python
application, and the audio hardware that reproduces or captures sound (see Fig.3.11).

So even if there is only access to the top layer (i.e., python-sounddevice module) while
developing the application, a lot of things are happening at a lower level of abstraction.
This was the main reason behind the selection of the python-sounddevice module. Given
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that it is nothing more than a binding for the PortAudio library, it doesn’t add a lot of
overhead on the overall performance of the system, something which is critical in this
case.

Figure 3.11: Basic structure and flow of audio data in the measurement system.

Having said this, python-sounddevice provides two approaches to audio reproduction or
acquisition. The simple way is to use a high-level function, in which the input parameters
are associated with the time length and sampling frequency of the signal that it’s going to
be reproduced or recorded. And the hard way consists of defining an audio stream object,
a callback function, and all the parameters related to the desired functionality. Of course,
the simple way might be pretty straightforward to implement, but it’s useless in a scenario
in which low-latency and high-quality audio is necessary.

In simple terms, audio reproduction and acquisition requires the creation of a stream ob-
ject, and its configuration as an output, input, or bidirectional stream. It is at this point that
other parameters such as buffer size (also referred to as block size), sampling frequency,
bit depth, and latency mode are defined. Once the stream is available, it is necessary is
to assign a callback function that is executed under certain conditions determined by the
application. When executed, this function uses the stream object to send and receive data
to/from the sound card.

The incoming/outgoing signals come in blocks with a size that depends both on the sound
card and the host (computer), so it is necessary to implement some functions related to
buffer management and the use of queues to send and receive data (see Fig.4.12).
The following code snippet illustrates how a callback function looks when the desired
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functionality is to simultaneously reproduce and record audio. In this case, the first step is
to define a bidirectional stream object, and then use two queue objects to input and output
data within the callback function. Additionally, two flag variables (rec flag and rec done)
provide a way to check for start/stop conditions.

Listing 3.4: Example of a callback function for simultaneous audio acquisition and reproduction.

s t r e a m = sd . St ream ( s a m p l e r a t e = 44100 , b l o c k s i z e = 1024 , d e v i c e = 6 , c h a n n e l s = 2 ,
d t y p e = ’ i n t 3 2 ’ , l a t e n c y = ’ low ’ , c a l l b a c k = a u d i o c a l l b a c k )

s t r e a m . s t a r t ( )

d e f a u d i o c a l l b a c k ( i n d a t a , o u t d a t a , f rames , t ime , s t a t u s ) :

g l o b a l r e c f l a g
g l o b a l r e c d o n e
g l o b a l d a t a
a s s e r t f r am e s == b l o c k s i z e
i f s t a t u s . i n p u t o v e r f l o w :

p r i n t ( ’ I n p u t u n d e r f l o w : i n c r e a s e b l o c k s i z e ? ’ , f i l e = s y s . s t d e r r )
i n p u t o v e r f l o w s += 1

a s s e r t n o t s t a t u s
i f r e c f l a g :

t r y :
d a t a = p l a y q u e u e . g e t n o w a i t ( )
r e c q u e u e . p u t n o w a i t ( i n d a t a . copy ( ) )

e x c e p t queue . Empty :
p r i n t ( ’ Reco rd ing c o m p l e t e . ’ , f i l e = s y s . s t d e r r )
r e c f l a g = F a l s e
r e c d o n e = True

i f l e n ( d a t a ) < l e n ( o u t d a t a ) :
o u t d a t a [ : l e n ( d a t a ) ] = s e l f . d a t a [ : , None ]
o u t d a t a [ l e n ( d a t a ) : ] = b ’\x00 ’ ∗ ( l e n ( o u t d a t a ) − l e n ( d a t a ) )

e l s e :
o u t d a t a [ : ] = d a t a [ : , None ]

e l s e :
o u t d a t a [ : ] = 0

It’s important to keep in mind that the start and stop conditions are not meant to start or stop
the stream object. They are merely used to determine the situation under which signals are
either reproduced, recorded, or both. Furthermore, this process (playback or acquisition)
needs to be handled in a non-blocking manner, meaning that threads are necessary to
control the concurrent execution of tasks in the main program.

3.3.4 Calculation of impulse response to noise ratio (INR)

As mentioned before, the impulse response to noise ratio (INR) is a numerical value that
serves as an estimator for the decay range in room impulse responses. It is useful because
it’s necessary to have a minimum energy decay range to derive parameters such as rever-
beration time, clarity, and intelligibility from an impulse response.

For instance, to calculate the reverberation time of a room, it’s first assumed that the back-
ward integrated RMS value of the impulse response follows a straight line (when plotted
on a dB scale). The reverberation time is derived from the slope of the regression line over
the largest useful range of the plot. Nevertheless, if the range is not enough due to an inac-
curate measurement, then the obtained reverberation time will be either an overestimation
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or an underestimation of reality.

Taking this into account, a helpful feature of the measurement system is to have an opti-
mization procedure, in which the time length of a sine sweep is increased, until the impulse
response to noise ratio (INR) is high enough for the derivation of acoustical parameters.

Listing 3.5: Function for the calculation of the impulse response to noise ratio (INR)
d e f ge t INR ( i r , f s , r t = ’ t 3 0 ’ ) :

”””
: param s i g n a l : Numpy a r r a y c o n t a i n i n g t h e i m p u l s e r e s p o n s e .
: param f s : Sampl ing f r e q u e n c y o f t h e i m p u l s e r e s p o n s e .
: param r t : R e v e r b e r a t i o n t i m e e s t i m a t o r . ( e . g . , ’ t 3 0 ’ , ’ t 2 0 ’ , ’ t 1 0 ’ , ’ e d t ’ ) .
: r e t u r n s INR : I m p u l s e Response t o No i se R a t i o ( INR ) i n dB .

”””
# S e l e c t i o n o f t h e r e v e r b e r a t i o n t i m e e s t i m a t o r

i f r t == ’ t 3 0 ’ :
i n i t = −5.0
end = −35.0
f a c t o r = 2 . 0

e l i f r t == ’ t 2 0 ’ :
i n i t = −5.0
end = −25.0
f a c t o r = 3 . 0

e l i f r t == ’ t 1 0 ’ :
i n i t = −5.0
end = −15.0
f a c t o r = 6 . 0

e l i f r t == ’ e d t ’ :
i n i t = 0 . 0
end = −10.0
f a c t o r = 6 . 0

# I m p u l s e r e s p o n s e n o r m a l i z a t i o n
i r = i r . r e a l / np . max ( np . abs ( i r . r e a l ) )

# S c h r o e d e r i n t e g r a t i o n
a b s i r = np . abs ( i r ) / np . max ( np . abs ( i r ) )
sch = np . cumsum ( a b s i r [ : :−1]∗∗2) [ : :−1]
s c h d b = 1 0 . 0 ∗ np . log10 ( sch / np . max ( sch ) )

# L i n e a r r e g r e s s i o n
s c h i n i t = s c h d b [ np . abs ( s c h d b − i n i t ) . a rgmin ( ) ]
s c h e n d = s c h d b [ np . abs ( s c h d b − end ) . a rgmin ( ) ]
i n i t s a m p l e = np . where ( s c h d b == s c h i n i t ) [ 0 ] [ 0 ]
end sample = np . where ( s c h d b == s c h e n d ) [ 0 ] [ 0 ]
x = np . a r a n g e ( i n i t s a m p l e , end sample + 1) / f s
y = s c h d b [ i n i t s a m p l e : end sample + 1]
s l o p e , i n t e r c e p t = s t a t s . l i n r e g r e s s ( x , y ) [ 0 : 2 ]

# R e v e r b e r a t i o n t i m e ( T30 , T20 , T10 or EDT)
d b r e g r e s s i n i t = ( i n i t − i n t e r c e p t ) / s l o p e
d b r e g r e s s e n d = ( end − i n t e r c e p t ) / s l o p e
t 6 0 = f a c t o r ∗ ( d b r e g r e s s e n d − d b r e g r e s s i n i t )

# C a l c u l a t i o n o f Ln ( No i se L e v e l ) from t h e i n i t i a l p a r t o f t h e IR .
n o i s e s e g m e n t = i r [ 0 : 3 0 0 0 ]
i r p o w e r = np . sum ( n o i s e s e g m e n t . r e a l ∗ n o i s e s e g m e n t . r e a l ) / n o i s e s e g m e n t . s i z e
Ln = 10 ∗ np . log10 ( 1 / i r p o w e r )

# C a l c u l a t i o n o f S ( 0 ) and L i
peak = f i n d p e a k ( i r )
S0 = 1 0 . 0 ∗ np . log10 ( ( t 6 0 / ( 6∗ np . l o g ( 1 0 ) ) ) ∗( i r [ peak ] ∗ i r [ peak ] ) )
Li = S0 + 10∗np . log10 ( ( 6∗ np . l o g ( 1 0 ) ) / t 6 0 )

# C a l c u l a t i o n o f INR
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INR = abs ( Li − Ln )
r e t u r n INR

The implementation of this feature adapts some of the code of the python-acoustics module
(particularly the steps necessary for the Schroeder integration and the linear regression),
and then adds the procedure to calculate the impulse response to noise ratio (INR), as
presented in [22]. It is a very streamlined calculation procedure, without much overhead,
making it suitable for the Raspberry Pi.

3.3.5 Dispatch and reception of LoRa messages
Even though wireless communication is a feature restricted to the distributed acquisition
mode of the measurement system, it is the backbone of the system, and it is what sets it
apart from other acoustic measurement systems.

In the proposed measurement system, the task is handled by LoRa transceivers through a
rather basic, but capable python library. Other than the parameters associated with trans-
mission power, and frequency band, there is not much to set when using the library. The
library provides the necessary functions to send and receive messages, and also, a basic
implementation of interrupt handling capabilities.

Listing 3.6: Example of configuration and dispatch of LoRa messages
# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ C o n f i g u r a t i o n o f LoRa r a d i o ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ #
CS = D i g i t a l I n O u t ( boa rd . CE0 )
RESET = D i g i t a l I n O u t ( boa rd . D25 )
f r e q = 869 .0
s p i = b u s i o . SPI ( boa rd . SCK, MOSI= board . MOSI , MISO= board . MISO)
rfm9x = a d a f r u i t r f m 9 x . RFM9x( s p i , CS , RESET , f r e q )
rfm9x . t x p o w e r = 23
rfm9x . l i s t e n ( )

# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ D i s p a t c h o f LoRa message ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ #
t x r e c i p i e n t i d = np . u i n t 8 ( 2 )
t x s e n d e r i d = np . u i n t 8 ( 1 )
t x m e s s a g e i d = np . u i n t 8 ( 3 )
t x m e s s a g e f l a g s = np . u i n t 8 ( 0 )
rfm9x . send ( b y t e s ( pay load , ” u t f−8” ) , t x h e a d e r =( t x r e c i p i e n t i d , t x s e n d e r i d ,

t x m e s s a g e i d , t x m e s s a g e f l a g s ) )
rfm9x . l i s t e n ( )

In the configuration stage, the interface between the Raspberry Pi and the LoRa transceiver
is set. Other than configuring the required Raspberry Pi pins, there isn’t much to be done
here because the python library includes all the necessary low-level functions related to
the Serial Peripheral Interface (SPI) protocol.

When it comes to dispatching messages, it is enough to define the structure of the message,
and then use a high-level function to send it. Nevertheless, the definition of the message is
critical, since it is possible to set a specific header for each message, which includes impor-
tant information related to the sender, the recipient, and the message type (see Fig.3.12).

The recipient id and the sender id are self explanatory. They indicate who sent the mes-
sage and to whom it is addressed. The only thing worth mentioning is that the size of these
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fields is one byte long, meaning that it is technically possible to have a total of 256 (i.e.,
28) identified nodes in the distributed system. The message id and the message flags fields
are more interesting as they allow defining a capable communication protocol between the
nodes in the system.

Figure 3.12: Simplest structure of a message frame.

It is worth mentioning that the proposed message frame is quite simple. Nevertheless, it is
possible to make the communication protocol more robust by taking some of the available
payload bytes to add features such as error checking and encryption. Nevertheless, given
the main goal of developing a prototype, these features were omitted.

Reception of LoRa messages is a bit trickier, and as with anything else, there’s a simple
(but inefficient) way of doing it, and there is a not so simple (but more structured) way of
doing it.

Message ID Description Type Payload size [Bytes]
2 Start TPSN synchronization Control Not used
3 Begin playback of level calibration sine sweep Control Not used
4 Stop playback of level calibration sine sweep Control Not used
5 Transmission of sine sweep settings Data 8
8 Begin playback of measurement sine sweep Control Not used
9 Stop playback of measurement sine sweep Control Not used

Table 3.1: Message definition of communication between nodes.

The simple way to check for messages is known as polling. In this context, the word
polling refers to continuously sample the status of the external device (i.e., the LoRa
transceiver) to check for its readiness or state. The problem with this method is that since
the processor repeatedly checks for new messages, a lot of processing time is wasted on
the task, adding a lot of overhead to the operation of the system.

Listing 3.7: Example of reception of LoRa messages (with interrupts)

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ S e t u p i n t e r r u p t c a l l b a c k f u n c t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’
d e f r f m 9 x c a l l b a c k ( r f m 9 x i r q ) :

g l o b a l p a c k e t r e c e i v e d
g l o b a l t imes t amp
t imes t amp = t ime . t ime ( )
p a c k e t r e c e i v e d = True

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ C o n f i g u r a t i o n o f RFM9x Lora Radio ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’
CS = D i g i t a l I n O u t ( boa rd . CE0 )
RESET = D i g i t a l I n O u t ( boa rd . D25 )
s p i = b u s i o . SPI ( boa rd . SCK, MOSI= board . MOSI , MISO= board . MISO)

51



Chapter 3. Implementation of the Measurement System

rfm9x = a d a f r u i t r f m 9 x . RFM9x( s p i , CS , RESET , 8 6 9 . 0 )
rfm9x . t x p o w e r = 23
n o d e i d = 2 # Node ID a s s i g n e d by t h e u s e r
rfm9x . l i s t e n ( ) # Radio i s i n i t i a l i z e d i n l i s t e n i n g mode

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ C o n f i g u r a t i o n o f t h e i n t e r r u p t p i n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’
RFM9X G0 = 22 # Corresponds t o GPIO22 o f t h e Raspber ry Pi .
i o . se tmode ( i o .BCM)
i o . s e t u p (RFM9X G0 , i o . IN , p u l l u p d o w n = i o .PUD DOWN)
i o . a d d e v e n t d e t e c t (RFM9X G0 , i o . RISING )
i o . a d d e v e n t c a l l b a c k (RFM9X G0 , r f m 9 x c a l l b a c k )

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Main loop ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’
w h i l e True :

i f p a c k e t r e c e i v e d :
i f ( rfm9x . r x d o n e != rfm9x . t x d o n e ) :

p a c k e t = rfm9x . r e c e i v e ( t i m e o u t = None , w i t h h e a d e r =True , r x f i l t e r = n o d e i d )
i f ( p a c k e t != None ) :

r x r e c i p i e n t i d = p a c k e t [ 0 ]
r x s e n d e r i d = p a c k e t [ 1 ]
r x m e s s a g e i d = p a c k e t [ 2 ]
r x m e s s a g e f l a g s = p a c k e t [ 3 ]
i f ( r x m e s s a g e i d == 2) :

# Do s o m e t h i n g
e l i f ( r x m e s s a g e i d == 3) :

# Do s o m e t h i n g d i f f e r e n t
p a c k e t r e c e i v e d = F a l s e

e l s e :
# Do n o t h i n g

On the other hand, the not so simple way relies on the use of a processor feature known as
interrupt handling. In simple terms, each time a message is received, the LoRa transceiver
sends an interrupt signal to the Raspberry Pi.

This interrupt signal is special in that it can interrupt the currently executing code, so that
the external event can be processed promptly. After the external event is processed, the
processor returns to its previous state and resumes the execution of the program. And al-
though this feature is commonly used in real-time computing systems, it still possible to
use it to some degree of success with Linux-based operating systems.

When it comes to the code implementation of interrupt handling, it is necessary to specify
a couple of things. First, it is essential to define the interrupt callback function and config-
ure the pin associated with interrupt handling (GPIO22 in this case). The callback function
determines the actions that the processor should take when an interrupt signal is asserted.
It should be small to avoid any processing overhead, so in most cases, it just raises a flag
(variable) that the main loop of the program checks with each iteration. Second, once a
message has been received, the main loop must react according to the payload, and per-
form the proper task.

One particular aspect of the interrupt callback function, is that for this particular case, be-
sides raising a flag (notifying about the message), it must also save a timestamp with the
message reception time, as this is essential for the implementation of the TPSN synchro-
nization.
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3.3.6 Synchronization with the Timing-sync Protocol for Sensor Net-
works (TPSN)

The first thing to consider is that node synchronization with TPSN relies on the functions
written for the basic exchange of messages with the LoRa transceivers. The synchroniza-
tion begins when one of the nodes (now known as the master node) sends a message. This
message has a specific ID number (in this case, 2), which indicates the second node (now
known as the slave node) that a synchronization procedure has begun.

When the slave node receives the message from the master node, it saves a timestamp
corresponding to T2, and acknowledges the message by replying to the master node. As
soon as the node is about to send the message, it saves a new timestamp corresponding
to T3, and adds it to the message. Finally, once the master node receives the reply from
the slave node, it saves a new timestamp corresponding to T4, and uses all four values to
calculate the clock drift and the propagation delay.

Listing 3.8: Implementation of TPSN on master node.
d e f o n s y n c ( ) :

g l o b a l p a c k e t r e c e i v e d
t x r e c i p i e n t i d = np . u i n t 8 ( 2 )
t x s e n d e r i d = np . u i n t 8 ( 1 )
t x m e s s a g e i d = np . u i n t 8 ( 2 )
t x m e s s a g e f l a g s = np . u i n t 8 ( 0 )
T1 = s t r ( t ime . t ime ( ) )
rfm9x . send ( b y t e s ( T1 , ” u t f−8” ) , t x h e a d e r =( t x r e c i p i e n t i d , t x s e n d e r i d ,

t x m e s s a g e i d , t x m e s s a g e f l a g s ) )
rfm9x . l i s t e n ( )
w h i l e True :

i f p a c k e t r e c e i v e d :
i f ( rfm9x . r x d o n e != rfm9x . t x d o n e ) :

p a c k e t = rfm9x . r e c e i v e ( t i m e o u t = None , w i t h h e a d e r =True )
h e a d e r T o = p a c k e t [ 0 ]
header From = p a c k e t [ 1 ]
h e a d e r I d = p a c k e t [ 2 ]
h e a d e r F l a g s = p a c k e t [ 3 ]
p a y l o a d = s t r ( p a c k e t [ 4 : l e n ( p a c k e t ) ] , ” u t f−8” )
p r o c p a y l o a d = p a y l o a d . s p l i t ( )
T2 = p r o c p a y l o a d [ 0 ]
T3 = p r o c p a y l o a d [ 1 ]
T4 = t imes t amp
c l o c k d r i f t = 0 . 5 ∗ ( f l o a t ( T2 )−f l o a t ( T1 ) )−(( f l o a t ( T4 )−f l o a t ( T3 ) ) )
p r o p d e l a y = 0 . 5 ∗ ( f l o a t ( T2 )−f l o a t ( T1 ) ) + ( ( f l o a t ( T4 )−f l o a t ( T3 ) ) )
b r e a k

p a c k e t r e c e i v e d = F a l s e
r e t u r n

Listing 3.9: Implementation of TPSN on slave node.

w h i l e True :
i f p a c k e t r e c e i v e d :

i f ( rfm9x . r x d o n e != rfm9x . t x d o n e ) :
p a c k e t = rfm9x . r e c e i v e ( t i m e o u t = None , w i t h h e a d e r =True , r x f i l t e r = n o d e i d )
i f ( p a c k e t != None ) :

r x r e c i p i e n t i d = p a c k e t [ 0 ]
r x s e n d e r i d = p a c k e t [ 1 ]
r x m e s s a g e i d = p a c k e t [ 2 ]
r x m e s s a g e f l a g s = p a c k e t [ 3 ]
i f ( r x m e s s a g e i d == 2) :
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T2 = t imes t amp
rfm9x . send ( b y t e s ( s t r ( T2 ) +” ”+ s t r ( t ime . t ime ( ) ) , ” u t f−8” ) , t x h e a d e r

= ( 1 , 2 , 0 , 0 ) )
rfm9x . l i s t e n ( )
p r i n t ( ”MSG: C a l i b r a t i o n wi th TPSN” )

e l s e ( r x m e s s a g e i d != 2) :
# Do some o t h e r t h i n g s

p a c k e t r e c e i v e d = F a l s e

3.3.7 Design of graphical user interface (GUI)
Even though a graphical user interface is not a fundamental feature of the measurement
system, it offers some benefits when conducting measurements. A very simple graphical
user interface (GUI) was developed using Tkinter to provide visual feedback to the user
(see Fig.3.13). The interface allows the user to input parameters associated with the exci-
tation sine sweep, and also buttons to control measurement sequences. Additionally, the
integration between Tkinter and matplotlib allows basic signal visualization and analysis.

Figure 3.13: Graphical User Interface for Master Node.

The user can control the following parameters of the measurement system:

• Duration of sine sweep in seconds.
• Duration of silence after sine sweep in seconds.
• Start frequency in Hertz.
• Stop frequency in Hertz.
• Desired impulse response to noise ratio (INR) in dB.
• Number of channels for acquisition (one or two).
• Visualization of either the recorded signal or the calculated impulse response.
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Furthermore, there is a message window where status information is printed. It’s worth
mentioning that buttons are enabled or disabled depending on the current status of the mea-
surement process. For instance, a user can not initialize a measurement if the procedures
associated with node synchronization and INR optimization have not taken place.

3.4 Modes of operation and system integration
So far, only a rather basic description of the operation modes of the system has been
given. In simple terms, the system can operate in either a stand-alone mode or in a dis-
tributed mode composed by two or more nodes. This section elaborates on these modes of
operation, and clarifies to which extent they can be used.

3.4.1 Stand-alone mode
The stand-alone mode is quite simple and straightforward. It’s supposed to offer the user a
way to conduct rapid measurement of impulse responses using a python script. This means
that the system does not have a graphical user interface (GUI), and parameter configuration
is done directly on the code. There is no need for LoRa transceivers, so the measurement
process is simplified. Nevertheless, it does include the measurement optimization through
the calculation of the impulse response to noise ratio (INR), and after the execution of the
script, a WAVE file is stored in the Raspberry Pi for later use and analysis. Furthermore,
given that the stand-alone mode operates as a script, it is possible to schedule it as a cron
job, so that measurements can take place at specific times completely unattended.

3.4.2 Distributed mode
Distributed operation is far more interesting because it requires at least two nodes to func-
tion. And even though each node executes a different program, the programs interact with
each other and synchronize their behavior.

It was previously established that the node that initiates the TPSN synchronization process
is the master node, and the other node is the slave node. This distinction can be extended,
because the master node is also the one that performs the audio acquisition, while the
slave node is limited to playback. Furthermore, the master node is the only node that has
a graphical user interface, and the slave node is designed such that when the script exe-
cutes, it enters into an endless loop that only reacts when the master node sends a message.

It is important to clarify that there was no particular reason behind the decision to let the
master node handle acquisition instead of the slave node. The measurement system could
be adjusted so that the user can decide which tasks should be handled by which node. As
described in the previous section, audio acquisition and audio playback are independent
features that can be adjusted to a specific need. Nevertheless, it makes sense to make the
recording node the master node, as this is the node where SNR could be an issue while
recording signals.
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Chapter 4
Evaluation of the implemented
measurement system

The manufacturing of the custom-made printed circuit board (PCB) marks the end of the
implementation phase, and the beginning of the testing phase. This chapter describes the
methodology used to test and evaluate the performance of the implemented prototype.

First, a brief description of the hardware verification of the PCB is presented. This verifi-
cation consisted of a few measurements and tests performed with a power supply, a signal
generator, a microphone, and an oscilloscope. Next, a summary of all the steps taken to
evaluate the audio quality of the fully-functioning prototype is presented. A measurement
system composed of an external sound card and a laptop computer served as a baseline to
assess the performance of the prototype. Finally, the distributed operation of the system is
evaluated with regards to node synchronization and clock mismatch.

4.1 Hardware verification of printed circuit board
As mentioned before, printed circuit board design is an iterative process. Computer sim-
ulations can only describe to some extent the way a circuit board will behave once it has
been manufactured. Additionally, with an increasing number of components and connec-
tions, there is an increased chance of making mistakes in the routing process. Unluckily
for the development of the prototype, time constraints limited this iterative process to one
printed circuit board, putting more pressure on the design and debugging parts of the pro-
cess.

Once the PCB was manufactured and assembled, a series of tests took place to locate
design and assembly faults that could lead to unexpected behavior. These tests were con-
ducted in a specific order to ensure that faults would not propagate from one point to
another, compromising the different integrated circuits that compose the PCB.
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Figure 4.1: Assembled printed circuit board connected to the Raspberry Pi.

The testing process could be described as incremental. Starting with power supply tests,
and ending with a full system test.

1. Test the power supply to the different integrated circuits (ICs):

• Connect PCB to an external power supply. Set it at 5V, and verify output
current.

• Verify voltage output of phantom power supply (48V).

• Verify voltage output of regulated 5V power supply.

• Verify voltage output of regulated -5V power supply.

2. Test connection between phantom power supply (48V) and microphone pre-amplifiers.

• Check for voltage drops or current spikes.

• Check for voltage ripples at the ouput of the phantom power supply.

• Check for electrical noise at the input and output of the microphone pre-
amplifiers.

3. Check microphone pre-amplifiers with signal generator while the phantom power
supply is switched off.

• Use the signal generator to feed a 1kHz sine wave (with an amplitude of 10mV)
to the pre-amplifiers. Check the output at different gain settings (0dB, 12dB,
24 dB, 36 dB and 48dB).

• Use oscilloscope to visualize FFT of the output of the pre-amplifiers to check
the signal-to-noise ratio and the presence of harmonics.
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4. Check microphone pre-amplifiers with condenser microphone while the phantom
power supply is switched on.

• Verify general behavior of output with oscilloscope.

• Use sound calibrator to generate a 1kHz tone at 94dBSPL, and visualize FFT
of the output with the oscilloscope.

5. Check the full system (microphone pre-amplifiers and phantom power supply) using
a condenser microphone, while connected to the Raspberry Pi for signal acquisition.

• Verify general behavior of output with oscilloscope.

• Use sound calibrator to generate a 1kHz tone at 94dBSPL, and run a python
script to capture the audio signal. Perform an analysis on the captured signal
to evaluate parameters such as harmonic distortion, signal-to-noise ratio, etc.

The first and only PCB design fault was identified while testing the power supply to the
different integrated circuits of the PCB (see Fig.4.2). There was a missing connection
between the unregulated 5V power supply rail and the input pin of the low drop linear
regulator used to provide a regulated power supply for the microphone pre-amplifiers.
Luckily, this fault was easily fixed by soldering a wire between the pads of two capacitors.

Figure 4.2: Missing connection between U6 and the 5V power rail (fixed).

Once the fault was fixed, the testing process continued successfully without detecting any
design faults or noise-related problems. The fourth test was critical because it was the first
test involving the connection of the PCB with a measurement microphone. A Behringer
ECM8000 condenser microphone was polarized and pre-amplified using the PCB. A sound
calibrator (Brüel & Kjær Type 4230) provided a pure 1kHz tone with a sound pressure level
of 94dB, while an oscilloscope provided a visualization of the frequency response of the
system (see Fig.4.3).
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Figure 4.3: FFT of pre-amplifier output with a 1kHz input of 10mV amplitude (as seen on the
display of the oscilloscope).

Figure 4.4: Spectral analysis of acquired signal using Audacity (Hann window of size 1024).

Finally, the hardware tests concluded with the connection of the PCB to the rest of the sys-
tem (i.e., Hifiberry board and Raspberry Pi). The setup was identical to the previous test,
but the output of the microphone pre-amplifier was connected to the HifiBerry DAC+ADC.
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A simple python script developed with the only purpose of recording 30 seconds of au-
dio was employed to capture the response of the system. Just as with the previous test,
a condenser microphone and sound calibrator were used. Once the audio acquisition was
completed, the open-source software Audacity provided the tools to do some spectral anal-
ysis of the recording (see Fig.4.4). In order to evaluate the full potential of the system, the
Hifiberry DAC+ADC was configured for a bit depth of 24 bits, removing the dynamic
range limitations of using 16 bits audio.

4.2 Evaluation of audio quality
Several parameters can be evaluated to determine the audio quality of a system. Some of
them can be easily measured, while others may require special equipment. Furthermore,
some parameters are related to the quality of the analog front-end, and then there are some
related to the system’s response in the digital domain. For instance, one parameter strictly
related to the analog front-end is the total harmonic distortion (THD), while a parameter
linked to the digital domain is the latency of the digital chain.

Taking this into account, this section includes an analysis of the following audio quality
parameters:

• Total Harmonic Distortion (THD)

• Crosstalk between channels

• Minimum achievable audio latency

• Frequency response

It is quite important to clarify that these parameters were not evaluated under strict mea-
surement conditions. It wasn’t possible to do the measurements in an anechoic chamber,
or to use special equipment made for the analysis of electroacoustic systems. The mea-
surements took place in a regular non-isolated room, and the only tools available were a
sound calibrator and a condenser microphone. This was one of the reasons for which the
signal-to-noise ratio (SNR) was not measured, as the obtained value would be limited by
the background (ambient) noise of the room.

Of course, given the conditions under which the measurements took place, it is reasonable
to ask about the usefulness of the obtained results. Nevertheless, since the measurements
were also performed on a system composed of an external sound card (Edirol UA-25) and
a laptop computer, even if they do not provide an absolute reference about the system’s
audio quality, they do provide a relative reference with respect to commonly used audio
hardware.

4.2.1 Total Harmonic Distortion
Mathematically speaking, the total harmonic distortion can be defined as the ratio of the
sum of the root mean square (RMS) voltages of the harmonics of the signal to the root
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mean square (RMS) voltage of the fundamental.
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√
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where Vn is the nth harmonic, and Vf is the fundamental.

Since it’s possible to obtain a Fast Fourier Transform (FFT) of the recorded signal, this
second expression is useful because it simplifies the calculation of the THD by using
decibels relative to the carrier (dBc). First consider that decibels relative to the carrier
express a power ratio between two signals:

dBc = 10 log

(
Pn

Pf

)
(4.3)

Figure 4.5: Graphical representation of power ratio between fundamental frequency and harmonic.

The idea is to use the dBc values of the harmonics, which can be visually obtained from
an FFT plot (basically count the amount of dB from the fundamental down to the specific
harmonic), and then convert these values to power ratios.
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Once the power ratios are available, the calculation of the total harmonic distortion is as
simple as summing all harmonic power ratios, take the square of the sum, and multiply the
result by 100 to obtain a percentage.

Two identical measurements took place to evaluate the performance of the measurement
system. The first measurement involved the prototype (see Fig.4.6). The sound calibrator
was used to produce a pure tone of 1 kHz, which was recorded by the measurement system
using a python script. The pre-amplifier gain was set to 36 dB to ensure that no saturation
would occur, and the system was configured to use a sampling rate of 44.1 kHz and a bit
depth of 24 bits.

Figure 4.6: FFT analysis to extract harmonic components - AMS Prototype.

Figure 4.7: FFT analysis to extract harmonic components - Edirol UA-25.

The second measurement involved a laptop computer and an Edirol UA-25 USB sound
card (see Fig.4.7). The software Audacity was used to record the test signal, and the gain
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of the pre-amplifier in the Edirol sound card was set so that both signals (i.e., the one
recorded with the prototype and the one recorded with the Edirol sound card) had roughly
the same RMS value.

Both signals were compared using the same signal processing in python, which consisted
of obtaining the FFT to derive the power ratios between the fundamental and the first seven
harmonics (see Table 4.1).

Harmonic 2 kHz 3 kHz 4 kHz 5 kHz 6 kHz 7 kHz 8 kHz THD [%]
AMS Prototype

[dBc]
52.12 68.12 80.18 90.22 97.23 85.72 91.97 0.2511

EDIROL UA-25
[dBc]

50.83 68.03 81.07 87.43 94.93 84.93 91.54 0.2903

Table 4.1: Calculation of total harmonic distortion (THD) using dBc values with a carrier of 1 kHz.

4.2.2 Crosstalk between channels
Crosstalk refers to a phenomenon by which an audio signal going through one channel of
the system affects another channel. Expressed as the ratio of the undesired signal in the
unstimulated channel to the signal in the stimulated channel, it is mostly caused by the ca-
pacitive coupling between channels. Something that depends on the layout of the printed
circuit board (PCB).

Crosstalk provides a figure of merit that can be used to evaluate the overall performance
and audio quality of a system. A rough estimate of the crosstalk of the system can be mea-
sured by recording both channels of the system, while connecting one input of the system
to the sound calibrator, and leaving the other disconnected. If there is crosstalk, it should
be possible to visualize it by obtaining the spectrum of the recorded signals with a Fast
Fourier Transform (FFT) and then plotting the results in the same figure.

A similar setup to the one employed to measure the Total Harmonic Distortion (THD) was
used to measure the crosstalk between the channels. The main difference was that for this
measurement, both channels were recorded instead of only the one connected to the micro-
phone (see Fig. 4.8 and Fig.4.9). Furthermore, just as it was done with the measurement
of the Total Harmonic Distortion (THD), the measurement procedure was also carried out
for the Edirol UA-25 sound card to provide a baseline for comparison (see Fig.4.10 and
Fig.4.11).

It is worth mentioning that crosstalk differs depending on which channel is stimulated.
Therefore, it is necessary to measure the crosstalk from channel 1 into channel 2, and vice
versa. This occurs because each channel follows a different electrical path on the printed
circuit board, leading to different levels of capacitive coupling.

Crosstalk measurements are usually done with specialized equipment that can perform
sweeps on the device under test, so that a crosstalk value is obtained for the entire fre-
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Figure 4.8: FFT of captured signal with the AMS Prototype (Crosstalk from CH1 to CH2).

Figure 4.9: FFT of captured signal with the AMS Prototype (Crosstalk from CH2 to CH1).

quency range. Nevertheless, since the only available equipment to perform tests was a
sound calibrator, the crosstalk measurement limited to obtaining a single value of crosstalk
for a test frequency of 1 kHz (see Table 4.2).

Device Under Test Crosstalk from CH1 to CH2 [dBc] Crosstalk from CH2 to CH1 [dBc]
AMS Prototype 95.8 90.9

Edirol UA-25 100.6 111.7

Table 4.2: Obtained crosstalk values for a frequency of 1 kHz.
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Figure 4.10: FFT of captured signal with the Edirol UA-25 (Crosstalk from CH1 to CH2).

Figure 4.11: FFT of captured signal with the Edirol UA-25 (Crosstalk from CH2 to CH1).

4.2.3 Round Trip Latency
One of the desirable features for the measurement system is real-time stream process-
ing. The concept of real-time has been previously described in the context of operating
systems, where it refers to the capability of the operating system to ensure deadline deter-
minism when executing tasks. Similarly, real-time stream processing refers to the system’s
ability to guarantee some level of determinism when processing audio signals. The idea is
to have control of the parameters involved in the audio chain, so that the system behaves
predictably.

A particularly important parameter related to real-time stream processing is audio latency.
In simple terms, audio latency is the time delay experienced during playback or acqui-
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sition, due to the processing required to convert signals between the digital and analog
domains.

Figure 4.12: Audio I/O block diagram.

Furthermore, depending on the direction of the signal flow, the following distinction can
be made (see Fig.4.12). Output latency is measured as the time delay between the time
of generation of an audio frame, and the time that the audio frame is heard through the
speaker. And input latency is measured as the time delay between the time that audio
enters the sound card and the time that the frame is output by the processing stage. If
the input latency and output latency can be kept consistent, the system is said to behave
predictably.

Additionally, it is also desirable to keep the latency as low as possible. Something that
in practice is limited by the analog-digital conversion chain, which is composed by the
digital-to-analog and analog-to-digital conversion, the digital signal processing, and the
computer I/O architecture.

The digital signal processing and the computer I/O architecture are the main contributors
to the latency in a system. Digital processors (like the ones inside a sound card) tend to
process audio in chunks of data (frames), and the size of that chunk depends on the needs
of the algorithm. The smaller the chunk is, the more frequent the audio data is sent to
the computer to be processed (leading to less latency), but also more processing power is
needed to handle the incoming data.

Consider a digital processor that processes audio frames with a size no smaller than 256
samples (with a sampling frequency of 44.1 kHz). Not taking into account the latency
associated with the analog-to-digital conversion process, the minimum latency achievable
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by the digital processor will be:

Latency =
256

44100
· [samples]

[samples/s]
= 5.8049[ms] (4.5)

In practice, it is hard to measure individual values for input and output latency (unless
some special measurement equipment is available). Therefore, what is known as round
trip latency is preferred when conducting basic measurements on a system. Round trip
latency can be defined as the sum of input latency, application processing time, and output
latency.

A relatively straightforward measurement procedure consists of connecting the input and
the output of the system with a short cable, effectively creating a closed-loop. Next, a test
signal is reproduced while the system simultaneously records what is present at the input
of the system. By comparing the delay (in samples) between the reproduced signal and
the recorded signal, it is possible to derive the time delay and obtain the round trip latency
for a given sampling frequency.

In this case, the test signal was a pulse train with a frequency of 5 Hz, and a pulse width
of 10 ms. The measurement system was configured with a sampling frequency of 44.1
kHz, and the round trip latency was measured for different frame sizes ranging from 256
to 1024 samples (see Fig.4.13, Fig.4.14, and Fig.4.15).

Figure 4.13: Pulse train and recorded signal used to determine latency.

It was determined that the minimum frame size that would not cause overruns (i.e., input
signal drops occur when the processing stage does not keep pace with the acquisition of
samples) was 384 samples (see Table 4.3).

Frame Size [samples] Round Trip Latency [samples] Round Trip Latency [ms]
1024 2076 47.07
768 1566 35.51
512 1054 23.9
384 796 18.04

Table 4.3: Obtained round trip latency values for a sampling frequency of 44.1 kHz.
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Figure 4.14: Round trip latency measurement with a sampling rate of 44.1 kHz and a frame size of
384 samples.

Figure 4.15: Round trip latency measurement with a sampling rate of 44.1 kHz and a frame size of
1024 samples.

4.2.4 Frequency Response
To evaluate the frequency response of the system, it is enough to perform a closed-loop
measurement of the system including both nodes (see Fig.4.16). This way, not only is it
possible to test the overall performance of the measurement system, but it is also possible
to evaluate the frequency response.

Figure 4.16: Closed-loop connection to measure system’s frequency response.

It is important to clarify that this measurement did not involve the connection to a mi-
crophone and therefore, it does not consider the frequency response of the microphone
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pre-amplifier. Nevertheless, it does describe the system in terms of the frequency response
of the ADC and the DAC. In order to perform a full measurement of the system, it would be
necessary to use an anechoic chamber and special equipment not available at the moment
of the measurement.

Figure 4.17: Obtained impulse response of the measurement system (Time domain).

Figure 4.18: Obtained impulse response of the measurement system (Frequency domain).

4.3 Distributed Operation
There are two equally important aspects related to the performance of the measurement
system when using distributed acquisition. The first one involves the possibility of a clock
mismatch between the nodes, which manifests itself in the form of skewed impulse re-
sponses. And the second has to do with node synchronization and communication. Ideally,
the clocks in both systems should be synchronized so that it is possible to have sample-
accurate acquisition. The following section presents the results obtained when conducting
test measurements with the prototype operating in distributed acquisition mode.

4.3.1 Clock Mismatch
Just as with the frequency response, the simplest way to verify the presence of clock mis-
match between both nodes is to connect them in a closed-loop, and measure the impulse
response of the entire system (see Fig.4.19 and Fig.4.20). As explained before, the longer
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the test signal is, the more severe the effect of clock mismatch will be in the obtained im-
pulse response. Therefore, a sine sweep with a length of sixty seconds was used to check
for clock mismatch issues.

Figure 4.19: Recorded sine sweep (60 second duration).

Figure 4.20: Derived impulse response from recorded sine sweep.

It is worth mentioning that sine sweeps should be kept relatively short. Increasing the du-
ration of the sine sweep has positive effects such as an improvement in the signal-to-noise
ratio, but it also increases the risk of pulsive noises occurring during the measurement [5].

4.3.2 Node Synchronization

As mentioned before, node synchronization was handled using a high-level implementa-
tion of the Timing-sync Protocol for Sensor Networks (TPSN). Using the interrupt han-
dling capabilities of the Raspberry Pi, callback functions were implemented to get the
timestamps required for node synchronization. To test this, each node was placed at a dis-
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tance of two meters from each other, and using the graphical user interface (GUI) devel-
oped for the project, synchronization was repeatedly executed to see the variation between
the obtained values of propagation delay and clock drift (see Table 4.4).

Propagation Delay [ms] Clock Drift [ms]
656.07357025 -412.71352767
645.16115188 -394.16551583
659.37674045 -421.05281358
665.65346717 -389.45841876
668.97165775 -408.47194193
657.8116416 -394.55652236
662.49477863 -392.9709196
662.14740227 -383.4086656
642.99750328 -399.66797828
653.27215194 -387.0687484
646.1136341 -384.45591926
655.88605403 -377.12013721
649.81400966 -386.25442981
651.53503417 -411.78703308
656.92877769 -376.91903114
657.63366222 -414.87801074
666.7869091 -387.75658607
658.08665752 -376.3424158
651.91233158 -390.71500301
651.12827769 -379.11013721

Table 4.4: Obtained synchronization values (20 sequential attempts).

4.3.3 Basic System Demonstration
Finally, to provide a quick demonstration of the measurement system functionalities, a
measurement was executed using the distributed acquisition mode. The measurement it-
self has no use as it was executed using a small loudspeaker, but it illustrates how all
components of the measurement system integrate and operate together. The measurement
process consists of the following steps.

1. Execute the Python application on the Master node. The application opens a graph-
ical user interface (GUI) which gives the user control of the system.

2. Execute the Python script on the slave node. This initializes the connection with the
master node who sends commands using the LoRa transceivers.

3. Synchronize the nodes using the Node Synchronization tab on the graphical user
interface (GUI).

4. Select the number of channels to use during acquisition (Single or Dual channel) in
the Audio Input Mode tab.

5. Press the Play Sweep button to test and adjust the output level of the loudspeaker
connected to the slave node. Once the output level is adjusted, press the button again
to stop the test signal.
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6. Update the test signal fields (duration, silence, start frequency, stop frequency, and
INR), or use the default values.

7. Press the INR Optimization button to run an acquisition process and calculate the
INR to see if it fulfills the requirement defined before. If it does, it will indicate the
user that the system is ready for the actual measurement.

8. Press the Obtain IR button in the Measurements tab. Wait until the acquisition is
complete and verify results in the Graphics section of the graphical user interface.

9. If the results are adequate, press the Export button to export a 32 bit floating point
WAV file.

Figure 4.21: Full integration of measurement system - Basic setup.

Figure 4.22: Full integration of measurement system - GUI (as seen on the display).
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Chapter 5
Discussion of obtained results

Throughout this document, it has been frequently mentioned that embedded system’s de-
sign is an iterative process. Each iteration involves an evaluation and analysis of the ob-
tained results in the hope that the next prototype improves the shortcomings of the previous
one. It is not the objective of this work done to deliver a fully functioning measurement
system, as this is something that cannot be attained by a single person in such a short time.
Nevertheless, it is the objective of this work to test and evaluate a concept and to assemble
a prototype that might serve as a starting point for a robust, flexible, and open-source dis-
tributed measurement system.

This chapter offers a discussion on the implemented design, its capabilities, and more
importantly, its shortcomings and limitations. It includes a section devoted to the audio
quality of the measurement system, and the way that it performs in stand-alone mode. It
also includes some comments related to node synchronization, as it is a critical part of the
project. Finally, it concludes with some remarks concerning possible improvements and
future work.

5.1 Audio Quality
The design of the PCB was one of the most challenging aspects of the project. Mainly
because there was not sufficient time to iterate and improve the design, and because the
analog front-end is very susceptible to electrical noise. Even if a very high-quality ADC
is chosen, if the microphone pre-amplifier has design issues, these issues will propagate
through the system and affect its overall performance.

5.1.1 Total Harmonic Distortion
The results obtained for the Total Harmonic Distortion (THD) are quite interesting because
they suggest that the implemented prototype not only has less harmonic distortion com-
pared to the Edirol UA-25 sound card, but that it also has fewer components of harmonic
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distortion. The numerical analysis considered only the first seven orders of harmonic dis-
tortion, but when inspecting Fig.4.6 and Fig.4.7, it is possible to see that the Edirol UA-25
sound card has some significant components of harmonic distortion above 8 kHz that the
implemented prototype doesn’t have.

There might be several reasons for these results. First, the total harmonic distortion in
the Edirol UA-25 sound card may be higher because of aging. This sound card was first
released in 2005, so wear and tear likely affected the obtained results. Second, it is also
possible that the technology behind operational amplifiers and integrated circuits has im-
proved over the years, providing better performance.

5.1.2 Crosstalk between channels
An analysis of Fig.4.8, Fig.4.9, Fig.4.10 and Fig.4.11 shows a similar behavior between
the implemented prototype and the Edirol UA-25 sound card. Nevertheless, there is one
aspect that is noteworthy about the crosstalk measurements done to the prototype, specifi-
cally, the captured signal in the unstimulated channels.

There seems to be a repetitive pattern on the crosstalk measurements performed on the
implemented prototype. In both measurements, there are some spikes at some frequencies
(see frequencies 750 Hz, 850 Hz, 950 Hz, etc. in Fig.4.8). A pattern that repeats in other
frequencies as well.

Figure 5.1: Spectrogram of desired signal captured using CH1 of measurement system.

There is no apparent reason for this behavior, as it can’t be explained as something related
to harmonic distortion, or even intermodulation distortion. Nevertheless, when plotting a
spectrogram of the captured signals (see Fig.5.1 and Fig.5.2), it is possible to observe that
there is no significant amount of crosstalk, and that these spikes, including the one at 1
kHz are bellow 100 dB the amplitude of the test tone captured at the stimulated channel.
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5.1 Audio Quality

Figure 5.2: Spectrogram of signal captured with CH2 of measurement system.

The spectrogram of Fig.5.2 also reveals the presence of a low energy signal at a frequency
of 8 kHz, something that implies the presence of a noise source during the measurement.
Unfortunately, since it was impossible to conduct the measurements in a well-controlled
environment, it wasn’t possible to locate the source of this faint noise.

One possibility is that the inductor used in the polarization power supply is producing what
is known as coil whine. Coil whine refers to an undesirable noise emitted by an electronic
component vibrating as power runs through an electrical cable. Anything with a power
source can create coil whine to some degree, but it is often caused by an electrical current
going through a power-regulating component. When physically approaching to the power
supply, it is possible to hear this faint electrical noise that could be the cause of the signal
seen in Fig.5.2.

To make sure that this is the cause of the noise in the captured signal, it would be necessary
to conduct a measurement in an anechoic chamber, switch on the power supply, and use a
sound level meter to measure under controlled conditions the noise emitted by the power
supply.

5.1.3 Audio Latency

Due to the way that audio latency was measured, it isn’t possible to obtain a separate value
for the output latency and the input latency of the system. Nevertheless, it appears that
the minimum round trip latency that can be achieved is approximately 18 ms. A value
that roughly corresponds to 796 samples at a sampling frequency of 44.1 kHz, and that it’s
mostly limited by the hardware capabilities.

The results suggest that the python-sounddevice module gives full control of the desired
frame size (buffer size). Nevertheless, it is important to be aware that a value below 384
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samples will cause the system to become unstable or even unusable. Instability usually
manifests itself in the form of audio glitches caused by underruns and overruns. The term
underrun refers to an output signal silence that occurs when the software does not supply
samples at the rate the sound card demands, and the term overrun relates to input signal
drops that occur when the processing stage does not keep pace with the acquisition of
samples.

It is worth mentioning the possibility of reducing audio latency by improving the hardware
(perhaps by using the new Raspberry Pi Model 4), or by keeping the same hardware but
using another Linux kernel patch. There is a constant development of new and improved
kernel patches. Nevertheless, this second approach is more challenging because the use of
kernel patches might improve aspects such as audio latency, but it might also affect others,
such as the general stability of the operating system.

Finally, and as mentioned before, the minimum latency requirement is one that is depen-
dant on the application. Therefore, all that can be said is that at least for the measurement
of impulse responses in rooms, a round trip latency of 18 ms does not affect the results,
and it’s not a substandard value, when compared to regular external sound cards which
range between 10 ms and 25 ms [31].

5.2 Stand-Alone Operation
Overall, the stand-alone mode of operation is quite stable and robust. The implementation
of the exponential swept-sine method employed for the derivation of impulse responses ap-
pears to be reliable and efficient. It doesn’t introduce any artifacts to the obtained impulse
response, and the closed-loop measurements conducted while implementing the prototype
show that the measurement system has a flat response (see Fig.4.17 and Fig.4.18), some-
thing particularly important when designing measurement instrumentation.

Additionally, the calculation of the impulse response to noise ratio (INR) offers a quick
way to verify that the measurements are suitable for the derivation of acoustical parame-
ters such as reverberation time. Nevertheless, this feature of the measurement system must
be tested under many different measurement scenarios to validate its robustness, as it was
only possible to test it with a set of room impulse responses measured for the specializa-
tion project mentioned at the beginning of this document.

Furthermore, it is worth mentioning that there is room for improvement when it comes to
signal processing features. An example of this is the post-processing required to truncate
the length of the impulse response after it has been derived. Due to the convolution pro-
cess, the resulting impulse response has a total length that depends on the length of the
sine sweep used as an excitation signal. Nevertheless, the section of the impulse response
that has useful information is often much shorter than this.

Consider the use of a sine sweep with a duration of 30 seconds to obtain a room impulse
response where the reverberation time is approximately 5 seconds. There will be a signif-
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icant part of the tail of the impulse response that has no useful information, and that can
be removed without compromising the results. This might seem like a simple feature to
add, but in practice, it can be quite challenging given that each room impulse response has
a specific behavior and noise floor.

Finally, there is plenty of other features that can be added, and that relate to specific mea-
surement scenarios, such as the calculation of room acoustic parameters according to ISO
3382 (e.g., EDT, T10, T20, T30, D50, C80). So far, the prototype only allows the deriva-
tion of impulse responses, but that doesn’t mean that the hardware isn’t capable of doing
a lot more signal processing.

5.3 Distributed Operation and Node Synchronization

Given that the base code for the distributed acquisition mode is the same as for the stand-
alone operation mode, the comments made to the stand-alone mode also apply to the dis-
tributed acquisition mode. Nevertheless, as mentioned before, there is one important as-
pect that differentiates both acquisition modes. Distributed acquisition relies on the use
of the Timing-sync Protocol for Sensor Networks (TPSN), which ideally, makes use of
the propagation delay and the clock drift between the devices, to allow sample-accurate
acquisition.

Nonetheless, when analyzing the obtained results, it was established that the variation in
the values obtained during sequential measurements was significantly high. Consider the
obtained values for propagation delay (see Table.4.4). The calculated standard deviation
for a set of twenty sequential synchronization attempts was 7.14 milliseconds, a value
much higher than expected.

The obtained values for propagation delay are interesting for two reasons. First, the two
nodes were at fixed positions throughout the entire set of measurements, so not much dis-
persion was expected among the obtained values. Propagation delay is mostly determined
by the separation between nodes. And second, even with this lack of precision, it seems
that the measurement of impulse responses (with the swept-sine technique) is not affected.
This is an important result, and it is one that requires a thorough explanation.

5.3.1 Impulse response derivation

The explanation is rather simple when it comes to the measurement of impulse responses
with the swept-sine technique. In a distributed measurement, the first thing to happen is the
message exchange between the two nodes used to calculate the propagation delay. Next,
the master node sends a measurement command. As it sends the message, it also starts the
audio acquisition even if the slave node has not received or processed the message. Once
the slave node receives and processes the message, it reproduces the test signal (i.e., sine
sweep), and the master node captures the test signal in its entirety.
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Once the master node captures the entire signal, it uses the propagation delay stored in
memory to remove the initial segment of the recorded signal, which doesn’t have useful
information. The entire operation does not affect the calculation of the impulse response
due to the way that the convolution process is implemented. Perhaps the only problem that
could arise in a scenario with a highly variable propagation delay (in the range of seconds)
is that the removed segment could contain parts of the reproduced sine sweep, thus remov-
ing useful information about the low-frequency band of the impulse response.

One relevant result is that the implemented prototype does not seem to suffer from clock
mismatch. Even when using a sixty-second sine sweep to obtain the system’s response
in a closed-loop configuration, the spectrogram of the impulse response did not show any
skewing at all (see Fig.4.20). This result is remarkable, given how a small clock mismatch
between the nodes can lead to a significant degradation of the impulse response. For ex-
ample, compare the obtained results with Fig.2.14, which illustrates a clock mismatch of
0.1%. Just a small difference of 51 samples per second at a sampling rate of 44.1 kHz
caused significant degradation to the obtained impulse response.

Furthermore, it is worth mentioning that even if there was a clock mismatch between the
master and the slave nodes, it could be possible to diminish the effects this has on the
impulse response. One possibility would be to use post-processing methods like applying
a Kirkeby filter (previously described in Chapter 2). And another option would be to take
advantage of the flexibility of the audio codec used in the prototype. Fig.2.14 actually
corresponds to a controlled experiment performed on the implemented prototype. In this
experiment, the sampling rates of each node were manually adjusted to generate an artifi-
cial clock mismatch. Therefore, just as it is possible to set the sampling rates of the nodes
to produce an artificial clock mismatch, it would also be possible to set the sampling rates
of the nodes to reduce or even eliminate clock mismatch.

The audio codec used in the prototype allows the adjustment of the sampling rate to a
resolution of one sample. Therefore, it would be possible to perform a clock adjustment
before the real measurement takes place by conducting a series of closed-loop measure-
ments on the system. These measurements would permit the identification of the level of
clock mismatch, and iteratively adjust the sampling frequency of the slave node so that
both nodes are matched. It would be even possible to repeat this procedure after the real
measurement to check and account for drift.

5.3.2 Shortcomings of node synchronization
Even if the lack of precision associated with synchronization doesn’t affect the deriva-
tion of impulse responses, it is a significant shortcoming of the measurement system, as it
could limit some usage scenarios. Therefore, it is necessary to provide some insight into
the causes of this shortcoming to see how it can be improved in the future.

First, consider the protocol itself. The Timing-sync Protocol for Sensor Networks (TPSN)
is based on a model in which all the sensors that compose the network maintain their
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clocks synchronized to a reference clock in the network. When tested in a simulation en-
vironment, the protocol achieves an average precision of 16 µs, meaning that at least the-
oretically, the highest sampling frequency that can be used while keeping sample-accurate
acquisition is 62.5 kHz.

Nonetheless, under real usage conditions, synchronization with TPSN has a particular
shortcoming in which a network originally synchronized to a microsecond precision, rapidly
accumulates a delay in the range of milliseconds, resulting in the need for a new synchro-
nization in a matter of seconds [32]. This is a significant challenge, as this means that it
would be necessary to perform a clock synchronization procedure while simultaneously
doing audio acquisition.

Second, consider how the synchronization protocol was implemented and all the reper-
cussions this had on precision and accuracy. Even if the use of a non-real-time operating
system has some important advantages, it also has significant drawbacks regarding task
scheduling and execution deadlines. Given that there are no guaranteed deadlines when
executing tasks, there is a considerable degree of uncertainty when producing the times-
tamps involved in the calculation of the propagation delay and the clock drift.

The used approach to solve this problem was to make use of the interrupt handling capabil-
ities of the Raspberry Pi as a way to have precise timestamps. Nevertheless, this approach
was not enough to reduce the dispersion of the synchronization values.

Adding these two shortcomings results in a distributed acquisition mode that is very lim-
ited in practical terms. Even if there doesn’t seem to be any issues when using the swept-
sine technique to measure impulse responses, impulse response measurement is not the
only commonly used measurement in acoustics.

5.4 Final design comments and possible improvements
It is not trivial to propose a solution to the design limitations previously presented. For
instance, time synchronization in wireless sensor networks is an active research topic that
extends beyond the scope of this project. Nevertheless, one particular comment can be
made on the use of either real-time or non-real-time operating systems, and the design
decisions made throughout the development of the prototype.

All of the design decisions were made considering the possible trade-offs that come when
planning such a measurement system. One approach was to have less functionalities and
lower-quality audio acquisition, but with better distributed capabilities by using a lower-
spec processing unit and programming it at a lower level of abstraction (perhaps one com-
patible with a real-time operating system).

The other approach (and the one chosen for the prototype) was to implement something
that could be considered powerful enough to give high-level control to the user, while also
allowing high-quality audio acquisition. Such an approach would permit rapid prototyping
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and implementation of signal processing features, but it would also be limited by the lack
of a real-time operating system to guarantee consistency concerning the amount of time it
takes to accept and complete an application’s task.

It is important to mention that both approaches are valuable, and future work can focus on
any of them, as they both provide very interesting research topics.

If a lower-spec approach is chosen, it would be necessary to limit the scope of the pro-
totype to relatively simple measurement tasks. One of the reasons for choosing a single-
board computer (SBC) over a lower-spec approach was that it provided a relatively quick
way to implement a prototype.

On the other hand, if future work focuses on further developing the presented prototype,
it might be possible to improve the overall results and capabilities by developing closer
to the hardware. Now that functionalities are well defined and tested, if all the python
code is replaced with C code (which is a compiled language), there should be some de-
cent improvement over the current implementation. The C programming language might
not provide so many readily-available libraries or modules, which makes development a
time-consuming task, but given that a fair amount of work has been done regarding the
hardware components in the system, future work can focus strictly on improving the soft-
ware components of the system.

Finally, even if there are no problems related to clock mismatch between the nodes, there’s
plenty of work that can be done associated with the implementation of the various tech-
niques that exist to deal with clock mismatch when obtaining impulse responses. The
hardware used in the system is flexible enough to provide a testbed for the development of
such algorithms and post-processing features.
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Chapter 6
Conclusions and final remarks

The main objective of the implemented prototype is to serve as exploratory work for a
low-cost, open-source, and distributed audio acquisition platform. This document pre-
sented a detailed account of the design process focusing on both hardware and software
development. The base point for the design was the formulation of a set of functional and
non-functional requirements with a design methodology relatively similar to feature driven
development. Once implemented, the prototype was evaluated in terms of audio quality,
stand-alone operation, and distributed operation.

The evaluation of audio quality focused on three key aspects, analog front-end quality
(i.e., phantom power supply and microphone pre-amplifier), total harmonic distortion, and
finally, audio latency.

The design of the printed circuit board (PCB) proved to be a challenging task because it
had to consider aspects such as size, type of power supply, electrical noise, and high-gain
amplification. The margin of error in the PCB design process was small given that it was
only possible to manufacture one iteration of the design, and a fault in the analog front-
end leads to a significant decrease in audio quality. Nevertheless, the implemented design
proved to be robust and high-quality when compared to a commercial sound card. The
total harmonic distortion (with a pure 1 kHz tone) of the prototype was lower than the one
measured under the same conditions on a commercial sound card, which gives an account
of the capabilities of the INA217 low noise instrumentation amplifier and the overall de-
sign.

Crosstalk in the prototype was worse when compared to the crosstalk of the commercial
sound card. Nevertheless, it was also quite low (below 100 dB when comparing it to
a 1 kHz pure tone carrier). When analyzing the crosstalk between the channels of the
prototype, a faint noise was identified, and even though it wasn’t possible to conduct mea-
surements in a fully-controlled environment, a hypothesis is that the noise is associated
with coil whine coming from the main inductor of the polarization power supply.
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Finally, the minimum stable value for round trip audio latency was 18 ms, or 396 samples,
when using a sampling frequency of 44.1 kHz. This value lies within the expected range
for a low-cost sound card, and is usable in numerous applications. To further reduce la-
tency, the only option would be to improve the hardware or to use a different Linux kernel
patch that is more suitable for low audio latency.

The stand-alone operation was not part of the original set of specifications, but it was im-
plemented, given that it’s considered an intermediate step necessary to achieve distributed
acquisition, and that it also opens the door to outdoor sound propagation experiments re-
lated to the principle of acoustic reciprocity. It served as a way to test the overall audio
quality of the system, while also providing a sort of test-bed for the implementation of
the signal processing required to obtain impulse responses using the swept-sine technique.
A closed-loop measurement allowed to derive the impulse response of the system, and
analysis of this impulse response proved that the system has a flat response across the
entire audible frequency range. Furthermore, the implementation of the impulse to noise
response ratio calculation provides a way to determine whether an impulse response ful-
fills the right conditions for the derivation of parameters such as reverberation time.

The distributed acquisition mode consisted of two nodes communicating and synchroniz-
ing through the use of LoRa transceivers. An attempt to implement the Timing-sync Proto-
col for Sensor Networks (TPSN) resulted in disappointing results. The dispersion between
sequential synchronization attempts was too large to allow the proper implementation of
node synchronization. The causes for this dispersion were the shortcomings associated
with the protocol itself, and mostly the lack of determinism when scheduling and execut-
ing tasks with a non-real-time operating system. Nevertheless, a series of test measure-
ments established that even if sample-accurate acquisition is not possible, the derivation
of impulse responses using the swept-sine method is effective and quite robust when using
the prototype in distributed acquisition mode.

One of the main concerns associated with impulse response measurements was the possi-
bility of a clock mismatch between the nodes that compose the system, but even with long
test signals (sixty-second sine sweeps), there was no skewing present on the derived im-
pulse response. Nevertheless, a significant result is that the system allows granular control
of the sampling rate, which opens the door to the development of a distributed system that
is capable (if necessary) of measuring and eliminating clock mismatch between its nodes.

It is possible to conclude that the main objective of the project was fulfilled. Even if the
implemented prototype has some significant shortcomings which limit its use in every
measurement scenario, it does provide a low-cost alternative to other commercial prod-
ucts, and it is open for further development. Costs were kept low by using an inexpensive
but powerful single board computer and by designing custom components for the analog
front-end of the system, making it a suitable measurement platform in either its stand-
alone or distributed mode.
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Appendix A: PCB Schematics

Figure 6.1: Microphone Pre-amplifier - 2 channels.

Figure 6.2: Phantom power supply.
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Figure 6.3: Regulated 5V and regulated -5V power supplies.

Figure 6.4: Power supply protection for Raspberry Pi.
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Appendix B: Bill of Materials
(BOM)

Quantity Manufacturer Part Description Schematic Reference
1 EEE-1CA221XP CAP ALUM 220UF 20% 16V SMD C1
1 1206J0630104MXT CAP CER 0.1UF 63V 1206 C4
11 CS0805KRX7R8BB104 CAP CER 0.1UF 25V X7R 0805 C2,C9,C10,C11,C12,C13,C16,C17,C18,C19,C20
1 885012207032 CAP CER 680PF 16V X7R 0805 C3
2 EEV-FK1J221Q CAP ALUM 220UF 20% 63V SMD C5,C6
2 JMK316BJ106ML-T CAP CER 10UF 6.3V X5R 1206 C24,C25
1 C0805C225K8RACTU CAP CER 2.2UF 10V X7R 0805 C21
2 CC0805KKX7R6BB105 CAP CER 1UF 10V X7R 0805 C23,C26
4 B32522C0106K189 CAP FILM 10UF 10% 63VDC RADIAL C7,C8,C14,C15
1 EEE-HA1J470UP CAP ALUM 47UF 20% 63V SMD C28
1 CC1206KRX7R7BB224 CAP CER 0.22UF 16V X7R 1206 C27
1 C1206C106K4RACTU CAP CER 10UF 16V X7R 1206 C22
2 S1B DIODE GEN PURP 100V 1A SMA D1,D3
1 MBRS1100T3G DIODE SCHOTTKY 100V 1A SMB D2
8 1N4148W-7-F DIODE GEN PURP 100V 300MA SOD123 D4,D5,D6,D7,D8,D9,D10,D11
1 LTST-C230KRKT LED RED CLEAR CHIP SMD LED1
1 APTR3216PBC/A LED BLUE CLEAR CHIP SMD LED2
1 ERJ-8RQFR22V RES 0.22 OHM 1% 1/4W 1206 R3
1 CRGCQ1206F68R CRGCQ 1206 68R 1% R2
1 RMCF1206FT22K0 RES 22K OHM 1% 1/4W 1206 R6
1 ERJ-8ENF3742V RES SMD 37.4K OHM 1% 1/4W 1206 R4
4 RC1206FR-076K8L RES SMD 6.8K OHM 1% 1/4W 1206 R8,R9,R19,20
1 RMCF1206FT47K0 RES 47K OHM 1% 1/4W 1206 R7
4 CRGCQ1206F2K2 CRGCQ 1206 2K2 1% R10,R11,R21,R22
2 RMCF1206FT20R0 RES 20 OHM 1% 1/4W 1206 R12,R23
4 RC1206FR-071ML RES SMD 1M OHM 1% 1/4W 1206 R13,R14,R24,R25
2 RMCF1206FT60R4 RES 60.4 OHM 1% 1/4W 1206 R18,R29
2 RC1206FR-07309RL RES SMD 309 OHM 1% 1/4W 1206 R17,R28
2 RC1206FR-071K43L RES SMD 1.43K OHM 1% 1/4W 1206 R16,27
2 RC1206FR-0710KL RES SMD 10K OHM 1% 1/4W 1206 R15,R26
1 RNCP0805FTD10K0 RES 10K OHM 1% 1/4W 0805 R30
1 ERJ-PB6D4702V RES SMD 47K OHM 0.5% 1/4W 0805 R31
1 RC1206FR-071K5L RES SMD 1.5K OHM 1% 1/4W 1206 R1
1 RC1206FR-071KL RES SMD 1K OHM 1% 1/4W 1206 R5
1 SRR1260-101M FIXED IND 100UH 1.7A 180MOHM SMD L1
1 SRN4018-330M FIXED IND 33UH 700MA 552MOHM SMD L2
1 PPPC051LFBN-RC CONN HDR 5POS 0.1 GOLD PCB J1
1 PPTC032LFBN-RC CONN HDR 6POS 0.1 TIN PCB J7
12 M20-9980445 CONN HEADER VERT 8POS 2.54MM J3,J5
2 NC3FAAH2 CONN XLR3 NC3FAAH2 J2,J4
1 PJ-002AH CONN PWR JACK 2X5.5MM SOLDER J6
1 MC34063AP IC REG BUCK BST ADJ 1.5A 8DIP U1
2 INA217AIP IC INST AMP 1 CIRCUIT 8DIP U2,U4
2 OPA137NA/250 IC OPAMP GP 1 CIRCUIT SOT23-5 U3,U5
1 REG710NA-5/3K IC REG CHARGE PUMP 5V 30MA SOT23 U6
1 LTC1983ES6-5#TRPBF IC REG CHARGE PUMP -5V TSOT23-6 U7
1 DMMT5401-7-F TRANS 2PNP 150V 0.2A SOT26 U8
1 BSS138 MOSFET N-CH 50V 220MA SOT-23 Q1
1 ASE1D-2M-10-Z SWITCH SLIDE SPDT 50MA 60V SW1

Table 6.1: Bill of Materials
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Appendix C: Python code
This appendix includes the source code for the stand-alone mode and for the distributed
mode (which includes the code for the master node and the code for the slave node). Fur-
thermore, in order to keep the code modular, commonly used functions were defined as a
module called utils. This module includes all functions related to signal processing and
signal visualization.

Listing 6.1: Stand-alone mode script.
”””
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ A c o u s t i c Measurement Sys tem − Stand−a l o n e O p e r a t i o n ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

The f o l l o w i n g code d e s c r i b e s t h e b e h a v i o u r o f t h e Raspber ry Pi based AMS i n
s t a n d a l o n e mode . I t works i n d e p e n d e n l t y as bo th p l a y b a c k and a c q u i s i t i o n node .
I f you want d i s t r i b u t e d o p e r a t i o n , s e t up bo th t h e ma s t e r node and t h e s l a v e
node w i t h t h e RFM9x LoRa t r a n s c e i v e r s .

T h i s code r e q u i r e s t h e use o f a H i f i b e r r y DAC + ADC board and t h e AMS Phantom
Power HAT t h a t was d e s i g n e d f o r c o n d e n s e r microphone p o l a r i z a t i o n and
pre−a m p l i f i c a t i o n .

NOTE: Make s u r e t h a t a l l py th on l i b r a r i e s are i n s t a l l e d i n t h e Raspber ry Pi .
Use Pip t o i n s t a l l l i b r a r i e s .

Code r u n n i n g on :

− Python 3 . 5 . 3
− OS : Raspbian GNU/ L inux 9 ( s t r e t c h )
− Ke rn e l : L inux r a s p b e r r y p i 4.19.23− v7+

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
”””

’ ’ ’ L i b r a r i e s a s s o c i a t e d w i t h t h e GUI ’ ’ ’
i m p o r t c o n t e x t l i b
i m p o r t queue
i m p o r t s y s
i m p o r t t h r e a d i n g
i m p o r t t k i n t e r a s t k
from t k i n t e r i m p o r t t t k
from t k i n t e r . s i m p l e d i a l o g i m p o r t D ia lo g

’ ’ ’ L i b r a r i e s a s s o c i a t e d w i t h aud io s i g n a l p r o c e s s i n g ’ ’ ’
i m p o r t numpy as np
i m p o r t math
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
i m p o r t s o u n d d e v i c e as sd
i m p o r t t ime
i m p o r t u t i l s m a s t e r a s u t i l s
from c o l l e c t i o n s i m p o r t deque
from s c i p y . i o i m p o r t w a v f i l e

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ D e f i n i t i o n o f Audio C a l l b a c k ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’

d e f a u d i o c a l l b a c k ( i n d a t a , o u t d a t a , f rames , t ime , s t a t u s ) :
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g l o b a l r e c f l a g
g l o b a l r e c d o n e
g l o b a l d a t a
a s s e r t f r am e s == b l o c k s i z e
i f s t a t u s . i n p u t o v e r f l o w :
# NB: T h i s i n c r e m e n t o p e r a t i o n i s n o t a tomic , b u t t h i s doesn ’ t
# m a t t e r s i n c e no o t h e r t h r e a d i s w r i t i n g t o t h e a t t r i b u t e .

p r i n t ( ’ I n p u t u n d e r f l o w : i n c r e a s e b l o c k s i z e ? ’ , f i l e = s y s . s t d e r r )
i n p u t o v e r f l o w s += 1

a s s e r t n o t s t a t u s

# NB: r e p r o d u c i n g i s a c c e s s e d from d i f f e r e n t t h r e a d s .
# T h i s i s s a f e because here we are o n l y a c c e s s i n g i t once ( w i t h a
# s i n g l e b y t e c o d e i n s t r u c t i o n ) .
i f r e c f l a g :

t r y :
d a t a = p l a y q u e u e . g e t n o w a i t ( )
r e c q u e u e . p u t n o w a i t ( i n d a t a . copy ( ) )

e x c e p t queue . Empty :
p r i n t ( ’ Reco rd ing c o m p l e t e . ’ , f i l e = s y s . s t d e r r )
r e c f l a g = F a l s e
r e c d o n e = True

i f l e n ( d a t a ) < l e n ( o u t d a t a ) :
o u t d a t a [ : l e n ( d a t a ) ] = s e l f . d a t a [ : , None ]
o u t d a t a [ l e n ( d a t a ) : ] = b ’\x00 ’ ∗ ( l e n ( o u t d a t a ) − l e n ( d a t a ) )

e l s e :
o u t d a t a [ : ] = d a t a [ : , None ]

e l s e :
o u t d a t a [ : ] = 0

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗ C o n f i g u r a t i o n o f t h e aud io s t r ea m ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’
r e c f l a g = F a l s e
r e c d o n e = F a l s e
f s = 44100
b l o c k s i z e = 384
d e v i c e = 2
f low = 31
f h i g h = 16000
dur = 4
s i l = 3
t a r g e t i n r = 20
a u d i o c h a n n e l s = 1
s t r e a m = sd . St ream ( s a m p l e r a t e = f s , b l o c k s i z e = b l o c k s i z e , d e v i c e = dev i ce , c h a n n e l s

= a u d i o c h a n n e l s , l a t e n c y = ’ low ’ , c a l l b a c k = a u d i o c a l l b a c k )
s t r e a m . s t a r t ( )

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Main Program ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
’ ’ ’

p r i n t ( ’ # ’ ∗ 80)
p r i n t ( ’ AMS − S t a n d a l o n e Mode ’ )
p r i n t ( ’ # ’ ∗ 80)

s i n e s w e e p = u t i l s . g e t s i n e s w e e p ( flow , f h i g h , dur , s i l , f s )
i n v e r s e f i l t e r = u t i l s . g e t i n v e r s e f i l t e r ( f low , f h i g h , dur , s i l , f s )
p l a y q u e u e = queue . Queue ( )
p l a y q u e u e = u t i l s . f i l l q u e u e ( p l a y q u e u e , s inesweep , b l o c k s i z e )
r e c q u e u e = queue . Queue ( maxs ize = i n t ( ( f s ∗ ( dur + s i l ) ) / b l o c k s i z e ) )
r e c f l a g = True

w h i l e True :

t ime . s l e e p ( 0 . 1 )
i f ( r e c d o n e == True ) :

s t r e a m . s t o p ( )
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r e c d o n e = F a l s e
r e c o r d e d s w e e p = u t i l s . g e t a l l q u e u e r e s u l t ( r e c q u e u e )
p r o c e s s e d s w e e p = np . a s a r r a y ( r e c o r d e d s w e e p )
p r o c e s s e d s w e e p = p r o c e s s e d s w e e p . f l a t t e n ( )
p r o c e s s e d s w e e p = ( p r o c e s s e d s w e e p / np . max ( p r o c e s s e d s w e e p ) )
i r = u t i l s . f a s t c o n v v e c t ( p r o c e s s e d s w e e p , i n v e r s e f i l t e r )
peak = u t i l s . f i n d p e a k ( i r )
i r = i r [ ( peak − 11025) : ]
i n r = u t i l s . ge t INR ( i r , f s )

p r i n t ( ” The measured INR i s : { : . 2 f } .\n ” . f o r m a t ( i n r ) )

i f ( i n r < t a r g e t i n r ) :

dur = dur ∗ 2
p r i n t ( ” Updated s i n e s w e e p d u r a t i o n t o : ” + s t r ( dur ) + ” [ s ] ” )
s i n e s w e e p = u t i l s . g e t s i n e s w e e p ( flow , f h i g h , dur , s i l , f s )
i n v e r s e f i l t e r = u t i l s . g e t i n v e r s e f i l t e r ( f low , f h i g h , dur , s i l , f s )

w i th p l a y q u e u e . mutex :
p l a y q u e u e . queue . c l e a r ( )

p l a y q u e u e = u t i l s . f i l l q u e u e ( p l a y q u e u e , s inesweep , b l o c k s i z e )

r e c q u e u e = queue . Queue ( maxs ize = i n t ( ( f s ∗ ( dur + s i l ) ) / b l o c k s i z e ) )
w i th r e c q u e u e . mutex :

r e c q u e u e . queue . c l e a r ( )

s t r e a m . s t a r t ( )
r e c f l a g = True

e l s e :

f i l e n a m e = ” Measured IR ( ” + t ime . s t r f t i m e ( ”%Y−%m−%d−%H−%M−%S” , t ime . gmtime
( ) ) + ” ) . wav”

s c a l e d s i g n a l = np . i n t 1 6 ( i r . r e a l / np . max ( np . abs ( i r . r e a l ) )∗ 32767)
w a v f i l e . w r i t e ( f i l e n a m e , f s , s c a l e d s i g n a l )
p r i n t ( ” IR has been e x p o r t e d wi th f i l e name : ” + f i l e n a m e )
b r e a k

Listing 6.2: Distributed Acquisition - Slave Node.
”””
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ A c o u s t i c Measurement Sys tem − S l a v e Node ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

The f o l l o w i n g code d e s c r i b e s t h e b e h a v i o u r o f t h e s l a v e node o f t h e
Raspber ry Pi based AMS . I t won ’ t work w i t h o u t a n o t h e r Raspber ry Pi
r u n n i n g r u n n i n g as m as t e r node . I t a l s o r e q u i r e s t h e use o f a
H i f i b e r r y DAC + ADC board and a RFM9x LoRa t r a n s c e i v e r .

C o n n e c t i o n t o t h e LoRa T r a n s c e i v e r i s done i n t h e f o l l o w i n g way :

| | |
| RFM9x Pin | RPi GPIO Pin ( number ) |
| | |
| Vin | 2 |
| GND | 6 |
| G0 | 22 |
| SCK | 23 |
| MISO | 21 |
| MOSI | 19 |
| CS | 24 |
| EN | Not c o n n e c t e d |
| RST | Not c o n n e c t e d |
| | |

94



NOTE: Make s u r e t h a t a l l py th on l i b r a r i e s are i n s t a l l e d i n t h e Raspber ry Pi .
Use Pip t o i n s t a l l l i b r a r i e s .

Code r u n n i n g on :

− Python 3 . 5 . 3
− OS : Raspbian GNU/ L inux 9 ( s t r e t c h )
− Ke rn e l : L inux r a s p b e r r y p i 4.19.23− v7+

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
”””

’ ’ ’ L i b r a r i e s a s s o c i a t e d w i t h LoRa ’ ’ ’
i m p o r t t ime
i m p o r t b u s i o
from d i g i t a l i o i m p o r t D i g i t a l I n O u t , D i r e c t i o n , P u l l
i m p o r t boa rd
i m p o r t a d a f r u i t r f m 9 x
i m p o r t RPi . GPIO as i o

’ ’ ’ L i b r a r i e s a s s o c i a t e d w i t h aud io s i g n a l p r o c e s s i n g ’ ’ ’
i m p o r t numpy as np
i m p o r t math
i m p o r t queue
from m a t p l o t l i b . f i g u r e i m p o r t F i g u r e
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
i m p o r t s o u n d d e v i c e as sd
i m p o r t t ime
from c o l l e c t i o n s i m p o r t deque
from s c i p y . i o . w a v f i l e i m p o r t w r i t e
from s c i p y i m p o r t s i g n a l
i m p o r t u t i l s

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ S e t u p i n t e r r u p t c a l l b a c k f u n c t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
’ ’ ’

d e f r f m 9 x c a l l b a c k ( r f m 9 x i r q ) :
g l o b a l p a c k e t r e c e i v e d # p y l i n t : d i s a b l e =g l o b a l−s t a t e m e n t
g l o b a l t imes t amp
t imes t amp = t ime . t ime ( )
p a c k e t r e c e i v e d = True

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ C o n f i g u r a t i o n o f RFM9x Lora Radio ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
’ ’ ’

CS = D i g i t a l I n O u t ( boa rd . CE0 )
RESET = D i g i t a l I n O u t ( boa rd . D25 )
s p i = b u s i o . SPI ( boa rd . SCK, MOSI= board . MOSI , MISO= board . MISO)
rfm9x = a d a f r u i t r f m 9 x . RFM9x( s p i , CS , RESET , 8 6 9 . 0 )
p r e v p a c k e t = None
rfm9x . t x p o w e r = 23
n o d e i d = 2 # Fee l f r e e t o change t h e node ID . Only used t o a d d r e s s d i f f e r e n t

nodes .
rfm9x . l i s t e n ( ) # Radio i s i n i t i a l i z e d i n l i s t e n i n g mode

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ C o n f i g u r a t i o n o f t h e i n t e r r u p t p i n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
’ ’ ’

RFM9X G0 = 22 # Corresponds t o GPIO22 .
i o . se tmode ( i o .BCM)
i o . s e t u p (RFM9X G0 , i o . IN , p u l l u p d o w n = i o .PUD DOWN)
i o . a d d e v e n t d e t e c t (RFM9X G0 , i o . RISING )
i o . a d d e v e n t c a l l b a c k (RFM9X G0 , r f m 9 x c a l l b a c k )
p a c k e t r e c e i v e d = F a l s e

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ C o n f i g u r a t i o n o f t h e aud io s t r ea m ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
’ ’ ’

f s = 44100
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b l o c k s i z e = 384
d e v i c e = 2 # Corresponds t o HiF iBerry DAC+ADC
o u t p u t l e v e l = 0 . 7
c a l s i n e s w e e p = u t i l s . g e t s i n e s w e e p ( 3 1 , 1 6 0 0 0 , 4 , 0 . 5 , f s )
sweep queue = queue . Queue ( )
c a l s w e e p q u e u e = queue . Queue ( )

# I n i t i a l s t a t u s f o r aud io mode f l a g s
s w e e p f l a g = F a l s e
c a l s w e e p f l a g = F a l s e
c a l s w e e p d o n e = F a l s e
c a l s w e e p s t o p = True

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ D e f i n i t i o n o f aud io c a l l b a c k ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
’ ’ ’

d e f a u d i o c a l l b a c k ( i n d a t a , o u t d a t a , f rames , t ime , s t a t u s ) :
””” T h i s i s c a l l e d ( from a s e p a r a t e t h r e a d ) f o r each aud io b l o c k . ”””
g l o b a l s w e e p f l a g
g l o b a l c a l s w e e p f l a g
g l o b a l c a l s w e e p d o n e
g l o b a l c a l s w e e p s t o p
a s s e r t f r am e s == b l o c k s i z e

i f s t a t u s . o u t p u t o v e r f l o w :
# NB: T h i s i n c r e m e n t o p e r a t i o n i s n o t a tomic , b u t t h i s doesn ’ t
# m a t t e r s i n c e no o t h e r t h r e a d i s w r i t i n g t o t h e a t t r i b u t e .
p r i n t ( ’ Outpu t u n d e r f l o w : i n c r e a s e b l o c k s i z e ? ’ )

a s s e r t n o t s t a t u s

i f s w e e p f l a g : # Reproduce s i n e s w e e p f o r measurement
t r y :

a u d i o d a t a = o u t p u t l e v e l ∗ ( sweep queue . g e t n o w a i t ( ) )
e x c e p t queue . Empty :

p r i n t ( ’ B u f f e r i s empty : R e p r o d u c t i o n i s f i n i s h e d ’ )
s w e e p f l a g = F a l s e

e l s e :
o u t d a t a [ : ] = a u d i o d a t a [ : , None ]

e l i f c a l s w e e p f l a g : # Reproduce s i n e s w e e p f o r l e v e l c a l i b r a t i o n ( loop p l a y b a c k )
t r y :

a u d i o d a t a = o u t p u t l e v e l ∗ ( c a l s w e e p q u e u e . g e t n o w a i t ( ) )
e x c e p t queue . Empty :

c a l s w e e p d o n e = True
c a l s w e e p f l a g = F a l s e

e l s e :
o u t d a t a [ : ] = a u d i o d a t a [ : , None ]

e l s e :
o u t d a t a [ : ] = 0

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Main Program ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
’ ’ ’

p r i n t ( ’ # ’ ∗ 80)
p r i n t ( ’ AMS − S l a v e Node ’ )
p r i n t ( ’ # ’ ∗ 80)

s t r e a m = sd . St ream ( s a m p l e r a t e = f s , b l o c k s i z e = b l o c k s i z e , d e v i c e = dev i ce , c h a n n e l s
= 1 , l a t e n c y = ’ low ’ , c a l l b a c k = a u d i o c a l l b a c k )

s t r e a m . s t a r t ( )

p r i n t ( ”\nNode i s l i s t e n i n g . . . ” )

w h i l e True :
i f p a c k e t r e c e i v e d :

i f ( rfm9x . r x d o n e != rfm9x . t x d o n e ) :
p a c k e t = rfm9x . r e c e i v e ( t i m e o u t = None , w i t h h e a d e r =True , r x f i l t e r = n o d e i d )
i f ( p a c k e t != None ) :
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r x r e c i p i e n t i d = p a c k e t [ 0 ]
r x s e n d e r i d = p a c k e t [ 1 ]
r x m e s s a g e i d = p a c k e t [ 2 ]
r x m e s s a g e f l a g s = p a c k e t [ 3 ]

i f ( r x m e s s a g e i d == 2) :
T2 = t imes t amp
rfm9x . send ( b y t e s ( s t r ( T2 ) +” ”+ s t r ( t ime . t ime ( ) ) , ” u t f−8” ) , t x h e a d e r

= ( 1 , 2 , 0 , 0 ) )
rfm9x . l i s t e n ( )
p r i n t ( ”MSG: C a l i b r a t i o n wi th TPSN” )

e l i f ( r x m e s s a g e i d == 3) :
w i th c a l s w e e p q u e u e . mutex :

c a l s w e e p q u e u e . queue . c l e a r ( )
c a l s w e e p q u e u e = u t i l s . f i l l q u e u e ( c a l s w e e p q u e u e , c a l s i n e s w e e p ,

b l o c k s i z e )
c a l s w e e p f l a g = True
c a l s w e e p s t o p = F a l s e
p r i n t ( ”MSG: S t a r t l oop p l a y b a c k of Sinesweep ” )

e l i f ( r x m e s s a g e i d == 4) :
w i th c a l s w e e p q u e u e . mutex :

c a l s w e e p q u e u e . queue . c l e a r ( )
c a l s w e e p q u e u e = u t i l s . f i l l q u e u e ( c a l s w e e p q u e u e , c a l s i n e s w e e p ,

b l o c k s i z e )
c a l s w e e p f l a g = F a l s e
c a l s w e e p s t o p = True
p r i n t ( ”MSG: Stop loop p l a y b a c k of s i n e s w e e p ” )

e l i f ( r x m e s s a g e i d == 5) :
s t r e a m . c l o s e ( )
p a y l o a d = s t r ( p a c k e t [ 4 : l e n ( p a c k e t ) ] , ” u t f−8” )
p r o c p a y l o a d = p a y l o a d . s p l i t ( )
dur = f l o a t ( p r o c p a y l o a d [ 0 ] )
s i l = f l o a t ( p r o c p a y l o a d [ 1 ] )
f low = f l o a t ( p r o c p a y l o a d [ 2 ] )
f h i g h = f l o a t ( p r o c p a y l o a d [ 3 ] )
s i n e s w e e p = u t i l s . g e t s i n e s w e e p ( flow , f h i g h , dur , s i l , f s )
# L e t s add some n o i s e t o make t h i n g s i n t e r e s t i n g
# n o i s e l e v e l = 0 . 0 5
#awgn = n o i s e l e v e l ∗ np . random . randn ( s i n e s w e e p . s i z e )
# s i n e s w e e p = s i n e s w e e p + awgn
s t r e a m = sd . St ream ( s a m p l e r a t e = f s , b l o c k s i z e = b l o c k s i z e , d e v i c e =

dev i ce , c h a n n e l s = 1 , l a t e n c y = ’ low ’ , c a l l b a c k = a u d i o c a l l b a c k )
s t r e a m . s t a r t ( )
p r i n t ( ”MSG: Sinesweep s e t t i n g s r e c e i v e d ” )

e l i f ( r x m e s s a g e i d == 8) :
sweep queue = u t i l s . f i l l q u e u e ( sweep queue , s inesweep , b l o c k s i z e )
s w e e p f l a g = True
p r i n t ( ”MSG: S t a r t p l a y b a c k of measurement s i n e s w e e p ” )

e l i f ( r x m e s s a g e i d == 9) :
s w e e p f l a g = F a l s e
wi th sweep queue . mutex :

sweep queue . queue . c l e a r ( )
p r i n t ( ”MSG: Stop p l a y b a c k of measurement s i n e s w e e p ” )

p a c k e t r e c e i v e d = F a l s e

e l i f c a l s w e e p d o n e :

w i th c a l s w e e p q u e u e . mutex :
c a l s w e e p q u e u e . queue . c l e a r ( )

c a l s w e e p q u e u e = u t i l s . f i l l q u e u e ( c a l s w e e p q u e u e , c a l s i n e s w e e p , b l o c k s i z e )

i f ( c a l s w e e p s t o p ) :
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c a l s w e e p f l a g = F a l s e
c a l s w e e p d o n e = F a l s e

e l s e :
c a l s w e e p d o n e = F a l s e
c a l s w e e p f l a g = True

e l s e :
t ime . s l e e p ( 0 . 1 )

Listing 6.3: Distributed Acquisition - Master node
”””
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ A c o u s t i c Measurement Sys tem − Master Node ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

The f o l l o w i n g code d e s c r i b e s t h e b e h a v i o u r o f t h e ma s t e r node o f
t h e Raspber ry Pi based AMS . I t won ’ t work w i t h o u t a n o t h e r Raspber ry
Pi r u n n i n g r u n n i n g as s l a v e node . I f you want s t a n d a l o n e o p e r a t i o n ,
use t h e A M S s c r i p t . py f i l e .

T h i s code r e q u i r e s t h e use o f a H i f i b e r r y DAC + ADC board , a RFM9x
LoRa t r a n s c e i v e r and t h e AMS Phantom Power HAT t h a t was d e s i g n e d f o r
c o n d e n s e r microphone p o l a r i z a t i o n and pre−a m p l i f i c a t i o n .

A g r a p h i c a l u s e r i n t e r f a c e ( GUI ) has been d e s i g n e d u s i n g T k i n t e r .
I t p r o b a b l y has some u s e r i n t e r a c t i o n ( use c a s e s ) t h a t have n o t been
p r o p e r l y a c c o u n t e d f o r .

C o n n e c t i o n t o t h e LoRa T r a n s c e i v e r i s done i n t h e f o l l o w i n g way :

| | |
| RFM9x Pin | RPi GPIO Pin ( number ) |
| | |
| Vin | 2 |
| GND | 6 |
| G0 | 22 |
| SCK | 23 |
| MISO | 21 |
| MOSI | 19 |
| CS | 24 |
| EN | Not c o n n e c t e d |
| RST | Not c o n n e c t e d |
| | |

NOTE: Make s u r e t h a t a l l py th on l i b r a r i e s are i n s t a l l e d i n t h e Raspber ry Pi .
Use Pip t o i n s t a l l l i b r a r i e s .

Code r u n n i n g on :

− Python 3 . 5 . 3
− OS : Raspbian GNU/ L inux 9 ( s t r e t c h )
− Ke rn e l : L inux r a s p b e r r y p i 4.19.23− v7+

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
”””

’ ’ ’ L i b r a r i e s a s s o c i a t e d w i t h t h e GUI ’ ’ ’
i m p o r t c o n t e x t l i b
i m p o r t s y s
i m p o r t t h r e a d i n g
i m p o r t t k i n t e r a s t k
i m p o r t t k i n t e r . f o n t a s t k F o n t
from t k i n t e r i m p o r t t t k
from t k i n t e r . s i m p l e d i a l o g i m p o r t D ia lo g
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’ ’ ’ L i b r a r i e s a s s o c i a t e d w i t h aud io s i g n a l p r o c e s s i n g ’ ’ ’
i m p o r t numpy as np
i m p o r t math
from m a t p l o t l i b . backends . b a c k e n d t k a g g i m p o r t FigureCanvasTkAgg
from m a t p l o t l i b . f i g u r e i m p o r t F i g u r e
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
i m p o r t queue
i m p o r t s o u n d d e v i c e as sd
i m p o r t t ime
i m p o r t u t i l s m a s t e r a s u t i l s
from c o l l e c t i o n s i m p o r t deque
from s c i p y . i o . w a v f i l e i m p o r t w r i t e
from s c i p y i m p o r t s i g n a l
from s c i p y . ndimage . f i l t e r s i m p o r t g a u s s i a n f i l t e r 1 d # To smooth FFT p l o t

’ ’ ’ L i b r a r i e s a s s o c i a t e d w i t h LoRa ’ ’ ’
i m p o r t t ime
i m p o r t b u s i o
from d i g i t a l i o i m p o r t D i g i t a l I n O u t , D i r e c t i o n , P u l l
i m p o r t boa rd
i m p o r t a d a f r u i t r f m 9 x
i m p o r t RPi . GPIO as i o

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ LoRa ISR h a n d l i n g and s e t t i n g s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’
d e f r f m 9 x c a l l b a c k ( r f m 9 x i r q ) :

g l o b a l p a c k e t r e c e i v e d # p y l i n t : d i s a b l e =g l o b a l−s t a t e m e n t
g l o b a l t imes t amp
p a c k e t r e c e i v e d = True
t imes t amp = t ime . t ime ( )

p a c k e t r e c e i v e d = F a l s e
RFM9X G0 = 22 # I n t e r r u p t p i n GPIO22
i o . se tmode ( i o .BCM)
i o . s e t u p (RFM9X G0 , i o . IN , p u l l u p d o w n = i o .PUD DOWN)
i o . a d d e v e n t d e t e c t (RFM9X G0 , i o . RISING )
i o . a d d e v e n t c a l l b a c k (RFM9X G0 , r f m 9 x c a l l b a c k )

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Main G r a p h i c a l User I n t e r f a c e ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’

c l a s s Mas te rGui ( t k . Tk ) :

s t r e a m = None

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ I n i t i a l i z a t i o n o f t h e c l a s s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’

d e f i n i t ( s e l f , m a s t e r = None ) :
t t k . Frame . i n i t ( s e l f , m a s t e r )
s e l f . p a r e n t = m a s t e r
s e l f . p a r e n t . c o n f i g u r e ( background = ’ gray35 ’ )
s e l f . p a r e n t . t i t l e ( ’AMS − Maste r Node ’ )
s e l f . p a r e n t . geomet ry ( ’ 800 x430 ’ )

p a d d i n g s m a l l = 1
padd ing = 1
p a d d i n g l a r g e = 3
f o n t S t y l e = t k F o n t . Font ( f a m i l y =” Luc ida Grande ” , s i z e =8)
t k F o n t . n a m e t o f o n t ( ’ T k D e f a u l t F o n t ’ ) . c o n f i g u r e ( s i z e =7)
s e l f . ch = t k . I n t V a r ( )
s e l f . p l o t i d = t k . I n t V a r ( )
s e l f . p l o t c h = t k . I n t V a r ( )

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Genera l Frame d e f i n i t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’

s e l f . s e t t i n g s F r a m e = t k . Frame ( s e l f . p a r e n t , w id th =120 , h e i g h t = 430 , r e l i e f = ’
r a i s e d ’ , b o r d e r w i d t h =1)

s e l f . s e t t i n g s F r a m e . pack ( s i d e = ’ l e f t ’ , expand= F a l s e , padx= p a d d i n g l a r g e , pady=
p a d d i n g l a r g e , f i l l = ’ bo th ’ )
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s e l f . graphFrame = t k . Frame ( s e l f . p a r e n t , w id th =620 , h e i g h t = 430 , r e l i e f = ’ r a i s e d ’
, b o r d e r w i d t h =1 , bg=” gray22 ” )

s e l f . graphFrame . pack ( s i d e = ’ r i g h t ’ , expand=True , f i l l = ’ bo th ’ , padx= p a d d i n g l a r g e ,
pady= p a d d i n g l a r g e )

s e l f . syncFrame = t k . LabelFrame ( s e l f . s e t t i n g s F r a m e , t e x t =”Node S y n c h r o n i z a t i o n ” ,
wid th =90 , h e i g h t = 50 , r e l i e f = ’ r a i s e d ’ , b o r d e r w i d t h =1)

s e l f . syncFrame . pack ( s i d e = ’ t o p ’ , expand= F a l s e , padx= padding , pady= padding , f i l l = ’
x ’ )

s e l f . s i g n a l F r a m e = t k . LabelFrame ( s e l f . s e t t i n g s F r a m e , t e x t =” Sinesweep G e n e r a t i o n
and INR O p t i m i z a t i o n ” , wid th =120 , h e i g h t = 100 , r e l i e f = ’ r a i s e d ’ ,

b o r d e r w i d t h =1)
s e l f . s i g n a l F r a m e . pack ( s i d e = ’ t o p ’ , expand= F a l s e , padx= padding , pady= padding , f i l l

= ’ x ’ )

s e l f . c a l i b r a t i o n F r a m e = t k . LabelFrame ( s e l f . s e t t i n g s F r a m e , t e x t =” Audio I n p u t
Mode” , wid th =120 , h e i g h t = 100 , r e l i e f = ’ r a i s e d ’ , b o r d e r w i d t h =1)

s e l f . c a l i b r a t i o n F r a m e . pack ( s i d e = ’ t o p ’ , expand= F a l s e , padx= padding , pady= padding
, f i l l = ’ x ’ )

s e l f . measurementFrame = t k . LabelFrame ( s e l f . s e t t i n g s F r a m e , t e x t =” Measurements ” ,
wid th =120 , h e i g h t = 50 , r e l i e f = ’ r a i s e d ’ , b o r d e r w i d t h =1)

s e l f . measurementFrame . pack ( s i d e = ’ t o p ’ , expand= F a l s e , padx= padding , pady= padding
, f i l l = ’ x ’ )

s e l f . messageFrame = t k . LabelFrame ( s e l f . s e t t i n g s F r a m e , t e x t =” Message window ” ,
wid th =120 , h e i g h t = 50 , r e l i e f = ’ r a i s e d ’ , b o r d e r w i d t h =1)

s e l f . messageFrame . pack ( s i d e = ’ bot tom ’ , expand= F a l s e , padx= padding , pady= padd ing )

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ S y n c h r o n i z a t i o n Frame d e f i n i t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’

s e l f . l o r a c a l b u t t o n = t k . Bu t ton ( s e l f . syncFrame , t e x t = ’ S y n c h r o n i z e ’ , f o n t =
f o n t S t y l e , bg= ’ S l a t e G r a y 3 ’ , command = s e l f . o n s y n c )

s e l f . l o r a c a l b u t t o n . pack ( s i d e = ’ bot tom ’ , padx= padding , pady= padd ing )

s e l f . s y n c F r a m e L e f t = t k . Frame ( s e l f . syncFrame , wid th =27 , h e i g h t = 20 ,
b o r d e r w i d t h =1)

s e l f . s y n c F r a m e L e f t . pack ( s i d e = ’ l e f t ’ , expand= F a l s e , pady= padd ing )

s e l f . s y n c F r a m e R i g h t = t k . Frame ( s e l f . syncFrame , wid th =27 , h e i g h t = 10 ,
b o r d e r w i d t h =1)

s e l f . s y n c F r a m e R i g h t . pack ( s i d e = ’ r i g h t ’ , expand= F a l s e , pady= padd ing )

s e l f . d e l a y l a b e l = t k . Labe l ( s e l f . syncFrame Lef t , t e x t = ’ P r o p a g a t i o n Delay ’ , w id th
=15 , f o n t = f o n t S t y l e )

s e l f . d e l a y l a b e l . pack ( s i d e = ’ t o p ’ , padx= padding , pady= padding , expand= F a l s e )

s e l f . d e l a y i n p u t = t k . E n t r y ( s e l f . syncFrame Righ t , t e x t = ’ p r o p d e l a y ’ , w id th =13 ,
f o n t = f o n t S t y l e )

s e l f . d e l a y i n p u t . pack ( s i d e = ’ t o p ’ , padx= padding , pady= padding , expand= F a l s e )

s e l f . d r i f t l a b e l = t k . Labe l ( s e l f . syncFrame Lef t , t e x t = ’ Clock D r i f t ’ , w id th =15 ,
f o n t = f o n t S t y l e )

s e l f . d r i f t l a b e l . pack ( s i d e = ’ bot tom ’ , padx= padding , pady= padding , expand= F a l s e )

s e l f . d r i f t i n p u t = t k . E n t r y ( s e l f . syncFrame Righ t , t e x t = ’ c l o c k d r i f t ’ , w id th =13 ,
f o n t = f o n t S t y l e )

s e l f . d r i f t i n p u t . pack ( s i d e = ’ bot tom ’ , padx= padding , pady= padding , expand= F a l s e )

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗ S i g n a l S e t t i n g s Frame d e f i n i t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’

s e l f . s i g n a l F r a m e b o t t o m = t k . Frame ( s e l f . s i g n a l F r a m e , wid th =120 , h e i g h t = 20 ,
b o r d e r w i d t h =1)

s e l f . s i g n a l F r a m e b o t t o m . pack ( s i d e = ’ bot tom ’ , expand= F a l s e , padx= padding , pady=
padd ing )
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s e l f . s i g n a l F r a m e L e f t = t k . Frame ( s e l f . s i g n a l F r a m e , wid th =60 , h e i g h t = 80 ,
b o r d e r w i d t h =1)

s e l f . s i g n a l F r a m e L e f t . pack ( s i d e = ’ l e f t ’ , expand= F a l s e , padx= padding , pady=
padd ing )

s e l f . s i g n a l F r a m e R i g h t = t k . Frame ( s e l f . s i g n a l F r a m e , wid th =60 , h e i g h t = 80 ,
b o r d e r w i d t h =1)

s e l f . s i g n a l F r a m e R i g h t . pack ( s i d e = ’ r i g h t ’ , expand= F a l s e , padx= padding , pady=
padd ing )

s e l f . c a l i b r a t i o n b u t t o n = t k . Bu t t on ( s e l f . s i g n a l F r a m e b o t t o m , t e x t = ’ T e s t Sweep ’ ,
f o n t = f o n t S t y l e , bg= ’ S l a t e G r a y 3 ’ , command = s e l f . o n c a l i b r a t e s t a r t )

s e l f . c a l i b r a t i o n b u t t o n . pack ( s i d e = ’ l e f t ’ , padx= padding , pady= padd ing )

s e l f . c a l s n r b u t t o n = t k . Bu t ton ( s e l f . s i g n a l F r a m e b o t t o m , t e x t = ’INR O p t i m i z a t i o n
’ , f o n t = f o n t S t y l e , bg= ’ S l a t e G r a y 3 ’ , command = s e l f . o n c a l s n r )

s e l f . c a l s n r b u t t o n . pack ( s i d e = ’ r i g h t ’ , padx= padding , pady= padd ing )

s e l f . d u r l a b e l = t k . Labe l ( s e l f . s i g n a l F r a m e L e f t , t e x t = ’ D u r a t i o n [ s ] ’ , f o n t =
f o n t S t y l e , wid th =15)

s e l f . d u r l a b e l . pack ( s i d e = ’ t o p ’ , padx= padding , pady= padd ing )

s e l f . s i l l a b e l = t k . Labe l ( s e l f . s i g n a l F r a m e L e f t , t e x t = ’ S i l e n c e [ s ] ’ , f o n t =
f o n t S t y l e , wid th =15)

s e l f . s i l l a b e l . pack ( s i d e = ’ t o p ’ , padx= padding , pady= padd ing )

s e l f . f l o w l a b e l = t k . Labe l ( s e l f . s i g n a l F r a m e L e f t , t e x t = ’ S t a r t Freq [ Hz ] ’ , f o n t =
f o n t S t y l e , wid th =15)

s e l f . f l o w l a b e l . pack ( s i d e = ’ t o p ’ , padx= padding , pady= padd ing )

s e l f . f h i g h l a b e l = t k . Labe l ( s e l f . s i g n a l F r a m e L e f t , t e x t = ’ Stop Freq [ Hz ] ’ , f o n t =
f o n t S t y l e , wid th =15)

s e l f . f h i g h l a b e l . pack ( s i d e = ’ t o p ’ , padx= padding , pady= padd ing )

s e l f . s n r l a b e l = t k . Labe l ( s e l f . s i g n a l F r a m e L e f t , t e x t = ’INR [ dB ] ’ , f o n t =
f o n t S t y l e , wid th =15)

s e l f . s n r l a b e l . pack ( s i d e = ’ bot tom ’ , padx= padding , pady= padd ing )

s e l f . d u r i n p u t = t k . E n t r y ( s e l f . s i g n a l F r a m e R i g h t , t e x t = ’ d u r a t i o n ’ , f o n t =
f o n t S t y l e , wid th =13)

s e l f . d u r i n p u t . pack ( s i d e = ’ t o p ’ , padx= padding , pady= p a d d i n g s m a l l , expand= F a l s e )

s e l f . s i l i n p u t = t k . E n t r y ( s e l f . s i g n a l F r a m e R i g h t , t e x t = ’ s i l e n c e ’ , f o n t =
f o n t S t y l e , wid th =13)

s e l f . s i l i n p u t . pack ( s i d e = ’ t o p ’ , padx= padding , pady= p a d d i n g s m a l l , expand= F a l s e )

s e l f . f l o w i n p u t = t k . E n t r y ( s e l f . s i g n a l F r a m e R i g h t , t e x t = ’ f low ’ , f o n t = f o n t S t y l e ,
wid th =13)

s e l f . f l o w i n p u t . pack ( s i d e = ’ t o p ’ , padx= padding , pady= p a d d i n g s m a l l , expand= F a l s e
)

s e l f . f h i g h i n p u t = t k . E n t r y ( s e l f . s i g n a l F r a m e R i g h t , t e x t = ’ f h i g h ’ , f o n t =
f o n t S t y l e , wid th =13)

s e l f . f h i g h i n p u t . pack ( s i d e = ’ t o p ’ , padx= padding , pady= p a d d i n g s m a l l , expand=
F a l s e )

s e l f . s n r i n p u t = t k . E n t r y ( s e l f . s i g n a l F r a m e R i g h t , t e x t = ’ s n r s e l ’ , f o n t =
f o n t S t y l e , wid th =13)

s e l f . s n r i n p u t . pack ( s i d e = ’ bot tom ’ , padx= padding , pady= p a d d i n g s m a l l , expand=
F a l s e )

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ C a l i b r a t i o n Frame d e f i n i t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
’ ’ ’

s e l f . c a l i b r a t i o n F r a m e R i g h t = t k . Frame ( s e l f . c a l i b r a t i o n F r a m e , wid th =50 , h e i g h t
= 80 , b o r d e r w i d t h =1)

s e l f . c a l i b r a t i o n F r a m e R i g h t . pack ( s i d e = ’ r i g h t ’ , expand=True , padx= padding , pady=
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padding , f i l l = ’ x ’ )

s e l f . c a l i b r a t i o n F r a m e L e f t = t k . Frame ( s e l f . c a l i b r a t i o n F r a m e , wid th =30 , h e i g h t =
80 , b o r d e r w i d t h =1)

s e l f . c a l i b r a t i o n F r a m e L e f t . pack ( s i d e = ’ r i g h t ’ , padx= padding , pady= padd ing )

s e l f . c a l i b r a t i o n F r a m e B o t t o m = t k . Frame ( s e l f . c a l i b r a t i o n F r a m e , wid th =120 ,
h e i g h t = 100 , b o r d e r w i d t h =1)

s e l f . c a l i b r a t i o n F r a m e B o t t o m . pack ( s i d e = ’ bot tom ’ , expand=True , padx= padding ,
pady= padding , f i l l = ’ x ’ )

s e l f . meterCh1 = t t k . P r o g r e s s b a r ( s e l f . c a l i b r a t i o n F r a m e R i g h t , o r i e n t = ’ h o r i z o n t a l
’ , mode= ’ d e t e r m i n a t e ’ , maximum = 1 . 0 )

s e l f . meterCh1 . pack ( s i d e = ’ t o p ’ , f i l l = ’ x ’ , padx= padding , pady= padding , expand=True )

s e l f . m e t e r C h 1 l a b e l = t k . Labe l ( s e l f . c a l i b r a t i o n F r a m e L e f t , t e x t = ’CH 1 ’ , f o n t =
f o n t S t y l e )

s e l f . m e t e r C h 1 l a b e l . pack ( s i d e = ’ t o p ’ , padx= padding , pady= padd ing )

s e l f . meterCh2 = t t k . P r o g r e s s b a r ( s e l f . c a l i b r a t i o n F r a m e R i g h t , o r i e n t = ’ h o r i z o n t a l
’ , mode= ’ d e t e r m i n a t e ’ , maximum = 1 . 0 )

s e l f . meterCh2 . pack ( s i d e = ’ bot tom ’ , f i l l = ’ x ’ , padx= padding , pady= padding , expand=
True )

s e l f . m e t e r C h 2 l a b e l = t k . Labe l ( s e l f . c a l i b r a t i o n F r a m e L e f t , t e x t = ’CH 2 ’ , f o n t =
f o n t S t y l e )

s e l f . m e t e r C h 2 l a b e l . pack ( s i d e = ’ bot tom ’ , padx= padding , pady= padd ing )

s e l f . c h 1 b u t t o n = t k . R a d i o b u t t o n ( s e l f . c a l i b r a t i o n F r a m e B o t t o m , t e x t = ’ S i n g l e ’ ,
v a r i a b l e = s e l f . ch , v a l u e =1 , command= s e l f . i n p u t s e l e c t )

s e l f . c h 1 b u t t o n . pack ( s i d e = ’ t o p ’ , padx= padding , pady= padd ing )

s e l f . c h 2 b u t t o n = t k . R a d i o b u t t o n ( s e l f . c a l i b r a t i o n F r a m e B o t t o m , t e x t = ’ Dual ’ ,
v a r i a b l e = s e l f . ch , v a l u e =2 , command= s e l f . i n p u t s e l e c t )

s e l f . c h 2 b u t t o n . pack ( s i d e = ’ bot tom ’ , padx= padding , pady= padd ing )

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Measurement Frame d e f i n i t i o n
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’

s e l f . i r b u t t o n = t k . Bu t to n ( s e l f . measurementFrame , t e x t = ’ Ob ta i n IR ’ , f o n t =
f o n t S t y l e , bg= ’ S l a t e G r a y 3 ’ , command = s e l f . o n o b t a i n I R )

s e l f . i r b u t t o n . pack ( s i d e = ’ l e f t ’ , padx= padding , pady =2∗padding , expand=True )

s e l f . e x p o r t b u t t o n = t k . Bu t t on ( s e l f . measurementFrame , t e x t = ’ E xpo r t ’ , f o n t =
f o n t S t y l e , bg= ’ S l a t e G r a y 3 ’ , command = s e l f . o n e x p o r t I R )

s e l f . e x p o r t b u t t o n . pack ( s i d e = ’ l e f t ’ , padx= padding , pady =2∗padding , expand=True )

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Messages Frame d e f i n i t i o n
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’

s e l f . messageBox Text = t k . Tex t ( s e l f . messageFrame , wid th = 37 , h e i g h t =5 , f o n t =( ”
Luc ida Grande ” , 7 ) )

s e l f . messageBox Text . pack ( s i d e = ’ t o p ’ , padx= padding , pady= padding , expand=
F a l s e )

s e l f . messageBox Text . b ind ( ”<Key>” , lambda e : ” b r e a k ” )
s e l f . messageBox Text . i n s e r t ( t k .END, ” . . . . . . . . . . . . . . . Ready f o r communica t ion

. . . . . . . . . . . . . . . \ n\n ” )
s e l f . messageBox Text . i n s e r t ( t k .END, ” P l e a s e s e l e c t a u d i o i n p u t mode .\ n ” )
s e l f . messageBox Text . s e e ( t k .END)

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Graphs Frame d e f i n i t i o n
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’

s e l f . g raphFrame Bot tom = t k . Frame ( s e l f . graphFrame , wid th =620 , h e i g h t = 330 ,
b o r d e r w i d t h =1 , bg=” gray22 ” )

s e l f . g raphFrame Bot tom . pack ( s i d e = ’ bot tom ’ , padx= padding , pady= padding , expand =
True , f i l l = ’ bo th ’ )
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s e l f . graphFrame Top = t k . Frame ( s e l f . graphFrame , wid th =100 , h e i g h t = 4 ,
b o r d e r w i d t h =0 , bg=” gray22 ” )

s e l f . graphFrame Top . pack ( s i d e = ’ t o p ’ , padx= padding , expand= F a l s e )

s e l f . g r a p h F r a m e T o p L e f t = t k . Frame ( s e l f . graphFrame , wid th =80 , h e i g h t = 4 ,
b o r d e r w i d t h =0 , bg=” gray22 ” )

s e l f . g r a p h F r a m e T o p L e f t . pack ( s i d e = ’ l e f t ’ , expand= F a l s e )

s e l f . g r aphFrame Top Righ t = t k . Frame ( s e l f . graphFrame , wid th =20 , h e i g h t = 4 ,
b o r d e r w i d t h =0 , bg=” gray22 ” )

s e l f . g r aphFrame Top Righ t . pack ( s i d e = ’ r i g h t ’ , expand= F a l s e )

s e l f . F ig = F i g u r e ( f i g s i z e = ( 5 . 2 , 3 . 6 ) , d p i =100)

s e l f . F ig . p a t c h . s e t f a c e c o l o r ( ’ # d6d6d6 ’ )
s e l f . F ig . p a t c h . s e t a l p h a ( 0 . 7 )
s e l f . SubPlotFFT = s e l f . F ig . a d d s u b p l o t ( 2 1 1 )
s e l f . SubP lo tSpec = s e l f . F ig . a d d s u b p l o t ( 2 1 2 )

x = [ ]
y = [ ]
s e l f . vmin = −80
n=np . random . randn (2∗44100)
s e l f . g raph = s e l f . SubPlotFFT . p l o t ( x , y , ’ xkcd : b r i g h t g r e e n ’ )
s e l f . pxx , s e l f . f r e q , s e l f . t , s e l f . cax = s e l f . SubP lo tSpec . specgram ( n , Fs =44100 ,

vmin= s e l f . vmin , cmap= p l t . cm . S p e c t r a l r , )
s e l f . c a nv as = FigureCanvasTkAgg ( s e l f . Fig , s e l f . g raphFrame Bot tom )

ax FFT = s e l f . c an v as . f i g u r e . axes [ 0 ]
ax FFT . s e t f a c e c o l o r ( ’ xkcd : da rk g rey ’ )
ax FFT . s e t y l a b e l ( ’ Ampl i tude [ dB ] ’ , f o n t s i z e = 7)
ax FFT . s e t x l a b e l ( ’ F requency [ Hz ] ’ , f o n t s i z e = 7)
ax FFT . s e t x s c a l e ( ’ l o g ’ )
ax FFT . s e t x l i m ( 3 1 , 1 6 0 0 0 )
ax FFT . s e t x t i c k s ( [ 3 1 , 63 , 125 , 250 , 500 , 1000 , 2000 , 4000 , 8000 , 1 6 0 0 0 ] )
ax FFT . s e t x t i c k l a b e l s ( [ 3 1 , 63 , 125 , 250 , 500 , 1000 , 2000 , 4000 , 8000 , 1 6 0 0 0 ] )
ax FFT . m i n o r t i c k s o f f ( )
ax FFT . s e t t i t l e ( ’ F requency s p e c t r u m ’ , f o n t s i z e = 8)
ax FFT . t i c k p a r a m s ( a x i s = ’ bo th ’ , l a b e l s i z e =6)
ax FFT . g r i d ( True )

ax Spec = s e l f . c a nv a s . f i g u r e . axe s [ 1 ]
ax Spec . s e t y l a b e l ( ’ F requency [ Hz ] ’ , f o n t s i z e = 7)
ax Spec . s e t x l a b e l ( ’ Time [ s ] ’ , f o n t s i z e = 7)
ax Spec . s e t t i t l e ( ’ Spec t rog ram ’ , f o n t s i z e = 8)
ax Spec . t i c k p a r a m s ( a x i s = ’ bo th ’ , l a b e l s i z e =6)

s e l f . c o l o r b a r = s e l f . F ig . c o l o r b a r ( s e l f . cax )
s e l f . c o l o r b a r . ax . t i c k p a r a m s ( l a b e l s i z e =6)
s e l f . c o l o r b a r . s e t l a b e l ( ’ Ampl i tude [ dB ] ’ , f o n t s i z e = 6)
s e l f . F ig . t i g h t l a y o u t ( pad = 0 . 3 , w pad = 0 . 3 , h pad = 0 . 3 )
s e l f . c a nv as . draw ( )
s e l f . c a nv as . g e t t k w i d g e t ( ) . pack ( s i d e = t k . TOP , f i l l = t k .BOTH, expand =1)

s e l f . p l o t s w e e p b u t t o n = t k . R a d i o b u t t o n ( s e l f . g r aphFrame Top Lef t , t e x t = ’ S ine
Sweep ’ , v a r i a b l e = s e l f . p l o t i d , v a l u e =1 , command= s e l f . p l o t s e l e c t , bg=” gray22 ”
, h i g h l i g h t b a c k g r o u n d = ” gray22 ” , fg =” gray65 ” , h i g h l i g h t c o l o r =” gray22 ” ,
a c t i v e b a c k g r o u n d = ” gray22 ” , a c t i v e f o r e g r o u n d = ” gray65 ” )

s e l f . p l o t s w e e p b u t t o n . pack ( s i d e = ’ l e f t ’ )
s e l f . p l o t i r b u t t o n = t k . R a d i o b u t t o n ( s e l f . g r aphFrame Top Lef t , t e x t = ’ Impu l se

Response ’ , v a r i a b l e = s e l f . p l o t i d , v a l u e =2 , command= s e l f . p l o t s e l e c t , bg=”
gray22 ” , h i g h l i g h t b a c k g r o u n d = ” gray22 ” , fg =” gray65 ” , h i g h l i g h t c o l o r =”
gray22 ” , a c t i v e b a c k g r o u n d = ” gray22 ” , a c t i v e f o r e g r o u n d = ” gray65 ” )

s e l f . p l o t i r b u t t o n . pack ( s i d e = ’ r i g h t ’ )

s e l f . p l o t c h 1 b u t t o n = t k . R a d i o b u t t o n ( s e l f . g raphFrame Top Righ t , t e x t = ’CH1 ’ ,
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v a r i a b l e = s e l f . p l o t c h , v a l u e =1 , command= s e l f . p l o t s e l e c t , bg=” gray22 ” ,
h i g h l i g h t b a c k g r o u n d = ” gray22 ” , fg =” gray65 ” , h i g h l i g h t c o l o r =” gray22 ” ,
a c t i v e b a c k g r o u n d = ” gray22 ” , a c t i v e f o r e g r o u n d = ” gray65 ” )

s e l f . p l o t c h 1 b u t t o n . pack ( s i d e = ’ l e f t ’ )
s e l f . p l o t c h 2 b u t t o n = t k . R a d i o b u t t o n ( s e l f . g raphFrame Top Righ t , t e x t = ’CH2 ’ ,

v a r i a b l e = s e l f . p l o t c h , v a l u e =2 , command= s e l f . p l o t s e l e c t , bg=” gray22 ” ,
h i g h l i g h t b a c k g r o u n d = ” gray22 ” , fg =” gray65 ” , h i g h l i g h t c o l o r =” gray22 ” ,
a c t i v e b a c k g r o u n d = ” gray22 ” , a c t i v e f o r e g r o u n d = ” gray65 ” )

s e l f . p l o t c h 2 b u t t o n . pack ( s i d e = ’ r i g h t ’ )

# These two b u t t o n s are h i dde n and o n l y appear i f dua l aud io mode i s s e l e c t e d .

s e l f . p l o t c h 1 b u t t o n . p a c k f o r g e t ( )
s e l f . p l o t c h 2 b u t t o n . p a c k f o r g e t ( )

s e l f . p l o t i d . s e t ( 1 )
s e l f . p l o t c h . s e t ( 1 )

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ C o n f i g u r a t i o n o f LoRa r a d i o ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’

s e l f . CS = D i g i t a l I n O u t ( boa rd . CE0 )
s e l f . RESET = D i g i t a l I n O u t ( boa rd . D25 )
s e l f . s p i = b u s i o . SPI ( boa rd . SCK, MOSI= board . MOSI , MISO= board . MISO)
s e l f . rfm9x = a d a f r u i t r f m 9 x . RFM9x( s e l f . s p i , s e l f . CS , s e l f . RESET , 8 6 9 . 0 )
s e l f . rfm9x . t x p o w e r = 23
s e l f . RFM9X G0 = 22 # I n t e r r u p t p i n GPIO22
s e l f . rfm9x . l i s t e n ( )

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ I n i t i a l s i n e s w e e p s e t t i n g s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’

s e l f . dur = 2
s e l f . f low = 31
s e l f . f h i g h = 16000
s e l f . s i l = 2
s e l f . s n r = 45
s e l f . c a l i b r a t i n g = F a l s e

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ I n i t i a l sound c o n f i g u r a t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’
s e l f . d e v i c e = 2 # Corresponds t o HiFi Berry DAC+ADC
s e l f . f s = 44100
s e l f . b l o c k s i z e = 1024
s e l f . i n p u t o v e r f l o w s = 0
s e l f . r e c d o n e = F a l s e
s e l f . r e c o r d e d s w e e p = deque ( )
s e l f . l e n g t h a d d o n = 2 # A d d i t i o n a l number o f s e c o n d s added t o t h e r e c o r d i n g

queue . In p o s t p r o c e s s i n g t h e p r o p a g a t i o n d e l a y i s used t o s y n c h r o n i z e
# r e c o r d i n g and p l a y b a c k .

s e l f . r e c f l a g = F a l s e
s e l f . p r e v r e c f l a g = F a l s e
s e l f . p l o t f l a g = F a l s e
s e l f . m e t e r i n g c h 1 q u e u e = queue . Queue ( maxs ize =1)
s e l f . m e t e r i n g c h 2 q u e u e = queue . Queue ( maxs ize =1)
s e l f . i n p u t p e a k c h 1 = 0
s e l f . i n p u t p e a k c h 2 = 0
s e l f . r e c q u e u e s i z e = ( ( s e l f . f s ∗ ( s e l f . l e n g t h a d d o n + s e l f . dur + s e l f . s i l ) ) /

s e l f . b l o c k s i z e )
s e l f . r e c q u e u e = queue . Queue ( maxs ize = s e l f . r e c q u e u e s i z e )
s e l f . r e c q u e u e d u a l = queue . Queue ( maxs ize = s e l f . r e c q u e u e s i z e )

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ I n i t i a l i z e b u t t o n s and u pd a t e GUI ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
’ ’ ’

s e l f . i n i t b u t t o n s ( )
s e l f . u p d a t e g u i ( )
s e l f . i n i t s i n e s w e e p ( )

’ ’ ’ Audio s t r ea m d e f i n i t i o n : D e f i n e d as bo th i n p u t−o u t p u t s t r ea m w i t h a low
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l a t e n c y s e t t i n g ’ ’ ’

d e f c r e a t e s t r e a m ( s e l f , i n p u t c h , d e v i c e =None ) :
i f s e l f . s t r e a m i s n o t None :

s e l f . s t r e a m . c l o s e ( )
i f ( i n p u t c h == 1) :

s e l f . s t r e a m = sd . St ream ( s a m p l e r a t e = s e l f . f s , b l o c k s i z e = s e l f . b l o c k s i z e ,
d e v i c e = s e l f . dev i ce , c h a n n e l s = 1 , l a t e n c y = ’ low ’ , c a l l b a c k = s e l f .
a u d i o c a l l b a c k s i n g l e )

s e l f . s t r e a m . s t a r t ( )
e l i f ( i n p u t c h == 2) :

s e l f . s t r e a m = sd . St ream ( s a m p l e r a t e = s e l f . f s , b l o c k s i z e = s e l f . b l o c k s i z e ,
d e v i c e = s e l f . dev i ce , c h a n n e l s = 2 , l a t e n c y = ’ low ’ , c a l l b a c k = s e l f .
a u d i o c a l l b a c k d u a l )

s e l f . s t r e a m . s t a r t ( )

’ ’ ’ C a l l b a c k f u n c t i o n : Handles aud io a d q u i s i t i o n and r e p r o d u c t i o n ’ ’ ’

d e f a u d i o c a l l b a c k s i n g l e ( s e l f , i n d a t a , o u t d a t a , f rames , t ime , s t a t u s ) :
””” T h i s i s c a l l e d ( from a s e p a r a t e t h r e a d ) f o r each aud io b l o c k . ”””

a s s e r t f r am e s == s e l f . b l o c k s i z e
i f s t a t u s . i n p u t o v e r f l o w :

# NB: T h i s i n c r e m e n t o p e r a t i o n i s n o t a tomic , b u t t h i s doesn ’ t m a t t e r s i n c e
no o t h e r t h r e a d i s w r i t i n g t o t h e a t t r i b u t e .

p r i n t ( ’ I n p u t u n d e r f l o w : i n c r e a s e b l o c k s i z e ? ’ , f i l e = s y s . s t d e r r )
s e l f . i n p u t o v e r f l o w s += 1

a s s e r t n o t s t a t u s

# NB: s e l f . r e c f l a g i s a c c e s s e d from d i f f e r e n t t h r e a d s .
# T h i s i s s a f e because here we are o n l y a c c e s s i n g i t once ( w i t h a s i n g l e

b y t e c o d e i n s t r u c t i o n ) .

i f s e l f . r e c f l a g :
t r y :

s e l f . r e c q u e u e . p u t n o w a i t ( i n d a t a . copy ( ) )
e x c e p t queue . F u l l :

p r i n t ( ’ B u f f e r i s f u l l : We a r e done r e c o r d i n g . ’ , f i l e = s y s . s t d e r r )
s e l f . r e c d o n e = True
s e l f . r e c f l a g = F a l s e

s e l f . p r e v r e c f l a g = True
e l s e :

i f s e l f . p r e v r e c f l a g :

s e l f . p r e v r e c f l a g = F a l s e

s e l f . i n p u t p e a k c h 1 = max ( s e l f . i n p u t p e a k c h 1 , np . max ( np . abs ( i n d a t a [ : , 0 ] ) ) )
s e l f . i n p u t p e a k c h 2 = 0

t r y :
s e l f . m e t e r i n g c h 1 q u e u e . p u t n o w a i t ( s e l f . i n p u t p e a k c h 1 )
s e l f . m e t e r i n g c h 2 q u e u e . p u t n o w a i t ( s e l f . i n p u t p e a k c h 2 )

e x c e p t queue . F u l l :
p a s s

e l s e :
s e l f . i n p u t p e a k c h 1 = 0
s e l f . i n p u t p e a k c h 2 = 0

d e f a u d i o c a l l b a c k d u a l ( s e l f , i n d a t a , o u t d a t a , f rames , t ime , s t a t u s ) :
””” T h i s i s c a l l e d ( from a s e p a r a t e t h r e a d ) f o r each aud io b l o c k . ”””

a s s e r t f r am e s == s e l f . b l o c k s i z e
i f s t a t u s . i n p u t o v e r f l o w :

# NB: T h i s i n c r e m e n t o p e r a t i o n i s n o t a tomic , b u t t h i s doesn ’ t m a t t e r s i n c e
no o t h e r t h r e a d i s w r i t i n g t o t h e a t t r i b u t e .
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p r i n t ( ’ I n p u t u n d e r f l o w : i n c r e a s e b l o c k s i z e ? ’ , f i l e = s y s . s t d e r r )
s e l f . i n p u t o v e r f l o w s += 1

a s s e r t n o t s t a t u s

# NB: s e l f . r e c f l a g i s a c c e s s e d from d i f f e r e n t t h r e a d s .
# T h i s i s s a f e because here we are o n l y a c c e s s i n g i t once ( w i t h a s i n g l e

b y t e c o d e i n s t r u c t i o n ) .

i f s e l f . r e c f l a g :
t r y :

s e l f . r e c q u e u e d u a l . p u t n o w a i t ( i n d a t a . copy ( ) )

e x c e p t queue . F u l l :
p r i n t ( ’ B u f f e r i s f u l l : We a r e done r e c o r d i n g . ’ , f i l e = s y s . s t d e r r )
s e l f . r e c d o n e = True
s e l f . r e c f l a g = F a l s e

s e l f . p r e v r e c f l a g = True
e l s e :

i f s e l f . p r e v r e c f l a g :
s e l f . p r e v r e c f l a g = F a l s e

s e l f . i n p u t p e a k c h 1 = max ( s e l f . i n p u t p e a k c h 1 , np . max ( np . abs ( i n d a t a [ : , 0 ] ) ) )
s e l f . i n p u t p e a k c h 2 = max ( s e l f . i n p u t p e a k c h 2 , np . max ( np . abs ( i n d a t a [ : , 1 ] ) ) )

t r y :
s e l f . m e t e r i n g c h 1 q u e u e . p u t n o w a i t ( s e l f . i n p u t p e a k c h 1 )
s e l f . m e t e r i n g c h 2 q u e u e . p u t n o w a i t ( s e l f . i n p u t p e a k c h 2 )

e x c e p t queue . F u l l :
p a s s

e l s e :
s e l f . i n p u t p e a k c h 1 = 0
s e l f . i n p u t p e a k c h 2 = 0

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Main GUI f u n c t i o n s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’
d e f i n i t b u t t o n s ( s e l f ) :

s e l f . c a l i b r a t i o n b u t t o n [ ’ s t a t e ’ ] = ’ d i s a b l e d ’
s e l f . c a l s n r b u t t o n [ ’ s t a t e ’ ] = ’ d i s a b l e d ’
s e l f . i r b u t t o n [ ’ s t a t e ’ ] = ’ d i s a b l e d ’
s e l f . e x p o r t b u t t o n [ ’ s t a t e ’ ] = ’ d i s a b l e d ’

d e f i n i t s i n e s w e e p ( s e l f ) :

s e l f . d u r i n p u t . i n s e r t ( t k .END, s e l f . dur )
s e l f . s i l i n p u t . i n s e r t ( t k .END, s e l f . s i l )
s e l f . f l o w i n p u t . i n s e r t ( t k .END, s e l f . f low )
s e l f . f h i g h i n p u t . i n s e r t ( t k .END, s e l f . f h i g h )
s e l f . s n r i n p u t . i n s e r t ( t k .END, s e l f . s n r )

d e f u p d a t e g u i ( s e l f ) :

# Check i f we are do ing t h e SNR o p t i m i z a t i o n . I f not , check f o r t h e r e c o r d i n g
f l a g .

i f s e l f . c a l i b r a t i n g == F a l s e :

i f s e l f . r e c d o n e == True :

s e l f . r e c d o n e = F a l s e
s e l f . r e c f l a g = F a l s e

s e l f . c r e a t e s t r e a m ( i n p u t c h = s e l f . s e l a u d i o c o n f i g )

i f ( s e l f . s e l a u d i o c o n f i g == 2) : # Case f o r t h e dua l c h a n n e l mode .

s e l f . r e c o r d e d s w e e p d u a l = u t i l s . g e t a l l q u e u e r e s u l t ( s e l f .
r e c q u e u e d u a l )
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s e l f . p r o c e s s e d s w e e p d u a l = np . a s a r r a y ( s e l f . r e c o r d e d s w e e p d u a l )
s e l f . p r o c e s s e d s w e e p c h 1 = s e l f . p r o c e s s e d s w e e p d u a l [ : , : , 0 ]
s e l f . p r o c e s s e d s w e e p c h 2 = s e l f . p r o c e s s e d s w e e p d u a l [ : , : , 1 ]

s e l f . p r o c e s s e d s w e e p c h 1 = s e l f . p r o c e s s e d s w e e p c h 1 . f l a t t e n ( )
s e l f . p r o c e s s e d s w e e p c h 2 = s e l f . p r o c e s s e d s w e e p c h 2 . f l a t t e n ( )

# Use t h e v a l u e o f t h e p r o p a g a t i o n d e l a y t o b e t t e r s y n c h r o n i z e t h e
r e c o r d e d s i g n a l and t h e i n v e r s e f i l t e r .

s t a r t c u t s a m p l e = i n t ( ( s e l f . p r o p d e l a y + 0 . 2 5 ) ∗ s e l f . f s )
e n d c u t s a m p l e = i n t ( s t a r t c u t s a m p l e + ( s e l f . f s ∗( s e l f . dur + s e l f . s i l

) ) )

s e l f . p r o c e s s e d s w e e p c h 1 = s e l f . p r o c e s s e d s w e e p c h 1 [ s t a r t c u t s a m p l e :
e n d c u t s a m p l e ]

s e l f . p r o c e s s e d s w e e p c h 2 = s e l f . p r o c e s s e d s w e e p c h 2 [ s t a r t c u t s a m p l e :
e n d c u t s a m p l e ]

# In t h i s case , t h e r e i s no n o r m a l i z a t i o n . Mainly because we don t want
t o e s t a b l i s h t h e SNR . In c a l i b r a t i o n mode , t h e r e i s

n o r m a l i z a t i o n .

s e l f . i r c h 1 = u t i l s . f a s t c o n v v e c t ( s e l f . p r o c e s s e d s w e e p c h 1 , s e l f .
i n v e r s e f i l t e r )

s e l f . i r c h 2 = u t i l s . f a s t c o n v v e c t ( s e l f . p r o c e s s e d s w e e p c h 2 , s e l f .
i n v e r s e f i l t e r )

s e l f . peak ch1 = u t i l s . f i n d p e a k ( s e l f . i r c h 1 )
s e l f . peak ch2 = u t i l s . f i n d p e a k ( s e l f . i r c h 2 )

s e l f . i r c h 1 = s e l f . i r c h 1 [ ( s e l f . peak ch1 − 22050) : ( s e l f . peak ch1 + (
s e l f . f s ∗ 5) ) ]

s e l f . i r c h 2 = s e l f . i r c h 2 [ ( s e l f . peak ch2 − 22050) : ( s e l f . peak ch2 + (
s e l f . f s ∗ 5) ) ]

#TODO: P l o t t h e two s i g n a l s .
s e l f . SubPlotFFT . c l a ( )
s e l f . SubP lo tSpec . c l a ( )
s e l f . o n f r e q p l o t d u a l ( s e l f . p r o c e s s e d s w e e p c h 1 , s e l f .

p r o c e s s e d s w e e p c h 2 )
s e l f . o n s p e c p l o t ( s e l f . p r o c e s s e d s w e e p c h 1 )

s e l f . messageBox Text . i n s e r t ( t k .END, ” Measurement o f IR c o m p l e t e . \n ” )
s e l f . messageBox Text . s e e ( t k .END)

e l s e : # Case f o r t h e s i n g l e c h a n n e l mode .
s e l f . r e c o r d e d s w e e p = u t i l s . g e t a l l q u e u e r e s u l t ( s e l f . r e c q u e u e )
s e l f . p r o c e s s e d s w e e p = np . a s a r r a y ( s e l f . r e c o r d e d s w e e p )
s e l f . p r o c e s s e d s w e e p = s e l f . p r o c e s s e d s w e e p . f l a t t e n ( )

# Use t h e v a l u e o f t h e p r o p a g a t i o n d e l a y t o b e t t e r s y n c h r o n i z e t h e
r e c o r d e d s i g n a l and t h e i n v e r s e f i l t e r .

s t a r t c u t s a m p l e = i n t ( ( s e l f . p r o p d e l a y + 0 . 2 5 ) ∗ s e l f . f s )
e n d c u t s a m p l e = i n t ( s t a r t c u t s a m p l e + ( s e l f . f s ∗( s e l f . dur + s e l f . s i l

) ) )

s e l f . p r o c e s s e d s w e e p = s e l f . p r o c e s s e d s w e e p [ s t a r t c u t s a m p l e :
e n d c u t s a m p l e ]

# In t h i s case , t h e r e i s no n o r m a l i z a t i o n . Mainly because we don t want
t o e s t a b l i s h t h e SNR . In c a l i b r a t i o n mode , t h e r e i s

n o r m a l i z a t i o n .

s e l f . i r = u t i l s . f a s t c o n v v e c t ( s e l f . p r o c e s s e d s w e e p , s e l f .
i n v e r s e f i l t e r )

s e l f . peak = u t i l s . f i n d p e a k ( s e l f . i r )
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# TODO: Improve t h e way t h i s i s done . I t s h o u l d n t use a f i x v a l u e t o
c u t t h e IR . I t s h o u l d s e a r c h f o r t h e n o i s e f l o o r i n t h e s i g n a l .

# At t h i s p o i n t , i t t r u n c a t e s t h e IR a f t e r 5 s e c o n d s . Many c a s e s
r e q u i r e a l o n g e r t i m e .

s e l f . i r = s e l f . i r [ ( s e l f . peak − 22050) : ( s e l f . peak + ( s e l f . f s ∗ 1) ) ]

s e l f . SubPlotFFT . c l a ( )
s e l f . SubP lo tSpec . c l a ( )
s e l f . o n f r e q p l o t ( s e l f . p r o c e s s e d s w e e p )
s e l f . o n s p e c p l o t ( s e l f . p r o c e s s e d s w e e p )
s e l f . messageBox Text . i n s e r t ( t k .END, ” Measurement o f IR c o m p l e t e . \n ” )
s e l f . messageBox Text . s e e ( t k .END)

# R e f i l l t h e queues ( f o r s i n g l e aud io mode and dua l aud io mode ) w i t h t h e
upda ted d u r a t i o n

s e l f . r e c q u e u e s i z e = ( ( s e l f . f s ∗ ( s e l f . l e n g t h a d d o n + s e l f . dur + s e l f .
s i l ) ) / s e l f . b l o c k s i z e )

s e l f . r e c q u e u e = queue . Queue ( maxs ize = s e l f . r e c q u e u e s i z e )

wi th s e l f . r e c q u e u e . mutex : # T h i s i s done t o g u a r a n t e e t h a t t h e o p e r a t i o n
i s t h r e a d s a f e .

s e l f . r e c q u e u e . queue . c l e a r ( )

s e l f . r e c q u e u e d u a l = queue . Queue ( maxs ize = s e l f . r e c q u e u e s i z e )

wi th s e l f . r e c q u e u e d u a l . mutex : # T h i s i s done t o g u a r a n t e e t h a t t h e
o p e r a t i o n i s t h r e a d s a f e .

s e l f . r e c q u e u e d u a l . queue . c l e a r ( )

s e l f . e x p o r t b u t t o n [ ’ s t a t e ’ ] = ’ normal ’
s e l f . i r b u t t o n [ ’ t e x t ’ ] = ’ O b t a i n IR ’
s e l f . i r b u t t o n [ ’command ’ ] = s e l f . o n o b t a i n I R
s e l f . p l o t f l a g = True

s e l f . c r e a t e s t r e a m ( i n p u t c h = s e l f . s e l a u d i o c o n f i g ) # We need t o r e s t a r t
t h e aud io s t r e am .

t r y :
i n p u t p e a k c h 1 = s e l f . m e t e r i n g c h 1 q u e u e . g e t n o w a i t ( )
i n p u t p e a k c h 2 = s e l f . m e t e r i n g c h 2 q u e u e . g e t n o w a i t ( )

e x c e p t queue . Empty :
p a s s

e l s e :
s e l f . meterCh1 [ ’ v a l u e ’ ] = i n p u t p e a k c h 1
s e l f . meterCh2 [ ’ v a l u e ’ ] = i n p u t p e a k c h 2

s e l f . a f t e r ( 1 0 0 , s e l f . u p d a t e g u i )

d e f c lose window ( s e l f ) :
s e l f . d e s t r o y ( )

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Use S inesweep as t e s t s i g n a l ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’

d e f o n c a l i b r a t e s t a r t ( s e l f ) :

s e l f . c a l i b r a t i o n b u t t o n [ ’ t e x t ’ ] = ’ S top Sweep ’
s e l f . c a l i b r a t i o n b u t t o n [ ’command ’ ] = s e l f . o n c a l i b r a t e s t o p
p a y l o a d = ” P lay c a l i b r a t i o n s i n e s w e e p ”
t x r e c i p i e n t i d = np . u i n t 8 ( 2 )
t x s e n d e r i d = np . u i n t 8 ( 1 )
t x m e s s a g e i d = np . u i n t 8 ( 3 )
t x m e s s a g e f l a g s = np . u i n t 8 ( 0 )
s e l f . rfm9x . send ( b y t e s ( pay load , ” u t f−8” ) , t x h e a d e r =( t x r e c i p i e n t i d ,

t x s e n d e r i d , t x m e s s a g e i d , t x m e s s a g e f l a g s ) )
s e l f . rfm9x . l i s t e n ( )
s e l f . messageBox Text . i n s e r t ( t k .END, ” Reproduc ing c a l i b r a t i o n s i n e s w e e p . . . \ n ” )
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s e l f . messageBox Text . s e e ( t k .END)

d e f o n c a l i b r a t e s t o p ( s e l f ) :

s e l f . c r e a t e s t r e a m ( i n p u t c h = s e l f . s e l a u d i o c o n f i g )
s e l f . c a l i b r a t i o n b u t t o n [ ’ t e x t ’ ] = ’ P l ay Sweep ’
s e l f . c a l i b r a t i o n b u t t o n [ ’command ’ ] = s e l f . o n c a l i b r a t e s t a r t
p a y l o a d = ” Stop c a l i b r a t i o n s i n e s w e e p ”
t x r e c i p i e n t i d = np . u i n t 8 ( 2 )
t x s e n d e r i d = np . u i n t 8 ( 1 )
t x m e s s a g e i d = np . u i n t 8 ( 4 )
t x m e s s a g e f l a g s = np . u i n t 8 ( 0 )
s e l f . rfm9x . send ( b y t e s ( pay load , ” u t f−8” ) , t x h e a d e r =( t x r e c i p i e n t i d ,

t x s e n d e r i d , t x m e s s a g e i d , t x m e s s a g e f l a g s ) )
s e l f . rfm9x . l i s t e n ( )
s e l f . messageBox Text . i n s e r t ( t k .END, ” Stopped c a l i b r a t i o n s i n e s w e e p .\ n ” )
s e l f . messageBox Text . s e e ( t k .END)

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ C a l i b r a t i o n p r o c e d u r e ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’

d e f o n c a l s n r ( s e l f ) :

s e l f . dur = f l o a t ( s e l f . d u r i n p u t . g e t ( ) )
s e l f . s i l = f l o a t ( s e l f . s i l i n p u t . g e t ( ) )
s e l f . f low = f l o a t ( s e l f . f l o w i n p u t . g e t ( ) )
s e l f . f h i g h = f l o a t ( s e l f . f h i g h i n p u t . g e t ( ) )
s e l f . s n r = f l o a t ( s e l f . s n r i n p u t . g e t ( ) )
s e l f . c a l i b r a t i o n u p d a t e ( )

d e f o n c a n c e l c a l s n r ( s e l f ) : # THIS IS NOT WORKING

s e l f . r e c f l a g = F a l s e
s e l f . c a l i b r a t i n g = F a l s e
wi th s e l f . r e c q u e u e . mutex : # T h i s i s done t o g u a r a n t e e t h a t t h e o p e r a t i o n i s

t h r e a d s a f e .
s e l f . r e c q u e u e . queue . c l e a r ( )

s e l f . r e c q u e u e d u a l = queue . Queue ( maxs ize = s e l f . r e c q u e u e s i z e )
wi th s e l f . r e c q u e u e d u a l . mutex : # T h i s i s done t o g u a r a n t e e t h a t t h e o p e r a t i o n

i s t h r e a d s a f e .
s e l f . r e c q u e u e d u a l . queue . c l e a r ( )

s e l f . c a l s n r b u t t o n [ ’ t e x t ’ ] = ’SNR C a l i b r a t i o n ’
s e l f . c a l s n r b u t t o n [ ’command ’ ] = s e l f . o n c a l s n r

s e l f . c r e a t e s t r e a m ( i n p u t c h = s e l f . s e l a u d i o c o n f i g ) # We need t o r e s t a r t t h e
aud io s t r e am .

p a y l o a d = ” Stop Sinesweep ”
t x r e c i p i e n t i d = np . u i n t 8 ( 2 )
t x s e n d e r i d = np . u i n t 8 ( 1 )
t x m e s s a g e i d = np . u i n t 8 ( 9 )
t x m e s s a g e f l a g s = np . u i n t 8 ( 0 )
s e l f . rfm9x . send ( b y t e s ( pay load , ” u t f−8” ) , t x h e a d e r =( t x r e c i p i e n t i d ,

t x s e n d e r i d , t x m e s s a g e i d , t x m e s s a g e f l a g s ) )
s e l f . rfm9x . l i s t e n ( )
s e l f . messageBox Text . i n s e r t ( t k .END, ”SNR O p t i m i z a t i o n a b o r t e d .\ n ” )
s e l f . messageBox Text . s e e ( t k .END)

d e f c a l i b r a t i o n u p d a t e ( s e l f ) :

i f ( n o t s e l f . c a l i b r a t i n g ) :
s e l f . u p d a t e c a l i b r a t i o n p a r a m e t e r s ( )
t ime . s l e e p ( 5 )
s e l f . s e n d c a l i b r a t i o n s t a r t ( )
t ime . s l e e p ( 0 . 5 )
s e l f . r e c f l a g = True
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s e l f . c a l i b r a t i n g = True

e l i f ( s e l f . c a l i b r a t i n g ) :

i f s e l f . r e c d o n e :
s e l f . r e c d o n e = F a l s e
s e l f . r e c f l a g = F a l s e

i f ( s e l f . s e l a u d i o c o n f i g == 2) : # Case f o r t h e dua l c h a n n e l mode .

s e l f . r e c o r d e d s w e e p d u a l = u t i l s . g e t a l l q u e u e r e s u l t ( s e l f .
r e c q u e u e d u a l )

s e l f . p r o c e s s e d s w e e p d u a l = np . a s a r r a y ( s e l f . r e c o r d e d s w e e p d u a l )

# E x t r a c t t h e two c h a n n e l s from t h e queue
s e l f . p r o c e s s e d s w e e p c h 1 = s e l f . p r o c e s s e d s w e e p d u a l [ : , : , 0 ]
s e l f . p r o c e s s e d s w e e p c h 2 = s e l f . p r o c e s s e d s w e e p d u a l [ : , : , 1 ]
s e l f . p r o c e s s e d s w e e p c h 1 = s e l f . p r o c e s s e d s w e e p c h 1 . f l a t t e n ( )
s e l f . p r o c e s s e d s w e e p c h 2 = s e l f . p r o c e s s e d s w e e p c h 2 . f l a t t e n ( )

# Use t h e v a l u e o f t h e p r o p a g a t i o n d e l a y t o b e t t e r s y n c h r o n i z e t h e
r e c o r d e d s i g n a l and t h e i n v e r s e f i l t e r .

s t a r t c u t s a m p l e = i n t ( ( s e l f . p r o p d e l a y + 0 . 2 5 ) ∗ s e l f . f s )
e n d c u t s a m p l e = i n t ( s t a r t c u t s a m p l e + ( s e l f . f s ∗( s e l f . dur + s e l f . s i l

) ) )
s e l f . p r o c e s s e d s w e e p c h 1 = s e l f . p r o c e s s e d s w e e p c h 1 [ s t a r t c u t s a m p l e :

e n d c u t s a m p l e ]
s e l f . p r o c e s s e d s w e e p c h 2 = s e l f . p r o c e s s e d s w e e p c h 2 [ s t a r t c u t s a m p l e :

e n d c u t s a m p l e ]

# In t h i s case , t h e r e i s a n o r m a l i z a t i o n . Mainly because we want t o
e s t a b l i s h t h e SNR .

s e l f . p r o c e s s e d s w e e p c h 1 = 0 . 9 9 ∗ ( s e l f . p r o c e s s e d s w e e p c h 1 / np . max (
s e l f . p r o c e s s e d s w e e p c h 1 ) )

s e l f . p r o c e s s e d s w e e p c h 2 = 0 . 9 9 ∗ ( s e l f . p r o c e s s e d s w e e p c h 2 / np . max (
s e l f . p r o c e s s e d s w e e p c h 2 ) )

s e l f . i r c h 1 = u t i l s . f a s t c o n v v e c t ( s e l f . p r o c e s s e d s w e e p c h 1 , s e l f .
i n v e r s e f i l t e r )

s e l f . i r c h 2 = u t i l s . f a s t c o n v v e c t ( s e l f . p r o c e s s e d s w e e p c h 2 , s e l f .
i n v e r s e f i l t e r )

s e l f . i r c h 1 = 0 . 9 9 ∗( s e l f . i r c h 1 / np . max ( np . abs ( s e l f . i r c h 1 ) ) )
s e l f . i r c h 2 = 0 . 9 9 ∗( s e l f . i r c h 2 / np . max ( np . abs ( s e l f . i r c h 2 ) ) )

s e l f . peak ch1 = u t i l s . f i n d p e a k ( s e l f . i r c h 1 )
s e l f . peak ch2 = u t i l s . f i n d p e a k ( s e l f . i r c h 2 )

# TODO: Improve t h e way t h i s i s done . I t s h o u l d n ’ t use a f i x v a l u e t o
c u t t h e IR . I t s h o u l d s e a r c h f o r t h e n o i s e f l o o r i n t h e s i g n a l .

# At t h i s p o i n t , i t t r u n c a t e s t h e IR a f t e r 5 s e c o n d s . Many c a s e s
r e q u i r e a l o n g e r t i m e .

s e l f . i r c h 1 = s e l f . i r c h 1 [ ( s e l f . peak ch1 − 22050) : ( s e l f . peak ch1 + (
s e l f . f s ∗ 5) ) ]

s e l f . i r c h 2 = s e l f . i r c h 2 [ ( s e l f . peak ch2 − 22050) : ( s e l f . peak ch2 + (
s e l f . f s ∗ 5) ) ]

s e l f . n o i s e s e g m e n t c h 1 = s e l f . i r c h 1 [ : 1 1 0 2 5 ] # Get t h e f i r s t 11025
sample s o f t h e IR t o c o n s i d e r them as n o i s e .

s e l f . n o i s e s e g m e n t c h 2 = s e l f . i r c h 2 [ : 1 1 0 2 5 ] # Get t h e f i r s t 10025
sample s o f t h e IR t o c o n s i d e r them as n o i s e .

s e l f . i r p o w e r c h 1 = np . sum ( s e l f . n o i s e s e g m e n t c h 1 . r e a l ∗ s e l f .
n o i s e s e g m e n t c h 1 . r e a l ) / s e l f . n o i s e s e g m e n t c h 1 . s i z e

s e l f . i r p o w e r c h 2 = np . sum ( s e l f . n o i s e s e g m e n t c h 2 . r e a l ∗ s e l f .
n o i s e s e g m e n t c h 2 . r e a l ) / s e l f . n o i s e s e g m e n t c h 2 . s i z e

s e l f . p n r c h 1 = 10 ∗ np . log10 ( 1 / s e l f . i r p o w e r c h 1 )
s e l f . p n r c h 2 = 10 ∗ np . log10 ( 1 / s e l f . i r p o w e r c h 2 )
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s e l f . messageBox Text . i n s e r t ( t k .END, ” The measured INR f o r CH1 i s : { : . 2
f } .\n ” . f o r m a t ( s e l f . p n r c h 1 ) )

s e l f . messageBox Text . i n s e r t ( t k .END, ” The measured INR f o r CH2 i s : { : . 2
f } .\n ” . f o r m a t ( s e l f . p n r c h 2 ) )

s e l f . messageBox Text . s e e ( t k .END)

i f ( ( s e l f . p n r c h 1 <= s e l f . s n r ) o r ( s e l f . p n r c h 2 <= s e l f . s n r ) ) :
s e l f . dur = s e l f . dur ∗ 2
s e l f . messageBox Text . i n s e r t ( t k .END, ” Updated s i n e s w e e p d u r a t i o n t o :

{} .\n ” . f o r m a t ( s e l f . dur ) )
s e l f . messageBox Text . s e e ( t k .END)

s e l f . c a l i b r a t i n g = F a l s e

s e l f . c r e a t e s t r e a m ( i n p u t c h = s e l f . s e l a u d i o c o n f i g )

s e l f . d u r i n p u t . d e l e t e ( 0 , t k .END)
s e l f . d u r i n p u t . i n s e r t ( t k .END, s e l f . dur )

e l s e :

s e l f . c r e a t e s t r e a m ( i n p u t c h = s e l f . s e l a u d i o c o n f i g )

s e l f . c a l i b r a t i n g = F a l s e
s e l f . i r b u t t o n [ ’ s t a t e ’ ] = ’ normal ’
s e l f . messageBox Text . i n s e r t ( t k .END, ”INR O p t i m i z a t i o n c o m p l e t e . \n ”

)
s e l f . messageBox Text . s e e ( t k .END)
r e t u r n

e l s e : # Case f o r t h e s i n g l e c h a n n e l mode .

s e l f . r e c o r d e d s w e e p = u t i l s . g e t a l l q u e u e r e s u l t ( s e l f . r e c q u e u e )
s e l f . p r o c e s s e d s w e e p = np . a s a r r a y ( s e l f . r e c o r d e d s w e e p )
s e l f . p r o c e s s e d s w e e p = s e l f . p r o c e s s e d s w e e p . f l a t t e n ( )

# Use t h e v a l u e o f t h e p r o p a g a t i o n d e l a y t o b e t t e r s y n c h r o n i z e t h e
r e c o r d e d s i g n a l and t h e i n v e r s e f i l t e r .

s t a r t c u t s a m p l e = i n t ( ( s e l f . p r o p d e l a y + 0 . 2 5 ) ∗ s e l f . f s )
e n d c u t s a m p l e = i n t ( s t a r t c u t s a m p l e + ( s e l f . f s ∗( s e l f . dur + s e l f . s i l

) ) )
s e l f . p r o c e s s e d s w e e p = s e l f . p r o c e s s e d s w e e p [ s t a r t c u t s a m p l e :

e n d c u t s a m p l e ]

# In t h i s case , t h e r e i s a n o r m a l i z a t i o n . Mainly because we want t o
e s t a b l i s h t h e SNR .

s e l f . p r o c e s s e d s w e e p = 0 . 9 9 ∗ ( s e l f . p r o c e s s e d s w e e p / np . max ( s e l f .
p r o c e s s e d s w e e p ) )

f i l e n a m e = ” Measured Sweep ( ” + t ime . s t r f t i m e ( ”%Y−%m−%d−%H−%M−%S” ,
t ime . gmtime ( ) ) + ” ) ”

s c a l e d s i g n a l s w e e p = np . i n t 1 6 ( s e l f . p r o c e s s e d s w e e p . r e a l / np . max ( np . abs
( s e l f . p r o c e s s e d s w e e p . r e a l ) )∗ 32767)

w r i t e ( f i l e n a m e , s e l f . f s , s c a l e d s i g n a l s w e e p )

f i l e n a m e 2 = ” I n v e r s e f i l t e r ( ” + t ime . s t r f t i m e ( ”%Y−%m−%d−%H−%M−%S” ,
t ime . gmtime ( ) ) + ” ) ”

s c a l e d s i g n a l f i l t e r = np . i n t 1 6 ( s e l f . i n v e r s e f i l t e r . r e a l / np . max ( np . abs
( s e l f . i n v e r s e f i l t e r . r e a l ) )∗ 32767)

w r i t e ( f i l e n a m e 2 , s e l f . f s , s c a l e d s i g n a l f i l t e r )

p r i n t ( ” e x p o r t e d ” )

s e l f . i r = u t i l s . f a s t c o n v v e c t ( s e l f . p r o c e s s e d s w e e p , s e l f .
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i n v e r s e f i l t e r )
s e l f . i r = 0 . 9 9 ∗( s e l f . i r / np . max ( np . abs ( s e l f . i r ) ) )
s e l f . peak = u t i l s . f i n d p e a k ( s e l f . i r )

# TODO: Improve t h e way t h i s i s done . I t s h o u l d n t use a f i x v a l u e t o
c u t t h e IR . I t s h o u l d s e a r c h f o r t h e n o i s e f l o o r i n t h e s i g n a l .

# At t h i s p o i n t , i t t r u n c a t e s t h e IR a f t e r 5 s e c o n d s . Many c a s e s
r e q u i r e a l o n g e r t i m e .

s e l f . i r = s e l f . i r [ ( s e l f . peak − 22050) : ( s e l f . peak + ( s e l f . f s ∗ 5) ) ]
s e l f . n o i s e s e g m e n t = s e l f . i r [ : 1 1 0 2 5 ] # Get t h e f i r s t 11025 samples o f

t h e IR t o c o n s i d e r them as n o i s e .

s e l f . i r p o w e r = np . sum ( s e l f . n o i s e s e g m e n t . r e a l ∗ s e l f . n o i s e s e g m e n t . r e a l
) / s e l f . n o i s e s e g m e n t . s i z e

s e l f . pnr = 10 ∗ np . log10 ( 1 / s e l f . i r p o w e r )
s e l f . messageBox Text . i n s e r t ( t k .END, ” The measured INR i s : { : . 2 f } .\n ” .

f o r m a t ( s e l f . pnr ) )
s e l f . messageBox Text . s e e ( t k .END)

i f ( s e l f . pnr <= s e l f . s n r ) :
s e l f . dur = s e l f . dur ∗ 2
s e l f . messageBox Text . i n s e r t ( t k .END, ” Updated s i n e s w e e p d u r a t i o n t o :

{} .\n ” . f o r m a t ( s e l f . dur ) )
s e l f . messageBox Text . s e e ( t k .END)
s e l f . c a l i b r a t i n g = F a l s e

s e l f . c r e a t e s t r e a m ( i n p u t c h = s e l f . s e l a u d i o c o n f i g )

s e l f . d u r i n p u t . d e l e t e ( 0 , t k .END)
s e l f . d u r i n p u t . i n s e r t ( t k .END, s e l f . dur )

e l s e :

s e l f . c r e a t e s t r e a m ( i n p u t c h = s e l f . s e l a u d i o c o n f i g )

s e l f . c a l i b r a t i n g = F a l s e
s e l f . i r b u t t o n [ ’ s t a t e ’ ] = ’ normal ’
s e l f . messageBox Text . i n s e r t ( t k .END, ”INR O p t i m i z a t i o n c o m p l e t e . \n ”

)
s e l f . messageBox Text . s e e ( t k .END)
r e t u r n

s e l f . a f t e r ( 5 0 0 , s e l f . c a l i b r a t i o n u p d a t e )

d e f u p d a t e c a l i b r a t i o n p a r a m e t e r s ( s e l f ) :

s e l f . messageBox Text . i n s e r t ( t k .END, ”INR O p t i m i z a t i o n i n p r o g r e s s . . . \n ” )
s e l f . messageBox Text . s e e ( t k .END)
s e l f . i n v e r s e f i l t e r = u t i l s . g e t i n v e r s e f i l t e r ( s e l f . f low , s e l f . f h i g h , s e l f . dur ,

s e l f . s i l , s e l f . f s )

# R e f i l l t h e queues ( f o r s i n g l e aud io mode and dua l aud io mode ) w i t h t h e
upda ted d u r a t i o n

s e l f . r e c q u e u e s i z e = ( ( s e l f . f s ∗ ( s e l f . l e n g t h a d d o n + s e l f . dur + s e l f . s i l ) ) /
s e l f . b l o c k s i z e )

s e l f . r e c q u e u e = queue . Queue ( maxs ize = s e l f . r e c q u e u e s i z e )
wi th s e l f . r e c q u e u e . mutex : # T h i s i s done t o g u a r a n t e e t h a t t h e o p e r a t i o n i s

t h r e a d s a f e .
s e l f . r e c q u e u e . queue . c l e a r ( )

s e l f . r e c q u e u e d u a l = queue . Queue ( maxs ize = s e l f . r e c q u e u e s i z e )
wi th s e l f . r e c q u e u e d u a l . mutex : # T h i s i s done t o g u a r a n t e e t h a t t h e o p e r a t i o n

i s t h r e a d s a f e .
s e l f . r e c q u e u e d u a l . queue . c l e a r ( )

p a y l o a d = s t r ( s e l f . dur ) +” ”+ s t r ( s e l f . s i l ) +” ”+ s t r ( s e l f . f low ) +” ”+ s t r ( s e l f . f h i g h
)
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t x r e c i p i e n t i d = np . u i n t 8 ( 2 )
t x s e n d e r i d = np . u i n t 8 ( 1 )
t x m e s s a g e i d = np . u i n t 8 ( 5 )
t x m e s s a g e f l a g s = np . u i n t 8 ( 0 )
s e l f . rfm9x . send ( b y t e s ( pay load , ” u t f−8” ) , t x h e a d e r =( t x r e c i p i e n t i d ,

t x s e n d e r i d , t x m e s s a g e i d , t x m e s s a g e f l a g s ) )
s e l f . rfm9x . l i s t e n ( )

d e f s e n d c a l i b r a t i o n s t a r t ( s e l f ) :

p a y l o a d = ” P lay Sinesweep ”
t x r e c i p i e n t i d = np . u i n t 8 ( 2 )
t x s e n d e r i d = np . u i n t 8 ( 1 )
t x m e s s a g e i d = np . u i n t 8 ( 8 )
t x m e s s a g e f l a g s = np . u i n t 8 ( 0 )
s e l f . rfm9x . send ( b y t e s ( pay load , ” u t f−8” ) , t x h e a d e r =( t x r e c i p i e n t i d ,

t x s e n d e r i d , t x m e s s a g e i d , t x m e s s a g e f l a g s ) )
s e l f . rfm9x . l i s t e n ( )

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Obta in I m p u l s e Response
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’

d e f o n o b t a i n I R ( s e l f ) :

s e l f . c r e a t e s t r e a m ( i n p u t c h = s e l f . s e l a u d i o c o n f i g ) # We need t o r e s t a r t t h e
aud io s t r e am .

s e l f . i r b u t t o n [ ’ t e x t ’ ] = ’ Abor t ’
s e l f . i r b u t t o n [ ’command ’ ] = s e l f . o n c a n c e l I R
p a y l o a d = ” P lay Sinesweep ”
t x r e c i p i e n t i d = np . u i n t 8 ( 2 )
t x s e n d e r i d = np . u i n t 8 ( 1 )
t x m e s s a g e i d = np . u i n t 8 ( 8 )
t x m e s s a g e f l a g s = np . u i n t 8 ( 0 )
s e l f . rfm9x . send ( b y t e s ( pay load , ” u t f−8” ) , t x h e a d e r =( t x r e c i p i e n t i d ,

t x s e n d e r i d , t x m e s s a g e i d , t x m e s s a g e f l a g s ) )
s e l f . rfm9x . l i s t e n ( )
s e l f . r e c f l a g = True
s e l f . messageBox Text . i n s e r t ( t k .END, ” Measurement o f IR i n p r o g r e s s . . . \ n ” )
s e l f . messageBox Text . s e e ( t k .END)

d e f o n c a n c e l I R ( s e l f ) :

s e l f . r e c f l a g = F a l s e
wi th s e l f . r e c q u e u e . mutex : # T h i s i s done t o g u a r a n t e e t h a t t h e o p e r a t i o n i s

t h r e a d s a f e .
s e l f . r e c q u e u e . queue . c l e a r ( )

s e l f . i r b u t t o n [ ’ t e x t ’ ] = ’ O b t a i n IR ’
s e l f . i r b u t t o n [ ’command ’ ] = s e l f . o n o b t a i n I R
p a y l o a d = ” Stop Sinesweep ”
t x r e c i p i e n t i d = np . u i n t 8 ( 2 )
t x s e n d e r i d = np . u i n t 8 ( 1 )
t x m e s s a g e i d = np . u i n t 8 ( 9 )
t x m e s s a g e f l a g s = np . u i n t 8 ( 0 )
s e l f . rfm9x . send ( b y t e s ( pay load , ” u t f−8” ) , t x h e a d e r =( t x r e c i p i e n t i d ,

t x s e n d e r i d , t x m e s s a g e i d , t x m e s s a g e f l a g s ) )
s e l f . rfm9x . l i s t e n ( )
s e l f . messageBox Text . i n s e r t ( t k .END, ” Measurement o f IR a b o r t e d .\ n ” )
s e l f . messageBox Text . s e e ( t k .END)

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Ex po r t WAV f i l e s
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’

d e f o n e x p o r t I R ( s e l f ) :

i f s e l f . s e l a u d i o c o n f i g == 1 :
f i l e n a m e = ” Measured IR ( ” + t ime . s t r f t i m e ( ”%Y−%m−%d−%H−%M−%S” , t ime . gmtime

( ) ) + ” ) ”
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s c a l e d s i g n a l = np . i n t 1 6 ( s e l f . i r . r e a l / np . max ( np . abs ( s e l f . i r . r e a l ) )∗ 32767)
w r i t e ( f i l e n a m e , s e l f . f s , s c a l e d s i g n a l )

e l i f s e l f . s e l a u d i o c o n f i g == 2 :
t ime name = t ime . s t r f t i m e ( ”%Y−%m−%d−%H−%M−%S” , t ime . gmtime ( ) )
f i l e n a m e c h 1 = ” Measured IR CH1 ( ” + t ime name + ” ) ”
f i l e n a m e c h 2 = ” Measured IR CH2 ( ” + t ime name + ” ) ”

s c a l e d s i g n a l c h 1 = np . i n t 1 6 ( s e l f . i r c h 1 . r e a l / np . max ( np . abs ( s e l f . i r c h 1 . r e a l
) )∗ 32767)

w r i t e ( f i l e n a m e c h 1 , s e l f . f s , s c a l e d s i g n a l c h 1 )

s c a l e d s i g n a l c h 2 = np . i n t 1 6 ( s e l f . i r c h 2 . r e a l / np . max ( np . abs ( s e l f . i r c h 2 . r e a l
) )∗ 32767)

w r i t e ( f i l e n a m e c h 2 , s e l f . f s , s c a l e d s i g n a l c h 2 )

s e l f . messageBox Text . i n s e r t ( t k .END, ” E x p o r t e d IR as WAV f i l e .\ n ” )

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Node s y n c h r o n i z a t i o n w i t h TPSN
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’

d e f o n s y n c ( s e l f ) :
g l o b a l p a c k e t r e c e i v e d
s e l f . messageBox Text . i n s e r t ( t k .END, ”Node S y n c h r o n i z a t i o n i n p r o g r e s s . . . \ n ” )
s e l f . messageBox Text . s e e ( t k .END)
t x r e c i p i e n t i d = np . u i n t 8 ( 2 )
t x s e n d e r i d = np . u i n t 8 ( 1 )
t x m e s s a g e i d = np . u i n t 8 ( 2 )
t x m e s s a g e f l a g s = np . u i n t 8 ( 0 )
T1 = s t r ( t ime . t ime ( ) )
s e l f . rfm9x . send ( b y t e s ( T1 , ” u t f−8” ) , t x h e a d e r =( t x r e c i p i e n t i d , t x s e n d e r i d ,

t x m e s s a g e i d , t x m e s s a g e f l a g s ) )
s e l f . rfm9x . l i s t e n ( )

w h i l e True :
i f p a c k e t r e c e i v e d :

i f ( s e l f . rfm9x . r x d o n e != s e l f . rfm9x . t x d o n e ) :
p a c k e t = s e l f . rfm9x . r e c e i v e ( t i m e o u t = None , w i t h h e a d e r =True )
h e a d e r T o = p a c k e t [ 0 ]
header From = p a c k e t [ 1 ]
h e a d e r I d = p a c k e t [ 2 ]
h e a d e r F l a g s = p a c k e t [ 3 ]
p a y l o a d = s t r ( p a c k e t [ 4 : l e n ( p a c k e t ) ] , ” u t f−8” )
p r o c p a y l o a d = p a y l o a d . s p l i t ( )
T2 = p r o c p a y l o a d [ 0 ]
T3 = p r o c p a y l o a d [ 1 ]
T4 = t imes t amp
s e l f . c l o c k d r i f t = 0 . 5 ∗ ( f l o a t ( T2 )−f l o a t ( T1 ) )−(( f l o a t ( T4 )−f l o a t ( T3 ) ) )
s e l f . p r o p d e l a y = 0 . 5 ∗ ( f l o a t ( T2 )−f l o a t ( T1 ) ) + ( ( f l o a t ( T4 )−f l o a t ( T3 ) ) )
s e l f . d e l a y i n p u t . d e l e t e ( 0 , t k .END)
s e l f . d r i f t i n p u t . d e l e t e ( 0 , t k .END)
s e l f . d e l a y i n p u t . i n s e r t ( t k .END, s e l f . p r o p d e l a y )
s e l f . d r i f t i n p u t . i n s e r t ( t k .END, s e l f . c l o c k d r i f t )
s e l f . messageBox Text . i n s e r t ( t k .END, ”Node s y n c h r o n i z a t i o n c o m p l e t e .\ n ”

)
s e l f . messageBox Text . s e e ( t k .END)
b r e a k

p a c k e t r e c e i v e d = F a l s e
r e t u r n

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ P l o t t i n g f u n c t i o n s
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’

d e f o n f r e q p l o t ( s e l f , s i g n a l ) :

s e l f . s i g n a l f f t = u t i l s . g e t f f t ( s i g n a l , s e l f . f s , s i g n a l . s i z e )
f = s e l f . f s∗np . a r a n g e ( ( s i g n a l . s i z e / 2 ) ) / s i g n a l . s i z e
ax FFT = s e l f . c an v as . f i g u r e . axes [ 0 ]
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ax FFT . s e t f a c e c o l o r ( ’ xkcd : da rk g rey ’ )
ax FFT . s e t y l a b e l ( ’ Ampl i tude [ dB ] ’ , f o n t s i z e = 7)
ax FFT . s e t x l a b e l ( ’ F requency [ Hz ] ’ , f o n t s i z e = 7)
ax FFT . s e t x s c a l e ( ’ l o g ’ )
ax FFT . s e t x l i m ( 3 1 , 1 6 0 0 0 )
ax FFT . s e t x t i c k s ( [ 3 1 , 63 , 125 , 250 , 500 , 1000 , 2000 , 4000 , 8000 , 1 6 0 0 0 ] )
ax FFT . s e t x t i c k l a b e l s ( [ 3 1 , 63 , 125 , 250 , 500 , 1000 , 2000 , 4000 , 8000 , 1 6 0 0 0 ] )
ax FFT . m i n o r t i c k s o f f ( )
ax FFT . s e t t i t l e ( ’ F requency s p e c t r u m ’ , f o n t s i z e = 8)
ax FFT . t i c k p a r a m s ( a x i s = ’ bo th ’ , l a b e l s i z e =6)
ax FFT . g r i d ( True )
s e l f . g raph = s e l f . SubPlotFFT . p l o t ( f , s e l f . s i g n a l f f t , ’ xkcd : b r i g h t g r e e n ’ ,

l i n e w i d t h = 0 . 5 , )
s e l f . c a nv as . draw ( )

d e f o n f r e q p l o t d u a l ( s e l f , s i g n a l c h 1 , s i g n a l c h 2 ) :

s e l f . s i g n a l c h 1 f f t = u t i l s . g e t f f t ( s i g n a l c h 1 , s e l f . f s , s i g n a l c h 1 . s i z e )
s e l f . s i g n a l c h 2 f f t = u t i l s . g e t f f t ( s i g n a l c h 2 , s e l f . f s , s i g n a l c h 2 . s i z e )
f = s e l f . f s∗np . a r a n g e ( ( s i g n a l c h 1 . s i z e / 2 ) ) / s i g n a l c h 1 . s i z e
ax FFT = s e l f . c an v as . f i g u r e . axes [ 0 ]
ax FFT . s e t f a c e c o l o r ( ’ xkcd : da rk g rey ’ )
ax FFT . s e t y l a b e l ( ’ Ampl i tude [ dB ] ’ , f o n t s i z e = 7)
ax FFT . s e t x l a b e l ( ’ F requency [ Hz ] ’ , f o n t s i z e = 7)
ax FFT . s e t x s c a l e ( ’ l o g ’ )
ax FFT . s e t x l i m ( 3 1 , 1 6 0 0 0 )
ax FFT . s e t x t i c k s ( [ 3 1 , 63 , 125 , 250 , 500 , 1000 , 2000 , 4000 , 8000 , 1 6 0 0 0 ] )
ax FFT . s e t x t i c k l a b e l s ( [ 3 1 , 63 , 125 , 250 , 500 , 1000 , 2000 , 4000 , 8000 , 1 6 0 0 0 ] )
ax FFT . m i n o r t i c k s o f f ( )
ax FFT . s e t t i t l e ( ’ F requency s p e c t r u m ’ , f o n t s i z e = 8)
ax FFT . t i c k p a r a m s ( a x i s = ’ bo th ’ , l a b e l s i z e =6)
ax FFT . g r i d ( True )
s e l f . g raph = s e l f . SubPlotFFT . p l o t ( f , s e l f . s i g n a l c h 1 f f t , ’ xkcd : b r i g h t g r e e n ’ ,

l i n e w i d t h = 0 . 5 , l a b e l =”CH1” )
s e l f . g raph = s e l f . SubPlotFFT . p l o t ( f , s e l f . s i g n a l c h 2 f f t , ’ xkcd : v i o l e t ’ , l i n e w i d t h

= 0 . 5 , l a b e l =”CH2” )
ax FFT . l e g e n d ( l o c =” b e s t ” , f o n t s i z e =7)
s e l f . c a nv as . draw ( )

d e f o n s p e c p l o t ( s e l f , s i g n a l ) :

s e l f . c o l o r b a r . remove ( )
ax Spec = s e l f . c a nv a s . f i g u r e . axe s [ 1 ]
ax Spec . s e t y l a b e l ( ’ F requency [ Hz ] ’ , f o n t s i z e = 7)
ax Spec . s e t x l a b e l ( ’ Time [ s ] ’ , f o n t s i z e = 7)
ax Spec . s e t t i t l e ( ’ Spec t rog ram ’ , f o n t s i z e = 8)
ax Spec . t i c k p a r a m s ( a x i s = ’ bo th ’ , l a b e l s i z e =6)
s e l f . pxx , s e l f . f r e q , s e l f . t , s e l f . cax = s e l f . SubP lo tSpec . specgram ( s i g n a l , Fs=

s e l f . f s , vmin= s e l f . vmin , cmap= p l t . cm . v i r i d i s , )
ax Spec . s e t y l i m ( ( 0 , i n t ( s e l f . f h i g h ) ) )
s e l f . c o l o r b a r = s e l f . F ig . c o l o r b a r ( s e l f . cax )
s e l f . c o l o r b a r . ax . t i c k p a r a m s ( l a b e l s i z e =6)
s e l f . c o l o r b a r . s e t l a b e l ( ’ Ampl i tude [ dB ] ’ , f o n t s i z e = 6)
s e l f . c a nv as . draw ( )

’ ’ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Radio B u t t o n commands
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ ’ ’

d e f i n p u t s e l e c t ( s e l f ) :
s e l f . s e l a u d i o c o n f i g = i n t ( s e l f . ch . g e t ( ) )
s e l f . c r e a t e s t r e a m ( i n p u t c h = s e l f . s e l a u d i o c o n f i g )

# Enable b u t t o n s a f t e r an aud io b u t t o n has been s e l e c t e d .

i f ( ( s e l f . c a l i b r a t i o n b u t t o n [ ’ s t a t e ’ ] == ’ d i s a b l e d ’ ) and ( s e l f . c a l s n r b u t t o n [ ’
s t a t e ’ ] == ’ d i s a b l e d ’ ) ) :

s e l f . c a l i b r a t i o n b u t t o n [ ’ s t a t e ’ ] = ’ normal ’
s e l f . c a l s n r b u t t o n [ ’ s t a t e ’ ] = ’ normal ’
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# Show or h i d e t h e b u t t o n s f o r c h a n n e l v i s u a l i z a t i o n i f dua l aud io mode i s
s e l e c t e d .

i f s e l f . s e l a u d i o c o n f i g == 1 :
s e l f . p l o t c h 1 b u t t o n . p a c k f o r g e t ( )
s e l f . p l o t c h 2 b u t t o n . p a c k f o r g e t ( )

e l i f s e l f . s e l a u d i o c o n f i g == 2 :
s e l f . p l o t c h 1 b u t t o n . pack ( s i d e = ’ l e f t ’ )
s e l f . p l o t c h 2 b u t t o n . pack ( s i d e = ’ r i g h t ’ )

s e l f . messageBox Text . i n s e r t ( t k .END, ” Updated i n p u t a u d i o mode .\ n ” )
s e l f . messageBox Text . s e e ( t k .END)

d e f p l o t s e l e c t ( s e l f ) :

# C o n s id e r t h e s e l e c t e d aud io mode . S i n g l e or dua l and use t h e a p p r o p i a t e names
t o p l o t .

s e l p l o t = i n t ( s e l f . p l o t i d . g e t ( ) )
s e l c h = i n t ( s e l f . p l o t c h . g e t ( ) )

i f s e l f . p l o t f l a g :

i f s e l f . s e l a u d i o c o n f i g == 1 :

i f s e l p l o t == 1 :
s e l f . SubPlotFFT . c l a ( )
s e l f . SubP lo tSpec . c l a ( )
s e l f . vmin = −120 # For t h e s p e c t r o g r a m p l o t

s e l f . o n f r e q p l o t ( s e l f . p r o c e s s e d s w e e p )
s e l f . o n s p e c p l o t ( s e l f . p r o c e s s e d s w e e p )

e l i f s e l p l o t == 2 :

s e l f . SubPlotFFT . c l a ( )
s e l f . SubP lo tSpec . c l a ( )
s e l f . vmin = −50 # For t h e s p e c t r o g r a m p l o t
s e l f . o n f r e q p l o t ( s e l f . i r )
s e l f . o n s p e c p l o t ( s e l f . i r )

e l i f s e l f . s e l a u d i o c o n f i g == 2 :

i f s e l p l o t == 1 :

s e l f . SubPlotFFT . c l a ( )
s e l f . SubP lo tSpec . c l a ( )
s e l f . o n f r e q p l o t d u a l ( s e l f . p r o c e s s e d s w e e p c h 1 , s e l f .

p r o c e s s e d s w e e p c h 2 )
s e l f . vmin = −120 # For t h e s p e c t r o g r a m p l o t

i f s e l c h == 1 :

s e l f . o n s p e c p l o t ( s e l f . p r o c e s s e d s w e e p c h 1 )

e l i f s e l c h == 2 :

s e l f . o n s p e c p l o t ( s e l f . p r o c e s s e d s w e e p c h 2 )

e l i f s e l p l o t == 2 :

s e l f . SubPlotFFT . c l a ( )
s e l f . SubP lo tSpec . c l a ( )
s e l f . o n f r e q p l o t d u a l ( s e l f . i r c h 1 , s e l f . i r c h 2 )
s e l f . vmin = −50 # For t h e s p e c t r o g r a m p l o t

i f s e l c h == 1 :
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s e l f . o n s p e c p l o t ( s e l f . i r c h 1 )

e l i f s e l c h == 2 :

s e l f . o n s p e c p l o t ( s e l f . i r c h 2 )

s e l f . messageBox Text . i n s e r t ( t k .END, ” Updated p l o t mode .\ n ” )
s e l f . messageBox Text . s e e ( t k .END)

e l s e :

s e l f . messageBox Text . i n s e r t ( t k .END, ” There i s n o t h i n g t o p l o t .\ n ” )
s e l f . messageBox Text . s e e ( t k .END)

d e f main ( ) :
r o o t = t k . Tk ( )
app = Maste rGui ( r o o t )
app . main loop ( )

i f n a m e == ’ m a i n ’ :
main ( )

Listing 6.4: Commonly used functions included in the utils module.

i m p o r t numpy as np
i m p o r t math
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
i m p o r t queue
from s c i p y i m p o r t s t a t s
from s c i p y i m p o r t s i g n a l
from s c i p y . s i g n a l i m p o r t b u t t e r
from s c i p y . f f t p a c k i m p o r t f f t , i f f t
from s c i p y . ndimage . f i l t e r s i m p o r t g a u s s i a n f i l t e r 1 d # To smooth FFT p l o t

d e f g e t s i n e s w e e p ( f1 , f2 , Ti , s i l , f s ) :
’ ’ ’
G e n e r a t e s an e x p o n e n t i a l S i n e Sweep w i t h f r e q u e n c y range ( f1 , f 2 ) , d u r a t i o n T i
and s a m p l i n g f r e q u e n c y f s .

: param f 1 : S t a r t f r e q u e n c y f o r t h e s i n e s w e e p .
: param f 2 : S top f r e q u e n c y f o r t h e s i n e s w e e p .
: param Ti : Du r a t i o n i n s e c o n d s o f t h e s i n e s w e e p .
: param s i l : Du r a t i o n i n s e c o n d s o f t h e s i l e n c e a f t e r t h e s i n e s w e e p .
: param f s : Sampl ing f r e q u e n c y
: r e t u r n : Numpy a r r a y t h a t r e p r e s e n t s t h e s i n e s w e e p .

’ ’ ’
f i n = f o u t = 0 . 1
t = np . a r a n g e ( 0 , Ti∗ f s ) / f s
L = round ( Ti∗ f1 / math . l o g ( f2 / f1 ) )
Li = ( 1 / f1 )∗L
sweep = np . s i n ( ( ( 2∗ np . p i )∗L )∗np . exp ( ( f1∗ t ) / L )−1)
f a d e i n = np . l i n s p a c e ( 0 , 1 , num = i n t ( f i n ∗ f s ) )
f a d e o u t = np . l i n s p a c e ( 1 , 0 , num = i n t ( f o u t ∗ f s ) )
sweep [ 0 : i n t ( f i n ∗ f s ) ] = sweep [ 0 : i n t ( f i n ∗ f s ) ] ∗ f a d e i n
sweep [ l e n ( sweep ) − i n t ( f o u t ∗ f s ) : l e n ( sweep ) ] = sweep [ l e n ( sweep ) − i n t ( f o u t ∗ f s

) : l e n ( sweep ) ] ∗ f a d e o u t
sweep = np . pad ( sweep , ( 0 , i n t ( s i l ∗ f s ) ) , ’ c o n s t a n t ’ )

r e t u r n ( sweep )

d e f g e t i n v e r s e f i l t e r ( f1 , f2 , Ti , s i l , f s ) :
’ ’ ’
G e n e r a t e s t h e i n v e r s e f i l t e r n e c e s s a r y t o per form t h e d e c o n v o l u t i o n .
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: param f 1 : S t a r t f r e q u e n c y f o r t h e s i n e s w e e p .
: param f 2 : S top f r e q u e n c y f o r t h e s i n e s w e e p .
: param Ti : Du r a t i o n i n s e c o n d s o f t h e s i n e s w e e p .
: param s i l : Du r a t i o n i n s e c o n d s o f t h e s i l e n c e a f t e r t h e s i n e s w e e p .
: param f s : Sampl ing f r e q u e n c y
: r e t u r n : Numpy a r r a y t h a t r e p r e s e n t s t h e i n v e r s e f i l t e r .

’ ’ ’
f i n = f o u t = 0 . 1
t = np . a r a n g e ( 0 , Ti∗ f s ) / f s
L = round ( Ti∗ f1 / math . l o g ( f2 / f1 ) )
Li = ( 1 / f1 )∗L
sweep = np . s i n ( ( ( 2∗ np . p i )∗L )∗np . exp ( ( f1∗ t ) / L )−1)
f a d e i n = np . l i n s p a c e ( 0 , 1 , num = i n t ( f i n ∗ f s ) )
f a d e o u t = np . l i n s p a c e ( 1 , 0 , num = i n t ( f o u t ∗ f s ) )
sweep [ 0 : i n t ( f i n ∗ f s ) ] = sweep [ 0 : i n t ( f i n ∗ f s ) ] ∗ f a d e i n
sweep [ l e n ( sweep ) − i n t ( f o u t ∗ f s ) : l e n ( sweep ) ] = sweep [ l e n ( sweep ) − i n t ( f o u t ∗ f s

) : l e n ( sweep ) ] ∗ f a d e o u t
i n v e r s e s w e e p = ( f1 / Li )∗np . exp (−1∗( t / Li ) ) ∗( sweep [ : : −1 ] )
i n v e r s e s w e e p = np . pad ( i n v e r s e s w e e p , ( i n t ( s i l ∗ f s ) , 0 ) , ’ c o n s t a n t ’ )

r e t u r n i n v e r s e s w e e p

d e f t i m e p l o t ( t s , f s , t i t l e = ” Time p l o t ” ) :

’ ’ ’
T i m e p l o t w i t h c o r r e c t a x i s .

: param t s : Numpy a r r a y w i t h s i g n a l t o be p l o t t e d .
: param f s : Sampl ing f r e q u e n c y .
: param t i t l e : O p t i o n a l parame te r f o r t h e t i t l e o f p l o t .

’ ’ ’
p l t . f i g u r e ( f i g s i z e = ( 1 0 , 3 ) )
p l t . p l o t ( t s )
p l t . x t i c k s ( np . a r a n g e ( 0 , l e n ( t s ) , f s ) , np . a r a n g e ( 0 , l e n ( t s ) / f s , 1 ) )
p l t . y l a b e l ( ” Ampl i tude ” )
p l t . x l a b e l ( ” Samples ” )
p l t . t i t l e ( t i t l e )
# p l t . t i t l e (” Time S e r i e s ” . f o r m a t ( l e n ( t s ) / f s , f s ) )
p l t . g r i d ( True )

d e f p l o t s p e c g r a m ( da ta , t i t l e = ’ ’ , x l a b e l = ’ ’ , y l a b e l = ’ ’ , f i g s i z e =None ) :
’ ’ ’
P l o t Spec t rogram

: param da ta : Numpy a r r a y w i t h s i g n a l t o be p l o t t e d .
: param t i t l e : O p t i o n a l parame te r f o r t h e t i t l e o f p l o t .

’ ’ ’
f i g = p l t . f i g u r e ( )
i f f i g s i z e != None :

f i g . s e t s i z e i n c h e s ( f i g s i z e [ 0 ] , f i g s i z e [ 1 ] )
ax = f i g . a d d s u b p l o t ( 1 1 1 )
ax . s e t t i t l e ( t i t l e )
ax . s e t x l a b e l ( x l a b e l )
ax . s e t y l a b e l ( y l a b e l )
pxx , f r e q , t , cax = p l t . specgram ( da t a , Fs =44100 , cmap= p l t . cm . S p e c t r a l r , )
f i g . c o l o r b a r ( cax ) . s e t l a b e l ( ’ Ampl i tude [ dB ] ’ )

d e f g e t f f t ( t s , Fs ,N) :
’ ’ ’
C a l c u l a t e FFT f o r p l o t

: param t s : Numpy a r r a y w i t h s i g n a l t o be p l o t t e d .
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: param Fs : Sampl ing f r e q u e n c y .
: param N: Leng th f o r t h e FFT
: r e t u r n Pxx : Array which c o n t a i n s t h e FFT
’ ’ ’
Y k = np . f f t . f f t ( t s ) [ 0 : i n t (N/ 2 ) ] / N # FFT f u n c t i o n from numpy o f s i g n a l t s w i t h

l e n g h t N
Y k [ 1 : ] = 2∗Y k [ 1 : ] # need t o t a k e t h e s i n g l e−s i d e d s p e c t r u m o n l y
Pxx = np . abs ( Y k ) # be s u r e t o g e t r i d o f i m a g i n a r y p a r t
Pxx = 20 ∗ np . log10 ( Pxx )
r e t u r n Pxx

d e f d r a w f f t ( Pxx , Fs , N, smooth = F a l s e , t i t l e = ” Frequency Spect rum ” ) :
’ ’ ’
P l o t FFT

: param Pxx : Numpy a r r a y w i t h s i g n a l t o be p l o t t e d .
: param Fs : Sampl ing f r e q u e n c y .
: param N: Leng th f o r t h e FFT .
: param smooth : Boolean v a r i a b l e used t o smooth t h e p l o t .
: param t i t l e : O p t i o n a l parame te r f o r t h e t i t l e .
’ ’ ’
f = Fs∗np . a r a n g e ( (N/ 2 ) ) /N; # f r e q u e n c y v e c t o r
f r e q o c t a v e s = [ 3 1 , 63 , 125 , 250]

i f smooth == True :

Pxx smooth = g a u s s i a n f i l t e r 1 d ( Pxx , s igma =30)
p l t . f i g u r e ( f i g s i z e = ( 1 0 , 3 ) )
p l t . p l o t ( f , Pxx smooth , l i n e w i d t h =1)
p l t . x s c a l e ( ’ l o g ’ )
p l t . x l im ( 3 1 , 16000)
p l t . t i t l e ( t i t l e )
p l t . y l a b e l ( ’ Ampl i tude [ dB ] ’ )
p l t . x t i c k s ( [ 3 1 , 63 , 125 , 250 , 500 , 1000 , 2000 , 4000 , 8000 , 16000] , [ ” 31 Hz” , ”

63 Hz” , ” 125 Hz” , ” 250 Hz” , ” 500 Hz” , ” 1 kHz” , ” 2 kHz” , ” 4 kHz” , ” 8 kHz” ,
” 16 kHz” ] )

p l t . x l a b e l ( ’ F requency [ Hz ] ’ )
p l t . g r i d ( True )

e l s e :
p l t . f i g u r e ( f i g s i z e = ( 1 0 , 3 ) )
p l t . p l o t ( f , Pxx , l i n e w i d t h =1)
p l t . x s c a l e ( ’ l o g ’ )
p l t . x l im ( 3 1 , 16000)
p l t . t i t l e ( t i t l e )
p l t . y l a b e l ( ’ Ampl i tude [ dB ] ’ )
p l t . x t i c k s ( [ 3 1 , 63 , 125 , 250 , 500 , 1000 , 2000 , 4000 , 8000 , 16000] , [ ” 31 Hz” , ”

63 Hz” , ” 125 Hz” , ” 250 Hz” , ” 500 Hz” , ” 1 kHz” , ” 2 kHz” , ” 4 kHz” , ” 8 kHz” ,
” 16 kHz” ] )

p l t . x l a b e l ( ’ F requency [ Hz ] ’ )
p l t . g r i d ( True )

d e f f i n d p e a k ( t s ) :
’ ’ ’
O b t a i n s t h e sample w i t h t h e h i g h e s t v a l u e .

: param t s : Numpy a r r a y w i t h s i g n a l .
’ ’ ’
r e t u r n np . argmax ( np . abs ( t s ) )

d e f nextpow2 ( L ) :
’ ’ ’
S i mp le f u n c t i o n t o c a l c u l a t e t h e n e x t power o f two .
: param L : I n p u t v a l u e .
: r e t u r n N: Nex t power o f two o f L .

’ ’ ’
N = 2
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w h i l e N < L : N = N ∗ 2
r e t u r n N

d e f f a s t c o n v v e c t ( x , h ) :
’ ’ ’
Fas t c o n v o l u t i o n done u s i n g t h e FFT .
Use as : y1 = f a s t c o n v v e c t ( x1 , h1 ) . r e a l
Takes t h e r e a l p a r t t o a v o i d a t o o s m a l l complex p a r t ( around e−18)

: param x : Array c o r r e s p o n d i n g t o t h e f i r s t s i g n a l i n t h e t i m e domain .
: param h : Array c o r r e s p o n d i n g t o t h e second s i g n a l i n t h e t i m e domain .
: r e t u r n y : Array c o r r e s p o n d i n g t o t h e o u t p u t a f t e r t h e c o n v o l u t i o n i n t h e t i m e

domain .

’ ’ ’
# s e a r c h e s f o r t h e amount o f p o i n t s r e q u i r e d t o per form t h e FFT
L = l e n ( h ) + l e n ( x ) − 1 # l i n e a r c o n v o l u t i o n l e n g t h
N = nextpow2 ( L )
# Note : N>=L i s needed because t h e IDFT o f t h e m u l t i p l i c a t i o n i s t h e c i r c u l a r

c o n v o l u t i o n and t o match i t t o t h e
# common one , N>=L i s r e q u i r e d ( where L=N1+N2−1;N1=l e n g t h ( x ) ; N2=l e n g t h ( h ) )

# FFT ( X , N) i s t h e N p o i n t s FFT , w i t h z e r o padding i f X has l e s s than N p o i n t s and
t r u n c a t e d i f has more .

H = f f t ( h ,N) # F o u r i e r t r a n s f o r m o f t h e i m p u l s e
X = f f t ( x ,N) # F o u r i e r t r a n s f o r m o f t h e i n p u t s i g n a l

Y = H ∗ X # s p e c t r a l m u l t i p l i c a t i o n
y = i f f t (Y) # t i m e domain aga in
r e t u r n y

d e f b u f f e r ( s i g n a l , b l o c k s i z e ) :
’ ’ ’
Cr ea t e a b u f f e r t h a t t a k e s a numpy a r r a y and a b u f f e r s i z e . The f u n c t i o n r e t u r n s

t h e b u f f e r and an upda ted v e r s i o n o f t h e i n p u t .
When t h e numpy a r r a y comes t o an end and t h e l e n g h t o f t h e i n p u t i s l e s s than t h e

l e n g t h o f t h e o u t p u t , t h e b u f f e r i s padded w i t h
z e r o s and r e t u r n s a f l a g i n d i c a t i n g t h a t t h e r e i s no l o n g e r any v a l u e s i n t h e

a r r a y .

: param s i g n a l : Numpy a r r a y o f t h e s i g n a l .
: param b l o c k s i z e : S i z e i n sample s o f t h e b u f f e r .
: r e t u r n s i g n a l n : S i g n a l p i e c e w i t h b l o c k s i z e
: r e t u r n s i g n a l : S i g n a l t h a t rema ins w i t h o u t s i g n a l n
: r e t u r n f l a g : Flag used t o i n d i c a t e when t h e s i g n a l has been f u l l y f e d t o t h e

b u f f e r .
’ ’ ’
i f l e n ( s i g n a l ) > b l o c k s i z e :

s i g n a l n = s i g n a l [ : b l o c k s i z e ]
s i g n a l = s i g n a l [ b l o c k s i z e : ]
f l a g = True

e l s e :
s i g n a l = np . pad ( s i g n a l , ( 0 , b l o c k s i z e−l e n ( s i g n a l ) ) , ’ c o n s t a n t ’ )
s i g n a l n = s i g n a l
f l a g = F a l s e

r e t u r n s i g n a l n , s i g n a l , f l a g

d e f f i l l q u e u e ( s i g n a l q , s i g n a l , b l o c k s i z e ) :
’ ’ ’
Uses t h e b u f f e r f u n c t i o n t o f i l l a queue o f e l e m e n t s .

: param s i g n a l q : Queue where s i g n a l w i l l be p u t .
: param s i g n a l : S i g n a l t h a t w i l l be p u t on t h e queue .
: param b l o c k s i z e : S i z e i n sample s o f t h e b u f f e r .
: r e t u r n : Queue a f t e r t h e s i g n a l has been p u t .
’ ’ ’
s i g n a l c p = s i g n a l
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f o r i n r a n g e ( round ( ( l e n ( s i g n a l c p ) / b l o c k s i z e ) + 1) ) :
da t a , s i g n a l c p , f l a g = b u f f e r ( s i g n a l c p , b l o c k s i z e )
i f n o t f l a g :

b r e a k
s i g n a l q . p u t n o w a i t ( d a t a ) # Pre− f i l l queue

r e t u r n s i g n a l q

d e f g e t a l l q u e u e r e s u l t ( queue ) :
’ ’ ’
Gets t h e da ta from a queue .

: param queue : The queue t h a t has t h e da ta .
: r e t u r n r e s u l t l i s t : Array which has t h e e x t r a c t e d da ta .
’ ’ ’
r e s u l t l i s t = [ ]
w h i l e n o t queue . empty ( ) :

r e s u l t l i s t . append ( queue . g e t ( ) )

r e t u r n r e s u l t l i s t

d e f ge t INR ( i r , f s , r t = ’ t 3 0 ’ ) :
”””
C a l c u l a t i o n o f t h e INR a c c o r i n g t o t e c h n i c a l n o t e TN007 ( I m p u l s e Response To Noi se

R a t i o ) from A c u s t i c s E n g i n e e r i n g ( Dirac S o f t w a r e )

: param s i g n a l : Numpy a r r a y c o n t a i n i n g t h e i m p u l s e r e s p o n s e .
: param r t : R e v e r b e r a t i o n t i m e e s t i m a t o r . I t a c c e p t s ‘ ’ t 3 0 ’ ‘ , ‘ ’ t 2 0 ’ ‘ , ‘ ’ t 1 0 ’ ‘ and

‘ ’ e d t ’ ‘ .
: r e t u r n s : I m p u l s e Response t o Noi se R a t i o ( INR ) i n dB .
”””
i f r t == ’ t 3 0 ’ :

i n i t = −5.0
end = −35.0
f a c t o r = 2 . 0

e l i f r t == ’ t 2 0 ’ :
i n i t = −5.0
end = −25.0
f a c t o r = 3 . 0

e l i f r t == ’ t 1 0 ’ :
i n i t = −5.0
end = −15.0
f a c t o r = 6 . 0

e l i f r t == ’ e d t ’ :
i n i t = 0 . 0
end = −10.0
f a c t o r = 6 . 0

i r = i r . r e a l
i r = i r / np . max ( np . abs ( i r ) )

# S c h r o e d e r i n t e g r a t i o n
a b s i r = np . abs ( i r ) / np . max ( np . abs ( i r ) )
sch = np . cumsum ( a b s i r [ : :−1]∗∗2) [ : :−1]
s c h d b = 1 0 . 0 ∗ np . log10 ( sch / np . max ( sch ) )

# L i n e a r r e g r e s s i o n
s c h i n i t = s c h d b [ np . abs ( s c h d b − i n i t ) . a rgmin ( ) ]
s c h e n d = s c h d b [ np . abs ( s c h d b − end ) . a rgmin ( ) ]
i n i t s a m p l e = np . where ( s c h d b == s c h i n i t ) [ 0 ] [ 0 ]
end sample = np . where ( s c h d b == s c h e n d ) [ 0 ] [ 0 ]
x = np . a r a n g e ( i n i t s a m p l e , end sample + 1) / f s
y = s c h d b [ i n i t s a m p l e : end sample + 1]
s l o p e , i n t e r c e p t = s t a t s . l i n r e g r e s s ( x , y ) [ 0 : 2 ]

# R e v e r b e r a t i o n t i m e ( T30 , T20 , T10 or EDT)
d b r e g r e s s i n i t = ( i n i t − i n t e r c e p t ) / s l o p e
d b r e g r e s s e n d = ( end − i n t e r c e p t ) / s l o p e
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t 6 0 = f a c t o r ∗ ( d b r e g r e s s e n d − d b r e g r e s s i n i t )
p r i n t ( t 6 0 )
# C a l c u l a t i o n o f Ln ( No i se L e v e l ) from t h e i n i t i a l p a r t o f t h e IR where t h e e n er gy

l e v e l i s e s s e n t i a l l y c o n s t a n t i n t i m e .
n o i s e s e g m e n t = i r [ 0 : 3 0 0 0 ]
i r p o w e r = np . sum ( n o i s e s e g m e n t . r e a l ∗ n o i s e s e g m e n t . r e a l ) / n o i s e s e g m e n t . s i z e
Ln = 10 ∗ np . log10 ( 1 / i r p o w e r )

# C a l c u l a t i o n o f S ( 0 ) and L i
peak = f i n d p e a k ( i r )
S0 = 1 0 . 0 ∗ np . log10 ( ( t 6 0 / ( 6∗ np . l o g ( 1 0 ) ) ) ∗( i r [ peak ] ∗ i r [ peak ] ) )
Li = S0 + 10∗np . log10 ( ( 6∗ np . l o g ( 1 0 ) ) / t 6 0 )

# C a l c u l a t i o n o f INR
INR = abs ( Li − Ln )

r e t u r n INR
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