
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

M
as

te
r’s

 th
es

is

Shuyuan Shen

Computer Vision Based Motion
Estimation for ROVs

Master’s thesis in Marine Technology

Supervisor: Martin Ludvigsen

June 2020

Shuyuan Shen

Computer Vision Based Motion
Estimation for ROVs

Master’s thesis in Marine Technology
Supervisor: Martin Ludvigsen
June 2020

Norwegian University of Science and Technology
Faculty of Engineering
Department of Marine Technology

 NTNU Trondheim
 Norwegian University of Science and Technology
 Department of Marine Technology

MASTER THESIS IN MARINE CYBERNETICS

SPRING 2020

FOR

STUD. TECHN. SHUYUAN SHEN

 Computer Vision Based Motion Estimation for ROVs

Work description
The remotely operated vehicle (ROV) has been widely used in underwater operations for many years.
Compared with surface vessels, absolute global navigation, like GNSS, is unreliable for ROVs in deep
water. To work on man-made seabed installations, ROVs need local navigation. To find desired
features in an autonomous system, spatial references on centimetre accuracy and online data
processing are required. The goal is use stereo camera to derive motion online. Use images from stereo
camera as input, visual simultaneous localization and mapping (SLAM) is the main method to
estimate ROV motion. A map of surroundings is constructed and updated while simultaneously the
location of ROV is tracked within the map. The motion from visual SLAM is used in ROV control
system for local navigation.

Scope of work

1. Review relevant literature within the field of computer vision and SLAM for positioning and
navigation.

2. Detect, describe and match features from underwater stereo camera images.
3. Derive ROV motion online using visual SLAM.
4. Verify performance by simulations and discuss the results.

The report shall be written in English and edited as a research report including literature survey,
description of mathematical models, description of algorithms, simulation results, discussion and a
conclusion including a proposal for further work. Source code should be provided. It is supposed that
Department of Marine Technology, NTNU, can use the results freely in its research work, unless
otherwise agreed upon, by referring to the student’s work.

The thesis should be submitted within June 2020.

Professor Martin Ludvigsen
Supervisor

Abstract

This project thesis presents a real-time visual simultaneous localization and map-
ping (SLAM) based motion estimation system of remotely operated vehicle (ROV)
using a stereo camera. The main purpose is to increase local navigation and situa-
tion awareness of the ROV, and increase the ROV autonomy level.

A stereo camera that records sea floor images is equipped on the ROV. The geo-
metric models used in this thesis are pin-hole camera model. The image pairs from
the stereo camera are input data to estimate ROV motion based on computer vi-
sion techniques. The images are enhanced by contrast limited adaptive histogram
equalization (CLAHE) algorithm to improve image contrast.

Map is the core of the SLAM problem. Map points and camera positions, which
are called poses in computer vision, are stored in the map. Map points are points
that their positions in world coordinate are known. The measurable pieces of data
in the image is detected as feature. Oriented Features from Accelerated Segment
Test and Rotated Binary Robust Independent Elementary Features (ORB) method
is used for feature detector and descriptor. The features from left camera image in
current processing frame are matched with map points. Distance filter and Random
Sample Consensus (RANSAC) are two steps to remove mismatches.

Camera poses are estimated by Efficient Perspective-n-Point (EPnP) method. The
results are optimized using graph based bundle adjustment. The current frame
is set as a keyframe if the number of matched features is not large. Features in
left and right camera images are matched to calculate new map points. The new
keyframe and map points are added in the map for further use. A large bundle
adjustment including several nearest keyframes camera poses and new map points
is implemented to generate optimized trajectory and map.

A TCP client is included in the system. It establishes connection with TCP server
in the ROV control system and receives initial ROV position. The client also reads
estimated position results, converts local camera poses to local ROV position and
transmits global ROV position to the control system.

i

The SLAM system is tested in three scenarios based on two different image sets.
The results shows that the system is able to estimate ROV motion. But large errors
occurs in orientation. The calculation time of one frame is 0.2 seconds on average,
meaning the system can process frames at the frequency of 5 Hz.

In order to improve the performance of the system. Other better image enhance-
ment methods should be studied and tested. Besides, loop closure should be con-
sidered to add in the system to reduce accumulated drift.

ii

Preface

This master thesis is a part of the study program Marine Technology at Depart-
ment of Marine Technology, Norwegian University of Science and Technology.
The work was carried out in the spring semester of 2020, with Professor Martin
Ludvigsen as supervisor. The object of this thesis is to use computer vision tech-
niques and visual input from a stereo camera to estimate motion of a remotely
operated vehicle (ROV).

The real-time visual simultaneous localization and mapping (SLAM) system is
programmed with C++. The author of this thesis did not have any experience with
computer vision and C++ language before the project was embarked. The learning
progress has been steep in this semester. The system are not perfect, but works for
the designed application.

Trondheim, June 11, 2020

Shuyuan Shen

iii

Acknowledgements

I would like to thank my supervisor Professor Martin Ludvigsen for helpful guid-
ance and suggestions. He provided me with feedback and discussion during meet-
ings.

I would also like to thank to master students Fan Gao, Erlend Røilid Vollan and
Signe Brirch Moltu. We worked together for the ROV autonomy framework, and
they gave me useful suggestions for my system.

In addition, I would like to thank my friends and family for support and help during
my master study.

Shuyuan Shen

iv

Table of Contents

Abstract i

Preface iii

Acknowledgements iv

Table of Contents vii

List of Tables viii

List of Figures xi

Abbreviations 1

1 Introduction 1

1.1 Background . 1

1.1.1 ROV . 1

1.1.2 Visual SLAM . 2

1.1.3 Software . 4

v

1.2 Challenges . 5

1.3 Objectives . 6

1.4 Scope and Limitations . 6

1.5 Structure of Thesis . 7

1.6 Thesis Contribution . 7

2 Theory 9

2.1 Camera model . 9

2.1.1 Pin-hole camera model 9

2.1.2 Stereo camera model . 12

2.1.3 Distortion model . 13

2.2 Digital image . 15

2.3 Image enhancement . 15

2.4 Feature detection and description 17

2.4.1 Feature descriptor method 17

2.4.2 ORB . 18

2.5 Feature Matching . 20

2.6 Motion estimation . 21

2.7 Graph optimization . 23

2.7.1 Lie group and Lie algebra 23

2.7.2 Bundle adjustment . 24

2.7.3 Front end optimization 26

2.7.4 Back end optimization 28

3 Method 33

3.1 Camera calibration . 33

vi

3.2 Feature detection and description 34

3.3 Feature matching . 38

3.4 Camera pose estimation . 40

3.5 System implementation . 41

4 Simulation 50

4.1 Stokkbergneset data set . 50

4.1.1 Scenario 1 . 51

4.1.2 Scenario 2 . 54

4.2 Referansevraket data set . 56

4.3 TCP data transmission . 59

5 Discussion 60

5.1 Simulation . 60

5.2 General comments . 61

6 Conclusion 63

6.1 Concluding remarks . 63

6.2 Further work . 64

Bibliography 65

Appendix 68

vii

List of Tables

3.1 Comparison of ORB and BRISK results 35

4.1 Camera intrinsic parameters and distortion coefficients estimation
of Stokkbergneset data set . 51

4.2 Camera intrinsic parameters and distortion coefficients estimation
of Referansevraket data set . 56

A ROV SF-30k specifications . 68

B Camera AVT GC1380 specifications 69

viii

List of Figures

1.1 Cable-Controlled Underwater Research Vehicle in 1961 2

1.2 ORB keypoints detection in two different underwater images . . . 5

2.1 Pin-hole camera model . 10

2.2 Stereo camera model . 12

2.3 Radical distortion . 13

2.4 Tangential distortion . 14

2.5 Image coordinate and pixel data 14

2.6 RGB model cube . 15

2.7 Image enhancement compare . 16

2.8 AHE neighbourhoods . 16

2.9 Excess redistribution in CLAHE 17

2.10 FAST corner detector . 19

2.11 Front end optimization . 27

2.12 Back end optimization . 28

2.13 Represent camera poses and map points by a graph 29

2.14 Huber kernel (solid line) and quadratic function (dotted line) . . . 31

ix

3.1 Camera calibration by chessboard pattern 33

3.2 Three pairs images for ORB and BRISK tests 35

3.3 An example of filter keypoints based on quadtree 37

3.4 Keypoints detection results comparison between two algorithms . 38

3.5 Feature matching result before (a) and after (b) removing mismatches 40

3.6 Flow chart of the SLAM system 42

3.7 SLAM system source files . 43

3.8 Visualization . 47

4.1 Left and right camera image pair example of Stokkbergneset data
set at a depth of 100m . 51

4.2 Simulation results scenario 1: North-East plot of estimated trajec-
tory of the ROV from SLAM system and ROV sensors 52

4.3 Simulation results scenario 1: plot of estimated surge, sway and
heave from SLAM system and ROV sensors 53

4.4 Simulation results scenario 1: plot of estimated orientation from
SLAM system and ROV sensors 53

4.5 Left and right camera image pair example of Stokkbergneset data
set at a depth of 250m . 54

4.6 Simulation results scenario 2: North-East plot of estimated trajec-
tory of the ROV from SLAM system and ROV sensors 54

4.7 Simulation results scenario 2: plot of estimated surge, sway and
heave from SLAM system and ROV sensors 55

4.8 Simulation results scenario 2: plot of estimated surge, sway and
heave from SLAM system and ROV sensors 55

4.9 Left and right camera image pair example of Referansevraket data
set . 56

4.10 Simulation results scenario 3: North-East plot of estimated trajec-
tory of the ROV from SLAM system and ROV sensors 57

x

4.11 Simulation results scenario 3: plot of estimated surge, sway and
heave from SLAM system and ROV sensors 58

4.12 Simulation results scenario 3: plot of estimated surge, sway and
heave from SLAM system and ROV sensors 58

A ROV SF-30k . 69

B Camera AVT GC1380 . 70

xi

Abbreviations

ROV = Remotely Operated Vehicle
EKF = Extended Kalman Filter
SLAM = Simultaneous Localization and Mapping
OpenCV = Open Source Computer Vision Library
GNSS = Global Navigation Satellite System
IMU = Inertial Measurement Unit
AHE = Adaptive Histogram Equalization
CLAHE = Contrast Limited Adaptive Histogram Equalization
ORB = Oriented FAST Rotated BRIEF
FAST = Features from Accelerated Segment Test
BRIEF = Binary Robust Independent Elementary Features
FLANN = Fast Library for Approximate Nearest Neighbors
PnP = Perspective-n-Point
EPnP = Efficient Perspective-n-Point
BA = Bundle Adjustment
RANSAC = Random Sample Consensus
TCP = Transmission Control Protocol
BoG = Bag-of-Words

1

Chapter 1
Introduction

1.1 Background

1.1.1 ROV

The ocean is the lifeblood of Earth, covering approximately 71% of Earth’s surface
and 90% of the Earth’s biosphere [1]. Human has been exploring the ocean for a
long time in search of biological resources, mineral resources and oil resources.
To explore the deeper ocean, many equipment and underwater vehicles including
ROV are invented.

ROV stands for Remotely Operated Vehicle. Many deep-water environments are
too harsh for humans to directly work in. ROVs are usually used in deep-water
scientific research and operation where divers cannot reach. ROVs are commonly
operated by a crew aboard a vessel via a reinforced umbilical cable. The umbilical
provides both the electrical power and data transmission between the vessel and
ROV. Motion of the ROV is controlled by several thrusters that allows translation
and rotation in all directions. Most ROVs are equipped with a video camera and
lights. Additional equipment is commonly added to expand the vehicle’s capabil-
ities of data acquisition and operation. These may include manipulators, sonars,
magnetometers and instruments that measure water clarity, water temperature, wa-
ter density.

1

Chapter 1. Introduction

Figure 1.1: Cable-Controlled Underwater Research Vehicle in 1961

The first fully developed ROV, POODLE, was created by Dimitri Rebikoff in
1953 [2]. However, it was not until the United States Navy took an interest in
ROVs that the technology really started to studied and developed. In 1961 the
Cable-Controlled Underwater Research Vehicle (CURV) was created by the for-
mer Pasadena Annex of the Naval Ordnance Test Station [3]. CURV was used to
find and retrieve lost sunken torpedoes, and it paved a brand new way in deep sea
exploration. Since then, technological development in the ROV industry has ac-
celerated. Today numerous tasks are perform by ROVs in many fields. ROVs are
used for observation and operation assistance. Their tasks range from ocean scien-
tific research, inspection of subsea structures and pipelines, to placing underwater
platforms and connecting pipelines.

1.1.2 Visual SLAM

Simultaneous localization and mapping (SLAM) is the problem that builds or up-
dates a map of an unknown environment and simultaneously track the motion of
a vehicle within the map. Mapping and localization seems like a chicken-and-egg
problem when a vehicle starts moving in a unknown place. Sensors equipped on
the vehicle detect information from surrounding environment. Some methods are
used to extract information that can uniquely describe environment from this sen-
sor data. The information is generally described as the form of point, line, light
change, etc. The map is constructed using this information. Meanwhile the infor-

2

1.1 Background

mation is also used to localize the vehicle. This information is called landmark,
and point type information is also called map point. The position and orientation
of the sensor are called pose in computer vision. Several sensors can be used for
SLAM, such as camera, lidar and sonar. Camera based SLAM is a extension of
computer vision techniques, and is called visual SLAM.

A basic mathematical formulation of SLAM problem is:

xi = f(xi−1,ui,wi), i = 1, ..., k (1.1)

zij = h(yj ,xi,vij), (i, j) ∈ O (1.2)

The position of the vehicle xi in step i is determined by the position in last step
xi−1 and control input ui, which is influenced by noise wi. A general function
f(·) describes the process. The sensor equipped on the vehicle sees a landmark
yj at xi and generate an observation data zij . The noise in this observation is vij .
The observation process is described with an abstract function h(·). O is a set that
contains the information at which pose the landmark was observed.

The SLAM problem can be described as how to slove the estimate x and y problem
with the noisy control input u and the sensor observation data z. There are different
approaches to solve the problem. The earliest SLAM system was developed based
on Extended Kalman Filter (EKF) [4]. In order to overcome the shortcomings of
EKF, like Gaussian noise assumptions and linearization error, other filter based
methods are developed such as particle filters [5] and information filters [6].

Today, the mainstream approaches solving visual SLAM problem are state-of-the-
art optimization techniques. The problem is represented by graph optimization.
A graph is established whose vertices represent camera poses or landmarks, and
the edge between two vertices represents a camera observation that constrains the
vertices. The technique has been proposed by Lu and Milios [7]. More details are
introduced in Section 2.7.4.

A typical visual SLAM framework includes the following parts: sensor data ac-
quisition, front end, back end, loop closing and reconstruction. Sensor data acqui-
sition mainly refers to camera images acquisition and pre-processing. The task of
the front end is to estimate the camera motion between adjacent frames and gener-
ate a rough local map. The back end receives camera poses from front end, as well

3

Chapter 1. Introduction

as the results from loop closing, and implements optimization to generate a full
optimized trajectory and map. Loop closing determines if the vehicle has returned
to its previous position in order to reduce accumulated drift. Reconstruction con-
structs a task specific map based on the optimized trajectory and map in back end.
In this thesis, loop closing is not included, and is set as part of future work due to
limited time. No specific map is needed for motion estimation. Therefore, these
two parts are not discussed and implemented in the project.

1.1.3 Software

In this section the software used to develop the SLAM system is presented.

OpenCV

OpenCV is an open source computer vision and machine learning software library.
It is written natively in C++, and has C++, Python, Java and MATLAB interface,
and supports Windows, Linux, Android and Mac OS. Wrappers in other languages
such as C# and Ruby are also available.

OpenCV is originally developed by Intel, then support for OpenCV was taken over
by a non-profit foundation OpenCV.org. The library is used by well-established
companies like Google, Microsoft, Intel and IBM. The deployed uses of OpenCV
spans the whole world. Some examples are intrusions detection in surveillance
video in Israel, mine equipment monitoring in China and detection of swimming
pool drowning accidents in Europe [8].

g2o

General Graph Optimization (g2o) is an open-source C++ framework for optimiz-
ing graph-based nonlinear least squares problems. g2o is developed by Rainer
Kuemmerle et al. in 2011 [9]. The SLAM problems involve the minimization of
a nonlinear error function that can be presented as a graph. The overall goal in
these problems is to find the state variables, such as camera poses and map points
position, that maximally explain a set of observations affected by Gaussian noise.
g2o is designed to be easily extensible to a wide range of SLAM problems and a
new problem typically can be specified in a few lines of code.

4

1.2 Challenges

Sophus

Sophus is a C++ implementation of Lie groups that are commonly used for 2D
and 3D geometric problems in computer vision or robotics applications. Sophus is
developed and maintained by Hauke Strasdat. A basic introduction of Lie group is
presented in Section 2.7.1.

Pangolin

Pangolin is a lightweight development library for managing OpenGL display and
interaction, and is developed by Steven Lovegrove. Pangolin provides modular-
ized 3D visualization based on OpenGL viewport manager. It also provides a
mechanism for manipulating program variables and a flexible real-time plotter for
visualizing graphical data.

1.2 Challenges

Several challenges of applying visual SLAM into underwater environment are in-
troduced. SLAM can only be used when the ROV moves near sea floor due to low
visibility of sea water. High level of turbidity can significantly reduce image clar-
ity. Besides, the light conditions on seabed are poor, and the range of artificial light
is not uniform, resulting in different contrast in different regions of one image.

Sea floor landforms are varying in different place. The sea floor covered with

Figure 1.2: ORB keypoints detection in two different underwater images

5

Chapter 1. Introduction

rocks or coral is easy to detect features while the sea floor covered with sand is
hard to find features. A test of detecting features is implemented using two differ-
ent underwater images. The results are presented in Figure 1.2. Detected feature
keypoints represented by small circles. A large number of features are detected
from the left image. But few features are detected in the right image because the
sea water is turbid the right image and sea floor is hard to be observed.

1.3 Objectives

The remotely operated vehicle (ROV) has been widely used in underwater oper-
ations for many years. To increase ROV autonomy, situation awareness and high
accuracy motion estimation of the ROV is required. Compared with surface ves-
sels, absolute global navigation, like global navigation satellite system (GNSS), is
unavailable for ROV in deep water. To work on man-made seabed installations,
ROV need local navigation. To find desired features in an autonomous system,
spatial references on high accuracy and online data processing are required.

The challenges of ROV navigation is connected to the limitations of acoustic posi-
tioning from sonar and dead-reckoning navigation from inertial measurement unit
(IMU). Computer vision techniques have been researched and developed in the last
three decades. The techniques can offer new solution to the challenge, and help to
increase autonomy level of the ROV.

The goal of this thesis is use computer vision techniques with stereo camera image
input to derive ROV motion online. The estimated position from visual SLAM is
used in ROV control system for local navigation.

1.4 Scope and Limitations

The scope of this thesis will be the development and implementation of a real-time
visual SLAM motion estimation system for the ROV. Images from stereo cam-
era equipped on the ROV are used as input data, and the output from the system
is transmitted to ROV control system for local navigation. The system is pro-
grammed with C++ using several open source libraries and frameworks.

The SLAM system will be tested on two different image sets from previous mis-

6

1.5 Structure of Thesis

sions. The results will be compared with navigation data from the ROV control
system using other sensors measurements.

The SLAM system was meant to be included in the ROV autonomy framework
developed by four master students Fan Gao, Signe Brirch Moltu, Erlend Røilid
Vollan and the author of this thesis. However, due to the special situation of coro-
navirus in this semester, the framework was not accomplished, and sea test of the
SLAM system was canceled.

1.5 Structure of Thesis

The structure of this thesis is presented in a classical manner. The structure is
defined as:

• Chapter 1: Introduction. This chapter presents the introduction of this
thesis.

• Chapter 2: Theory. The chapter introduces the theory used for system
development. Camera models, feature descriptor based motion estimation
methods and graph optimization are presented.

• Chapter 3: Method. This chapter presents the methods used for the SLAM
system. System implementation are also described.

• Chapter 4: Simulation. This chapter presents simulation set-up, results
and comments from three scenarios and TCP data transmission.

• Chapter 5: Discussion. This chapter includes discussion of the simulation
results.

• Chapter 6: Conclusion. This chapter concludes the thesis and suggest
further work.

1.6 Thesis Contribution

The main topic of this thesis is the application of visual SLAM techniques to ROV
motion estimation, and the estimation should be used in the ROV control system.

7

Chapter 1. Introduction

The objective for this thesis is to increase ROV local navigation accuracy as well
as the autonomy level.

Visual SLAM techniques have been extensively researched and widely used by
ground vehicles. In this thesis the techniques have been taken into underwater
environment, using stereo camera equipped on a ROV. The research presented in-
vestigates weather feature based visual SLAM can be applied in underwater to
estimate ROV motion.

A real-time visual SLAM system is developed and implemented. This thesis gives
valuable information in the development of visual SLAM application in underwa-
ter environment to improve ROV situation awareness and local navigation.

8

Chapter 2
Theory

2.1 Camera model

2.1.1 Pin-hole camera model

The processing of projecting a 3D point to a 2D image plane by a camera can be
described by a geometric model. In this thesis, a basic model called pin-hole model
is used. Recall the candle projection experiment, a lit candle is placed in front of a
dark box, and the light of the candle is projected through a small hole in the dark
box on the rear plane of the black box. Then an inverted candle image is formed
on this plane. The small hole is able to project a candle in a three dimensional
world onto a two dimensional imaging plane in this process. For the same reason,
the simple pin-hole model can be used to describe imaging process of the camera.

From Figure 2.1 , the camera coordinate system is O − x − y − z. Put x axis
to the right of the camera, y axis to the down and z axis to the front. O is the
optical center of the camera, which is also the hole in the pin-hole model. The
3D point P = [X,Y, Z]T in camera coordinate, after being projected through the
optical center, falls on the physical imaging plane O′ − x′ − y′ − z′, and produces
the image point P′ = [X ′, Y ′, Z ′]T in image plane coordinate. The distance from
camera plane to image plane is called focal length f . According to the similarity
of the triangles, there are

9

Chapter 2. Theory

Image Plane

Camera Plane

Pixel Plane

x'

y'

x

y

O

fP'

P

Figure 2.1: Pin-hole camera model

Z

f
= −X

X ′
= − Y

Y ′
(2.1)

The negative sign indicates that the image is inverted. But for convenience, the
image obtained by a actual camera is not inverted. The model can be changed by
placing the image plane symmetrically in front of the camera, as shown in Figure
1. Then Equation (2.1) becomes:

X ′ = f
X

Z

Y ′ = f
Y

Z

(2.2)

The Equation (2.2) describes the spacial relationship between the world point P
and its image. But in computer vision pixel coordinates u = [u, v]T of point P ′ is
commonly used. A pixel plane o−u−v is fixed on the physical imaging plane. o is
set in the upper left corner of the image, u and v are parallel to x and y respectively.
The relationship between the camera coordinate and the pixel coordinate is:

u = fx
X

Z
+ cx

v = fy
Y

Z
+ cy

(2.3)

10

2.1 Camera model

where [cx, cy]
T is optical center translation vector between image plane and pixel

coordinate in pixels, fx and fy are focal length in pixels. In matrix form:

Z

uv
1

 =

fx 0 cx
0 fy cy
0 0 1


XY
Z

 = KP (2.4)

The matrix K is called camera intrinsic. It is generally believed that the intrinsic
parameters are fixed after camera manufacturing.

Assume the world coordinates of P is Pw. The conversion between Pw to u is
based on the pose of the camera. The pose of the camera is described by a rotation
matrix R ∈ SO(3) and a translation vector t ∈ R3, which are also called camera
extrinsic. Then there are:

ZPuv = K(RPw + t)

ZPuv = KTPw

(2.5)

where the transform matrix T ∈ SE(3) is defined as:

T =

[
R t

0T 1

]
(2.6)

When using R and t to describe camera pose, point is in non-homogeneous co-
ordinates. When using T, point is in homogeneous coordinates, in other words,
point is described by a four-dimensional vector that add 1 at the end of its three-
dimensional vector.

There are many ways to describe camera orientation. Each of these has advan-
tages and disadvantages. Euler angle is the most straightforward way, but the main
drawback is that it encounters gimbal lock. Quaternion can avoid the problem.
The shortcoming is not intuitive and the operation is complicated. Rotation matrix
is widely used in SLAM problems, but the matrix expression is redundant and the
matrix itself has constrains.

The motivation that use T to describe camera pose is good transformation form and
simple programming. Continuous transformation can be written as the multiply of
transform matrices:

11

Chapter 2. Theory

b = T1a, c = T2b ⇒ c = T2T1a (2.7)

Compared with the intrinsic, the extrinsic changes with camera movement. It rep-
resents the trajectory of a vehicle, and is also the target to be estimated in SLAM.

2.1.2 Stereo camera model

The pin-hole camera model describes the imaging model of a single camera. But it
is impossible to determine the specific location of a spacial point by a single pixel.
This is because all points on the line from the optical center to the normalized
plane can be projected onto that pixel. But the location can be computed by the
pixels difference from stereo camera.

uL

Left camera Right camera

-uL

P

PL PR

b

z

f

OL OR

Figure 2.2: Stereo camera model

From Figure 2.2, consider a 3D point P that is projected into the left camera and
right camera. The points are PL and PR on two imaging planes. Due to the
presence baseline b , which is the distance between two optical center, these two
positions are different. In the case that left and right cameras are only shifted on the
x axis, the difference between the horizontal coordinates of left and right images
is defined as disparity:

d = uL − uR (2.8)

12

2.1 Camera model

where uL and uR are the u axis pixel coordinates of PL and PR respectively. Note
that uR should be a negative value in Figure 2.2, the physical distance should be
−uR. According to the similarity of the triangles, there are:

z − f
f

=
b− uL + uR

b
(2.9)

The depth of the point is:

z =
fb

d
(2.10)

2.1.3 Distortion model

In order to get large field of view, a lens is normally added in front of the camera.
The addition of the lens has an influence on the propagation of light during imag-
ing. First, the shape of lens may affect the propagation way of light. Second, the
lens and the imaging plane are not strictly parallel.

The distortion caused by the shape of lens is called radial distortion. In pin-hole
camera model, a straight line projected onto the pixel plane is still a straight line.
But in real photos, the lens of the camera turns a straight line in the real envi-
ronment into a curve. Since the lenses are often center symmetrical, it makes the
distortion radially symmetrical. The radially distortion can usually be classified as
barrel distortion and pincushion distortion. They are shown in Figure 2.3.

(a) Barrel distortion (b) Pincushion distortion

Figure 2.3: Radical distortion

Tangential distortion is introduced during assembly of the camera because the lens

13

Chapter 2. Theory

and the imaging plane cannot be completely parallel, as shown in Figure 2.4.

Ideal plane
Sensor plane

Figure 2.4: Tangential distortion

To correct distortion, Brown’s distortion model [10] is used. The model corrects
both radial distortion and tangential distortion. The model is shown as:

x′ = x(1 + k1r
2 + k2r

4 + k3r
6) + 2p1xy + p2(r

2 + 2x2)

y′ = y(1 + k1r
2 + k2r

4 + k3r
6) + p1(r

2 + 2y2) + 2p2xy
(2.11)

where [x, y]T is the normalized coordinates of the distorted point, [x′, y′]T is the
normalized coordinates of the undistorted point, r =

√
x2 + y2 is the distance

between the point and the origin of the coordinate system, k1, k2, k3 are radial
distortion coefficients and p1, p2 are tangential distortion coefficients.

x

y

O X

Y

Grayscale image: 0~255

RGB color image:

R: 0~255

G: 0~255

B: 0~255

(x,y)

Pixel data

Image

Figure 2.5: Image coordinate and pixel data

14

2.2 Digital image

2.2 Digital image

Digital images are data sources that stored in the computer after cameras and lens
converting the information in the 3D world to 2D pixels. As shown in Figure 2.5,
a pixel coordinate for the image is defined as O −X − Y in OpenCV, where O is
the origin in the top left corner of the image, X axis is from left to right, Y axis is
from top to bottom.

Two types of digital images are introduced in this part: grayscale image and color
image. In a grayscale image, the gray scale of a pixel can be recorded as an 8-bit
unsigned integer, which is a value of 0-255. To describe a color image, channel
is required. Any color can be described as the combination of three basic colors:
red, green and blue. For each pixel in computers, three values of R, G and B are
recorded, and each of which is called a channel. The color image used in this
thesis is the most common 24-bit color image that each channel is represented by
an 8-bit unsigned integer in the range of 0 to 255. A RGB model cube is shown in
Figure 2.6 [11]. The transformation from color image to grayscale image is:

Grayscale = 0.299 ·R+ 0.587 ·G+ 0.114 ·B (2.12)

2.3 Image enhancement

The images from underwater environment often have different contrast in different
image parts due to poor lighting condition. It is hard to detect features in low con-
trast part, so image enhancement is necessary before executing SLAM system. For

Figure 2.6: RGB model cube

15

Chapter 2. Theory

grayscale images, histogram equalization is the most common method to enhance
contrast. It works by mapping the histogram of the image to another histogram
with a wider and more distribution of intensity values so the intensity values are
spread over the whole range. The method is useful when the background and fore-
ground of a image are both bright or both dark, in other words, the distribution of
pixel values is similar throughout the image. If there are parts that are significantly
lighter or darker than most of the image, the contrast in those parts will not be suf-
ficiently enhanced [12]. makes it hard to detect features. An example is shown in
Figure 2.7 [13], the contrast of the statue in initial image is high while the contrast
of bookcase is low. After histogram equalization more details of the bookcase are
displayed, but the statue loses details and becomes overly bright.

Figure 2.7: Image enhancement compare

Adaptive Histogram Equalization (AHE) [14] differs from the ordinary histogram
equalization. AHE computes several histograms, each corresponding to a distinct
section of the image, and uses them to redistribute the lightness values of the im-
age, as shown in Figure 2.8 [12]. This method improves the local contrast, and the
visual effect is better than that using the simple one.

Figure 2.8: AHE neighbourhoods

The problem of AHE is that sometimes it improves the local contrast too much,
which may lead to a loss of image quality and noise amplification. Contrast limited

16

2.4 Feature detection and description

adaptive histogram equalization (CLAHE) [15] is a variant of adaptive histogram
equalization in which the contrast amplification is limited. The part of histogram
that exceeds a limit value, which is called clip limit, is cut and redistributed equally
among all histogram bins, which is shown in Figure 2.9 [12]. This redistribution
will push some bins over the limit again. Then repeat the procedure until that
part is negligible. In Figure 2.7, after enhancement, the contrast of bookcase is
increased and more details are exposed both in statue and bookcase.

Figure 2.9: Excess redistribution in CLAHE

2.4 Feature detection and description

2.4.1 Feature descriptor method

The front end of SLAM system is concerned with the movement of a camera be-
tween adjacent image frames. Two mainstream methods are feature descriptor
methods, which is also called indirect methods, and direct methods. Feature de-
scriptor methods attempt to extract features, and then use these features to locate
camera and build a map. In contrast, direct methods make use of pixel intensities
directly. One important assumption of direct methods is brightness constancy [16],
which is hard achieve in underwater environments. Therefore, direct methods are
not discussed in this thesis. In computer vision, features are measurable pieces of
data in the image that is unique to the specific objects. Good features should have
the following properties:

• Repeatability: the same features can be detected and matched in different
mages.

• Distinctiveness: different features should be described differently.

17

Chapter 2. Theory

• Locality: the feature should be only related to a small piece of corresponding
image area.

• Efficiency: the number of features should be far less than that of pixels.

Features can be detected in form of corners, blobs, edges or lines. After that, the
features are described in some ways based on the information of their neighboring
pixels, like pixel intensity, which makes it easy to recognition features in feature
matching step. This process is called feature description. There are lots of feature
detection and description algorithms. In this thesis ORB will be detailed described.

2.4.2 ORB

Oriented FAST and Rotated BRIEF (ORB) was developed by Ethan Rublee et al.
in 2011 [17]. ORB combined modified FAST (Features from Accelerated Segment
Test) detection and direction-normalized BRIEF (Binary Robust Independent El-
ementary Features) description methods. ORB algorithm has good performance
under translation, rotation and scaling. Besides, keypoints detection and descrip-
tion are fast so the algorithm is suitable for real-time SLAM application.

FAST is a corner detection method that was developed by Edward Rosten et al. in
2006 [18]. FAST corner detector uses a circle of 16 pixels to classify whether a
candidate point p is actually a corner. As shown in Figure 2.10, each pixel in this
circle is labeled from integer number 1 to 16 clockwise. Assume the intensity of
the pixel p is Ip, and an appropriate threshold value t is selected. If there exists
a set of n contiguous pixels in the circle which are all brighter than Ip + t, or all
darker than Ip − t then point p is classified as corner. To make the detector fast,
first compare the intensity of pixels 1, 5, 9 and 13. If at least 3 pixels out of 4
example pixels that are not brighter than Ip + t or darker than Ip− t, the point p is
not a corner. Otherwise check all 16 pixels and check if 12 or more pixels fall in
the criterion.

The drawbacks are too large quantity and no orientation component. In ORB,
Harris corner measure and intensity centroid are employed to improve the method.
The intensity centroid assumes that the intensity of a corner is offset from its center
which can be used to describe orientation. The moments of a patch is defined as:

18

2.4 Feature detection and description

Figure 2.10: FAST corner detector

mpq =
∑
x,y

xpyqI(x, y) (2.13)

with thees moments the centroid can be found as:

C = (
m10

m00
,
m01

m00
) (2.14)

then a vector can be constructed from the center of the corner O to the centroid−−→
OC. The orientation of the patch is:

θ = atan2(m01,m10) (2.15)

where atan2 is the quadrant-aware version of atan. To improve the rotation invari-
ance, the moments are computed with x and y remaining within a circular region
of radius r. r is chosen to be the patch size to make sure that x and y run from
[−r, r].

The BRIEF descriptor [19] is constructed from a set of binary intensity test, and it
is a bit string description of an image patch. A binary test τ of a smoothed image
patch p is defined as:

τ(p; x,y) :=

{
1 : p(x) < p(y)

0 : p(x) ≥ p(y)
(2.16)

where p(x) is the intensity of p at a point x. The feature is defined as a vector of
n binary tests:

19

Chapter 2. Theory

fn(p) :=
∑

1≤i≤n
2i−1τ(p; x,y) (2.17)

The vector length is chosen as n = 256 in ORB algorithm.

The construction and matching for ordinary BRIEF descriptor is fast, but the draw-
back is that this descriptor is unstable with rotation. In ORB, a more efficient and
robust method called steered BRIEF is used instead. For any feature set of n binary
tests at (xi,yi), a 2× n matrix S is defined as:

S =

(
x1, ...,xn

y1, ...,yn

)
(2.18)

The steered version textθ of S is constructed using the patch orientation θ and the
corresponding rotation matrix Rθ as:

Sθ = RθS (2.19)

Then the steered BRIEF descriptor becomes:

gn(p, θ) := fn(p)|(xi,yi) ∈ Sθ (2.20)

A lookup table of precomputed BRIEF patterns can be constructed. The angle is
discretized to increments of 2π/30 (12 degrees). The correct set of points Sθ is
used to compute its descriptor when the keypoint orientation θ is consistent across
views.

2.5 Feature Matching

During feature matching, descriptors are compared between two images to identify
similar features. The simplest method is Brute-Force Matcher. It takes the descrip-
tor of one feature in first set and is matched with all features in second set using
Hamming distance calculation. Then the closest one is returned as one matching
result.

20

2.6 Motion estimation

It is obvious that the computation increases with the number of features. An
alternative is FLANN (Fast Library for Approximate Nearest Neighbors) based
Matcher. FLANN was developed by Marius Muja et al. in 2009 [20]. This
matcher contains a collection of algorithms that are optimized for fast nearest
neighbor search in large datasets. It works faster than Brute-Force Matcher for
large datasets.

2.6 Motion estimation

In feature matching stage, a set of matched 2D feature points and 3D map points
is found. Estimating the pose of camera with matched 3D-2D points is called
Perspective-n-Point (PnP) problem in SLAM. Consider a homogeneous world point
pw = [X,Y, Z, 1]T and the corresponding homogeneous pixel point u = [u, v, 1].
From the pin-hole camera model:

s

uv
1

 =

fx 0 cx
0 fy cy
0 0 1


︸ ︷︷ ︸

K

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3


︸ ︷︷ ︸

[R|t]


X

Y

Z

1

 (2.21)

where s is a scale factor for pixel point, K is the camera intrinsic parameters, R

and t are the camera extrinsic parameters that are being calculated.

There are some methods to solve PnP problem. Efficient PnP (EPnP) is a method
developed by Lepetit, et al. in 2008 [21]. The solution has O(n) complexity with
n paired points, so the method is very efficient when n is large. The core idea is
3D point, which are called reference points Pi (i = 1, ..., n) in the original paper,
can be expressed as a weight sum of four virtual control pointscj (j = 1, ..., 4):

Pw
i =

4∑
j=1

αijc
w
j

Pc
i =

4∑
j=1

αijc
c
j

(2.22)

21

Chapter 2. Theory

The w superscript is used if the point coordinates are expressed in the world co-
ordinate system, and c superscript is used if those are expressed in the camera
coordinate system. αij are homogeneous barycentric coordinates with:

4∑
j=1

αij = 1 (2.23)

Then Equation (2.21) can be rewritten as:

si

uivi
1

 = K
4∑
j=1

αijc
c
j (2.24)

The homogeneous camera control point has the form ccj = [xcj , y
c
j , z

c
j]
T. Rewrite

the camera reference point equation yields two linear equation for each reference
point:

4∑
j=1

αijfxx
c
j + αij(cx − ui)zcj = 0

4∑
j=1

αijfyy
c
j + αij(cy − vi)zcj = 0

(2.25)

Then using these two equations for all n reference points, a linear system Mx = 0

can be generated, where x = [cc1
T, cc2

T, cc3
T, cc4

T]T. The solution for the control
points belongs to the null space of M, and can be expressed as:

x =
N∑
i=1

βivi (2.26)

where N is the number of null singular values in M and the set vi are the columns
of the right-singular vector of M . After calculating the initial parameters βi, the
Gauss-Newton algorithm is used to refine them. Then the R and t can be calcu-
lated by minimizing the reprojection error of the world reference points pwi and
their corresponding camera points pci .

22

2.7 Graph optimization

2.7 Graph optimization

2.7.1 Lie group and Lie algebra

After estimating camera poses, optimization is necessary to get better results. The
poses obtained from EPnP method are rotation matrix R and translation vector
t. It is obvious that R is an orthogonal matrix with a determinant of 1, which
introduces additional constraints that makes optimization difficult. Through the
transformation relationship between Lie group and Lie algebra, the pose estima-
tion can be turned into an unconstrained optimization problem and simplify the
solution. The notation of Timothy [22] is used in this section.

The three dimensional rotation matrix R constitutes special orthogonal group SO(3),
the Lie algebra of which is:

so(3) = {φ ∈ R3,Φ = φ∧ ∈ R3×3} (2.27)

where the ∧ symbol represents the transformation from a vector to a skew-symmetric
matrix:

Φ = φ∧ =

 0 −φ3 φ2
φ3 0 −φ1
−φ2 φ1 0

 (2.28)

The four dimensional transformation matrix T constitutes special Euclidean group
SE(3), the corresponding Lie algebra is:

se(3) =

{
ξ =

[
ρ

φ

]
∈ R6,ρ ∈ R3,φ ∈ so(3), ξ∧ =

[
φ∧ ρ

0T 0

]
∈ R4×4

}
(2.29)

In se(3), a six dimensional vector is converted to a four dimensional matrix using
the ∧ symbol, but no longer a skew-symmetric one. The relationship of Lie algebra
to its associated Lie group is given by exponential map:

23

Chapter 2. Theory

R = exp(φ∧) (2.30)

T = exp(ξ∧) (2.31)

Detailed introduction and description can be found in [22].

A major motivation for using Lie algebra is to do optimization. The derivative is
a necessary information in the optimization process. To find derivative on SO(3),
a practical method is using perturbation model, in other words, perturb R for∆R

or T for∆T and see the change of the result relative to the disturbance. A left in-
finitesimal perturbation is multiplied on the Lie group multiplication, and use Lie
algebra to describe the perturbation, then compute the derivative on this perturba-
tion.

2.7.2 Bundle adjustment

Bundle adjustment (BA) is the problem of refining a visual reconstruction to pro-
duce jointly optimal 3D structure and viewing parameters (camera pose and cal-
ibration) [23]. Consider bundles of light rays leaving each 3D point, and they
project in several image planes as pixel feature points. these light rays can con-
verge on each camera optical center by making adjustment to the camera poses
and 3D points. In SLAM, bundle adjustment boils down to minimize the projec-
tion error between observed and predicted image pixel locations.

The observation equation (1.2) can be described as: xi is the pose of the camera
Ti, and its Lie algebra is ξ, yj is the 3D point pj , and the observed data zij is the
corresponding pixel coordinates [uij , vij]

T. Then the equation can be rewritten as:

zij = h(Ti,pj) (2.32)

The error of this observation is given as:

eij = zij − h(Ti,pj) (2.33)

Now consider all observations in all times, a cost function can be established using

24

2.7 Graph optimization

least-squares:

F (x) =
1

2

m∑
i

n∑
j

‖eij‖2 =
1

2

m∑
i

n∑
j

‖zij − h(Ti,pj)‖2 (2.34)

Use first order Taylor expansion around variables to be optimized x to approximate
the error function:

eij(x + ∆x) ≈ eij(x) + J(x)∆x (2.35)

where Jij(x) is the Jacobian of eij(x). Then the cost function of single observa-
tion becomes:

Fij(x + ∆x) ≈ 1

2
‖eij‖2 + eijJij(x)T∆x +

1

2
∆xTJij(x)Jij(x)T∆x (2.36)

Then Equation 2.34 can be rewritten as:

F (x + ∆x) =
∑

(i,j)∈O

Fij(x + ∆x)

≈ F (x) + eJ(x)T∆x +
1

2
∆xTJ(x)J(x)T∆x

(2.37)

Minimize ∆x by finding its derivative in Equation (2.37) and set it to zero:

J(x)J(x)T︸ ︷︷ ︸
H(x)

∆x = −J(x)e︸ ︷︷ ︸
g(x)

(2.38)

where H is the approximation of Hessian. Now the problem can be solved using
Gauss-Newton algorithm.

In this thesis, two bundle adjustments are executed in both front end and back end
parts. A small scale one in front end optimizes the processing frame camera pose,
and 3D points are fixed. A large scale bundle adjustment in back end optimizes
both several camera poses and map points. They will be discussed in the next two
sections.

25

Chapter 2. Theory

Algorithm 1 Gauss-Newton algorithm
1: set initial value x0

2: while xk do
3: for iteration k, compute Jacobian J(xk) and error e(xk)
4: solve H∆xk = g
5: if ∆xk is sufficiently small then
6: break
7: else
8: xk+1 = xk + ∆xk
9: end if

10: end while

2.7.3 Front end optimization

After camera pose estimation using EPnP algorithm, a small scale optimization
is executed. Only the camera pose of the processing frame is optimized. The
observation equation becomes:

siu = KP′

P′ = (TP)1:3
(2.39)

P is a homogeneous map point, the first three rows are extracted before trans-
forming camera coordinates to pixel coordinates to keeps dimension correct. Then
there are:

u = fx
X ′

Z ′
+ cx

v = fy
Y ′

Z ′
+ cy

(2.40)

To find the Jacobian, multiply a left infinitesimal perturbation δξ on T, which is
represented by ⊕, and compute the derivative on this perturbation. The Jacobian
is given as:

J =
∂e

∂δξ
= lim

δξ→0

e(δξ ⊕ ξ)− e(ξ)

δξ
(2.41)

Use the chain rule to computer two derivatives. The first part can be obtained by

26

2.7 Graph optimization

Equation (2.40). The second part is the derivative of the transformed map point of
the perturbation, the detail can be found in [22].

∂e

∂δξ
=

∂e

∂P′
∂P′

∂δξ
=

∂e

∂P′
∂(TP)1:3
∂δξ

= −

fxZ ′ 0 −fxX
′

Z ′2

0
fy
Z ′

−fyY
′

Z ′2

[I −P′∧

0T 0T

]
1:3

= −

fxZ ′ 0 −fxX
′

Z ′2
−fxX

′Y ′

Z ′2
fx +

fxX
′2

Z ′2
−fxY

′

Z ′

0
fy
Z ′

−fyY
′

Z ′2
−fy −

fyY
′2

Z ′2
fyX

′Y ′

Z ′2
fyX

′

Z ′


(2.42)

Graph optimization is the problem that combines nonlinear optimization and graph
theory. It describes optimization problem as a graph. The graph is made up of ver-
tices/nodes that are connected by edges. For SLAM problems, optimized variables
are presented by vertices while errors are presented by edges.

To start graph optimization, vertices and edges should be defined first. As shown
in Figure , set the estimated camera pose T as one vertex, set every projection
point zi in image plane as edges, and map points Pi are fixed and not optimized.

Pi

T

zi

Pose vertex

Edge projection

Image plane

Figure 2.11: Front end optimization

27

Chapter 2. Theory

2.7.4 Back end optimization

In back end part, both estimated camera poses and map points are optimized, as
shown in Figure . The variables to be optimized is defined as:

x = [ξ1, ..., ξm︸ ︷︷ ︸
xc

,p1, ...,pn︸ ︷︷ ︸
xp

]T (2.43)

The derivative of observation error of Lie algebra form camera pose is given in
Equation (2.42). The derivative of observation error of 3D map point can be com-
puted as:

∂e

∂p
=

∂e

∂p′
∂p′

∂p
= −

fxZ ′ 0 −fxX
′

Z ′2

0
fy
Z ′

−fyY
′

Z ′2

R (2.44)

The objective function becomes:

F (x) =
1

2

m∑
i

n∑
j

‖eij + Fij∆ξi + Eij∆pj‖2

= ‖e + F∆xc + E∆xp‖2
(2.45)

P1

T2

Pose vertex

Edge projection

Map points vertex

T1

T3

P2

P3

P4

P5

P6

P7

R1,t1
R2,t2

Figure 2.12: Back end optimization

28

2.7 Graph optimization

where Fij is the derivative of camera pose and Eij is the derivative of map point.
The full Jacobian is J = [F E]. The Hessian in Gauss-Newton is:

H = JTJ =

[
FTF FTE

ETF ETE

]
(2.46)

The direct computation of matrix H inversion is time-consuming because the com-
plexity of matrix inversion isO(n3) and generally there are hundreds of map points
so the matrix dimension is large. But the structure of matrix H is sparse, which
can be used to speed up computation process.

Consider a simple example including 2 camera poses and 6 map points. Camera
C1 observes map points P1, P2, P3 and P4, and camera C2 observes P3, P4, P5

and P6. The poses of 2 camera are Ti, i = 1, 2 and the position of 6 map points
are pi, i = 1, · · · , 6. The problem can be described as a graph in Figure 2.13.

C1 C2

P1 P2 P3 P4 P5 P6

Figure 2.13: Represent camera poses and map points by a graph

The Jacobian of each error components eij is Jij . For J11, it is clear that the
derivatives of e11 of camera pose ξ2 and map points p2, · · · ,p6 are zero:

J11 =
∂e11
∂x

=
(∂e11
∂ξ1

,02×6,
∂e11
∂p1

,02×3,02×3,02×3,02×3,02×3

)
(2.47)

For convenience to express sparsity patterns of J and H, non-zero entries in ma-
trices are indicated by ∗. The full Jacobian is:

29

Chapter 2. Theory

J =



J11

J12

J13

J14

J23

J24

J25

J26


=

C1 C2 P1 P2 P3 P4 P5 P6



∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗
∗ ∗
∗ ∗
∗ ∗

(2.48)

Also, the Hessian of Gauss-Newton is:

H = JTJ =



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗


=

[
B E

ET C

]
(2.49)

The Hessian can be divided into four blocks. B and C are block diagonal matrices.
In SLAM problems, generally the number of camera poses are far less than that of
map points, thus B is smaller than C. The shape of H looks like a arrow, and this
structure is often referred to as an arrowhead matrix.

Now Equation (2.38) becomes:

[
B E

ET C

][
∆xc
∆xp

]
=

[
v

w

]
(2.50)

Schur complement method [22, 24] can be used to manipulate Equation (2.50)
into a form that is more efficiently solved. This can be seen by premultiplying
both sides by:

[
I −EC−1

0 I

]
(2.51)

30

2.7 Graph optimization

so that:

[
B−EC−1ET 0

ET C

][
∆xc
∆xp

]
=

[
v −EC−1w

w

]
(2.52)

Now ∆xc can be easily solved since C is block-diagonal, C−1 is cheap to com-
pute. The complexity of each solve down from O((i + j)3) without sparsity to
O(i3 + ij2). Generally j is far larger than i, so the computation time can be re-
duced using the structure of sparsity.

(B−EC−1ET)∆xc = v −EC−1w

∆xp = C−1(w −ET∆xc)
(2.53)

For real application, robust kernels are better than least-squares. When using least-
squares objective function, if a bad matching exists, the observation data is wrong.
However, the optimization algorithm cannot recognize it. So an edge with a large
error is added to the graph, and its gradient is large, which means that adjusting the
variables related to it causes the objective function to drop more. The algorithm
tries to adjust the estimated values of the vertices connected to this edge so that
they conform to the unreasonable requirements of this edge. Since the error of this
edge is large, the algorithm tends to focus on optimize the wrong edge and smooth
out the influence of other correct edges.

Figure 2.14: Huber kernel (solid line) and quadratic function (dotted line)

31

Chapter 2. Theory

The reason of the problem is that quadratic objective function increases rapidly
when error are large. There are some robust kernels to avoid the problem. A
commonly used one is called Huber kernel:

H(e) =


1

2
e2 for |e| < δ

δ
(
|e| − 1

2
δ
)

otherwise

(2.54)

When error e is larger than the given threshold δ, objective function growth changes
from quadratic form to primary form, in other words, the maximum value of gra-
dient is limited. Figure 2.14 [25] shows the comparison between Huber kernel and
quadratic function. It can be seen that the growth of Huber kernel is significantly
lower than that of quadratic function when the error is large.

32

Chapter 3
Method

3.1 Camera calibration

Camera calibration is the process to estimate camera intrinsic parameters and dis-
tortion coefficients, which are given by Equation 2.4 and Equation 2.11. Camera
installation location and work environment may be different in different missions,
camera calibration is necessary before experiments. Generally the camera cali-
bration procedure is implemented by finding a calibration target first. The most
popular calibration target form is the chessboard pattern. An example of under-
water environment chessboard is shown in Figure 3.1. The pictures were shot by
stereo camera in the mission at Referansevraket in 2014. The pattern is mounted

(a) Left camera (b) Right camera

Figure 3.1: Camera calibration by chessboard pattern

33

Chapter 3. Method

onto a rigid flat surface and is placed in the work environment. Then the camera
takes 10-20 pictures of the target at different distances and orientations. These
pictures are used to compute the parameters.

There are many tools have the ability to process the pictures and calibrate cameras,
such as OpenCV and MATLAB. OpenCV provides functions to find the position
of internal corners of the chessboard, and use the coordinates of all corners to com-
pute intrinsic parameters by Zhang’s camera calibration method [26] and distortion
coefficients by Brown’s distortion model [10], which is described in Section 2.1.3.
To successfully detect desired corners in the first step, the function require uniform
and proper light condition when the pictures are taken. Occlusion may also cause
detection failure. After test, it is found that the chessboard in underwater environ-
ment, like Figure 3.1, is hard to detect corners using OpenCV. The tool that used
for the NTNU ROV is the commercial software Agisoft Metashape. The software
can automatically process the images and calculate calibration parameters.

3.2 Feature detection and description

There are many feature detection and description algorithms. Good algorithms
should be invariant to rotation, scale and viewpoint change, so that the features can
be detected in different images. SIFT, SURF, ORB, BRISK, KAZE and AKAZE
are some popular algorithms. In [27], these algorithms are compared from the as-
pects of quantity, computation time, model fitting, repeatability and error between
recovered results and ground-truths. The results are that ORB and BRISK are the
most efficient algorithms that can detect huge amount of features, the overall accu-
racy of SIFT and BRISK is the highest and SIFT is concluded as the most accurate
algorithm. All these algorithms are provided in OpenCV except SIFT.

ORB and BRISK were tested in the project report in last semester. Three pairs im-
ages from a ROV mission at Stokkbergneset in 2017 were used. The images show
complex seabed, so it is easy to detect features. They were processed by histogram
equalization before testing. All parameters in OpenCV are default, excepting the
following two parameters. The maximum number of features in ORB function is
set to 5000. The AGAST detection threshold score of BRISK is 50 (default value
30). Under this value more features can be detected by BRISK.

34

3.2 Feature detection and description

(a) A

(b) B

(c) C

Figure 3.2: Three pairs images for ORB and BRISK tests

Method BRISK ORB
Images A B C A B C
Number of features in first image 5862 3049 790 5000 5000 5000
Number of features in second image 10226 6177 3065 5000 5000 5000
Number of matches 538 315 178 422 477 733
Number of matches after RANSAC 451 260 148 383 395 432
Detection & description time [ms] 358.85 232.48 137.25 220.51 230.47 195.64
Matching time [ms] 130.13 41.34 5.60 52.11 51.06 51.01
RANSAC time [ms] 0.78 0.66 0.51 0.57 0.75 1.13
Total time [ms] 530.63 315.67 183.67 313.70 323.60 289.44

Table 3.1: Comparison of ORB and BRISK results

The results are listed in Table 3.1. Both two algorithms can detect large number of
features. ORB algorithm reaches the upper limit in all tests while BRISK algorithm
detects less features in test C. It can be seen that for all three tests the number of
features detected by BRISK in first image are far less than those in second image.

35

Chapter 3. Method

The reason is the left parts of three first images are too dark to detect features. As
for computation time, it totally takes 0.3s on average using ORB algorithm and
0.2s to 0.6s using BRISK algorithm. The time highly depends on feature numbers,
since feature detection and description occupies most of time, up to 65% - 75%. It
can be concluded that both two algorithms work well in three tests. ORB performs
better than BIRSK in feature detection. The difference in computation time is not
significant. Considering robustness and efficiency, ORB is chosen for the SLAM
system.

A big drawback of OpenCV ORB algorithm is that the keypoints are always con-
centrated in some parts of a image that have rich texture. One example is shown
in Figure 3.4a , most of the keypoints are detected from the central part of the im-
age. If a fish cover this region in next frame, only small number of matches can
be found for pose estimation, which may reduce estimation accuracy. A improved
method is split images using grids, and detect a reasonable amount of keypoints in
every cell. So the distribution of keypoints is uniform. For the cells that is hard
to detect keypoints due to poor texture, decrease the FAST threshold in these cells
and detect again. The algorithm is shown in Algorithm 2.

Algorithm 2 Keyoints detection
1: Set default FAST threshold and minimum FAST threshold
2: Read processed image
3: Draw grids, the size is 30× 30
4: Detect FAST corner in every grid using default FAST threshold
5: if No corner is detected then
6: Detect FAST corner in every grid using minimum FAST threshold
7: end if
8: Filter FAST corner based on quadtree
9: return All keypoints

After keypoints are detected. A quadtree based method is implemented to remove
concentrated keypoints [28]. A example is shown in Figure 3.3. The aim of this
example is to keep up to 25 keypoints. A region that are split by lines is called a
node. In every step 1 node is divided into 4 nodes. If the number of nodes that
contain keypoints is smaller than 25, repeat the same step. Otherwise, every node
has at least one keypoints, then keep one keypoint that has the best quality in every
node and discard others.

36

3.2 Feature detection and description

Step 1:
1 node

Step 2:
1st division
4 node

Step 3:
2nd division
15 node

Step 4:
3rd division
30 node > 25
end divide

Step 5:
choose 1 keypoint from every node

Figure 3.3: An example of filter keypoints based on quadtree

37

Chapter 3. Method

(a) OpenCV ORB algorithm (b) Quadtree based ORB algorithm

Figure 3.4: Keypoints detection results comparison between two algorithms

A comparison of keypoints detection results between the OpenCV ORB algorithm
and quadtree based ORB algorithm is shown in Figure 3.4. It is clear that the
distribution of keypoints becomes uniform using the improved algorithm.

3.3 Feature matching

Feature matching is implemented twice during one keyfreme processing. First, the
descriptors of left image features and map points are used to match image 2D pixel
points and 3D map points. Next, the descriptors of left and right images features
are used to find the projected pixel points in left and right image of the same world
points. FLANN based matcher is used to speed up the matching process.

Generally the matching results are not good enough to estimate camera pose or
compute map points because mismatching is hard to avoid. So it is necessary
to remove these wrong matches. Two methods are used together in the SLAM
system: distance filter and RANSAC.

Distance filter can filter the matches that their matching distances are much larger
than those of correct matches. The minimum distance is found firstly. A matching
ratio is generally chosen between 1.5 and 2.5. If the distance of one match is less
than the minimum distance times the matching ratio, it is labeled as a good match.
Sometimes the distance of wrong matching may be small, so a minimum threshold
is needed. It is a empirical parameter that the value is usually between 20 to 40. If
the minimum distance timing the matching ratio is smaller than this threshold, use

38

3.3 Feature matching

the threshold instead to make decisions.

The Random Sample Consensus (RANSAC) is an iterative method to detect out-
liers from a set of observed data. Detailed introduction of RANSAC can be found
in [29]. The outliers in feature matching are the mismatches. In OpenCV, findHo-
mography function can find the perspective transformation between points in two
planes. RANSAC is used to estimate the outlier of the transformation. Since the
points are matched, RANSAC also estimates the outlier of matches.

Algorithm 3 Feature matching
1: Read left image descriptors vector
2: for i = 1 : m, m is the number of all map points do
3: if Map points is observed in this frame then
4: Add the descriptor of this map point to vector
5: end if
6: end for
7: Match features using two descriptor vector
8: Compute minimum distance
9: Set min dist = 0

10: for i = 1 : n, n is the number of matches do
11: if Matcher distance < min dist then
12: min dist = match distance
13: end if
14: end for
15: Set matching ratio r
16: Set minimum matching threshold t
17: for i = 1 : n, n is the number of matches do
18: if matcher distance < max(min dist · r, t) then
19: Good match
20: end if
21: end for
22: Compute RANSAC status s
23: for i = 1 : k, k is the number of good matches do
24: if s 6= 0 then
25: Correct match
26: end if
27: end for

39

Chapter 3. Method

The matching algorithm between left image and map points is given in Algorithm
3. As for stereo matching, the algorithm is is almost same, and the difference is
match objects. Map points are replaced by right image features. To judge whether
map points are observed by current frame, all map points are projected from world
coordinate to pixel coordinate. Since the pose of current frame is unknown, it is set
equal to the pose of last frame temporarily. If the pixel coordinates [x, y]T of map
points are in the range of [0, 0]T, [0, w]T, [l, w]T and [l, 0]T, where l is the length of
the image and w is the weight, the map points are considered within observation.

The results of left and right images feature matching are shown in Figure 3.5. All
mismatches can be removed after distance filter and RANSAC.

(a)

(b)

Figure 3.5: Feature matching result before (a) and after (b) removing mismatches

3.4 Camera pose estimation

After feature matching, the set of matched left camera image 2D keypoints and 3D
map points is found. The EPnP algorithm is implemented to estimate the trans-
formation from map points to their corresponding pixel points in the left camera
image. The method is described in Section 2.6. The OpenCV function solvePnP
is used and the outputs are rotation vector and translation vector. The rotation r

40

3.5 System implementation

vector can be described by a vector n in the direction of the rotation axis, and the
angle of rotation θ. The rotation vector r can be converted to a rotation matrix R

using Rodrigues’s Formula:

θ = norm(r)

n =
r

θ

R = cos θI + (1− cos θ)nnT + sin θn∧

(3.1)

where norm is the function to calculate the norm of r.

The optimization in both front end and back end is implemented using g2o [9].
The theory of graph optimization is described in Section 2.7. Camera poses and
map points position are set as g2o vertices, and the pixel coordinates of observed
map points are set as edges. The sparsity property is used when process map points
vertices to reduce computation time.

3.5 System implementation

The SLAM system is programmed in C++ based on the framework by Xiang Gao
[30]. Some third party libraries are introduced in Section 1.1.3. An overall flow
chart of the system is shown in Figure 3.6. The system contains two separated
program. The main program visual odometry is designed to estimate camera pose.
The other program TCP client is used to convert coordinates and communicate
with the ROV system.

The visual odometry program uses the theory described in chapter 2 and the meth-
ods described in section 3.2 to 3.4. The components of visual odometry is shown
in Figure 3.7 . Several C++ calsses are defined to store and process different types
of data. camera class saves cameras data, including camera intrinsic parameters
and distortion coefficients. It also contains the function of three coordinates trans-
formation: world, camera and pixel. dataset is designed to find image files and
initialize cameras. feature class defines the feature pointer to save detected ORB
keypoints and the corresponding descriptors, observed frames and matched map
points. frame defines the frame pointer. When a new frame is added, all data is
stored in this class, including id, camera pose, left and right images, keyframe
marker and keyframe id. map class includes all map points and keyframes, and

41

Chapter 3. Method

Front end

Data process

INITING TRACKING LOST

Pre-processing

Feature detection
& description

Feature matching

Pre-processing

Feature detection
& description

Pose estimation

Stereo matching

Keyframe insertion

Map points computation

Status

Image files

Left camera images

Right camera images

Camera parameters

Intrinsic parameters

Distortion parameters

Pre-processing

Feature detection
& description

Pre-processing

Feature detection
& description

Stereo matching

Map initialization

Process end

dataset.cpp

frontend.cpp Map

Keyframes

frame.cpp

Map points

mappoints.cpp

map.cpp

Add

Back end backend.cpp

Bundle adjustment

Update

Visualization viewer.cpp

Camera poses and map points

Current frame and feature keypoints
Activate

Thread 1

Thread 3 Thread 2

visual_odometry.cpp

TCP_client.cpp
eta.txt

TCP client

Camera Pose
estimation

Coordinate transformation

Camera coordinate → ROV coordinate

Initial Camera Pose

ROV position estimation

ROV Control System

Remote connection

TCPTCP

Figure 3.6: Flow chart of the SLAM system

42

3.5 System implementation

Figure 3.7: SLAM system source files

functions about adding and removing operation. config is designed to find the con-
figuration file default.yaml. This file has important parameters, such as camera
intrinsic parameters and ORB parameters. It is separated from other code so that
the values can be edited without building the whole program. In g2o types, the ver-
tices, edges and relative functions used in optimization are defined. In ORB detect,
the algorithm of ORB keypoints detection is included. frontend and backend are
the most important classes. frontend has all functions to process image, detect and
describe features, features matching, pose estimation, new map point computation
and activate back end thread and visualization thread. backend has the functions
that optimize keyframes and map points. viewer is designed to visualize features,
camera poses and map points. visual odomatry is used to run the program and pass
images to front end.

When the program starts running, a txt file including the directories of all image
files is read and stored in memory. Camera information is read from the config-
uration file and camera initialization is executed and sent to front end. The first

43

Chapter 3. Method

left image and right image are also sent to front end as current frame. There are
3 different statuses in front end: INITING, TRACKING and LOST. The status is
INITING when front end is activated, both left and right images are pre-processed.
They are converted from color images to grayscale images. After that CLAHE is
used to enhance image contrast so that it is easier to detect features. Then the
improved ORB algorithm is used to detect and describe features. FLANN based
matcher matches features between left image and right image. Distance filtering
and RANSAC algorithm is used to remove outliers. The corresponding map points
of matched features are computed using the pin-hole camera model and stereo
camera model. If there are enough map points, set current frame as a keyframe
and build the initial map. Add current frame and map points into the map. Then
the status is changed to TRACKING. If the number of map points is small, the ini-
tial map is not good enough to start tracking because the following frame cannot
match enough map points to get a good estimation result. In this case, map initial-
ization is failed and the next frame repeats INITING algorithm. The algorithm of
INITING status is outlined in Algorithm 4.

Algorithm 4 Front end algorithm of INITING status
1: status = INITING
2: Read new left and right images
3: Pre-process left image
4: Detect and describe features from left image
5: Pre-process right image
6: Detect and describe features from right image
7: Match features from left and right images
8: Initialize map, Calculate new map points
9: if number of map points > required minimum number then

10: Set current frame as keyframe
11: Add current frame and all map points to map
12: Activate back end
13: Update viewer
14: status = TRACKING
15: end if

Map points computation algorithm is shown in Algorithm 5. The stereo camera
model is used to find the depth of map points. After that, map points are calculated
from the view of left camera, so left camera intrinsic parameters and distortion co-
efficients are used in the algorithm. Then transform points from camera coordinate

44

3.5 System implementation

to world coordinate using the estimated camera pose.

Algorithm 5 Map points computation
1: n matched pixel points PL and PR
2: for i = 1 : n do
3: Disparity d = uL − uR
4: Depth Z = fb

d
5: X = uL−cx

f Z

6: Y =
vL−cy
f Z

7: Compute normalized coordinates
8: x = X

Z
9: y = Y

Z
10: Undistort
11: r =

√
x2 + y2

12: x′ = x(1 + k1r
2 + k2r

4 + k3r
6)

13: y′ = y(1 + k1r
2 + k2r

4 + k3r
6)

14: Compute undistorted 3D points
15: X = x′Z
16: Y = y′Z
17: Map point in camera coordinate P = [X,Y, Z]T

18: Coordinates transformation
19: Map point in world coordinate Pw = T−1P , T is the pose of current frame
20: end for
21: return All 3D map points

If initialization is successful, front end status becomes TRACKING. Program starts
to estimate camera pose and send data to TCP client program. The algorithm for
this status is given in Algorithm 6. Left image is processed to find keypoints and
descriptors. All observed map points and left image features are matched to find
corresponding relationship. After removing mismatches, EPnP method is imple-
mented to estimate left camera pose. Then make decision whether the result is
trustworthy. If the number of correct matches is smaller than a minimum value,
which is generally set between 10 to 20, the results is considered to be not trusted.
In other words, the estimation is bad and tracking is lost. Change status to LOST
and stop processing current frame. Otherwise, the result is considered to be good.
Then make another decision. the number of correct matches is larger than a mini-
mum value that required a new keyframe, which is 50 in this program, the change
of camera pose is small, so there is no need to add new map points. The process

45

Chapter 3. Method

of current frame is finished. Otherwise, set current frame as keyframe. Detect
features from right image and match them with left image features. Use Algo-
rithm 5 to calculate new map points and add current frame and map points into
map. Activate back end to optimize camera poses and map points. Keep the status
unchanged.

Algorithm 6 Front end algorithm of TRACKING status
1: status = TRACKING
2: Read new left and right images
3: Pre-process left image
4: Detect and describe features from left image
5: Feature matching, n = number of matched features
6: Camera pose estimation
7: Write camera pose into “eta.txt”
8: Read the value of minimum features number for tracking nt
9: if n < nt then

10: Tracking is not good
11: status = LOST
12: end if
13: Read the value of minimum features number that require a new keyframe nk
14: if n < nk then
15: Set current frame as keyframe, add it to the map
16: Pre-process right image
17: Detect and describe features from right image
18: Match features from left and right images
19: Calculate new map points
20: Add all new map points to map
21: Activate back end
22: Update viewer
23: end if

As for LOST status, the tracking is lost so the program cannot process next frame.
An error message is sent and the program is stop.

Back end is activated by front end to optimize camera poses and map points. It
runs in another thread, so front end operation is not affected. It is slow to optimize
all camera poses and map points because the size of them increases with time.
In this SLAM system only 7 latest keyframes and new observed map points are
optimized. These keyframes are set as active keyframes, and all observed map
points are set as active map points. Other keyframes and map points are fixed.

46

3.5 System implementation

When a new keyframe is added into map, it is labeled as active keyframe while
one keyframe is removed from active keyframe. The method that decides which
one should be chosen is calculating the distance between the new keyframe and
all other keyframes. If the minimum distance is smaller than a threshold, which
means these two keyframes are too close, remove the nearest keyframe. Otherwise
remove the farthest keyframe. Optimization is implemented using g2o library.

(a)

(b)

Figure 3.8: Visualization

47

Chapter 3. Method

To make it easier to monitor the program state, a Pangolin library based viewer for
visualization is included in the SLAM system. The visualization thread is activated
when the program starts running. In Figure 3.8, one window shows camera poses
of active keyframes and all active map points. The latest keyframe is green while
all others are red. Another window shows left image of current frame and feature
keypoints (green points). Every time a new keyframe and new map points are
added into the map in front end thread, viewer updates the display.

The TCP client program is used to send data to ROV control system remotely.
The outputs of visual odometry program are estimated camera poses, which is
written in file eta.txt. The form is: x y z φ θ ψ. TCP client read the data from
that file. The reason to for this is two programs can run separately to avoid the
interaction. If visual odometry crashes due to unexpected error, TCP lient can
keep communicating with remote TCP server.

Once the TCP connection is successfully established, the program receives the
ROV position in string form when the SLAM system starts running. The form is:
$x, y, z, φ, θ, ψ. The program read camera pose from eta.txt. The pose of camera
is converted to the position of ROV based on the left camera coordinates in ROV
body frame. Then convert ROV local position to global position by adding the
initial position. After that, the global position is sent as an array to TCP server
every 2 seconds.

Algorithm 7 TCP communication
1: Read server IP address and port number
2: Try to connect with server
3: if Connected then
4: if No initial value then
5: Receive initial value from server
6: end if
7: loop
8: Read camera pose from “eta.txt”
9: Convert camera pose to ROV position

10: Convert local position to global position
11: Send ROV global position to server
12: end loop
13: Stop connection
14: end if

48

3.5 System implementation

The TCP server is developed in LabVIEW on Windows platform by MSc student
Fan Gao. When TCP server revives estimated ROV position from the SLAM sys-
tem, it process the data and send it to ROV HIL simulator for further use.

49

Chapter 4
Simulation

The performance of the SLAM system is tested through three different simula-
tions using two data sets. The ROV position data transmission between the SLAM
system and the ROV control system via TCP is also tested. This chapter presents
simulation set-up, results and comments in three different scenarios.

4.1 Stokkbergneset data set

The first two simulations are based on the image set and navigation data from a
mission at Stokkbergneset in February 2017 by ROV SF-30k. The information of
this ROV is described in Appendix 6.2. The cameras used to record images are
two Allied Vision Prosilica model GC-1380 cameras. The specifications of the
cameras are described in Appendix 6.2. Two cameras are installed at the front of
the ROV, and are put downwards to collect seabed image data. The position of two
cameras in the ROV body frame are given as:

pL = [1.21,−0.190, 0.05]T

pR = [1.21, 0.155, 0.05]T
(4.1)

Camera calibration was implemented by Agisoft software before the mission to
obtain camera intrinsic parameters and distortion coefficients. The calibration re-

50

4.1 Stokkbergneset data set

sults are listed in Table 4.1.

Left camera Right camera
f 1692.56 1701.64
cx -9.79 -4.96
cy 14.38 -8.30
k1 0.5163 0.4995
k2 0.6001 0.7297
k3 2.9574 2.6416

Table 4.1: Camera intrinsic parameters and distortion coefficients estimation of
Stokkbergneset data set

4.1.1 Scenario 1

In this scenario, the ROV moves in a lawnmower pattern in horizontal plane and
moves up and down in vertical direction. The images are captured at a depth of
100m. An left and right camera image pair example in this image set is shown
in Figure 4.1. The seabed in this image set is rocky and little creatures can be
found. 60 pairs images with a time interval of 2 seconds are used, giving a total
120 seconds simulation time.

Figure 4.1: Left and right camera image pair example of Stokkbergneset data set at a
depth of 100m

The results from this scenario are presented in Figure 4.2, 4.3 and 4.4. The North-
East plot of ROV trajectory estimation is presented in Figure 4.2. The estimated
change of ROV in position is presented in Figure 4.3, and estimated change in
orientation in Figure 4.4. The navigation data from ROV control system is also
plotted for comparison.

51

Chapter 4. Simulation

-2 -1 0 1 2 3 4 5

East [m]

-1

0

1

2

3

4

5

N
or

th
 [m

]

Estimated North-East position from ROV sensors and SLAM system

Figure 4.2: Simulation results scenario 1: North-East plot of estimated trajectory of the
ROV from SLAM system and ROV sensors

From Figure 4.2, the SLAM system successfully estimate North-East position of
the ROV in horizontal plane in this scenario. But the results are not completely
correct, and errors exist both North and East direction. The error in surge becomes
large after 60 seconds. The error in sway direction increases in the first 40 seconds
and the last 30 seconds. The reason is that estimated orientation of ROV is not good
when simulation starts. From Figure 4.4, the estimation in yaw angle increases in
the first 20 seconds.

Besides, heave estimation is not good. The ROV moves up 10m and moves down
to the original depth in this scenario. But the results shows that the ROV have
slight heave change. Instead, significant change occurs in pitch angle.

52

4.1 Stokkbergneset data set

0 20 40 60 80 100 120
Time [s]

0

2

4

S
ur

ge
 [m

]

0 20 40 60 80 100 120
Time [s]

-2

0

2

4

S
w

ay
 [m

]

Estimated position from ROV sensors and SLAM system

0 20 40 60 80 100 120
Time [s]

-5

0

5

10

15

H
ea

ve
 [m

]

Figure 4.3: Simulation results scenario 1: plot of estimated surge, sway and heave from
SLAM system and ROV sensors

0 20 40 60 80 100 120
Time [s]

-10

0

10

R
ol

l [
de

g]

0 20 40 60 80 100 120
Time [s]

-20

0

20

40

60

P
itc

h
[d

eg
]

Estimated oritation from ROV sensors and SLAM system

0 20 40 60 80 100 120
Time [s]

-20

0

20

Y
aw

 [d
eg

]

Figure 4.4: Simulation results scenario 1: plot of estimated orientation from SLAM sys-
tem and ROV sensors

53

Chapter 4. Simulation

4.1.2 Scenario 2

In this scenario, the ROV movement pattern is the same as first scenario. The
images are captured at a depth of 250m. An image pair example in this depth
is shown in Figure 4.1. Lots of coral and shellfish grow on the sea floor in the
observation area, and fish cover seabed in some images. Totally 90 pairs images
with a time interval of 2 seconds are used, giving a total 180 seconds simulation
time.

Figure 4.5: Left and right camera image pair example of Stokkbergneset data set at a
depth of 250m

-5 -4 -3 -2 -1 0 1 2

East [m]

-7

-6

-5

-4

-3

-2

-1

0

1

N
or

th
 [m

]

Estimated North-East position from ROV sensors and SLAM system

Figure 4.6: Simulation results scenario 2: North-East plot of estimated trajectory of the
ROV from SLAM system and ROV sensors

54

4.1 Stokkbergneset data set

0 20 40 60 80 100 120 140 160 180
Time [s]

-6

-4

-2

0

S
ur

ge
 [m

]

0 20 40 60 80 100 120 140 160 180
Time [s]

-4

-2

0

2

S
w

ay
 [m

]

Estimated position from ROV sensors and SLAM system

0 20 40 60 80 100 120 140 160 180
Time [s]

-10

-5

0

5

H
ea

ve
 [m

]

Figure 4.7: Simulation results scenario 2: plot of estimated surge, sway and heave from
SLAM system and ROV sensors

0 20 40 60 80 100 120 140 160 180
Time [s]

-10

0

10

R
ol

l [
de

g]

0 20 40 60 80 100 120 140 160 180
Time [s]

-50

0

50

P
itc

h
[d

eg
]

Estimated oritation from ROV sensors and SLAM system

0 20 40 60 80 100 120 140 160 180
Time [s]

-20

0

20

Y
aw

 [d
eg

]

Figure 4.8: Simulation results scenario 2: plot of estimated surge, sway and heave from
SLAM system and ROV sensors

55

Chapter 4. Simulation

The North-East plot of ROV trajectory estimation from this scenario is presented
in Figure 4.6. The estimated change of ROV in position is presented in Figure 4.7,
and estimated change in orientation in Figure 4.8.

The results shows that the SLAM system estimates North-East position of ROV
well during the first 60 seconds. Then the estimated trajectory deviates from true
trajectory. The reason is yaw angle estimation error increases after 60 seconds,
which is the same as before. The wrong estimations of heave motion and pitch
angle also exit in the simulation. A possible reason for this is discussed in Chapter
5.

4.2 Referansevraket data set

The third simulation is based on the data set from a mission at Referansevraket in
August 2014. This mission used the same ROV and stereo camera as the mission
at Stokkbergneset. Camera calibration results from Agisoft software are listed in
Table 4.2.

Left camera Right camera
f 1698.41 1785.32
cx -9.40 -10.41
cy 18.01 -12.21
k1 0.2063 0.2252
k2 0.6929 1.2036
k3 2.8805 2.9083

Table 4.2: Camera intrinsic parameters and distortion coefficients estimation of Referan-
sevraket data set

Figure 4.9: Left and right camera image pair example of Referansevraket data set

56

4.2 Referansevraket data set

In this mission, the ROV moves around a broken artificial frame. An image pair
example in this image set is shown in Figure 4.9. The light conditions in this
scenario are good so that images are clear. But the images from left camera are
blurrier than the images from right camera.

60 paired images are used in the third scenario, and the time interval of these im-
ages is 2 seconds. But the SLAM system stops after processing 19 pairs images
because the system fails to get enough matches between image features and map
points, and estimated position is untrustworthy. Then front end status changes to
LOST and the program exits. The reason is that too few map points are computed
from left and right cameras images. The clarity of two cameras images are dif-
ferent, so the difference of feature descriptors are too big. Most matches are not
correct and are removed in stereo matching step.

The North-East trajectory, position change and orientation change of the ROV are
presented in Figure 4.10, 4.11 and 4.12. The estimation results are good, and errors
in position and orientation are not large.

-2 -1.5 -1 -0.5 0 0.5

East [m]

-0.5

0

0.5

1

N
or

th
 [m

]

Estimated North-East position from ROV sensors and SLAM system

Figure 4.10: Simulation results scenario 3: North-East plot of estimated trajectory of the
ROV from SLAM system and ROV sensors

57

Chapter 4. Simulation

0 5 10 15 20 25 30 35
Time [s]

-2

-1

0

S
ur

ge
 [m

]

0 5 10 15 20 25 30 35
Time [s]

-0.5

0

0.5

1

S
w

ay
 [m

]

Estimated position from ROV sensors and SLAM system

0 5 10 15 20 25 30 35
Time [s]

-0.5

0

0.5

H
ea

ve
 [m

]

Figure 4.11: Simulation results scenario 3: plot of estimated surge, sway and heave from
SLAM system and ROV sensors

0 5 10 15 20 25 30 35
Time [s]

-10

0

10

R
ol

l [
de

g]

0 5 10 15 20 25 30 35
Time [s]

-10

0

10

P
itc

h
[d

eg
]

Estimated oritation from ROV sensors and SLAM system

0 5 10 15 20 25 30 35
Time [s]

-60

-40

-20

0

20

Y
aw

 [d
eg

]

Figure 4.12: Simulation results scenario 3: plot of estimated surge, sway and heave from
SLAM system and ROV sensors

58

4.3 TCP data transmission

4.3 TCP data transmission

TCP data transmission is implemented between two different computer. One com-
puter runs C++ TCP client on Ubuntu 18.04 and another runs LabVIEW TCP
server on Windows 10. The public IP address and port number are required to run
TCP client. In simulation, the TCP client successfully establishes communication
with the TCP server and receives initial position and orientation of the ROV from
the server. The TCP server correctly receives estimated global position and orien-
tation from the SLAM system. The reception delay in simulation is approximately
1 second.

59

Chapter 5
Discussion

5.1 Simulation

The results from three scenarios show that the SLAM system can estimates ROV
position using stereo image set. The system gets good estimation results in surge
and sway motion in all simulations. The errors between estimated positions and
true positions are often less than 1m. But the estimations of heave motion are not
accurate in the first two scenarios. The ROV moves up and down in these simula-
tions, but the heave changes estimated by the SLAM system are much smaller. The
heave changes are detected by the depth changes between camera and map points
since cameras are placed downwards. To compensate these depth changes the sys-
tem estimates large pitch angle changes instead of heave changes. Therefore, the
estimated pitch angle orientation changes in the same pattern as true heave motion.

There are small yaw angle errors in first two scenarios, so the estimated trajectories
deviates from true trajectories at the beginning of first simulation and after 60 sec-
onds in second simulation. The errors increase with time, and the maximum value
is around 15 degrees. Figure 4.6 shows that inaccurate yaw angle can significantly
affect trajectory results.

In third scenario, estimation results in all positions and orientations are good. But
the system only processes part of the image set and stops. As discussed in Section
4.2, few map points are found in each frame so that most image features cannot

60

5.2 General comments

find corresponding map points to estimate camera pose. The left camera images
are blurrier than the right images, so the descriptor of keypoints in left and right
camera images that are projected from the same world point may be different.
Therefore, feature matching algorithm fails to find correct match between these
keypoints.

The time interval of two frames are 2 seconds in both image sets. Often, the relative
motion between two adjacent frames are large. So most frames in three simulations
are set as keyframes. The process time of one keyframe is 0.1 to 0.3 seconds in first
two scenarios and under 0.1 second in the third scenario. Therefore, the SLAM
system can process stereo images and estimate position in real time with frequency
of 3 to 10 Hz.

Due to the special situation, it is impossible to transmit estimated position data
to the ROV control system in one computer or two computers in the same local
area network (LAN). The data transmission is implemented via remote TCP con-
nection. TCP communication is stable once connection is established. But the
transfer delay of remote TCP is not negligible, and should be taken into account in
real application.

5.2 General comments

Generally, a complete visual SLAM motion estimation system is huge and com-
plex. It is challenging to find proper methods and algorithms to make the system
accurate and efficient. A balance should be found between accuracy and efficiency
because most algorithms with high accuracy often require high computation and
long computation time, which are not suitable for real-time system. But motion
estimation is sensitive to error data, so the methods used in the system are required
to have sufficient accuracy and some filter must be used to remove wrong data. In
this SLAM system, images are enhanced using the effective CLAHE algorithm to
reveal more texture detail. ORB is proved to be a good feature detection and de-
scription algorithm for real-time application. In feature matching, there are lots of
mismatches exist. Distance filter and RANSAC are two necessary steps to remove
these wrong matches.

The process time highly depends on the number of detected keypoints and map
scale. Keypoints detection and feature matching cost more than half the time in

61

Chapter 5. Discussion

simulations. Every time a keyframe is processed, tens and even hundreds of new
map points are added into the map. So the scale of map increases with time. It is
time-consuming to find map points that may be observed by the processed frame
from all map points. So map points search is implemented in all active map points.

The performance of the SLAM system is affected by seabed landform and the
quality of stereo camera images. Normally the system can detect sufficient fea-
tures. But detection results may be bad on bare ocean floor. ORB algorithm can
detect and describe features from blurry images, but the descriptors from blurry
image and clear image that describe the same feature corner are different. So the
number of correct matches is small. The movement pattern of the ROV also affects
estimation results. If the ROV moves within a small area, some map points may
be observed several times so that the results are good. If the ROV moves along
a straight line or in a lawnmower pattern, like in first two simulations, cameras
may only observe the map points from last frame. Other map points from older
frames are not observed, and are removed from active map points set. When the
ROV moves back to the same area again, these map points are not considered be-
ing observed because they are not active. The establishment of active map points
set significantly reduces computation time, but most map points may not be fully
used.

62

Chapter 6
Conclusion

6.1 Concluding remarks

This thesis has presented how visual SLAM techniques can be used in underwater
environment to estimate the motion of ROV with a stereo camera. A real-time
SLAM system is developed in C++ using OpenCV, g2o and other open source
libraries and framework. The underwater images often have different contrast in
different sections, which makes it hard to detect features. CLAHE method is used
to improve image contrast. ORB algorithm is used for feature detector and descrip-
tor, and features are matched using FLANN based matcher. The camera pose is
estimated using EPnP method and optimized with graph based bundle adjustment.
Back end graph optimization is activated when new keyframes and new map points
are added in the map. A independent C++ TCP client is also included to transmit
ROV motion to the ROV control system.

The system was tested through three different scenarios using two image sets. The
results in Chapter 4 implies that the system can successfully estimate ROV motion.
However, the rotation errors are large in some scenarios. Especially, yaw angle
errors results in wrong heave estimations in first two scenarios. The process time
of one frame is between 0.1 to 0.3 seconds, which is considered meets the real-time
requirements.

The TCP client successfully received ROV position and orientation data from the

63

Chapter 6. Conclusion

TCP server in LabVIEW and transmits estimated ROV motion to the ROV control
system.

6.2 Further work

This thesis has implemented a ROV motion estimation real-time SLAM system
using stereo camera. The system was tested by several image sets, and the simula-
tion results are good. However, there are other methods have potential to improve
the performance of the system.

CLAHE is a fast and universal method to enhance images from different environ-
ment. The method works well in most sea floor images. But the improvement is
limited in poor feature area like bare seabed. There are other image enhancement
algorithms are provided in OpenCV. Some methods specialized for underwater im-
ages can also be studied. A better method can extend the application scope of the
SLAM system so that the system can be robust in different work environments.

Drift is hard to avoid during long estimation. The problem can be solved by adding
loop closing and full bundle adjustment in the system. A general way to imple-
ment loop closing is establish a Bag-of-Words (BoW) to store all map points for
detection. Once loop closing is detected, a full bundle adjustment including all
keyframes camera poses is implemented to remove accumulative error.

64

Bibliography

[1] How much of the ocean have we explored. https://https://oc

eanservice.noaa.gov/facts/exploration.html. Accessed:
June 5, 2020.

[2] Remotely operated vehicle. https://exploration.marinersmu

seum.org/object/rov/. Accessed: June 5, 2020.

[3] Pioneer work class rovs (curv-i) – part 1. https://www.marinetech

nologynews.com/blogs/pioneer-work-class-rovs-(curv

-i-iii)-e28093-part-1-700495. Accessed: June 5, 2020.

[4] Randall Smith, Matthew Self, and Peter Cheeseman. Estimating uncertain
spatial relationships in robotics. In Autonomous robot vehicles, pages 167–
193. Springer, 1990.

[5] Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben Wegbreit, et al.
Fastslam: A factored solution to the simultaneous localization and mapping
problem. Aaai/iaai, 593598, 2002.

[6] Ryan M Eustice, Hanumant Singh, and John J Leonard. Exactly sparse
delayed-state filters. In Proceedings of the 2005 IEEE International Con-
ference on Robotics and Automation, pages 2417–2424. IEEE, 2005.

[7] Feng Lu and Evangelos Milios. Globally consistent range scan alignment for
environment mapping. Autonomous robots, 4(4):333–349, 1997.

[8] Open source computer vision library. https://opencv.org/about

/. Accessed: May 30, 2020.

65

https://https://oceanservice.noaa.gov/facts/exploration.html
https://https://oceanservice.noaa.gov/facts/exploration.html
https://exploration.marinersmuseum.org/object/rov/
https://exploration.marinersmuseum.org/object/rov/
https://www.marinetechnologynews.com/blogs/pioneer-work-class-rovs-(curv-i-iii)-e28093-part-1-700495
https://www.marinetechnologynews.com/blogs/pioneer-work-class-rovs-(curv-i-iii)-e28093-part-1-700495
https://www.marinetechnologynews.com/blogs/pioneer-work-class-rovs-(curv-i-iii)-e28093-part-1-700495
https://opencv.org/about/
https://opencv.org/about/

[9] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wol-
fram Burgard. g2o: A general framework for graph optimization. In 2011
IEEE International Conference on Robotics and Automation, pages 3607–
3613. IEEE, 2011.

[10] Duane C Brown. Decentering distortion of lenses. Photogrammetric Engi-
neering and Remote Sensing, 1966.

[11] Wikipedia contributors. Rgb color model. https://https://en.w

ikipedia.org/wiki/RGB_color_model. Accessed: May 15, 2020.

[12] Wikipedia contributors. Adaptive histogram equalization.
https://en.wikipedia.org/wiki/Adaptive_histogram

_equalization. Accessed: May 17, 2020.

[13] Shreenidhi Sudhakar. Histogram equalization. https://towardsd

atascience.com/histogram-equalization-5d1013626e64.
Accessed: May 17, 2020.

[14] Robert Hummel. Image enhancement by histogram transformation. Techni-
cal report, MARYLAND UNIV COLLEGE PARK COMPUTER SCIENCE
CENTER, 1975.

[15] Stephen M Pizer, E Philip Amburn, John D Austin, Robert Cromartie, Ari
Geselowitz, Trey Greer, Bart ter Haar Romeny, John B Zimmerman, and
Karel Zuiderveld. Adaptive histogram equalization and its variations. Com-
puter vision, graphics, and image processing, 39(3):355–368, 1987.

[16] Deqing Sun, Stefan Roth, and Michael J Black. Secrets of optical flow es-
timation and their principles. In 2010 IEEE computer society conference on
computer vision and pattern recognition, pages 2432–2439. IEEE, 2010.

[17] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An
efficient alternative to sift or surf. In 2011 International conference on com-
puter vision, pages 2564–2571. Ieee, 2011.

[18] Edward Rosten, Reid Porter, and Tom Drummond. Faster and better: A
machine learning approach to corner detection. IEEE transactions on pattern
analysis and machine intelligence, 32(1):105–119, 2008.

66

https://https://en.wikipedia.org/wiki/RGB_color_model
https://https://en.wikipedia.org/wiki/RGB_color_model
https://en.wikipedia.org/wiki/Adaptive_histogram_equalization
https://en.wikipedia.org/wiki/Adaptive_histogram_equalization
https://en.wikipedia.org/wiki/Adaptive_histogram_equalization
https://towardsdatascience.com/histogram-equalization-5d1013626e64
https://towardsdatascience.com/histogram-equalization-5d1013626e64

[19] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief:
Binary robust independent elementary features. In European conference on
computer vision, pages 778–792. Springer, 2010.

[20] Marius Muja and David G Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. VISAPP (1), 2(331-340):2, 2009.

[21] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Epnp: An ac-
curate o(n) solution to the pnp problem. International journal of computer
vision, 81(2):155, 2009.

[22] Timothy D. Barfoot. State Estimation for Robotics. Cambridge University
Press, 2017.

[23] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and Andrew W Fitzgib-
bon. Bundle adjustment—a modern synthesis. In International workshop on
vision algorithms, pages 298–372. Springer, 1999.

[24] Fuzhen Zhang. The Schur complement and its applications, volume 4.
Springer Science & Business Media, 2006.

[25] Wikipedia contributors. Huber loss. https://en.wikipedia.org

/wiki/Huber_loss. Accessed: May 20, 2020.

[26] Zhengyou Zhang. Flexible camera calibration by viewing a plane from un-
known orientations. In Proceedings of the Seventh IEEE International Con-
ference on Computer Vision, volume 1, pages 666–673. Ieee, 1999.

[27] Shaharyar Ahmed Khan Tareen and Zahra Saleem. A comparative analysis
of sift, surf, kaze, akaze, orb, and brisk. In 2018 International conference
on computing, mathematics and engineering technologies (iCoMET), pages
1–10. IEEE, 2018.

[28] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-
slam: a versatile and accurate monocular slam system. IEEE transactions on
robotics, 31(5):1147–1163, 2015.

[29] Konstantinos G Derpanis. Overview of the ransac algorithm. Image
Rochester NY, 4(1):2–3, 2010.

[30] Xiang Gao, Tao Zhang, Yi Liu, and Qinrui Yan. 14 Lectures on Visual SLAM:
From Theory to Practice. Publishing House of Electronics Industry, 2017.

67

https://en.wikipedia.org/wiki/Huber_loss
https://en.wikipedia.org/wiki/Huber_loss

Appendix

ROV SF-30k

ROV SF-30k is a work class vehicle on NTNU’s research vessel Gunnerus. The
specifications of this ROV are listed in Table A. A picture of ROV SF-30k on the
deck of Gunnerus is presented in Figure A.

Manufacturer Spaerre AS
Model SUB-fighter 30k
Frame Anodized aluminum
Year 2004

Vehicle dimensions LWH 2.6 × 1.5 × 1 m
Weight in air 1800 kg

Payload 60 kg
Max depth 1000 m

Power input 230 VAC, 3 phase, 40 kW
Horizontal 2 × 3000 W

Thruster Vertical 3 × 3000 W
Lateral 1 × 3000 W

Max speed 2.1 knot in surge

Umbilical
diameter 27 mm

length 600 m
Manipulators Kraft Raptor mechanical manipulator

Cameras 2 × AVT GC1380 cameras

Lights
4 × 250 W halogen lamps

2 × 400 W HMI lamps
Scanning sonar Kongsberg Mesotech MS1000

Table A: ROV SF-30k specifications

68

Figure A: ROV SF-30k

Camera

The image sets in two ROV missions used for simulation are recorded by two
Allied Vision Prosilica model GC-1380 cameras. A picture of the camera is shown
in Figure B. The specifications of these camera are listed in Table B.

Resolution 1360 × 1024

Sensor
2/3” CCD ExView HAD

progressive scan Sony ICX285
Pixel size 6.45 × 6.45 µm

Max frame rate 20 fps
Lens mount C-mount with adjustable back focus

Digital Interface GigE Vision 1.0
Interface Type IEEE 802.3 1000baseT

Power consumption 3.3 W (12V)
Max operating temperature 50 ◦C

Camera dimensions LWH 59 × 46 × 33 mm
Weight 104 g

Table B: Camera AVT GC1380 specifications

69

Figure B: Camera AVT GC1380

70

Increased Autonomy and Situation Awareness for ROV Op-
erations

71

Increased Autonomy and Situation Awareness for
ROV Operations

Fan Gao
Department of Marine Technology

Norwegian University of Science and technology, NTNU
Trondheim, Norway

Signe B. Moltu
Department of Marine Technology

Norwegian University of Science and technology, NTNU
Trondheim, Norway

Erlend R. Vollan
Department of Marine Technology

Norwegian University of Science and technology, NTNU
Trondheim, Norway

Shuyuan Shen
Department of Marine Technology

Norwegian University of Science and technology, NTNU
Trondheim, Norway

Martin Ludvigsen
Department of Marine Technology

Norwegian University of Science and technology, NTNU
Trondheim, Norway

martin.ludvigsen@ntnu.no

Abstract—This paper proposes a semi-autonomous mission
planning and management architecture for a Remotely Operated
Vehicle (ROV). The work has focused on three main aspects to
increase the autonomy of ROV inspections: developing a plan-
based hybrid mission management architecture, integrating path
planning as a refinement of actions in the agent architecture,
and real-time communication between the mission management
system and visual VSLAM (VSLAM) systems for obstacle de-
tection and motion estimation. The architecture is inspired by
the hybrid agent architecture [1] using a deliberative and a
reactive layer to perform planned tasks and handle contingencies.
A novel design of layered mission management architecture for
ROV global navigation and local intervention is presented in this
paper.

Index Terms—autonomy, obstacle avoidance (OA), mission
planning, visual-SLAM, path planning

I. INTRODUCTION

Enabling autonomy in ROV operations will increase effi-

ciency and save costs [2]. The general purpose of the work in

this paper is to develop a mission planning and management

system for underwater navigation and operation, and integrate

vision-based situation awareness in ROV localization and ob-

stacle detection, making the ROV more robust and capable for

exploring the ocean. Under manual operation, human operators

face risks of wrongly analyzing the situation, performing

unnecessary or even fatal operations, increasing operation

risks and costs. A plan-based mission management system

can significantly avoid the above problems and simplify the

execution procedure.

By placing a docking station on the seabed, long-term

resident ROVs are feasible. With a docking station placed on

the seabed, ROVs can charge their batteries and receive and

transfer data to the operators onshore. Creating functionality

for this is a big step in the direction of fully autonomous long-

term missions.

Furthermore, in order to increase ROV autonomy, situation

awareness and accurate local positioning are required. Existing

acoustic positioning systems covers the global position of

ROVs well, but tends to lack adequate local positioning

precision. Stereo cameras are cheap sensors and can be used

for ROV local navigation when paired with computer vision

techniques. Visual simultaneous localization and mapping

(VSLAM) is the problem of using visual inputs to concur-

rently construct a map of an unknown environment while

estimating its location within it. VSLAM has been extensively

researched on land-based vehicles proving good results. De-

veloping subsea-based VSLAM systems could increase the

local positioning accurately and simultaneously grant local

situational awareness by providing a local map.

An overview of existing ROV standards considering un-

derwater vehicle autonomy is presented in [2]. Four levels

of autonomy were suggested in [3], being Manual Oper-

ation, Management by consent, Management by exception,

and Fully autonomous. The level of situational awareness,

decision making and control are increased with increasing

levels of autonomy. This paper aims to increase the level of

autonomy towards level three (Management by exception) for

ROV subsea intervention. A new definition of symbolic actions

for ROV mission planning and management is proposed, en-

abling automated planning to guide and integrate with mission

management systems for task execution.

A. Related Work

This paper is an extension of the work done in [4]. The

extension is concerned with implementing a governing mission

planner, deciding what the sequence of actions to carry out to

reach the goal states. In addition, a path planner is added to

ensure safe transit around known obstacles. VSLAM is further

included to detect and warn about unknown obstacles.

A similar approach to enhance path planning was tested in

[5]. An A* algorithm was proposed for the path planning of

an autonomous underwater vehicle (AUV) in a partially-known

environment with promising results. VSLAM was suggested

for localization, where only a simple VSLAM method was

used with a forward-facing sonar.

The benefits of choosing the A* algorithm as the path

planning method for underwater vehicles were described in

[6]. Some of them were that the algorithm has high maturity,

is easy to implement and store, and has a low cost. The

downsides, however, were that the algorithm has low efficiency

and is not suitable for large scale space searches.

A large variety of SLAM solutions are available in the

literature. The most classical approaches are filtering based

approaches. They model the problem as an online position

estimation, which is augmented and refined by incorporating

the new measurements. Kalman filters [7], particle filters [8]

and information filters [9] are some popular approaches in

this category. Another way to solve the SLAM problem is

the graph-based formulation. A graph is constructed whose

vertices represent vehicle positions or landmarks and the

edge between two vertices represents a sensor observation

that constrains the vertices. Lu and Milios have proposed the

technique in 1997 [10]. The sparse linear algebra makes it

efficient to solve the optimization of the error minimization

problem. With the improvement of computer computing

power, graph-based SLAM has been mainstream in recent

decades.

The outline of the paper is as follows: Section II presents the

ROV mission management architecture, the mission planning

methods, path planning for homing and docking, and vision-

based motion estimation and obstacle detection strategy. The

simulation results are presented and discussed in Section III.

Section IV concludes on the performance of the proposed

semi-autonomous mission planner and suggests modifications

for further work.

II. METHOD

A. ROV Control System and HIL Simulator

The ROV control system used for simulations has been

developed by the Applied Underwater Robotics Laboratory

(AUR Lab) since 2010. The control system was firstly devel-

oped for DP and trajectory tracking [11]. As shown in Fig.

1, the control system is built on two basic modules: Frigg

Graphical User Interface (GUI) and Njord Control system.

The Frigg GUI enables high-level control and mode selection

of missions, while the Njord control system performs low-

level control, including a guidance system and a Nonlinear

PID-controller. The proposed Autonomy Framework is added

in Frigg GUI, providing autonomous mission execution com-

mand for lower-level control.

Fig. 1. Structural chart of the ROV control system

B. Mission Planning and Management Architecture

A design of hybrid mission planning and management sys-

tem is proposed, consisting of a deliberative layer performing

planned actions to achieve mission goals, a reactive layer re-

sponding fast to non-predictable events and a control execution

layer acting as a coordinate mechanism that determines if

actions from either the deliberative or the reactive layer should

be executed by the lower-level controllers. Fig. 2 is a diagram

of the hybrid mission planning and management system.

The deliberative layer performs autonomous behaviors

based on known situations and events. The mission planner

in this layer enables the ROV to plan tasks automatically and

performs necessary re-planning. For the given user commands

and known environment derived from sensors and a world

model, the mission planner can recognize and categorize the

tasks, generating a plan that fulfills the mission requests, and

deliver a set of actions or commands to the mission controller.

The mission will be re-planned automatically due to events

such as failures in control, environment changes (such as

the encounter with unexpected obstacles), and changes of

mission target. In the deliberative layer, a layered design is

implemented for global navigation and local operations as sub-

missions. With actions of Station Keeping, Launch, Descent,
Transit and Operation, global navigation enables the vehicle

to approach a target location where local operation is to be

performed. After the performed operation, the ROV is asked

to go back to the predefined ending location. The sub-planner

acts as the refinement of Local Operation. Possible actions

for Local Operation are Mapping, Sampling and reactive

Charging. A fast-forward search [12] method for mission

planning is implemented to generate a near-optimal plan that

fulfills the goals. An A* path planning algorithm for homing

and general path planning is implemented in operation as

refining of sampling and charging. A docking option is also

implemented to simulate full homing and docking behavior.

The reactive layer responds to contingencies by analyzing

sensor data, reasoning unexpected or unknown situations,

modifying and interrupting missions. Exceedance of cable

tension and obstacle avoidance are the two reactive behaviors

implemented in the reactive layer. For actions that require

path planning, such as sampling and charging, new detected

obstacles are updated to the map, and re-planning is called

Fig. 2. Mission Planning and Management Architecture

to generate a new path that avoids both the known and the

detected obstacles. For the other actions, a new waypoint is

created based on the distance to the obstacle, the size of the

obstacle and safety parameters for avoiding obstacles, as seen

in Fig. 3.

A method of heading change is used to deal with this

situation. When encountering a new obstacle, the direction of

heading change is determined by β and ψ. β demonstrates the

relative direction of the obstacle to the vehicle, and ψ is the

heading angle of the vehicle. If the heading angle ψ is smaller

than β, the new heading angle is ψnew = β−α. Otherwise, the

new heading angle is ψnew = β+α. The angle α is calculated

as sin(α) = R
S , based on the diameter of the dangerous region

and the distance between the vehicle and the obstacle. d is the

diameter of the obstacle, and e is a safety parameter. Thus,

R = D
2 + e is the radius of the dangerous region. L is the

calculated length from the vehicle to the new waypoint. The

position of the new waypoint is calculated based on the new

heading angle and length L.

The global coordination function evaluates the output be-

haviors from the two architectures and will transfer inputs

from the reactive architecture to the executor once it is acti-

Fig. 3. Obstacle avoidance behavior

vated. Since only one deliberative action is activated at a time

in the deliberative layer and a coordinate mechanism is applied

in the functional reactive layer to select the behavior with the

highest priority among all activated behaviors under this layer.

The control execution layer is thus organized as a selection of

outputs between the deliberative layer and the reactive layer.

It is responsible for deciding which layer and which action is

activated and summing up the necessary parameters required

by the control system.

C. Integration of Path Planning
The A* algorithm, created by [13], was selected for path

generation during missions that require path planning because

it is easily adaptable, simplistic and performs well in known

environments with low obstacle density [14]. Euclidean dis-

tance, presented in (1), was used for the heuristic function

since it allows for movement in all eight neighboring tiles in

a 2D grid space.

√
(xcurrent − xgoal)2 + (ycurrent − ygoal)2 (1)

As the entire mission uses depth-control, a 2D path is jus-

tified. However, as there will be fluctuations and uncertainties

in depth, known obstacles above and below two meters of the

desired depth will be seen as relevant obstacles by the algo-

rithm. This is also reasonable considering the specifications of

the simulated ROV.
The path created by the A* algorithm can often include

unnecessary turns for an underwater vehicle (UUV), which

can move in any direction, not just in a straight path from

the center of one tile to the center of the next. To make the

path more smooth and avoid unnecessary turns, the smoothing

method Moving Average Filter was used, implemented with

the equation shown in (2).

ys(i) = (y(i−2)+y(i−1)+y(i)+y(i+1)+y(i+2))/5 (2)

Because of the Constant Jerk Guidance [15] used in the

ROV control system, a high number of waypoints would mean

a high number of stop’s and go’s. For this reason, collinear

waypoints were firstly removed altogether from the generated

path from the A* algorithm. However, as suggested in [16],

the distance between waypoints should be seen in relation to

the requirement of position computation. With longer path

segments, the possibility of drift is higher. For this reason,

a max waypoint distance is set. A comparison between the

original path and the modified path can be seen in Fig. 4.

1) Docking Behavior: As the intended docking station for

the mission is a platform docking station, a simple docking

behavior is created. A pre-defined path, which can be seen

in Fig. 5, is calculated from the size and orientation of the

docking station. The path is intended to guide the UUV from

the endpoint of the homing path to a waypoint with a fixed

distance from the entrance of the dock, then to the next

waypoint above the intended dock position, before descending

down to land on it. The exact docking mechanism has not been

addressed in this paper.

D. Integration of VSLAM-based motion estimation

The flow diagram of the VSLAM system is presented

in Fig. 6. The VSLAM system for motion estimations is

programmed with C++ using open-source libraries OpenCV

and g2o. Images from underwater environments often have

different contrast in different image parts due to poor lighting

conditions. It is hard to detect features in the low contrast

part, so image enhancement is necessary. Every time a new

frame is sent to the system, contrast limited adaptive histogram

equalization (CLAHE) [17] is implemented to enhance the

contrast of stereo images. It works by mapping the histogram

of the image to another histogram with a wider distribution

of intensity values, so the intensity values are spread over the

whole range.

ORB algorithm [18] is implemented to detect and de-

scribe features. Then feature matching is performed by using

Hamming distance for ORB descriptors to find projection

relationships between 2D pixel features and 3D map points

from the VSLAM map. Generally, the matching results are not

good enough to directly estimate the camera position because

mismatching is hard to avoid. Distance filter and the RANSAC

algorithm [19] are used together to remove mismatches. Next,

5.70120 5.70130 5.70140 5.70150 5.70160 5.70170
East (UTM) [m] 105

7.036865

7.036870

7.036875

7.036880

7.036885

7.036890

7.036895

N
or

th
 (

U
T

M
)

[m
]

106 Original Path vs. Modified Path

Original path
Original path WPs
Altered path
Altered path WPs
Start position
Goal position

Fig. 4. Comparison between original path and improved path

Fig. 5. Docking path

Image enhancement

Left camera
image

Right camera
image

Feature detection
and description

Feature matching

Camera position
estimation

Keyframe insertion Map points
computation

Graph optimization

Map

Map points Keyframe

SLAM motion estimation system

TCP
communication

ROV HIL Simulator

Fig. 6. Flow chart for VSLAM-based motion estimation

the camera position is estimated by using the EPnP algorithm

[20] based on the matched 3D-2D points in feature matching.

The map of the VSLAM system stores all map points and

keyframes. It is initialized when the first stereo image frame

is processed. Then the map is updated when new keyframes

are added. A keyframe is chosen if the number of matched

features in the current frame is small, and new map points

are required. Features on the left and the right camera images

are matched to compute new map points. Graph optimization

[21] is implemented to minimize the projection error between

observed and predicted image pixel locations to find the best

map point positions and keyframe camera positions.

The local positions of the camera are converted to the

local positions of the ROV based on the camera coordinates

in the ROV body frame. The ROV positions are transferred

to the ROV mission planner using TCP communication. The

system obtains the initial position of the ROV from the mission

planner when it starts running so that the local position can

be converted to a global position.

E. Integration of VSLAM-based Obstacle Detection

The real-time VSLAM-based Obstacle Detection revolves

around utilizing the outputs of the renowned Visual VSLAM

method ORB-SLAM2 [22]. The outputs of ORB-SLAM2 are

the estimations of the ROV pose and point clouds of the

surrounding environment of the ROV. From these two outputs,

the closest detected obstacle is inferred. The obstacle detection

system is implemented in C++ using the framework Robot

Operating System (ROS). It is comprised of: a camera driver

for running the stereo camera rig of the ROV Minerva, an

image processing part using the open-source library OpenCV,

an existing ROS implementation of ORB-SLAM2 1, a point

cloud processing part using the open-source library PCL and a

communication part communicating with the ROV Autonomy

Framework providing the closest detected obstacle. The com-

munication is conducted using TCP connection. The system

architecture is displayed in Fig. 7.

The stereo camera rig of Minerva consists of two Allied

Vision Prosilica GC1380C mounted horizontally displaced.

By considering the overlapping field of view and expected

disparity values, the horizontal displacement, or baseline, is

set to 0.2 meters. The cameras are configured in binned mode,

reducing the resolution, but increasing the signal to noise ratio.

The image processing undistorts and rectifies the stereo image

pairs based upon obtained underwater calibration parameters,

and additionally, contrast enhances the images using CLAHE.

The point cloud processing first removes point cloud points

associated with the seabed by fitting a plane using RANSAC;

the remaining points are clustered using the Euclidean based

clustering method of [23]. The obstacle sizes od and position

op are inferred using

Left Camera

ORB-SLAM2

Point Cloud Processing

Image Processing

Underwater
Scenery

LabVIEW
Communication

Camera Driver

Point Cloud of Underwater SceneryEstimated Camera Pose

Closest Detected Obstacle

Processed Stereo Image Pairs

Right Raw ImageLeft Raw Image

ROV Autonomy
FrameworkClosest Obstacle Message

Real-time Processing Computer Running ROS

Right Camera

Stereo Camera Rig

ROV NED Position

Fig. 7. System architecture of the vision based obstacle detection system

1http://wiki.ros.org/orb slam2 ros

od = cmax − cmin

op =
cmax + cmin

2

(3)

where cmax and cmin are the maximum and minimum

point position of the cluster. The closest detected obstacle

is determined by finding the obstacle with the shortest Eu-

clidean distance to the current estimated ROV pose. The

LabView communication handles the TCP connection with

the Autonomy Framework and generates messages containing

information about the closest detected obstacle on the format

in (4) if the distance threshold of five meters is violated.

[
xg
o, ygo , zgo , do

]
(4)

The message is an array of doubles containing the obstacle

position in the NED frame xg
o, ygo and zgo , and the obstacle

spherical diameter do. The spherical diameter is determined

by selecting the largest estimated dimension of od.

III. SIMULATION RESULTS

A. VSLAM-based motion estimation

The VSLAM system performance is tested on a seabed

image set from a mission at Stokkbergneset in February 2017

by NTNU ROV SF-30k. For the simulation, 60 paired left and

right camera images with a time interval of 2 seconds are used.

The result presented in Fig. 8 is simulated on this image set

and the corresponding navigation data from the ROV control

system.

The result shows that the VSLAM motion estimation suc-

cessfully estimates the position of ROV in this simulation. The

estimated orientation of ROV movement is slightly different

from the true orientation, which causes errors in both north

and east positions.

-2 -1 0 1 2 3 4 5
East [m]

-1

0

1

2

3

4

5

N
or

th
 [m

]

Estimated North-East position from ROV sensors and SLAM system

Fig. 8. Simulation of VSLAM-based motion estimation

Fig. 9. Laboratory experiment of VSLAM-based obstacle detection.

B. VSLAM-based obstacle avoidance

The VSLAM-based obstacle detection system is tested at

the Marine Cybernetics Lab (MC-Lab) at Marin teknisk senter,

NTNU. The stereo camera rig is mounted to a rod and moved

through a measured underwater obstacle course installed in the

basin of MC-Lab. The results are presented in Fig. 9 where the

measured obstacle course is plotted together with the estimated

trajectory, estimated point cloud and the currently estimated

closest obstacle outputted at every 7.6 seconds. The obstacle

course consisted of two boxes, a stepladder and rod.

Fig. 10 presents position estimates and desired positions of

the vehicle in the North-East (NE) plane, giving satisfactory

simulation results of reactive obstacle avoidance. A VSLAM-

based obstacle detection code is programmed to test the

distance between the vehicle’s current position and obstacles.

When the distance becomes shorter than five meters, the

vehicle will perform reactive obstacle avoidance. Table III-B

shows the location for three detected obstacles. Under some

circumstances, more than one obstacle might be encountered

at a time. The system chooses the nearest one as the current

obstacle and executes the obstacle avoidance correspondingly.

The vehicle is performing the Transit action when the first

Fig. 10. Simulation of obstacle avoidance

TABLE I
OBSTACLES IN SIMULATION OF OBSTACLE AVOIDANCE

Obstacle North East Depth Diameter [-]

01 7036914 570120 15 2 m

02 7036912 570114 15 1 m

03 7036922 570112 15 1 m

TABLE II
OBSTACLES IN SIMULATION OF MAPPING, CHARGING AND OA

Obstacle North East Depth Diameter [-]

01 7036900 570144 15 2 m

02 7036886 570125 15 2 m

obstacle is detected. The vehicle firstly moves to the desired

position and then detects the Obstacle 01, performing obstacle

avoidance correspondingly. Before reaching the waypoint for

avoiding Obstacle 01, the vehicle detects a new Obstacle 02
and generates a new waypoint to avoid it. The third obstacle

is detected after reaching the waypoint for avoiding Obstacle
02. The test result shows that the obstacle avoidance algorithm

successfully guides the vehicle to avoid collisions during

mission execution. The mission planning and management

system can encounter more than one obstacle at a time and

update its waypoints based on the position of the closest

obstacle. The mission planning and management system is

also able to tackle obstacle avoidance when performing other

actions. Reactive obstacle avoidance is also tested in Section

III-C.

C. Autonomous mission planning and management

1) Mapping, charging and OA: Obstacle Avoidance and

Charging are tested during Mapping as reactive actions. The

positions of the two manually set obstacles are listed in

Table III-C1. The testing is carried out with hardware-in-the-

loop (HIL) simulation. Fig. 11 shows that there are a lot

of fluctuations when the vehicle changes its heading. The

performance of waypoint tracking is mainly determined by

the low-level control system.

In the mission, the vehicle starts at (7036892, 570128,

10) in UTM coordinates and then moves towards waypoints

generated from the mission planner sequentially. The vehicle

firstly performs Launch and Descent to the desired depth of

operation. Then, the vehicle transits to the starting position

of mapping and performs mapping, tracking six waypoints

sequentially, found in Table III-C1. The desired trajectory of

mapping is defined before starting the mission, while the path

planner plans the waypoints of charging for homing once the

Charge action is activated. During mapping, ’low battery’ is

manually set, indicating that the vehicle has to abort mission

and move to the docking station to charge. The charging

station is set at (7036882, 570140, 27).

TABLE III
WAYPOINTS OF MAPPING

Waypoint North Position East Position Depth [-]

01 7036912 570143 15 m

02 7036887 570143 15 m

03 7036887 570138 15 m

04 7036912 570138 15 m

05 7036912 570133 15 m

06 7036887 570133 15 m

TABLE IV
OBSTACLES IN FULL MISSION

Obstacle North Position
[m]

East Position
[m]

Depth
[m]

Diameter
[m]

01 7036900 570144 15 2

02 7036907 570122 16 1

03 7036900 570112 15 1

04 7036893 570105 15 2

2) Full mission with OA: A similar mission as above, now

with all four global states and three local states executed, was

simulated. The resulting plots can be seen in 2D in Fig. 12

and in 3D in Fig. 13. Four ”unknown” obstacles were detected

by the VSLAM obstacle avoidance. The positions of theses

obstacles are presented in Table III-C2. The action sequence

of the full mission is Launch-Descent-Transit-Mapping (OA
and Charging)-Sampling (OA)-Transit (OA)-Descent.

This simulation includes testing of obstacle avoidance for

Fig. 11. Simulation of mapping, charging and OA

Fig. 12. 2D simulation of mission employing all states

Fig. 13. 3D simulation of mission employing all states

actions Transit, Mapping and Sampling. For Transit and

Mapping, the reactive behavior is turning its heading and

move to a temporary waypoint for obstacle avoidance. During

Sampling, obstacle avoidance is implemented by adding the

newly detected obstacle in the obstacle list and replan to

generate a new path with the A* algorithm which avoids the

new obstacle.

IV. CONCLUSION

We have successfully implemented the autonomous mission

planning and management system in the ROV control sys-

tem, integrating vision-based situation awareness for motion

estimation and obstacle detection. The system uses mission

planning, guiding the vehicle to achieve the mission requests,

and path planning is applied for local operations.

The use of the A* algorithm in an autonomous mission

planning and management proved to be a good choice, as

it was convenient to implement it in the already existing

framework. Adapting it to react to newly detected obstacles

was also done in a successful manner, creating a robust path

planner for the intended short range missions.

The VSLAM-based obstacle detection system performs well

being capable of providing the currently closest obstacle in

its locally estimated surroundings. However, as the laboratory

experiments results imply, the positional consistency of the

newly and previously detected obstacle degrade over the

running time due to accumulated drift.

The VSLAM-based motion estimation presents good simu-

lation results, using images derived from previous sea-trials.

The testing result is valid in short periods. The deviation in-

creases with the testing process. However, real-time VSLAM-

based motion estimation has not be tested yet.

Since conducting the joint missions for this paper, both the

docking behavior and A* path planning behaviors have been

altered. A safety distance around obstacles have been added in

the A* algorithm, and an ultra-short-baseline transducer has

been simulated to situate at the dock to ensure more reliable

position measurements when docking.

A. Further work

To verify the capability and performance of the autonomous

mission planning and management system, sea-trails should be

conducted. During simulations, sensor noise and environmen-

tal forces (such as current and waves) are not simulated. Also,

the simulations use depth control during the execution of the

mission. For further improvement, a combination of depth and

altitude control should be designed such that the ROV could

execute actions more accurately also relying on measurements

from a doppler velocity log.

Up to now, the mission planning and management system is

only capable of performing observations. Sampling and dock-

ing behaviors are simplified as trajectory tracking generated

by path planning. More refinement should be designed for the

actual realization of these actions.

The path planning algorithm is developed in a 2D plane

while the ROV moves in a 3D underwater environment. The

path planning in 3D can be further optimised including a full

3D model to the path generation procedure.

The VSLAM system for motion estimation is tested in a

short time simulation. Loop closure techniques are expected

to be added in the VSLAM system to reduce estimation error

for long time position estimation.

REFERENCES

[1] I. Rist-Christensen, “Autonomous robotic intervention using rov,” Mas-
ter’s thesis, NTNU, 2016.

[2] J. Hegde, I. B. Utne, and I. Schjølberg, “Applicability of current remotely
operated vehicle standards and guidelines to autonomous subsea imr
operations,” in ASME 2015 34th International Conference on Ocean,
Offshore and Arctic Engineering. American Society of Mechanical
Engineers Digital Collection, 2015.

[3] C. Operations, N. Board, D. Sciences, and N. Council, Autonomous
vehicles in support of naval operations, 09 2005.

[4] T. O. Fossum, M. Ludvigsen, S. M. Nornes, I. Rist-Christensen, and
L. Brusletto, “Autonomous robotic intervention using rov: An experi-
mental approach,” in OCEANS 2016 MTS/IEEE Monterey. IEEE, 2016,
pp. 1–6.

[5] J.-H. Li, M.-J. Lee, S.-H. Park, and J.-G. Kim, “Real time path planning
for a class of torpedo-type AUVs in unknown environment,” in 2012
IEEE/OES Autonomous Underwater Vehicles (AUV), Sep. 2012, pp. 1–
6, iSSN: 2377-6536.

[6] D. Li, P. Wang, and L. Du, “Path Planning Technologies for Autonomous
Underwater Vehicles-A Review,” IEEE Access, vol. 7, pp. 9745–9768,
2019, conference Name: IEEE Access.

[7] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial
relationships in robotics,” in Autonomous robot vehicles. Springer,
1990, pp. 167–193.

[8] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit et al., “Fastslam: A
factored solution to the simultaneous localization and mapping problem,”
Aaai/iaai, vol. 593598, 2002.

[9] R. M. Eustice, H. Singh, and J. J. Leonard, “Exactly sparse delayed-
state filters,” in Proceedings of the 2005 IEEE International Conference
on Robotics and Automation. IEEE, 2005, pp. 2417–2424.

[10] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” Autonomous robots, vol. 4, no. 4, pp. 333–349,
1997.

[11] A. Sørensen, F. Dukan, M. Ludvigsen, D. Fernandes, and M. Candeloro,
Development of dynamic positioning and tracking system for the ROV
Minerva, 01 2012, pp. 113–128.

[12] J. Hoffmann and B. Nebel, “The ff planning system: Fast plan generation
through heuristic search,” Journal of Artificial Intelligence Research,
vol. 14, pp. 253–302, 2001.

[13] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, pp. 100–107, 1968.

[14] A. Koubâa, H. Bennaceur, I. Chaari, S. Trigui, A. Ammar, M.-F. Sriti,
M. Alajlan, O. Cheikhrouhou, and Y. Javed, Robot Path Planning and
Cooperation. Springer, 2018, vol. 772.

[15] F. Dukan, “ROV motion control systems,” Ph.D. dissertation, Norwegian
University of Science and Technology, Faculty of Engineering Science
and Technology, Department of Marine Technology, Trondheim, 2014.

[16] J. Yuh, T. Ura, and G. A. Bekey, Underwater Robots. Springer Science
& Business Media, Dec. 2012, google-Books-ID: YwfaBwAAQBAJ.

[17] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz,
T. Greer, B. ter Haar Romeny, J. B. Zimmerman, and K. Zuiderveld,
“Adaptive histogram equalization and its variations,” Computer vision,
graphics, and image processing, vol. 39, no. 3, pp. 355–368, 1987.

[18] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” in 2011 International conference on computer
vision. Ieee, 2011, pp. 2564–2571.

[19] K. G. Derpanis, “Overview of the ransac algorithm,” Image Rochester
NY, vol. 4, no. 1, pp. 2–3, 2010.

[20] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o(n)
solution to the pnp problem,” International journal of computer vision,
vol. 81, no. 2, p. 155, 2009.

[21] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in 2011 IEEE
International Conference on Robotics and Automation. IEEE, 2011,
pp. 3607–3613.

[22] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An open-source SLAM
system for monocular, stereo, and RGB-d cameras,” vol. 33, no. 5, pp.
1255–1262.

[23] R. B. Rusu, Clustering and Segmentation. Springer Berlin Heidelberg,
vol. 85, pp. 75–85, series Title: Springer Tracts in Advanced Robotics.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

M
as

te
r’s

 th
es

is

Shuyuan Shen

Computer Vision Based Motion
Estimation for ROVs

Master’s thesis in Marine Technology

Supervisor: Martin Ludvigsen

June 2020

	Abstract
	Preface
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background
	ROV
	Visual SLAM
	Software

	Challenges
	Objectives
	Scope and Limitations
	Structure of Thesis
	Thesis Contribution

	Theory
	Camera model
	Pin-hole camera model
	Stereo camera model
	Distortion model

	Digital image
	Image enhancement
	Feature detection and description
	Feature descriptor method
	ORB

	Feature Matching
	Motion estimation
	Graph optimization
	Lie group and Lie algebra
	Bundle adjustment
	Front end optimization
	Back end optimization

	Method
	Camera calibration
	Feature detection and description
	Feature matching
	Camera pose estimation
	System implementation

	Simulation
	Stokkbergneset data set
	Scenario 1
	Scenario 2

	Referansevraket data set
	TCP data transmission

	Discussion
	Simulation
	General comments

	Conclusion
	Concluding remarks
	Further work

	Bibliography
	Appendix
	空白页面
	空白页面

