
Combining Supervised
Learning and Digital Twin

for Path-planning with
Dynamic

Obstacle-avoidance

Submitted by

Chanjei Vasanthan

Supervised by

Dong Trong Nguyen

Department of Marine Technology
Norwegian University of Science and technology

Trondheim
24. June 2019

Preface

This master thesis is a continuation of my project thesis on reinforcement learn-
ing for collision-avoidance on vessels. This was written during the spring of
2020 at the Department of Marine Technology, NTNU, and concludes my mas-
ter studies in Marine technology. The subject of the thesis is based on my
curiosity of self-governing systems and programming in the intersection with
control theory. Initially the idea was to develop a deep learning-based solution,
but academic discussions, as well as conversations with the industry changed
my direction. Especially, considering the huge gap between developing a deep
learning-solution and actually deploying it on the actual problem due to the
uncertain factors related to deep learning. Therefore, my motivation was to
look into a solution approach based on the industry perspective on essential
requirements.

i

Acknowledgment

First and foremost I would like to express my sincere thanks to supervisor Dong
Trong Nguyen. Throughout the thesis, he has offered me valuable feedback,
guidance and always been flexible in terms of supervision. I would also like to
thank my fellow students for interesting academic discussions and enthusiasm,
while working with the thesis. Additionally, I would like to thank the DNV GL
office at Trondheim for assisting me on software guidance. Finally, I would like
to thank my friends and parents for valuable support throughout the years.

Chanjei Vasanthan
24. June 2020, Trondheim

ii

 NTNU Trondheim

 Norwegian University of Science and Technology

 Department of Marine Technology

MSC THESIS DESCRIPTION SHEET

Name of the candidate: Chanjei Vasanthan

Field of study: Marine control engineering

Thesis title (Norwegian): Kombinering av veiledet læring og digital tvilling for autonomt

baneplanelgging med dynamisk kollisjonsunngåelse

Thesis title (English): Combining Supervised Learning and Digital Twin for Autonomous

Path-planning with Dynamic obstacle-avoidance

Background

The goal of this thesis is to develop a model capable of generating a path from A to B using Bézier curves,

while avoiding both static and dynamic obstacles, such as a real vessel with vessel dynamics. The aim is

to develop a path-planning solution that complies with current rules and regulation. The model will

therefore be based on a supervised machine learning-method which is chosen based on benchmarking.

The model will be trained on a simplified model of a real vessel, and then verified on the real vessel to

solve head-on situations based on rules extracted from COLREG. In addition, the digital twin would be

added in the real vessel to conduct re-planning when an unforeseen act is executed by the head-on vessel.

Work description

1. Perform a background and literature review to provide information and relevant references on:

• General Path planning-methods

• Previous methods within marine vessel path-planning based on AI/Machine learning

• Collision avoidance approaches

• Autonomous vehicles/vessels

• COLREG

• Authority’s view on autonomous vessel i.e. IMO and class societies.

Write a list with abbreviations and definitions of terms, explaining relevant concepts related to the

literature study and project assignment.

2. Develop simplified model (digital twin) of the research vessel Gunnerus which is to be used for

training.

3. Develop a supervised model combined with Bézier curves to generate paths

4. Develop a maneuvering controller to navigate the path

5. Use the simplified model as a digital twin inside the real vessel to re-plan steps

6. Conduct simulations on a model of the research vessel Gunnerus

Tentative:

7. Write a journal paper submitted to Control Engineering Practice.

Specifications

The scope of work may prove to be larger than initially anticipated. By the approval from the supervisor,

described topics may be deleted or reduced in extent without consequences with regard to grading.

The candidate shall present personal contribution to the resolution of problems within the scope of work.

Theories and conclusions should be based on mathematical derivations and logic reasoning identifying the

various steps in the deduction.

 NTNU Faculty of Engineering Science and

Technology

 Norwegian University of Science and

Technology Department of Marine Technology

2

The report shall be organized in a logical structure to give a clear exposition of background, results,

assessments, and conclusions. The text should be brief and to the point, with a clear language. Rigorous

mathematical deductions and illustrating figures are preferred over lengthy textual descriptions. The report

shall have font size 11 pts., and it is not expected to be longer than 60-80 A4 pages, from introduction to

conclusion, unless otherwise agreed upon. It shall be written in English (preferably US) and contain the

following elements: Title page, abstract, acknowledgements, thesis specification, list of symbols and

acronyms, table of contents, introduction with objective, background, and scope and delimitations, main body

with problem formulations, derivations/developments and results, conclusions with recommendations for

further work, references, and optional appendices. All figures, tables, and equations shall be numerated. The

original contribution of the candidate and material taken from other sources shall be clearly identified. Work

from other sources shall be properly acknowledged using quotations and a Harvard citation style (e.g. natbib

Latex package). The work is expected to be conducted in an honest and ethical manner, without any sort of

plagiarism and misconduct. Such practice is taken very seriously by the university and will have

consequences. NTNU can use the results freely in research and teaching by proper referencing, unless

otherwise agreed upon.

The thesis shall be submitted with a printed and electronic copy to the main supervisor, with the printed copy

signed by the candidate. The final revised version of this thesis description must be included. The report must

be submitted according to NTNU procedures. Computer code, pictures, videos, data series, and a PDF version

of the report shall be included electronically with all submitted versions.

Start date: 15 January 2020 Due date: As specified by the administration.

Supervisor: Dong T. Nguyen

Trondheim, 24.06.2020

Dong T. Nguyen

Supervisor

Abstract

In this master thesis a supervised model is developed to generate a cubic Bézier
curve. The aim is to develop a curve that avoid collision, comply to COLREG
and attempt to take the shortest path whenever possible. To achieve this a
score paradigm was developed, which is used to collect the optimal pair of con-
trol points used to generate the path. To sample data, a digital twin is developed
in Simulink of the research vessel R\V Gunnerus and converted to FMU-format
to generate a simulator in Python. The digital twin is a simplified model based
on control plant model as defined in control theory. Further, the simulator was
used to sample training date for the machine learning model. The machine
learning model was chosen based on benchmarking of available models, which
resulted in Gradient Boosting regressor. To follow the path a traditional maneu-
vering model based on Roger Skjetne’s the Maneuvering problem was developed.

The motivation behind the proposed solution is mainly addressing the weak-
nesses of a deep learning-based solution such as unpredictability of the actions,
and lack of transparency. Therefore, the developed solution is based on a guide-
line for autonomous solutions presented by DNV GL. The aim was to comply
to the expectation of the authorities, while still working on state of the art solu-
tions. To verify the model, simulations with static obstacle and dynamic vessel
was simulated using an accurate model of Gunnerus. The aim was to simu-
late head-on situation to evaluate if the path-planner could generate paths that
complies with COLREG rule 14a). In addition, to consider unexpected actions
from the head-on vessel, the digital twin was applied on the research vessel.
The objective was to forecast possible collision by running simulations on the
digital twin based on the real states of the vessel during mission. If a collision
was forecast a new path was generated for the real vessel. From the results, it
was concluded that the path-planning model performed generally well, showcas-
ing satisfying behaviour both during obstacle-avoidance, as well as re-planning.
However, the model do have some limitations such as no environmental variables
considered and limited state-space. It is noted that to consider environmental
variables, accurate measurements are necessary, which is not always possible.
Hence, an alternative solution was proposed where the problem can be dele-
gated to the controller by introducing i.e. hybrid controller. Likewise, to solve
the limited state-space an approach similar to way-point tracking is suggested.
Such that the way-points are placed within the trained environment, and the
environment is moved and reset as a way-point is reached.

v

Sammendrag

I denne masteroppgaven undersøkes en veiledet læringsmetode for å generere
kubiske Bézier kurver. Målet er å utvikle en kurve som unng̊ar kollisjon, følger
COLREG og forsøker å velge den korteste banen, n̊ar mulig. For å oppn̊a dette
utvikles et poengsystem som brukes for å finne den optimale kombinasjonen
av kontrollpunkter for å generere kurven. For å samle treningsdata brukes en
digital tvilling i Simulink basert p̊a forskningsskipet R\V Gunnerus, som ble
konvertert til FMU-format for å produsere en simulator i Python. Den dig-
itale tvillingen er en forenklet modell av kontroll plantemodellen slik den er
definert i kontroll teori. Videre brukes simulatoren for å generere treningsdata
for maskinlæringsmodellen. Maskinlæringsmodellen ble valgt basert p̊a sam-
menlikning blant tilgengelige modeller, hvor valget falt p̊a gradient boosting
regresjon. For å følge banen utvikles en tradisjonell manøvringsmodell basert
p̊a Roger Skjetnes the Maneuvering problem.

Motivasjonen bak denne løsningen er hovedsakelig å adressere noen av prob-
lemstillingene knyttet til dyplæring-baserte løsninger som for eksempel uforut-
sigbarhet og mangel p̊a åpenhet av modellen. Derfor er modellen basert p̊a en
retningslinje for autonomone løsninger presentert av DNV GL. Målet er å utvikle
fremtidens løsninger samtidig som man innretter seg til myndighetenes forvent-
ninger. For å verifisere modellen ble simuleringer med statisk hindring og dy-
namisk skip simulert ved å bruke en sannferdig modell av Gunnerus. Målet var å
simulere front mot front situasjon for å se om baneplanleggeren kunne generere
kurver som fulgte COLREG regel 14a). I tillegg ble uventende handlinger av
motkommende skip tatt i betraktning, ved å anvende den digitale tvillingen p̊a
det ekte skipet. Målet var å predikere mulig kollisjon ved å simulere den digitale
tvillingen med nyeste tilstandsvariablene til det ekte skipet. Hvis en kollisjon
ble predikert, ville en ny oppdatert bane bli generert for det ekte skipet. Fra
resultatene ble det konkludert med at baneplanleggeren generelt gjorde det bra,
b̊ade ved kollisjonsunng̊aelse og re-planlegging. Imidlertid innehar modellen
enkelte svakheter som å ikke ta i betraktning variabler fra omgivelsen, samt
begrenset omr̊ade. Det er p̊apekt at for å ta omgivelse i betraktning kreves
det nøyaktig m̊alinger, noe som ikke alltid er mulig. Derfor ble en alternativ
løsning presentert, hvor problemet delegeres til kontrolleren, for eksempel en
hybrid kontroller. P̊a samme m̊ate, for å løse det begrensede omr̊adet foresl̊as
det å utvikle en løsning basert p̊a veipunkt-følging. Slik at punkter p̊a veien er
plassert innenfor en tilsvarende omr̊ade, og omr̊adet forflyttes n̊ar et veipunkt
er n̊add.

vi

Contents

Preface . i
Acknowledgment . ii
Abstract . v
Sammendrag . vi
List of Figures . xiii
List of Tables . xiv
Acronyms . xvi

1 Introduction 1
1.1 Background . 1
1.2 Literature review . 3

1.2.1 Autonomy vs automation 3
1.2.2 Structure of an autonomous vessel 3
1.2.3 Path-planning algorithms 4
1.2.4 Vessel Path-planning using AI 6
1.2.5 Autonomous vessel: A class society perspective 8
1.2.6 Digital twin . 10

1.3 Objective and scope . 12
1.4 Outline of report . 13

2 Theory 14
2.1 Mathematical modelling of the vessel 14

2.1.1 Process plant model for vessel 14
2.1.2 Control plant model for vessel 15
2.1.3 Generalized inertia forces 16
2.1.4 Generalized Coriolis and centripetal forces 16
2.1.5 Generalized damping forces 17
2.1.6 Generalized restoring forces 17

2.2 Path following: The Control problem 18
2.2.1 The Maneuvering problem 19

2.3 Path parametrization . 20
2.3.1 Bézier Curve . 20

2.4 Geometrical intersections . 24
2.4.1 Intersection between two line segments 24
2.4.2 Intersection between a circle and line segment 25

vii

2.5 COLREG . 26
2.6 Machine learning: Supervised learning 27

2.6.1 Supervised Learning . 28
2.6.2 Decision tree . 34
2.6.3 Random forest . 36
2.6.4 Gradient Boosting Regressor 37

3 Design and implementation 39
3.1 Simulator . 39

3.1.1 Vessel model . 40
3.1.2 The Maneuvering model 40
3.1.3 Obstacles . 44

3.2 Machine learning . 44
3.2.1 Target variable . 45
3.2.2 The Score Paradigm . 46
3.2.3 Feature selection . 48
3.2.4 Model selection . 49

3.3 Test scenarios . 52
3.3.1 Test scenario 1: Straight-line path-planning 52
3.3.2 Test scenario 2: Path-planning with collision-avoidance of

static obstacle . 52
3.3.3 Test scenario 3: Path-planning with collision-avoidance of

dynamic vessel . 53
3.3.4 Test scenario 4: Re-planning using the Digital twin 53

4 Results and discussion 54
4.1 Results . 54

4.1.1 Test scenario 1: Straight-line path-planning 54
4.1.2 Test scenario 2: Path-planning with collision-avoidance of

static obstacle . 56
4.1.3 Test scenario 3: Path-planning with Collision-avoidance

of dynamic vessel . 57
4.1.4 Test scenario 4: Re-planning using the Digital Twin . . . 58

4.2 General discussion . 59

5 Conclusion and further work 60
5.1 Conclusion . 60
5.2 Further work . 60

A Appendix 68
A.1 Gunnerus vessel plant model matrices 68

A.1.1 Rigid body mass matrix 68
A.1.2 Added mass matrix . 68
A.1.3 Restoring forces matrix 68
A.1.4 Linear damping matrix 69

A.2 Simplified vessel plant model matrices 69

viii

A.2.1 Rigid body mass matrix 69
A.2.2 Added mass matrix . 69
A.2.3 Linear damping matrix 69

A.3 The Maneuvering controller parameters 70
A.4 Parameters for the score paradigm 70
A.5 Normalization of features . 70
A.6 Hyperparameters for Gradient Boosting regressor 71
A.7 Intersection and orientation of lines: Examples 72
A.8 Simulation results . 73

A.8.1 Straight-line path-planning 73
A.8.2 Test scenario 2 . 78
A.8.3 Test scenario 3: Path-planning with Collision-avoidance

of dynamic vessel . 83
A.8.4 Test scenario 4: Re-planning using the Digital twin 88

ix

List of Figures

1.1 Growth of annually published papers by topic within AI, Com-
puter Science (CS) and general topics (1996–2017) 1

1.2 The four sub-tasks of navigation 9
1.3 Self-controlling path-planning system 12

2.1 Various Bèzier curves and their respective degree n 20
2.2 The four control points P0, P1, P2, P3 and the center of mass P . 21
2.3 The final curve representing center of mass for t ∈ [0, 1] 21
2.4 The point masses as function of t ∈ [0, 1] 22
2.5 The convex hull for various Bézier curves 23
2.6 Types of orientation. From left: Counterclockwise, clockwise and

collinear. 24
2.7 The distances in x- and y-direction between triplet of points. . . 24
2.8 Problem formulation of determining the intersection between cir-

cle and line segment. 25
2.9 Head-on situation as defined by COLREG rule 14. 26
2.10 Left graph: Simulated data-sample of points used to determine

f(x). Right graph: The true form of f(x). The black lines repre-
sents the random error ε . 29

2.11 Illustration of underfitted model versus overfitted model 31
2.12 Left graph: The circular points represents the measured noisy

data-points, while the black line represents the true model f .
Yellow line is a linear regression estimation, while blue and green
is a more flexible model based on smoothing splines. Right graph:
The MSE plotted against increased flexibility. 32

2.13 The blue line represents the bias, the green line represents the
variance and the red line represents the total error. 33

2.14 Heat map of salaries based on experience in years and numbers
of hit. 34

2.15 The resulting rectangular split applying decision tree regression
of the training data. 34

2.16 The resulting tree visualization of the rectangular split. 34

3.1 Illustration of the definition of reward zone in terms of COLREG
14a), relative to the heading of opposite vessel. 47

x

3.2 Illustration of the definition of reward zone in terms of COLREG
14a), relative to the heading of opposite vessel. 47

3.3 Distribution of RPath over ye for σ=5 and a=1. 48
3.4 Benchmarking a set of regression models in terms of MSE. 49
3.5 Importance plot of the features, where y-scale indicates how big

impact from 0 to 1 the respective feature have on the prediction. 50
3.6 Number of iterations before optimal control points were found,

for 10000 simulations. 51

4.1 Case 1.1, straight-line path-planning. The desired point is placed
in (3200, 0). 55

4.2 Case 1.2, straight-line path-planning. The desired point is placed
in (3800, -200). 55

4.3 Case 1.3, straight-line path-planning. The desired point is placed
in (2000, 300). 55

4.4 Case 2.1, static obstacle-avoidance. The desired point is placed
in (3200, 0). 56

4.5 Case 2.2, static obstacle-avoidance. The desired point is placed
in (2000, 300). 56

4.6 Case 2.3, static obstacle-avoidance. The desired point is placed
in (2000, 300). 56

4.7 Case 3.1, dynamic obstacle-avoidance. The desired point is placed
in (3400, 300). 57

4.8 Case 3.2, dynamic obstacle-avoidance. The desired point is placed
in (3400, 300). 57

4.9 Case 3.3, dynamic obstacle-avoidance. The desired point is placed
in (3400, 300). 57

4.10 Case 4, re-planning using digital twin. The desired point is placed
in (2800, 0) . 58

A.1 Example 1: Orientation of (p1, p2, q1) is counterclockwise and
orientation of (p1, p2, q2) is clockwise, and therefore different.
Correspondingly, orientation of (q1, q2, p1) is clockwise and ori-
entation of (q1, q2, p2) is counterclockwise. Thus, the general
case is satisfied in this example. 72

A.2 Example 2: Orientation of (p1, p2, q1) is collinear and orientation
of (p1, p2, q2) is counterclockwise, and therefore different. In a
similar manner, orientation of (q1, q2, p1) is counterclockwise and
orientation of (q1, q2, p2) is wise, which means the general case
is again satisfied. 72

A.3 Example 3: In a similar manner to example 1, orientation of
(p1, p2, q1) is counterclockwise and orientation of (p1, p2, q2)
is clockwise. However, both (q1, q2, p1) and (q1, q2, p2) are
clockwise, and the general case is not satisfied. 72

xi

A.4 Example 4: In the following example, only (p1, p2, q1) is collinear,
while (p1, p2, q2), (q1, q2, p1) and (q1, q2, p2) are all clockwise,
and the conditions for the general case is unfulfilled. 72

A.5 Example 5: In this case all the triplet of points are collinear,
which means the general case is not satisfied. in other hand, both
x-projection and y-projection of line segment p and q intersect.
Thus, the special case is satisfied. 72

A.6 Example 6: Equivalent to example 5, all the triplet of points are
collinear. However, since the projections do not intersect, neither
the general case nor the special case is satisfied. 72

A.7 Case 1: Plot of North-, East- and ψ-position. 73
A.8 Case 1: Plot of velocities in each direction with respect to the

vessel coordinates. 73
A.9 Case 1: Plot of commanded surge thrust. 73
A.10 Case 1: Plot of commanded sway thrust. 74
A.11 Case 1: Plot of commanded yaw-moment. 74
A.12 Case 2: Plot of North-, East- and ψ-position. 74
A.13 Case 2: Plot of velocities in each direction with respect to the

vessel coordinates. 75
A.14 Case 2: Plot of commanded surge thrust. 75
A.15 Case 2: Plot of commanded sway thrust. 75
A.16 Case 2: Plot of commanded yaw-moment. 76
A.17 Case 3: Plot of North-, East- and ψ-position. 76
A.18 Case 3: Plot of velocities in each direction with respect to the

vessel coordinates. 76
A.19 Case 3: Plot of commanded surge thrust. 77
A.20 Case 3: Plot of commanded sway thrust. 77
A.21 Case 3: Plot of commanded yaw-moment. 77
A.22 Case 1: Plot of North-, East- and ψ-position. 78
A.23 Case 1: Plot of velocities in each direction with respect to the

vessel coordinates. 78
A.24 Case 1: Plot of commanded surge thrust. 78
A.25 Case 1: Plot of commanded sway thrust. 79
A.26 Case 1: Plot of commanded yaw-moment. 79
A.27 Case 2: Plot of North-, East- and ψ-position. 79
A.28 Case 2: Plot of velocities in each direction with respect to the

vessel coordinates. 80
A.29 Case 2: Plot of commanded surge thrust. 80
A.30 Case 2: Plot of commanded sway thrust. 80
A.31 Case 2: Plot of commanded yaw-moment. 81
A.32 Case 3: Plot of North-, East- and ψ-position. 81
A.33 Case 3: Plot of velocities in each direction with respect to the

vessel coordinates. 81
A.34 Case 3: Plot of commanded surge thrust. 82
A.35 Case 3: Plot of commanded sway thrust. 82
A.36 Case 3: Plot of commanded yaw-moment. 82

xii

A.37 Case 1: Plot of North-, East- and ψ-position. 83
A.38 Case 1: Plot of velocities in each direction with respect to the

vessel coordinates. 83
A.39 Case 1: Plot of commanded surge thrust. 83
A.40 Case 1: Plot of commanded sway thrust. 84
A.41 Case 1: Plot of commanded yaw-moment. 84
A.42 Case 2: Plot of North-, East- and ψ-position. 84
A.43 Case 2: Plot of velocities in each direction with respect to the

vessel coordinates. 85
A.44 Case 2: Plot of commanded surge thrust. 85
A.45 Case 2: Plot of commanded sway thrust. 85
A.46 Case 2: Plot of commanded yaw-moment. 86
A.47 Case 3: Plot of North-, East- and ψ-position. 86
A.48 Case 3: Plot of velocities in each direction with respect to the

vessel coordinates. 86
A.49 Case 3: Plot of commanded surge thrust. 87
A.50 Case 3: Plot of commanded sway thrust. 87
A.51 Case 3: Plot of commanded yaw-moment. 87
A.52 Case 1: Plot of North-, East- and ψ-position. 88
A.53 Case 1: Plot of velocities in each direction with respect to the

vessel coordinates. 88
A.54 Case 1: Plot of commanded surge thrust. 88
A.55 Case 1: Plot of commanded sway thrust. 89
A.56 Case 1: Plot of commanded yaw-moment. 89

xiii

List of Tables

3.1 Main dimensions of R\V Gunnerus 40

A.1 Controller gains and parameters 70
A.2 Parameters for the score variables 70
A.3 Tuned hyperparameters for Gradient Boosting regressor 71

xiv

Acronyms

AI Artificial intelligence. 1

BM Breadth middle. 40

CLF Control Lyapunov function. 42

COLREG International Regulations for Preventing Collision at Sea. 5, 26

CS Computer Science. x, 1

DDPG Deep Deterministic Policy Gradients. 7

DNV GL Den Norske Veritas Germanischer Lloyd. 9

FMI Functional Mock-up Interface. 11

FMU Functional Mock-up Unit. 40

FRP Formation Reference Point. 5

GNSS Global Navigation Satellite System. 3

GPS Global Positioning System. 4

IMO International Maritime Organization. 5, 9, 26

LOA Length over all. 40

LPP Length between perpendicular. 40

MPC Model Predictive Control. 5

MRC Minimum Risk Condition. 10

MSE Mean-squared error. 31

NFL No Free Lunch-theorem. 28

xv

NTNU Norwegian University of Science and Technology. 13, 40

RSS Residual Sums of square. 35

SC Self-Controlling. 9

SOLAS Safety Of Life At Sea. 9

UGES Uniformly Globally Exponentially Stable. 44

xvi

Chapter 1

Introduction

1.1 Background

Following the recent breakthroughs within the Artificial Intelligence- (AI) and
Machine learning-field, combined with the advancement of computation power,
the popularity of the topics have increased tremendously. This can be confirmed
by studying the statistics presented by AI Index in figure 1.1. As the article
[1] highlights, the amount of recent publications related to the subjects have
surpassed all expectations. Naturally, this has lead to an extensive research on

Figure 1.1: Growth of annually published papers by topic within AI, Computer
Science (CS) and general topics (1996–2017)

new potential domains of application. One such particular domain that will
be considered in this thesis are autonomous vehicles. An autonomous system
is defined as a system capable of decision-making without human interference
[2]. A well-known example of this is the self-driving car, which has the ability
to maneuver by itself in traffic. Few decades ago, this was considered a dream
scenario, but have have now become achievable owing to companies such as
Tesla. The revolution within self-driving automobiles has not unsurprisingly
stimulated research within the maritime industry as well. One such outcome is
the upcoming zero-emission autonomous container ship Yara Birkeland. This
was considered as a revolutionary announcement by Yara and the Kongsberg

1

group in 2018, and is currently under development [3]. Similar to self-driving
cars, autonomous vessels aim to possesses the ability to navigate in the sea
without human interference. However, compared to the roadway, the ocean can
be classified as significantly complex environment. Especially, when considering
environmental forces such as currents, weather, waves and collision-avoidance.
Based on this, it is certain that an autonomous vessel demands high level of
intelligence for maneuvering and evaluating risk factors. This comes in addi-
tion to the ability to re-plan the mission in terms of reaching the goal, when
unforeseen scenarios occurs. Naturally, this brings up the question of what the
true motivations behind autonomous vessels are. The most obvious answer is
unquestionably cost savings. In [4] dry-bulk was identified as a suitable candi-
date for unmanned vessel. A dry-bulk is typically a slow navigating vessel with
simple loading/off-loading-condition, thus requiring minor human intervention.
It is estimated that the expenses related to the crew alone could make up to
10% of the trip expenses, thus reflecting the potential savings of an unmanned
vessel. In addition, there are also opportunities for reduction of fuel emission.
For instance, Enova has estimated that Asko’s new pair of autonomous electric
vessels possibly can save the transportation industry for 5.000 ton CO2-emission
yearly. Thereby reducing two million kilometer of travelling on the roadway [5].
The final incentive is augmentation of the safety on the ocean. By developing
intelligent systems capable of obeying the rules and regulations at the sea, one
can potentially avoid typical human mistakes. Indeed, the fatal consequence of
such an example was recently observed with Helge Ingstad [6].

2

1.2 Literature review

1.2.1 Autonomy vs automation

The misunderstanding of the differences between autonomy and automation
have commonly led to the terms being interchangeably used. This may be re-
lated to the evolution of the concept intelligence in the industrial domain. For
instance, in the 1940-1960s one would have identified automation systems as
intelligent systems [7]. However, in present time we would associate control sys-
tems like Dynamic positioning as an automatic system, because our perception
of intelligent systems have evolved. There exist several frameworks describing
the distinction between autonomy and automation by levels. In [8] a 10-level
scale of degree developed by Sheridan is presented. This is a widely recognized
model which is referenced to in many literature. The first level is defined as only
human based intervention, while the seventh level indicates automatic decision
making. At the tenth level the computer fully ignores the human and is able to
execute work autonomously. A much broader and well-defined definition is pre-
sented in [9] which is based on National Institute of Standards and Technology’s
definition of level of autonomy. Here autonomy is described as a system’s ability
to sense, perceive, analyze, communicate, plan, make decision and make action
such that it can achieve the goals it is assigned to. Based on the definition of
autonomy, a general discussion on approaches towards using AI for autonomous
ship navigation can be found in [10].

1.2.2 Structure of an autonomous vessel

In the process of developing autonomous marine vessels, there are many areas
that potentially can be researched upon. However, based on [11] we can re-
duce the area to four important concepts or modules that have to be addressed:
Path-planning, Guidance, Navigation and Control. Path-planning considers the
problem of generating a suitable path to follow. When generating a path sev-
eral dynamic constraints have to be considered related to the vessel, such as
the curvature, velocity or acceleration. Guidance on other hand, is related to
the computation of desired position, velocity and acceleration of the marine
vessel. In other words, information that is fed into the control system. Nav-
igation is related to monitoring of the vessel while moving from one position
to another. This is done through logging the vessel position, distance travelled
or the velocity. A widely known tool for this is the Global Navigation Satellite
System (GNSS). The final module, control is the step that determines the essen-
tial forces and moments of the actuators in the vessel, such that the vessel can
reach the control objective. Example of an objective includes, but not limited
to: set-point tracking, path-following and maneuvering control. Notice that al-
though the process is divided into four modules, in principle all the modules are
interconnected.

3

Path-planning for vessel

Usually when we start driving a car or sailing a ship we have a common objective:
To reach a desired place or position. In the old days, one would get into the
vehicle and start driving until the final destination was reached. Naturally, this
involved several downsides such as detours, increased time spent driving as well
as increased fuel usage. As a consequence, the development of built-in Global
Positioning System (GPS) happened, a device popularly used to generate a
pathway through a mobile device or computer. Because the task of driving
solely depends on the human, and the human primarily needs the direction,
the constraints on the path-planner are naturally few. On other hand, for an
autonomous vehicle, the task now remains entirely on the vehicle itself. Hence,
much more complex and strict constraints are essential. Based on our own
experience we can easily draw relevant examples such as maintaining a satisfying
velocity and acceleration while driving, keeping an appropriate turning-rate
when swinging the car, or avoiding other cars (collision-avoidance) on the road.

Control system for vessel

For a control system to be able to steer the vessel correctly based on the gen-
erated path, a guidance law (algorithm) is required. By computing appropriate
reference trajectories based on the desired dynamics through the guidance law,
the controller is able to maneuver the ship safely. As stated in [11] this requires
stability of both the guidance law and the controller. However, proving stability
of such a system by finding a unique Lyapunov function which incorporates all
the states can be difficult. Hence, it is apparent that both the guidance law and
the control design are affiliated. Based on [12] one can separate the control ob-
jective in two different problems: the tracking problem and the path-following
problem. In the tracking problem the goal is to track a point tracing out the
path, while the path-following problem considers the whole path. In the latter,
the control objective is to follow the path defined as the geometric task. How-
ever, in the former the system also have to satisfy dynamic constraints such as
a desired speed or acceleration, leading to the second task, the dynamic task.

1.2.3 Path-planning algorithms

Within the field of path-planning and maneuvering there have been carried out
extensive research on several strategies, mainly within robotics. Among these
is the Dijkstra’s algorithm, a well-known algorithm which is guaranteed to find
the shortest path between two points. In [13] it was applied with multi-layer
dictionaries for robotic path-planning taking energy and rotational capabilities
into consideration. The A* (A-star) algorithm is a more superior algorithm
which is also widely recognized. It combines the best features of Dijkstra’s
algorithm in finding the shortest path, while being faster with the help of a
heuristic (greedy approach). A modified version of A* was applied for underwa-
ter vehicle considering various ocean currents in [14]. However, in [15] pointed

4

out that if the ocean current exceeded the vessel speed, the algorithm will face
complications fulfilling the task. In other words, this illustrates that devel-
oping a path-planning algorithm in a complex environment such as the ocean
can be challenging. A major drawback of these studies is that they only con-
sider static object-avoidance. In [16] various algorithms for both static- as well
as dynamic object are discussed, although only for aerial vehicles. One such
approach is using Kalman Filter to predict the motion of the object, thereby
predicting its path. Other mentionable algorithms are the Genetic algorithm
[17], Angle potential field [18] and Rapidly-exploring random tree [19]. It has
to be noted that the presented algorithms only represents a small portion of the
strategies available, which obviously cannot be summarized to a couple of pages.

So far, the algorithms considered are mainly applied in a (x, y)-environment.
However, for a marine vessel the heading also plays a substantial role during
maneuvering. In [20] a modified A* algorithm named Theta* algorithm (Theta-
star), was applied in research of path-planning for marine surface vessel. Unlike
A*, the Theta* is also able to consider the angle. In fact, [21] justified that
in general, Theta* performed better than A* both in terms of computing time,
as well as finding the optimal path. Despite the satisfying results, it has to
be noted that the simulations were executed with only static obstacles with-
out any environment forces. In [22] a collision avoidance strategy for multiple
marine vessel formation control was developed. Based on the Formation Refer-
ence Point (FRP) a virtual structure was built for the collision avoidance. To
model some of the non-linear dynamics, an adaptive neural-network was used.
[23] proposed a novel approach on building a path-planning algorithm based on
potential flow. Although the probability of object-collision as well as possibility
of producing very long paths were emphasized as major drawbacks, the results
showed a huge potential for a velocity potential-based solution. Meanwhile, in
[24] an early stage attempt on generating path based on Bézier-curve was ap-
plied, including collision-objects and constraints on the curvature. Despite the
early stages, the proposal still showcased a promising approach in developing
suitable paths.

Similar to traffic rules, the International Maritime Organization (IMO) has de-
signed Convention on the International Regulations for Preventing Collisions
at Sea (COLREG). This convention contains among other things, navigation
rules to be followed during sailing to prevent collision with other vessels. Con-
sequently, it is expected that an autonomous vessel is able to comply to these
rules while sailing. In [25] COLREG was applied combined with a Model Pre-
dictive Control (MPC). The simulation was carried out with both current from
North and East in proportion to the heading, which proved to be successful.
However, during collision-avoidance virtual objects was applied. Hence, real-
life motion of an object such as a vessel was not considered. The model also
showcased difficulties in cases of multiple obstacles. A corresponding approach
using MPC was conducted in [26] with compelling result, even with drastic
changes in the environment. Unlike the previous study, this one simulated with

5

both wind speed of 15 m/s as well as ocean currents in order of 0.5 m/s, while
considering COLREG.

1.2.4 Vessel Path-planning using AI

The research mentioned until now have mainly revolved around traditional al-
gorithms and control strategies. But as mentioned initially, the breakthrough
within AI and machine learning has made new set of tools available. The ob-
jective in this thesis is to look into how this can be applied in ship navigation
to increase the autonomy of the vessel, while considering collision-avoidance.
Hence, a detailed discussion on previous work is necessary. Therefore, the aim
of this chapter is to shed light on previous achievements to enlighten the reader.
Additionally, discussions on their advantages and drawbacks would be discussed
to reveal possible gaps that should be addressed in the thesis.

In general, supervised machine learning have mainly been applied for prob-
lems such as ship fuel consumption application [27] and vessel telemetry system
[28]. This is due to the fact that deep learning generally have shown remark-
able results, leading to neglection of machine learning-based solutions. One of
the main research currently carried out within the intersection of deep learn-
ing and robotics are application of deep learning agents to control or maneuver
a system. Several examples can be found such as [29], [30], [31] and [32] to
mention a few. Even the new deep learning-tool implemented in Simulink, a
model-based design tool which is extensively used in developing dynamic sys-
tems, is designed such that one simply can replace the control block with a
reinforcement learning-agent [33]. As a consequence, in the preceding research
leading up to this thesis [34] an application of reinforcement learning for vessel
maneuvering with collision-avoidance was studied. The results, showcased the
vessels ability to maneuver successfully from an initial state to a terminal state.
However, due to constraints on the state-space in the North-East frame, the
model suffered limitations. This was due to the fact that increased state-space
naturally led to increased training time on the model before convergence. As
a consequence, one therefore cannot fully assure that the model can generalize
well for an arbitrary environment. Secondly, the experiment studied only static
object-avoidance. Meanwhile, collision avoidance of dynamic object i.e other
vessels, are of significant importance in marine environment. For the algorithm
to adapt to dynamic objects, an extension of the state-space was required such
as considering environmental variables, which also would lead to increased train-
ing time. In addition, since the model implicitly calculates the optimal action
based on cross-track error for straight-line, one does not have prior knowledge
on the actual path when the vessel is approaching an object.

As mentioned in the previous section, a noteable disadvantage of traditional
reinforcement learning is the limitation of the state-space. This led to the de-
velopment of deep reinforcement learning. Deep reinforcement learning has the
advantage of efficiently working with high dimensional state-spaces, while still

6

being effective in regards to training time. For continuous action-space Deep
Deterministic Policy Gradient-method (DDPG) have proven to be promising.
In [35] a path-planning and collision avoidance approach based on DDPG was
proposed. The goal of the agent was to steer the rudder angle such that the
vessel reached the terminal state. The experiment was first conducted in an en-
vironment with no obstacles trying to solve the straight-line-following problem,
while in the second experiment obstacles was added as well. The reward for
reaching the goal state was given as 1. However, since the probability of agent
finding the particular point with a reward was zero an additional multivariate
Gaussian distribution reward was applied, such that if the vessel position was
within a radius bg of the goal state, a small reward was given which increased
the closer the vessel was to the terminal state. An identical reward strategy was
applied during collision, but now with a negative reward of -1. However, it has
to be noted that the agent does not have any ability to learn which direction to
head before it reaches a position where it starts accumulating a reward. Hence,
the proposed solution still did not fully address the initial problem. As men-
tioned in [36]: it may be extremely difficult to stumble upon rewards by chance
and the time to learn a policy to maximize the rewards exponentially increases,
especially for problems with long trajectories of actions and delayed rewards.
Furthermore, the state-space consist of relative positions between the vessel
and goal state and relative position between the vessel and the collision object,
as well as the changes in distance (the derivatives). In [37] and [38] a detailed
discussion on the importance of normalization for deep learning have been made.
At its most fundamental level, training within deep learning can be considered
as finding a set of weights. The weights are modified based on the magnitude
of each input-state. In other words, larger states have more substantial impact
on the weights, than states with smaller values. Since the difference between
the initial position and the desired path was smaller in the East-axis compared
to the North-axis, the relative distance in North will have much larger impact
than the other states. In fact, more than three times larger. Further, studying
the results, the vessel seems to be initially steering towards the terminal state
before diverging. Thus, it was concluded that the agent have learned to find
the target to some degree. However, considering the fact that the initial rudder
angle was set to the desired rudder angle, this statement may appear dubious.
Because, even if the agent made several random action it may still terminate
close to the end-state. In other words, the agent does not truly showcase that it
has learned the correct policy. By studying figure 5.2 in the thesis this assump-
tion can be justified, as the output of the agent remains relatively constant even
though the vessel was drifting off. This issue was also addressed in [34], where
it was solved by relocating the initial position and heading, to verify that the
vessel could turn and steer to the path correctly.

Similarly, in [39] DDPG was applied as a guidance system feeding the surge
command uc and heading command ψu to the controllers. The model also in-
corporated rules of COLREG for collision-avoidance situations. It has to be
noted that this study is an extension of the work done in [40], now considering

7

collision-avoidance as well. Unlike [35], the initial position was set to a random
position with a distance less than 500 meters close to the desired path. Hence,
justifying that the agent actually learned a policy by maneuvering correctly
back to the desired path. The input states were also normalized accordingly,
to avoid biased input-state. Initially, the agent exhibits high level of ability in
fulfilling path-following. However, as stated in the thesis, the agent was not
able to achieve smooth control inputs. Hence, the resulting inputs revealed a
Bang-Bang controller type of behaviour as discussed in [34]. In general, one
desires to avoid such behaviour as this generally leads to wear and tear on the
actuators. It was pointed out that various reward strategies had been attempted
without any success. This issue is referenced to in [41]. The reason behind this
problem may be that initially, the reward function is shaped such that one met-
ric is optimized, which is minimizing the distance to terminal state. However,
looking at the output of the agent, which is equivalent to the control input,
it is clear that higher level of smoothness is required. In other words, the re-
ward function has to be shaped to optimize the output as well, adding another
metric. As one continues to develop the model, one may discover additional
metrics that needs consideration. Besides, it is highly desired that the agent
performs well on all the metrics. Hence, the resulting global reward function
has to be designed such that it combines all the sub-goals of the model, which
leads to a multi-objective reward function. Developing such function may be
challenging in many cases, and the underlying consequences are not always ev-
ident at first-sight. In terms of collision-avoidance, the vessel was capable of
evading the on-coming vessel successfully. But since the vessel maneuvered on
the port-side, it violated the rules of COLREGS, since the expected alteration is
on the starboard-side. To force the vessel to take an early substantial action, a
teardrop-shaped ”safe-zone” was added. The results showcased that the vessel
was able to take actions accordingly, but the resulting rudder command still
stood out as extremely noisy.

1.2.5 Autonomous vessel: A class society perspective

The previous section displayed some of the weaknesses related to deep learning-
based solutions. In general, it is expected that new solutions can demonstrate
the ability to safeguard human life, environment and other properties while op-
erating. However, in terms of deep learning-based solutions this is not always
possible, as demonstrated by by AlphaGo in 2016 [42]. AlphaGo is a com-
puter program that was trained with Deep Learning to play the board-game
Go. It was capable of beating the best human player at the time Lee Sedol, in a
five-game match by making actions that were unthinkable even by the experts.
Hence, in terms of safety, the possibility of an agent making unexpected action,
even if the action is convenient at the time, may not be favourable in terms of
safety. Especially, considering the resulting unreliability that the model causes
in the domain. Similar issues have been discussed extensively in the medical
care where human lives are at stake, such as in [43] and [44]. As a result, the
application of deep learning at the medical field have mainly been focused on

8

image processing, where the consequences of the uncertainties related to deep
learning-solutions are small.

As mentioned previously, for the maritime community rules and regulations are
defined by the International Maritime Organization (IMO), which is an orga-
nization under the United Nations. IMO outlines conventions and legal instru-
ments such as the International Convention for the Safety of Life at Sea SOLAS
and COLREG, to maintain the safety and security of the shipping industry. In
a similar manner, the roles of the class societies such as Den Norske Veritas
Germanischer-Lloyd (DNV GL) and Lloyds Register, are to verify that the de-
sign, construction and the maintenance of vessels satisfies the legal standards.
Each class society have their own set of class rules that covers the technical
requirements related to each component on the vessel. At present time, IMO
has not yet provided any specific regulations for novel technologies such as the
autonomous vessel. However, as stated in [45], national and regulatory bodies
can support the implementation of such solutions within their local territorial
waters. As a consequence, DNV GL has outlined a guidance for development of
autonomous solutions in [45]. Note that Lloyds Register has published a similar
guidance in [46], but the content was considered rather narrow. In general, the
navigation task can be divided into four sub-tasks, as represented by the blocks
in figure 1.2. Each task, can be performed by either a human or a system, or

Figure 1.2: The four sub-tasks of navigation

combination of both. In this example, condition system, action planning and
action control is made by the system, while condition analysis is partly per-
formed by the human operator. In general, any new solution has to be as good
as, or better than the conventional solution, in order to achieve an equivalent or
better level of safety. The objective in this thesis is to develop a self-controlling
SC action planning (path-planning) system, which have the following require-
ments stated in the guideline: Based on the object classification information,
the system has capabilities to calculate an updated passage plan in accordance
with COLREG that are equivalent or better than that of a navigator on board
the vessel. In addition, it is necessary that the remote operator have a supervis-
ing role during navigation. In other words, the operator needs to be provided
with sufficient information to be able to derive independent conclusions on the

9

best actions. If the navigation situation becomes too complex for the system to
handle, the vessel should be brought to a Minimum Risk Condition (MRC) au-
tomatically. MRC is defined as a state that causes least risk to life, environment
and property, and a state the vessel should enter when an abnormal situation
occurs. In a similar manner, if the operator based on his/her conclusion fore-
cast a hazardous situation, they should have the option to manually intervene
and bring the vessel to MRC. In general, it is also expected that the collision
avoidance system clearly indicates the updated plan before a control action is
made, giving the remote operator enough time to make own analysis and inter-
vene if necessary. The system requirements can therefore be summarized to the
following two conditions:

1. The system has to comply with COLREG rules

2. The system has to offer transparency of the planned maneuvering

The previous chapters presented several examples considering COLREG, with
varying success. However, in terms of transparency the examples may be con-
sidered insufficient. Especially, since the actions are made instantaneous, which
provides zero transparency. A final concern to be addressed in terms of deep
learning-based system is the explainability of the model. Deep learning have
long been criticized for being a ”Black Box”-solution, as understanding the pro-
cess within multiple complex layers is often considered impossible as referenced
in [47], [41] and illustrated by AlphaGo.

1.2.6 Digital twin

In a similar manner to machine learning, digital twins are a result of the ex-
pansion within computer science [48] [49]. As the term implies, a digital twin
is a digital model or software that tries to replicate a process or physical asset
[50]. The model is developed based on stored data, algorithms, sensor and other
similar resources that offers information on the actual system. Although, the
concept has a wide application, it is mostly implemented within the tech indus-
try. Wind farm [51], NASA Air force vehicles [52] and power systems [53] are
only some examples of actual possible applications of digital twins. Correspond-
ingly, digital twin also have a significant relevance within maritime industry. For
instance, a digital twin of DNV GL’s fully autonomous electric vessel ReVolt
was designed in [54]. Likewise, the Kongsberg group developed Kognitwin, a
digital twin used to replicate physical assets such as oil platforms [55]. Digital
twins can also be applied in much smaller scale i.e. marine propulsion system as
in [56]. In general, the motivation behind a digital twin, is to be able to better
understand, predict and optimize the actual process or system that is being
mirrored to increase the performance. For instance in DNV GL’s hull condition
monitoring, the aim is to forecast possible faults in the hull such that preventive
actions can be made [57]. Therefore, a digital model based on wave, position
and sensor monitoring is created. In other words, digital twins offer a new and
unique tool to both develop, as well as verify real systems more effectively.

10

Digital twin can also be utilized to generate accurate simulators of real pro-
cesses for software development. As stated in [41]: ... systems grounded in
the physical world ... can range in size from a small drone to a data center,
in complexity from a one-dimensional thermostat to a self-driving car, and in
cost from a calculator to a spaceship. In all these scenarios there are recur-
ring themes: there is rarely a good simulator, the systems are stochastic and
non-stationary, have strong safety constraints, and running them is expensive
and/or slow. Hence, having a simulator that represents the real process as ac-
curate as possible is essential for solving real life-tasks. This is similar to the
requirements within control theory. To develop adequate controllers, accurate
models of the real process is strictly necessary. In the educational setting Math-
works’ Simulink, mentioned previously, have been embraced as a successful tool
for building realistic process models. However, in terms of machine learning, it
is not until recent that Mathworks have been developing machine learning tools
in their own programming language Matlab. Thus, the relating libraries are still
in an early stage. The substantial advancements of AI and machine learning
libraries are mainly achieved in the programming software Python. But, unlike
Matlab, Python does not offer any replacement to Simulink. A resolution to
this may therefore be the Functional Mock-up Interface (FMI) standard, which
is currently being embraced by the control community [58]. The standard was
initially developed to convert and exchange dynamic models, independent of the
software it was built in, such that a different software is capable of communi-
cating and running the models. By using the open-source Simulink library FMI
Kit, one can convert a Simulink-model to FMI-standard, such that it can be sim-
ulated in Python using the open-source library FMPY [59]. This application
have two major advantages, the first being rapid execution time. Simulations
that may take up to one minute can be executed within few seconds in Python.
Secondly, the library allows interference during simulations, such as modification
of input values, which Simulink does not allow.

11

1.3 Objective and scope

The previous sections proves that extensive research on autonomous vessel is
currently being made. As a consequence, the purpose of this thesis is to further
address the path-planning problem for autonomous vessel. More specifically, de-
veloping a self-controlling (autonomous) system for action planning as presented
in figure 1.3.

Figure 1.3: Self-controlling path-planning system

In general, the aim of the solution is to consider the following conditions:

1. Develop a self-governing system

2. Generate smooth output to avoid unpredictable behaviour

3. Create transparency of the planned maneuvering

4. Application of rules from COLREG during collision-avoidance

The three first conditions may conflict with the anticipated behaviour of a deep
learning-based solution. Although, deep learning have proven to be the most
promising solution, it may fall too short in regards to the current rules and
regulations seen from class societies perspective. Especially considering the is-
sues presented in the previous sections. Therefore, a supervised method will
be embraced in thesis, as the model offers both predictive behaviour, as well
as transparency in terms of explainability. To achieve the second point it may
be reasonable to build a model that utilizes a traditional controller, and rather
focus on the path-planning task. Especially, since control and guidance law
have proven to have high-level of performance during maneuvering and path-
following in recent times. By choosing a suitable well-tuned controller, we can
assure that the behaviour of the system remains satisfying, as long as the path
is adequate. In addition, the approach also offers predictability, considering
the remote operator is provided sufficient information regarding the path that
is being followed. For collision-avoidance a set of rules will be extracted from
COLREG and applied on the system to showcase the capability of adapting to
the constraints. In general, when developing a system for a vessel, one usually
does not have access to the real vessel. However, to train a model, one needs to

12

be able to sample data of the real process. Therefore, the digital twin concept
will be utilized to develop a simulator of the actual vessel. The digital twin will
be used to train the model, and tested on the real vessel. The motivation be-
hind this is that the simulators can never be fully identical to the reality. Thus,
training on a realistic simulator does not guarantee that the model is applicable
on the real problem. However, this topic has not been given much importance.
Especially, in the experiments reviewed so far, the agents are mainly tested and
trained on the same environment. Thus, the simulation does not fully evaluate
the generalization capability of the model. Initially, the idea was to showcase the
results on DNV GL’s model-scaled vessel ReVolt. However, due to COVID19
this had to be cancelled [60]. Instead, Norwegian University of Science and
Technology’s NTNU simulator of the research vessel R\V Gunnerus, will por-
tray as the real vessel, and the digital twin will be built based on this similar
to the approach applied in [34]. Finally, the digital twin will be applied on the
real vessel to predict possible collision situations to execute a re-plan step of
the actual vessel. Hence, complying with the base requirements of DNV GL’s
guideline.

In other words, in this thesis a step-wise development of a self-controlling path-
planning system will be conducted. More specifically, a supervised machine
learning method will be used in combination with Bézier curves to execute
route planning. The path will be generated based on a set of constraints that
are based on COLREG and constraints related to navigation. Additionally, the
digital twin will be developed and applied on the real vessel to append a re-plan
step. Further, to carry out the maneuvering, a model based on Roger Skjetne’s
the Maneuvering problem given in [12] will be implemented. Finally, the model
will be evaluated under different scenarios using the real vessel.

1.4 Outline of report

The thesis is made up of five chapters. The first chapter, introduction aims to
give the reader an overview of related work, as well as justify the motivation
behind the thesis, which is followed by specifications of the objective and scope
of the thesis. Chapter 2 presents relevant theories and explain the main con-
cepts related to modelling, maneuvering and path-planning for vessels. This is
followed by a detailed description of Bézier curves and machine learning, as well
as a brief definition of geometrical concepts used later. In chapter 3, a step-wise
development of the final path-planning solution is made, as well as defining the
test scenarios. Finally, in chapter 4 the results are discussed, followed by a
conclusion in chapter 5.

13

Chapter 2

Theory

2.1 Mathematical modelling of the vessel

As mentioned in section 1.2.6 a suitable simulator of the real life-problem is nec-
essary to achieve appropriate results. In the following chapters a mathematical
definition from control theory for a dynamic vessel is presented.

2.1.1 Process plant model for vessel

To develop an adequate robust controller, good knowledge of the process or
system to be controlled is necessary. In control theory this is accomplished by
developing mathematical equations describing the process described as a pro-
cess plant model [2]. The objective of the process plant model is to describe the
real process as detailed as possible. In general, process plant model is used to
evaluate the performance and robustness of the designed controller. The equa-
tions are usually derived from laws of physics which describes the dynamics and
motion of the system. For marine vessels, the model is usually separated into a
low-frequency model and wave-frequency model, which is summed using super-
position to describe the real vessel motion. The low-frequency model considers
loads from second-order mean- and slowly varying waves, which are character-
ized as non-linear. On other hand, the wave-frequency takes motion created by
first-order wave in account. The latter is usually presented as a linear model.
An universally accepted process model defined by Thor I. Fossen in [61] for
motion in 6 degrees-of-freedom is presented below:

MRB ν̇ +CRB(ν)ν +MAν̇r +CA(νr)νr +DL(νr) +DNL(νr)νr +Gη = τ (2.1)

η̇ = JΘ(η)ν (2.2)

• MRB : Rigid-body mass matrix

• CRB : Rigid-body centripetal and Coriolis matrix

14

• MA: Added mass matrix

• CA: Added mass Coriolis and centripetal matrix

• DL: Linear damping matrix

• DNL: Non-linear damping matrix

• G: Restoring forces and moments vectors

• τ : Generalized thrust and environment force vector

2.1.2 Control plant model for vessel

When developing a controller or observer, a model of the process is usually also
incorporated in the design. Generally, the process plant model presented in
the previous section may occur overly complicated in most cases. Hence, we
often try to establish a more simplified model. In control theory this model
is termed as the control plant model. Although the model is characterized as
simplified, the control plant model still describes the main dynamics of the
process adequately. For a vessel the control plant model usually neglect the
non-linear components, which results in the model below:

MRB ν̇ + CRB(ν)ν +MAν̇r +DL(νr) +Gη = τ (2.3)

η̇ = JΘ(η)ν (2.4)

• MRB : Rigid-body mass matrix

• CRB : Rigid-body centripetal and Coriolis matrix

• MA: Added mass matrix

• DL: Linear damping matrix

• G: Restoring forces and moments vectors

• τ : Generalized thrust and environment force vector

15

2.1.3 Generalized inertia forces

System inertia matrix M including added mass is given as:

M =

m−Xu̇ 0 −Xẇ 0 mzG −Xq̇ 0

0 m− Yv̇ 0 −mzG − Yṗ 0 mxG − Yṙ
−Zu̇ 0 m− Zẇ 0 −mxG − Zq̇ 0

0 −mzG −Kv̇ 0 Ix −Kṗ 0 −Ixz −Kṙ

mzG −Mu̇ 0 −mxG −Mẇ 0 Iy −Mq̇ 0
0 mxG −Nv̇ 0 −Izx −Nṗ 0 Iz −NṘ

(2.5)

The parameter m represents mass of the vessel, while Ix, Iy, Iz are moments
of inertia in the directions x, y and z, respectively. Izx = Ixz on other hand,
is the products of the inertia matrices. Xu̇, Xẇ, Xq̇ and Yv̇ symbolize the
zero-frequency added mass coefficients.

2.1.4 Generalized Coriolis and centripetal forces

In equation 2.6 the matrix CRB(ν) represents the skew-symmetric Coriolis and
centripetal matrix for the rigid body, while CA symbolize the Coriolis and cen-
tripetal matrix of added mass.

CRB(ν) =

0 0 0 c41 −c51 −c61

0 0 0 −c42 c52 −c62

0 0 0 −c43 −c53 c63

−c41 c42 c43 0 −c54 −c64

c51 −c52 c53 c54 0 −c65

c61 c62 −c63 c64 c65 0

 (2.6)

CA(νr) =

0 0 0 c41 −c51 −c61

0 0 0 −c42 0 −c62

0 0 0 −c43 −c53 0
0 c42 c43 0 −c54 −c64

c51 0 c53 c54 0 −c65

c61 c62 0 c64 c65 0

 (2.7)

16

2.1.5 Generalized damping forces

In general, we divide the damping forces into a linear and non-linear compo-
nent. For increasing speed and turbulent flow, the linear damping is almost
distinguishable as compared to the contribution from the non-linear damping.
Likewise for velocities close to zero, the linear damping becomes more important
in accordance with the non-linear damping.

DL = −

Xu 0 Xw 0 Xq 0
0 Yv 0 Yp 0 Yr
Zu 0 Zw 0 Zq 0
0 Kv 0 Kp 0 Kr

Mu 0 Mw 0 Mq 0
0 Nv 0 Np 0 Nr

 (2.8)

DNL(νr, γt) = 0.5ρwLpp

DCcx(γr)|Ucr|Ucr
DCcy(γr)|Ucr|Ucr
BCcz()γr|w|w

B2Ccφ(γr)|p|p+ zpyDCcy(γt)|Ucr|Ucr
LppBCcθ(γr)|q|q − zpzDCcx(γt)|Ucr|Ucr

LppDCcψ(γr)|Ucr|Ucr

 (2.9)

2.1.6 Generalized restoring forces

The generalized restoring matrix G consist of the linear gravitation and buoy-
ancy force coefficients. Since a ship in general is symmetric in the xz-plane, we
get the following matrix:

G = −

0 0 0 0 0 0
0 0 0 0 0 0
0 0 Zz 0 Zθ 0
0 0 0 Kφ 0 0
0 0 Mz 0 Mθ 0
0 0 0 0 0 0

 (2.10)

17

2.2 Path following: The Control problem

The universal goal of a vessel is to get from an initial location to a desired
location. This is done by sailing or steering the vessel along a desired path.
In general, to achieve this, the control problem is separated into two sub-tasks.
The first task defined as the Geometric task is usually the main task. That is
for the output of the system, such as the position of a vessel, to converge to a
desired path yd(s). yd is a parametric function of the path variable s. By using
the path variable we can add constraints on the dynamic behaviour of the vessel
while following the path. This leads us to the second task, the Dynamic task.
Usually, the dynamic tasks revolves around controlling the speed or acceleration
of the system along the path. In motion control for a vessel one of two strategies
are usually applied [11]:

• The tracking control problem: The control objective is to trace a target or
point moving through its trajectory. The trajectory describes the motion
of the object described mathematically by the geometric of the path or
position over time. If y(t) represents the output of a control system, and
yd(t) trajectory, we can define this mathematically as:

lim
x→∞

(y(t)− yd(t)) = 0 (2.11)

• The path following control problem: The control objective is to converge
and follow a predefined path which is independent of time, with non-zero
motion. Let us define a function d(y;P), where P is equivalent to the
desired path yd(s), which measures the distance from y to P for each y ∈
Rm.
That is for y ∈ P d(y;P) = 0 and for y /∈ P d(y;P) > 0. Then we can
define the path following problem mathematically as:

lim
x→∞

d(y(t);P) = 0 (2.12)

In the latter one usually sets a desired forward speed, and control the heading
to follow the desired path, such that the problem is only focused on solving
the geometric path. However, in the former yd(t) is a time-dependant function.
Hence, by differentiating with respect to time one and two times, we can obtain
the desired speed and acceleration, respectively. In other words, the tracking
problem combines the geometric and dynamic task, because yd(t) defines the
desired position, velocity and acceleration of the vessel. In 2005 Roger Skjetne
proposed an alternative method called the Maneuvering Problem [12]. The
Maneuvering problem breaks the problem into two sub-tasks, the geometric
task and the dynamic task. During path-following the vessel initially attempts
to satisfy the dynamic task, such as a speed assignment, while tracing the path.
However, if the vessel faces difficulties following the path, it can sacrifice the
speed assignment to improve the path-following. A detailed presentation of the
Maneuvering problem follows below.

18

2.2.1 The Maneuvering problem

In general for a system with output y ∈ Rm, we can define the points in the
desired path the set:

P : {y ∈ Rm : ∃s ∈ R s.t. y = yd(s)} (2.13)

yd(s) represents the desired path parametrized by the continuous path variable s.
Based on this we can establish the maneuvering problem based on the following
two tasks as presented in [12]:

1. Geometric task: For any continuous function s(t), force the output y to
converge to the desired path yd(s):

lim
t→∞

|(y(t)− yd(s(t)))| = 0 (2.14)

2. Dynamic task: Satisfy one or more of the following assignments:

(a) Time assignment: Force the path variable s to converge to a de-
sired time signal vt(t):

lim
t→∞

|s(t)− vt(t))| = 0 (2.15)

(b) Speed assignment: Force the path speed ṡ to converge to a desired
speed vs(s(t), t)

lim
t→∞

|(ṡ(t)− vs(s(t), t))| = 0 (2.16)

(c) Acceleration assignment: Force the path acceleration ¨s(t) to con-
verge to a desired acceleration va(ṡ(t), s(t), t)

lim
x→∞

|s̈(t)− va(ṡ(t), s(t), t)| = 0 (2.17)

19

2.3 Path parametrization

Recall the parametrized desired path yd(s) used to define the Geometric task
in equation 2.14. In this section we will consider details concerning the de-
velopment of the parametrized path. In general we represent the desired path
with one of two types: straight-line path or curved path. The former is the pre-
ferred due to simplicity. Straight-line path-following is usually based on way-
point tracking, where way-points are defined along the path, and connected by
straight-lines and circle arcs. The circle arcs between two straight-lines describes
the desired turning rate to avoid sharp turns. One drawback with this method
is the jump in desired yaw-rate rd during transition from one path to another.
This is due to the fact that rd = 0 while on the path, but rd = constant along the
circle arc, thus creating a jump. This can be avoided with interpolated paths,
such as a curved path. For curved path-following we define the entire desired
path with a geometric curve parametrized by the continuous path variable s.
There are numerous ways to design such a curve, but in this thesis we consider
the Bézier Curve.

2.3.1 Bézier Curve

A Bézier curve is a parametric curve based on Bernstein polynomials, which
is mainly used in Computer Aided Geometric Design [62]. It was originally
formulated by Dr. Pierre Bézier during the 1960s for sketching the design of
Renault cars. In general, a Bézier curve of n degree consist of n+1 control
points P0, P1,..., Pn as observed in figure 2.1. The Bézier curve is designed
such that it always passes through the first and the last end-point. In addition,
it has the property of being tangential to the control polygon at end-points.
The control polygon is the polygon created by connecting the control points in
ascending order. The equation for Bézier curve can be derived by considering

Figure 2.1: Various Bèzier curves and their respective degree n

the equation for center of mass for a set of point masses. Let us imagine four
control points P0, P1, P2, P3 placed as illustrated in figure 2.2. Each point with
a point mass m0, m1, m2, m3, respectively. From elementary physic courses we
know that the center of mass defined by point P can be derived as:

20

Figure 2.2: The four control points P0, P1, P2, P3 and the center of mass P

P =
m0P0 +m1P1 +m2P2 +m3P3

m0 +m1 +m2 +m3
(2.18)

Further, let us extend the point masses to be a function of an arbitrary param-
eter t ∈ [0, 1]. In particular let:

m0(t) = (1− t)3, m1 = 3t(1− t)2 m2(t) = 3t2(1− t) m3 = t3 (2.19)

When the variable t is adjusted, the center of mass is moved accordingly. If we
draw all the center of masses for each t, based on the control points in figure
2.2, we get the following curve:

Figure 2.3: The final curve representing center of mass for t ∈ [0, 1]

21

Since the point of masses are functions of degree three, the resulting Bézier
curve becomes a cubic curve. Finally, note that when we sum the point masses
we get:

(1− t)3 + 3t(1− t)2 + 3t2(1− t) + t3 = [(1− t) + t]3 = 13 (2.20)

Thus equation 2.18 reduces to:

P = m0P0 +m1P1 +m2P2 +m3P3 (2.21)

As previously mentioned, Bézier curve has the property of always passing through
the first and last control point. This becomes evident if we look at the plot of
the point masses as functions of t: Notice that for t = 0, all the masses are

Figure 2.4: The point masses as function of t ∈ [0, 1]

equal to 0 except for m0 = 1. Similarly for t = 1 m0 = m1 = m2 = 0, while
m3 = 1.

In general, the mass functions mi(t) are labelled as ”blending functions” de-
scribed mathematically Bni (t). The blending function which will vary depending
on the type of curve. Particularly for the Bézier curve, the blending function is
based on Bernstein polynomials defined as:

Bni (t) =

(
n

i

)
(1− t)n−iti i = 0, 1, .., n (2.22)

Thus we can derive the more general equation of Bézier curve for degree n as:

P (t) =

n∑
i=0

(
n

i

)
(1− t)n−itiPi (2.23)

22

Finally, two additional key properties of the Bèzier curve has to be noted.
Let us first consider an arbitrary Bézier curve where a nail is hammered at each
control point. Further, imagine that we enclose this area with a rubber-band
resulting in the shaded areas seen in the figure 2.5 below. This area is defined

Figure 2.5: The convex hull for various Bézier curves

as the convex hull. This illustrates a key property of Bézier curve, namely
that the Bézier curve always lie within the convex hull area as observed in the
figure. This becomes apparent if we recall the center of mass example, because
the center of mass cannot lie on the outside the convex hull. The second key
property is termed as Variation diminishing property. Principally, it states that
the actual curve does not ”wiggle” more than the actual control polygon. In
simple manner, it assures that the curve is smoother than the control polygon.

23

2.4 Geometrical intersections

In the following two chapters, the mathematical definitions to determine geo-
metrical intersections are derived. The motivation behind this is to be able to
discover collisions between objects later in the thesis.

2.4.1 Intersection between two line segments

Consider two line segments p and q given by the coordinates (p1, p2) and (q1,
q2) in the x,y-plane. The aim is to determine if the lines intersect. To achieve
this, let us first consider the definition of orientation for triplet of points as seen
in figure 2.6. If there is a left turn as seen in the far left example, the orientation

Figure 2.6: Types of orientation. From left: Counterclockwise, clockwise and
collinear.

is defined as counterclockwise. In a similar manner, if there is a right turn, the
orientation is clockwise. If there is no turn as in the far right case, the orientation
is defined as collinear. To determine the orientation mathematically one can
compute the slopes between two pairs of the triplet of points and compare the
values. For the example in figure 2.7 the slopes are given as:

(p1, p2) : σ =
y2 − y1

x2 − x1
(2.24)

(p2, p3) : τ =
y3 − y2

x3 − x2
(2.25)

• If σ > τ the orientation is clockwise.

• If σ < τ the orientation is counterclockwise.

• If σ = τ the orientation is collinear.

Figure 2.7: The distances in x- and y-direction between triplet of points.

24

Based on orientation one can verify if two line segments intersect if and only if
one of the two conditions are fulfilled [63]:

1. The general case:

• The triplet of points (p1, p2, q1) and (p1, p2, q2) have different ori-
entations

• The triplet of points (q1, q2, p1) and (q1, q2, p2) have different orien-
tation.

2. The special case:

• The triplet of points (p1, p2, q1), (p1, p2, q2), (q1, q2, p1) and (q1, q2,
p2) are all collinear

• The x-projection of line segment p intersect line segment q

• The y-projection of line segment p intersect line segment q

For more detailed understanding, it is advised to study appendix A.7 with
illustrative examples.

2.4.2 Intersection between a circle and line segment

Consider the problem in figure 2.8. The aim is to determine if line segment
AB intersects with the circle with radius r. To do this, one simply can project
the vector AC onto line AB, such that the projected vector AD is constructed.
From the figure, it is obvious that if CD is less than or equal to the radius of

Figure 2.8: Problem formulation of determining the intersection between circle
and line segment.

the circle, the line segment is intersecting the circle. Using Pytaghoras theorem
CD can be found as:

CD =
√
AC2 −AD2 (2.26)

where criteria for intersection is satisfied for CD ≤ r.

25

2.5 COLREG

To prevent collision in ocean traffic IMO established the convention Interna-
tional Regulations for Preventing Collision at Sea (COLREG), which defines
a set of navigation rules to be complied by the vessels and crew travelling on
the sea. Therefore, in order to develop adequate path-planning solution, it is
important to incorporate the legal rules in the model. However, unpredicted
situations may arise, where other vessels are either unable or unwilling to com-
ply to the rules, as already exemplified in [6]. Hence, highlighting the necessity
of a human operator in a supervising role. In total COLREG, covers 40 rules
and regulations for different scenarios at the sea, as well as requirements on
equipment to prevent collision. Obviously, implementing and testing for all the
scenarios in one thesis is impracticable. Therefore, only Rule 14 Head-on situa-
tion (see figure 2.9 for illustration) is considered, which consist of the following
three conditions [64]:

(a) When two power-driven vessels are meeting on reciprocal or nearly recip-
rocal courses so as to involve risk of collision each shall alter her course
to starboard so that each shall pass on the port side of the other.

(b) Such a situation shall be deemed to exist when a vessel sees the other ahead
or nearly ahead and by night she could see the masthead lights of the other
in a line or nearly in a line and/or both sidelights and by day she observes
the corresponding aspect of the other vessel.

(c) When a vessel is in any doubt as to whether such a situation exists she
shall assume that it does exist and act accordingly.

Figure 2.9: Head-on situation as defined by COLREG rule 14.

26

2.6 Machine learning: Supervised learning

Machine Learning is the field of study that gives computers the ability to learn
without being explicitly programmed [65]. This is a popular quote presented by
Arthur Samuel. In 1959 he developed the Samuel Checkers-playing Program,
which was one of the earliest invention demonstrating self-learning capabilities.
Hence, he is often considered the godfather of machine learning (occasionally
also termed statistical learning). Principally, the quote states that a computer
program that is programmed such that it is able to learn without interaction
from a third-party (i.e human operator), is applying machine learning to some
extent. A more formal description is presented in [66]: A computer program is
said to learn from experience E with respect to some class of tasks T and perfor-
mance measure P, if its performance at tasks in T, as measured by P, improves
with experience E. At first-sight the definition may seem ambiguous. To clarify
consider an example of a computer-program learning to play chess. In this ex-
ample we would define the task T of the program as playing chess. Further, to
measure the performance P of the program we have to identify a good criteria.
This can be percentage of games won or some other suitable criterion. Finally,
the experience E is gained through playing matches against an opponent. Based
on this we can state that the computer-program is learning to play chess, if the
percentage of games won is increasing as the program is playing games against
opponents.

Machine learning certainly have an advantage compared to a solution based
on traditional programming. If we reconsider the previous example and try to
implement every move and countermove explicitly, we quickly realize that it be-
comes an impossible task. Although, the popularity of machine learning-based
solution have increased recently, one can find several successful invention exist-
ing already. Such as E-mail spam filtering based on keywords, speech recog-
nition software like Alexa and Apple Siri, and Face detection application to
unlock phones. In general, we differentiate between three main types of learn-
ing within machine learning: Supervised learning, Unsupervised learning and
Reinforcement learning. In Supervised learning the computer program is given
a set of data containing details about the attributes, also termed features, and
an associated target or prediction variable. This could for instance be type of
dogs, were the features describes their colour, size, age and so on. Based on
the features, the program attempts to learn the relation between the features
and the prediction variable, which is type of dogs. Later, the algorithm can
be applied to predict correct dog-type on new unseen data. This can draw
similarity to how humans learn and differentiate objects. Initially, we perceive
an object based on its features, and retain information about the definition or
”target name” to later identify similar objects. In the case of unsupervised
learning, one does not give any prior information about the target variable or
characteristics of data. Instead, the algorithm attempts to analyze and detect
any underlying structure not apparent to the human eye. An example would
be uncovering similarities between patients with a particular decease, such as

27

blood type or age-group. On other hand, in reinforcement learning one ap-
plies a reward-based learning. Initially, the program also termed as the agent
makes an action. Based on the new state the agent attains, it is either rewarded
or penalized. Thus, implicitly approving correct actions, in a similar manner
to learning by trial and error. Reinforcement learning have a wide application
within self-learning programs and robots like Google DeepMind’s famous agents
who learned to play the Atari games. Additionally, combination and variations
of these three also exists, such as semi-supervised learning which combines un-
supervised learning and supervised learning. In this chapter a more detailed
explanation on supervised learning and types of algorithms will be given.

2.6.1 Supervised Learning

The main objective of supervised learning is to make accurate predictions for
new data. This is done through identifying how the features influence the out-
put, which is as mentioned the prediction variable. The name supervised orig-
inates from the fact that the target variable ”supervises” the model’s analysis
in order to predict the correct target. In general, one distinguishes between
two types of prediction model, classification and regression. In the former, the
target variable is a qualitative variable such as dog, cat, fish or group number
1,2,... Hence, the model tries to predict the class membership. On other hand,
in regresseion the target variable is a quantitative value part of a continuous set,
which means it potentially can take any number. Building a machine learning
model can be divided into three steps:

1. Data collection: This is the initial step where the aim is to collect any
relevant data from databases, file systems and other resources.

2. Data preparation: As a consequence of computer- and information
technology development, massive quantity of data is available only few
keystrokes away. However, in most cases the data is stored in a useless
state. Additionally, only a small amount of the data is considered valuable.
Thus, data preparation is required, which involves cleansing, manipulat-
ing and assembling the collected data to an applicable state. This step
is also often called feature engineering, because it involves selecting the
features to be used in the model. Therefore, it is considered as the most
important part of the process, because selecting the correct data decides
the final performance of the model.

3. Model selection: In 1997 David Wolpert and William Macready stated
the No free lunch-theorem (NFL) [67]. The NFL states that there is no one
universal model or algorithm that can be applied for all problems. In other
words, a model that performs well in one problem, may be unsuitable in a
different domain. Hence, in model selection one usually have to evaluate
and compare different models to uncover the most suitable model. Usually
one selects a set of models that are fitted or trained using the training

28

data extracted from previous step. Each model has its own set of hyper-
parameters that is tuned during training, based on a common criteria
across the models. Model selection often involves many repeating loops of
tuning and evaluation of the models before one is finally selected.

4. Prediction: The final step is to implement the model to predict on the
real problem.

The previous process can also be termed in a mathematical way. Assume we
observe a quantitative value Y, and p number of features. X1, X2,... , Xp. Sup-
pose there is a relation between Y and X = (X1, X2, ..., Xp). Then supervised
learning says that we can develop the following general relationship:

Y = f(X) + ε (2.27)

f is a fixed unknown function of the features X, while ε is a random error
term independent of X and zero mean. We say that f provides the systematic
information that the features X provides about the target Y. To clarify the
notations, let us consider an example with only one feature to simplify the
illustration. By studying the left graph of figure 2.10 we can conclude that based

Figure 2.10: Left graph: Simulated data-sample of points used to determine
f(x). Right graph: The true form of f(x). The black lines represents the random
error ε

on the feature Years of education there may be some function that gives us the
Income. But let us presume f is known for this example as it is a simulated
example, resulting in the right graph in figure 2.10. The black vertical line
represents the error term ε. Looking at the distribution of data-points above
and below the function f , it is sensible that the total error has zero mean.
However, generally the function f is unknown, and we therefore have to try to
estimate the function based on the set of points. Hence, supervised learning
outlines the possible approaches to estimate this function. If we define the

29

estimate function f as f̂ and the corresponding prediction of target variable Y
as Ŷ , supervised learning gives us the following relationship:

Ŷ = f̂(X) ≈ Y (2.28)

In general, the form of f̂ can be characterized as either non-parametric or para-
metric. A parametric approach consist of two steps:

1. Depending on the chosen approach, one establish a mathematical equa-
tion with parameters. For linear regression, well-known from elementary
math courses, with p numbers of features and ε as defined previously, the
following model can be derived:

Y = β0 + β1x1 + β2x2 + ...+ βpxp + ε (2.29)

2. The problem now reduces to estimating the coefficients β0, β1, ..., βp. This
step is termed as fitting or training the model. For linear regression this
is usually achieved by applying least squares.

However, for non-parametric approach we do not make any assumption of the
form of function f . One such approach is K-nearest neighbor regression. In
K-nearest neighbor the whole training set is kept within the model. During the
prediction step, the given features are used to identify the K-nearest data-points
using for example euclidean distance. The predicted value would then be the
weighted average of the K-points’ target variables. In this case, the variable K
is a hyperparameter that has to be optimized. Generally, non-parametric and
parametric both have advantages and disadvantages. A parametric model is
usually simple to understand, requires little training data and computationally
cheap as there are fewer parameters to be estimated. But since we have defined
the form of function f , the model is constrained. For example, if we choose
linear regression, we assume the relationship between the features and target
variable are linear. Hence, if the true function is non-linear the model will
underfit the true function, thus having the ability to never give an accurate
prediction. This can be solved by choosing a more flexible model. However,
choosing a flexible model has the drawback of increased number of parameters
needed to be tuned. Additionally, if we choose an overly complex model, it may
overfit the data. Principally, overfitting implies that the model is following each
data-point too closely. Since noise naturally occurs in a data-set, overfitting
may lead to ambiguity, especially when predicting on new unseen data.

30

An illustrative overview of these concepts can be studied in figure 2.11. On
other hand, because non-parametric models do not make any assumptions, they
can fit large numbers of functional forms. Thus, the model is more likely to
be close to the true function f . But similar to choosing a more flexible para-
metric model, there is still a possibility of overfitting the model. In general,
non-parametric model requires more data to estimate f̂ because of the com-
plexity of the model in addition to having more parameters to be estimated.

Figure 2.11: Illustration of underfitted model versus overfitted model

The evaluation of the performance of the model consist of three steps:

• Initially, the dataset is split into a training set and test set.

• The training set is used to fit the chosen model.

• Finally, the model is applied on the test set to measure the performance.

In general, this is done by studying the mean-squared error (MSE) of the model,
given by the following mathematical equation:

MSE =
1

n

n∑
n=1

(yi − f̂(xi))
2 (2.30)

Here yi represents the true target value and f̂(xi) the predicted target value

for the ith observation. When the prediction value f̂(xi) is equal to the true
value yi, MSE is 0. Thus, the aim is to minimize the MSE, either by tuning the
parameters or choosing a different model.

31

Consider the measured noisy data-points presented in the left graph of figure
2.12. The black line represents the true model f , while the yellow, blue and
green line represents estimation of model f . If we compare the MSE with
increased flexibility as in the right graph, we see that initially the MSE decreases.
However, at some point the MSE starts increasing again. This implies that there

Figure 2.12: Left graph: The circular points represents the measured noisy data-
points, while the black line represents the true model f . Yellow line is a linear
regression estimation, while blue and green is a more flexible model based on
smoothing splines. Right graph: The MSE plotted against increased flexibility.

is an additional property impacting the MSE. If we derive the equation of the
expected value of MSE squared E(y0 − f̂(x0))2 it can be shown that it consists
of three terms:

E(y0 − f̂(x0))2 = V ar(f̂(x0)) + [Bias(f̂(x0))] + V ar(ε). (2.31)

The last term Var(ε) represents the irreducible error, and will always be present
unless we have measurements without noise. Note that since the first and sec-
ond term always will be non-negative, the total MSE cannot be less than the
irreducible error independent of the model selection. The first term Var(f̂(x0))
represents the variance of our model. Choosing a more flexible model will gen-
erally result in higher variance. In other words, if we change the training set
slightly, the fitted model will have large changes, resulting an overfitted model.
The Bias(f̂(x0))-term represents how much the predicted values differ to the
true values. For instance, if we choose a linear model to predict on a non-linear
problem, the generated predictions will have a considerable error. The bias term
will therefore lead to a substantial impact on the MSE. Hence, to reduce the
total MSE we have to minimize the variance and bias of the model. To reduce

32

the bias, a more flexible model has to be chosen. However, this will increase the
variance of the model, and at some point the variance will overtake the bias.
This trade-off is defined as the Bias-variance trade-off, and illustrates that fit-
ting a perfect model is theoretically impossible as seen in figure 2.13.

Figure 2.13: The blue line represents the bias, the green line represents the
variance and the red line represents the total error.

During the development of the solution several regression models were consid-
ered such as different types of Decision trees, Support Vector machine, K-mean
regression, Lasso regression and Linear regression. Due to the resulting perfor-
mance, only the three best performing models are presented, which are all by
coincidence a branch of the Decision tree-models. This is due to limitation on
the length of the thesis. However, for the curious reader, [68] is recommended
for further reading on the latter models.

33

2.6.2 Decision tree

In contrast to linear regression, decision tree performs efficiently in non-linear
problems. The idea behind decision tree is best explained with an example.
Consider a problem where the aim is to predict the salary of base ball players,
based on the features numbers of hit and experience in years. An artificial
training set is presented in figure 2.14, where salaries are presented in a heat
map. Low salaries are given in blue and green, while high salaries are given

Figure 2.14: Heat map of salaries based on experience in years and numbers of
hit.

in yellow and red. Notice that the salaries are given in a log-scale. The main
objective of decision regression tree is to divide the area in smaller rectangles
R1, R2,..., RJ , such that observations that fall within the same area are given
the same prediction, that is the average of all the training observation in the
rectangle. The resulting model after application of decision tree can be studied
in figure 2.15. In other words, for combinations of the features numbers of

Figure 2.15: The resulting rectan-
gular split applying decision tree re-
gression of the training data.

Figure 2.16: The resulting tree vi-
sualization of the rectangular split.

hit and experience in years that fall into a region Ri, will all have the same
prediction. The name decision tree arise from the fact that the resulting model
can be visualized using an upside down tree consisting of branches and leaves

34

connected by nodes. The resulting tree for this example is presented in figure
2.16. Notice that the bottom values (leave nodes) are equivalent to the average
value of the rectangles R1, R2 and R3 in figure 2.15. At each node, a test is
applied on one of the features, and the test generates the rectangular areas.
The test and equivalent rectangle boundary is indicated by the circles. Based
on the outcome of the test, we either move down the left or right branch to
the next node. This process is repeated until a leave node is reached, which
gives the final prediction. For instance, let us consider a baseball player with
110 hits, and 6 years experience. Applying the model, at the first node, since
the player have more than 4.5 years experience, we would move down the right
branch. Similarly, the natural choice would be to move down the left branch
at second node, since the player has less than 117.5 hits. Thus, the estimated
salary would be the inverse log10 of 6, which is 1 000 000. The general process
can be summarized to the following two steps:

1. Based on a training set, the feature space, which is the set of all possible
values of X1, X2,..., Xp, is divided into non-overlapping regions R1, R2,...,
RJ similar to figure 2.15.

2. All observations that falls into a region Rj are given the same prediction,
that is the mean target value of all the training observation in region Rj .

Although, the region in theory can take any shape, high-dimensional rectangles
are chosen for simplicity of the predictive model as rectangles are easier to
interpret. To determine the rectangles R1, R2,..., RJ , decision trees tries to
minimizes the residual sums of square (RSS) given by:

RSS =

J∑
j=1

∑
i∈Rj

(yi − ŷRj)2 (2.32)

where ˆyRj represents the mean response of the training observations in Rj .
Note that ˆyRj will be equivalent to the estimated value of any observation
that falls into the region. However, since every partition of the feature space
has to be considered, the resulting problem may be computationally infeasible
depending on the complexity of the problem. As a consequence, a top-down
greedy approach is applied known as recursive binary split. The method is top-
down, because it starts in the top node when all the training observation belongs
to one region. When a split in predictor space is made, two new branches are
created. The approach is termed greedy because at each node, the best step at
the current state is made instead of looking ahead and picking a split that would
potentially lead to the overall best tree. To make a binary split, a predictor Xj

and cutpoint s is first selected, such that the split results in the regions {X |
Xj < s} and {X | Xj ≥ s} that leads to greatest reduction of RSS. This test is
made for all the predictors and all possible values of cutpoint s, until the best
is found. Mathematically this is given as:

R1(j, s) = {X|Xj < s} and R2(j, s) = {X|Xj ≥ s} (2.33)

35

where the goal is to find j and s that minimizes:∑
i:xi∈R1(j,s)

(yi − ŷR1)2 +
∑

i:xi∈R2(j,s)

(yi − ŷR2)2 (2.34)

The parameter ŷRj represents the the average of the training observation in Rj ,
which again is equivalent to the prediction of any observation that falls into the
region. After a region is split into two, we continue and split one of the two re-
gions into two smaller regions, and repeat this process until a stopping criterion
is met, for instance until no region contains than ten training observation. The
hyperparemeters to be tuned is the size of the tree, which is implicitly decided
by choosing a stopping criterion. In general, fitting a too large tree may lead
to overfitting. Similarly, fitting a too small tree may lead underfitting. There-
fore, the size of the tree has to be considered as a bias-variance trade-off problem.

Because of the resulting tree structure illustrated in figure 2.16, regression trees
are generally easy to interpret and visualize even for someone with limited do-
main knowledge. Especially, since it mirrors human decision-making process.
However, as the trees grow larger, they become harder to interpret. In addition,
decision trees are usually exposed to high variance, and small changes in the
data may lead to large changes on the final tree. Hence, random forest and
gradient boosting are generally stronger extensions of decision trees, as they
address these drawbacks.

2.6.3 Random forest

As mentioned, decision trees suffer from high variance, which means a small
change in the training set may lead to big change in the final tree. One ap-
proach to reduce the variance, is to apply bootstrap aggregation, also known
as bagging. Consider B independent identically distributed observations of a
random variable X with same mean and variance σ2. The mean can be found
computationally as:

X̄ =
1

B

B∑
b=1

Xb (2.35)

Further, the variance of the mean can be found as:

V ar(X̄) = V ar(
1

B

B∑
b=1

Xb) =
1

B2

B∑
b=1

V ar(Xb) =
σ2

B
(2.36)

This implies that by averaging, the variance of the sample reduces. The idea be-
hind bagging (bootstrap aggregation) is to draw, with replacement, B numbers
of smaller training samples from the original training set, assuming each sample
point has the probability 1

n of being drawn, and build a separate tree using each

of the training sample. This results in f̂1(x), f̂2(x),...,f̂B(x), prediction models.
To make a prediction, we average over all the available B models, which results

36

in a prediction with lower variance. Mathematically said, for each bootstrap
sample b = 1, 2,..., B a decision tree f̂∗b(x) is trained. To make a prediction we
take the average of the prediction of all trees such that:

f̂bag(x) =
1

B

B∑
b=1

f̂∗b(x) (2.37)

However, if the data set contains one strong feature, the decision trees produced
from each of the bootstrap sample may become too similar. This is due to
the fact that most of the trees will use the same strong feature, resulting in
a highly correlated prediction. Therefore, an approach that decorrelates the
trees is necessary. This is achieved by using same strategy as above using
the bootstrapped sample, but instead when a split is made, the model is only
allowed to consider m features of all the p features available where m < p. This
method is called random forest, and forces the trees to also consider other weaker
predictors, resulting in a less correlated prediction. The choice of m depends
on the strength of the predictors; The stronger the predictors, the smaller the
selection of m. However, in general, m is chosen as p

3 . Note that for m = p the
model becomes bagging.

2.6.4 Gradient Boosting Regressor

Recall that in bagging, we fitted B prediction models, each on a training sample
drawn from the original set, and averaged over all models to create the final pre-
diction. Boosting is a similar method, however each model is built sequentially,
by using information from the previous tree. Unlike bagging, boosting does not
use bootstrapped samples. Instead, a decision tree f̂(x) with d splits is built,
which results in a tree with d+1 terminal nodes. The prediction model is then
fitted to the residuals of the model resulting in a new tree f̂ c. This three is
then added to the original tree, but with a weight such that the new prediction
model is:

f̂(x) = f̂(x) + λf̂ c(x) (2.38)

This is repeated until C numbers of trees are made. This approach is termed as
slow learning, because the model tends to slowly improve in its weak areas by
fitting multiple trees on the residuals. In general, models that learn slowly tends
to perform very well. Since the aim of the model is to find the lowest MSE,
a gradient descent-approach is applied [69]. The main idea behind gradient
descent is to move in the direction with the steepest change in the error, similar
to downhill climbing. In general, the following hyperparameters have to be
considered for Gradient Boosting Regressor:

• Number of trees C: In general, too big C would lead to overfitting, while
too small C means not much information is used.

• Learning rate λ: This parameter decides how fast the model learns, by
deciding how much each new tree contributes to the total model. Choosing

37

a small value, will result in slower learning. In general, smaller learning
rate would require larger number of trees C, which therefore is a trade-off
problem.

• Numbers of split d: This parameter decides the complexity of the tree.
Usually, trees with small d results well, such as d = 1 which result in a
stump.

38

Chapter 3

Design and implementation

Based on the discussion in the literature review, it is evident that deep learning-
based solutions do not thoroughly satisfy the expected requirements of the class
society. Especially, in terms of safety and providing sufficient transparency,
while executing the task. At the same time, research on supervised methods for
path-planning have been limited. Therefore, in the following section a step-wise
description of a self-controlling path-planning algorithm is developed. The pro-
posed solution will generate a parametrized Bézier curve from an initial state
to a terminal state. The generated curve will then be utilized by a maneuvering
model based on Roger Skjetne’s the Maneuvering problem, to reach the ter-
minal state. Further, to comply with navigation rules, a score paradigm will
be developed to stimulate the algorithm to choose suitable paths in terms of
collision-avoidance, rules from COLREG and distance travelled. The super-
vised method to be used in the algorithm is selected based on benchmarking. In
addition, the simplified model of the real vessel will be added as a digital twin
on the real vessel. The aim is to forecast possible collision to initiate re-pathing.
Finally, a set of test scenarios are established to evaluate the model.

3.1 Simulator

In this section a detailed presentation of the test- and verification simulator
is presented. The simulator is developed and run in a Python environment.
Even though the sea can be considered infinitely large, modelling such a large
environment may be computationally expensive. As a consequence, the envi-
ronment is bounded in xboundary ∈ [0, 4000] and yboundary ∈ [-400, 400]. The
main motivation behind choosing such a rectangular environment, is simply to
easier experiment on head-on situations. It has to also be emphasized that the
environment does not model environment forces.

39

3.1.1 Vessel model

In general, when developing an algorithm, one does not have access to the real
vessel. Additionally, the information on the real physical unit is usually con-
strained. Hence, to portray these limitations, two vessel models were developed
in Simulink. The design of the vessel models are based on NTNU’s research
vessel R/V Gunnerus, of which the main dimensions can be found in table 3.1
below. The model of the real vessel is developed at Norwegian University of Sci-

Parameter Value [unit]
LENGTH OVER ALL (LOA) 31.25 [m]
LENGTH BETWEEN
PERPENDICULAR (LPP)

28.90 [m]

BREADTH MIDDLE (BM) 9.60 [m]
BREADTH EXTREME 9.90 [m]
DEPTH 2.79 [m]
DEAD WEIGHT 107 [tonn]
MAIN ELECTRIC PROPULSION 2 X 500 [kW]
MAIN GENERATORS 3 X 450 [kW]
BOW TUNNEL THRUSTER 1 X 200 [kW]
SPEED AT 100% MAXIMUM
CONTINUOUS RATING

28.90 [m]

CRUISING SPEED 4.8 [m/s]

Table 3.1: Main dimensions of R\V Gunnerus

ence and Technology (NTNU) by the Department of Marine Technology, and
is based on the process plant model of a vessel presented in section 2.1.1. The
second model is based on the control plant model for a vessel with 3-degrees of
freedom. Recall that the control plant model only contains the most essential
dynamics of the actual process. Therefore, it will be used as a digital twin of
the real vessel, utilized for training of the proposed solution, and integrated in
the real vessel. The numerical matrices of the real vessel and digital twin can
be found in appendix A.1 and A.2, respectively. Both models were developed in
Simulink and was transfered to Python using Functional Mock-up Unit-format
(FMU). This was achieved by using the open-source library FMI Kit to convert
the Simulink models to FMU-format, and then running the model in Python
using FMPY [70].

3.1.2 The Maneuvering model

To steer the vessel along the path from A to B, a controller or maneuvering
model is necessary. Hence, a maneuvering model was developed based entirely
on Roger Skjetne’s the Maneuvering problem as defined in section 2.2.1 com-
bined with work done in the course Marine Control Systems 2 at NTNU. In sim-
ilar fashion to the vessel model, the control design was developed in Simulink.

40

Recollect that a parametrization of the desired path ηd is necessary. Hence,
a path parametrization was developed using a cubic Bézier curve. In general,
increasing the degree-of-freedom allows a more flexible path-making which may
be ideal, especially in situations with multiple obstacles. However, in the thesis
the research is limited to scenarios with one obstacle present. The explicit form
of the curve is given mathematically as:

B(s) = (1− s)3P0 + 3(1− s)2tP1 + 3(1− s)t2P2 + s3P3 , 0 ≤ s ≤ 1. (3.1)

P0, P2, ..., Pn defines the n+1 control points for a Bézier curve that has n-
degrees of freedom. For a cubic curve (n = 3), the four control points in the
x, y-plane is made up of the initial position, the final-position, and two points
in-between. It can be assumed that the start- and end-position is known, as
they are defined by the specific mission. In other words, the remaining task is
to determine the two control points in-between. In general, the control points
in-between define the curvature and shape of the path as seen in figure 2.5. The
aim is to choose the control points such that the vessel is capable of avoiding
the obstacles. However, recall that for a vessel the minimum turning rate has to
be considered to avoid sharp turns. By deriving the equation of the curvature
κ for a curve as:

κ(s) =
ẋ(s)y(s)− ẍ(s)ÿ(s)

ẋ(s)2 + ẏ(s)2

3
2

(3.2)

One can establish the following relationship between the curvature and the
minimum turning radius Rmin

|κ(s)| < κmax = 1/Rmin (3.3)

The parameter κmax defines the maximum curvature.

As previously mentioned, the maneuvering problem consist of the following two
tasks:

Geometric task: lim
t→∞

|(η(t)− ηd(s(t)))| = 0 (3.4)

Dynamic task: lim
t→∞

|(ṡ(t)− vs(s(t), t))| = 0 (3.5)

Here, the dynamic task represents the speed assignment defined in section 2.2.1.
From equation 3.1 for cubic Bézier curve we can derive the desired path ηd as:

ηd(s) =

xdyd
ψd

 =

(1− s)3x0 + 3(1− s)2sx1 + 3(1− s)s2x2 + s3x3

(1− s)3y0 + 3(1− s)2sy1 + 3(1− s)s2y2 + s3y3

atan2(∂yd∂s ,
∂xd
∂s)

 (3.6)

Similarly, differentiating the desired path with respect to s once and twice gives:

∂ηd
∂s

=

 ∂xd∂s∂yd
∂s
∂ψd
∂s

 =

3(1− s)2(x1 − x0) + 6(1− s)s(x2 − x1) + 3s2(x3 − x2)
3(1− s)2(y1 − y0) + 6(1− s)s(y2 − y1) + 3s2(y3 − y2)

∂xd
∂s

∂2yd
∂s2
− ∂yd∂s

∂2xd
∂s2

(
∂2xd
∂s2

)2+(
∂2yd
∂s2

)2

(3.7)

41

∂2η

∂s2
=

 ∂
2xd
∂s2
∂2yd
∂s2
∂2ψd
∂s2

6(1− s)(x2 − 2x1 + x0) + 6s(x3 − 2x2 + x1)
6(1− s)(x2 − 2x1 + x0) + 6s(x3 − 2x2 + x1)

((
∂xd
∂s)2+(

∂yd
∂s)2)(

∂xd
∂s

∂3yd
∂s3
− ∂yd∂s

∂3xd
∂s3

)+2(
∂yd
∂s

∂2xd
∂s2
− ∂xd∂s

∂2yd
∂s2

)(
∂xd
∂s

∂2xd
∂s2

+
∂yd
∂s

∂2yd
∂s2

)

((
∂xd
∂s)2+(

∂yd
∂s)2)2

(3.8)

where [
∂3xd
∂s3
∂3yd
∂s3

]
=

[
−6x0 + 18x1 − 18x2 + 6x3

−6y0 + 18y1 − 18y2 + 6y3

]
(3.9)

The speed assignment Us in the dynamic task is given as:

Us =
Uref√

(∂x∂s)2 + (∂y∂s)2

(3.10)

Uref defines the reference speed of the vessel. For R\V Gunnerus the reference
velocity is rounded up to 5 [m/s]. With Lyapunov analysis the maneuvering
problem for the vessel can be solved using a backstepping controller. Consider
the following Control Lyapunov function (CLF):

V1(η, s) =
1

2
z>1 z1 (3.11)

where
z1 = R(ψ)>(η − ηd) (3.12)

The time differentiation of CLF is then given as:

V̇1 = z>1 (ν −R(ψ)
∂ηd(s)

∂s
ṡ) (3.13)

Now choosing ν = α1 as the control law, where

α1(η, s, t) = −Kpz1 +R(ψ)>
∂ηd(s)

∂s
Us(s, t), (3.14)

Kp = K>p > 0 (3.15)

and deriving the relationship:

∂V1

∂s
= −∂ηd

∂s

>
(η − ηd(s)) (3.16)

equation 3.13 can be rewritten to:

V̇1 ≤ −λminKp |z1|2 −
∂V1

∂s
(Us(s, t)− ṡ) (3.17)

In other words, if the dynamic task is solved, the choice of α1 is stable.

42

For the vessel to follow the path ηd(s), an update law for the path variable
has to be specified. Introducing the tracking update law [12] ṡ can be chosen
as ṡ = Us(s, t). Notice that this solves the dynamic task. Hence, the right
side of equation 3.17 cancels out and V̇1 is semi-definite. Recall that z1 is the
tracking-error of the desired path. Since V̇1 is only dependant on z1 it is called
the tracking update law.

The update law can be further modified by using the gradient of the CLF
with respect to path variable s, and dividing with the normalizing modification∣∣∣∂ηd(s)

∂s

∣∣∣, which results in:

ṡ = Us(s, t)−
µ∂V1

∂s∣∣∣∂ηd(s)
∂s

∣∣∣ (3.18)

This is called the modified gradient update law, and reshapes equation 3.17 to:

V̇1 ≤ −λminKp |z1|2 −
µ
∂V 2

1

∂s∣∣∣∂ηd(s)
∂s

∣∣∣ (3.19)

To make V̇1 semi-definite, µ has to be greater than or equal to 0, which solves the

geometric task. However, the dynamic task is reduced to limt→∞ =

∣∣∣∣− µ
∂V1
∂s∣∣∣ ∂ηd(s)∂s

∣∣∣
∣∣∣∣.

By recollecting that ∂V1

∂s = 0 when the geometric task is fulfilled, it is obvious
that the dynamic task is fulfilled as well. Using the maneuvering control law
from equation 3.13 combined with a backstepping control law, a control output
τ can be developed which solves the maneuvering problem for a vessel. By
introducing z2 = ν − α1(η, s, t), equation 3.13 can be rewritten to:

V̇1 = z>1 (z2 + α1 −R(ψ)
∂ηd(s)

∂s
ṡ) (3.20)

Further, consider the new modified CLF:

V2 = V1 +
1

2
z>2 Mz2 (3.21)

Differentiating V2 with respect to time gives:

V̇2 = −z>1 Kpz1 + z>2 (z1 − C(ν)ν −D(ν)ν + τ −Mα1) (3.22)

Observe that by choosing the control output of the vessel τ as:

τ = C(ν)ν +D(ν)ν − z1 +Mα̇1 −Kdz2 (3.23)

where

α̇1 = −Kp(−S(r)R(ψ)>(η − ηd(s)) +R(ψ)>(η̇ − ∂ηd(s)

∂s
ṡ)) (3.24)

−S(r)R(ψ)>
∂ηd(s)

∂s
Us(s, t) +R(ψ)>(

∂2ηd(s)

∂s2
ṡUs +

∂ηd(s)

∂s
U̇s) (3.25)

43

Hence, V̇2 becomes negative definite:

V̇2 = −z>1 Kpz1 − z>2 Kdz2 (3.26)

Which is equivalent to uniformly globally exponentially stability (UGES). The
parameters Kp, Kd and µ had to be manually tuned, which resulted in the
values found in table A.1 in appendix A.3.

3.1.3 Obstacles

The obstacles in the environment are represented through a rectangular box
and a vessel. The rectangle is defined by a length L and breadth B with zero
velocity. The square is enclosed by a circular buffer-zone with diameter 100 [m].
The vessel on other hand, is equivalent to the real vessel presented in section
3.1.1. Similar to the square, the vessel is defined by a length L and breadth B,
and a steady-state velocity. The velocity is chosen randomly each time in the
continuous range [3, 6] to generate additional uncertainty in the environment.
By defining a start-position A and final position B, the vessel will follow a
straight-path from A to B. However, for the re-pathing case, a sudden change
is made in the path of the collision vessel to create unpredictability.

3.2 Machine learning

Because the controller of the vessel is tuned such that the vehicle is able to
converge to the path, the remaining problem is to find a suitable path. A
suitable path in this manner is a pathway that reaches the endpoint, while
satisfying a set of constraints. For a vessel the constraints depends on the
mission, environment, and possible obstacles. However, in this thesis we consider
the most fundamental ones based on COLREG rule 14 presented in section 2.5,
which is related to head-on situation. Hence, the resulting constraints are as
follow:

• Avoid collision: The most important assignment is to avoid collision at
any cost.

• Satisfy navigation rules: When maneuvering and avoiding collision, it
is vital to comply to seafaring rules such as COLREG, more specifically
rule 14a).

• Take the shortest route: A large amount of costs is related to seafaring,
thus an important objective is to reduce the fuel usage. This can be
achieved by taking the shortest route available, among others.

In the following sections a step-wise development of machine learning-based
solution is presented to generate a suitable Bézier curve that satisfies the con-
straints. More specifically, determining the two control points in order to shape
the path.

44

3.2.1 Target variable

In section 3.1.2 it was stated that to generate the path, the remaining problem
was to find the control points. Hence, introducing the control points as the
target variable of the machine learning-model, may seem as the obvious choice
at first sight. However, doing so raises several issues. Assuming the only known
information is the vessel- and environment states, how can the training data
be sampled, such that when the model is trained, the model is is guaranteed
to choose a set of points that satisfy all three constraints as far as possible?
An ideal solution may be be to manually recognize adequate paths and later
sample them as training data. This is similar to how data extraction is done
today. Initially data is collected from databases, file systems and other sources.
The data is then manually cleansed, transformed and stored in a suitable way for
machine learning. However, considering the complexity of the problem, doing
this manually is considered an impossible task. Hence, a score paradigm was
developed based on the constraint instead. The aim is to develop a scoring
function to differentiate the good paths from the bad paths. Notice that since
the score is unavailable during actual decision-making, it cannot be used as a
feature in the model. A possible approach may therefore be to use this to filter
out adequate paths as training data. However, experiments revealed a new issue.
In certain situations, the model frequently predicted control points that violated
the first constraint. This is a result of the model trying to generalize and the fact
that the model has no information about the inadequate paths that were filtered
out. As a consequence, an alternative solution was established where the score
instead is used as the target variable. The idea is to use the model to search for
a set of control points that is positive and maximizes the score. This is achieved
by initially ”guessing” a combination of the control points. To limit the problem
and satisfy the condition of maximum curvature mentioned in section 3.1.2, the
x-points of the control points Cx1 and Cx2 are manually placed 1/3 and 2/3
along the shortest path between initial position and terminal position. Hence,
the remaining points Cy1 and Cy2 defined between [yboundary min, yboundary max]
= [-400, 400] generates the arc necessary to avoid an obstacle. The chosen
control points are then given into the model along with other states, which is
then used to predict a score. The combination of of Cy1 and Cy2 that returns
the highest positive score is saved and used to to generate the parametrized
cubic Bézier curve, which then is given as input to the maneuvering model.
The guessing is made by a random function, which chooses a value between the
boundaries for each control point. The resulting model can be summarized to
following steps:

1. A simulator containing the simplified Digital Twin is utilized to generate
training samples by creating a random path each simulation which is then
followed. Information about the control points necessary to recreate the
path along with other important states are saved as the features. Addi-
tionally, based on the performance of the path in terms of the constraints,
the path is given a reward which is saved as a target variable.

45

2. The data is then used to train a machine learning model, which is selected
based on benchmarking.

3. The model is implemented on the real vessel to generate a path between
initial position and a terminal position. To generate the path a guess on a
set of control points is made, which is then passed to the model to predict
a score. By repeating this process K times, an optimal combination of
control points are found by maximizing the score.

Additionally, the aim of the solution is to be able to address the re-plan stage as
mentioned in section 1.2.5, especially when the head-on vessel makes an unex-
pected action. To achieve this, the simulator of the digital twin is implemented
on the real vessel. For a given rate of repetition along the mission, the current
states of the real vessel, obstacle position and the generated path is handed to
the simulator to forecast possible collision. If the simulation of the digital twin
results in collision, a new path is generated by the model for the real vessel
using the current state as initial state.

3.2.2 The Score Paradigm

As mentioned, the score paradigm is developed based on the constraints de-
veloped in section 3.2. To address the first constraint a circular safe-zone is
established enclosing the obstacle with a radius r. The objective is to define r
such that the vessel can avoid doubtful situation as defined in 14c) of COLREG
by taking early actions. If the vessel crosses the safe-zone a negative penalty of
RCollision = -100 is added to the score and the simulation is terminated. The
large negative value is due to the objective of avoiding collision at any cost.
Thus, any combination of control points that results in a path with negative
score will be distinguished by the model. To determine if a collision occured,
equation 2.26 is used.

To comply with COLREG rule 14a) a rectangular reward-zone is created as
seen in figure 3.1 and 3.2. From section 2.5 it can be derived that the correct
action for a head-on situation is to maneuver starboard. Therefore, the zone
is placed on the star-board side relative to the headings of the vessels. The
headings of the vessels are determined by the velocity vectors as indicated in
the figures. Whenever the vessel navigate on the star-board side in respect to
the obstacle, a score of RCOLREG is added to the score function. Note that
although the circular safe-zone and the rectangular reward-zone intersect, the
net score would be strictly negative due to the large value of RCollision.

46

500 550 600 650 700 750
East position [m]

−50

0

50

100

150

200

250

No
rth

 p
os
iti
on

 [m
]

V̄collision

V̄vessel

Figure 3.1: Illustration of the def-
inition of reward zone in terms of
COLREG 14a), relative to the head-
ing of opposite vessel.

350 400 450 500 550 600 650
East position [m]

0

50

100

150

200

250

No
rth

 p
os
iti
on

 [m
]

V̄collision
V̄vessel

Figure 3.2: Illustration of the def-
inition of reward zone in terms of
COLREG 14a), relative to the head-
ing of opposite vessel.

In general, the shortest path from A to B is defined by a straight-line. Hence,
the desired behaviour of the vessel is to maneuver in a straight-path whenever
there is no object in sight. Additionally, in situation where objects are present, it
is still preferred that the vessel is as close to the shortest path as possible in terms
of minimizing distance travelled. To achieve this a Gaussian reward function
based on the cross-track error introduced in [40] is implemented. In general, the
cross-track gives the error between the vessel and the desired straight-line path,
and is given by the equation:

ye = −sin(ψd)(x(t)− x0) + cos(ψd)(y(t)− y0) (3.27)

ψd = atan2(y1, x1) (3.28)

where (x(t), y(t)) is the position of the vessel, (x0, y0) and (y1, x1) is the initial
and final point of the desired straight-path, and ψd is the heading of the path.
Hence, minimizing |ye| is equivalent to the ship converging to the desired path.
The resulting Gaussian reward function then becomes:

RPath = ae−
y2e
2σ (3.29)

ye is the computed cross-track error, σ is the standard deviation and a is the
maximum attainable reward, where latter have to be manually chosen. Hence,
the Gaussian reward function represents a Gaussian curve with amplitude a,
and standard deviation σ as seen in figure 3.3. As illustrated, when the cross-
track error between the vessel and path path is below 5 [m], the vessel starts
gaining a considerable reward, otherwise nearly 0.

47

−20 −15 −10 −5 0 5 10 15 20
ye

0.0

0.2

0.4

0.6

0.8

1.0

R P
at
h

a

σσ

Figure 3.3: Distribution of RPath over ye for σ=5 and a=1.

In general, RPath had to be manually tuned relative to RCOLREG. If
RCOLREG was chosen too large, the path-planner may generate path that ma-
neuvers star-board even on obstacles in a safe distance from the vessel. At the
same time, choosing RPath large would result in straight-line paths being pri-
oritized by the model even when obstacles are present, which naturally would
lead to collision. The tuned parameters can be found in table A.2 in appendix
A.4, and the resulting score function RTotal is given as:

RTotal = RCollision +RCOLREG +RPath (3.30)

(3.31)

RCollision =

 −100, if inside safe-zone.

0, otherwise.
(3.32)

(3.33)

RCOLREG =

 20, if inside reward-zone.

0, otherwise.
(3.34)

(3.35)

RPath = ae−
y2e
2σ (3.36)

3.2.3 Feature selection

Choosing appropriate features is crucial for the model to predict accurately. In
our problem the natural selection would be the states of the vessel.

• Distance between the current position and the goal position

• Heading of the vessel

• Velocity of the vessel

• Distance between the current position and position of a potential obstacle

• Velocity of a potential obstacle

48

Notice that each feature have different unit and size. Hence, to avoid biased
influence, each feature had to be individually normalized. Hence, a min-max
normalization is applied, where the mathematical expression for each feature can
be found in appendix A.5. Before the model can determine a suitable path, it has
to be trained on a data sample. This is achieved by initially running numerous
simulations with the digital twin where an indiscriminate path is chosen, and
based on the performance the path is given a score. More specifically, a random
choice of the control points C1 and C2 is made, and the selected values are
stored as features to recreate the path. To train the re-pathing portion of the
model, similar paths are generated. But now the initial states are different than
zero.

3.2.4 Model selection

To apply model selection, a training set of size ≈ 400 000 is extracted from the
data sampled, which is then split into a training and test set. The algorithms
mentioned in section 2.6 was considered and compared by benchmarking. The
machine learning algorithms are predefined as python functions in the machine
learning library Sklearn. Based on the selection criteria MSE, each model was
initially fitted with a sample size of 10, 1 000, 10 000 and 100 000 samples with
default hyperparameters. The aim was to examine their behaviour and select
the three best models for further hyperparameter-tuning. As studied in figure
3.4 the majority of the models performed similarly well. However, it can be

101 102 103 104 105
Number of samples

0

10

20

30

40

50

60

70

80

M
ea

n
sq
ua

re
d
er
ro
r

Support Vector Machine
Gradient boosting regressor
Random forest regressor
Decision tree regressor
Lasso
Linear regression
K-mean nearest neighbor

Figure 3.4: Benchmarking a set of regression models in terms of MSE.

noted that model such as the Linear regression performed significantly worse,
which implies a non-linear relationship may be present between the features
and target variable. Based on the MSE at 100 000 samples, Random forest,
Gradient Boosting regressor and Decision tree proved to be the best performing
models. Hence, each of the three models were hyperparameter-tuned using a
built in cross-validation grid search function. Based on predefined intervals for
each respective parameter, the cross-validation grid function fits mixed combi-

49

nations of the parameters, and returns the best model in terms of lowest MSE.
The resulting mean-squared errors were 5.96, 5.67, and 6.35 for Random forest,
Gradient Boosting regressor and Decision tree, respectively. Hence, Gradient
Boosting regressor was chosen as the final model with the corresponding hy-
perparameters found in table A.3. The resulting feature importance plot of
the model seen in figure 3.5 gives an overview of how significant each feature
is relative to each other in terms of predicting the target variable. Based on
the plot, it is evident that the relative distance to an obstacle in y-direction,
which corresponds to the East-axis, has the most impact. This is not a surprise
considering the vessel mainly maneuvers in this direction. Hence, depending
on whether the obstacle is nearby or not, the resulting score changes notably.
Further, it can be noted that the control points have the second most impact,
which is to be expected as they define the final path taken. Naturally, when a
bad path is chosen, the score is affected accordingly. Finally, it can be noted
that the initial heading ψ have zero impact on the target variable. This is due
to the fact that the initial heading is always initialized at 0, thus having limited
effect on the outcome. The same goes with the velocity, as it usually is kept
constant. However, it is still included in the model in terms of future extensions
of the model.

co
llis

io
n_

y

P1
_y

P2
_y

co
llis

io
n_

x

st
ar
t_
x

st
ar
t_
y

co
llis

io
n_

ve
lo
cit

y

ve
lo
cit

y

st
ar
t_
ps

i0.00

0.05

0.10

0.15

0.20

0.25

0.30

Feature Importance

Figure 3.5: Importance plot of the features, where y-scale indicates how big
impact from 0 to 1 the respective feature have on the prediction.

50

Afterwards, the number of iterations K had to be found. Larger K, results
in more optimal combinations of Cy1 and Cy2 in exchange for run-time. To find
a suitable value, K was set initially to a large value K = 40 000. Following this,
100 000 model cases were simulated, and the number of iterations that resulted
in the best combination was noted. Only few cases required more than 8 000
iterations, as observed in figure 3.6. The mean and standard deviation values of
the observations were found to be 1 565.12 and 1 249.10, respectively. Hence,
K = 3 000 was chosen to cover the significant areas. Although K = 3 000 may
seem like a large number, the whole process of generating path takes less than
10 seconds on an average computer.

0 2000 4000 6000 8000 10000
Simulation number

0

2000

4000

6000

8000

Nu
m
be

r o
f i
te
ra
tio

ns
 b
ef
or
e
op

tim
al
 c
on

tro
l p

oi
nt
s w

er
e
fo
un

d

Figure 3.6: Number of iterations before optimal control points were found, for
10000 simulations.

51

3.3 Test scenarios

In order to evaluate the trained model, a set of scenarios are established with
the simulator of the real vessel in the following sections. Note that the model
was never trained on the real vessel. Hence, the objective is to determine how
well a model that is trained on a simplified model performs on the real model.

3.3.1 Test scenario 1: Straight-line path-planning

The first scenario aims to verify that the vessel chooses a straight-line pathing
from initial position to goal position when no obstacle is present. To assure that
the chosen path is not by accident, three different cases are considered:

1. End-point is placed straight-ahead of the vessel to verify that the vessel
can stay on the straight-path.

2. End-point is placed in upper diagonal of the vessel. The objective is
to showcase that the vessel can choose the shortest-path, even when the
initial heading is different from the path heading. if the initial heading of
the vessel is different than the heading of the path to verify that when the
initial heading is different than the heading of the path

3. The last case is similar to the second case, but the goal is now placed in
the lower diagonal.

3.3.2 Test scenario 2: Path-planning with collision-avoidance
of static obstacle

In second scenario, the obstacle-avoidance of the path-planning is evaluated.
Hence, a static obstacle is added where the aim is to demonstrate that the vessel
maneuvers in accordance with COLREG rule 14a) during head-on situations.
Similar to previous scenario, three different cases will be evaluated:

1. In first case the end-point is placed straight-ahead of the vessel. The aim
is to showcase that the vessel maneuvers correctly in terms of COLREG.

2. In the second case, the end-point is placed diagonal to the vessel, and the
obstacle is placed on the path, to further justify that COLREG is followed.

3. Finally, the obstacle is placed in the environment, but outside the desired
path of the vessel. The goal is to showcase that the vessel is capable of
pathing along the shortest path, when obstacle is present, but not in sight
of the path.

52

3.3.3 Test scenario 3: Path-planning with collision-avoidance
of dynamic vessel

Equivalent to previous scenario, the obstacle-avoidance property of the solution
will be evaluated again. However, now the static obstacle is replaced with a real
vessel containing vessel dynamics. The following three cases are considered:

1. The first case is equivalent to previous scenario, the head-on vessel is
placed straight-ahead of the vessel, and moving in a straight-line towards
the vessel. Hence, the objective is to showcase that the model satisfy
COLREG 14a).

2. In the second case, the end-point is placed diagonal to the vessel, and the
obstacle is placed on the path, moving towards the vessel, to justify the
model.

3. Lastly, the obstacle is placed outside the path, to again showcase that the
path-planner is able to generate a straight-path.

3.3.4 Test scenario 4: Re-planning using the Digital twin

In the final scenario, the developed digital twin will be implemented inside the
real vessel. As previously mentioned, for a defined frequency, the current states
of the vessel, position and velocity of the present obstacle and the generated
path is given to the model to simulate and forecast possible collision. If this is
the case, a new path is generated by the model for the real vessel, as part of the
re-plan step. To simulate this, the head-on vessel in the real simulator is forced
to make a sudden change in the direction, and the resulting behaviour of the
vessel will then be evaluated.

53

Chapter 4

Results and discussion

In the following chapter the result from each scenario is presented, followed by a
detailed discussion of the outcome. Additional plots of velocity ν, commanded
thrust τcommand and position η can be found in appendix A.8. Note that the
dashed black lines represents the bounded environment defined previously, with
the goal state indicated by red cross. The black and gray path represents true
and desired path of the real vessel, respectively. Finally, the red rectangle
indicates the obstacle, where the blue line is the respective path in the case of
dynamic vessel.

4.1 Results

4.1.1 Test scenario 1: Straight-line path-planning

The respective cases can be found below. As observed, the path-planning is
capable of generating a straight-line when no obstacle is present. Although there
is a small deviation < 10 [m], recall that σ was chosen as 10 for the Gaussian
reward. Hence, further tightening of the parameter may lead to reduced error,
but would result in lower probability of discovering the shortest-path, and thus
longer time to reach the terminal state. Further, it can be noticed that the
commanded thrust from the controller is generally smooth, except for a small
spike during the initial state. This is partly due to the initial heading being
different than desired heading when the simulation is executed, but can also be
further tuned to achieve more smoothness. This addresses some of the issues
discussed previously concerning unpredictable output from deep learning-based
models, for instance showcased in [39]. Since the action control is isolated to
the controller, the noisy input to the thrusters can simply be tuned based on
general control theory.

54

0 500 1000 1500 2000 2500 3000 3500 4000
East position [m]

−2000

−1500

−1000

−500

0

500

1000

1500

2000

No
rth

 p
os
iti
on

 [m
]

Figure 4.1: Case 1.1, straight-line
path-planning. The desired point is
placed in (3200, 0).

0 500 1000 1500 2000 2500 3000 3500 4000
East position [m]

−2000

−1500

−1000

−500

0

500

1000

1500

2000

No
rth

 p
os
iti
on

 [m
]

Figure 4.2: Case 1.2, straight-line
path-planning. The desired point is
placed in (3800, -200).

0 500 1000 1500 2000 2500 3000 3500 4000
East position [m]

−2000

−1500

−1000

−500

0

500

1000

1500

2000

No
rth

 p
os
iti
on

 [m
]

Figure 4.3: Case 1.3, straight-line
path-planning. The desired point is
placed in (2000, 300).

55

4.1.2 Test scenario 2: Path-planning with collision-avoidance
of static obstacle

Studying the figures 4.4 and 4.5, it is evident that the path-planning is able to
generate a path that complies with COLREG. Additionally, figure 4.6 verifies
that the path-planning chooses the shortest path when the present obstacle is
not blocking the path.

0 500 1000 1500 2000 2500 3000 3500 4000
East position [m]

−2000

−1500

−1000

−500

0

500

1000

1500

2000

No
rth

 p
os
iti
on

 [m
]

Figure 4.4: Case 2.1, static
obstacle-avoidance. The desired
point is placed in (3200, 0).

0 500 1000 1500 2000 2500 3000 3500 4000
East position [m]

−2000

−1500

−1000

−500

0

500

1000

1500

2000

No
rth

 p
os
iti
on

 [m
]

Figure 4.5: Case 2.2, static
obstacle-avoidance. The desired
point is placed in (2000, 300).

0 500 1000 1500 2000 2500 3000 3500 4000
East position [m]

−2000

−1500

−1000

−500

0

500

1000

1500

2000

No
rth

 p
os
iti
on

 [m
]

Figure 4.6: Case 2.3, static
obstacle-avoidance. The desired
point is placed in (2000, 300).

56

4.1.3 Test scenario 3: Path-planning with Collision-avoidance
of dynamic vessel

Figure 4.7 and 4.8 confirms that the model is capable of complying with COL-
REG during head-on situation with real vessel as well. Further, the path-planner
showcases in figure 4.9 that it is able to generate a straight-path when the vessel
is not present in the path.

0 500 1000 1500 2000 2500 3000 3500 4000
East position [m]

−2000

−1500

−1000

−500

0

500

1000

1500

2000

No
rth

 p
os
iti
on

 [m
]

Figure 4.7: Case 3.1, dynamic
obstacle-avoidance. The desired
point is placed in (3400, 300).

−500 0 500 1000 1500 2000 2500 3000 3500
East position [m]

−2000

−1500

−1000

−500

0

500

1000

1500

2000

No
rth

 p
os
iti
on

 [m
]

Figure 4.8: Case 3.2, dynamic
obstacle-avoidance. The desired
point is placed in (3400, 300).

−500 0 500 1000 1500 2000 2500 3000 3500
East position [m]

−2000

−1500

−1000

−500

0

500

1000

1500

2000

No
rth

 p
os
iti
on

 [m
]

Figure 4.9: Case 3.3, dynamic
obstacle-avoidance. The desired
point is placed in (3400, 300).

57

4.1.4 Test scenario 4: Re-planning using the Digital Twin

Based on figure 4.10 the vessel is capable of adjusting, when the head-on vessel
make a sudden change in its pathing. However, notice that the change in path
is aggressive. This is to be expected as the resulting action is a consequence of
an unexpected behaviour of the head-on vessel. Thus, a similar instantaneous
act is necessary. Still, the response can possibly be further improved by adding
a filter. An alternative solution may be to define a Minimum Risk Condition
as defined in section 1.2.5, and force the vessel to such a state, when similar
situation occurs.

0 500 1000 1500 2000 2500 3000 3500 4000
East position [m]

−2000

−1500

−1000

−500

0

500

1000

1500

2000

No
rth

 p
os
iti
on

 [m
]

Figure 4.10: Case 4, re-planning using digital twin. The desired point is placed
in (2800, 0)

58

4.2 General discussion

Although the model performs well in general, there are still a few drawbacks
that need to be addressed. The first being the limited rectangular state-space.
As previously mentioned, the main motivation behind the shape is simply to
experiment on head-on situations easier. Besides, the model still allows re-
scaling of the environment, but re-sampling in the new environment in addition
to re-training is necessary. In terms of real sea state, where the state-space
is undisclosed, this may cause a challenge. However, considering the states of
the model are scaled to relative values, a possible way to confront the issue is
to develop a similar design to way-point tracking presented in [61]. The main
idea is to then generate a path between two way-points, which are placed in a
similar area defined by the boundaries of the model. Then, when a way-point is
reached, the environment can be ”moved” to enclose the next to way-points. A
second weakness of the model, is the lack of environmental variables. Especially,
due to the resulting complexity of the sea state. Although the performance of
the model was not tested with environment forces present, it is obvious the
model would perform bad considering supervised-models do not adapt well to
unknown environment in contrast to deep learning-models. Hence, a possible
solution may be to measure the environmental variables and add it to the feature
space. However, accurate measurements can in many cases be impossible to
obtain. Therefore, a more superior solution may be to delegate the problem
to the controller. For instance, applying a hybrid controller given in [71] or an
adaptive controller similar to solution presented in [72].

59

Chapter 5

Conclusion and further
work

5.1 Conclusion

The development of the proposed solution in this thesis, presents an adequate
process in building a digital twin in generating software-based solutions. In
addition, an approach on utilizing the digital twin to attain a higher level of
autonomy is successfully presented. Predominantly the model performs well on
the simulated scenarios. Especially, in demonstrating the ability to comply to
COLREG when necessary. Additionally, the model is also capable of answering
to the base requirements of the class society. In contrast to some of the deep
learning-based solutions presented in section 1.2.4, the model is able to give the
transparency of the chosen path. However, the solution displays some weakness
such as limited state-space and no consideration of environmental variables. On
other hand, a few possible solutions have been suggested such as a way-point-
based approach and hybrid controller. The latter showcase the advantage of
not combining path-planning and action control in the same model, in a similar
manner to [34] and [35]. Especially, since it enables the possibility of utilizing
traditional control theory, which generally have performed successfully on real
life applications.

5.2 Further work

In terms of further development, there are several areas that can be consid-
ered, such as introducing additional COLREG rules and increasing the degree-
of-freedom of the Bézier curves to generate more complex paths. Additional
constraints can also be considered in the score paradigm, such as the turn-
ing rate of the path. Considering the initial idea was to apply the solution
on a model-scaled vessel, this still remains relevant. Finally, a development of

60

way-point-based based path generation or application of a hybrid controller for
environmental consideration may be suitable in order to extend the application
of the model

61

Bibliography

[1] Yoav Shoham, Raymond Perrault, Erik Brynjolfsson, and Jack Clark. The
ai index 2018 annual report. 12 2018.

[2] Asgeir J. Sørensen. Marine Cybernetics Towards Autonomous Marine Op-
erations and Systems. Department of Marine Technology, NTNU, 2018.

[3] Kongsberg group. Autonomous ship project, key facts about yara birkeland.
https://www.kongsberg.com/maritime/support/themes/autonomous-
ship-project-key-facts-about-yara-birkeland/?OpenDocument=. Accessed:
20.September.2019.

[4] J. Ørnulf Rødseth and H. C. Burmeister. Developments toward the un-
manned ship. in proceedings of International Symposium Information on
Ships – ISIS 2012, August 2012.

[5] F. Eiliv. 119 enova-millioner til askos autonome fartøy.
http://presse.enova.no/news/119-enova-millioner-til-askos-autonome-
fartoey-362196, mar 2019. Accessed: 10.September.2019.

[6] Einar O. Stangvik, Oda L. Skjetne, Tom Byermoen, Endre Alsaker-
Nøstdahl, and Harald Vikøyr. Krigsskipet som krasjet og sank.
https://www.vg.no/spesial/2018/helge-ingstad-ulykken/. Accessed:
10.Februar.2020.

[7] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The
MIT Press, 2016.

[8] Ryan Proud, Jeremy Hart, and Richard Mrozinski. Methods for determin-
ing the level of autonomy to design into a human spaceflight vehicle: A
function specific approach. page 15, 09 2003.

[9] Ingrid Utne, Asgeir Sørensen, and Ingrid Schjølberg. Risk management of
autonomous marine systems and operations. page V03BT02A020, 06 2017.

[10] L. Perera. Deep learning towards autonomous ship navigation and possible
colregs failures. Journal of Offshore Mechanics and Arctic Engineering,
May 2019.

62

[11] Anastasios M. Lekkas. Guidance and Path-Planning Systems for Au-
tonomous Vehicles. PhD thesis, 04 2014.

[12] Roger Skjetne. The maneuvering problem. 03 2005.

[13] Fadzli Syed Abdullah, Sani Iyal, Mokhairi Makhtar, and Azrul Amri Jamal.
Robotic indoor path planning using dijkstra’s algorithm with multi-layer
dictionaries. 12 2015.

[14] B. Garau, A. Alvarez, and Gabriel Oliver. Path planning of autonomous
underwater vehicles in current fields with complex spatial variability: an
a* approach. volume 2005, pages 194 – 198, May 2005.

[15] Byunghyun Yoo and Jinwhan Kim. Path optimization for marine vehicles
in ocean currents using reinforcement learning. Journal of Marine Science
and Technology, 21, December 2015.

[16] Tsourdos Antonios, Steven White, and Madhavan Shanmugavel. Coop-
erative Path Planning of Unmanned Aerial Vehicles. John Wiley Sons,
2011.

[17] J.S. Yoon, B.C. Min, S.O. Shin, Wonse Jo, and D.H. Kim. Ga-based opti-
mal waypoint design for improved path following of mobile robot. Advances
in Intelligent Systems and Computing, 274:127–136, 01 2014.

[18] Qiu Quan and Han Jian. 2.5-dimensional angle potential field algorithm
forthe real-time autonomous navigation of outdoormobile robots. Sciece
China. Information Sciences, 2011.

[19] A. Abbadi, Radek Matousek, S. Jancik, and Jan Roupec. Rapidly-exploring
random trees: 3d planning. pages 594–599, 06 2012.

[20] Hangeun Kim, Taehwan Lee, Hyun Chung, Namsun Son, and Hyun Myung.
Any-angle path planning with limit-cycle circle set for marine surface ve-
hicle. Proceedings - IEEE International Conference on Robotics and Au-
tomation, pages 2275–2280, 05 2012.

[21] Kenny Daniel, Alex Nash, Sven Koenig, and Ariel Felner. Theta*: Any-
angle path planning on grids. J. Artif. Intell. Res. (JAIR), 39, January
2014.

[22] Quan Shi, Li Tieshan, Qihe Shan, Yuchi Cao, Xiaoqing Fan, and Shengrui
Tang. Multiple marine vessels formation control with collision avoidance.
2019 Chinese Control And Decision Conference, 2019.

[23] Morten Pedersen. Marine vessel path planning and guidance using potential
flow. pages 188–193, 09 2012.

[24] Vahid Hassani and Simen Lande. Path planning for marine vehicles using
bézier curves. IFAC-PapersOnLine, 51:305–310, 01 2018.

63

[25] Tonje Midj̊as. Sbmpc collision avoidance for the revolt model-scale ship.
Master’s thesis, NTNU, June 2019.

[26] I. Hagen, D. Kufoalor, Edmund Brekke, and T. Johansen. Mpc-based
collision avoidance strategy for existing marine vessel guidance systems.
pages 7618–7623, May 2018.

[27] Tayfun Uyanık, Yasin Arslanoğlu, and Özcan Kalenderli. Ship fuel con-
sumption prediction with machine learning. 04 2019.

[28] Herry Susanto and Gunawan Wibisono. Machine learning for data process-
ing in vessel telemetry system: Initial study. pages 496–501, 03 2019.

[29] Xiaoyun Lei, Zhian Zhang, and Peifang Dong. Dynamic path planning of
unknown environment based on deep reinforcement learning. Journal of
Robotics, 2018:1–10, September 2018.

[30] Winfried Lötzsch. Using deep reinforcement learning for the continuous
control of robotic arms. Master’s thesis, Technische Universität Chemnitz,
2019.

[31] Xiaowei Xing and Dong Eui Chang. Deep reinforcement learning based
robot arm manipulation with efficient training data through simulation,
2019.

[32] Thomas Duriez, Steven Brunton, and Bernd Noack. Machine Learning
Control – Taming Nonlinear Dynamics and Turbulence. Springer, Septem-
ber 2016.

[33] Mathworks. Reinforcement learning. https://www.mathworks.com/solutions/deep-
learning/reinforcement-learning.html, 2020. Accessed: 20.April.2020.

[34] Chanjei Vasanthan. Combining reinforcement learning and model-based
training for collision avoidance. Norwegian University of Science and Tech-
nology, 2019.

[35] Mathias G. Aronsen. Path Planning and Obstacle Avoidance for Marine
Vessels using the Deep Deterministic Policy Gradient Method. Norwegian
University of Science and Technology, 2019.

[36] A. Hussein, E. Elyan, M. M. Gaber, and C. Jayne. Deep reward shaping
from demonstrations. In 2017 International Joint Conference on Neural
Networks (IJCNN), pages 510–517, 2017.

[37] Elad Hoffer, Ron Banner, Itay Golan, and Daniel Soudry. Norm matters:
efficient and accurate normalization schemes in deep networks. 03 2018.

[38] Samit Bhanja and Abhishek Das. Impact of data normalization on deep
neural network for time series forecasting, 2018.

64

[39] Ingunn J. Vallestad. Path Following and Collision Avoidance for Marine
Vessels with Deep Reinforcement Learning. Norwegian University of Science
and Technology, 2019.

[40] Andreas M. Bell and Anastasios M. Lekkas. Curved path following with
deep reinforcement learning: Results from three vessel models. Conference:
OCEANS 2018 MTS/IEEE Charleston, oct 2018.

[41] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges
of real-world reinforcement learning. Modeling, Identification and Control,
30, April 2019.

[42] Fangxing Li and Yan Du. From alphago to power system ai: What engineers
can learn from solving the most complex board game. IEEE Power and
Energy Magazine, 16:76–84, 03 2018.

[43] Marzyeh Ghassemi, Tristan Naumann, Peter Schulam, Andrew Beam, Irene
Chen, and Rajesh Ranganath. A review of challenges and opportunities in
machine learning for health. AMIA Joint Summits on Translational Science
proceedings. AMIA Joint Summits on Translational Science, 2020:191–200,
05 2020.

[44] Christopher J. Kelly, Alan Karthikesalingam, Mustafa Suleyman, Greg
Corrado, and Dominic King. Key challenges for delivering clinical impact
with artificial intelligence. BMC Medicine, 17(1):195, 2019.

[45] DNV GL. Class guideline: Autonomous and remotely operated ships. 9
2018.

[46] Lloyd’s Register. Lr code for unmanned marine systems. 2 2017.

[47] Vanessa Buhrmester, David Muench, and Michael Arens. Analysis of ex-
plainers of black box deep neural networks for computer vision: A survey,
11 2019.

[48] Roland Rosen, Georg Wichert, George Lo, and Kurt Bettenhausen. About
the importance of autonomy and digital twins for the future of manufac-
turing. IFAC-PapersOnLine, 48:567–572, 12 2015.

[49] Stefan Boschert, Christoph Heinrich, and R. Rosen. Next generation digital
twin. 05 2018.

[50] Gaute Storhaug. Digital twins and sensor monitoring.
https://www.dnvgl.com/expert-story/maritime-impact/Digital-twins-
and-sensor-monitoring.html. Accessed: 1.June.2020.

[51] M. A. Lund, K. Mochel, W. J. Lin, R. Onetto, J. Srinivasan, J. Gregg,
E. J. Bergman, D. K. Hartling, and A. and Ahmed. Digital twin interface
for operating wind farms. june 2018. uS Patent 9,995,278.

65

[52] Edward Glaessgen and David Stargel. The digital twin paradigm for future
nasa and u.s. air force vehicles. 04 2012.

[53] Wil Danilczyk, Yan Sun, and Haibo He. Angel: An intelligent digital twin
framework for microgrid security. pages 1–6, 10 2019.

[54] Alexander Danielsen-Haces. Digital twin development. Master’s thesis,
NTNU, jun 2018.

[55] The Kongsberg group. Kognitwin energy.
https://www.kongsberg.com/no/digital/solutions/kognitwin-energy/.
Accessed: 1.June.2020.

[56] Yuan Tian. Development and application of digital twin in marine propul-
sion system. Master’s thesis, NTNU, jun 2019.

[57] General Electrics digital. What is a digital twin?
https://www.ge.com/digital/applications/digital-twin. Accessed:
1.June.2020.

[58] T. Blochwitz, Martin Otter, Johan Åkesson, Martin Arnold, C. Clauß,
Hilding Elmqvist, Markus Friedrich, Andreas Junghanns, Jakob Mauss,
Dietmar Neumerkel, Hans Olsson, and Antoine Viel. Functional mockup
interface 2.0: The standard for tool independent exchange of simulation
models. 09 2012.

[59] Catia-systems. Fmpy. https://github.com/fmi-tools/FMPy. Accessed:
31.September.2019.

[60] Şule Şahin, Carmen Boado Penas, Corina Constantinescu, Julia Eisenberg,
Kira Henshaw, Maoqi Hu, Jing Wang, and Wei Zhu. Covid19. 04 2020.

[61] Thor I. Fossen. HANDBOOK OF MARINE CRAFT HYDRODYNAMICS
AND MOTION CONTROL. John Wiley Sons, 2011.

[62] Thomas W. Sederberg. Computer Aided Geometric Design. Brigham Youth
University, All faculty publication, 2012.

[63] GeeksForGeeks. How to check if two given line segments in-
tersect? https://www.cdn.geeksforgeeks.org/check-if-two-given-line-
segments-intersect/. Accessed: 20.April.2020.

[64] Lloyd’s Register. Colregs - international regulations for preventing colli-
sions at sea. http://www.mar.ist.utl.pt/mventura/Projecto-Navios-I/IMO-
ConventionsAccessed: 10.June.2020.

[65] Arthur L. Samuel. Some studies in machine learning using the game of
checkers. ii—recent progress. IBM, nov 1967.

[66] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., USA, 1 edition,
1997.

66

[67] Biagio Ciuffo and Vincenzo Punzo. “no free lunch” theorems applied to the
calibration of traffic simulation models. Intelligent Transportation Systems,
IEEE Transactions on, 15:553–562, 04 2014.

[68] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An
Introduction to Statistical Learning: with Applications in R. Springer, 2013.

[69] Arvind Keprate and R.M. Ratnayake. Using gradient boosting regressor to
predict stress intensity factor of a crack propagating in small bore piping.
12 2017.

[70] Catia-systems. Fmikit-simulink. https://github.com/CATIA-
Systems/FMIKit-Simulink. Accessed: 20.September.2019.

[71] Dong Trong Nguyen, Asgeir J. Sørensen, and Ser Tong Quek. Design of
hybrid controller for dynamic positioning from calm to extreme sea condi-
tions. Automatica, 43(5):768–785, May 2007.

[72] Vahid Hassani, Asgeir Sørensen, and Antonio Pascoal. A novel methodology
for robust dynamic positioning of marine vessels: Theory and experiments.
pages 560–565, 06 2013.

67

Appendix A

Appendix

A.1 Gunnerus vessel plant model matrices

A.1.1 Rigid body mass matrix

MRb =

418061 0 0 0 0 0

0 418061 0 0 0 0
0 0 418061 0 0 0
0 0 0 6164560 0 0
0 0 0 0 21823046 0
0 0 0 0 0 21823046

 (A.1)

A.1.2 Added mass matrix

MA =

74327.85 0 0 0 0 0

0 342230.06 0 356613.59 0 −231035.80
0 0 2432295.50 0 5908110 0
0 356613.59 0 2024007.10 0 −555383.94
0 0 5908110 0 128795620 0
0 −231035.80 0 −555383.94 0 20235290

(A.2)

A.1.3 Restoring forces matrix

G =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 2334147.80 0 3470870.80 0
0 0 0 10923388 0 54.38
0 0 3470870.80 0 129373300 0
0 0 0 0 0 0

 (A.3)

68

A.1.4 Linear damping matrix

DL =

17447.62 0 0 0 0 0

0 80334.62 0 167.82 0 114.64
0 0 403981.84 0 934606.88 0
0 167.82 0 195452.03 0 432.05
0 0 934606.88 0 20702550 0
0 114.63 0 432.05 0 4974997.40

(A.4)

A.2 Simplified vessel plant model matrices

A.2.1 Rigid body mass matrix

MRb =

418061 0 0
0 418061 0
0 0 21823046

 (A.5)

A.2.2 Added mass matrix

MA =

74327.85 0 0
0 342230.06 −231035.80
0 −231035.80 20235290

 (A.6)

A.2.3 Linear damping matrix

DL =

17447.62 0 0
0 80334.62 114.64
0 114.63 4974997.40

 (A.7)

69

A.3 The Maneuvering controller parameters

Parameter Value [units]

Kp diag(
[
10 0.2 0.5

]
) [-]

Kd diag(
[
500 100000 5000

]
) [-]

µ 0.00005 [-]
Uref 5 [m/s]

Table A.1: Controller gains and parameters

A.4 Parameters for the score paradigm

Description Symbol Value
Reward for collision Rcollision -100
Reward for complying with
COLREG 14a)

RCOLREG 20

Maximum reward attainable for
RPath

a 1

Standard deviation for RPath σ 10

Table A.2: Parameters for the score variables

A.5 Normalization of features

• Relative position to the goal position: The relative position from ini-
tial state to objective position is calculated based on the euclidean distance
and scaled with the environment to be in the range [-1, 1]. Mathematically
we derive them as:

xgoalrelative =
xcurrent − xgoal

xboundarymax − xboundarymin
(A.8)

ygoalrelative =
ycurrent − ygoal

yboundarymax − yboundarymin
(A.9)

• Relative heading: The heading is originally defined in radians, but ad-
justed such that every time it exceeds 2π, the heading is subtracted with a
corresponding value. Similarly, when the heading is below 0, 2π is added.
Additionally, the heading is scaled by dividing with 2π, such that the
relative heading always remains in the boundary [0, 1].

ψrelative =
ψcurrent

2π
(A.10)

70

• Relative velocity: The relative velocity is scaled by dividing the max-
imum allowed velocity of the vessel, thereby defined in the boundary [0,
1].

Vrelative =
VVcurrent
Vmax

(A.11)

• Relative position to a potential obstacle: The relative position is
calculated in similar manner to the relative position to goal position with
the equations:

xobstaclerelative =
xcurrent − xobstacle

xboundarymax − xboundarymin
(A.12)

yobstaclerelative =
ycurrent − yobstacle

yboundarymax − yboundarymin
(A.13)

However, unlike the relative position to goal position, the distance is set to
[-1, 1] (depending on orientation) if the obstacle is outside the boundary,
too far away to be considered.

• Relative velocity of collision obstacle: The relative velocity of the
obstacle is calculated equivalent to the vessel:

Vrelative =
VVcurrent
Vmax

(A.14)

• Control point values: The control points value Cy1 and Cy2 are defined
in the boundary [-1, 1].

A.6 Hyperparameters for Gradient Boosting re-
gressor

Description Symbol Value
Numbers of trees C 104
Decides how much each tree
contributes (Learning rate)

λ 0.1

Maximum depth allowed per
tree

d 18

Table A.3: Tuned hyperparameters for Gradient Boosting regressor

71

A.7 Intersection and orientation of lines: Exam-
ples

Figure A.1: Example 1: Orienta-
tion of (p1, p2, q1) is counterclock-
wise and orientation of (p1, p2, q2)
is clockwise, and therefore different.
Correspondingly, orientation of (q1,
q2, p1) is clockwise and orientation
of (q1, q2, p2) is counterclockwise.
Thus, the general case is satisfied in
this example.

Figure A.2: Example 2: Orientation
of (p1, p2, q1) is collinear and orien-
tation of (p1, p2, q2) is counterclock-
wise, and therefore different. In a
similar manner, orientation of (q1,
q2, p1) is counterclockwise and ori-
entation of (q1, q2, p2) is wise, which
means the general case is again sat-
isfied.

Figure A.3: Example 3: In a similar
manner to example 1, orientation of
(p1, p2, q1) is counterclockwise and
orientation of (p1, p2, q2) is clock-
wise. However, both (q1, q2, p1) and
(q1, q2, p2) are clockwise, and the
general case is not satisfied.

Figure A.4: Example 4: In the fol-
lowing example, only (p1, p2, q1) is
collinear, while (p1, p2, q2), (q1, q2,
p1) and (q1, q2, p2) are all clockwise,
and the conditions for the general
case is unfulfilled.

Figure A.5: Example 5: In this case
all the triplet of points are collinear,
which means the general case is not
satisfied. in other hand, both x-
projection and y-projection of line
segment p and q intersect. Thus,
the special case is satisfied.

Figure A.6: Example 6: Equivalent
to example 5, all the triplet of points
are collinear. However, since the
projections do not intersect, neither
the general case nor the special case
is satisfied.

72

A.8 Simulation results

A.8.1 Straight-line path-planning

0 20 40 60 80 100 120
Time [s]

−10

0

No
rth

 p
os
iti
on

 [m
]

0 20 40 60 80 100 120
Time [s]

0

2000

Ea
st
 p
os
iti
on

 [m
]

0 20 40 60 80 100 120
Time [s]

0.0

2.5

ψ-
he

ad
in
g
[d

eg
re

es
]

Figure A.7: Case 1: Plot of North-, East- and ψ-position.

0 20 40 60 80 100 120
0

1

2

3

4

5

ν_
x
[m

/s
]

0 20 40 60 80 100 120

−0.3

−0.2

−0.1

0.0

0.1

ν_
y
[m

/s
]

0 20 40 60 80 100 120
Time [s]

−0.04

−0.02

0.00

0.02

ν_
ψ
[d

eg
re

es
/s
]

Figure A.8: Case 1: Plot of velocities in each direction with respect to the vessel
coordinates.

0 20 40 60 80 100 120
Time [s]

80000

90000

100000

110000

120000

130000

140000

150000

Th
ru
st
 x
-d
ire

ct
io
n
[N
]

Figure A.9: Case 1: Plot of commanded surge thrust.

73

0 20 40 60 80 100 120
Time [s]

−25000

−20000

−15000

−10000

−5000

0

5000

10000

Th
ru
st
 y
-d

ire
ct
io
n
[N

]

Figure A.10: Case 1: Plot of commanded sway thrust.

0 20 40 60 80 100 120
Time [s]

−4000

−3000

−2000

−1000

0

1000

2000

Th
ru
st
 ψ

-d
ire

ct
io
n
[N

]

Figure A.11: Case 1: Plot of commanded yaw-moment.

0 20 40 60 80 100 120 140 160
Time [s]

−200

−100

0

No
rth

 p
os
iti
on

 [m
]

0 20 40 60 80 100 120 140 160
Time [s]

0

2000

Ea
st
 p
os
iti
on

 [m
]

0 20 40 60 80 100 120 140 160
Time [s]

−10

−5

0

ψ-
he

ad
in
g
[d

eg
re

es
]

Figure A.12: Case 2: Plot of North-, East- and ψ-position.

74

0 20 40 60 80 100 120 140
0

1

2

3

4

5

ν_
x
[m

/s
]

0 20 40 60 80 100 120 140

−0.4

−0.2

0.0

0.2

0.4

0.6

ν_
y
[m

/s
]

0 20 40 60 80 100 120 140
Time [s]

−0.06

−0.04

−0.02

0.00

0.02

0.04
ν_

ψ
[d

eg
re

es
/s
]

Figure A.13: Case 2: Plot of velocities in each direction with respect to the
vessel coordinates.

0 20 40 60 80 100 120 140 160
Time [s]

90000

100000

110000

120000

Th
ru
st
 x
-d
ire

ct
io
n
[N

]

Figure A.14: Case 2: Plot of commanded surge thrust.

0 20 40 60 80 100 120 140 160
Time [s]

−40000

−20000

0

20000

40000

Th
ru
st
 y
-d

ire
ct
io
n
[N

]

Figure A.15: Case 2: Plot of commanded sway thrust.

75

0 20 40 60 80 100 120 140 160
Time [s]

−4000

−2000

0

2000

Th
ru
st
 ψ

-d
ire

ct
io
n
[N

]

Figure A.16: Case 2: Plot of commanded yaw-moment.

0 10 20 30 40 50 60 70 80
Time [s]

0

200

No
rth

 p
os
iti
on

 [m
]

0 10 20 30 40 50 60 70 80
Time [s]

0

1000

2000

Ea
st
 p
os
iti
on

 [m
]

0 10 20 30 40 50 60 70 80
Time [s]

0

20

ψ-
he

ad
in
g
[d
eg

re
es
]

Figure A.17: Case 3: Plot of North-, East- and ψ-position.

0 10 20 30 40 50 60 70 80
0

2

4

6

ν_
x
[m

/s
]

0 10 20 30 40 50 60 70 80

−2

−1

0

ν_
y
[m

/s
]

0 10 20 30 40 50 60 70 80
Time [s]

−0.1

0.0

0.1

0.2

ν_
ψ
[d

eg
re

es
/s
]

Figure A.18: Case 3: Plot of velocities in each direction with respect to the
vessel coordinates.

76

0 10 20 30 40 50 60 70 80
Time [s]

50000

75000

100000

125000

150000

175000

200000

225000

Th
ru
st
 x
-d
ire

ct
io
n
[N
]

Figure A.19: Case 3: Plot of commanded surge thrust.

0 10 20 30 40 50 60 70 80
Time [s]

−150000

−100000

−50000

0

50000

100000

Th
ru
st
 y
-d

ire
ct
io
n
[N

]

Figure A.20: Case 3: Plot of commanded sway thrust.

0 10 20 30 40 50 60 70 80
Time [s]

−10000

−5000

0

5000

10000

15000

20000

Th
ru
st
 ψ

-d
ire

ct
io
n
[N

]

Figure A.21: Case 3: Plot of commanded yaw-moment.

77

A.8.2 Test scenario 2

0 20 40 60 80 100 120
Time [s]

−100

0

No
rth

 p
os
iti
on

 [m
]

0 20 40 60 80 100 120
Time [s]

0

2000

Ea
st
 p
os
iti
on

 [m
]

0 20 40 60 80 100 120
Time [s]

0

50

ψ-
he

ad
in
g
[d

eg
re

es
]

Figure A.22: Case 1: Plot of North-, East- and ψ-position.

0 20 40 60 80 100 120
0

1

2

3

4

5

ν_
x
[m

/s
]

0 20 40 60 80 100 120

−3

−2

−1

0

1

ν_
y
[m

/s
]

0 20 40 60 80 100 120
Time [s]

−0.2

−0.1

0.0

0.1

0.2

ν_
ψ
[d

eg
re

es
/s
]

Figure A.23: Case 1: Plot of velocities in each direction with respect to the
vessel coordinates.

0 20 40 60 80 100 120
Time [s]

60000

80000

100000

120000

140000

Th
ru
st
 x
-d
ire

ct
io
n
[N

]

Figure A.24: Case 1: Plot of commanded surge thrust.

78

0 20 40 60 80 100 120
Time [s]

−300000

−200000

−100000

0

100000

Th
ru
st
 y
-d

ire
ct
io
n
[N

]

Figure A.25: Case 1: Plot of commanded sway thrust.

0 20 40 60 80 100 120
Time [s]

−20000

−10000

0

10000

20000

Th
ru
st
 ψ

-d
ire

ct
io
n
[N

]

Figure A.26: Case 1: Plot of commanded yaw-moment.

0 20 40 60 80
Time [s]

0

200

No
rth

 p
os
iti
on

 [m
]

0 20 40 60 80
Time [s]

0

1000

2000

Ea
st
 p
os
iti
on

 [m
]

0 20 40 60 80
Time [s]

0

50

ψ-
he

ad
in
g
[d
eg

re
es
]

Figure A.27: Case 2: Plot of North-, East- and ψ-position.

79

0 10 20 30 40 50 60 70 80
0

2

4

6

ν_
x
[m

/s
]

0 10 20 30 40 50 60 70 80

−2

0

2

ν_
y
[m

/s
]

0 10 20 30 40 50 60 70 80
Time [s]

−0.2

0.0

0.2

0.4

0.6
ν_

ψ
[d

eg
re

es
/s
]

Figure A.28: Case 2: Plot of velocities in each direction with respect to the
vessel coordinates.

0 20 40 60 80
Time [s]

25000

50000

75000

100000

125000

150000

175000

200000

225000

Th
ru
st
 x
-d
ire

ct
io
n
[N
]

Figure A.29: Case 2: Plot of commanded surge thrust.

0 20 40 60 80
Time [s]

−300000

−200000

−100000

0

100000

200000

Th
ru
st
 y
-d

ire
ct
io
n
[N

]

Figure A.30: Case 2: Plot of commanded sway thrust.

80

0 20 40 60 80
Time [s]

−20000

−10000

0

10000

20000

30000

40000

50000

60000

Th
ru
st
 ψ

-d
ire

ct
io
n
[N

]

Figure A.31: Case 2: Plot of commanded yaw-moment.

0 10 20 30 40 50 60 70 80
Time [s]

0

200

No
rth

 p
os
iti
on

 [m
]

0 10 20 30 40 50 60 70 80
Time [s]

0

1000

2000

Ea
st
 p
os
iti
on

 [m
]

0 10 20 30 40 50 60 70 80
Time [s]

0

20

ψ-
he

ad
in
g
[d
eg

re
es
]

Figure A.32: Case 3: Plot of North-, East- and ψ-position.

0 10 20 30 40 50 60 70 80
0

2

4

6

ν_
x
[m

/s
]

0 10 20 30 40 50 60 70 80

−2

−1

0

1

ν_
y
[m

/s
]

0 10 20 30 40 50 60 70 80
Time [s]

−0.1

0.0

0.1

0.2

0.3

ν_
ψ
[d

eg
re

es
/s
]

Figure A.33: Case 3: Plot of velocities in each direction with respect to the
vessel coordinates.

81

0 10 20 30 40 50 60 70 80
Time [s]

50000

75000

100000

125000

150000

175000

200000

Th
ru
st
 x
-d
ire

ct
io
n
[N
]

Figure A.34: Case 3: Plot of commanded surge thrust.

0 10 20 30 40 50 60 70 80
Time [s]

−150000

−100000

−50000

0

50000

100000

150000

Th
ru
st
 y
-d

ire
ct
io
n
[N

]

Figure A.35: Case 3: Plot of commanded sway thrust.

0 10 20 30 40 50 60 70 80
Time [s]

−15000

−10000

−5000

0

5000

10000

15000

20000

25000

Th
ru
st
 ψ

-d
ire

ct
io
n
[N

]

Figure A.36: Case 3: Plot of commanded yaw-moment.

82

A.8.3 Test scenario 3: Path-planning with Collision-avoidance
of dynamic vessel

0 20 40 60 80 100 120
Time [s]

−100

0

No
rth

 p
os
iti
on

 [m
]

0 20 40 60 80 100 120
Time [s]

0

2000

Ea
st
 p
os
iti
on

 [m
]

0 20 40 60 80 100 120
Time [s]

0

50
ψ-

he
ad

in
g
[d

eg
re

es
]

Figure A.37: Case 1: Plot of North-, East- and ψ-position.

0 20 40 60 80 100 120
0

1

2

3

4

5

ν_
x
[m

/s
]

0 20 40 60 80 100 120
−4

−2

0

2

ν_
y
[m

/s
]

0 20 40 60 80 100 120
Time [s]

−0.2

0.0

0.2

ν_
ψ
[d

eg
re

es
/s
]

Figure A.38: Case 1: Plot of velocities in each direction with respect to the
vessel coordinates.

0 20 40 60 80 100 120
Time [s]

60000

80000

100000

120000

140000

Th
ru
st
 x
-d
ire

ct
io
n
[N

]

Figure A.39: Case 1: Plot of commanded surge thrust.

83

0 20 40 60 80 100 120
Time [s]

−300000

−200000

−100000

0

100000

Th
ru
st
 y
-d

ire
ct
io
n
[N

]

Figure A.40: Case 1: Plot of commanded sway thrust.

0 20 40 60 80 100 120
Time [s]

−20000

−10000

0

10000

20000

Th
ru
st
 ψ

-d
ire

ct
io
n
[N

]

Figure A.41: Case 1: Plot of commanded yaw-moment.

0 20 40 60 80 100 120 140
Time [s]

0

200

No
rth

 p
os
iti
on

 [m
]

0 20 40 60 80 100 120 140
Time [s]

0

2000

Ea
st
 p
os
iti
on

 [m
]

0 20 40 60 80 100 120 140
Time [s]

0

50

ψ-
he

ad
in
g
[d
eg

re
es
]

Figure A.42: Case 2: Plot of North-, East- and ψ-position.

84

0 20 40 60 80 100 120 140
0

1

2

3

4

5

ν_
x
[m

/s
]

0 20 40 60 80 100 120 140
−4

−2

0

ν_
y
[m

/s
]

0 20 40 60 80 100 120 140
Time [s]

−0.1

0.0

0.1

0.2

0.3

0.4
ν_

ψ
[d

eg
re

es
/s
]

Figure A.43: Case 2: Plot of velocities in each direction with respect to the
vessel coordinates.

0 20 40 60 80 100 120 140
Time [s]

40000

60000

80000

100000

120000

140000

Th
ru
st
 x
-d
ire

ct
io
n
[N

]

Figure A.44: Case 2: Plot of commanded surge thrust.

0 20 40 60 80 100 120 140
Time [s]

−300000

−200000

−100000

0

100000

Th
ru
st
 y
-d

ire
ct
io
n
[N

]

Figure A.45: Case 2: Plot of commanded sway thrust.

85

0 20 40 60 80 100 120 140
Time [s]

−10000

0

10000

20000

30000

Th
ru
st
 ψ

-d
ire

ct
io
n
[N

]

Figure A.46: Case 2: Plot of commanded yaw-moment.

0 20 40 60 80 100 120 140
Time [s]

0

200

No
rth

 p
os
iti
on

 [m
]

0 20 40 60 80 100 120 140
Time [s]

0

2000

Ea
st
 p
os
iti
on

 [m
]

0 20 40 60 80 100 120 140
Time [s]

0

10

ψ-
he

ad
in
g
[d
eg

re
es
]

Figure A.47: Case 3: Plot of North-, East- and ψ-position.

0 20 40 60 80 100 120
0

1

2

3

4

5

ν_
x
[m

/s
]

0 20 40 60 80 100 120

−1.0

−0.5

0.0

0.5

ν_
y
[m

/s
]

0 20 40 60 80 100 120
Time [s]

−0.05

0.00

0.05

0.10

ν_
ψ
[d

eg
re

es
/s
]

Figure A.48: Case 3: Plot of velocities in each direction with respect to the
vessel coordinates.

86

0 20 40 60 80 100 120 140
Time [s]

80000

90000

100000

110000

120000

130000

140000

150000

Th
ru
st
 x
-d
ire

ct
io
n
[N
]

Figure A.49: Case 3: Plot of commanded surge thrust.

0 20 40 60 80 100 120 140
Time [s]

−80000

−60000

−40000

−20000

0

20000

40000

60000

Th
ru
st
 y
-d

ire
ct
io
n
[N

]

Figure A.50: Case 3: Plot of commanded sway thrust.

0 20 40 60 80 100 120 140
Time [s]

−7500

−5000

−2500

0

2500

5000

7500

10000

Th
ru
st
 ψ

-d
ire

ct
io
n
[N

]

Figure A.51: Case 3: Plot of commanded yaw-moment.

87

A.8.4 Test scenario 4: Re-planning using the Digital twin

0 20 40 60 80 100 120
Time [s]

−200

−100

0

No
rth

 p
os
iti
on

 [m
]

0 20 40 60 80 100 120
Time [s]

0

2000

Ea
st
 p
os
iti
on

 [m
]

0 20 40 60 80 100 120
Time [s]

0

25

ψ-
he

ad
in
g
[d

eg
re

es
]

Figure A.52: Case 1: Plot of North-, East- and ψ-position.

0 20 40 60 80 100
0

2

4

6

ν_
x
[m

/s
]

0 20 40 60 80 100

−2

−1

0

1

2

ν_
y
[m

/s
]

0 20 40 60 80 100
Time [s]

−0.4

−0.2

0.0

0.2

0.4

ν_
ψ
[d

eg
re

es
/s
]

Figure A.53: Case 1: Plot of velocities in each direction with respect to the
vessel coordinates.

0 20 40 60 80 100 120
Time [s]

40000

60000

80000

100000

120000

140000

160000

Th
ru
st
 x
-d
ire

ct
io
n
[N

]

Figure A.54: Case 1: Plot of commanded surge thrust.

88

0 20 40 60 80 100 120
Time [s]

−200000

−100000

0

100000

200000

300000

Th
ru
st
 y
-d

ire
ct
io
n
[N

]

Figure A.55: Case 1: Plot of commanded sway thrust.

0 20 40 60 80 100 120
Time [s]

−30000

−20000

−10000

0

10000

20000

30000

40000

Th
ru
st
 ψ

-d
ire

ct
io
n
[N

]

Figure A.56: Case 1: Plot of commanded yaw-moment.

89

	Preface
	Acknowledgment
	Abstract
	Sammendrag
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Background
	Literature review
	Autonomy vs automation
	Structure of an autonomous vessel
	Path-planning algorithms
	Vessel Path-planning using AI
	Autonomous vessel: A class society perspective
	Digital twin

	Objective and scope
	Outline of report

	Theory
	Mathematical modelling of the vessel
	Process plant model for vessel
	Control plant model for vessel
	Generalized inertia forces
	Generalized Coriolis and centripetal forces
	Generalized damping forces
	Generalized restoring forces

	Path following: The Control problem
	The Maneuvering problem

	Path parametrization
	Bézier Curve

	Geometrical intersections
	Intersection between two line segments
	Intersection between a circle and line segment

	COLREG
	Machine learning: Supervised learning
	Supervised Learning
	Decision tree
	Random forest
	Gradient Boosting Regressor

	Design and implementation
	Simulator
	Vessel model
	The Maneuvering model
	Obstacles

	Machine learning
	Target variable
	The Score Paradigm
	Feature selection
	Model selection

	Test scenarios
	Test scenario 1: Straight-line path-planning
	Test scenario 2: Path-planning with collision-avoidance of static obstacle
	Test scenario 3: Path-planning with collision-avoidance of dynamic vessel
	Test scenario 4: Re-planning using the Digital twin

	Results and discussion
	Results
	Test scenario 1: Straight-line path-planning
	Test scenario 2: Path-planning with collision-avoidance of static obstacle
	Test scenario 3: Path-planning with Collision-avoidance of dynamic vessel
	Test scenario 4: Re-planning using the Digital Twin

	General discussion

	Conclusion and further work
	Conclusion
	Further work

	Appendix
	Gunnerus vessel plant model matrices
	Rigid body mass matrix
	Added mass matrix
	Restoring forces matrix
	Linear damping matrix

	Simplified vessel plant model matrices
	Rigid body mass matrix
	Added mass matrix
	Linear damping matrix

	The Maneuvering controller parameters
	Parameters for the score paradigm
	Normalization of features
	Hyperparameters for Gradient Boosting regressor
	Intersection and orientation of lines: Examples
	Simulation results
	Straight-line path-planning
	Test scenario 2
	Test scenario 3: Path-planning with Collision-avoidance of dynamic vessel
	Test scenario 4: Re-planning using the Digital twin

