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A B S T R A C T

Generative Adversarial Networks (GANs) have shown potential in medical imaging. In this study, several
previously developed GANs were investigated for prostate cancer (PCa) detection on T2-weighted (T2W)
magnetic resonance images (MRI).

T2W MRI from an in-house collected dataset (N=961) were used to train, validate, and test an automated
computer-aided detection (CAD) pipeline. The open-access PROSTATEx training dataset (N=199) was used
as an external test set. The CAD pipeline consisted of normalization, prostate segmentation, quality control,
prostate gland cropping, and a GAN model. Six GANs (f-AnoGAN, HealthyGAN, StarGAN, StarGAN-v2, Fixed-
Point-GAN and DeScarGAN) were evaluated for PCa detection on the patient-level using the area under the
receiver operating characteristic curve (AUC). The best performing GAN (validation set) was trained with five
different initializations and evaluated on the internal and external test sets to assess its robustness.

Fixed-Point-GAN performed best (validation, AUC 0.76) and was selected for further assessment. The
highest performance on the internal and external test sets were an AUC of 0.73 (95% CI: 0.68-0.79) and
0.77 (95% CI: 0.70-0.83), respectively. The average AUCs ± standard deviation across all runs corresponded
to 0.71 ± 0.01 and 0.71 ± 0.04, respectively.

Fixed-Point-GAN was identified as a promising GAN for the detection of PCa on T2W MRI. This model
needs to be further investigated and trained on a larger dataset of multiparametric or biparametric MR images
to assess its full potential as a support tool for radiologists.
1. Introduction

Prostate cancer (PCa) is the most commonly diagnosed cancer
and the second highest cause of cancer-related death in men, world-
wide [1]. Magnetic resonance imaging (MRI) prior to biopsy is in-
creasingly used to guide biopsy sampling for suspected prostate cancer
due to elevated blood prostate-specific antigen (PSA) levels and digital
rectal examination (DRE) [2]. The multi-parametric MRI (mpMRI)
protocol for PCa detection consists of T2-weighted imaging (T2W),
diffusion-weighted imaging (DWI), and dynamic contrast-enhanced
imaging (DCE). The use of mpMRI has improved diagnostic accuracy,
and international guidelines have been established [3]. However, de-
tection of PCa on mpMRI remains a difficult task, even for radiologists,
and suffers from inter-reader variability [4,5].
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Artificial intelligence could support radiological reading, aiming
to increase accuracy and efficiency [6]. In PCa, a computer-aided
detection (CAD) system would ideally present the radiologist with a
patient-level probability of cancer while visualizing the suspected le-
sion(s) in the prostate gland. Several deep learning (DL) based methods
that fulfill these criteria have already been proposed for detection of
PCa on mpMRI, with relative success. For example, Saha et al. [7] in-
troduced a multi-stage 3D supervised CNN for localization of clinically
significant PCa (csPCa, ISUP ≥ 2) in bi-parametric MRI (bpMRI; T2W
+ DWI). Also other studies [8–10] have utilized supervised models to
detect csPCA and shown promising results. These studies have in com-
mon that they rely on convolutional neural networks (CNN) with an
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encoder–decoder architecture (U-Net), which typically require super-
vised training on pixel-level annotations provided in the form of (man-
ual) delineations of the lesions. However, these annotations are sparse
due to the costly and time-consuming labeling process [11]. At the same
time, inter-observer variability [4,5] can lead to an inaccurate, noisy,
and annotator-dependent reference standard.

Given the strong dependence of AI performance on the size of the
training data [8], unsupervised and weakly-supervised learning are
interesting alternatives to supervised learning. In contrast to super-
vised learning, these approaches require no labels (unsupervised), or
only image-level (weakly supervised, 2D) or patient-level (3D) labels
for training, which are easier to obtain in practice than pixel-level
annotations. In contrast to most CNNs in medical imaging, Genera-
tive Adversarial Networks (GANs) [12] can provide pixel-level out-
put (i.e., images) while being trained in an unsupervised or weakly-
supervised manner [13]. For a tumor detection task, GAN models can
be trained to generate images from the negative class (i.e., no disease)
by either learning the distribution from the negative class only (e.g f-
AnoGAN [14]), or by learning to perform image-to-image translation
to the negative class (e.g HealthyGAN [15], StarGAN [16], StarGAN-
v2 [17], Fixed-Point GAN (FP-GAN) [18], DeScarGAN [19]). In both
cases, anomalies such as PCa can then be highlighted during inference
based on the difference between the input image and the generated
negative output image.

The aim of this study is to assess the potential of several GAN
models for the task of PCa detection on T2W MRI. To the best of our
knowledge, such a comparison has not been reported in literature. Fur-
thermore, GAN model performance for other medical problems is rarely
reported on patient-level and/or using external test sets. Therefore, in
this study, we compare several GAN models in a fully automated end-
to-end pipeline for PCa detection and assess patient-level performance
using internal and external test sets.

2. Methods

2.1. Dataset

Transverse T2W MR images from two datasets (N = 1160) were used
in this study: an in-house collected dataset (N = 961) and the publicly
available PROSTATEx Challenge [20] training dataset (N = 199). In
both datasets, patients with a Gleason grade group (GGG) < 1 or those
who did not undergo biopsy due to a clinical indication and Prostate
Imaging Reporting and Data System (PI-RADS) score < 3 were defined
as negative for PCa, whereas patients with GGG ≥ 1 were defined
as positive for PCa. The task of any PCa (GGG ≥ 1) detection rather
than csPCa (GGG ≥ 2) detection was chosen to compare the anomaly
detection abilities of the models rather than their absolute performance
on csPCa. Table 1 gives an overview of the patients’ characteristics of
the in-house collected dataset and Table S1 (Appendix A.) provides an
overview of the GGG distributions of the internal and external test sets
used in this work.

The in-house dataset consisted of diagnostic MR images from men
enrolled in the standardized prostate cancer pathway at St. Olavs
Hospital, Trondheim University Hospital, Trondheim, Norway, from
January 2013 to December 2020, due to suspicion of PCa. The Regional
Committee for Medical and Health Research Ethics (REC Mid Norway)
approved the use of the dataset (identifier 2017/576) and granted
permission for passive consent to be used. T2W imaging was performed
on Magnetom Skyra (951 patients), Prisma (4 patients), or Biograph
mMR (6 patients) 3T MRI systems (Siemens Healthineers, Erlangen,
Germany) with a turbo spin-echo sequence (repetition time 3320–
10 710 ms, echo time 93–108 ms, flip angle 120–160 degrees, matrix
size 256 × 256–640 × 640, 16–36 slices with 3–3.5 mm slice thickness
and 0.3 × 0.3–0.75 × 0.75 mm2 in-plane resolution). 507 patients were
classified as positive, and 454 patients were classified as negative for
PCa. Lesion-level (and, consequently, image-level) annotations were
2

Table 1
Overview of patients characteristics in the in-house collected dataset. Numbers are
reported as mean (range) [number of patients with missing information]. PI-RADS
refers to the PI-RADS score of the index lesion. The following abbreviations are listed in
the table: Prostate-specific antigen (PSA), Gleason grade group (GGG), and transrectal
ultrasound examination (TRUS).

Negative Positive

Patients (N = 961) 454 507
PSA (ng/mL2) 7 (0.4–99) [45] 8.5 (0.2–2843) [3]
Prostate volume 57 (15–312) [1] 39.5 (11.7–197) [17]
PSA density 0.13 (0.01–1.42) [42] 0.21 (0.02–66.7) [41]
Age 64 (21–80) [1] 68 (41–85)
Biopsy (Patients) Negative (N = 208)/ Positive (N = 507)

not performed (N = 246)
Prostatectomy – N = 224
Systematic TRUS
Biopsy (Patients)

N = 122 [6] N = 76 [14]

Targeted biopsy
(Patients)

N = 80 N = 417

PI-RADS (Index)
1/2 370 78
3 41 47
4 22 121
5 21 261

GGG
1 N/A 96 (19%)
2 N/A 179 (35%)
3 N/A 122 (24%)
4 N/A 41 (8%)
5 N/A 69 (14%)

available for 133 positive patients. These were based on delineations
of PI-RADS ≥ 3 lesions performed by a radiology resident trained by a
radiologist (S.L.) with more than a decade of experience. In this study,
these 133 patients were selected for training due to the availability
of image-level annotations. The patients were split into training (N =
266, 133 positive/133 negative), validation (N = 100, 50 positive/50
negative) and internal test (N = 595, 324 positive/271 negative) sets.
The PROSTATEx challenge [20] training dataset (N = 199, 98 pos-
itive/101 negative) was used as an external test set. Details of the
acquisition protocol are provided in [20]. Manual delineation of PI-
RADS ≥ 3 lesions was performed by imaging experts (at Miller School of
Medicine, Miami, FL, USA) based on targeted biopsy locations provided
by the challenge organizers. 5 patients from the original dataset were
excluded from analysis due to sub-optimal image or annotation quality.

2.2. End-to-end pipeline

Fig. 1 provides an illustration of the end-to-end pipeline to bench-
mark PCa detection using GANs. The pipeline consists of an image
pre-processing module, a GAN module, and a post-processing module,
each of which is explained in more detail below. The modules were
implemented in Python (versions 2.7 & 3.7), except for normalization
using AutoRef [21] and segmentation quality control (QC) [22], which
were implemented using MATLAB (The Mathworks, Nattick, MA; ver-
sion r2020b). All experiments were performed using Ubuntu 18.04.4L
operating system with a single NVIDIA Tesla V100 PCIe 32 GB GPU.

2.2.1. Pre-processing module
As shown in Fig. 1, the pre-processing module performs T2W im-

age intensity normalization, segmentation of the prostate gland, and
sampling of the input images used for model training and inference.
Intensity normalization was performed using AutoRef [21], a dual
reference tissue (fat and muscles) normalization approach that also
incorporates N4 bias field correction [24]. AutoRef produces pseudo-
T2 images where prostate tissue is expected to have a value of ap-
proximately 80 ms. Image intensities larger than twice the expected
pseudo-T2 value of fat (242 ms) were truncated to standardize the
image intensity range (0–242). V-Net [25] and nnU-Net [26] models
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Fig. 1. shows the automated end-to-end pipeline for PCa detection. The pre-processing module (1) includes automated T2-weighted (T2W) normalization, prostate segmentation
(3D), followed by a segmentation quality control step, and an automated sampling technique that crops image patches (2D). The cropped 2D images are used for training, validation
and testing of the GANs. The GAN module (2) involves training and inference of the GANs on 2D MR images. The real cropped images are sampled from the original MRI images
and the generated images are synthesized by the generator (G). During inference, the trained GAN models are used to generate negative images from input images (2D) of unknown
health status. In the post-processing module (3), GAN reports (2D) are created as the difference between the input images and the generated images. The 2D GAN reports are
then accumulated and smoothed with a local mean filter to produce a 3D cancer localization map. A patient-level anomaly score, defined as the maximum value in the 3D cancer
localization map, represents the likelihood of detected PCa.
Table 2
Number of cropped images for each of the generated datasets for 4 different pixel spacing values (0.2 × 0.2, 0.3 × 0.3, 0.4 × 0.4, and 0.5 × 0.5 mm2) using CROPro [23]. All
GAN models were trained, validated, and tested with 266, 100, and 595 patients, respectively.

Pixel spacing (mm) Train (N = 266, 133/133) Validation (N = 100, 50/50) Test (N = 595, 271/324)

Negative Positive Negative Positive Negative Positive

0.5 × 0.5 7690 3011 771 688 4838 4591
0.4 × 0.4 12 397 4944 1104 811 7710 5701
0.3 × 0.3 19 099 8803 2815 1670 20 386 12 755
0.2 × 0.2 52 491 21 085 11 377 7014 77 484 52 517
were trained on 89 patients (in-house dataset) from whom manual
segmentation of the prostate gland was available and were then used to
automatically segment the 3D prostate volume on the normalized T2W
images (see Appendix A., Table S2 for segmentation hyperparameters).
Subsequently, a pre-trained quality control (QC) system [22] was used
to select the best-performing segmentation model for each case. The
segmentation with the highest QC score was selected, while cases with
QC scores lower than 80% on both segmentations (N = 13, negative:
8, positive: 5) were excluded from analysis. Finally, CROPro [23],
an in-house developed cropping technique, was used to resample the
normalized T2W images and prostate masks to a new pixel-spacing (0.5
× 0.5, 0.4 × 0.4, 0.3 × 0.3, or 0.2 × 0.2 mm2) and sample 2D input
3

images of size 128 × 128 for training, validation, and testing of the
GAN models. The cropping settings were based on the optimal crop
size found for CNNs and Vision Transformers (∼10 cm2) in previous
work [23]. Here, we selected a range from ∼8 cm2 to ∼20 cm2 to
investigate the optimal cropping size for GANs. Separate models were
trained and evaluated for each combination of pixel-spacing and GAN
type. For the training set, input images were sampled randomly from
the prostate mask (negative patients) or from the segmented lesions
(positive patients). For the validation and test sets, images were sam-
pled from the complete prostate mask using a stride of 32 pixels.
Table 2 gives an overview of the number of cropped images for the
train, validation, and internal test sets.
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Table 3
The table presents differences in loss functions among all selected GANs. Five out of six models use the WGAN-GP [27] architecture, with different combinations of losses for both
Generators (𝐺) and Discriminators (𝐷). There are various types of losses, including an adversarial loss (𝑎𝑑𝑣), a domain classification loss (𝑐𝑙𝑠∕𝑑𝑜𝑚𝑎𝑖𝑛), a cycle consistency loss
(𝑐𝑦𝑐 ) also referred to as a reconstruction loss (𝑟𝑒𝑐 ), a conditional identity loss (𝑖𝑑 ), a focus loss (𝑓 ), a style reconstruction loss (𝑠𝑡𝑦), a diversity-sensitive loss (𝑑𝑠), and a 1
regularization loss (𝑅1𝑟𝑒𝑔 ). Even when models use the same loss, there may be differences in implementation.

Model WGAN-GP Generator (𝐺) Discriminator (𝐷)

𝑎𝑑𝑣 𝑐𝑙𝑠∕𝑑𝑜𝑚𝑎𝑖𝑛 𝑐𝑦𝑐∕𝑟𝑒𝑐 𝑖𝑑 𝑓 𝑠𝑡𝑦 𝑑𝑠 𝑎𝑑𝑣 𝑐𝑙𝑠∕𝑑𝑜𝑚𝑎𝑖𝑛 𝑅1𝑟𝑒𝑔

f-AnoGAN [14] ✓ ✓ ✓

HealthyGAN [15] ✓ ✓ ✓ ✓ ✓ ✓

StarGAN [16] ✓ ✓ ✓ ✓ ✓ ✓

StarGAN-v2 [17] ✓ ✓ ✓ ✓ ✓ ✓ ✓

FP-GAN [18] ✓ ✓ ✓ ✓ ✓ ✓ ✓

DeScarGAN [19] ✓ ✓ ✓ ✓ ✓ ✓ ✓
2.2.2. GAN module
Six relevant 2D GANs were selected for investigation: f-AnoGAN

[14], HealhtyGAN [15], StarGAN [16], StarGAN-v2 [17], FP-GAN [18]
and DeScarGAN [19]. For each model, the code was publicly available.
All input annotations for training were on the image level, i.e., each
input image was labeled as negative or positive. All models were
trained to generate 2D images representing a negative patient.

There are several differences between the evaluated models. f-
AnoGAN and HealthyGAN are unsupervised networks, whereas Star-
GAN, StarGAN-v2, FP-GAN, and DeScarGAN are weakly-supervised
GANs that use the image-level class as a condition during training.
Although the latter models perform supervised image-level detection
and only weakly-supervised lesion localization, they are referred to as
‘‘weakly-supervised’’ in this work to be consistent with terminology
used in the original papers. All models are image-to-image translation
models except f-AnoGAN. f-AnoGAN aims to generate an image using
a fast mapping (encoder) from input images to encodings in GAN’s
latent space, whereas HealthyGAN, StarGAN, StarGAN-v2, FP-GAN,
and DeScarGAN aim to translate an input image to a different do-
main. f-AnoGAN uses only (unlabeled) negative images during training.
HealthyGAN uses two unlabeled datasets during training, one with only
negative images and one with a mix of negative and positive images.
StarGAN, StarGAN-v2, FP-GAN, and DeScarGAN use both negative and
positive labeled images during training. Also the loss functions differ
between models, as summarized in Table 3. Furthermore, the size of
the input images varies: HealthyGAN, StarGAN, StarGAN-v2, and FP-
GAN are able to work with different input sizes, whereas f-AnoGAN
and DeScarGAN have fixed input sizes of 64 × 64 and 256 × 256,
respectively. For f-AnoGAN and DeScarGAN, the input images were
resampled to meet the requirements of the networks.

To allow for a fair comparison of model performance, the same
pre-processed images were used as input for all models. The hyperpa-
rameters of the GAN models were kept as proposed in their original
implementations (see Appendix A., Table S3), except for the iteration
number, which was expanded to 600K iterations for HealthyGAN,
StarGAN, and FP-GAN. The generated output images of each model
were further processed to provide a patient-level anomaly score (see
2.2.3), which was used to predict cancer status.

2.2.3. Post-processing module
The 2D output images of the GAN models represent a negative

(‘‘healthy’’) version of the input image, and differences between the
generated negative image and the input image are expected to be
indicative of PCa. For each image, a difference map (GAN report) was
therefore calculated as the absolute difference between the cropped
input image and the generated output image. For each image slice,
overlapping difference maps (due to stride sampling) were pixel-wise
averaged to create a 3D difference map of the same dimensions as
the original T2W image. Finally, to reduce the impact of noisy pixels,
this difference map was smoothed by using a mean filter with radius
of 5 mm in-plane, producing the final 3D cancer detection map. The
patient-level anomaly score was then defined as the highest value in
the 3D cancer detection map. All values outside the segmented prostate
gland were discarded.
4

2.3. Statistical analysis

The performance of PCa detection was compared between GAN
models in the validation set. The performance of the most promis-
ing model was further assessed with internal and external test sets.
Five additional training runs with random initialization on the same
dataset were performed to determine the training stability of the best-
performing model.

Classification performance was assessed on the patient-level using
the area under the receiver-operating characteristics curve (AUC). The
DeLong method was used to compare AUCs between different models.
The 95% confidence interval (CI) of the AUC was calculated using the
bootstrap method. Performance across multiple runs was reported as
mean ± standard deviation (SD). The Wilcoxon rank sum test was used
to assess statistical differences between anomaly scores of positive and
negative patients.

3. Results

All models except f-AnoGAN and StarGAN-v2 performed best when
trained on input images with a pixel spacing of 0.4 × 0.4 mm (Appendix
A., Table S4). The performance of the GAN models on the validation set
with these cropping settings is shown in Table 4. FP-GAN performed
best, with an AUC of 0.76 (95% CI: 0.65–0.84). This was significantly
better than the performance of f-AnoGAN and StarGAN-v2, but not
HealthyGAN, StarGAN, and DeScarGAN.

Fig. 2 shows the output of all models for a patient with a histopatho-
logically confirmed GGG 3 tumor in the left side of the peripheral zone.
It can be observed that FP-GAN and StarGAN are the only models that
convincingly visualize the tumor on the PCa detection map.

The performance of FP-GAN was further evaluation on the test sets.
The AUC was 0.72 on both the internal and external test sets using the
initial model (Table 5). Stable performance with a standard deviation
of 1%–4% was observed across the five randomly initialized models
(Fig. 3, Table 5). This is further illustrated in Fig. 4, which shows that
all model initializations successfully detected the malignant area in a
patient with a histopathologically confirmed GGG 2 tumor. Fig. 5 shows
two additional examples, where the model fails and succeeds to detect
the lesion. Fig. 6 shows that the anomaly scores corresponding to all
model initializations are consistently higher (𝑝 < 0.001) for positive
than negative patients in the test sets.

4. Discussion

In this study, we benchmarked several GAN models in an end-to-
end CAD pipeline for PCa detection on T2W MR images. The method
is designed to generate a 3D visual report for detection of lesions,
together with a patient-level anomaly score representing the overall
likelihood of cancer. The main objective of this study was to compare
the performance of different GAN models for detection of PCa. Six
GANs were selected based on availability and previous success in

medical imaging tasks: f-AnoGAN, HealthyGAN, StarGAN, StarGAN-v2,
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Table 4
Patient-level area under the receiver-operating characteristic curve (AUC) in the validation set for each of the six models. The model with the
highest AUC was selected for further analysis (highlighted in bold).

Model Type Pixel spacing (mm) Best found iteration Validation patient-level AUC (CI 95%)

StarGAN-v2 Weakly-supervised 0.4 × 0.4 200 000 0.49 (0.37–0.60)
f-AnoGAN Unsupervised 0.4 × 0.4 180 000 0.54 (0.43–0.66)
DeScarGAN Weakly-supervised 0.4 × 0.4 190 000 0.68 (0.56–0.77)
HealthyGAN Unsupervised 0.4 × 0.4 580 000 0.69 (0.58–0.78)
StarGAN Weakly-supervised 0.4 × 0.4 570 000 0.70 (0.60–0.80)
Fixed-Point-GAN Weakly-supervised 0.4 × 0.4 340 000 0.76 (0.65–0.84)
Fig. 2. shows a slice through the middle of the prostate of a positive patient (validation set) with a biopsy-confirmed GGG 3 lesion in the peripheral zone evaluated for all models.
Columns represent the original image (green boxes represent the stride cropped images), the evaluated cropped area, the stitched generated images, the difference between the
original and the generated image (GAN report), the filtered difference image where the red circle represents the maximum local mean, and the final PCa detection map. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. The AUCs for validation, internal and external test sets are presented for the initial FP-GAN model and five additional models trained with random initialization. For the
internal test set, the AUC for any PCa detection by a radiologists according to PI-RADS is presented for reference. Depending on the year of referral, patients may have been
examined with mpMRI or bpMRI.
5
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Table 5
AUCs of the best found model (FP-GAN) on the validation set trained for 5 more runs with the same split of the dataset to evaluate the stability
of the model. The input images are 128 × 128 pixels and the pixel spacing is 0.4 × 0.4 mm2.

Model runs Best iteration Validation AUC (CI 95%) Internal AUC (CI 95%) External AUC (CI 95%)

FP-GAN: 1 300 000 0.75 (0.64–0.84) 0.73 (0.69–0.77) 0.77 (0.70–0.83)
FPGAN: 2 280 000 0.76 (0.65–0.85) 0.69 (0.65–0.73) 0.65 (0.57–0.73)
FP-GAN: 3 550 000 0.77 (0.68–0.85) 0.70 (0.66–0.74) 0.74 (0.67–0.80)
FP-GAN: 4 140 000 0.78 (0.67–0.86) 0.70 (0.65–0.74) 0.67 (0.59–0.74)
FP-GAN: 5 160 000 0.75 (0.64–0.84) 0.73 (0.68–0.79) 0.72 (0.64–0.79)
FP-GAN: Initial 340 000 0.76 (0.65–0.84) 0.72 (0.67–0.75) 0.72 (0.64–0.78)

Mean ± SD 0.76 ± 0.01 0.71 ± 0.01 0.71 ± 0.04
Fig. 4. shows a slice through the middle of the prostate from a patient (external test set) with a confirmed GGG 2 peripheral zone lesion. The rows represent the initial model
and the models from 5 additional runs with random initialization. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
FP-GAN and DeScarGAN. Our results indicate that FP-GAN shows most
potential for the patient-level detection of PCa on T2W MR images.

Previous studies have shown promising results for csPCA detection
on bpMRI (e.g., [7,8]) and mpMRI (e.g., [9]) with supervised CNNs.
Also the five best performing networks in the currently ongoing PI-CAI
grand challenge [28] for detection of csPCa on bpMRI are based on
supervised CNNs [29], with AUCs for patient-level detection of csPCa
in the test set ranging from 0.871 to 0.889. However, these models
require pixel-level labels, which are difficult to obtain in practice and
may hinder future training on very large datasets. To overcome that
limitation, Wang et al. [30] proposed a dual-path CNN, one for T2W
and one for ADC, that generates cancer detection maps while only
requiring image-level annotations, similar to the GANs benchmarked
in this work. They reported an AUC of 0.979 ± 0.009 for detection of
csPCa on bpMRI. However, the performance evaluation was limited to
image-level analysis using manually selected slices where lesions were
clearly visible, without external testing on an independent dataset.

GANs have been successfully used in prostate imaging tasks. They
have been applied for prostate gland segmentation [31], fiducial
6

marker detection [32], MRI intensity normalization [33], and hema-
toxylin and eosin staining [34]. Detection of csPCa using supervised
fully connected networks (FCNs) with adversarial training is a relatively
unexplored research area. Only one study has proposed such a method;
Kohl et al. [35] used an adversarial network to discriminate between
expert decisions and generated annotations from a U-Net-based [36]
architecture for semantic segmentation of csPCa lesions. Of note, this
approach requires pixel-level annotations from expert radiologists,
whereas the GANs benchmarked in our study require only image-level
annotations (weakly-supervised) or no annotations (unsupervised).

We investigated studies based on GANs that have been proposed for
a variety of anatomical areas and diseases [13,15,18,37]. We identified
nine unsupervised or weakly-supervised GAN models where implemen-
tation code was available. Three models were excluded from analysis;
AnoGAN [38] was discarded because it is an earlier, much slower,
version of f-AnoGan [14]. BigBiGAN was discarded based on the visual
observation of the reconstructed images of the original paper [39], in-
dicating it would not be capable to learn the heterogeneous distribution
of T2W prostate MRI. VA-GAN [40] was discarded because it requires
class label for each input image during inference.



Informatics in Medicine Unlocked 39 (2023) 101234

7

A. Patsanis et al.

Fig. 5. presents results from the initial model with FP-GAN from three consecutive slices for two patients (external test set) with a confirmed GGG 2 lesion. The first column
shows the T2W MRI image overlaid with the true positive lesions, while the second column shows the cancer hotspots generated from GANs. The case on the left represents a
poor case where the model failed to detect the lesion, while the case on the right represents a case where the model successfully finds the area of the lesion.

Fig. 6. shows violin plots of the patient-level anomaly scores in (a) the internal test set and (b) the external test set, for each of the FP-GAN model initializations. The mean
anomaly score is significantly higher (𝑝 < 0.001) in positive than in negative patients in both internal and external datasets for all model initializations.
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FP-GAN trained on 128 × 128 images with pixel spacing of 0.4
× 0.4 mm2 performed best in the validation set. The relatively poor
performance of f-AnoGan and HealthyGAN could be due to the diffi-
culty of unsupervised approaches to learn the underlying distribution
of the data space (see Appendix A., Figure S1), because prostate im-
ages vary in shape and size and negative (‘‘healthy’’) prostate images
often harbour benign lesions such as prostatic hyperplasia (BPH) and
prostatitis. Another reason could be that unsupervised learning requires
more training data than used in this study. In comparison to the other
weakly-supervised methods, the success of FP-GAN may be attributed
to the ability of its generator to produce an additive map rather than
generating an entirely new image. FP-GAN is an extension of StarGAN
and shows similar results to that model (Fig. 2). However, it can
be observed that FP-GAN makes minimal ‘‘local’’ changes whereas
more significant changes in the entire prostate region are seen for
StarGAN. Furthermore, our results suggest that the poor performance
of StarGAN-v2 may be due to the fact that the model aims to change
the overall image style, resulting in widespread changes in the prostate
(see Appendix A., Figure S3). Similar behavior was also observed with
DeScarGAN (see Appendix A., Figure S4).

Due to the inherent difficulty of training GANs, which do not always
converge [41], model performance was assessed by saving models and
calculating the AUC for different iterations/epochs. One observation
was that the optimal model (i.e, highest AUC) was not always found
for the same iteration/epoch. This was evident when the same data set
was used to train FP-GAN for 5 different runs, with the best iterations
varying between 140 000 and 550 000. However, we used independent
test data to investigate the generalizability of the model, which showed
consistent performance across all runs in both the internal and external
test set (Table 4). Furthermore, model stability was confirmed by
visual presentation of the detection maps, which showed consistency
throughout the slices (Fig. 5 and Appendix A., Figure S2) and per model
initialization (Fig. 4).

One inherent limitation of the unsupervised and weakly-supervised
GANs tested in this study is that the image features they learn to be
important for detection do not necessarily need to originate from the
tumor, but can be due to any systematic difference in the appearance
of the negative and positive patients. Elevated PSA values and clinical
symptoms can for example also be caused by benign BPH, which is
not cancer but typically leads to an enlarged prostate. In our cohort,
prostate volume was indeed significantly higher in negative patients
than in positive patients. Although the visual presentation of detection
maps indicates that the FP-GAN model mainly focuses on cancer le-
sions, this should be confirmed in more thorough analysis of its lesion
detection capabilities, preferably based on mpMRI or bpMRI data.

In this study, we found that FP-GAN has potential for detecting
PCa on T2W MR images. This is a solid basis for further method
development, with the eventual goal of assessing the full potential
of GANs as a support tool for radiologists to detect csPCa on bpMRI
or mpMRI. However, the current work has several limitations. GGG
from biopsy or radical prostatectomy (when available) was considered
the gold standard, whereas in the absence of biopsy, only cases with
PI-RADS 1 and 2 were used for training. Defining PCa is subject to
limitations in biopsy sampling, which may miss the cancer [42], and
inter/reader variability [4,5] of both radiologists and pathologists. In
addition, we chose the task of detection of any PCa (GGG ≥ 1) for
comparison between models, as this is arguably most consistent with
anomaly detection. However, detection of csPCa (GGG ≥ 2) is regarded
to be a more clinically useful task. Furthermore, we only reported
patient-level classification performance and did not quantitatively eval-
uate lesion detection performance. We regard this subject of future
research, as lesion detection based on PI-RADS also requires DWI and
(to some extend) DCE sequences [3], whereas only T2-weighted scans
were used in this study. Extending our pipeline to mpMRI or bpMRI will
be necessary, as certain lesions may be missed when only T2W images
8

are used. However, it remains to be seen whether GANs perform well on
the more noisy DWI images. Finally, although pixel-level annotations
are not required for training of the investigated GANs, we used the
expert tumor segmentations when preparing the positive images in
the training dataset. As a result, our training set was relatively small
in terms of patient numbers, and results may be improved when the
models are trained on a larger set of images.

5. Conclusion

We benchmarked six previously developed GAN models in an end-
to-end pipeline for automated PCa detection on T2W MRI. The pipeline
is designed to generate a 3D visual report for detection of lesions,
together with a patient-level anomaly score representing the overall
likelihood of cancer. FP-GAN was identified as the most promising GAN
model for the given task, and was successfully tested on an internal and
external dataset, showing generalizability. This work shows that GANs
have potential for detection of PCa and serves as a solid basis for further
development, including training and testing of FP-GAN for the task of
detection and localization of csPCa on a larger set of bpMRI or mpMRI
data.
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