
Path and M
otion Planning for U

nm
anned Surface Vehicles

Sander Furre

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g 

Cy
be

rn
et

ic
s

Sander Furre

Path and Motion Planning for
Unmanned Surface Vehicles subject
to the International Regulations for
Preventing Collisions at Sea

Master’s thesis in Cybernetics and Robotics
Supervisor: Konstantinos Alexis
Co-supervisor: Mihir Dharmadhikari
June 2022

M
as

te
r’s

 th
es

is





Sander Furre

Path and Motion Planning for
Unmanned Surface Vehicles subject to
the International Regulations for
Preventing Collisions at Sea

Master’s thesis in Cybernetics and Robotics
Supervisor: Konstantinos Alexis
Co-supervisor: Mihir Dharmadhikari
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics





Abstract
This thesis explores a method to enable mission planning and collision avoidance for Un-
manned Surface Vehicles in vast coastal environments without human intervention. The
designed and implemented guidance system follows the hybrid robotic paradigm, with a
global static mission planner and a local collision avoidance strategy in a dynamic win-
dow. The mission planner searches for a safe and optimized path in the continuous con-
figuration space of the ownship by utilizing a specialized adaptation of the Hybrid A*
algorithm. The search algorithm is facilitated by the support of a vessel model with three
Degrees of freedom (DOF), a specialized framed region quadtree builder, and a Voronoi
skeleton generator relying on a novel generation technique. The vessel model is used for
motion sampling, while the quadtree is utilized for fast collision checking and accurate
distance-to-goal approximations through specialized A* graph search. Reasonable mar-
gin of safety to hazards in the nominal path is ensured by utilization of the Voronoi field,
which requires the Voronoi skeleton. The generated mission plan is tracked utilizing a
Line-of-sight (LOS) guidance law, and collision avoidance is handled locally using pre-
dictive control behavior selection, supported by simulation and a rules-aware cost function.
Both the mission planner and collision avoidance systems are designed to comply with the
International Regulations for Preventing Collisions at Sea.

The complete guidance system is implemented with modularity in mind using C++ nodes
in ROS Noetic, and testing has been conducted in a simplified simulation environment. In
testing, the guidance system in general exhibits feasible, optimized, rules-compliant, and
collision-free behaviors in mission planning and collision avoidance across a multitude
of scenarios. However, some deficiencies do exist. The mission planner, while compli-
ant, struggles with search progression in the presence of some Traffic Separation Scheme
elements. Furthermore, the collision avoidance system occasionally does not appropri-
ately state the ownship intent and, in rare cases, fails to act with acceptable predictability
and safety margins to obstacle vessels. The thesis concludes that utilizing sample-based
motion planning in combination with predictive control behavior selection collision avoid-
ance as a basis for collision-free guidance of maritime vessels, while not without flaws, is
a promising combination of technologies with much potential for use in a rules-compliant
maritime guidance system for large-scale environments. Furthermore, while the current
implementation is by no means perfect and not ready for real-world testing yet, it acts as a
proof of viability and a foundation on which future research should be built.

i



Sammendrag
I denne masteroppgaven utforskes en metode for å muliggjøre ruteplanlegging og kol-
lisjonsunngåelse for overflatefartøy i storskala kystområder uten menneskelig innblanding.
Guidingsystemet som er designet og implementert følger en hybridmodell, med en global
statisk ruteplanlegger og en lokal strategi for kollisjonsunngåelse i et dynamisk vindu.
Ruteplanleggeren søker etter en trygg og optimert rute i det kontinuerlige konfigurasjons-
domenet til fartøyet gjennom å utnytte en spesialisert versjon av algoritmen Hybrid A*.
Søkealgoritmens hovedoppgave blir fasilitert av en 3DOF fartøymodell, et spesialisert re-
gionalt Quadtree og en Voronoi skeleton generingsalgoritme. Fartøymodellen blir brukt
til å utføre ekspansjon av rutesøket, Quadtreet blir brukt til rask kollisonsjekking og for å
approksimere distanse til mål fra en gitt konfigurasjon, og Voronoi skeleton strukturen leg-
ger grunnlaget for å utnytte det kunstige Voronoi kraftfeltet som muliggjør relativ sikker-
hetsmargin i ruteplanleggingen. Den genererte ruteplanen blir fulgt av en Line-Of-Sight
(LOS) følgelov, og kollisjonsunngåelse blir håndtert lokalt ved bruk av predikativ, sim-
ulasjonsstøttet kontrollseleksjon og en regel-bevisst kostfunksjon. Både ruteplanleggeren
og systemet for kollisjonsunngåelses er utformet for å følge Konvensjon om internasjonale
regler til forebygging av sammenstøt på sjøen.

Det fullstendige guidingsystemet er implementert med søkelys på modularitet gjennom
C++ noder i ROS Noetic og har blitt testet i et forenklet simulasjonsmiljø. Gjennom
testing har systemet utvist optimert og kollisjonsfri oppførsel som følger spesifiserte in-
ternasjonale sjøregler i varierte scenarier. Likevel er det ikke uten mangler. Ruteplanleg-
geren klarer å følge regler for trafikkseparasjon, men progresjonen i planleggingen stag-
nerer i nærheten av enkelte separasjonselementer. Videre utviser ikke kollisjonssystemet
alltid tydelig intensjon om vikemanøver i møte med andre skip, og i sjeldne tilfeller op-
prettholdes ikke tilstrekkelig sikkerhetsmargin og forutsigbarhetskrav til andre skip. Det
konkluderes med at Hybrid A* bevegelsesplanlegging og prediktiv kontrollseleksjon som
en basis for kollisjonsfri guiding av maritime overflatefartøy i storskala kystmiljø er en
lovende teknologikombinasjon. Selv om implementasjonen som følger denne masteropp-
gaven ikke er perfekt eller klar for sjøprøver enda, så viser den at et slikt system kan
fungere i praksis. Implementasjonen og arbeidet i denne masteroppgaven er også tiltenkt
som et grunnlag videre arbeid og forskning om ønskelig kan bygge på.

ii



Preface
This master thesis concludes my five years at the Norwegian University of Science and
Technology in Trondheim and is carried out in the spring semester of 2022 at the Depart-
ment of Engineering Cybernetics. It introduces a proposed design and implementation of
a complete guidance system and supportive framework for collision-free motion planning
in dynamic coastal environments at a large scale. This thesis aims to contribute toward
the development of autonomous maritime vessels capable of mission planning and col-
lision avoidance without human intervention by laying a foundation for further practical
academic research.

The work in this thesis relies heavily on the use of Electronic Navigational Charts, and I
would like to thank Sølvi Tunge at PRIMAR and Gjertrud Røyland and Jostein Thorsen at
The Norwegian Mapping Authority for their assistance with obtaining charts from the Nor-
wegian coastline. Furthermore, I would like to express my gratitude to my supervisor Kon-
stantinos Alexis and Co-supervisor Mihir Dharmadhikari, who have guided my research
throughout the semester and provided invaluable feedback through bi-weekly meetings.
You have provided new knowledge and perspective and been a source of great inspiration.

The guidance system developed in this thesis is built in a Ubuntu 20.04 Docker container
and utilizes ROS Noetic as a framework. Core components rely heavily on earlier open-
source efforts through the development of open-source libraries and systems. Some no-
table mentions are the GBPlanner system developed at the NTNU Autonomous Robots lab
[44] used for building and maintaining graphs, the Geospatial Data Abstraction Library
[57] utilized to read and manipulate Electronic Navigational Charts, GeographicLib [51]
utilized to solve problems related to Geodesy and OpenMP [14] utilized to enable concur-
rency within node procedures. As with most software developed in C++, the C++ Standard
Library has also been of immense value. Before proceeding, I thus want to express my sin-
cere gratitude to the developers, maintainers, and facilitators of all open-source software
used in this thesis. Making this project come to life would not have been possible without
the decades of effort you all have contributed.

Sander Furre

Trondheim, June 6, 2022

iii



Contents

Abstract i

Sammendrag ii

Preface iii

List of Tables vii

List of Figures x

Acronyms xi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem formulation and contributions . . . . . . . . . . . . . . . . . . . 2
1.3 Assumptions, simplifications and limitations . . . . . . . . . . . . . . . . 3
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review 4
2.1 Overview Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Path and Motion planning algorithms . . . . . . . . . . . . . . . . . . . . 5
2.3 Collision avoidance algorithms . . . . . . . . . . . . . . . . . . . . . . . 6

3 Background 8
3.1 Motion Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 The motion planning problem . . . . . . . . . . . . . . . . . . . 8
3.1.2 Configuration space . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.3 World models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.4 Planning approaches . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.5 Region quadtree . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.6 Robotic paradigms . . . . . . . . . . . . . . . . . . . . . . . . . 13

iv



3.1.7 Graph terminology and utilization in motion planning . . . . . . 14
3.2 Path- and motion planning algorithms . . . . . . . . . . . . . . . . . . . 15

3.2.1 A* Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Hybrid A* Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Guidance, Navigation and Control . . . . . . . . . . . . . . . . . . . . . 18
3.3.1 Guidance Systems . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Navigation systems . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.3 Control systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Surface Vessel Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.1 The equations of motion . . . . . . . . . . . . . . . . . . . . . . 21
3.4.2 Low-level controller . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Electronic Navigational Charts . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.1 The S-57 Product Specification . . . . . . . . . . . . . . . . . . 24
3.5.2 Electronic Navigational Charts in autonomous missions . . . . . 26

3.6 Geodesy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6.1 World Geodetic System 1984 . . . . . . . . . . . . . . . . . . . 27
3.6.2 The Mercator Projection . . . . . . . . . . . . . . . . . . . . . . 28
3.6.3 The inverse geodetic problem . . . . . . . . . . . . . . . . . . . 29

4 Method 30
4.1 Solution concept and system design . . . . . . . . . . . . . . . . . . . . 30
4.2 Electronic Navigational Chart Manager . . . . . . . . . . . . . . . . . . 31

4.2.1 Information extraction from Electronic Navigational Charts . . . 32
4.2.2 Interpreting and representing free space in the mission region . . 32
4.2.3 Generating a free-space Voronoi skeleton for the mission region . 34
4.2.4 Mission map service . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Mission Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.1 System of reference . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.2 Successor operator design . . . . . . . . . . . . . . . . . . . . . 36
4.3.3 Heuristic design . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.4 Adapting Hybrid A* to large-scale environments . . . . . . . . . 38
4.3.5 Incorporation of COLREG compliance . . . . . . . . . . . . . . 39

4.4 Path tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Collision avoidance system . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Implementation 44
5.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.1 ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1.2 OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.3 GDAL/OGR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.4 Geotf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1.5 Odeint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1.6 GeographicLib . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.7 JC_Voronoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Electronic Navigational Chart Manager . . . . . . . . . . . . . . . . . . 47
5.2.1 Information extraction from Electronic Navigational Charts . . . 47

v



5.2.2 Interpreting and representing free space in the mission region . . 49
5.2.3 Generating a free-space Voronoi skeleton for the mission region . 51
5.2.4 Mission Map Service . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Mission Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.1 Motion planning with Hybrid A* . . . . . . . . . . . . . . . . . 54

5.4 Collision avoidance system . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4.1 Simulating and comparing control action combinations . . . . . . 59
5.4.2 Evaluating risk and COLREG Compliance . . . . . . . . . . . . 59

6 Results and discussion 64
6.1 Isolated collision avoidance scenarios . . . . . . . . . . . . . . . . . . . 64

6.1.1 Head-on scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.1.2 Crossing scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1.3 Overtake scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Mission Planning Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.1 Traffic Separation Scheme Compliance . . . . . . . . . . . . . . 76
6.2.2 Large-scale mission planning in a varied coastal environment . . . 79
6.2.3 Evaluation of Mission Planner Robustness . . . . . . . . . . . . . 85

6.3 Complete mission scenario . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.1 Results overview . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.2 Obstacle encounters . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.3 Nominal path tracking . . . . . . . . . . . . . . . . . . . . . . . 92

7 Conclusion and future work 95
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Appendices 103

A Relevant COLREG rules 104

B Relevant ENC Objects for autonomous operations 107

C Guidance system core parameters 109

vi



List of Tables

3.1 The relevant notation of SNAME (1950) from [48] . . . . . . . . . . . . 21
3.2 WGS84 Defining Parameters from [30] . . . . . . . . . . . . . . . . . . 28

4.1 Efficiency and approximation comparison of non-framed, and two differ-
ent framed quadtrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

B.1 Overview of relevant objects in the S-57 product specification. Acronym,
object and description details are retrieved from [17]. . . . . . . . . . . . 108

B.2 Overview of TSS relevant objects, all of which are considered cautions
in the overview spatial database. Acronym and object name is consistent
with the S-57 object Catalogue [17], and description is paraphrased from it. 108

C.1 Collision Avoidance Cost Function Parameters with utilized tune based on
[35]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

C.2 Parameters in the Mission Planner. . . . . . . . . . . . . . . . . . . . . . 110
C.3 Parameters in Electronic Navigational Chart (ENC) Manager. . . . . . . . 110

vii



List of Figures

3.1 Example illustrations of world models . . . . . . . . . . . . . . . . . . . 10
3.2 Simplified planning approach example illustrations inspired by [10] . . . 10
3.3 Examples of regional quadtree and regional framed quadtree utilization in

graph search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Simplified flowcharts for the three main robotic paradigms . . . . . . . . 13
3.5 Hybrid A* sampling in 3D kinematic state space compared with ordinary

A* search. Visualization inspired by [21] . . . . . . . . . . . . . . . . . 17
3.6 Illustration of a complete general GNC system, based on [48] and [53] . . 18
3.7 Horizontal ocean current triangle, illustration inspired by [48] . . . . . . 20
3.8 Illustration of part of ENC chart generated using OpenCPN [59]. ENC

data courtesy of The Norwegian Mapping Authority . . . . . . . . . . . . 24
3.9 Structure layers according to S-57, illustration based on [17]. . . . . . . . 25
3.10 Mercator projection illustration with Tissot’s indicatrix[7]. Raster from the

Blue Marble collection, courtesy of NASA. Reprojected from Equirectan-
gular to Mercator using QGIS [58]. Tissot’s indicatrices of 150km radius
generated using the Indicatrix mapper QGIS plugin with 10 degrees reso-
lution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 A high-level visualization of a complete guidance system including the USV. 31
4.2 Visualization of a detailed and simplified spatial database built based on

Electronic Navigational Charts. The simplified map can be used for fast
queries, while the complete map can be used whenever interpretation with
attributes and situational context is required. . . . . . . . . . . . . . . . . 33

4.3 Graph search comparison of framed region quadtree with fixed and vari-
able divisor rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Illustration of sequence matching concept in the second query to a shortest
path evaluator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Illustration of proposed strategies to comply with relevant Traffic Separa-
tion Schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

viii



4.6 Illustration of LOS guidance law inspired by [48]. All coordinates are in
the same global inertial coordinate system. . . . . . . . . . . . . . . . . . 41

4.7 Collision avoidance based on predictive control selection concept pro-
posed in [33] in a single-obstacle head-on scenario. . . . . . . . . . . . . 43

5.1 Visualization of proposed multi-stage pre-processing procedure for Elec-
tronic Navigational Charts. . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Interconnecting vertices in framed regional quadtree. Illustration courtesy
of [49] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Comparison of Voronoi skeleton built pruning all edges once and pruning
iteratively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Comparison of artificial distance field and Voronoi field. Both are visual-
ized using an inferno colormap with field strength represented by warmer
color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Using line-of-sight vector and velocity vectors to evaluate discrete ownship-
obstacle relationship states. The concept is used in earlier research efforts
[33], [35], [41] but the illustrations are made for the concept explanation
in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.1 Isolated collision avoidance testing scenarios . . . . . . . . . . . . . . . 65
6.2 Results from Head-on Monte Carlo simulations exhibiting compliant be-

havior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Runtime data retrieved from all 100 Head-on Monte Carlo iterations. . . . 68
6.4 Results from Head-on Monte Carlo iterations with non-compliant behaviour

observed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.5 Initial pose of ownship in Monte Carlo Iterations . . . . . . . . . . . . . 69
6.6 Results from Crossing Monte Carlo simulations exhibiting compliant be-

havior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.7 Runtime data retrieved from all 100 Monte Carlo iterations of the crossing

scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.8 Results from Crossing Monte Carlo iterations with non-compliant behav-

ior observed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.9 Initial pose of ownship in Monte Carlo Iterations . . . . . . . . . . . . . 73
6.10 Results from Overtake Monte Carlo simulations exhibiting compliant be-

havior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.11 Results from overtake Monte Carlo iterations with non-compliant behavior

observed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.12 Search overview for TSS Mission with Points of Interest (POIs) highlighted. 77
6.13 Moving average and range of search progression in TSS Mission . . . . . 78
6.14 Overview of Hybrid A* Search result with two Points of Interest (POI)s.

ENC Data courtesy of The Norwegian Mapping Authority . . . . . . . . 80
6.15 A* search tree with highlighted POIs . . . . . . . . . . . . . . . . . . . . 81
6.16 Voronoi field and path in proximity of three waypoints with the lowest

land distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.17 Search progression towards goal . . . . . . . . . . . . . . . . . . . . . . 83

ix



6.18 Runtime of key procedures. Accumulation to one value for each search
frontier iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.19 Runtime of key heuristic subprocedures . . . . . . . . . . . . . . . . . . 84
6.20 Runtime of the getGridDistance procedure focusing on runtime after ini-

tial spike . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.21 First mission on west coast of Norway. ENC data courtesy of The Norwe-

gian Mapping Authority. . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.22 Second mission on west coast of Norway. ENC data courtesy of The Nor-

wegian Mapping Authority. . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.23 Mission travelling along shore around a larger island. ENC data courtesy

of the Norwegian Mapping Authority. . . . . . . . . . . . . . . . . . . . 87
6.24 Mission travelling upstream in the Jamaica Bay Estuary outside New York

City. ENC data courtesy of NOAA. . . . . . . . . . . . . . . . . . . . . 87
6.25 Overview of the complete mission in Jamaica Bay Estuary. Four Points of

Interest (POI)s are highlighted and will be discussed. ENC Data courtesy
of NOAA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.26 Collision avoidance maneuvers in full scale mission . . . . . . . . . . . . 90
6.27 Course values in USV during collision avoidance maneuvers in full scale

mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.28 Distance to obstacles in collision avoidance maneuvers in full scale mission 91
6.29 Overview of the part of the complete mission used to evaluate nominal

path tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.30 Path cross-track error in the highlighted section in POI4 . . . . . . . . . . 93
6.31 Course values in the highlighted section in POI4 . . . . . . . . . . . . . . 94

A.1 Illustration of COLREG compliant maneuvers in relevant collision avoid-
ance scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A.2 Illustration of compliance (Green) and non-compliance (Red) in the pres-
ence of most relevant TSS objects according to Rule 10 of the COLREGs. 105

x



Acronyms

API Application Programming Interface. 45

COLAV Collision avoidance. 1–3, 19, 30, 35, 42, 43, 59, 63, 64, 67, 69, 71, 74, 75,
88–92, 96, 97, 109

COLREG International Regulations for Preventing Collisions at Sea. 2–4, 6, 7, 30, 39,
42, 43, 59, 62, 64–71, 75, 76, 78, 89, 90, 92, 95–97, 104

CTRS Conventional, Terrestrial Reference System. 27

DOF Degrees of freedom. i, 21, 27, 36

DSID Data Set Identifier. 48

ECDIS Electronic Chart Display and Information System. 24, 31

ECEF Earth-centered, Earth-fixed. 27, 36

ECI Earth-centered inertial. 36

ENC Electronic Navigational Chart. 1, 2, 7, 24–27, 31, 32, 35, 45, 47–49, 52, 59, 63, 95,
97, 109

ENU East-north-up. 36, 41, 46, 89, 91

GCS Geographic Coordinate System. 36, 42

GDAL/OGR Geospatial Data Abstraction Library. 26, 27, 45, 46, 48, 97

GNC Guidance, Navigation and Control. 4, 18

GNSS Global Navigation Satellite Systems. 19

IHO International Hydrographic Organization. 24–27

xi



IMO International Maritime Organization. 24

LOS Line-of-sight. i, 19, 41, 42, 67, 71, 92, 95

NOAA National Oceanic and Atmospheric Administration. 24, 47

POI Point of Interest. 89, 90, 92

ROS Robot Operating System. 44, 45

RRT Rapidly-Exploring Random Trees. 12

SPA Sense-plan-act. 13

SSA Smallest Signed Angle. 23

TSS Traffic Separation Scheme. 3, 6, 32, 39, 40, 57, 64, 76–78, 95–97, 104, 107

USV Unmanned Surface Vehicle. 1–7, 19, 30–32, 35, 41, 42, 51, 54, 58–62, 64–75, 77,
88–95, 104

xii



Chapter 1
Introduction

1.1 Motivation

Developing robots capable of performing complex tasks without human intervention has
for half a century been a research topic with significant focus, rapid progress, and signifi-
cant technological advances. From its humble beginnings as a topic primarily of academic
interest, autonomous systems have, over the last couple of decades, become more capable
and started to play an ever-larger role in robotics for commercial and military applications.
In maritime robotics, autonomy enables the development of unmanned surface vessels ca-
pable of performing a variety of environmental, transportation, and reconnaissance mis-
sions. These vessels are commonly known as Unmanned Surface Vehicle (USV)s and can
have varying levels of autonomous capabilities. Depending on the autonomous capabili-
ties of the vessel, it is typically controlled, assisted, or supervised by an operator. Many
missions will require a vessel to traverse large distances in coastal waters. By introducing
a sufficient level of autonomy where the vessel is capable of autonomous rules-compliant
and collision-free guidance, a supervising operator can focus attention on other aspects of
environmental and reconnaissance missions, such as data analysis. On transportation mis-
sions, such as ferry crossings or coastal shipping, the autonomous capabilities can allow
the supervising operator to simultaneously manage a fleet of vessels.

For an USV to traverse coastal areas without relying on human intervention, it must be
able to make a strategic mission plan and follow this plan in a dynamic environment. A
guidance system plays a pivotal role in enabling this ability and typically consists of a
global mission planning strategy and a local collision avoidance strategy. Motion planning
supported by data from Electronic Navigational Chart (ENC)s can be used to develop the
former, ensuring that the USV obtains a path that is not only safe and optimized but also
feasible to follow. A mission plan does not necessarily account for dynamic hazards, thus a
Collision avoidance (COLAV) system can be required to ensure collision-free guidance at
all times. What is more, the COLAV system must ensure compliance with the "rules of the

1



road" for safe mission operations. Defined in the International Regulations for Preventing
Collisions at Sea (COLREG)s for the purpose of safe navigation, compliance with these
rules is of utmost importance for any USV wishing to operate safely and lawfully in the
presence of other vessels.

1.2 Problem formulation and contributions
To contribute towards the development of guidance systems for autonomous USVs, the ob-
jective of this thesis is to design, implement and experimentally verify a complete guidance
system intended for usage in large-scale coastal environments with other vessels present.
In order to be viable, the mission planner must produce a feasible, optimized mission path,
be rules-compliant, and require only a minimal amount of information from the supervi-
sor to generate a mission plan with a reasonable computational cost. The COLAV system
must be COLREG compliant, mitigate risk and adhere to strict real-time requirements.
Moreover, actions taken by both subsystems must be predictable, explainable, and require
only limited, readily available a priori and sensory information to operate. This thesis
focuses on utilizing state-of-the-art sample-based motion planning in combination with
a collision avoidance strategy based on motion primitives in practical applications. The
research question on which the thesis is based is the following:

• Is combining sample-based motion planning and motion primitives collision avoid-
ance in a modular framework viable to enable optimized, predictable and COL-
REG compliant guidance for an Unmanned Surface Vehicle in vast dynamic envi-
ronments?

Building on recent research in sample-based motion planning, a relatively mature concept
for collision avoidance and notably the research presented in [21], [22], [41], [44] and
[16], the goal is to develop a complete system that is able to adapt to a variety of scenarios
and can be used on any USV. Moreover, the system should rely only on novel algorithms
and open-source libraries to encourage the use and continued development of the proposed
guidance system.

The main contributions of this thesis are:

• A strategy for motion planning in coastal environments of large scale using an adap-
tation of the Hybrid A* Algorithm supported by a regional framed Quadtree, a
Voronoi skeleton, and a novel sequence matching procedure.

• A proposed design for a complete guidance system including COLREG compliant
collision avoidance, active nominal path tracking, and utilization of ENCs.

• An implementation of the complete guidance system as a C++ software system uti-
lizing ROS Noetic and several other open-source software libraries.

• An implementation of a standalone ENC data extraction library written in C++ for
reading S-57 charts and extracting data relevant for a vessel guidance system.

• A simulation-based evaluation of the real-world applicability, COLREG compli-
ance, strengths, and limitations of the guidance system.

2



1.3 Assumptions, simplifications and limitations
Some key assumptions and simplifications have been set to ensure development focus and
progression. The following is assumed:

• A target tracking system is readily available, updating tracked vessel states at no less
than 1Hz

• The USV is fitted with a navigational unit, providing all necessary ownship data.

• The USV is fitted with a course control autopilot and speed control.

The assumptions must be satisfied when running the guidance system to avoid undeter-
mined behavior. Simplifications specify a set of aspects regarding the guidance system
and simulation environment. It should be noted that the guidance system is designed to
function in the absence of these simplifications. The following core simplifications have
been made during the development:

• The vessel will not be subjected to environmental disturbances in simulation envi-
ronment or elsewhere.

• All measurements and estimates are noiseless

• Obstacle vessels do not comply with COLREG rules.

The limitations highlight functionality that one might expect from a complete guidance
system but that is not present in the design or development of the proposed guidance
system. The key limitations are the following:

• Only collision avoidance COLREGs apply in the COLAV system. Thus, there is no
way for the COLAV system to intentionally comply with location-specific rules or
a Traffic Separation Scheme (TSS).

• The mission planner does not consider weather phenomena when searching for an
optimized path.

1.4 Outline
This thesis consists of 7 chapters. Chapter 1 introduces the motivation for the thesis,
defines the key research question, and highlights the thesis contributions. Additionally, key
assumptions, simplifications, and limitations are highlighted for the reader’s convenience.
Mission planning and collision avoidance are topics where significant research efforts have
been undertaken before, and in Chapter 2 the research efforts considered most relevant for
this thesis are reviewed. Thereafter, Chapter 3 covers the relevant theory and research on
which all aspects of the guidance system in this thesis are built. Chapter 4 proposes the
complete guidance system, while technical details and pseudocode of crucial procedures
and novel algorithms are elaborated upon in Chapter 5. Testing results are presented in
Chapter 6, with accompanying evaluation and discussion. Finally, Chapter 7 concludes
the research effort in this thesis and suggests future work to overcome the limitations of
the proposed and implemented guidance system.

3



Chapter 2
Literature Review

The research focused on robot motion planning has been integral to the development of
autonomous systems since the introduction with Shakey the robot in 1984 [4]. Decades
of research have since come and gone, yet the field remains divided on how to solve
the motion planning problem and related path planning problems. Any reader interested
in a general overview is recommended to consult Latombe [10] and LaValle [20]. This
literature review will focus on contributions to motion planning and collision avoidance
considered relevant for autonomous maritime vessels.

2.1 Overview Papers

In order to develop a viable guidance system for USVs, it is not only essential to consider
algorithm candidates but also to establish a solid foundation of guidance system termi-
nology, regulatory aspects, and the general overall framework for enabling autonomous
operations. In 2020, Vagale, Oucheikh, Bye, Osen and Fossen [53] conducted a compre-
hensive review of autonomous surface vehicles, focusing on path planning and collision
avoidance primarily but also attempting to improve the consistency in this field of research
by reviewing terminology, design choices, regulatory aspects and the typical Guidance,
Navigation and Control (GNC) structure facilitating autonomous operations for such ves-
sels. The same authors have also compared 45 path planning and collision avoidance
algorithms in another paper accompanying the former [52]. While calling it a comparison
of path planning methods, some algorithms consider vessel dynamics organically and can
be considered motion planning methods. Several algorithms are promising, and a handful
has gone through sea trials. However, while some rely on conventional planning meth-
ods, most are stochastic and rely on reinforcement learning and other artificial intelligence
methods that do not give sufficient insight into internal reasoning. To guarantee COLREG
compliance and ensure consistent and predictable guidance behavior, a system with deter-
ministic logic can be beneficial over stochastic solutions. Such a system will inevitably

4



have several tuning parameters. However, it will not require a historic dataset or a very
realistic simulator for training purposes and thus might be more convenient to adapt and
deploy. The following review of some exciting and relevant mission planning and collision
avoidance strategies focuses on methods that give ample insight into the reasoning and do
not require model training.

2.2 Path and Motion planning algorithms
Liu, Song and Bucknall [31] propose a global static path planning strategy called AFMS
based on the fast marching method [13] and fast marching square [26]. Like Djikstra’s
algorithm and focused search methods such as A* and its variations, AFMS relies on a
binary grid map. Contrasting conventional grid planning methods, FMS has characteris-
tics of continuity and smoothness [26] and the authors thus argue that a USV capable of
tracking a continuous path will be able to follow it [31]. Sea trials of the AFMS method on
the Springer USV had promising results, and cross-track error was significantly reduced
compared to using A* directly [31]. There are some limitations to this approach. For one,
it does not entirely accommodate the dynamics of an USV. The Springer USV is a small
agile vessel with differential drive, making it vastly more maneuverable than any under-
acted monohull vessel with a single fixed-pitch propeller and rudder setup. Furthermore,
it relies on a binary occupancy map and is only tested for areas up to 500 × 500 square
meters in simulation and sea trials. In addition to the potential difficulty with scaling the
approach to handle map sizes of e.g. 100× 100 square kilometers, using a flat binary map
will not be viable for large mission areas where the Earth’s curvature cannot be neglected
and geodetic coordinate systems must be used. Thus, the method can be said to be limited
to smaller areas, such as harbors.

Shah and Gupta [47] propose a global static mission planner based on speeding up A* on
a visibility graph for large-scale path planning in marine environments. The authors use
a quadtree world representation and a novel admissible heuristic to facilitate the traversal
of vast environments. Furthermore, Electronic Navigational Charts provide sufficient a
priori information about the mission region, and a dynamically changing traversal space
due to weather and tide factors are considered. While this method proposes a solution
to large-scale planning for autonomous vessels, it does not consider the vessel dynamics.
Thus, while a path can be well optimized, it is not guaranteed that an arbitrary USV will
be able to follow it. Moreover, the ability to traverse challenging geometry such as narrow
channels, straits, and bays remain unclear. Additionally, proximity to land at the waypoints
appears to be an issue.

Dolgov, Thrun, Montemerlo and Diebel [21] propose a motion planning technique called
Hybrid A*, based on combining the core aspects of A* and sample-based motion planning
to create smooth, feasible paths for non-holonomic vehicles such as cars. While combin-
ing A* with sample-based motion planning loses the A* path optimality guarantee, the
path remains optimized. Furthermore, the method is general enough to apply to other
robots such as unmanned surface vehicles and can potentially be adapted to work in vast
maritime environments. Being a focused search technique, Hybrid A* relies on a world
model facilitating search heuristic evaluation. Such an evaluation can be computation-

5



ally expensive for large environments, thus while it can be used iteratively in small areas
to facilitate collision avoidance, this is not considered viable for vast maritime environ-
ments. From the perspective of large-scale motion planning for maritime vessels, it must
be considered a global, static motion planner that cannot guarantee collision-free opera-
tion whenever dynamic obstacles are present. Supposing it can work together with a local
collision-avoidance system and scale reasonably with environment size, it can be a potent
candidate for mission planning in a guidance system for an autonomous surface vessel.
A research effort undertaken by Rothmund [42] indicates that Hybrid A* can be used for
maritime applications, not only to create feasible paths but also to comply with TSS and
facilitate complex path optimization strategies with weather constraints.

2.3 Collision avoidance algorithms

Chiang and Tapia [40] propose an adaptation of the RRT algorithm [15] with COLREG
compliance called COLREG-RRT for non-holonomic surface vessels. It is a complete
guidance system solution, not only a collision avoidance strategy. The COLREG-RRT
algorithm intends to identify long prediction trajectories and thus aid with collision avoid-
ance in more complex avoidance situations. By relying on joint forward simulation of the
unmanned surface vehicle and obstacle vessels, it can accommodate more advanced obsta-
cle behaviors. Consequently, it is not as reactive as the strictly local methods. COLREG-
RRT has been tested in both single-ship and multi-ship encounters and compared with
MPC-based and APF-based methods. According to the independent algorithm compari-
son evaluation in [52], its main drawback is that it does not deal with disturbances such as
waves and ocean currents. Scaling the system to operate in vast environments while main-
taining sufficient real-time capabilities appear difficult at best. Due to the lack of field
testing, the possible difficulty of introducing environment disturbances, and uncertainties
around scaling, it is considered a highly experimental method where the viability of usage
in the proposed guidance system in this thesis is doubtful.

Kuwata, Wolf, Zarzhitsky, and Huntsberger [29] propose using the much more reactive
Velocity Obstacles method for COLREG compliant maritime navigation. Velocity obsta-
cle methods generate cone-shaped obstacle regions in the velocity space and allow for
COLREG compliance encoding straightforwardly. What is essentially determined is the
velocity of the USV to avoid the obstacle cone. Two key advantages of this method are
the frequency at which it can run and its robustness to ambiguous COLREG situations.
The authors used a relatively small 32-by-128 velocity space grid for their testing in sim-
ulations and sea trials and found that the real-time performance was satisfactory with over
20 obstacles present in the space [29]. From the perspective of large-scale missions, the
velocity space grid would probably have to be a limited dynamic window that follows
the unmanned surface vessel to maintain acceptable real-time performance. Determining
how and when such a grid should move to avoid potential critical edge-case situations
appears nontrivial but certainly not impossible. In the evaluation in [52], advantages of
this method mentioned are the intent the vessels show of following the COLREGs and the
ability to safely navigate cluttered environments. In its characterization, [52] describes
the method as appropriate for open waters, not congested waters or coastal areas. While

6



obstacle vessels and the COLREGs encode naturally in velocity space, static obstacles like
buoys, land, and shallow waters do not. The collision avoidance method can thus not in-
tentionally avoid static obstacles while complying with COLREGs, risking grounding in
areas with limited sea room. Furthermore, while the method takes advantage of the veloc-
ity space, it is not inherently aware of the USV dynamics. It can henceforth potentially
request behaviors the vessel is incapable of performing.

Loe [22] proposes a local collision avoidance method based on the dynamic window al-
gorithm, with modifications to incorporate COLREGs, improve performance and expand
the use of vessel dynamics. Initial sea trials were performed and showed great potential
[22]. Several research projects have sprung out of this effort, with Johansen, Perez and
Cristofaro [33] introducing predictive control selection and a proposed design for interac-
tion with a mission planner module. This concept was initially only tested in simulations.
Hagen expanded on the concept in her master thesis [35], while Hagen, Kufoalor, Brekke
and Johansen [41] performed sea trials with the system in the fjord of Trondheim where it
showed great potential in real situations. Later research efforts have also been undertaken
to expand upon the concept, with Otterholm [43] exploring utilization of ENC hazard in-
terpretation in this collision avoidance context and Kjerstad [45] proposing the utilization
of obstacle vessel intentions. While still experimental, the method has gained research
traction, showed potential, and proven viable in complex situations in coastal areas.

7



Chapter 3
Background

3.1 Motion Planning

3.1.1 The motion planning problem
In general, robot motion planning is a problem concerned with finding an optimal feasible
sequence of motions to get a robot from an initial configuration qI to some goal configura-
tion qG in the presence of obstacles and external forces [10]. The robot can be a vessel or
vehicle traveling autonomously, but it can generally be any robot that interacts with some
environment. Limiting the scope to motion planning for mobile robots with the purpose
of navigation in a two-dimensional world model, motion planning can be formulated as
an extension of the 2D Piano Mover’s Problem according to Formulation 7.1 in [20]. This
formulation is paraphrased below based on [49], with symbolic notation unchanged for
convenience to any reader familiar with the original book.

1. A world environmentW = R2 in which the problem is to be solved must be clearly
defined.

2. Solving the problem takes some time, defined by a time interval T ⊂ R. T can
either be bounded such that T = [0, tf ] for some final time tf > 0, or it can be
unbounded such that T = [0,∞)

3. There exists a semi-algebraic, time-varying obstacle regionO(t) ∈ W ∀ t ∈ T . The
obstacle region is assumed to be a finite collection of rigid bodies. While some un-
dergoes continous, time-dependent rigid-body transformations others can be static.

4. The purpose of solving the motion planning problem is to provide guidance to some
semi-algebraic robot A ∈ W .

5. The motion planning problem is solved in a configuration space C, the set of all pos-
sible transformations that may be applied to the robot. Based on O(t) two subsets

8



Cobs ∈ C and Cfree ∈ C are derived, which represent the occupied and unoccupied
configurations respectively.

6. Including time to configurations, the state-space X = C ×T is introduced1. A robot
state xA ∈ X is denoted as xA = (q, t). With the introduction of time the obstacle
state-space Xobs can be defined as

Xobs = {(q, t) ∈ X |A(q) ∩ O(t) ̸= ∅} (3.1)

and Xfree = X\Xobs.

7. An initial state xI ∈ Xfree defines where A is at t = 0.

8. Based on a goal in W , Xg ⊂ Xfree is designated as the goal region in the state
space. One can for example pick a configuration qG ∈ C and let XG = {(qG, t) ∈
Xfree|t ∈ T}.

9. The last component is the solution, the path τ [0, 1]→ Xfree. Here, time is scaled to
be in the interval [0, 1] The path must be continous and time-monotonic2 such that
τ(0) = xI and τ(1) ∈ XG. If it is impossible to calculate τ it must be reported that
such a path does not exist.

3.1.2 Configuration space
The configuration space C is the set of all possible rigid-body transformations that can be
applied to the robot [20]. For example, considering an arbitrary triangle-shaped robot nav-
igating a 2D world representation, its configurations will be of the form q = (xt, yt, θ). A
robot navigating the physical worldW requires some guidance through a planning strat-
egy. However, the planning problem is typically solved in the configuration space. The
reason for this is that the configuration space abstraction layer makes most inherently dif-
ferent motion planning problems solvable by the same planning algorithms [20].

The reader is advised that while all robot configurations are of the form q, not all q are in
the configuration space. For the 2D example above, θ ± 2π yields equivalent rotations.
Thus, while q ⊂ R3, we write that C = R2 × S1, where S1 is a topological circle [20].
Failing to recognize this property when solving the path planning problem will make the
configuration space artificially large and thus add unnecessary planning complexity.

3.1.3 World models
Any autonomous system must sense, interpret and store information about the real world
in an internal world model. This world model can be used to discretize the environment,
for reasoning and predictions, and evaluations internally in supportive frameworks of the
robot. While most world models are application-specific, many are adaptations from a
handful of well-established models in path and motion planning. One example is volu-
metric world models used in mapping libraries like OctoMap [27] and Voxblox [37] and

1× is the Cartesian product
2The path is time-monotonic if given (q1, t1) = τ(s1) and (q2, t2) = τ(s2) it is guaranteed that ∀ s1, s2 ∈

[0, 1] the implication s1 < s2 =⇒ t1 < t2 holds.

9



(a) Volumetric world representation of a cave sys-
tem. Illustration courtesy of Mihir Dharmadhikari
who generated it using GBPlanner [44]

(b) A simple uniform occupancy grid world repre-
sentation of a cave system, manually curated.

Figure 3.1: Example illustrations of world models

notably taken advantage of in drone research projects [44]. In volumetric world models,
space is partitioned into a 3D matrix of cubes, as illustrated in Figure 3.1a. These world
models typically support dynamic obstacles and combine a priori world knowledge with
real-time sensor information. Thus, they often are a potent candidate for motion planning
in a three-dimensional environment. From the perspective of motion planning in a two-
dimensional world, 3D volumetric world models can be superfluous. Instead, models like
occupancy grids and spatial databases can suffice. Using occupancy grids as world models
for robotic applications was proposed in 1989 [9], and a plethora of variations have since
emerged. Some variations take advantage of quadtrees to generate variable resolution oc-
cupancy grids when handling large-scale motion planning [16], while others use uniform
grids. One example of a uniform occupancy grid is visualized in Figure 3.1b.

3.1.4 Planning approaches

(a) Potential field (b) Voronoi diagram roadmap (c) Cell decomposition

Figure 3.2: Simplified planning approach example illustrations inspired by [10]

Solutions to motion planning problems can generally be put into three main approach
categories; potential field methods, roadmap methods, and cell decomposition methods

10



[10]. Simplified illustrations of all three methods are given in Figure 3.2.

The core idea with potential field methods is to treat the robot A as a particle in the con-
figuration space affected by a potential field. The field has local variations based on the
obstacles in the world W [10]. Local variation is typically generated by assigning at-
tracting potential to the goal region XG and repulsive potential to obstacles in Xobs. The
potential force dissipation functions can vary for different classes of obstacles and should
be considered application-specific. By subjecting the robot particle to the potential field,
an artificial force F⃗ (q) = −∇⃗(q) is induced [10], showing the direction of the most
promising motion. A simplified illustration is given in Figure 3.2a.

Roadmap methods originate from a different concept entirely. Instead of inducing an arti-
ficial force, the goal is to capture the connectivity of free space in the world that can later
be traversed by graph-search to find the motion sequence necessary to traverse from an
initial configuration to a goal configuration [10]. One approach to build the roadmap is
to use Voronoi diagrams [10], as is illustrated in Figure 3.2b. Iterative motion planning
methods like RRT[15], RRT*[24] and Hybrid A*[21] also exist and incorporate support
for non-holonomic robots. Iterative roadmap methods often build the map while the mo-
tion planning algorithm searches for a path to the goal configuration. Once the goal is
connected to the roadmap, the graph can be searched for the shortest path to the goal from
the initial configuration.

Cell decomposition methods partition the free space Cfree in a worldW either exactly or
approximately. In approximate cell decomposition, the cells are of a simplified shape such
as triangles or quadrilaterals and are a subregion of the free space Cfree instead of cover-
ing it entirely [10], as shown in Figure 3.2c. Uniform grid decomposition is an example of
an approximate technique, and variations of it are often used in small environments. For
larger environments, variable-size cell decomposition strategies such as quadtrees can be
used to reduce memory requirements [10] and enhance search efficiency. Large-scale plan-
ning with quadtree cell decomposition has been featured in several research projects [5],
[16], [47], [49]. Similar to roadmap methods, cell decomposition methods rely on building
a connectivity graph and applying a graph search technique for shortest-path queries [10].
While the graph in roadmap methods can be built iteratively based on motion sampling, the
graph in cell decomposition methods is typically built independently of any robot or ves-
sel. This allows for resolution-optimal paths instead of graph-optimal paths. However, it
does not consider vessel dynamics. Therefore, approximate cell decomposition techniques
are more appropriate for path planning than motion planning. However, it can support mo-
tion planning through distance-to-goal approximations in a sample-based motion planning
heuristic.

Potential field methods can be very efficient compared to cell decomposition and roadmap
methods and were initially intended for real-time collision avoidance [10]. A significant
drawback from the perspective of large-scale motion planning is that such methods are
vulnerable to local minima of the potential field as they are essentially gradient descent
optimization methods [10]. While solutions to remedy this deficiency do exist, potential
field methods employ a search strategy that can be considered local primarily. Meanwhile,
roadmap and cell decomposition methods are global strategies and thus can be more suit-

11



able in large environments. Of the global candidates, cell decomposition methods have
been studied extensively [10] and have shown great potential in earlier research projects
[5], [16]. However, in recent research, the use of iterative roadmap methods like Rapidly-
Exploring Random Trees (RRT)[15], RRT* [24], and Hybrid A* [21] have become well-
established for motion planning due to their natural incorporation of nonholonomic con-
straints through motion sampling. An advantage of Hybrid A* is the heuristic which, sim-
ilarly to conventional A*, can be used to focus the search and incorporate region-specific
knowledge. In vast maritime environments, this can potentially give an advantage over the
RRT variations.

3.1.5 Region quadtree
Even when not utilizing a cell decomposition planning strategy, having an approximate
cell decomposition of the free space in a mission region can be a valuable tool to facilitate
the utilization of a focused search heuristic and for tasks like collision check queries. A
quadtree is a hierarchical data structure based on the principle of recursive decomposition
of space [8] and typically represents the collision-free space of the mission region as a
collection of subregion tiles of variable size in robotic planning applications. Assuming the
mission regionRW is bounded for a time interval T , the process of generating a quadtree
can commence. Let f(R) be an occupancy ratio function such that if the occupancy ratio
of a region R is zero or one, then R is defined as entirely free of obstacles or entirely
occupied respectively. An entirely free region is added to the quadtree as a leaf, while an
entirely occupied region is discarded. Whenever the occupancy ratio of a regionR is in the
open interval (0, 1), the region is decomposed into four quadrants of equal size. Regions
are recursively evaluated until all are either discarded or registered as leaf regions. The
result is a quadtree decomposition of the free space into the cells of variable size.

(a) Path generated using graph traversal on quadtree.
ENC data courtesy of The Norwegian Mapping Au-
thority.

(b) Path generated using graph traversal on framed
quadtree. ENC data courtesy of The Norwegian
Mapping Authority.

Figure 3.3: Examples of regional quadtree and regional framed quadtree utilization in graph search.

12



From the perspective of utilizing the quadtree as a tool for evaluating the heuristic in a
sample-based search, it can be used to approximate distances such as the distance-to-goal.
To achieve this capability, a graph must be built on the quadtree structure and searched
to find the shortest path from some initial node in the quadtree to some specified goal
node. When compared to fixed-size grid search, quadtrees improve memory efficiency
and reduce search complexity [16]. However, being constrained to the tree graph, these
improvements come at the cost of distance approximation accuracy. To improve the ap-
proximation, the framed region quadtree can be used [16]. By adding additional vertices
along the edges of each region R, smoother paths with better optimality characteristics
can be found, as shown in Figure 3.3, resulting in more accurate distance approximations.
While framed quadtrees improve the paths and approximations found by graph search, they
are no miracle cure and typically introduce higher memory utilization to store. Addition-
ally, they are slightly more more computationally expensive to generate and significantly
more computationally expensive to search than their non-framed counterparts. For exam-
ple, the quadtree shown in Figure 3.3a consists of 60768 vertices and is searched with A*
to find the graph-optimal path in 197ms. The framed quadtree depicted in Figure 3.3b di-
vides each region edge into four segments and contains 139392 unique vertices. A search
query in it took 2237ms using the same software and hardware, indicating that framed
region quadtrees can not be used blindly. A variable region edge divisor rule could poten-
tially be used to improve this. In general, any quadtree decomposition can be less efficient
to compute and store than uniform grid graphs in worst-case scenarios with high clutter
densities [16]. However, for coastal environments, this is unlikely to be an issue.

3.1.6 Robotic paradigms
All autonomous robots rely on sensing, planning, and acting to operate. How these prim-
itives are combined varies, defining various robotic paradigms. A robotic paradigm is es-
sentially a high-level control architecture, and through the last decades of research, three
main robotic paradigms have been proposed. These are illustrated in Figure 3.4 and require
some introduction.

Sense

Plan

Act

Sense

Act

Sense

Act

Plan

Hierarchical Reactive Hybrid


Figure 3.4: Simplified flowcharts for the three main robotic paradigms

In a hierarchical paradigm, the robot follows a Sense-plan-act (SPA) loop. By splitting

13



the continuous-time up into an infinite set of fixed length episodes, this paradigm can be
utilized for real-time robot planning problems [38]. Each episode starts with the robot
creating a snapshot of the world by combining sensory information with a priori knowl-
edge about the environment. Thereafter, the robot planning system produces a sequence
of actions and starts to execute the actions iteratively. Depending on whether the planning
system operates synchronously or asynchronously, the world snapshot is recaptured at a
fixed or variable frequency. The hierarchical robotic paradigm was first implemented ex-
plicitly in Shakey the Robot [4] and several robotics research projects have since adapted
variations of it.

The reactive paradigm is a robotic paradigm for real-time applications. Compared to the
hierarchical paradigm, the reactive paradigm connects sensing with acting directly through
the use of behaviors. While such a system is real-time capable by design, it lacks planning
and reasoning about the world. Thus, it cannot, for example, plan an optimal path or any
other similar long-term strategy behaviors. From a motion planning perspective, it is most
useful when only local collision avoidance is needed and is found in methods like Velocity
Obstacles [29].

In more recent research, the hybrid paradigm has been introduced. It combines the hier-
archical and reactive paradigm to overcome the issues of real-time performance and lack
of global strategy, respectively. Generally, using the hybrid paradigm in a robot planning
context takes the form of a multi-stage planner. For example, a global planner can use a
global world model to determine the nominal path or, in general, the nominal strategy to
get from the initial configuration to the goal. During the execution of this strategy, a local
planner Sense-Act subsystem handles real-time control and obstacle avoidance, based on
a dynamic window where dynamic obstacles are tracked and avoided for example. The
local planner can instruct the robot to deviate from the nominal strategy if so is required
for safe operation.

3.1.7 Graph terminology and utilization in motion planning
An arbitrary graph G = (V,E) consists of a set of vertices V , connected by a set of
edges E [18]. ∥V ∥ and ∥E∥ are used to quantify the size of the graph by describing the
number of vertices and edges, respectively. A graph edge is defined as an ordered pair
e = (u, v), indicating that the vertices u and v are connected by e. In directed graphs,
u is considered the source vertex and v the target vertex [18], thus one can traverse from
u to v, but not from v to u following this edge. If an edge can be traversed both ways,
the graphs are called undirected, and these definitions for u and v are no longer necessary.
Any two vertices connected by an edge e are said to be adjacent. Edges commonly have
an associated value, which in graph world representations typically is some distance or
traversal metric describing the cost of traversing the edge. The value can be based on
physical distance, time requirements, fuel consumption, or some combination through a
cost function.

For utilization as a tool to approximate shortest-path distances in iterative sample-based
motion planning, the graph can follow a quadtree framework. Vertices are then positions
or configurations in free space, and edges collision-free transitions between these vertices.

14



Leaving the associated edge cost as the distance between the vertices results in path dis-
tance approximations being available by solving a graph traversal problem.

3.2 Path- and motion planning algorithms

3.2.1 A* Algorithm
When focusing on graph traversal algorithms, the search strategy can be uninformed or
informed about the goal vertex. Dijkstra’s Algorithm is a well-known example of the for-
mer strategy and was first introduced in 1959 [1]. While several variations of Dijkstra’s
Algorithm exist, none are given information about the goal. Most produce a shortest-path
tree consisting of information about the shortest path to any vertex from a source vertex in
the graph. While this is useful for many multi-query applications such as digital mapping
and IP routing protocols, Dijkstra’s Algorithm is inherently inefficient for most robot plan-
ning purposes, as many of the shortest paths calculated never will be requested for a single
start-to-goal search. By focusing the search in the direction of the goal with a heuristic,
efficiency can be improved dramatically. The concept of an admissible heuristic was pro-
posed to achieve this with the introduction of A* in 1968 [2]. By using an admissible
heuristic, it can be proven that the calculated path will be graph-optimal [2].

Using the original paper [2] as a reference, the A* algorithm can be described by the
following four steps.

1. Let s be the initial vertex. Add s to a set open and calculate the evaluation value
using evaluation function f̂(s).

2. In open, select the vertex n with the smallest evaluation value and resolve any ties
arbitrarily except for n ∈ QG which naturally should be prioritized in tiebreaking.

3. If n ∈ QG, the algorithm has succeeded in finding a path from s to goal region, and
the algorithm can be terminated.

4. If n ̸∈ QG, n is marked as closed and its successors are found utilizing successor
operator Γ. Thereafter, f̂(s) is run on all successors. If the successor is not marked
as closed it is added to the open set. If it is marked as closed, but the new evaluation
value is lower than when it was closed it is reopened. Finally, return to step 2.

The successor operator and evaluation function are key for the algorithm. Paraphrasing
from [2] these functions can be described as follows:

• Successor operator Γ:
The successor operator returns a set of pairs {(nj , cij)} for a given vertex ni where
cij is the cost associated with traversing the graph edge from ni to nj .

• Evaluation function f̂ :
Let an optimal path from vertex s through ni to a goal nG ∈ QG have a cost defined
by the function f(n). The evaluation function f(n) consists of two parts, as shown
in Equation 3.2,

f(n) = g(n) + h(n) (3.2)

15



where g(n) is the cost of an optimal path from s to ni and h(n) is the cost of an
optimal path from ni to ng ∈ QG. The true cost values are not known and must
be estimated in order to run the algorithm. Following the approach and notation in
[2], the cost function is estimated by use of an evaluation function f̂(ni) = ĝ(ni) +

ĥ(ni), also known as a search heuristic. ĝ(n) is commonly known as the cost-so-
far estimate and it is proposed to use the cost of the path from s to ni with the
lowest cost found so far by the algorithm. This results in ĝ(ni) ≥ g(ni). Estimating
h(ni), commonly known as the cost-to-goal estimate, depends on the graph shape
and possible movement directions. For a uniform square grid graph with 4 directions
of movement and 8 directions of movement from every vertex it is recommended to
use the Manhattan distance L1 and Diagonal distance L∞ respectively. For most
other scenarios, the direct line distance is often an acceptable estimate. Remark that
all of these distance metrics underestimate the true cost-to-goal.

By using the aforementioned estimates for ĝ(ni) and ĥ(ni), the evaluation function
will never overestimate the true cost value f(ni) and is thus admissible3. This en-
sures that the path found is optimal [2]. While the path found will be optimal with
regards to the graph, it will typically not be optimal with respect to the worldW . In
a path- or motion planning context, it can thus be described as a graph-optimal path.
How accurately the graph represents the environment then determines how well it
approximates the true optimal path.

3.2.2 Hybrid A* Algorithm
Hybrid A* was introduced to solve the motion planning problem for Junior, the Stanford
entry in the DARPA Urban Challenge in 2007 [21]. This algorithm is based on the funda-
mentals of A*, but instead of being graph-based, Hybrid A* is sample-based and is applied
to the 3D kinematic state space of the vessel with states given as q = (x, y, θ) [21]. An
illustration comparing Hybrid A* with conventional A* is provided in Figure 3.5.

Using [21] as a reference, the algorithm can be described by the following four steps:

1. Let s be the initial vessel configuration and add it to the exploration frontier F with
zero cost.

2. In F , select the configuration q with the smallest cost value. Any ties should be
solved arbitrarily, except for q ∈ QG which should be prioritized.

3. If q ∈ QG, the algorithm has succeeded in finding a feasible path from the ini-
tial configuration s to the set of goal configurations QG and the algorithm can be
terminated.

4. If q ̸∈ QG it is marked as closed and its successors are found utilizing a hybrid suc-
cessor operator Γ∗. The cost of each successor qj is calculated using an evaluation
function f̂∗(q). If the successor is not already marked as closed it is added to F

3Any reader interested in the proof is advised to consult the Section C in A Formal Basis for the Heuristic
Determination of Minimum Cost Paths [2, pp. 102–103]

16



(a) Illustration of A* search (b) Illustration of Hybrid A* Search

Figure 3.5: Hybrid A* sampling in 3D kinematic state space compared with ordinary A* search.
Visualization inspired by [21]

with the evaluation value as its cost. If it is marked as closed, but the new value is
lower than when it was closed it is reopened. Finally, return to step two.

It is clear that the general algorithmic procedure is almost identical for A* and Hybrid A*.
The difference is in the details, with the successor operator Γ∗ and evaluation function
f̂∗(n) being the main differentiating factors. Paraphrasing from [21] and introducing new
notation, these functions can be described as follows:

• Hybrid successor operator Γ∗:
Given a collection of course and speed correction combinations, a set of candidate
trajectories from the current pose represented by vertex qi is found by simulating
the vessel movement for an amount of time T that can be fixed or adaptive. The
successor operator returns a set of pairs {(qj , horij)} for a given configuration ver-
tex qi and a set of possible control correction combinations. horij is the simulation
horizon from configuration qi to qj and describes the movement between these con-
figurations in detail, which is essential for the evaluation function.

• Hybrid evaluation function f̂∗(q):
The hybrid evaluation function consists of two heuristics; a non-holonomic-without
obstacles and a holonomic-with-obstacles. The former ignores all obstacles but
takes the vessel dynamics into account. It is computed by taking the maximum
of the straight-line distance and the distance of the shortest path to the goal configu-
ration set QG for the robot. In the original implementation, Reeds-Shepp curves are
utilized to facilitate this heuristic [21]. The heuristic is admissible, and the effect
of it is pruning of search branches that approach the goal with the incorrect head-
ing [21]. The latter heuristic is a dual of the first and computes the distance of the
shortest path to the goal from the current configuration qi discarding the orientation
dimension of the configuration, for example using A* on a quadtree graph spanning

17



the free-space. The purpose of this heuristic is to discover dead-ends in a fast two-
dimensional search and guide the significantly more expensive three-dimensional
search away from these areas [21]. Because this heuristic is admissible, the max-
imum of the two heuristics can be used as an evaluation function without loss of
admissibility.

3.3 Guidance, Navigation and Control

Control
Setpoints


Mission planner

Path generation
and optimization

Local collision
avoidance

Risk assessment

Actuator
inputs


Obstacle tracking
and awareness

Motion Control
System

State estimates

Sensor measurements

Control Allocation

Marine Craft Sensing

State estimation

Current, wind and
waves

Operator/
supervisor

State estimates

Guidance Control Navigation

Global motion
planning

Path tracker and
control setpoint

supervisor

Figure 3.6: Illustration of a complete general GNC system, based on [48] and [53]

Any autonomous vessel required to traverse some environment must incorporate a guid-
ance system, a navigation system, and a control system to function. These three systems
are the pillars on which all autonomous mobility rest. When developing a guidance sys-
tem, it is important to be aware of what is expected from it and how it should interact with
navigation and control systems. A figure illustrating a complete GNC system is depicted
in Figure 3.6 to accompany the following descriptions.

3.3.1 Guidance Systems
Guidance systems are responsible for calculating how a vessel should act to reach some
goal, often by following a path or trajectory from an initial position to a goal position in
the presence of environmental disturbances and prediction uncertainties [48]. One way to
parametrize a path is by using waypoints, which from the perspective of maritime guidance
can be set by an experienced navigator or automatically generated based on a priori map
information, environmental factors, and optimization strategies with regards to time and
energy consumption.

The vessel can get underway when a global nominal path or trajectory parametrization
is made available to the guidance system or generated internally. While the vessel is
voyaging, one of the primary responsibilities of the guidance system is path following
or trajectory tracking through a guidance law. The difference between path following
and trajectory tracking is that while path following is time-invariant, trajectory tracking

18



is time-dependent, and thus a more demanding and constrained task [48]. The guidance
law is used to compute desired course and speed of the vessel to minimize the cross-track
error concerning the nominal global path. A plethora of guidance laws exist in path fol-
lowing research, but few are as recognized and widely used as the LOS guidance law [19].
Performing rules compliant and predictable collision avoidance maneuvers whenever nec-
essary is another important task the guidance system has been given responsibility for, as
shown in the leftmost block in Figure 3.6. As discussed in Section 2.3 in the literature
review, there are many ways in which a COLAV system can be designed. In a modular
design based on the hybrid robotic paradigm, the collision avoidance system typically will
be a separate module. It can then be given information about the nominal path and nominal
control setpoints and issue corrections to the setpoints to ensure collision-avoidance capa-
bilities. In Figure 3.6 it is suggested to use a combined path tracker and control setpoint
supervisor to facilitate cooperation between the global mission planner, path tracker, and
local collision avoidance system. The reader is advised that while the general layout of
Figure 3.6 is based on [48] and [53], considerations such as the setpoint supervisor is not
mentioned in these sources.

3.3.2 Navigation systems
In general, navigation systems are responsible for estimating the states of the vessel rele-
vant for the guidance and control systems. For USVs, the pose and twist of the vessel are
necessarily estimated [48]. Following the categorization in [48], two main approaches for
this estimation task exist:

• Model-Based: Systems that determine the vessel pose and twist by utilizing a state
estimator based on a mathematical model of the vessel. A Luenberger observer is
one type of observer that can be utilized for this purpose [48]. In addition to being
provided with a vessel model, the state observer must be given information about
the control behaviors of the vessel through low-level sensory data such as propeller
RPM and rudder angle.

• Inertial: Systems that determine the vessel pose and twist by utilizing only sensory
information. Commonly, techniques from sensor fusion such as the Kalman Filter
and variations thereof are used to combine sensory information and handle uncer-
tainties to generate state estimates. Accelerometers, gyroscopes, and supporting
sensors such as Global Navigation Satellite Systems (GNSS) positioning and dual
GNSS compasses are commonly used for this purpose.

It should be noted that while there are two main approaches to navigation, hybrid ap-
proaches combining sensory information and model information do exist.

3.3.3 Control systems
A vessel control system is responsible for controlling the actuators of the vessel in order
to comply with requests from the vessel guidance system while maintaining vessel stabil-
ity [48]. The actuators on a marine vessel are connected to effectors such as rudders and
propellers that can generate time-varying forces and moments. The general control system

19



consists of a control law that receives inputs from the guidance system. It thereafter calcu-
lates the necessary forces and moments on the vessel τ to comply with the guidance system
request. Furthermore, a control allocation scheme is necessary to translate τ to actuator
inputs u such as desired propeller RPM and desired rudder angle. In the state-of-the-art,
there are two main approaches to control systems according to Fossen [48]:

• Motion Control: Control systems where PID designs combined with successive
loop closure are used to control relevant vessel states.

• Advanced Motion Control: Control systems where mathematical models of ves-
sels are used in the control loop. Optimal and nonlinear control theory is commonly
used for advanced motion controllers. However, a vessel model combined with a
PID controller can also be used for feedback linearization control. Assuming the
vessel model is sufficiently accurate, feedback linearization, as the name suggests,
makes the system one wishes to control linear from the perspective of the PID con-
troller. Thus, it enables a much more predictable and intuitive tuning effort and can
make the overall controller significantly more performant.

3.4 Surface Vessel Modelling

yn

xn

xb

yb

χ

χr

ψ

β
βc

γc
Ur Uc

U

Figure 3.7: Horizontal ocean current triangle, illustration inspired by [48]

Having sufficiently precise surface vessel models for advanced motion control systems,
some guidance systems, and all simulation environments is essential. The 1st-order Nomoto
model given in the frequency domain in Equation (3.3) is one of the simplest surface-vessel
models [48]. This transfer function from rudder angle δ to yaw rate r is not very realistic,
but it is linear, and one only has to determine the gain parameter K and time constant T in
order to use it.

20



r

δ
(s) =

K

Ts+ 1
(3.3)

While the 1st-order Nomoto model can be used for some control systems and simple posi-
tional approximations, it is often not sufficiently realistic. Guidance systems that rely on
accurate vessel horizon predictions and all simulators require more advanced vessel mod-
els that capture the vessel dynamics with greater detail. To limit complexity somewhat, a
3-DOF surface vessel model is then a prime candidate for utilization. A general 3-DOF
surface vessel model is introduced in [48] and adapted for the Viknes 830 vessel in [22].

3.4.1 The equations of motion
Following the notation in [48], which uses the SNAME naming convention, the vessel’s
generalized coordinates η =

[
x y ψ

]T
are given in an inertial, Cartesian world frame

n = (xn, yn, zn). Furthermore, the velocity of the vessel ν =
[
u v r

]T
is defined

in the vessel body frame b = (xb, yb, zb). A complete overview of all relevant variable
names in the SNAME convention is given in Table 3.1. Additionally, the relevant notation
is visualized in the horizontal current triangle in Figure 3.7.

DOF Description Force/Moment Linear speed/Angular rate Position/Angle
1 Motions in the xb-direction (surge) X u xn

2 Motions in the yb-direction (sway) Y v yn

6 Rotation about the zb-axis (yaw) N r ψ

Table 3.1: The relevant notation of SNAME (1950) from [48]

The equations of motion are given by Equation (3.4) and Equation (3.5),

η̇ = Rn
b(ψ)ν (3.4)

Mν̇ + C(ν)ν +D(ν)ν = τ + τw (3.5)

where Rn
b(ψ) defined in Equation (3.6) transform body coordinates to world coordinates.

Rn
b(ψ) =

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 (3.6)

The matrices in Equation (3.5) characterize the vessel dynamics and require further de-
tailing. In order to do so, Equation (3.5) is first expanded to get Equation (3.7), and the
relative velocity of the vessel νr = ν − νc is introduced to emphasize that this model is
valid in the presence of ocean current νc = [uc, vc, 0]

T . Note that in order to make the
model as simple as possible, the simplifications from [22] can be applied. Thus, the body
reference frame origin is placed to coincide with the center of gravity of the vessel. More-
over, the orientation of the body is set such that it coincides with the longitudinal, lateral,
and normal symmetry axes of the vessel.

MRB ν̇r +CRB(νr)νr︸ ︷︷ ︸
ridig-body forces

+MAν̇r +CA(νr) +Dνr +Dn(νr)νr︸ ︷︷ ︸
hydrodynamic forces

= τ + τw (3.7)

21



Starting with the rigid-body forces, MRB is the rigid-body inertia matrix and CRB(νr)
represents the rigid-body Coriolis and centripetal forces. Under the simplifying assump-
tions in [22], these matrices are given by Equation (3.8) and Equation (3.9) respectively.

MRB =

m 0 0
0 m 0
0 0 Iz

 (3.8)

CRB(ν) =

 0 0 −mv
0 0 mu
mv −mu 0

 (3.9)

where m is the vessel mass and Iz is the moment of inertia about the z-axis of the vessel.
Continuing with the hydrodynamic forces, MA is the inertial matrix for added mass, a
hydrodynamical phenomenon that can be interpreted as pressure-induced forces and mo-
ments due to a forced harmonic motion of the vessel [22]. The added mass matrix is
defined as given in (3.10).

MA = −

Xu̇ 0 0
0 Yv̇ Yṙ
0 Nv̇ Nṙ

 (3.10)

The second component affecting the hydrodynamic forces is the added Coriolis CA(ν)
defined as shown in Equation 3.11

CA(ν) =

 0 0 −Yv̇v + Yṙr+Nv̇

2 r
0 0 Xu̇u

Yv̇v +
Yṙ+Nv̇

2 r −Xu̇ur 0

 (3.11)

for the Viknes 830 vessel. The last two matrices in the hydrodynamic forces are damping
matrices and account for effects such as skin friction and vortex shredding [48]. Damping
effects are inherently complicated to model, thus some simplifications must be made. Fol-
lowing the simplifications in [22], it is thus proposed that the linear damping matrix D is
defined as shown in Equation 3.12

D = −

Xu 0 0
0 Yv Yr
0 Nv Nr

 (3.12)

and the nonlinear damping term as given in Equation (3.13).

Dn(νr)νr = −

X|u|u|ur|ur +Xuuuu
3
r

Y|v|v|vr|vr + Yvvvv
3
r

N|r|r|r|r +Nrrrr
3

 (3.13)

By defining M = MRB+MA, C(ν) = CRB+CA and D(ν) = D+DN (ν), Equation
(3.5) is retrieved from Equation (3.7). For the vessel modelling, the forces and moments

22



induced by environmental disturbances like waves and wind τw are not detailed further.
However, the forces and moments produced by the vessel effectors and controlled by vessel
actuators τ = [τX , τY , τN ] are an essential part of the vessel model. τX and τY represent
the forces applied along the longitudinal and lateral axes of the Viknes 830 vessel respec-
tively, while the moment τN is applied about the vessel yaw axis. The Viknes 830 model
assumes that low-level control loops for the actuators exist, and thus that the force from
them can be applied directly without any further modelling [22]. The Viknes 830 model
has two actuators, a motor attached to a fixed-pitch propeller generating a longitudinal
force Fx and a rudder generating a lateral force Fy [22]. In total, the inputs can be defined
as given in Equation 3.14

τ =

τXτY
τN

 =

 Fx
Fy
lrFy

 (3.14)

where lr is the length of the lever arm. For a vessel, the lever arm is not a physical arm,
but instead the distance from the vessel CoG to the point of attack of the rudder force [22].

3.4.2 Low-level controller
In order to make the vessel model useful for simulation and to test a guidance system on
it without having to handle force and torque calculations in other modules, low-level con-
trollers are important. This way, when looking at the system as a whole, the simulated
vessel can easily be replaced with a real vessel as long as that vessel has a tuned autopilot
with the same input interface as the simulated vessel. In this thesis, two low-level con-
trollers for speed and course from [22] are utilized and given below in Equation (3.15) and
Equation (3.16) respectively.

Fx =

model feed forward︷ ︸︸ ︷
−Xuu−X|u|u|u|u−Xuuuu

3 −mrv+
P feedback︷ ︸︸ ︷

Kp,um(usp − u)
(3.15)

lrFy = Kp,ψIz(Γ(ψsp − ψ) + Td,ψ(ψ̇sp − r))︸ ︷︷ ︸
PD feedback

(3.16)

The speed controller takes advantage of feedback linearization in order to remove the non-
linear terms from the model. In a real-world scenario, the feed-forward term must be
considered carefully as any modeling errors or vessel state uncertainties can result in the
feed-forward term making the overall system more difficult to control4. For the purpose
of this thesis, where the vessel model is known and the vessel state is not distorted, this
controller will linearize the vessel model and make it easy to obtain decent control perfor-
mance with only an additional proportional feedback controller.

Observe that the heading controller is a classic proportional-derivative (PD) controller not
utilizing feed-forward of any kind. The function Γ : R →< −π, π] is the Smallest
Signed Angle (SSA) function described in [48] and ensures that the vessel always turns in

4Any reader interested in further details on feedback linearization or other advanced motion control methods
is advised to consult [48]

23



the correct direction to reduce the heading error. Moreover, it should be noted that while
Equation (3.16) includes the derivative of the course setpoint, ψ̇sp, it is set to zero in many
applications.

3.5 Electronic Navigational Charts

Figure 3.8: Illustration of part of ENC chart generated using OpenCPN [59]. ENC data courtesy of
The Norwegian Mapping Authority

ENCs are spatial databases that contain all chartered features relevant for safe maritime
navigation. Part of an ENC is shown in Figure 3.8. The intended use for the electronic
charts is to supply data to an Electronic Chart Display and Information System (ECDIS).
An ECDIS is an instrument to display charts electronically to a navigator, in compliance
with a set of requirements specified by the International Maritime Organization (IMO)
[17], [36]. While the ENCs are published by different national hydrographic offices, such
as The Norwegian Mapping Authority for the Norwegian coast and National Oceanic and
Atmospheric Administration (NOAA) for the coast of the USA, they must comply with
the S-57 ENC Product Specification and be certified by the International Hydrographic
Organization (IHO) [36]. The intended utility of ENCs is to replace paper charts and
aid the navigator. However, the potential value for autonomous operations is also clearly
substantial.

3.5.1 The S-57 Product Specification
The purpose of having a Product Specification for ENCs is to ensure that charts produced
by different hydrographic offices have the same structure and can be used to supply data
to systems such as ECDIS without any risk of misinterpretation or loss of information.
The specification is published by the IHO and documented in Transfer Standard for Dig-
ital Hydrographic Data [17]. The standard intends to enhance uniformity in navigational

24



charts and guarantee that all information necessary for safe navigation is present. Further-
more, the product specification uses a structure that makes it possible to interpret ENCs
for specialized software projects such as autonomous guidance systems.

Real world

Theoretical Model

Data Structure

Physical Transfer

Figure 3.9: Structure layers according to S-57, illustration based on [17].

There are four layers of data transfer in the S-57 product specification, as shown in Figure
3.9. The first layer is the physical world in which some operation, such as navigation of an
unmanned vessel, is to be performed. In order to perform this operation, the natural world
must be represented by a simplified and descriptive theoretical world model. The model
is then translated and stored in named constructs such as records and fields in a spatial
data structure. In order to physically transfer this data structure, it must be encapsulated in
a file. The S-57 product specification uses the ISO/IEC 8211 interchange format for this
encapsulation [17].

The model layer consists of objects considered relevant for hydrographic tasks. The ob-
jects define real-world entities by combining spatial subobjects and features with descrip-
tive attributes. The spatial subobject described the geometry and the geographical position
of the entity. While the specification allows both for vector, raster, and matrix geometry,
only the former has been defined by IHO as of yet [17]. Spatial vector objects can have
at most two dimensions. However, a third dimension can be represented through an ob-
ject attribute if, for example, depth data is to be represented. Object features contain only
non-locational descriptions of the entity and are divided into four types [17]:

• Meta feature: Feature object which contains information about other objects

• Cartographic feature: Feature object which contains information about the carto-
graphic representation of the entity.

• Geo feature: Feature object which carries the descriptive characteristics of a real
world entity

• Collection feature: Feature object which describes the relationship between other
objects.

The purpose of object features is to encapsulate all information about an object that is not
related to its spatial characteristics.

25



The data structure layer in the S-57 specification translates the objects describing real-
world entities into named constructs such as records and fields through a set of rules and
constraints [17]. If one is to produce ENCs or develop a driver to read the data structure,
these rules and constraints are explained in rigorous detail in [17]. However, be advised
that open-source drivers for interpreting S-57 data structures are available through open-
source projects such as Geospatial Data Abstraction Library (GDAL/OGR) [57].

S-57 data structures follow a naming convention specified by the IHO S-57 publication
[17]:

S-57 Naming Convention

CCPXXXXX.EEE

EEE: Update Number

XXXXX: Individual Cell Code
P: Navigational Purpose
CC: Producer Code

• The first two characters identify the producer. This list is given in Annex A
to Appendix A of the IHO Object Catalogue [17].

• The third character indicates the navigational purpose (see clause 2.1)
• The fourth to eight characters are used for the cell code. This code can be

used in any way by the producer to provide the unique filename. If characters
other than numbers are used only uppercase letters are allowed.

Navigational purpose code
overview:

Subfield content Navigational purpose
1 Overview
2 General
3 Coastal
4 Approach
5 Harbour
6 Berthing

It is essential to know the naming convention when obtaining ENCs, notably because it
gives insight into the level of detail and type of information one can expect to extract from
the data structure. For example, the level of detail is commonly significantly higher for
Approach ENCs compared to Overview ENCs.

3.5.2 Electronic Navigational Charts in autonomous missions
As can be seen in Appendix A of the S-57 Product Specification [17], the complete object
catalog is large, and the level of detail in the object attributes is comprehensive. Because
the specification requires all objects that can be relevant for maritime navigation to be
present, the significance of the object types varies greatly, and some depend on mission
type and vessel size. While a handful of projects, to a limited extent, have classified which
objects in the S-57 specification are relevant for autonomous missions of unmanned sur-
face vehicles [42], [43], [46], no research effort dedicated to evaluating the relevance of all

26



objects in the specification catalog has been undertaken. Additionally, no official guide-
lines from the IHO exist for this purpose. The lack of guidelines and the limited research
highlight that the S-57 standard was not intended for autonomous operations when pro-
posed. Due to the importance of the matter, an overview of objects considered relevant
for autonomous missions can be found listed in Table B.1 and Table B.2 in Appendix B.
It should be noted that, even with a sufficiently rigorous evaluation of relevant objects, not
all information in the relevant objects can be used. This is because some objects include
information that depends on complex reasoning and human-level situational awareness.
Thus, while the S-57 specification guarantees sufficient information for safe navigation
for human-crewed vessels, this guarantee cannot be extended to autonomous vessels with-
out careful, dedicated research efforts, which are yet to be embarked upon.

3.6 Geodesy

If one is to guide a vessel towards a goal in a vast maritime environment, the curvature
of the Earth will have significance and must thus be taken into consideration by utiliz-
ing Geodesy. Following the classical definition of Geodesy by Friedrich Robert Helmert,
"geodesy is the science of the measurement and mapping of the Earth’s surface" [25]. Sim-
ilar to any other science, Geodesy has evolved and advanced since its origin. It can now
be described as the science of accurately measuring the properties of the Earth in general.
This includes the geometric shape of Earth, its orientation in space, and the gravitational
fields it causes [25]. If one is to perform global positioning on Earth, this is done in geode-
tic coordinates associated with a datum. A geodetic datum is a description of a geodetic
coordinate system for the Earth’s body and is commonly expressed using a 3-DOF trans-
lation, a 3-DOF rotation, and a scaling factor. Furthermore, since ellipsoidal coordinates
typically are used in geodetic reference systems, the datum must also include the ellipsoid
parameters [25]. One use-case of the datum is to translate map positions to positions on
the curved surface of the Earth, and while some datums such as WGS84 [30] are global,
others like OSBG36 are local.

3.6.1 World Geodetic System 1984

WGS84 is a Conventional, Terrestrial Reference System (CTRS), also known as an Earth-
centered, Earth-fixed (ECEF), coordinate system and geodetic datum, released and revised
by the United States National Geospatial-Intelligence Agency [30]. It represents Earth as
an oblate spheroid, which is defined as an ellipse that is rotated about its minor axis to
form the ellipsoid. The four defining parameters for WGS84 are given in Table 3.2. All
producers of ENCs are required to use WGS84 as the horizontal datum to comply with
the S-57 Product specification [17]. If one uses other charts that use another datum, be
advised that transforming to WGS84 can easily be achieved using software libraries like
GDAL/OGR [57].

27



Parameter Notation Value unit
Semi-major Axis a 6378137.0 m
Flattening factor f 1

298.257223563 N/A
Nominal Mean Angular Velocity of the Earth ω 7.292115x10−5 1

s

Geocentric Gravitational Constant GM 3.986004418x1014 m3

s2

Table 3.2: WGS84 Defining Parameters from [30]

Figure 3.10: Mercator projection illustration with Tissot’s indicatrix[7]. Raster from the Blue Mar-
ble collection, courtesy of NASA. Reprojected from Equirectangular to Mercator using QGIS [58].
Tissot’s indicatrices of 150km radius generated using the Indicatrix mapper QGIS plugin with 10
degrees resolution

3.6.2 The Mercator Projection

Geodetic datums like the WGS84 define three-dimensional space. In order to represent the
reference frame of the datum on a two-dimensional plane, a projection is necessarily uti-
lized. Any projection will distort the relative positions on a map, and the Mercator Projec-
tion is no exception. A cylinder is wrapped around the Earth’s ellipsoid in this projection,
and Earth’s surface is projected onto this cylinder. The projection distorts significantly
on a global scale, as can be seen from Figure 3.10 with the help of Tissot’s indicatrix[7].
Suppose one is to project a local map of extent sufficiently limited such that the curvature
of Earth is negligible. In that case, a local linear projection can be used instead of the
Mercator projection. For example, using normalized gradients of Earth’s curvature about
a chosen point in the geodetic reference system as unit vectors, the approximation yields
a Cartesian coordinate that tangents the geodetic reference system at the chosen point. Be
advised that this linear projection can only be used with reasonably low curvature error for

28



any operation in the plane that remains in the proximity of the projection origin.

3.6.3 The inverse geodetic problem
For motion planning over large distances, neither a global projection like the Mercator
nor a local projection will generally suffice for accurate and safe guidance of the vessel.
Instead, a geodesic coordinate system must be used. This proposes a challenge, as most
established path- and motion planning techniques assume operation in a Cartesian coor-
dinate system. This assumption is often used for most focused search techniques when
distances are calculated for a heuristic or a graph edge cost evaluation. The straight-line
distance Euler formula can no longer be used in a geographical coordinate system. In-
stead, the system must rely on lengths of geodesics, which are the shortest path between
two points on the Earth’s surface [28].

In order to find the length of a geodesic, the inverse geodetic problem must be solved [28].
Several methods have been proposed to approximate the distance and thus the solution
to the inverse geodetic problem. One such method is the Haversine algorithm, which
computes what is called the great-circle distance between two points using the formula
given in Equation (3.17) [34]

dhaversine = 2r arcsin (

√
sin2 (

θ2 − θ1
2

) + cos (θ1) cos (θ2) sin
2 (
λ2 − λ1

2
)) (3.17)

where r is the radius of the sphere. θ and λ are the latitude and longitude of a point on the
sphere. Remark that Haversine ignores all ellipsoidal effects and thus assumes a spherical
Earth. Another, more accurate approximator is the Vincenty Algorithm which uses the
iterative method of Helmert (1880) to solve the inverse problem [28]. While the Vincenty
Algorithm is more accurate than Haversine [34], it fails to converge for nearly antipodal
points [28] and was not designed with modern computers in mind. Karney’s algorithms
for geodesics [28] revisits the geodesic methods of Helmert (1880) on which Vincenty’s
Algorithm is based, but improves three main aspects;

• Improved accuracy:
Accuracy matching modern computer precision by retaining sufficient terms in se-
ries expansion.

• Guaranteed Convergence:
Converges for all pairs of points, no matter if they are antipodal or not.

• Avoiding numerical differentiation:
Karney’s algorithms for geodesics calculate differential and integral properties of
the geodesic, avoiding the need for numerical differentiation in methods like ap-
proximating the inverse geodetic problem solution.

The work of Karney is collected in his software library GeographicLib [51], which is open-
source. Any reader interested in the theoretical and technical details of GeographicLib is
advised to consult [28] and [51] respectively.

29



Chapter 4
Method

4.1 Solution concept and system design

The primary purpose of an USV guidance system is to get the vessel from an initial pose
to a goal position safely, efficiently, reliably, and within COLREG rules compliance. In
order to achieve this, the guidance system must have the following abilities:

• Global path generation:
Generate a global path from the initial pose to the goal pose or position. This path
must be safe, optimized, rules-compliant, and feasible for the vessel to follow.

• Path tracking:
Given an arbitrarily parameterized path, the guidance system must be able to pro-
vide the vessel autopilot system with control setpoints that facilitates tracking of the
nominal path with reasonable frequency response and accuracy. For example, these
setpoints can be course and speed over ground setpoints if that is what the vessel
autopilot supports.

• COLAV:
Given that the vessel is following some global nominal path, the guidance system
must be able to instruct the vessel to deviate from the nominal path and optionally
alter its speed whenever necessary to avoid a collision or mitigate damage potential
with other vessels tracked by some arbitrary target tracking system. The avoidance
behavior must be COLREG compliant and clearly state the vessel intent for any
observer on the obstacle ship or elsewhere.

One way to solve the motion planning problem and incorporate these abilities is to use a
divide-and-conquer strategy and design three main subsystems, each responsible for one
of the abilities. In addition to the three main subsystems, a subsystem facilitating the
utilization of geospatial data from Electronic Navigational Charts is necessary to ensure

30



Path, 

speed


Mission Planning
Corrected 


course

and speedCourse, 


speed

Path tracker Autopilot

Main

vessel

Odometry

OdometryOdometry

Sensor

SystemTracked
vessels


Obstacle

tracking

system

Corrections

COLAV System




Mission 

region

ENC 

Preprocessor


Trajectory 

prediction

Motion
Sampling


Vessel Simulator

ENC Map Service


ENC Map Service


Guidance System USV

Mission 

region

Figure 4.1: A high-level visualization of a complete guidance system including the USV.

collision-free paths and rules compliance. Moreover, a vessel simulation subsystem is
necessary to facilitate sample-based motion planning and predictive collision avoidance.
The vessel simulation subsystem should be designed to both be an efficient tool internally
and also be able to facilitate a traditional simulation environment when evaluating system
performance. A complete system is visualized in Figure 4.1. The guidance system is the
focus of this thesis. Thus, other necessary components that must be present to enable
simulation-based testing, such as target tracking and vessel autopilots, must be simulated.

4.2 Electronic Navigational Chart Manager

For an USV to undertake any mission, knowledge about the surrounding mission envi-
ronment is of utmost importance. Information about the static environment and the rules
and restrictions within it can be obtained by interpreting Electronic Navigational Charts.
The ENCs in this thesis follow the S-57 format and are primarily designed to be inter-
preted by human navigators using ECDIS navigational instruments. While designed to
provide all information necessary for safe navigation [36], some information encapsulated
in the ENCs require human-level intuition and situational awareness. When interpreting
ENCs using artificial intelligence, this results in some information being unusable for au-
tonomous navigation and thus makes extraction and interpretation of available information
even more critical. The proposed ENC Manager has two primary responsibilities, reflect-
ing the proposed overall system depicted in Figure 4.1:

• Pre-processing: Information extraction and interpretation
Given a specified mission region extent and a collection of ENC chart tiles, the
ENC manager must pre-process the mission region by extracting the relevant in-
formation from the minimum required amount of ENC chart tiles. The tiles must
be stitched together to a detailed spatial database retaining all information and a
simplified overview database containing the information most frequently used for
collision avoidance and path safety. Furthermore, additional data structures such as

31



a region quadtree and a Voronoi skeleton of free space relevant for motion planning
and real-time performance during mission execution must be generated.

• Map service: Readily available environment information during missions
Given a pre-processed mission region, the manager must provide information about
the environment to other systems that require it. This can be done using an adap-
tation of spatial queries. The map service can do some calculations to respond
to the query, but most of the computational complexity should be handled in pre-
processing. This is essential for efficient motion planning and enabling adequate
real-time performance in collision avoidance.

4.2.1 Information extraction from Electronic Navigational Charts
In the S-57 ENC standard, there are many different object classes. The ones considered
relevant for autonomous navigation of smaller vessels are given in Table B.1 and Table
B.2 in Appendix B and can be classified into hazards and cautions in the simplified spatial
database. Hazards are defined as areas or objects that always must be avoided by the USV,
and cautions are areas that may require action by the USV and potentially will restrict
its movement in some way. Some objects, such as land and bridge pillars, are always
hazardous. Others, such as TSS objects, always should be considered caution objects due
to their paramount importance to safe navigation. However, objects such as shallow areas
cannot be classified without knowledge about vessel dimensions. Thus vessel properties
such as draft, height, width, and length must be considered during classification. With this,
a detailed spatial database like the one visualized in Figure 4.2a can be used to generate a
simplified spatial database, the result of which is visualized in Figure 4.2b.

For autonomous missions, the USV must have sufficient knowledge about the static en-
vironment at its disposal. Thus, Electronic Navigational Charts with appropriate detail
levels should be used. However, one issue arises from this; ENCs are organized in tiles,
and the extent of the tile is commonly inversely proportional to the level of detail in the
chart [36]. Multiple chart tiles have to be used for a large mission region if one wants to
retain as much information about the mission region as possible, which can be achieved by
stitching together the tiles to cover the entire mission region with a detailed map. During
the information extraction, the system should also identify any subregion that is part of the
mission region but not covered by available ENCs. It should be up to the other systems
using the map service to determine how to handle unknown areas to ensure system appli-
cability. However, it is recommended to treat such areas as hazards to avoid voyaging into
uncharted waters.

4.2.2 Interpreting and representing free space in the mission region
Coastal environments often consist of several large obstacle-free areas and other areas of
varying obstacle density. One way to represent the free space is to use uniform grids. How-
ever, for vast areas where large subregions are entirely free, this is inherently inefficient
with regard to memory utilization and computational cost. Instead, region quadtrees can
represent the traversable space in the mission region. Region quadtrees allow for efficient

32



5.25 5.30 5.35 5.40 5.45 5.50 5.55 5.60

59.05

59.10

59.15

59.20

59.25

Restricted area
TSS
Beacons
Lateral buoys
Obstructions

(a) Complete ENC-based map. Only some symbols
visualized. ENC data courtesy of The Norwegian
Mapping Authority

5.25 5.30 5.35 5.40 5.45 5.50 5.55 5.60

59.05

59.10

59.15

59.20

59.25

Collision
Caution

(b) Simplified and reduced map. ENC data courtesy
of The Norwegian Mapping Authority

Figure 4.2: Visualization of a detailed and simplified spatial database built based on Electronic
Navigational Charts. The simplified map can be used for fast queries, while the complete map can
be used whenever interpretation with attributes and situational context is required.

storage of large free regions while maintaining sufficient resolution in narrow straits, bays,
and similar areas.

Looking at the quadtree as a graph for utilization by graph search techniques, the con-
ventional quadtree significantly limits the options for the graph search compared to uni-
form high-resolution grids, with worse path and optimality characteristics. To remedy this
problem, framed region quadtrees can instead be utilized as proposed in Subsection 3.1.5.
Using a fixed region edge divisor rule can be wasteful regarding memory utilization and
computational cost if set too low and sacrifice path optimality if set too high. Instead, a
variable divisor rule based on maximum distance can be used, where every region edge is
split such that the maximum distance between edge vertices is fixed. A variable divisor
rule can give significant efficiency improvements, but it must be considered to what extent
the path optimality and distance-to-land approximations worsens.

Comparing both methods, Figure 4.3 indicates that the path becomes a slightly worse ap-
proximation of the actual shortest path when using a variable divisor rule and a maximum
distance of 300 meters compared to a fixed divisor value of 4 in this coastal map. Some
key metrics can support this and compare adaptive edge divisor framed region quadtrees
with framed region quadtrees and non-framed quadtrees. These are given in Table 4.1 and
show that while the max distance quadtree only has slightly more vertices than the non-
framed quadtree, the path is much closer to the fixed-divisor path, which undoubtedly is
the best shortest-path approximation of the three by inspection of Figure 3.3b. While this
comparison is not extensive enough to conclude on a general basis, it indicates that using
an adaptive division rule based on max distance between frame vertices can benefit effi-

33



(a) Framed region quadtree with fixed divisor and di-
visor value set to d = 4. ENC data courtesy of The
Norwegian Mapping Authority.

(b) Framed region quadtree with variable divisor and
max distance dist = 300 meters. ENC data courtesy
of The Norwegian Mapping Authority.

Figure 4.3: Graph search comparison of framed region quadtree with fixed and variable divisor rule

ciency in shortest-path approximations in coastal environments. It is therefore proposed to
use such a strategy in the quadtree builder.

Table 4.1: Efficiency and approximation comparison of non-framed, and two different framed
quadtrees

Metric name Non-framed Framed, fixed divisor Framed, variable divisor
Quadtree vertices 60768 139392 62114
Path length [m] 17305.5 16034.4 16356.0
Search time [s] 0.197 2.237 0.167

Another benefit of region quadtrees is that they can be used for spatial collision queries.
If a quadtree leaf region can be found for a given spatial point that contains this point,
then it is guaranteed that the point is in the traversable part of the mission region. This
can be used for fast collision checking when performing sample-based motion planning
or real-time collision avoidance based on predictive control action assessment. Therefore,
it is of significant importance that the quadtree system in the guidance supports not only
graph traversal but also leaf region depth search.

4.2.3 Generating a free-space Voronoi skeleton for the mission region
An autonomous vessel on a coastal mission will typically have to navigate relatively open
waters and narrow straits, channels, and bays while keeping sufficient distance to land and
other hazards. The shortest path from some initial configuration to some goal position will
often go much closer to land than what can be considered safe, and the search procedure
should thus be informed about the distance to land to ensure sufficient safety margin in the

34



generated path. One way to achieve this in focused search techniques would be to use a
conventional distance field in the search heuristic to penalize path candidates close to land.
A key issue with this method is that it would penalize distance to land similarly regardless
of the surroundings, which would make it expensive for the USV to pass through narrow
straits or go into small bays. If one instead uses an artificial field based on the relative
distance to land, this problem can be overcome. The Voronoi field, introduced in [21], is
one such field and the Voronoi field strength depends on both distance to land and distance
to the Voronoi skeleton of the environment free-space. In order to use the Voronoi field,
the Voronoi skeleton of free space must therefore be built. There are several ways in which
this can be done. One alternative is to generate a generalized Voronoi Diagram using the
hazard polygon edge vertices and prune the diagram to obtain the skeleton. This approach
allows for the use of well-established methods for generating the Voronoi diagram, such
as the Fortune Sweep Algorithm [6], and thus ensures that an accurate Voronoi skeleton
can be generated assuming an appropriate pruning strategy is developed..

4.2.4 Mission map service
The mission planner and collision avoidance system must efficiently check information
related to the vessel’s spatial position and future positions to traverse the environment
safely and in an optimized manner. If the mission region information is stored in a spatial
database, it can be retrieved by spatial database queries.

However, certain continuous information such as distance to nearest hazard or strength of
the Voronoi field at a specific continuous spatial position must be calculated on-demand
based on a combined knowledge about the mission region and the vessel position. The
spatial query structure can still be utilized, making information retrieval more intuitive as
all information about the environment is retrieved utilizing a unified interface. An alterna-
tive design for a ENC Manager in a guidance system could take a decentralized approach,
only providing raw information to other systems. While not every system utilizes all the
information available in the map service, there is significant overlap. Duplicate function-
ality in such a guidance system would hurt code maintainability and robustness, especially
in the long term. Thus, the centralized approach where a map service class object is given
to both the mission planner and the COLAV system, as shown in Figure 4.1, is considered
to be the best option.

4.3 Mission Planner

The mission region in which an USV operates is often large, for example 100× 100km2.
In order to do autonomous mission planning in a reasonable amount of time, it is thus
necessary to balance computational complexity and path optimality. The path generated
by any sample-based motion planning technique will generally never be truly optimal.
Instead, it can for some methods converge towards the optimum as computational time
tends towards infinity. This is not necessarily an issue, as it can be argued that it is more
important that a path is safe, feasible for the vessel to follow, optimized, and found within a
reasonable amount of time instead of optimal. It is therefore proposed to base the mission

35



planner on a novel specialized version of the Hybrid A* algorithm, where modifications
are made to overcome the practical challenges of motion-sampling, search efficiency and
rules compliance in vast dynamic coastal environments. In the following, the challenges
and proposed solution designs are described.

4.3.1 System of reference
Because the mission region can be large, the Earth’s curvature must be considered in mis-
sion planning. This can be achieved by using a Geographic Coordinate System (GCS)
with geodetic coordinates to describe the pose of the vessel and the path it should follow.
From the perspective of a sample-based motion planner like Hybrid A*, this is problem-
atic, as the equations of motion of the vessel used for sampling typically are expressed
in a Cartesian coordinate system. There are several ways in which this problem can be
solved. One approach is to define the equations of motion in the Earth-centered iner-
tial (ECI) coordinate system and convert the result first to ECEF and then from ECEF to
geodetic coordinates using, for example, any of the methods collected and compared by
Zhu [12]. A more straightforward approach is to use a local geodetic coordinate system,
which is created by attaching the origin of a East-north-up (ENU) system to a geodetic
location. Assuming the distance the vessel will travel within this system of reference is
short enough such that the curvature of the Earth is negligible, this will not introduce any
significant error. In sample-based motion planning using methods such as Hybrid A*, sim-
ulation of vessel dynamics is performed when vertex successors are to be determined. By
controlling the simulation duration and iteratively attaching the ENU coordinate system
origin at the current vertex from which successors are to be determined, it can be ensured
that the distance traveled always is within some radius deemed acceptable for negligible
induced Earth curvature error.

4.3.2 Successor operator design
In a sample-based motion planner like Hybrid A*, the design for the successor operator is
key for search efficiency and motion planning capability. There are two main character-
istics to consider when designing the successor operator; simulation detail and simulation
duration. The equations of motion utilized and the integration method define the level of
detail to a significant extent. In this thesis, it is proposed to use a simplified 3DOF ves-
sel model. Using a 6DOF vessel model and adding support for current, wind, and wave
disturbances would result in more detailed motion sampling. However, this would require
knowledge of more vessel parameters, data from an accurate ocean weather prediction
model, including wave and wind predictions, and result in higher computational cost in
integration, which would reduce search efficiency. The guidance system is intended to be
used in coastal areas, and assuming the supervising operator ensures not to conduct mis-
sions in dangerous weather, the simplified model is considered sufficient. With the vessel
model determined, some reflection around simulation duration is necessary. A longer sim-
ulation duration can result in rapid progression towards the goal position. However, in the
context of Hybrid A* motion-sampling, where a maneuver correction only is controlled at
the start of a simulation sample, it sacrifices maneuverability compared to a shorter simu-
lation duration. To strike a balance between maneuverability and search progression, one

36



could rely on mission-specific tuning of the simulation time. However, this goes against
the goal of developing a general guidance system for all coastal environments and can
result in much inconvenience for the supervising operator. Another option is to allow for
multiple course correction changes along the trajectory. However, this will increase the
computational cost of motion sampling exponentially and can thus not guarantee that the
search progression overall would improve compared to just using a single correction and
a shorter simulation time. A third option is to develop a novel new method for adap-
tive simulation time in coastal environments. One such method is proposed in Subsection
4.3.4.

4.3.3 Heuristic design
In order to focus the search towards the goal, Hybrid A* uses a distance evaluation function
taking the maximum of two heuristics. The former non-holonomic-no-obstacles heuristic
uses Reeds-Sheep curves to prune the search such that the goal configuration is reached
with the correct heading [21]. The proposed guidance system in this thesis does not take
goal orientation into account, and thus only the latter holonomic-with-obstacles heuristic
is used from the original method. The holonomic-with-obstacles heuristic should calculate
the length of the shortest collision-free path to the goal in 2D, not taking vessel dynamics
into account. An approximate cell decomposition graph search is a promising candidate
to facilitate the implementation of this heuristic due to its low computational complexity.
The traversable space in the mission region must first be decomposed into cells to use
this search technique. One alternative would be to use a uniform grid with a high cell
resolution where each grid tile is either considered free or occupied. The resulting shortest
path will then be resolution optimal and tend towards the true optimal as the cell resolution
tends towards infinity. In practice, such a decomposition strategy is infeasible to compute
and store in memory. Moreover, even for reasonable cell resolution, this method would
be inefficient for most coastal environments due to large unoccupied areas typically being
present in such environments.

Instead, region quadtrees can be used to take advantage of the coastal free-space subre-
gions. However, there is no such thing as free lunch, and the quality of the distance ap-
proximation will, in many cases, be significantly worse compared to a high-resolution grid
decomposition. What is more, for a set of vertex successors, the distance approximations
can be inconsistent with the actual, unknown distance-to-goal values. This inconsistency
can be detrimental to the progress of the search algorithm, as more promising candidates
in the Hybrid A* search frontier then potentially end up being prioritized lower for ex-
ploration. Framed region quadtrees can be utilized to remedy this issue while maintaining
several efficiency improvements from region quadtrees. A static graph traversal algorithm
can be utilized to find the shortest path in the quadtree graph. A* has excellent proper-
ties for this kind of problem and is therefore considered a prime candidate as it generally
examines the smallest possible amount of vertices to find the optimal path in the graph
[2]. With this, a proposed design for the holonomic-with-obstacles heuristic is complete.
In order to increase search efficiency, the distance evaluation function can be scaled by a
constant kdist ≥ 1 to prioritize progress towards the goal. However, making the search
greedy can come at the cost of path optimality. Therefore, care must be taken in tuning

37



and evaluating such a constant to maintain sufficient exploration.

Using only the aforementioned distance evaluation functions for frontier prioritization
would, for most paths, result in a proximity issue where the resulting path goes as close
to land as possible. While the artificial buffering of environment obstacle geometries in
pre-processing ensures that this does not result in grounding, it stands to reason that a safer
route with a reasonable distance to static obstacles should be prioritized. To improve path
safety, it is proposed to utilize the Voronoi field strength through an evaluation function
added to the heuristic additively to ensure safety locally. This enables the generation of
optimized paths with reasonable safety margins, assuming adequate tuning.

4.3.4 Adapting Hybrid A* to large-scale environments
Hybrid A* was in the original paper used in environments of a relatively small extent [21].
In order to improve efficiency in vast coastal environments, some additional features that
extend beyond the original implementation should be utilized. The geometrical charac-
teristics of coastal environments have already been taken advantage of in generating the
aforementioned framed region quadtrees. They can also be utilized for search efficiency
through coarse but fast collision check queries. In Hybrid A*, pose candidates are sampled
by simulating the vessel for some time. In the original paper, this time is fixed [21]. This
makes sense for a car in an area such as a parking lot where the clutter density is relatively
coherent. However, in a coastal mission region there are narrow straits, bays cluttered with
obstacles, and large open areas. Any pose-to-goal search can potentially traverse through
all these different kinds of subregions. A fixed simulation time would then need to be
small enough to allow for sufficient maneuverability at the expense of search efficiency in
open areas where the search time ideally should be much longer to progress towards the
goal more rapidly. By introducing an adaptive simulation time for the motion sampling
that depends on the environment in the vicinity of the sample origin, maneuvering preci-
sion can be retained in areas where it is required. Simultaneously, progression can be rapid
whenever possible because the motion sampling and heuristic calculations only are done
a limited necessary amount.

In order to improve search efficiency further, one can make design changes to improve the
holonomic-with-obstacles heuristic. Using the method described in Subsection 4.3.3 will
result in repeated use of A* on the framed region quadtree graph. In order to avoid having
to re-explore the graph-optimal path repeatedly, a strategy should be employed to take ad-
vantage of the search history in subsequent heuristic evaluations. One way to do this could
be to only search at most once from every quadtree leaf region center and approximate
the distance from a candidate configuration to the goal based on the leaf region in which
the candidate is located. While enabling a dramatic reduction in the cost of evaluating the
holonomic-with-obstacles heuristic, this solution has several significant drawbacks. The
most prominent drawbacks are approximation consistency concerning placement within a
leaf region and region extent. A better alternative is to search directly from every pose
candidate but utilize parts of previous searches whenever possible. In order to achieve
this, one can use sequence matching, a novel technique designed specifically for this the-
sis. Sequence matching is based on maintaining a search tree of graph-optimal paths that
is iteratively built for each A* query to take advantage of previous searches and exploit

38



s1

s2

g

Figure 4.4: Illustration of sequence matching concept in the second query to a shortest path evalua-
tor.

the fact that the goal position never changes. For an ongoing A* search, it can then be
checked if the search has started to follow a path that is already in the search tree. If true,
the search has attached to the search tree. The search can then be fast-forwarded because
the graph-optimal path to the goal is already known from the attachment point onwards.
Figure 4.4 offers a simplified illustration of how sequence matching is used to improve
search efficiency from the second search iteration. In the first search iteration, from s1 to
g, the root of the search tree was established based on a graph-optimal path. When the
second search iteration commences from s2 to g, the A* heuristic results in the best path
candidate starting to follow the path in the search tree eventually. Every new vertex in the
frontier is evaluated to check if this best path candidate continues to follow the optimal
path tree. If the sequence following the optimal path tree becomes sufficiently long, the
search is interrupted, and the optimal path tree is used to provide the remaining part of the
path towards the goal.

4.3.5 Incorporation of COLREG compliance
From the perspective of mission planning, the main COLREG rule with which compliance
must be ensured is Rule 10, which describes how a vessel should interact with TSS objects.
The aspects of this rule most relevant for a minimum level of compliance are given in the
description of the rule in Appendix A, with supporting illustrations given in Figure A.2
and proposed strategies to comply illustrated in Figure 4.5.

In order to avoid crossing a separation zone, defined by the tsezne in Table B.2, it is pro-
posed to interpret such objects as hazards. The proposed region quadtree search heuristic
guiding the Hybrid A* search effort will guide the search clear of such areas, ensuring
compliance. While this is a hard constraint from the perspective of the mission planner, it
will only affect the nominal path and not any collision avoidance behavior.

Compliance with traffic separation lanes is handled differently. Instead of using only the
hard constraint strategy used for zones, it is proposed to use a hard constraint, a soft con-

39



Violation Suggester Sampler

(a) Lane Strategy

Violation Sampler

(b) Roundabout Strategy

Figure 4.5: Illustration of proposed strategies to comply with relevant Traffic Separation Schemes.

straint affecting the Hybrid A* search heuristic, and a compliant course suggester com-
bined. In a traffic lane, the course required to follow the general traffic flow is given. Thus,
when it is detected that the mission planner frontier has reached a traffic lane, any config-
uration candidate in the opposite direction of the general traffic flow can immediately be
discarded. All remaining candidates can thereafter be compared by evaluating the vessel’s
course if that candidate was to be followed and the defined course of the traffic lane. The
evaluation result can generate a scaling factor for the distance heuristic, which is one nom-
inally. Because the alterations of course in the mission planner sampling strategy should
be coarse for search progression, the soft constraint can result in oscillatory behavior while
following the traffic lane. It is proposed to utilize a course suggester, which determines
the course alteration necessary to align the vessel and lane course for the current vertex
retrieved from the search frontier to eliminate this oscillation. This course alteration is
then utilized in addition to the fixed set of course alterations when motion sampling is
performed to remedy the lack of high-resolution maneuverability in the motion sampling.
The compliance strategy is visualized in Figure 4.5a.

The last type of TSS object with which compliance is considered necessary for minimum
TSS compliance overall is the roundabout object, defined by the object tssron in Table
B.2. Compared to the conventional road roundabout, a roundabout at sea does not have
clearly defined lanes where one should reside while traversing around it. Thus, to facili-
tate compliance and route safety, the most important aspect is to ensure that roundabouts
are traversed counterclockwise and that the roundabout’s center is not crossed. The latter
is ensured by compliance with tsezne objects, while the former requires a different strat-
egy. It is proposed that for a given set of sampled configuration candidates, one should
use knowledge of the corresponding candidate path segment and the roundabout center to
evaluate if following the path segment from the current configuration to the sampled can-
didate results in a clockwise or counterclockwise motion with regards to the roundabout.

40



One way to do this is to take advantage of the vector cross product in a horizontal plane.
In the horizontal plane, the cross product between two vectors is given as described in
Equation 4.1

A⃗B × A⃗C = (|AB||AC| sin (θ)ẑ (4.1)

where ẑ is a unit vector normal to the horizontal plane. Making a flat tangential plane
by linear ENU projection centered in the roundabout center (R) and projecting the current
configuration (V) and candidate configuration (C) to this horizontal plane, one can deter-
mine if going from V to C is clockwise or counterclockwise with respect to R by taking the
cross product R⃗V × R⃗C and evaluating the scaling factor of the resulting ẑ. If the scaling
factor is negative, the motion is clockwise, and if it is positive, it is counterclockwise. In
the edge case where the scaling factor is zero, there is no rotation, meaning C is located
on the extension of R⃗V . Be advised that to evaluate the scaling factor directly, Equation
4.2 can be utilized.

scalingcross = (VxCy)− (VyCx) (4.2)

4.4 Path tracking

(xi,yi)

(xi+1,yi+1)

(xp,yp)πp

Δ

(x,y)

North

Figure 4.6: Illustration of LOS guidance law inspired by [48]. All coordinates are in the same global
inertial coordinate system.

The path generated by the motion planning system in the mission planner must be followed
by the USV. In order to achieve this, a path tracker must take the path parametrization as
an input and output control values to the USV autopilot system. One path tracker that is
frequently used for maritime applications is the LOS Guidance Law illustrated in Figure

41



4.6. The LOS guidance law computes for a given cross-track error on a path segment
between two waypoints the desired course angle χd as shown in (4.3). The following
explanation of the LOS guidance law is based on an earlier project [49], which follows the
theory and notation in [48].

χd = πp − tan−1(
1

∆
ype ) (4.3)

The equation for desired course χd given in Equation 4.3 requires some explanation. ∆
is the lookahead distance and ype is the crosstrack error expressed in the path-tangential
coordinate system p aligned with the line segment from waypoint (xni , y

n
i ) to (xni+1, y

n
i+1)

in an inertial, Cartesian world frame ni. Calculating ype can then be done by means of a
simple coordinate transformation as shown in Equation 4.4.

[
xpe
ype

]
= Rn

p (πp)
T

[
xn − xnp
yn − ynp

]
(4.4)

In the equation, Rn
p (πp) ∈ SO(2), (xn, yn) is the USV position in the inertial world frame

n and πp is the rotation of frame p with regards to frame n, calculated using 4.5.

πp = atan2(yni+1 − yni , xni+1 − xni ) (4.5)

The LOS path tracker outlined above conventionally requires waypoints defined in Carte-
sian coordinates. The mission planner method proposed in Section 4.3 uses a GCS and
thus the path is parameterized with geodetic coordinates. Without some conversion, it
is thus incompatible with the conventional LOS based path-tracker outlined above. One
method to overcome this would be to change the guidance law to work in a geodetic frame
of reference. However, implementing this can be impractical and make tuning less intu-
itive. Another option is to use a sequence of Cartesian frames attached to each waypoint
and use the frame related to the latest visited waypoint when tracking the path segment
towards the next waypoint. Assuming that the geodesic distance between waypoints is
limited, this method will only introduce negligible error due to the Earth’s curvature.

4.5 Collision avoidance system
A COLAV system is responsible for COLREG compliant collision avoidance and damage
potential mitigation during mission execution. In order to maintain a high level of mod-
ularity in the guidance system, the COLAV subsystem should be entirely independent of
the mission planner and path tracker. This can be achieved by using the interface design
proposed in [33], where the COLAV system is informed about the setpoints suggested by
the path tracker to follow the nominal path and produces setpoint corrections based on
this to fulfill its responsibilities. This interface is used in Figure 4.1 and allows all main
subsystems to be completely invariant of how other subsystems function internally. This

42



Figure 4.7: Collision avoidance based on predictive control selection concept proposed in [33] in a
single-obstacle head-on scenario.

high level of modularity improves system maintainability. Furthermore, it offers flexibility
in making changes to subsystems or replacing subsystems entirely. With the responsibility
and external interface of the COLAV system defined, what remains is to determine the
collision strategy to employ internally.

A plethora of COLREG compliant collision avoidance strategies exist. The ones consid-
ered most promising for this project are introduced in Section 2.3. Of these methods, the
local collision avoidance strategy proposed by [33] based on the research by [22] is consid-
ered to be the most optimal method for the proposed guidance system due to its versatility,
predictability, and the ability for incremental improvements.

This method is based on defining a fixed set of motion primitives1, obtaining the predicted
trajectory for the vessel for every combination using a vessel model, and choosing the
motion primitive combination candidate with the best trajectory. Evaluating the trajec-
tory candidates can be quantified utilizing a cost function where COLREG compliance,
damage mitigation, vessel actuator wear, and path optimality are taken into account. An
illustration to highlight how one iteration of the control selection looks is provided in Fig-
ure 4.7. For maritime vessels, the motion primitive combinations can, for example, be
combinations of course offsets and speed multipliers. While this method is conceptually
simple and can be computationally cheap, it is versatile, can handle multiple-vessel avoid-
ance, and enables quite sophisticated behavior such as reducing damage potential when a
collision is inevitable. Furthermore, in addition to being verified in a simulation environ-
ment [33], sea trials based on the concept have shown that it can perform with uncertainty
in measurements and predictions [41].

1In the context of the proposed COLAV method, the motion primitives are a collection of course corrections
and speed multipliers

43



Chapter 5
Implementation

5.1 Software

The guidance and collision avoidance system introduced in this thesis depends on a col-
lection of third-party open-source software libraries and middleware. In order to give a
complete description of the implemented system, it is considered necessary to highlight
these dependencies.

5.1.1 ROS

The system developed in this thesis utilizes Robot Operating System (ROS) Noetic as its
middleware to provide a framework for communication and standardization. ROS is a
distributed framework with message-based communication between nodes. From the per-
spective of the developer, system features are designed as nodes, collections of which are
organized in packages [39]. Nodes can be written in different programming languages and
interact using messages and service calls. Message-based communication and service calls
are critical to the implementations in this project and are what enable systems modularity.

Communication in ROS is message-based in a peer-to-peer network [39]. The network
is controlled by a roscore node, which keeps track of communication channel topics and
their publishers and subscribers. When a subscriber node receives a message, this asyn-
chronously triggers a callback function. While topics can have multiple publishers and
subscribers connected to them simultaneously, the communication channels are all one-to-
one between the main modules in the implemented guidance system except for a simulated
target tracker.

44



5.1.2 OpenMP

OpenMP is a programming library with runtime routines and compiler directives to enable
shared-memory parallelism [14]. Key advantages of using OpenMP instead of other op-
tions like pthread include lower overhead and minimal need for code modification. While
OpenMP is highly versatile and can take advantage of modern multi-core processors in
many different scenarios, the system proposed in this thesis will primarily use it in sce-
narios where nested for-loops are used. Such nested loops occur primarily when building
and querying the mission region database, when building the Quadtree and when querying
the Voronoi skeleton. All asynchronous behavior related to the general guidance system,
such as callbacks and running multiple subsystems concurrently, are handled by the ROS
middleware.

5.1.3 GDAL/OGR

The Geospatial Data Abstraction Library (GDAL) is a software library consisting of drivers
for translating and editing geospatial data formats [57]. It includes the OGR Simple Fea-
tures Library to handle geospatial vector data and is therefore often denoted as GDAL/OGR.
The library is widely used by spatial data applications, with three notable mentions being
QGIS, MapServer, and Google Earth. For vector data, the library presents a unified ab-
stract data model [57]. Through a C++ Application Programming Interface (API), it can
be used to load different types of geospatial vector files such as S-57 ENCs and SQLite
databases as ogr::DataSource objects. These objects all have the same interface and thus
can be read and manipulated in precisely the same way [57].

In addition to being used for converting and modifying geospatial databases, GDAL/OGR
can also be used for many geospatial queries such as collision checking, geometry pro-
cessing, and frame conversions. Core functions relevant for the implemented system are
described briefly below, based on the documentation available [57] and a research effort
by Otterholm [43].

• OGRBoolean OGRGeometry::Intersects (OGRGeometry *): The core of all colli-
sion checking in this thesis. Can for any two georeferenced geometries determine if
they intersect. Internally, the function uses a variation of the Dimensionally Ex-
tended Nine-Intersection Model (DE-9IM) through the GEOS Geometry Engine
[50]. DE-9IM is an efficient model for determining spatial relations such as in-
tersection and containment between geometries [11].

• OGRGeometry* OGRGeometry::UnionCascaded(): Responsible for dissolving ge-
ometrically overlapping geometries in map pre-processing by taking the geometric
union of all layer features and utilizing cascading for efficiency. Once more, GEOS
[50] is utilized by GDAL/OGR to achieve this.

• int OGRCoordinateTransformation::Transform(int nCount,double* x, double* y, dou-
ble* z): Used by the Geotf library described in subsection 5.1.4 to efficiently and
accurately transform 3D points from a source to a destination georeferenced frame
of reference.

45



• OGRBoolean OGRGeometry::Distance (OGRGeometry *): Used in this thesis when-
ever the shortest distance between geometries or layers of geometries are to be
found. Can for any two georeferenced geometries determine the shortest distance
between the geometries using GEOS [50].

Any reader interested in developing their own software based on GDAL/OGR is advised
to consult the GDAL/OGR library documentation [57] and GEOS documentation [50], as
the overview above only is intended to give the reader a brief overview of some of the most
advanced features of GDAL/OGR utilized by this thesis and its library dependencies.

5.1.4 Geotf
Geotf is a C++ software library for frame conversion of geodetic data developed by the
ETH Zürich Autonomous Systems Lab [54]. Using this library, conversion between mul-
tiple georeferenced frames can be performed on a high abstraction level. Furthermore, the
library supports mapping between georeferenced frames and ROS TF frames. While the
library is not supported by any published paper or other work, this is no cause for concern
as it relies on GDAL/OGR for all backend calculations and conversions.

The Geotf library is utilized by creating a realization of the GeodeticConverter class. This
converter object has several functions in its public interface, and the ones relevant to this
thesis are described below:

• bool addFrameByEPSG(name, id): Add a coordinate frame by its EPSG identifier.
If for example one wants to add a WGS84 reference frame, which is used by services
such as GPS, the EPGS code is 4326. The function creates a OGRSpatialReference
object.

• bool addFrameByENUOrigin(name, lat, lon, alt): Add an ENU frame where the
origin is georeferenced by a geodetic position. Creates a OGRSpatialReference ob-
ject initialized to use the WGS84 reference system. Furthermore, an orthographic
projection1 is added to the spatial reference, centered at sea level at the geodetic
position.

• bool convert(input_frame, input, output_frame, output): Convert a position in one
georeferenced input frame to an output frame, given that both frames are already
defined. In order to achieve this, the spatial references of both frames are used to
initialize a OGRCoordinateTransformation object if such an object for the relevant
transformation is not already present.

5.1.5 Odeint
Odeint is a modern C++ header-only library for solving initial value problems of ordinary
differential equations numerically [23]. For the purpose of the implemented guidance
system, this is used for both real-time simulation and trajectory prediction. Trajectory
prediction is used both in the Mission Planner and the collision avoidance system and thus
it is of monumental importance that the library has efficient steppers implemented and that

1An orthographic projection is a 2D projection of 3D space

46



these steppers are implemented with performance in mind. Odeint offers many steppers,
including efficient, adaptive stepsize Runge-Kutta steppers [23] and it is thus ideal for the
guidance system2.

5.1.6 GeographicLib
GeographicLib is a C++ software library that can be used for solving problems in the
field of Geodesy [51], such as the inverse geodesic problem. The library focuses on result
accuracy but has also proven to be robust in the sense that the solution to the inverse prob-
lem is always found. This is a significant improvement compared to Vincenty’s method
which fails to converge, and thus fails to find a solution, for the inverse problem for nearly
antipodal points [28].

5.1.7 JC_Voronoi
JC_Voronoi is a C++ header-only library for creating 2D Voronoi diagrams from a set
of points [60]. It is used in this thesis as a foundation to create Voronoi skeletons of the
mission region. It should be noted that while the implementation is sparsely documented, it
is an implementation of the well-known and well-documented Fortune’s sweep algorithm
[6].

5.2 Electronic Navigational Chart Manager

The Electronic Navigational Chart Manager3, or ENC Manager for short, is implemented
as a pre-processor and a map-service class using C++. Additionally, a standalone C++
ENC extraction library enc_extract_lib4 is developed to provide some of the underlying
functionality for the pre-processor. The classes take advantage of the ROS Noetic frame-
work for parameter handling and logging of debug messages. Compared to the other sub-
systems in the guidance system, the ENC manager does not utilize message-based commu-
nication or service calls. Instead, realizations of the classes are owned by other subsystems
that require them. While this does come at the expense of extra memory utilization, it pre-
vents computational and transactional overhead associated with sending static data over
the ROS network and was thus considered a worthwhile compromise.

Mission region pre-processing is performed as a three-stage procedure, as shown in Figure
5.1. In the following, this procedure is described.

5.2.1 Information extraction from Electronic Navigational Charts
Before initiating the pre-processing procedure, electronic navigational charts covering the
desired mission region must be obtained. If one is to perform a mission along the US
coastline, NOAA have charts easily accessible online. For missions along the Norwegian

2Please note that other libraries do exist and that no library performance comparison has been conducted.
3Made available through the open-source USV Guidance system GitHub repository [55]
4Made available through the separately developed open-source library enc_extract_lib GitHub repository [56]

47



Start

End

Region
SQLite


Quadtree
SQLite


Generate framed region quadtree

Quadtree
graph

Generate Voronoi skeleton

Preprocessing procedure
 Region directory

Detailed
SQLite


Information extraction from Electronic Navigational Charts

Identify and load
chart tiles covering

mission region

Identify all relevant
objects

Classify, dissolve and
buffer hazard/caution

objects

Stitch chart tiles and
evaluate coverage

Generate detailed
spatial database

Generate overview
spatial database

Figure 5.1: Visualization of proposed multi-stage pre-processing procedure for Electronic Naviga-
tional Charts.

coastline, access must be requested from The Norwegian Mapping Authority. Obtained
chart tiles go through an automated registration process where metadata is extracted to
be used by the library. This ingestion process is implemented as a Python script in the
enc_extract_lib. For every chart to ingest, the ingestion procedure uses the S-57 driver
from GDAL/OGR to open the chart and read the Data Set Identifier (DSID) [17] and the
extent of the tile. The filename and metadata attributes are then appended to an index
file, and the ENC is stored by the program in non-volatile memory together with all other
registered ENCs.

Assuming all relevant ENCs have been ingested, a mission region has been defined, and
vessel dimensions are specified, pre-processing can commence. Following the flowchart
in Figure 5.1, all mission region chart tiles are loaded, stitched, cut, and evaluated for
coverage to identify any subregion where there is no map data available. Two spatial
databases are then generated; a detailed and a region overview database. The former
is generated by adding all objects considered relevant5 to a SQLite database to provide
additional details when the information in the region overview is not enough to make
decisions during mission planning and execution. The latter database is generated by
iteratively going through all relevant objects, classifying them as either hazard objects,
caution objects, or irrelevant. The geometric properties of the hazards and cautions are
stored in a geospatial SQLite database consisting of a hazard layer and a caution layer. The
geometries in each layer are thereafter dissolved using cascading such that any objects that
overlap in the layer become one. The dissolved objects are finally extended with a buffer
region based on the vessel dimensions, and the SQLite database is saved for use by the
ENC Manager Map Service during mission planning and execution.

5The relevant objects are given in Table B.1 and Table B.2 in Appendix B

48



5.2.2 Interpreting and representing free space in the mission region
The responsibilities of the ENC manager with regards to pre-processing do not end with
the extraction and interpretation of ENC information. It is also responsible for building a
framed region quadtree of the free space in the mission region. This quadtree is not only
used as a graph structure for the Hybrid A* holonomic-with-obstacles search heuristic
but also for determining for any arbitrary point which region it is inside if any. The latter
purpose is quite similar to how point quadtrees are used [32], with the difference being that
the free space in the environment dictates how the region quadtree is structured instead of
a point cloud. In order to build the quadtree, two key questions must be answered:

1. How should it be determined that a region is obstacle-free?

2. Given that a region is obstacle-free, how should graph vertices be placed and inter-
connected?

For an arbitrary region R the occupancy region can be calculated using the GDAL/OGR
library to extract geometry overlap and calculate an occupancy ratio based on the area of
overlap divided by the area of R. Calculating the overlap geometry between a quadtree
region and all polygons in a mission region is computationally expensive. A two-stage
process is therefore used to calculate the occupancy to lower computational cost. First,
all polygons with which the region possibly overlaps are found by checking for envelope
intersection. The polygon envelopes and the quadtree region candidates are all quadri-
laterals. Therefore, this intersection checking is computationally cheap. In the second
stage, the occupancy is found by evaluating the overlap with polygons whose envelope
intersected the region.

A region is considered part of the free space only when it has an occupancy ratio of zero.
Whenever such a region is found, a procedure must be run for placing and interconnecting
graph vertices. The procedure is described by Algorithm 1 and the interconnection logic
is illustrated in Figure 5.2.

Algorithm 1 Add region vertices for a free region.
function addRegionV ertices(G,R)
Require: lengthmax ≥ 0

1: divisorRNS
← getDivisorValue(R, NS, lengthmax)

2: divisorREW
← getDivisorValue(R, EW, lengthmax)

3: pointsR ← getRegionFramePoints(R, divisorRNS
, divisorREW

)
4: for all pointR ∈ pointsR do
5: if pointR ̸∈ G then
6: addGraphVertex(pointR)
7: connectEdges()
8: end if
9: end for

In Algorithm 1, divisorRNS
and divisorREW

determine how many line segments the
north/south and east/west edges of the region should be split into, respectively. In order
to facilitate the variable divisor concept described in Subsection 4.2.2, a lengthmax value

49



Symbol
Explanation

Quadtree
region

Current
vertex

Region
vertex

Graph
edge

Figure 5.2: Interconnecting vertices in framed regional quadtree. Illustration courtesy of [49]

must be set. It specifies the maximum geodesic length between frame vertices, and by
being a function of this value the divisor enforces this limit.

Having established the procedure for determining the occupancy of a region and handling
vertices in free regions, what remains is to describe the building procedure tying these
parts together to create a framed region quadtree. This is described in Algorithm 2. The
reader is advised that the splitRegion(regioncurrent) procedure splits a region R into
four sub-regions using geodetic coordinates, not Cartesian coordinates.

Algorithm 2 Build framed region quadtree Algorithm. Adapted from [49]
function buildFramedQuadtree(map,G)

1: Rroot ← getMissionRegion(map)
2: while existsRegionToCheck() do
3: Rcurrent ← getRegionToCheck()
4: if regionExtentBelowThreshold(Rcurrent) then
5: continue
6: end if
7: fR ← getOccupancyRatio(Rcurrent)
8: if fR==1.0 then
9: continue

10: else if fR == 0.0 then
11: addRegionVertices(G,Rcurrent)
12: else
13: splitRegion(Rcurrent)
14: end if
15: end while

Observe in Algorithm 2 that when regions to check get below some area, as evaluated by
regionExtentBelowThreshold(Rcurrent), they are discarded. What can be consid-
ered a reasonable area threshold depends on the ownship vessel dimensions. It is proposed
that the minimum extent should be chosen small enough such that the quadtree reaches

50



into any narrow channel, bay, or harbor in which the USV could safely travel.

5.2.3 Generating a free-space Voronoi skeleton for the mission region
In order to generate a Voronoi skeleton of the free-space in the mission region, a Voronoi
diagram based on the boundary vertices of the obstacle polygons can be used as a starting
point. One fast and reliable way to generate a Voronoi diagram based on a set of points is
to use the Fortune’s Sweep algorithm [6]. An efficient implementation of this technique is
made available through the jc_voronoi library published under the MIT license on GitHub
by Mathias Westerdahl [60]. Looking at the main algorithm of the Voronoi skeleton gen-
erator, given in Algorithm 3, this library is used in the buildVoronoiDiagram(sites)
procedure to build the diagram on which pruning is thereafter performed to extract the
Voronoi skeleton.

Algorithm 3 Voronoi skeleton generator
function buildV oronoiSkeleton(obstacles)

1: sites← getEdgeVertices(obstacles)
2: diagram← buildVoronoiDiagram(sites)
3: edgescandidate ← getCandidateEdges(diagram)
4: pointmap ← associatePointsEdges(edgescandidate)
5: edgesskeleton ← pruneEdges(edgescandidate, pointmap)
6: addToRegionDataset(edgesskeleton)

The algorithm requires some further explanation. getCandidateEdges(diagram) re-
trieves all edges that do not collide with obstacle polygons or are partially outside the mis-
sion region while associatePointsEdges(edgescandidate) associates with every vertex
in the Voronoi diagram, all edges this point is connected to. This is crucial for the novel
edge pruning algorithm pruneEdges(edgescandidate, pointmap) further detailed in Al-
gorithm 4.

pruneEdges(edgecandidates, pointmap) is a novel algorithm developed for this thesis
to generate the required Voronoi skeleton supporting structure. Iteratively, edges that are
only connected to other edges at one end are evaluated using a distance ratio described by
the formula given in Equation (5.1)

ratio =
length(edge)

|d1 − d2|
(5.1)

where d1 and d2 are the distance to the nearest obstacle from the two edge endpoints.
Ratios closer to 1 indicate that the edge is almost normal to the nearest land polygon
edge. Any Voronoi skeleton edge would be approximately parallel and have a rato≫ 1.
Thus, edges with a distance ratio ratio ≤ βvoronoi where βvoronoi ≥ 1 is a tuneable
parameter should be removed6. This pruning rule is prone to false positives far from
obstacle polygons and in the presence of complex obstacle geometries. It is made far more

6The value of βvoronoi used in testing is given in Table C.3

51



Algorithm 4 Prune Voronoi diagram edges
function pruneEdges(edgescandidates, pointmap)

1: while pruningEffective() do
2: edgesprunecandidate ← ∅
3: for all associationpoint,edges ∈ pointmap do
4: if getEdgeCount(associationpoint,edges) == 1 then
5: push(edgesprunecandidate,getEdges(associationpoint,edges))
6: end if
7: end for
8: for all edgeprunecandidate ∈ edgesprunecandidate do
9: ratio← getDistanceRatio(edgeprunecandidate)

10: if ratio ≤ βvoronoi then
11: removeEdge(edgeprunecandidate)
12: end if
13: end for
14: end while
15: return getSurvivingEdges()

conservative by only considering partially connected edges. Removing partially connected
edges must be done iteratively because a set of new edges can become partially connected
with each removed edge. When no more edges are removed by the pruning rule, pruning is
no longer effective and the process can be stopped. The effectiveness is monitored by the
pruningEffective() procedure. The iterative method is far less prone to false positives
in removal detection than using the pruning rule once on all edges. Thus a more accurate
Voronoi skeleton is built overall, as can be seen in the comparison in Figure 5.3.

5.2.4 Mission Map Service
The mission map service is the second component of the ENC manager, and all knowledge
other modules have about the static environment is retrieved through it by these modules
owning manager objects. There are three main aspects the other subsystems need to know
about the static environment:

1. Intersection: Does a point or collection of line segments collide with any spatial
object?

2. Distance: What is the distance to the nearest spatial object of a certain type?

3. Distance context: How close to land is it reasonable to go in an arbitrary area?

The first aspect, intersection, is handled by retrieving the appropriate layer in the mis-
sion region database and for every feature in this layer, checking for intersection using the
OGRBoolean OGRGeometry::Intersects (OGRGeometry *) procedure described in Sub-
section 5.1.3. Knowledge about distance is handled similarly but is based around OGR-
Boolean OGRGeometry::Distance (OGRGeometry *) and uses a copy of the pre-processed
mission region database stored in RAM for improved efficiency. Furthermore, the distance

52



74.00 73.95 73.90 73.85 73.80 73.75

40.52

40.54

40.56

40.58

40.60

40.62

40.64

(a) Skeleton generated using pruning rule evaluated
on all edges at the same time over a pre-processed
mission region around Jamaica Bay Estuary in New
York State. ENC data courtesy of NOAA.

74.00 73.95 73.90 73.85 73.80 73.75

40.52

40.54

40.56

40.58

40.60

40.62

40.64

(b) Skeleton generated using pruning rule evaluated
iteratively on partially connected edges over a pre-
processed mission region around Jamaica Bay Estu-
ary in New York State. ENC data courtesy of NOAA.

Figure 5.3: Comparison of Voronoi skeleton built pruning all edges once and pruning iteratively.

function has an optional saturation feature.

When it comes to providing knowledge about how close to land it is reasonable to go,
there are many ways this could be handled. For this thesis, the Voronoi field introduced
in [21] is utilized. This artificial potential field is suitable because it will return large
values close to land in large open areas but return smaller values for a similar distance to
land in narrow channels and through narrow straits. This assures that it does not become
artificially expensive to pass through such areas, which would result in worse optimality
characteristics of any path found with Hybrid A* or similar methods. The Voronoi field
is constructed by utilizing knowledge about the distance to the nearest hazard dh and the
distance to the Voronoi skeleton dv as shown in Equation (5.2)

fv =
αvoronoi

αvoronoi + dh

dv
dv + dh

(dh − satdistance)2

(satdistance)2
(5.2)

whereαvoronoi is a tuneable parameter determining the falloff rate of the field, and satdistance
is the maximum distance to land that can occur. The chosen values for both are given in
Table C.3. The saturation feature of the distance function is utilized to ensure this in prac-
tice. To illustrate the value of using the Voronoi field, Figure 5.4 compares the standard
distance field and the Voronoi field in a map with relatively narrow channels. Observe that
the field value reflects the aforementioned reasonable distance-to-land concept.

53



73.875 73.870 73.865 73.860 73.855 73.850

40.585

40.590

40.595

40.600

40.605

40.610

40.615

40.620

(a) Distance field visualized over a pre-processed
portion of Jamaica Bay Estuary in New York State.
ENC data courtesy of NOAA

73.875 73.870 73.865 73.860 73.855 73.850

40.585

40.590

40.595

40.600

40.605

40.610

40.615

40.620

(b) Voronoi field field visualized over a pre-
processed portion of Jamaica Bay Estuary in New
York State. ENC data courtesy of NOAA

Figure 5.4: Comparison of artificial distance field and Voronoi field. Both are visualized using an
inferno colormap with field strength represented by warmer color.

5.3 Mission Planner

The Mission Planner7 is implemented in ROS Noetic as a C++ node. Communication
with the host vessel is message-based, while information about the static environment is
handled by database query through an ENC manager map service object owned by the
Mission Planner internally. This design choice is made to avoid sending large amounts of
static data over the ROS network, with the potential disadvantage of increased memory
consumption if many Mission Planners are spawned. However, there is only one Mission
Planner for every USV. Thus this is not considered to be an issue.

The Mission Planner is requested to find a path either from the current USV configura-
tion or a custom configuration through a call to a ROS service provided by the Mission
Planner. The path is found using a novel specialized version of Hybrid A*, designed and
implemented specifically for USV mission planning in large-scale coastal maritime envi-
ronments.

5.3.1 Motion planning with Hybrid A*
Motion planning in this thesis is achieved by utilizing the Hybrid A* Algorithm and
motion-sampling is facilitated by the Viknes 830 model from [22]. The Hybrid A* im-
plementation is based upon the underlying theory described in Subsection 3.2.2 and de-
sign choices highlighted in Section 4.3, with added features for improved search efficiency
in large-scale maritime environments as proposed in Subsection 4.3.4. Motion sampling

7Made available through the open-source USV Guidance System GitHub repository [55]

54



is developed using object-oriented programming, where the vessel model implementa-
tion from [35] is adapted to work with the Odeint C++ library [23] for integration of the
equations of motion. Changes have also been made to the internal structure and external
interface of the vessel model, to allow usage as a traditional simulator without sacrificing
performance when performing motion-sampling.

Whenever the Mission Planner receives a mission plan service request, it searches for a
path using the aforementioned specialized version of Hybrid A*, the behavior of which is
described in Algorithm 5.

Algorithm 5 Hybrid A* Search algorithm
function search()
Require: sstart ̸= nullptr
Require: sgoal ̸= nullptr
Require: χ ̸= ∅

1: addToFrontier(sstart, 0)
2: while F ̸= ∅ do
3: scurrent ← getFromFrontier()
4: rcurrent ← getLeafRegionContaining(scurrent)
5: if rcurrent == getLeafRegionContaining(sgoal) then
6: break
7: end if
8: distance← getDistance(scurrent, sgoal)
9: simTime← adaptiveSimulationTime(scurrent, distance)

10: if inTssLane(scurrent) then
11: courseSuggester(tssLaneOrientation(scurrent),χ)
12: end if
13: for all χ ∈ χ do
14: scandidate ← getCandidateState()
15: horcandidate ← simulateVessel(scandidate, χ, simTime)
16: if similarClosed(scandidate) or collision(scandidate, horcandidate, rcurrent)

or tssViolation(horcandidate) then
17: continue
18: end if
19: snext ← getNextVertex(scandidate)
20: cost← getCost(snext)
21: if explored(snext) == false or cost < costSoFar(snext) then
22: priority ← heuristic(scurrent, snext, cost)
23: addToFrontier(snext, priority)
24: end if
25: end for
26: end while
27: return reconstructPath()

Looking at the search() algorithm described in Algorithm 5, some symbols and proce-
dures require further explanations. Starting with the notation, χ is a set of course correc-

55



tions, and the frontier F is a priority queue where vertices with the lowest cost have the
highest priority. Most procedures in the algorithm are considered self-explanatory if one is
familiar with the original Hybrid A* Algorithm from [21]. However, a handful are unique
to this thesis and should thus be detailed further, the first of which is the collision(. . . )
procedure described in Algorithm 6.

Algorithm 6 Collision checking algorithm
function collision(scandidate, simHorizon, rcurrent)

1: if rcurrent == getLeafRegionContaining(scandidate) then
2: return false
3: end if
4: if getLeafRegionContaining(scandidate) == nullptr then
5: return true
6: end if
7: simHorizonGeodetic← transformToGeodetic(simHorizon)
8: if intersects(simHorizonGeodetic,HazardLayer) then
9: return true

10: else
11: return false
12: end if

collision(scandidate, horizoncandidate, rcurrent) has two stages, a fast check stage and a
thorough check stage. The former is represented by checking the candidate scandidate ver-
tex against the region quadtree representing free space in the mission region. If scandidate
lies within the same obstacle-free region as the current vertex scurrent, then the path be-
tween the configurations must be collision-free. Furthermore, if scandidate does not lie
within a collision-free region at all, then there must be a collision along the simulation
horizon. Doing region checks in the quadtree is computationally cheap but not conclusive
for all scenarios. For scenarios where the first stage is inconclusive, the procedure proceeds
to the second thorough-check stage. After transforming the simulation horizon leading up
to scandidate to geodetic coordinates, the map service from the ENC manager is used to
check for any intersection. The collision checking can be considered a pruning of candi-
dates and is necessary to ensure that all segments in the search tree are collision-free. By
checking for collision before evaluating the heuristic, the heuristic procedure will not be
called more times than what is necessary. This is key for search efficiency, as the heuristic,
on average, is the most computationally expensive procedure of candidate evaluation.

It is emphasized that the search is done in a geodesic coordinate system using the WGS84
datum. Thus the pose in the vessel state scandidate must be transformed to a local Cartesian
coordinate system if one is to use a traditional 3DOF surface vessel model to do motion
sampling. From the perspective of the Hybrid A* search procedure in Algorithm 5 this
technicality is transparent by design because the implemented simulator has the necessary
support implemented. It silently creates a local frame of reference with scurrent as the
origin before integrating the equations of motion. After the integration, the resulting pose
is transformed into the global geodetic coordinate system and returned to the caller.

56



Algorithm 7 Hybrid A* Heuristic
function heuristic(scurrent, snext, cost)

1: dvoronoi ← voronoiField(snext)
2: ctssOrientation ← tssOrientationPenalty(scurrent, snext)
3: dgoal ← getGridDistance(snext, sgoal)
4: return cost+ ctssOrientation + dvoronoi + kdistdgoal

The heuristic of the Hybrid A* search implemented in this thesis and described in Al-
gorithm 7 is inspired by the original but leaves out the non-holonomic-no-obstacles and
makes some other additions to the search heuristic. One such addition is the utilization
of the Voronoi field, where the Voronoi field strength dvoronoi is added to the heuristic to
penalize being unreasonably close to land. Additionally, the distance scaling factor kdist8

is introduced to enable tuning for increased search progression. Moreover, a cost penalty
ctssOrientation for not following desired orientation in TSS lanes is added.

getGridDistance(snext, sgoal) calculates the distance of the graph-optimal path from
scurrent to sgoal in the framed quadtree using A*. While significantly less expensive
than the 3D iterative search, this pose-to-goal search query must be performed repeat-
edly and is typically the most computationally expensive part of the heuristic procedure.
In order to improve efficiency, one should use a method to take advantage of earlier
graph search queries in subsequent calls to the procedure. In this thesis, a novel method
called sequence matching is in Subsection 4.3.4 proposed to improve efficiency. The
adapted A* algorithm implementing this concept is described in Algorithm 8, with the
followingStoredPath(scurrent) sequence matching procedure illustrated in Figure 4.4
and further detailed in Algorithm 9.

Observe in Algorithm 8 that with the exception of the code needed for sequence matching,
this is an ordinary implementation of A*. Sequence matching requires that a search tree is
built. This is facilitated by updating a lookup table where all directed edges in the search
tree are stored. This is done using the updateLookupTable() procedure.

The sequence matching itself is described in Algorithm 9. Observe that when the search
is at a vertex scurrent and calls this procedure, the procedure checks how much of the
cameFrom vertex sequence matches the established search tree. This is done backward
iteratively from scurrent towards the initial configuration qI . For every iteration, it is
checked if the directed edge from cameFrom(scurrent) to scurrent is in the established
search tree using edgeInLookupTable(. . . ) and if it follows the tree in the direction to-
wards the goal configuration using correctPathDirection(. . . ). Any reader interested
in technical details regarding sequence matching is advised to refer to the implementation
source code [55].

A second modification of the Hybrid A* algorithm proposed in Subsection 4.3.4 is using
adaptive simulation time in motion sampling based on distance to goal and distance to
land. While there are several ways in which such functionality can be implemented, the
implemented guidance system utilizes a simple function to calculate the simulation time

8The value for kdist used i testing is given in Table C.2.

57



Algorithm 8 A* Search with sequence matching
function searchAstar()
Require: sstart ̸= nullptr
Require: sgoal ̸= nullptr

1: addToFrontier(sstart, 0)
2: while F ̸= ∅ do
3: scurrent ← getFromFrontier()
4: if scurrent == sgoal then
5: updateLookupTable()
6: return reconstructPath()
7: end if
8: if followingStoredPath(scurrent) then
9: updateLookupTable()

10: return reconstructPathFromLookup()
11: end if
12: neighbors← getConnectedNeighbors(scurrent)
13: for all sneighbor ∈ neighbors do
14: cost← costSoFar(scurrent) + getEdgeWeight(scurrent, sneighbor)
15: if costSoFar(sneighbor) == NULL or cost < costSoFar(sneighbor) then
16: setCostSoFar(sneighbor, cost)
17: priority ← costSoFar(sneighbor) + heuristic(sneighbor, sgoal)
18: addToFrontier(sneighbor, priority)
19: setCameFrom(sneighbor, scurrent)
20: end if
21: end for
22: end while

and achieve this behavior. This function is given in Equation (5.3) and utilizes a two-stage
strategy.

tsim = min(max(
dland
vusv

, tsim,u,min),max(kt,approach
dg
vusv

, tsim,a,min)) (5.3)

When far from the goal, simulation time is determined by distance to land, with a lower
saturation tsim,u,min to ensure sufficient progress in narrow passages. As the USV ap-
proaches the goal, simulation time is eventually determined by the the distance to goal
instead to ensure sufficient maneuverability to get to the goal without having to make ad-
ditions to the iterative search tree far back. A lower saturation tsim,a,min is once more
utilized. Moreover, a scaling factor kt,approach determines when the USV is sufficiently
close to switch to the approach stage. Appropriate tuning ensures that simulation time
never gets larger in the approach stage than in the underway stage of the search. The
values used are given in Table C.2.

58



Algorithm 9 A* Sequence matching
function followingStoredPath(scurrent)
Require: lenmatch ≥ 1

1: lensequence ← 0
2: while lensequence ≤ lenmatch do
3: if !edgeInLookupTable(cameFrom(scurrent), scurrent) or

!correctPathDirection(cameFrom(scurrent), scurrent) then
4: return False
5: end if
6: scurrent ← cameFrom(scurrent)
7: lensequence ← lensequence + 1
8: end while
9: return True

5.4 Collision avoidance system

The COLAV system9 is implemented in ROS Noetic as a C++ node. While most all com-
munication is message-based, information about the static environment is obtained through
ownership of a ENC manager map service. The COLAV system is responsible for calculat-
ing course and speed offsets based on temporal ownship and obstacle information in order
to comply with the relevant COLREGs and is built upon the concept of simulation-based
control behavior selection originally proposed in [33]. The implementation by Hagen [35]
has been used as a foundation. However, the structure, interface, integration method, and
collision checking method are unique to this thesis.

5.4.1 Simulating and comparing control action combinations
Given a set χcorr of course offsets, a set of speed offset multipliers ucorr and a measured
USV state x, the COLAV system is responsible for generating a list of trajectory and state
predictions for the ownship. This is achieved by solving the equations of motion of the
3DOF surface vessel model defined in 3.4.1 using the 4th order Runge Kutta method with
an adaptive step size for a limited, pre-defined time horizon T . It is advised to ensure that T
is kept sufficiently large, such that action to prevent collision is taken early. The simulation
is facilitated by the Odeint library [23]. The main algorithm in the COLAV system is called
getBestControlOffset() and the pseudocode for it is given in Algorithm 10.

5.4.2 Evaluating risk and COLREG Compliance
The centerpiece in Algorithm 10 is the cost function costFunc(. . . ), which is an imple-
mentation based on [35] of the cost function proposed in [33]. Due to its importance for
the nominal operating condition of the collision avoidance system, a thorough explana-
tion of it is in order. The explanation below paraphrases from [33], with some additional
explanations. While consistent with the notation introduced in the original paper, some

9Made available through the open-source USV Guidance System GitHub repository [55]

59



Algorithm 10 Function to determine best control offset for vessel to avoid collision
function getBestControlOffset()
Require: statesobstacle ̸= ∅
Require: stateusv ̸= ∅
Require: setpointsusv ̸= ∅
Require: combinationsoffset ̸= ∅
Require: T ̸= 0

1: horizonsobstacle ← predictObstacleTrajectories(statesobstacle)
2: for all combinationoffset ∈ combinationsoffset do
3: horizonusv ← simulateHorizon(stateusv, combinationoffset, T )
4: cost← costFunc(horizonusv, horizonsobstacle, combinationoffset)
5: storeControlOffsetCost(combinationoffset, cost)
6: end for
7: return bestOffset()

further notation is also introduced for convenience. The chosen values for all parameters
mentioned below are given in Table C.1.

For an arbitrary scenario, a set of vehicle-obstacle states are defined by the cost function.
These are described below, with supporting illustrations provided in Figure 5.5.

• CLOSE:
If dk0,i(t) ≤ dcli , where dk0,i(t) is predicted distance between USV and obstacle i at
time t in scenario k, the USV is said to be close to obstacle i. COLREG compliance
is only checked for obstacles i with this relation to the USV.

• OVERTAKEN:
If the inequality

v⃗k0 (t) · v⃗i(t) > cos (αot)
∣∣v⃗k0 (t)∣∣|v⃗i(t)| (5.4)

is satisfied, the USV is defined as overtaken by obstacle i at time t. Using ϕot =
68.5◦ was suggested in the original paper [33]. Satisfying the inequality in Equation
5.4 is equivalent to the obstacle velocity vector translated to the USV origin pointing
into the Overtake sector. Observe in Figure 5.5a that this is true for obstacle 1 and
that ϕot determines the size of the sector.

• STARBOARD:
The USV has obstacle i on it’s starboard side at time t if the bearing angle of
L⃗ki (t) > χ0, where L⃗ki (t) is a line-of-sight unit vector pointing from the USV to
obstacle i and χ0 is the course of the USV. This is visualized in Figure 5.5b, where
the bearing angle of L⃗ki (t) is denoted ϕlos.

• HEAD-ON:
If the inequalities

v⃗k0 (t) · v⃗i(t) < − cos (ϕho)
∣∣v⃗k0 (t)∣∣|v⃗i(t)| (5.5)

v⃗k0 (t) · L⃗ki (t) > cos (ϕahead)
∣∣v⃗k0 (t)∣∣ (5.6)

60



α 2

α3

1

αcr

αho

v1

v2

v3

v0

αot

Crossing

Overtake

Head on

2

α1

3

(a) Sectors for evaluation of ownship-obstacle state relation by velocity.
Note that α is used in place of ϕ in the angle symbols.

v0

L3

North

χ0
αlos

Ahead
φahead

3

(b) USV course and relation to direction of LOS vector to obstacle ship.

Figure 5.5: Using line-of-sight vector and velocity vectors to evaluate discrete ownship-obstacle
relationship states. The concept is used in earlier research efforts [33], [35], [41] but the illustrations
are made for the concept explanation in this thesis

are satisfied, obstacle i is head on relative to the USV at time t. Observe that vessel
3 in Figure 5.5a satisfies the first inequality and note that ϕho controls the size of
the Head-on sector. ϕho = 22.5◦ was proposed originally [33]. The evaluation of
the second inequality is visualized in Figure 5.5b. Because L⃗3 is within the Ahead
sector, the second inequality is also satisfied and thus the USV is in a HEAD-ON
state with obstacle 3. The size of the Ahead sector is controlled by ϕahead, with
ϕahead = 15.0◦ found to work well in [35].

• Crossed:
If the inequality

v⃗k0 (t) · v⃗i(t) < cos (ϕcr)
∣∣v⃗k0 (t)∣∣|v⃗i(t)| (5.7)

is satisfied, obstacle i is crossed by the USV at time t. This is equivalent to the

61



velocity vector of the obstacle translated to the origin of the USV pointing in the
crossing sector, visualized in Figure 5.5a. Similar to the head-on and overtake sec-
tors, the crossed sector size is determined by an angle. ϕcr = 68.5◦ was suggested
in [33]. Note that the crossed sector overlaps with the head-on sector. Sectors can
overlap, and this is accounted for in the utilization of these binary states in the cost
function.

With these states defined, assembling the cost function can commence. In the original
paper [33], the cost function is described as associated hazard. The associated hazard for
scenario k at time t0 given by Equation (5.8)

Hk(t0) = max
i

max
t∈D(t0)

(Cki (t)Rki (t) + κiµ
k
i (t)) + f(P k, χkca) + g(P k, χkca)) (5.8)

The discrete time steps of the simulated prediction horizon is given by D(t0) = {t0, t0 +
Ts, . . . , t0 + T}, where Ts is the timestep and T is the prediction horizon end time. The
functions making up the associated hazard require further explanation, starting with the
collision risk factor Rki (t) defined in Equation (5.9)

Rki (t) =

 1
|t−t0|p

(
dsafe
i

dk0,i(t)

)q
dk0,i(t) ≤ d

safe
i

0 otherwise
(5.9)

where dsafei defines the maximum distance at which the risk factor is evaluated relative
to an obstacle i and is allowed to be variable for different obstacle vessels based on their
characteristics and tracking uncertainty. Care must be taken to make dsafei sufficiently
large to ensure compliance with COLREG Rule 16 as described in Appendix A. Moreover,
note that the exponent q ≥ 1 also is important to ensure sufficiently early action is taken.
The last variable to highlight in the collision risk factor function is the exponent p, which
from Equation (5.9) describes how risk is weighted as a function of time to collision.

In Equation (5.8), the collision risk factor is scaled by a collision cost Cki (t) based on the
kinetic energy of a potential impact between the USV and obstacle i as given in Equation
(5.10). This scaling is is intended as a tool for damage mitigation in an event where a
collision is inevitable, and allows flexibility by introducing the obstacle dependent factor
Kcol
i .

Cki (t) = Kcol
i

∣∣v⃗k0 (t)− v⃗ki (t)∣∣2 (5.10)

Having established how collision cost is handled, what remains is quantifying the cost
of violating the COLREGs described in Appendix A. To achieve this, a binary violation
indicator µki (t) can be utilized, following the logic given in 5.13. Observe that the afore-
mentioned binary USV-obstacle relationship states are utilized to enable this logic.

62



µki (t) = RULE14 or RULE15 (5.11)
RULE14 = CLOSE & STARBOARD & HEAD-ON (5.12)
RULE15 = CLOSE & STARBOARD & CROSSED & !OVERTAKEN (5.13)

The function f(P k, χkca) is as seen in Equation (5.14) a penalty function. The purpose of
introducing this function is primarily to do tie-breaking. When similar costly control offset
combinations exist, this function ensures that the nominal path is followed if it is one of the
candidates. Moreover, it ensures that path changes are not made frequently by penalizing
any change in correction using penalty functions δP and δχ. The tuning parameters kP
and kχ influence the priority of sticking with the nominal path. An additional benefit of
f(·) is that it in general results in the COLAV being conservative with course and speed
changes, assuming appropriate tuning.

f(P k, χkca) = kP (1− P ) + kχχ
2
ca + δP (P − Plast) + δχ(χca − χca,last) (5.14)

To complete the cost function Hk(t0), what remains is to define the grounding penalty
function g(·). This function uses the intersection functionality in the ENC manager map
service. The grounding cost is altered in the implementation to only be evaluated after
the rest of the cost function for the minimum amount of candidates. Furthermore, the cost
is scaled with an estimate of time until impact. This is done to ensure that even in the
scenario where all control candidates result in collision or grounding, the option resulting
in the lowest associated hazard is chosen.

63



Chapter 6
Results and discussion

A divide and conquer strategy is utilized to test the proposed guidance system’s viability.
First, the collision avoidance capabilities concerning safe distance and COLREG compli-
ance are tested for isolated collision scenarios. Thereafter, the mission planner is tested for
compliance with TSS objects, path quality, and search efficiency at scale with the intent
to verify the capabilities and identify limitations of the proposed mission planner design.
Lastly, the entire system is tested together in a hypothetical full-scale mission scenario.

Critical parameters for the simulation-based testing of the proposed system are given in
Appendix C. Model parameters are obtained from work done by Loe [22] and COLAV
parameters are based on the tuning efforts by Hagen [35]. All tuning parameters have
been found empirically and are generally chosen to balance efficiency, collision avoidance
performance, and path quality. The reader is advised that the USV Guidance System im-
plementation version used during testing is tagged as v1.0.0 in the GitHub repository [55]
for the convenience of any reader interested in recreating the results from the following
system evaluation.

6.1 Isolated collision avoidance scenarios

Head-on, crossing, and overtake collision avoidance scenarios are considered most rele-
vant for COLREG compliance and are thus selected for evaluation. In order to mitigate
possible interference from any undiscovered implementation errors, collision avoidance is
tested in isolated scenarios. Furthermore, to quantify robustness in identifying and avoid-
ing collisions, the isolated collision avoidance test scenarios are run for 100 Monte Carlo
Iterations. Both the initial pose of the USV ownship and the obstacle vessels are subject
to Gaussian multivariate noise to ensure sufficient variation across the iterations. For each
vessel, the initial configuration is given by Equation 6.1

64



(a) Head-on scenario (b) Crossing scenario (c) Overtake scenario

Figure 6.1: Isolated collision avoidance testing scenarios

qI(i) =

xiyi
ψi

 (6.1)

where the ownship has id i = 0 and qI(i) ∼ N (µ(i), Σ(i)) and the goal configuration is
constant and given by qG(i). The matrices Σ(0) and Σ(1, 2) given in Equation 6.2 were
used as covariance matrices for the USV and obstacles, respectively.

Σ(0) =

5e−4 0 0
0 5e−4 0
0 0 0.3925

 Σ(1, 2) =

2e−4 0 0
0 2e−4 0
0 0 0.3925

 (6.2)

The obstacle vessels are set as non-cooperative to approximate the worst case collision
avoidance scenarios where only the action taken by the USV can ensure that collision is
avoided. Collision avoidance behavior in each iteration will be categorized as compliant
if all relevant rules given in Appendix A are followed.

6.1.1 Head-on scenario
The head-on scenario is set up according to the definition of such a scenario given in Rule
14 of the COLREGs, described in Appendix A, but with two obstacle vessels instead of
just one to challenge the robustness of the collision avoidance system. The USV and one
non-cooperative vessel are on nearly reciprocal courses as illustrated in Figure 6.1a. In
order to comply with Rule 14, the USV must alter course starboard such that the vessels
pass on the port side of each other. Compliance with Rule 8 must also be satisfied, thus
the course alterations must be large and taken sufficiently early such that the intent of the
ownship is clearly stated. To increase scenario complexity, a second obstacle vessel is on
a parallel course with the first, and the USV must therefore alter course further to avoid
both vessels in rules compliant fashion.

65



(a) Collision avoidance behaviour

73.876
73.874

73.872
73.870

73.868
73.866

73.864
73.862

Longitude

0.002

0.003

0.004

0.005

0.006

0.007

0.008

La
tit

ud
e

+4.055e1 USV Position heatmap over 90 samples
Average USV position

(b) Position heatmap

0 25 50 75 100 125 150 175
Time [s]

0

250

500

750

1000

1250

1500

1750

Di
st

an
ce

 [m
]

Geodesic distance to collision
Average distance from Ship1
Average distance from Ship2
Hazard zone boundary
Hazard zone

(c) Geodetic distance to collision

0 25 50 75 100 125 150 175
Time [s]

100

50

0

50

100

Co
ur

se
 [d

eg
]

Course setpoint, correction and actual
Course correction
Nominal course setpoint
Corrected course setpoint
USV Course

(d) Course values internally and externally

Figure 6.2: Results from Head-on Monte Carlo simulations exhibiting compliant behavior.

Running this scenario for 100 Monte Carlo Iterations, 90 iterations show the USV acting in
compliance with the COLREGs, and 10 iterations include some non-compliant aspects in
the maneuver. The compliant iterations will be evaluated first, with the results visualized
in Figure 6.2 and Figure 6.3.

Observe in Figure 6.4a that while there is significant variation in the starting position of
the ownship and the obstacle vessels, the USV turn to starboard and passes both obstacles
port side, ensuring compliance with COLREG Rule 14. While some qI(0) result in the
ownship being on nearly reciprocal courses with at least one obstacle vessel, other initial
configurations resulting in more ambiguous situations are also correctly identified as head-
on collision scenarios. This behavior is desirable, as Rule14(c) in Appendix A state that
one shall assume that the situation exists if one is in any doubt. It thus indicates that

66



the collision avoidance system with the chosen cost function and tune is conservative,
consistent, and robust when identifying COLREG situations.

Collision avoidance can be considered as a two-stage process, with a deviate and a return
stage. In the first stage, the ownship deviates from the nominal path to avoid collision with
one or multiple vessels. In order to comply with Rule 8 of the COLREGs, the deviation
must start sufficiently early such that the passing happens at a safe distance, and course
alterations must be sufficiently large to clearly state the intent of the USV to the obsta-
cle vessel. While the ownship always starts more than 1400m from the nearest obstacle
vessel, it is clear from Figure 6.2d that the collision avoidance system immediately takes
action and alters the course starboard. Furthermore, as can be seen in Figure 6.2c, with
the safe distance lower limit defined at 100m, the USV does not enter this hazard zone.
However, please observe that the ownship gets as close as possible to the hazard zone
of vessel two, indicating that the collision system with its current tune strikes an accept-
able compromise between path optimality and collision avoidance capability. Regarding
the course correction, a shortcoming of the implemented system becomes apparent. Ob-
serve in Figure 6.2d that the course correction gradually increases towards 90◦ starboard
on average, while it ideally should request the largest necessary correction immediately.
Before evaluating how this affects the COLREG compliance, it is considered worthwhile
to discuss why this phenomenon occurs. The COLAV system predicts the trajectory of
the ownship and obstacle vessels for a predefined amount of time. While the prediction
of the ownship considers the vessel dynamics, it does not expect the LOS nominal course
setpoint to change. This assumption is not valid for course corrections except for the triv-
ial zero correction option. When the vessel is instructed by the COLAV system to deviate
from the nominal path, the LOS path tracker changes the nominal course to try to get the
ownship back to this path. Thus, to maintain the necessary course correction starboard
to avoid a collision, the absolute value of the demanded course correction gradually in-
creases. Because the collision avoidance system runs at only 1Hz, this internal struggle
can be observed in the USV odometry as course oscillations until an equilibrium is found,
as can be seen in Figure 6.2d. Thereafter, the course gradually is altered back to port until
both vessels are clear, at which point the USV initiates the return stage with a large course
correction to port. While not ideal with regards to clearly stating intent, looking at both the
position of the vessel in Figure 6.2a and Figure 6.2b it does appear to sufficiently clearly
show that the USV is taking action to avoid the incoming vessels. This is supported by
the course of the vessel shown in Figure 6.2d. Thus, it can be argued that while it is not
perfect, the collision avoidance behavior does state intent adequately to be compliant with
Rule 8 of the COLREGs.

Before looking at the non-compliant Monte Carlo iterations, the runtime of the collision
avoidance system is analyzed to evaluate real-time performance. In Figure 6.3a, the run-
time of the three main functions that make up the control candidate selection process is
visualized together with the procedure itself. Observe that the control candidate selection
takes between ∼ 350ms and ∼ 400ms, with most of the time spent predicting the own-
ship trajectory through simulation. The computational cost of the simulation depends on
the vessel model, the integration method, and the simulation duration. With a collision-
avoidance system running at 1Hz in mind, the chosen model, integrator, and simulation

67



0 25 50 75 100 125 150 175
Time [s]

0

100

200

300

400

500

Ru
nt

im
e 

[m
s]

COLAV Runtime Overview
getBestControlCandidate
simulateOwnship
costFunc
checkCollision

(a) Runtime overview of key procedures

0 25 50 75 100 125 150 175
Time [s]

0

100

200

300

400

500

Ru
nt

im
e 

[m
s]

Candidate evaluation Accumulated Runtime
simulateOwnship
costFnc
checkCollision

(b) Runtime averages and ranges for key procedures

Figure 6.3: Runtime data retrieved from all 100 Head-on Monte Carlo iterations.

time of 300s appear to strike an acceptable balance between complexity and efficiency.
The computational complexity of the cost function is fascinating, as a significant increase
in cost can be seen between ∼ 50s and ∼ 100s into the simulation iterations. Compar-
ing with the distance to obstacle visualized in Figure 6.2c, observe that this is on average
when at least one obstacle is within the distance of the USV where the COLREGs are con-
sidered. COLREG compliance is evaluated for every timestep of the prediction horizon.
When the ownship is closer to the obstacles, a more significant portion of the prediction
horizon will be evaluated on average. It should be noted that the cost function evaluation
will scale with both the number of obstacles and steps in the prediction horizon of the
ownship. For the isolated collision avoidance scenarios, collision checking only makes up
a marginal part of the overall computational cost. This is by design, as collision checking
only checks the minimum number of candidate trajectories. When there is no collision, it
thus only checks the best candidate.

(a) Collision avoidance behaviour

0 25 50 75 100 125 150 175
Time [s]

0

200

400

600

800

1000

1200

1400

1600

Di
st

an
ce

 [m
]

Geodesic distance to collision
Average distance from Ship1
Average distance from Ship2
Hazard zone boundary
Hazard zone

(b) Geodesic distance to collision

0 25 50 75 100 125 150 175
Time [s]

150

100

50

0

50

100

150

Co
ur

se
 [d

eg
]

Course setpoint, correction and actual
Course correction
Nominal course setpoint
Corrected course setpoint
USV Course

(c) Course values

Figure 6.4: Results from Head-on Monte Carlo iterations with non-compliant behaviour observed

68



Finally, the non-compliant Monte Carlo iterations should be investigated for the head-on
scenario. Using Figure 6.4 as a reference, observe that most all iterations start with the
USV initially turning port instead of the expected turn starboard. Later, the USV turn
to starboard and ends up passing either between the vessels or with both to its port side.
While Rule 14 is satisfied for the latter cases, Rule 8 of the COLREGs is not due to an
ambiguous statement of intent. In an attempt to identify any pattern in the initial pose of
the USV making it more likely for the non-compliant behavior to occur, the initial pose
of each iteration is visualized in Figure 6.5. Green arrows indicate initial poses resulting
in compliant behavior, and red arrows initial poses resulting in non-compliant behavior.
From the samples in this collection, no such pattern was found.

0.0065
0.0060

0.0055
0.0050

0.0045
0.0040

0.0035

Longitude 7.387e1

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

La
tit

ud
e

+4.055e1 Initial ownship pose

Figure 6.5: Initial pose of ownship in Monte Carlo Iterations

The non-compliant iterations highlight a weakness of the collision avoidance system.
Looking at the method utilized to detect COLREG violation in Subsection 5.4.2, whenever
the trajectory the USV is following is violating Rule 14, it can get out of the situation either
by taking action such that the STARBOARD or the HEAD-ON ownship-obstacle relation
state becomes false. There can be maneuvers port that result in breaking the latter. Thus,
from the perspective of the collision avoidance system, these maneuvers are legitimate
and rule compliant. However, in practice, they clearly are not compliant. Further tuning
of the COLAV cost function could potentially make this type of behavior less common-
place, but note that significant tuning efforts were needed to get to the current compliance
ratio. Furthermore, it is worth noting that the USV never enter inside the hazard zone of
any obstacle vessel, as can be seen in Figure 6.4b. Thus, safety margins are ensured for
all Monte Carlo Iterations, which inspires confidence in the overall safety of the collision
avoidance system.

69



(a) Collision avoidance behaviour

0.002
0.001

0.000

Longitude 7.384e1

40.510

40.512

40.514

40.516

40.518

La
tit

ud
e

USV Position heatmap over 79 samples

Average USV position

(b) Position heatmap

0 20 40 60 80 100 120
Time [s]

0

200

400

600

800

Di
st

an
ce

 [m
]

Geodesic distance to collision
Average distance from Ship1
Average distance from Ship2
Hazard zone boundary
Hazard zone

(c) Geodetic distance to collision

0 20 40 60 80 100 120
Time [s]

100

50

0

50

100

150

Co
ur

se
 [d

eg
]

Course setpoint, correction and actual
Course correction
Nominal course setpoint
Corrected course setpoint
USV Course

(d) Course values internally and externally.

Figure 6.6: Results from Crossing Monte Carlo simulations exhibiting compliant behavior.

6.1.2 Crossing scenario

In the crossing scenario, illustrated in Figure 6.1b, the USV has two non-cooperative ob-
stacle vessels at it’s starboard side. Rule 15 of the COLREGs dictate that the USV must
then stay well clear. There is sufficient clearance to pass behind the obstacle vessels in
the isolated collision avoidance scenario and passing behind the obstacles will therefore
be the compliant maneuver. With regards to the initial pose of the ownship and obstacles,
the covariance matrices given in Equation 6.2 are used.

Like the head-on scenario, the crossing scenario has been run for 100 Monte Carlo Itera-
tions. The compliance ratio was worse than in the head-on scenario, with 79 compliant and
21 non-compliant iterations. The compliant iterations are evaluated first, with the behavior

70



illustrated in Figure 6.6.

Observe from Figure 6.6d that the collision avoidance system immediately instructs the
USV to turn starboard and that the same gradual correction increase that was observed in
the head-on scenario happens, supporting the claim that it is caused by the LOS nominal
course setpoint gradually changing as the vessel deviates further from the nominal path.
Robustness in the identification of a COLREG situation is once more sufficiently accurate.
Some initial configurations result in a direct collision if no action is taken and thus can
easily be recognized as COLREG situations. Others would not result in a direct collision
but instead result in the USV passing in front of or dangerously close behind the obstacles
and are still detected correctly. This highlights a strength of the collision avoidance system.
Instead of just relying on relative position or time to collision, the COLAV system uses
the velocity vectors of both vessels to detect the CROSSED ownship-obstacle state. This
strategy appears to be more robust when human intuition cannot be used to interpret the
situation.

Compared to the head-on scenario, the USV starts much closer to the obstacles in the
crossing scenario, as can be seen by comparing Figure 6.2c and Figure 6.6c. This was
done to evaluate to what extent, if any, the COLAV system requests unnecessarily large
course corrections. This is important because it is assumed that any deviation from the
nominal path will be less optimal for the USV overall. Thus, making small corrections
and staying as close as possible to the nominal path will be the optimal collision avoid-
ance strategy. Using Figure 6.6d, observe that even though the obstacle vessels are much
closer, an initial correction of ≈ −15◦is still requested on average. Moreover, the USV
can stay closer to the nominal path because the obstacles are effectively moving out of the
way with time. The course correction observation indicates that the implemented colli-
sion avoidance behavior approximates the optimal, and the use of the distance-to-collision
metric can quantify the accuracy of the approximation. The ownship should, in this con-
text, travel as close as possible to the obstacles. From Figure 6.6c, observe that while the
minimum is close to the hazard zone for both obstacles, the average is not. Thus, while
the collision avoidance maneuver approximates the optimal, there exists an opportunity
for improvement. Some of the improvement can be made up for with additional tuning of
the cost function weights. However, an attempt to achieve this resulted in more oscillation
and a lower COLREG compliance ratio in Monte Carlo Simulations. The current tune
thus offers an acceptable compromise between stability and maneuver optimality. Please
remark that the same collision avoidance tune is used for all isolated testing scenarios.

Due to the added Gaussian noise in the initial pose of the ownship, the deviate stage of
the maneuver naturally has much spread, as can be seen in Figure 6.6a. Using the position
heatmap in Figure 6.6b however, there is a clear convergence tendency towards the average
with time, indicating that the collision avoidance behavior has deterministic properties.
However, remark that for the last part of the return stage, convergence is artificially high.
This pattern is a bi-product of the testing setup, as the nominal path for each sample is
the direct line from the initial position to the goal position. While the initial position is
subject to noise, the goal is not, and thus all the nominal path lines focus at the same point,
resulting in an added convergence effect in the heatmap.

71



0 20 40 60 80 100 120
Time [s]

0

100

200

300

400

500

Ru
nt

im
e 

[m
s]

COLAV Runtime Overview
getBestControlCandidate
simulateOwnship
costFunc
checkCollision

(a) Runtime overview of key procedures

0 20 40 60 80 100 120
Time [s]

0

100

200

300

400

500

Ru
nt

im
e 

[m
s]

Candidate evaluation Accumulated Runtime
simulateOwnship
costFnc
checkCollision

(b) Runtime averages for key procedures

Figure 6.7: Runtime data retrieved from all 100 Monte Carlo iterations of the crossing scenario.

Following the same evaluation process as in the head-on scenario, the runtime is next to
be discussed. Runtime for all 100 Monte Carlo Iterations is shown in Figure 6.7. Observe
that while the computational cost of simulating the ownship trajectory and evaluating col-
lision is approximately the same as for the head-on scenario, cost function evaluation is
higher. Furthermore, observe that for the first half of the collision avoidance behavior, cost
function evaluation runtime gradually increases towards a maximum before decreasing in
the second half. Comparing the distance to the obstacle in Figure 6.6c and the avoidance
behavior in Figure 6.6a, it becomes clear that this change in computational cost likely is
due to more prediction trajectory steps falling within the circle of consideration in the first
half and naturally less in the second half when the more distant parts of the prediction
horizon will be far from the obstacle vessels. Note also that while the collision avoidance
scenario is entirely different from the head-on scenario, runtime is approximately the same
for getting the best control action overall, as can be seen by comparing Figure 6.7a with
Figure 6.3a. This highlights that the collision avoidance system appears invariant to the
type of collision avoidance scenario from the perspective of computational cost, which can
be considered to be a significant advantage.

The last thing to evaluate for the crossing scenario is what happens during the non-compliant
iterations. Most all non-compliant iterations start with the USV turning port and, after
some time, turning starboard, resulting in passing behind both vessels and thus complying
with COLREG Rule 15 as described in Appendix A. The behavior is shown in Figure 6.8.
Once more, it is Rule 8 that the initial part of the maneuver has violated. The initial pose
evaluation supported by Figure 6.9 indicates that if the USV start with an initial course
significantly port of the course needed to follow the nominal path, it is more likely to be
non-compliant.

The sample size of non-compliant iterations is far too small to draw any conclusion. How-
ever, looking at how violation of Rule 15 is detected, it appears that for the non-compliant

72



(a) Collision avoidance behaviour

0 20 40 60 80 100 120
Time [s]

0

200

400

600

800

Di
st

an
ce

 [m
]

Geodesic distance to collision
Average distance from Ship1
Average distance from Ship2
Hazard zone boundary
Hazard zone

(b) Geodesic distance to collision

0 20 40 60 80 100 120
Time [s]

100

50

0

50

100

150

Co
ur

se
 [d

eg
]

Course setpoint, correction and actual
Course correction
Nominal course setpoint
Corrected course setpoint
USV Course

(c) Course values

Figure 6.8: Results from Crossing Monte Carlo iterations with non-compliant behavior observed

0.0030
0.0025

0.0020
0.0015

0.0010
0.0005

0.0000

Longitude 7.384e1

40.5090

40.5095

40.5100

40.5105

40.5110

40.5115

La
tit

ud
e

Initial ownship pose

Figure 6.9: Initial pose of ownship in Monte Carlo Iterations

maneuvers, the vessel takes action to get out of the CROSSING state described in Subsec-
tion 5.4.2. Significant port course corrections are penalized more than similar starboard
corrections. Thus, when the course correction has to increase to fight the path tracker, it
eventually becomes prohibitively expensive, and the USV therefore turn starboard to get
out of the STARBOARD state instead. It is becoming more evident that this non-compliant
behavior is a deficiency of the collision avoidance system that affects several different
collision scenarios for essentially the same reason. Once more, tuning efforts were con-
ducted to mitigate the problem, but balancing robustness and maneuver optimality across
all scenarios resulted in no better tune that worked reliably across all collision avoidance
scenarios.

73



6.1.3 Overtake scenario

(a) Collision avoidance behaviour

0.002
0.001

0.000

Longitude7.384e1

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

La
tit

ud
e

+4.051e1USV Position heatmap over 88 samples

Average USV position

(b) Position heatmap

20 40 60 80 100
Time [s]

0

50

100

150

200

250

300

350

400

Di
st

an
ce

 [m
]

Geodesic distance to collision
Average distance from Ship1
Hazard zone boundary
Hazard zone

(c) Geodetic distance to collision

0 20 40 60 80 100
Time [s]

100

50

0

50

100

150

Co
ur

se
 [d

eg
]

Course setpoint, correction and actual
Course correction
Nominal course setpoint
Corrected course setpoint
USV Course

(d) Course values internally and externally

Figure 6.10: Results from Overtake Monte Carlo simulations exhibiting compliant behavior.

In the overtake scenario, illustrated in Figure 6.1c, the USV approaches aft of one slow
obstacle ship. In order to comply with COLREG Rule 13, the USV must maneuver to avoid
collision and stay clear of the obstacle ship being overtaken as described in Appendix A.
The rules do not specify at which side of the obstacle vessel the USV should overtake it.
Furthermore, what makes this scenario extra interesting is that while the control candidate
cost function does have a OVERTAKE state, it does not use this to detect violation of
COLREG Rule 13. Violation of COLREG Rule 13 is not evaluated explicitly in the cost
function. Any compliant behavior is thus the result of the COLAV system as a whole. The
same covariance matrices as before are used for the initial pose of the USV and obstacle
vessel.

74



As for the two previous scenarios, overtake has been run for 100 Monte Carlo Iterations.
However, to save time during testing, the vessel starts quite close to the obstacle and has its
goal not too far ahead of it. The compliance ratio was better than in the crossing scenario
but worse than in the head-on scenario, with 88 compliant iterations and 12 non-compliant.
The reader is advised that the runtime was almost identical to the previous scenarios and
will thus not be evaluated further in this collision scenario discussion.

Using Figure 6.10a and Figure 6.10d, it is clear that the COLAV system immediately takes
action to avoid collision. On average, the system demands course correction starboard,
passing the obstacle on the port side of the USV. As it is not specified on which side the
overtake should happen, the iterations where the COLAV system results in passing the
obstacle on the starboard side are also considered compliant. Looking at Figure 6.10a, it
appears that, on average, the COLAV system prefers to keep the obstacle vessel on the
same side as it is initially. This is expected, as the nominal path then, on average, will pass
slightly to that side of the obstacle vessel. Thus, to deviate only the minimum required
amount from the nominal path, one wants to stick to that same side of the obstacle if
possible. This behavior is likely to be a result of two factors; the initial distance from the
obstacle vessel and the tune of the COLAV system. It is desirable because it results in
the collision avoidance system approximating the true optimal maneuver with acceptable
accuracy. The distance to collision metric in Figure 6.10c supports this, as it shows that
the USV gets very close to the hazard zone not only on average but also in the min-max
range.

While the deviate stage of the maneuver is essential to avoid collision and comply with
Rule 8 of the COLREGs, compliance with Rule 13 is determined mainly by the return
stage. To be compliant and also provide an acceptable approximation of the optimal behav-
ior, the USV must return to the nominal path as soon as possible without being considered
in the way of the obstacle vessel. Using the position behavior plot in Figure 6.10a and the
course data visualized in Figure 6.10d, it is clear that the USV makes a smooth maneuver,
gradually returning to the nominal path. Thus, while difficult to quantify, it does appear to
satisfy Rule 13 if one considers that the return maneuver is smooth and that the distance to
the obstacle continues to increase during the return stage. Furthermore, using the position
heatmap in Figure 6.10b, the maneuver appears to have decent deterministic properties,
with the USV typically returning to the same spot on the nominal path no matter from
where it initially began.

All non-compliant iterations violate Rule 8 of the COLREGs by first altering course port
or starboard and then changing to starboard or port, as can be seen in Figure 6.11a and
the course in Figure 6.11c. One can argue that Rule 13 is not violated for all but one and
that the intent of the USV is less relevant in an overtake scenario. However, it does create
uncertainty for the obstacle vessel, and if the obstacle vessel should choose to act on the
uncertainty by doing any maneuver, safety could be compromised.

Remark in the distance to the collision plot that there is, in fact, one iteration where the
obstacle vessel goes into the hazard zone. One can argue that the safety of the ownship
or obstacle was never compromised because the cost of traveling further into the hazard
zone grows exponentially, resulting in it being prohibitively expensive for the USV to hit

75



(a) Collision avoidance behaviour

20 40 60 80 100 120
Time [s]

0

100

200

300

400

Di
st

an
ce

 [m
]

Geodesic distance to collision
Average distance from Ship1
Hazard zone boundary
Hazard zone

(b) Geodesic distance to collision

0 20 40 60 80 100 120
Time [s]

100

50

0

50

100

150

Co
ur

se
 [d

eg
]

Course setpoint, correction and actual
Course correction
Nominal course setpoint
Corrected course setpoint
USV Course

(c) Course values

Figure 6.11: Results from overtake Monte Carlo iterations with non-compliant behavior observed.

the obstacle. However, it could result in the obstacle vessel doing an avoidance maneuver.
Thus, it violates Rule 13, is not acceptable under any circumstance, and can be considered
the first and only instance of a critical failure in isolated collision avoidance testing.

6.2 Mission Planning Scenarios

The Mission Planner is responsible for finding a feasible, safe and optimized path from an
initial configuration to some goal position efficiently. In order to evaluate to what extent
the mission planner fulfills its responsibility, it must be extensively tested across different
mission regions with varying coastal geometry. Additionally, in order to evaluate the safety
of the found path properly, compliance with core TSS elements must be considered. In
an effort to quantify the overall efficiency and robustness of the Mission Planner, testing
across several different environments is performed with metrics such as moving average
search progression evaluated. Runtime of key procedures in the mission planning search
are also highlighted in an attempt to give a complete picture of planner efficiency.

6.2.1 Traffic Separation Scheme Compliance

A core goal of the proposed guidance system is to facilitate the safety of navigation. In
order to achieve this, it is of crucial importance that the Mission Planner makes use of
TSS objects in order to comply with Rule 10 of the COLREGs, described in Appendix
A. To evaluate compliance with TSS elements, the Mission Planner is tested in a mission
area on the west coast of Norway where both Lanes, Separation Zones and Roundabouts
are represented. In order to get an undistorted evaluation of how the TSS elements affect
search progression, the adaptive simulation time feature of the mission planner is disabled
and replaced by a fixed simulation time of t = 30s.

The mission starts with an initial configuration qI and a goal configuration qG as given in

76



Equation 6.3

qI =

 5.345468
59.021870

3.14

 qG =

 5.345468
59.021870

3.14

 (6.3)

to ensure interaction with both lanes, separation zones and roundabouts. Please note that
with the current implementation, the goal orientation is not considered.

Observe from Figure 6.12 that the selected initial configuration qI results in the search
approaching a lane at almost 90◦. While the Mission Planner does allow crossing into
the TSS lane at such a sharp angle, observe that it immediately after starts following the
required course in the lane, taking advantage of the course suggester and the maneuver-
ability of the USV model. Furthermore, note that the steepest angle at which the USV can
enter a lane is a tuneable parameter in the mission planner, thus it could be set to a smaller
angle if one was to utilize the planner on a larger vessel with lower maneuverability.

5.25 5.30 5.35 5.40 5.45 5.50 5.55 5.60
Longitude

59.05

59.10

59.15

59.20

59.25

La
tit

ud
e

TSS
Path
Tree
Closed
Frontier

Figure 6.12: Search overview for TSS Mission with Points of Interest (POIs) highlighted.

In the upper left highlight in Figure 6.12, observe how the mission planner handles an up-
coming roundabout. The planner indeed exhibits compliant behavior by going around the
roundabout counterclockwise. However, the chosen path is not ideal as any other vessel in
the roundabout that has a larger turning radius could be crossed by a USV following this
path. This deficiency is an unfortunate consequence of the TSS compliance design, where
only a hard constraint enforces compliance with roundabout objects. Where an appro-
priate soft constraint can encourage the desired behavior, utilizing only a hard constraint
results in the planner being uninformed about how well it interacts with the roundabout.
Thus, any option satisfying the hard constraint while resulting in a minimal increase to
the holonomic-with-obstacles heuristic will be selected eventually. While one could argue
that using only a hard constraint for roundabout compliance is insufficient for acceptable
path safety characteristics, adding a soft constraint introduces several new challenges both
in design, implementation, and tuning. Based on the goals set for TSS compliance with

77



regards to roundabouts in the Mission Planner design, the exerted behavior in proximity
of roundabouts, while not ideal, complies sufficiently with Rule 18 of the COLREGs and
is as expected from the design.

10 20 30 40
Search time [s]

2000

1000

0

1000

2000

Pr
og

re
ss

 [m
/s

]

Search frontier progress towards goal
Moving average (10 samples)
Moving range (10 samples)

Figure 6.13: Moving average and range of search progression in TSS Mission

In the presence of design deficiencies yielding suboptimal results, it is important not to
lose sight of the goal; to ensure compliance without severely reducing search progression
and efficiency. The change in remaining distance to the goal position is differentiated
numerically to quantify search progression. Observe in Figure 6.13 that moving average
search progression is affected by the presence of the roundabout from ≈ 20s into the
search until ≈ 30s. However, reduction in search efficiency in the presence of obstacles
is an inherent part of Hybrid A* search optimization, and thus some reduction is to be ex-
pected. Because the mission planner is not informed about how to traverse the roundabout,
similarly to when meeting a hazardous obstacle, it will thus have to go back and evaluate
other options. Unlike passing around obstacles, search progression takes a larger hit in
the presence of the roundabout due to a conflict of interest between TSS compliance and
the distance-to-goal heuristic which focuses on path optimality. The former prohibits the
search from going clockwise around the roundabout while the latter would prefer a clock-
wise rotation to get the path as short as possible. In light of this ongoing tug-of-war-like
situation between TSS compliance and path optimality, passing through the roundabout
in a sufficiently compliant manner in ≈ 10s does appear reasonable. It stands to reason
that the effect on progression will depend on how far around the roundabout the vessel has
to travel and how much it has to deviate from the optimal path in order to do so. When
it comes to TSS lanes, observe that because an informed strategy with a soft constraint
is used in combination with a course suggester, entering the lane does not reduce search
progression at all. However, please note that the informed strategy only considers how
to follow a lane when entering it. Thus, it is probable that if the planning frontier were
to be obstructed by a lane in the opposite direction, this would impact search progression
negatively.

78



6.2.2 Large-scale mission planning in a varied coastal environment
A large-scale hypothetical mission is set up in coastal waters between the port of Stavanger
and Sauda on the west coast of Norway to test the full capabilities of the mission planner.
The initial configuration qI and goal configuration qG are both given by Equation (6.4),

qI =

 5.729235
58.971442

1.77

 qG =

 6.348977
59.640291

0

 (6.4)

and the geodesic distance between these ports is approximately 81.9 kilometers. The mis-
sion region processed for this mission is approximately 80× 47km2. Any reader familiar
with traveling between these ports knows that an efficient route will go through narrow
straits and relatively open coastal waters. Thus, it is considered a suitable and realistic
mission to evaluate the mission planner’s path quality and performance. Path quality is
generally related to smoothness, safety, and optimality. In addition to path quality, mis-
sion planner performance and robustness are evaluated. To evaluate performance, the
search progression metric is utilized once more. Additionally, all core procedures are
monitored. Due to the deterministic properties of the designed and implemented mission
planner, running Monte Carlo Simulations with Gaussian noise applied to the initial and
goal configuration will not be sufficient to test robustness. Instead, robustness should be
quantified by running the Mission Planner on various mission regions. A testing effort
separate from this mission concerns robustness, thus robustness is not considered in the
following.

Figure 6.14 provides an overview of the resulting path from the mission planner with two
points of interest highlighted. Observe from the figure that the mission planner guides the
search through narrow straits requiring significant maneuvering in POI1 and POI2, even
though longer route options in relatively open waters exist. This pattern indicates that
the mission planner employs a strategy focused on path optimality and exploits the vessel
maneuverability to achieve this. Such behavior is expected, as the scaling factor on the
distance heuristic is set relatively high at 1.2. Setting the scaling factor > 1 results in
the Hybrid A* sampled path following the graph-optimal A* search in a greedy manner
whenever feasible and safe maneuvers to accomplish this exist. Comparing the points of
interest in Figure 6.14 and the A* optimal path tree in Figure 6.15 supports this obser-
vation. Because the sample-based Hybrid A* planner essentially is attempting to follow
the best available optimal path approximation, this greedy strategy benefits the optimal-
ity characteristic of the resulting path in the average case. Mission planning is not only
about path optimality. It must also be ensured that the path is feasible and safe regarding
the risk of collision or grounding. Assuming the vessel model sufficiently accurately cap-
tures the vessel dynamics for which one is planning a mission, feasibility is ensured by
design. Safety, however, must be ensured through the Hybrid A* search heuristic. The
heuristic is calculated by combining the scaled distance-to-goal approximation and the
artificial Voronoi field strength additively, where the latter is intended to ensure nominal
path safety. While these two components to some extent represent conflicting interests, the
Voronoi field does allow passage through narrow straits by design as long as a reasonable
distance to land is ensured. To evaluate if this indeed is enough to ensure nominal path

79



Figure 6.14: Overview of Hybrid A* Search result with two Points of Interest (POI)s. ENC Data
courtesy of The Norwegian Mapping Authority

safety in the mission, the three path waypoints closest to land are explored and visualized
together with the path and Voronoi field strength in Figure 6.16. The reader is reminded
that the Voronoi field has a repelling effect, resulting in a tendency towards lower field
values for the sampled motion whenever this does not severely increase path length.

The path waypoint closest to land is shown in Figure 6.16a. Comparing the coordinates of
the subregion with the overview in Figure 6.14, it is clear that this strait is crossed early
on in the search, shortly after leaving the Port of Stavanger. While it is a narrow strait,
the path keeps as much distance to land as possible. Furthermore, the distance to the land
geometry is ≈ 34.7m, which for a vessel the size of a Viknes 830 should be considered
well within a safe distance margin. This observation inspires confidence in the safety of
the path overall, as no waypoint is closer to any land geometry than this.

The waypoint with the second-highest proximity to land is shown in Figure 6.16b. Once
more, the proximity to land occurs when passing through a strait. However, the proximity
to land is higher along the path segment between the highlighted and previous waypoint.
This highlights a flaw in the evaluation method and a simplification in the mission planner
implementation. Only the waypoint vertices and not the edges connecting the vertices are
evaluated for land proximity. One could then expect that the actual shortest distance to land
can be somewhere else than the selected waypoints entirely. By design, this is highly un-
likely for most planning scenarios. The mission planner determines land proximity based
on the search tree configuration vertices and not the curved configuration transition edges

80



Figure 6.15: A* search tree with highlighted POIs

between vertices. This is done to optimize the planner and improve search efficiency. If
the simulation time used in motion sampling was static and large, one could end up with
long transition edges close to land, and the aforementioned issue would then likely oc-
cur frequently. The implemented adaptive simulation time mitigates this issue because
edges between configuration vertices in the motion-sampling graph with adaptive simu-
lation time always are short in proximity to land due to low motion sampling simulation
time in such locations. One could argue that the problem could still occur with sufficiently
sharp geometries or sufficiently high demanded speed. It would typically be exceptionally
rare to come across such hazard geometries in coastal waters where the geometries have
been buffered and the desired speed easily can be controlled.

The waypoint third closest to land is shown in Figure 6.16c, and while the two former
explored waypoints were in or near straits, this is in a wider channel. Instead of following
the middle of the channel, the planner here takes advantage of an artifact of the Voronoi
skeleton, which has resulted in a low field value branch heading towards the small bay port
of the highlighted waypoint. If only the distance-to-goal approximation heuristic guided
the search, the path would tangent land several places, including close to the highlighted
waypoint. Observing that with the Voronoi field added to the heuristic, the path is repelled
close to where there is no field potential, it can be said that with the current tune, the
Voronoi field is quite strict locally. This affects the path optimality negatively but ensures
path safety. If willing to sacrifice some safety margin for increased path optimality, one
could change the tune. It must then be carefully re-evaluated if adaptive simulation time
is still enough to mitigate the consequences of the aforementioned distance evaluation

81



(a) Voronoi field in proximity of waypoint closest to
land

(b) Voronoi field in proximity of waypoint second
closest to land

(c) Voronoi field in proximity of waypoint third clos-
est to land

Figure 6.16: Voronoi field and path in proximity of three waypoints with the lowest land distance.

simplification.

Having evaluated the path generated by the mission planner, what remains is to evaluate
planning efficiency. Observe in Figure 6.17 that the moving average search progression is
positive for the entirety of the search, with significant progress spikes around ≈ 40s, 75s
and 100s. Comparing with the benchmark data for the simulateVessel procedure in Figure
6.18, a similar pattern is found. The runtime of simulateVessel naturally correlates with the
simulation time, which depends on proximity to land. Thus, the progression spikes occur
when the search frontier is in relatively open areas of the mission region. This is expected
and indicates that the mission planner operates as efficiently as the current implementation
permits. While a different planning strategy or an implementation overhaul could improve
efficiency, it can be said that the current guidance system has acceptable search progres-
sion given the focus on path feasibility, optimality, and safety. In order to complete the
efficiency evaluation, the runtime of all key procedures relevant for iterative search frontier

82



0 50 100 150 200 250 300 350
Search time [s]

200

0

200

400

600

800

Pr
og

re
ss

 [m
/s

]
Search frontier progress towards goal

Moving average (10 samples)
Moving range (10 samples)

Figure 6.17: Search progression towards goal

expansion should also be considered to evaluate how the area around the frontier affects
the efficiency and how the mission planner efficiency would scale with mission size.

25

50

75

Ru
nt

im
e 

[m
s]

simulateVessel

10

20

Ru
nt

im
e 

[m
s]

calcSimTime

0.00

0.05

Ru
nt

im
e 

[m
s]

getLeafRegion

0 100 200 300
Search time [s]

0

2

4

Ru
nt

im
e 

[m
s]

similarClosed

0 100 200 300
Search time [s]

0

25

50

Ru
nt

im
e 

[m
s]

nextVertex

0 100 200 300
Search time [s]

0

2000

Ru
nt

im
e 

[m
s]

heuristic

Runtime of key procedures

Figure 6.18: Runtime of key procedures. Accumulation to one value for each search frontier itera-
tion.

Figure 6.18 shows the runtime of all the key procedures involved in iterative exploration
and expansion of the Hybrid A* search frontier. Please remark that because some pro-
cedures are called several times for each iteration and some are called only once, the cu-
mulative runtime of each procedure for each search iteration is utilized in this evaluation.
There are several interesting remarks to be made from this data. Observe that simulateVes-
sel have large runtime spikes, and that it typically is high when calcSimTime is low. This
pattern is no coincidence. When determining the adaptive simulation time in calcSimTime,
the computational cost of a query to the distance-to-land approximation in the map service
is on average proportional to the proximity to land, as more hazard geometries will have
to be checked there compared to in open waters where many hazards will be beyond the
specified max range of the query. Other procedures, such as the getLeafRegion procedure,

83



are not affected by the hazards in a specified range around a spatial query. Instead, runtime
depends on proximity to the hazard layer as a whole, as the leaf regions will be smaller
in such areas and thus require a deeper search in the quadtree. It is worth noting that leaf
region queries in the quadtree are blazing fast, indicating that the quadtree implementation
is efficient. The procedures similarClosed and nextVertex stand out from the rest by hav-
ing runtimes that, on average, increase linearly with time. Both of these procedures make
evaluations based on the search tree, with similarClosed depending on the closed vertices
and nextVertex on the explored vertices. While the runtime of the former remains low for
the entirety of the search, the runtime of the latter is significant towards the end of the
search. This highlights that while the mission planner has scaled reasonably well with a
large mission region, computational cost will take a significant hit for even larger mission
regions. The last procedure to evaluate is the heuristic procedure. Observe a spike in the
runtime in the first call to the procedure before it starts to average significantly lower. To
understand why this happens, the three most computationally expensive subprocedures in
the heuristic are further explored in Figure 6.19.

0 100 200 300
Search time [s]

0.000

0.005

0.010

0.015

0.020

0.025

Ru
nt

im
e 

[m
s]

getGeodesicDistance

0 100 200 300
Search time [s]

0

200

400

600

800

Ru
nt

im
e 

[m
s]

getGridDistance

0 100 200 300
Search time [s]

45

50

55

60

65

70

Ru
nt

im
e 

[m
s]

voronoi_field
Runtime of key heuristic subprocedures

Figure 6.19: Runtime of key heuristic subprocedures

Observe in Figure 6.19 that the spike is caused by the initial call to the getGridDistance
subprocedure. This procedure initially searches for a graph-optimal path from the initial
configuration to the goal in the mission-region framed region quadtree graph utilizing A*.
Subsequent calls to the procedure take advantage of the novel sequence matching concept
added to the A* algorithm, and it is evident from figure 6.20 that this improves runtime
dramatically. This observation, combined with the visual inspection of the distance ap-
proximation consistency of the A* Search tree visualized in Figure 6.15 indicates that the
novel sequence matching method is working as intended, with efficiency improvements
far beyond what was initially expected.

In the last phase of the search, observe a sudden and significant increase in runtime. This
happens because sequence matching can not fast-forward the search when near the top
of the search tree. Thus, the distance approximation falls back to the conventional A*
graph search used initially, with a resulting increase in computational cost. The start of
the search frontier is much closer to the goal, and therefore less of the graph has to be
traversed to find the graph-optimal path in the quadtree. Thus, the runtime increase is
lower than for the initial search query. This highlights that while the current design and
implementation of sequence matching do not allow for search fast-forwarding close to the

84



0 50 100 150 200 250 300 350
Search time [s]

0

20

40

60

80

Ru
nt

im
e 

[m
s]

getGridDistance runtime

Figure 6.20: Runtime of the getGridDistance procedure focusing on runtime after initial spike

goal, this limitation does not significantly reduce search efficiency.

6.2.3 Evaluation of Mission Planner Robustness
The robustness of the mission planner is critical to ensure that it will produce satisfactory
paths in different environments. The mission region hazard geometries can vary signifi-
cantly from one region to another. In an effort to evaluate robustness, the mission planner
is tested for four additional challenging missions spanning a total of three different mis-
sion regions. While the quantity of data clearly will be insufficient to draw any conclusion
on robustness, it will give a strong indication. A general overview of the results is given
below, emphasizing the robustness of path quality and safety.

Figure 6.21 highlights the resulting path for a different mission query in the same mission
region previously used for the Stavanger to Sauda mission. The mission planner managed
to find a path from the initial configuration to the goal region that appears sufficiently
smooth. However, observe in the upper leftmost highlight that there is a potential safety
issue when crossing under a bridge with pillars. This highlights the potential issue arising
from the previously mentioned distance evaluation simplification. While adaptive simu-
lation time was enough to remedy this issue in the Stavanger to Sauda mission, it is not
sufficient here, at least with the current tune of the system. Thus, while the generated path
is still collision-free, ensuring safety when following it perfectly, it can be argued that the
margin of safety is not sufficient and that changes should be made either to the design or
implementation of the planner to facilitate improvement. This can be done by sampling
the edge between configurations with some defined resolution and querying the Voronoi
field for all sampled points.

The second mission is in the same mission region as the previous missions, and the result
of mission planning is shown in Figure 6.22. Observe that while the planner guides the
path through the middle of narrow straits, it does allow traversing into the potential field
when going around would yield a significant detour.

85



Figure 6.21: First mission on west coast of Norway. ENC data courtesy of The Norwegian Mapping
Authority.

Figure 6.22: Second mission on west coast of Norway. ENC data courtesy of The Norwegian
Mapping Authority.

The third mission is in an entirely different mission region, where the planner must find
a feasible path traversing around a large island. Here, the planner has to frequently com-
promise between path optimality and safety, as the shortest path around an island will in

86



Figure 6.23: Mission travelling along shore around a larger island. ENC data courtesy of the Nor-
wegian Mapping Authority.

Figure 6.24: Mission travelling upstream in the Jamaica Bay Estuary outside New York City. ENC
data courtesy of NOAA.

several locations go as close to land as possible. Observe in Figure 6.23 that while the
minimum distance to land is slightly lower than in a majority of the previous missions,
it remains reasonably high at ≈ 29.1m. Furthermore, observe that the mission planner

87



actively compromises between path optimality and path safety, especially in open areas
where the potential field has very high values close to land. This indicates that the pro-
posed design of the mission planner with the utilized tune strikes an acceptable balance
between path optimality and safety.

The last mission evaluated is on the east coast of the United States, traveling upstream into
Jamaica Bay Estuary outside New York. Similar to the previous missions, the Mission
Planner finds a relatively smooth path once more. Safety is also maintained, as the distance
to land in the case of highest proximity is just ≈ 42.0m as shown in Figure 6.24.

Overall, testing the mission planner across different missions and different mission regions
indicates that the employed mission planning strategy is robust with regard to path opti-
mality. While it is typically sufficiently robust regarding safety, there are issues close to
small geometries such as bridge pillars. It must be emphasized that the safety robustness
ensured by following the nominal path perfectly is not compromised. However, the true
USV will likely not be able to follow the path perfectly due to modeling simplifications,
environmental disturbances, path tracker performance, and course autopilot performance.
Thus, one could argue that path safety is not always satisfactory due to subpar safety mar-
gins in the proximity of specific types of geometries. Lowering the Voronoi field falloff
rate would typically enforce crossing through bridges at a safer minimum distance and
angle of approach. However, in testing, this had a significant impact on path length and
search progression.

6.3 Complete mission scenario

In order to evaluate the implemented guidance system as a whole, a complete simulated
mission should be run. From the perspective of the mission planner, this is no different
from just doing mission planning in isolation, as the Mission Planner must generate a route
before the USV starts moving. However, from the perspective of the COLAV system, a
full-scale mission will present new challenges. There were no static hazards in the isolated
scenarios, and the linear projection in which the subsystem operates was kept constant. In
the following, these simplifying conditions will no longer be met. The full-scale mission
is a hypothetical transportation mission upstream in the Jamaica Bay Estuary. Underway,
the USV will encounter three non-compliant obstacle vessels, all traveling at different
velocities. Two vessels will be met head-on, while one vessel will be encountered in
a crossing scenario. Due to limited sea room, the scenario has been set up with only
single-obstacle encounters. After an initial overview of the results, obstacle avoidance and
nominal path tracking will be evaluated.

6.3.1 Results overview

The full mission starts with the mission planner generating a path from an initial configu-
ration qI illustrated by a pentagon in Figure 6.25 to a goal position qG marked by a star in
the same figure. The geodetic positions are given in Equation (6.5).

88



73.93 73.92 73.91 73.90 73.89 73.88 73.87 73.86 73.85
Longitude

40.56

40.57

40.58

40.59

40.60

40.61

40.62

40.63

40.64
La

tit
ud

e

POI1

POI2

POI3

POI4

Mission overview
USV Path
Nominal USV Path
Obstacle1 Path
Obstacle2 Path
Obstacle3 Path
USV Start
USV Goal

Figure 6.25: Overview of the complete mission in Jamaica Bay Estuary. Four Points of Interest
(POI)s are highlighted and will be discussed. ENC Data courtesy of NOAA.

qI =

−73.9305323540.561632870
0

 qG =

−73.84457940.641538
0

 (6.5)

Observe that the Mission Planner generates a nominal path that appears to strike an accept-
able balance between path safety and optimality except for the nominal path between Point
of Interest (POI)2 and POI3 where it can be argued that there are unnecessary oscillations.

6.3.2 Obstacle encounters
The first POI in Figure 6.25 is a head-on collision avoidance scenario. Figure 6.26a pro-
vides a closer look at the scenario, and Figure 6.28a and Figure 6.27a show distance and
course values respectively. Observe that collision avoidance in this encounter s performed
while crossing under a bridge with pillars that must be avoided. In the real world, such
an encounter is critical to get right due to the danger of collision with the bridge pillars.
The COLAV subsystem handles this well, deviating from the nominal path and crossing
between two other bridge pillars than where the nominal path would prefer. Both the
perceived and actual distance to obstacle tangents the specified hazard zone boundary at
180m, indicating both that the COLAV system can make an efficient collision avoidance
maneuver and that the proximity of the bridge does not affect its performance or reliability.
It is worth noting that while the COLAV system by design will not suggest a course correc-
tion that imminently results in grounding or collision, it does not consider the proximity
of static hazards. What is more, observe that the course correction immediately instructs
the USV starboard, indicating a clear statement of intent as required for COLREG com-
pliance. There is some oscillation both in the requested correction and the nominal course,
a major contributor to which is the iterative linear ENU projection that occurs for every

89



73
.89

0
73

.88
8

73
.88

6
73

.88
4

73
.88

2
73

.88
0

73
.87

8
73

.87
6

Longitude

40.570

40.572

40.574

40.576

40.578

40.580

40.582

La
tit

ud
e

POI1
USV Path
Nominal USV Path
Obstacle Path

(a) POI1: Head-on encounter with obstacle vessel.

73
.88

2
73

.88
0

73
.87

8
73

.87
6

73
.87

4
73

.87
2

73
.87

0
73

.86
8

Longitude

40.590

40.592

40.594

40.596

40.598

40.600

40.602

La
tit

ud
e

POI2
USV Path
Nominal USV Path
Obstacle Path

(b) POI2: Crossing encounter

73
.88

6
73

.88
4

73
.88

2
73

.88
0

73
.87

8
73

.87
6

73
.87

4
73

.87
2

Longitude

40.622

40.624

40.626

40.628

40.630

40.632

40.634

La
tit

ud
e

POI3
USV Path
Nominal USV Path
Obstacle Path

(c) POI3: Head-on encounter

Figure 6.26: Collision avoidance maneuvers in full scale mission

waypoint switch in the patch tracker. However, this oscillation is dampened significantly
by the vessel, as any dynamic vessel is a natural low-pass filter. Thus, while the inter-
nal oscillation is not ideal and can cause unnecessary rudder wear and tear, it does not
significantly affect the actual vessel response.

The second POI in Figure 6.25 is a crossing collision-avoidance scenario. Figure 6.26b
provides a closer look at the scenario, while Figure 6.28b and Figure 6.27b show distance
and course values. In this scenario, the overall behavior of the USV can be said to be
COLREG compliant. However, as can be seen from the course correction values in Figure
6.27b, there is a short period initially where the COLAV system demands a course cor-
rection port. While this shares some similarities with the non-compliant behavior in the
isolated collision avoidance scenarios in Section 6.1, the effect is much less severe in this

90



420 440 460 480 500 520
Time [s]

100

0

100

200

300

Co
ur

se
 [d

eg
]

Correction
USV
Nominal

Nominal
Corrected

(a) POI1: Course values in USV

700 720 740 760 780 800
Time [s]

100

0

100

200

300

Co
ur

se
 [d

eg
]

Correction
USV
Nominal

Nominal
Corrected

(b) POI2: Course values in USV

1160 1180 1200 1220 1240 1260
Time [s]

100

0

100

200

300

Co
ur

se
 [d

eg
]

Correction
USV

Nominal
Corrected

(c) POI3: Course values in USV

Figure 6.27: Course values in USV during collision avoidance maneuvers in full scale mission

420 440 460 480 500 520
Time [s]

0

100

200

300

400

500

Di
st

an
ce

 [m
]

Perceived distance
True distance
Hazard zone boundary

(a) POI1: Distance to obstacle in
first encounter

700 720 740 760 780 800
Time [s]

0

100

200

300

400

500

Di
st

an
ce

 [m
]

Perceived distance
True distance
Hazard zone boundary

(b) POI2: Distance to obstacle in
second encounter

1160 1180 1200 1220 1240 1260
Time [s]

0

100

200

300

400

500

Di
st

an
ce

 [m
]

Perceived distance
True distance
Hazard zone boundary

(c) POI3: Distance to obstacle in
third encounter

Figure 6.28: Distance to obstacles in collision avoidance maneuvers in full scale mission

case. Thus it is considered not to break the required statement of intent. Similar to the first
obstacle encounter, there is some oscillation in the internal course values of the guidance
system. Comparing once more with the isolated collision avoidance scenarios where no
waypoint switching took place, the cause of this oscillation can, in large, be contributed
to the switching of waypoints due to the internal change of ENU frame of reference that
occurs during these switches. With regards to distance, it is clear from Figure 6.28b that
the COLAV system allows the USV to deviate as little as possible from the nominal path
while complying with the specified hazard zone radius. Furthermore, observe that the per-
ceived distance, calculated using the Euclidean distance formula in the local flat frame of
reference, except for some switching instability, is almost identical to the actual geodesic
distance, calculated by solving the inverse geodetic problem. This indicates that using a
local Cartesian frame of reference is viable when always attached to a waypoint that can
be guaranteed to be in proximity of all objects using it. An undesirable consequence is an
oscillatory effect dominant in distance approximations and internal course values. How-
ever, it can not be dismissed that frame synchronization improvements could remedy this
issue.

91



The third POI in Figure 6.25 is another head-on encounter with a non-compliant obstacle
vessel. Once more, distance values are shown in Figure 6.28c and course values are shown
in Figure 6.27c. Of the three collision avoidance scenarios in the full mission, this one
shows the poorest performance from the USV due to a lack of clear intent statement. The
USV makes a large maneuver port initially before the COLAV system changes its mind and
instructs starboard correction instead. Thus, while the obstacle is passed in a compliant
manner, the maneuver is not entirely COLREG compliant. It is worth noting from the
distance values in Figure 6.28c that the safety margin is maintained, so the maneuver
can still be considered sufficiently safe. The reader is reminded that even when the USV
itself is outside the dclose consideration range described in Table C.1, the COLREGs are
considered if the predicted trajectory of the USV lies within this consideration range. This
is done to ensure that action is taken sufficiently early. However, note that it contributes to
the undesirable initial maneuver. In order to eradicate this maneuver, a complete redesign
of the COLREG detection in the cost function is warranted based on these findings.

6.3.3 Nominal path tracking
Having investigated the obstacle encounters in the full mission, what remains is to evaluate
the nominal path tracking behavior when no obstacle is present. Because the mission
planning relies on the same vessel model used for the simulator, one could expect the
tracking to be trivial and not a topic relevant for evaluation and discussion. However, path
tracking relies on the performance of the LOS path tracking subsystem, and how well
it works can thus be evaluated by investigating the nominal path tracking performance.
Moreover, as an artificial challenge to compensate for the lack of two separate vessel
models, mission planning was done with an intended vessel speed of 5m/s. In the mission
execution, desired vessel speed has been set to 10m/s. This affects the maneuvering
capabilities of the vessel. In the following, nominal path tracking is evaluated for a section
of the path. The subregion in which this path is contained is called POI4 and is highlighted
in the overview in Figure 6.25.

Figure 6.29 show the nominal and actual path of the USV in POI4. Observe that from
visual inspection, path tracking appears satisfactory, with the most significant deviations
occurring during larger maneuvers such as when passing by a smaller island in the middle
of the channel. To quantify the path tracking performance, the cross-track error metric can
be utilized.

The cross-track error is visualized in Figure 6.30, with vertical lines added to show where
waypoint switching occurs. Observe that the cross-track error, for the most part, lies be-
tween ±10m, with occasional spikes just outside this range. The spikes occur because
of waypoint switching, which can be seen in the figure. The LOS implementation in the
guidance system uses two different methods to detect if a waypoint has been reached. The
first method is to compare the distance from one waypoint to the next with the along-track
value of the USV position. This is used to enable waypoint switching when not follow-
ing the nominal path. In proximity to the nominal path, the circle of acceptance is also
checked to ensure that maneuvering action to accommodate a turn in the path is taken
before reaching the waypoint. The spikes in Figure 6.30 are a consequence of the latter
method demanding waypoint switching before the waypoint is reached, with the intended

92



73.862 73.860 73.858 73.856 73.854 73.852 73.850 73.848
Longitude

40.634

40.636

40.638

40.640

40.642

40.644

40.646

La
tit

ud
e

POI4
USV Path
Nominal USV Path

Figure 6.29: Overview of the part of the complete mission used to evaluate nominal path tracking.

1460 1480 1500 1520 1540 1560 1580
Time [s]

10

5

0

5

10

Cr
os

st
ra

ck
 e

rro
r [

m
]

Crosstrack error in POI4
Crosstrack error
Waypoint reached

Figure 6.30: Path cross-track error in the highlighted section in POI4

effect of taking maneuvering action early to avoid overshooting the path. The reader is
advised that in a simulation environment where there is no significant difference between
the vessel model used for motion planning and mission execution, the former switching
strategy method would suffice by itself. The latter has been introduced because it is of-
ten used in practice and can be beneficial if one wishes to test the system with a different
vessel model in the simulator at some point.

Lastly, the demanded and actual course values for the nominal path tracking should be
evaluated. Figure 6.31 show these values. The effect of the circle of acceptance waypoint
switching makes an appearance here, with occasional high rates in the desired course that
the USV naturally can not follow perfectly. However, the overall form indicates that the
path generated by the mission planner is feasible for the USV to follow, as was also indi-
cated by the overview in Figure 6.29. While feasible, it can be argued that the path should
have been post-processed to make it more smooth as there are many small course correc-

93



1460 1480 1500 1520 1540 1560 1580
Time [s]

60

40

20

0

20

40

60

Co
ur

se
 [d

eg
]

USV
Corrected

Figure 6.31: Course values in the highlighted section in POI4

tions demanded. Any change in commanded course will yield a response from the USV.
In a conventional underactuated monohull vessel with a fixed-pitch propeller and a rud-
der, such as the simplified version of the Viknes830, this will result in rudder fluctuations.
If the changes in the commanded course cannot be justified, this will cause unnecessary
wear and tear on the rudder effector, the actuator controlling it, and mechanical supports.
Looking at the path in Figure 6.29, it is clear that while the larger changes to the de-
sired course are warranted due to the presence of a small island to be avoided, the smaller
changes are not. The fluctuations are caused by trying to follow the nominal path, and
the Mission Planner can hence be held responsible for them. There are many contribu-
tors to why the path generated by the Mission Planner can require excessive maneuvers.
However, the main contributors are the variations in the Voronoi field in narrow channels
and the varying distance-to-goal approximation accuracy due to limited quadtree frame
resolution. Furthermore, there is no penalty in the mission planner for course alterations.
Such an addition is not recommended because it can negatively affect path safety and op-
timality. Instead, one could post-process the generated path. While allowing for more
robust checking due to the availability of context, path safety and optimality changes can
also be monitored and, to some extent, controlled when performing post-processing of the
path. The lack of such a post-processor can be seen as a limitation in the current mission
planner.

94



Chapter 7
Conclusion and future work

7.1 Conclusion

In this thesis, a COLREG compliant guidance system for maritime vessels operating in
coastal environments has been designed and implemented. The system relies on a novel
specialization of the Hybrid A* algorithm for mission planning and Simulation-Based
Control Behaviour selection to enable real-time collision avoidance. A method to build
regional framed quadtrees traversable by A* has been implemented to enable optimized
mission planning. Moreover, the Voronoi field has been used to ensure reasonable mission
path safety margins. The latter has been enabled by a novel method to build a Voronoi
skeleton of free space in a mission region by iterative pruning of partially connected edges
in a Voronoi diagram. To make a complete guidance system, a path tracker utilizing the
LOS guidance law and enabling robust waypoint switching has also been implemented.
What is more, a map-preprocessor and map service have been designed and implemented
to provide a priori information based on S-57 ENC charts to the mission planner and
collision avoidance subsystems.

Testing and evaluation of the guidance system have been done following a divide and con-
quer strategy. First, the collision avoidance subsystem was evaluated in isolated collision
scenarios with multiple non-cooperative obstacle vessels using Monte Carlo simulation
and Gaussian noise for variability. Thereafter, mission planner compliance with TSS lanes,
separation zones, and roundabouts was evaluated. Having tested the aspects of the guid-
ance system considered most relevant for COLREG compliance, the mission planner was
thereafter evaluated in large-scale mission regions on the west coast of Norway and the
east coast of the United States. Finally, a complete simulated mission scenario in Jamaica
Bay Estuary was performed and thoroughly evaluated.

The guidance system has shown great potential in avoiding obstacle vessels and guiding
the USV ownship from an initial configuration to a goal position safely, efficiently, and

95



in compliance with key COLREG rules across a variety of environments and scenarios.
However, it has not been only smooth sailing. The COLREG compliance rate in colli-
sion avoidance scenarios does not meet expectations, indicating that a partial or complete
redesign of the COLAV system is warranted. Moreover, the mission planner struggles
to progress towards the goal and find acceptable paths in the proximity of TSS round-
abouts. Additionally, it can occasionally produce path segments that do not maintain a
reasonable distance to land and, in general, lack some method of path post-processing to
limit unnecessary maneuvers. What is more, while the guidance system always manages
to get the simulated vessel to the goal safely in the testing that has been done, the exclu-
sion of environmental disturbances such as current, wind, and waves leaves questions of
robustness in real-world scenarios unanswered. However, the guidance system proves via-
bility for using sample-based motion planning and motion primitives to enable optimized,
predictable, and rules-compliant guidance in vast dynamic maritime environments. Addi-
tionally, it does propose a design for the system, highlights core technologies to facilitate
it, and provides an open-source implementation in ROS Noetic for anyone to utilize. Thus,
it lays a foundation on which future work can and should be done.

7.2 Future Work
The guidance system implemented in this thesis is subject to some strict limitations and
simplifications which evidently will have to be overcome for any real use outside of aca-
demic research. Furthermore, deficiencies of the design found through testing should be
addressed. In the following, suggestions for modifications and additions to the imple-
mented guidance system to overcome the main deficiencies are described.

The motion sampling in the mission planner and trajectory predictions in the COLAV sys-
tem both assume no current, wind or wave motion. This does not have any consequence in
the simulation environment used for testing because that too does not support it. However,
in a more advanced simulator or real-world sea trials, these environmental disturbances
do affect the ownship and should be taken into account when evaluating performance,
robustness and safety in the mission planner and COLAV systems. To incorporate such
disturbances into the guidance system, one can take advantage of the modular design and
simply replace the vessel model with another which can take environmental disturbances
into account. A sufficiently fast and reliable source of weather forecast data will also have
to be incorporated to feed the model during mission planning and execution. One can also
improve the mission planning further by incorporating weather-optimization strategies for
improved vessel endurance and enable the ability to operate in challenging weather condi-
tions.

The guidance system has in testing not been subjected to noise or otherwise imperfect
measurements or estimates. It is therefore suggested to evaluate how the guidance system
performs in the presence of imperfect sensory data and make any necessary changes to
remedy it. Another simplifying assumption used in testing is that obstacles do not comply
with COLREGs and are not making any large maneuvers when encountered. This has con-
sequences for the COLAV system, which in the implementation expects that the obstacle
vessels follow a linear trajectory with a constant velocity during control behaviour predic-

96



tion. For real-world applications in coastal environments, it is likely to encounter many
vessels with high maneuverability that do comply with the COLREGs themselves. Thus,
it is suggested that the COLAV design should be altered to facilitate obstacle maneuvers
in the prediction by exploiting stated or predicted obstacle intent.

Compliance with TSS objects are only handled in the mission planner in the implemented
guidance system, and only lanes, separation zones and roundabouts are considered. While
TSS objects are not frequently encountered in coastal environments close to shore, it is
worth noting that if with future standard improvements of Electronic Navigational Charts
TSS elements are utilized more extensively, a new strategy to handle them should be de-
signed as the current has significant shortcomings with regards to robustness, safety and
efficiency. Furthermore, it is also suggested to research how TSS elements can be incor-
porated in collision avoidance to ensure not only the safety of all vessels but also that flow
of traffic is not reduced overall.

From the perspective of the implemented guidance system, some efficiency improvements
can also be suggested. With the increasing core and thread count in modern computers it is
suggested to improve the guidance system performance further by introducing concurrency
in motion-sampling. An effort has been made to optimize the guidance system code and
introduce concurrency through OpenMP whenever it was considered beneficial, however,
there is still more that can be done both as design measures and implementation measures
to further enhance performance. What is more, the performance of mission region prepro-
cessing has not been a primary focus of this thesis. While concurrency and GDAL/OGR
specific optimization techniques are used to efficiently build the regional framed quadtree
for a given mission region, similar optimization efforts have not been performed in ENC
data extraction and Voronoi skeleton generation. Improving the design and implementa-
tion of mission region pre-processing is therefore also suggested as future work that can
enable the interpretation of more data attributes from ENC charts. Only a limited amount
of data extracted from the charts are actually processed and utilized in this thesis, and it is
assumed that a lot of untapped potential can be realized through clever interpretation of a
broader range of data objects and attributes found in the ENC charts.

97



Bibliography

[1] E. W. Dijkstra, “A note on two problems in connexion with graphs”, vol. 1, no. 1,
pp. 269–271, Dec. 1959, ISSN: 0945-3245. DOI: 10.1007/BF01386390.

[2] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic De-
termination of Minimum Cost Paths”, vol. 4, no. 2, pp. 100–107, 1968. DOI: 10.
1109/TSSC.1968.300136.

[3] International Maritime Organization, “International Convention for the Safety of
Life at Sea”, Nov. 1974. [Online]. Available: imo.org/en/KnowledgeCentre/
ConferencesMeetings/Pages/SOLAS.aspx.

[4] N. J. Nilsson, “Shakey the robot”, 1984.

[5] S. Kambhampati and L. Davis, “Multiresolution path planning for mobile robots”,
vol. 2, no. 3, pp. 135–145, 1986. DOI: 10.1109/JRA.1986.1087051.

[6] S. Fortune, “A sweepline algorithm for voronoi diagrams”, Algorithmica, vol. 2,
no. 1, p. 153, Nov. 1987, ISSN: 1432-0541. DOI: 10.1007/BF01840357.

[7] J. P. Snyder, “Map projections: A working manual”, Washington, D.C., Tech. Rep.,
1987, Report. DOI: 10.3133/pp1395.

[8] H. Samet, “An Overview of Quadtrees, Octrees, and Related Hierarchical Data
Structures”, in Theoretical Foundations of Computer Graphics and CAD, R. A.
Earnshaw, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 1988, pp. 51–68,
ISBN: 978-3-642-83539-1.

[9] A. Elfes, “Using occupancy grids for mobile robot perception and navigation”,
Computer, vol. 22, no. 6, pp. 46–57, 1989. DOI: 10.1109/2.30720.

[10] J. C. Latombe, Robot Motion Planning, 1. Edition. Boston: Springer, 1991. DOI:
https://doi.org/10.1007/978-1-4615-4022-9.

[11] E. Clementini, P. Di Felice, and P. van Oosterom, “A small set of formal topological
relationships suitable for end-user interaction”, in Advances in Spatial Databases,
D. Abel and B. Chin Ooi, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
1993, pp. 277–295, ISBN: 978-3-540-47765-5.

98

https://doi.org/10.1007/BF01386390
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
imo.org/en/KnowledgeCentre/ConferencesMeetings/Pages/SOLAS.aspx
imo.org/en/KnowledgeCentre/ConferencesMeetings/Pages/SOLAS.aspx
https://doi.org/10.1109/JRA.1986.1087051
https://doi.org/10.1007/BF01840357
https://doi.org/10.3133/pp1395
https://doi.org/10.1109/2.30720
https://doi.org/https://doi.org/10.1007/978-1-4615-4022-9


[12] J. Zhu, “Conversion of Earth-centered Earth-fixed coordinates to geodetic coordi-
nates”, IEEE Transactions on Aerospace and Electronic Systems, vol. 30, no. 3,
pp. 957–961, 1994. DOI: 10.1109/7.303772.

[13] R. Kimmel and J. Sethian, “Fast marching methods for computing distance maps
and shortest paths”, 1996. [Online]. Available: https://cds.cern.ch/
record/303038.

[14] L. Dagum and R. Menon, “OpenMP: an industry standard API for shared-memory
programming”, in Proceedings of IEEE Computational Science and Engineering,
vol. 5, 1998, pp. 46–55. DOI: 10.1109/99.660313.

[15] S. M. Lavalle, “Rapidly-Exploring Random Trees: A New Tool for Path Planning”,
The annual research report, 1998.

[16] A. Yahja, A. Stentz, S. Singh, and B. Brumitt, “Framed-quadtree path planning for
mobile robots operating in sparse environments”, in Proceedings of IEEE Interna-
tional Conference on Robotics and Automation, vol. 1, 1998, 650–655 vol.1. DOI:
10.1109/ROBOT.1998.677046.

[17] International Hydrographic Organization, “IHO Transfer Standard for Digital Hy-
drographic Data”, 2000. [Online]. Available: https://iho.int/uploads/
user/pubs/standards/s-57/31Main.pdf.

[18] A. L. Jeremy G. Siek Lie-Quan Lee, The Boost Graph Library: User Guide and
Reference Manual, ser. The C++ In-Depth Series. Addison-Wesley Professional,
2001, ISBN: 978020172914-6.

[19] W. Naeem, R. Sutton, S. M. Ahmad, and R. S. Burns, “A Review of Guidance Laws
Applicable to Unmanned Underwater Vehicles”, Journal of Navigation, vol. 56,
no. 1, pp. 15–29, 2003. DOI: 10.1017/S0373463302002138.

[20] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge University Press,
2006. DOI: 10.1017/CBO9780511546877.

[21] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Practical Search Techniques
in Path Planning for Autonomous Driving”, AAAI Workshop - Technical Report,
Jan. 2008.

[22] Ø. A. G. Loe, “Collision Avoidance for Unmanned Surface Vehicles”, 2008. [On-
line]. Available: http://hdl.handle.net/11250/259696.

[23] K. Ahnert and M. Mulansky, “Odeint – Solving Ordinary Differential Equations in
C++”, AIP Conference Proceedings, vol. 1389, Oct. 2011. DOI: 10.1063/1.
3637934.

[24] S. Karaman and E. Frazzoli, Sampling-based Algorithms for Optimal Motion Plan-
ning, 2011. arXiv: 1105.1186 [cs.RO].

[25] W. Torge and J. Müller, Geodesy. De Gruyter, 2012. DOI: doi : 10 . 1515 /
9783110250008.

[26] J. Gómez, A. Lumbier, S. Garrido, and L. Moreno, “Planning Robot Formations
with Fast Marching Square including Uncertainty Conditions”, Robotics and Au-
tonomous Systems, vol. 61, pp. 137–152, Feb. 2013. DOI: 10.1016/j.robot.
2012.10.009.

99

https://doi.org/10.1109/7.303772
https://cds.cern.ch/record/303038
https://cds.cern.ch/record/303038
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/ROBOT.1998.677046
https://iho.int/uploads/user/pubs/standards/s-57/31Main.pdf
https://iho.int/uploads/user/pubs/standards/s-57/31Main.pdf
https://doi.org/10.1017/S0373463302002138
https://doi.org/10.1017/CBO9780511546877
http://hdl.handle.net/11250/259696
https://doi.org/10.1063/1.3637934
https://doi.org/10.1063/1.3637934
https://arxiv.org/abs/1105.1186
https://doi.org/doi:10.1515/9783110250008
https://doi.org/doi:10.1515/9783110250008
https://doi.org/10.1016/j.robot.2012.10.009
https://doi.org/10.1016/j.robot.2012.10.009


[27] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap:
an efficient probabilistic 3D mapping framework based on octrees”, Autonomous
Robots, vol. 34, no. 3, pp. 189–206, Apr. 2013. DOI: 10.1007/s10514-012-
9321-0.

[28] C. F. F. Karney, “Algorithms for geodesics”, Journal of Geodesy, vol. 87, no. 1,
pp. 43–55, Jan. 2013. DOI: 10.1007/s00190-012-0578-z.

[29] Y. Kuwata, M. T. Wolf, D. Zarzhitsky, and T. L. Huntsberger, “Safe maritime au-
tonomous navigation with colregs, using velocity obstacles”, IEEE Journal of Oceanic
Engineering, vol. 39, no. 1, pp. 110–119, 2014. DOI: 10.1109/JOE.2013.
2254214.

[30] National Geospatial-Intelligence Agency, “World geodetic system 1984, Its defi-
nition and relationships with local geodetic systems”, 2014. [Online]. Available:
https://earth-info.nga.mil/index.php?dir=wgs84&action=
wgs84.

[31] Y. Liu, R. Song, and R. Bucknall, “A practical path planning and navigation al-
gorithm for an unmanned surface vehicle using the fast marching algorithm”, in
OCEANS 2015 - Genova, 2015, pp. 1–7. DOI: 10.1109/OCEANS-Genova.
2015.7271338.

[32] A. D’Angelo, “A Brief Introduction to Quadtrees and Their Applications”, 2016.

[33] T. A. Johansen, T. Perez, and A. Cristofaro, “Ship Collision Avoidance and COL-
REGS Compliance Using Simulation-Based Control Behavior Selection With Pre-
dictive Hazard Assessment”, IEEE Transactions on Intelligent Transportation Sys-
tems, vol. 17, no. 12, pp. 3407–3422, 2016. DOI: 10.1109/TITS.2016.
2551780.

[34] H. Mahmoud and N. Akkari, “Shortest Path Calculation: A Comparative Study for
Location-Based Recommender System”, in 2016 World Symposium on Computer
Applications Research (WSCAR), 2016, pp. 1–5. DOI: 10.1109/WSCAR.2016.
16.

[35] I. B. Hagen, “Collision Avoidance for ASVs Using Model Predictive Control”,
2017. [Online]. Available: http://hdl.handle.net/11250/2433779.

[36] International Maritime Organization, “ENCs Production, Maintenance and distri-
bution guidance”, May 2017. [Online]. Available: https://iho.int/iho_
pubs/standard/S-65/S-65_ed2%5C%201%5C%200_June17.pdf.

[37] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox: Incremental
3D Euclidean Signed Distance Fields for On-Board MAV Planning”, in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2017. DOI:
10.1109/iros.2017.8202315.

[38] M. Przybylski and B. Putz, “D* Extra Lite: A Dynamic A* With Search–Tree Cut-
ting and Frontier–Gap Repairing”, vol. 2, pp. 273–290, Jun. 2017. DOI: 10.1515/
amcs-2017-0020.

[39] Y. Pyo, H. Cho, R. Jung, and T. Lim, ROS Robot Programming. ROBOTIS Co.,Ltd.,
2017, ISBN: 9791196230715.

100

https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1007/s00190-012-0578-z
https://doi.org/10.1109/JOE.2013.2254214
https://doi.org/10.1109/JOE.2013.2254214
https://earth-info.nga.mil/index.php?dir=wgs84&action=wgs84
https://earth-info.nga.mil/index.php?dir=wgs84&action=wgs84
https://doi.org/10.1109/OCEANS-Genova.2015.7271338
https://doi.org/10.1109/OCEANS-Genova.2015.7271338
https://doi.org/10.1109/TITS.2016.2551780
https://doi.org/10.1109/TITS.2016.2551780
https://doi.org/10.1109/WSCAR.2016.16
https://doi.org/10.1109/WSCAR.2016.16
http://hdl.handle.net/11250/2433779
https://iho.int/iho_pubs/standard/S-65/S-65_ed2%5C%201%5C%200_June17.pdf
https://iho.int/iho_pubs/standard/S-65/S-65_ed2%5C%201%5C%200_June17.pdf
https://doi.org/10.1109/iros.2017.8202315
https://doi.org/10.1515/amcs-2017-0020
https://doi.org/10.1515/amcs-2017-0020


[40] H.-T. L. Chiang and L. Tapia, “COLREG-RRT: An RRT-Based COLREGS-Compliant
Motion Planner for Surface Vehicle Navigation”, IEEE Robotics and Automation
Letters, vol. 3, no. 3, pp. 2024–2031, 2018. DOI: 10.1109/LRA.2018.2801881.

[41] I. B. Hagen, D. K. M. Kufoalor, E. F. Brekke, and T. A. Johansen, “MPC-based
Collision Avoidance Strategy for Existing Marine Vessel Guidance Systems”, in
2018 IEEE International Conference on Robotics and Automation (ICRA), 2018,
pp. 7618–7623. DOI: 10.1109/ICRA.2018.8463182.

[42] S. V. Rothmund, “Ship Path Planning using Navigational Charts with Time-Dependent
Weather Constraints”, 2018. [Online]. Available: http://hdl.handle.net/
11250/2616144.

[43] O. S. Otterholm, “Extracting Mapped Hazards from Electronic Navigational Charts
for ASV Collision Avoidance”, 2019. [Online]. Available: http://hdl.handle.
net/11250/2622322.

[44] T. Dang, M. Tranzatto, S. Khattak, F. Mascarich, K. Alexis, and M. Hutter, “Graph-
based Subterranean Exploration Path Planning using Aerial and Legged Robots”,
in Proceedings of Journal of Field Robotics, Oct. 2020. DOI: 10.1002/rob.
21993.

[45] K. Kjerstad, “Collision Avoidance System for Ships Utilizing Other Vessels’ In-
tentions”, 2020. [Online]. Available: https://hdl.handle.net/11250/
2780862.

[46] N. Lauvås, “Design and development of a robotic fish tracking vehicle”, 2020. [On-
line]. Available: https://hdl.handle.net/11250/2780997.

[47] B. C. Shah and S. K. Gupta, “Long-Distance Path Planning for Unmanned Surface
Vehicles in Complex Marine Environment”, IEEE Journal of Oceanic Engineering,
vol. 45, no. 3, pp. 813–830, 2020. DOI: 10.1109/JOE.2019.2909508.

[48] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control, 2.
Edition. Hoboken: Wiley, 2021. DOI: 10.1002/9781119994138.

[49] S. Furre, “Agile collision-free path planning for an autonomous surface vehicle”,
Dec. 2021, [unpublished].

[50] GEOS contributors, GEOS coordinate transformation software library, Open Source
Geospatial Foundation, 2021. [Online]. Available: https://libgeos.org/.

[51] C. F. F. Karney, Geographiclib, Version 1.52, 2021. [Online]. Available: https:
//geographiclib.sourceforge.io/1.52.

[52] A. Vagale, R. Bye, R. Oucheikh, O. Osen, and T. Fossen, “Path planning and col-
lision avoidance for autonomous surface vehicles II: a comparative study of algo-
rithms”, in Proceedings of Journal of Marine Science and Technology, Feb. 2021.
DOI: 10.1007/s00773-020-00790-x.

[53] A. Vagale, R. Oucheikh, R. T. Bye, O. L. Osen, and T. I. Fossen, “Path planning and
collision avoidance for autonomous surface vehicles I: a review”, in Proceedings of
Journal of Marine Science and Technology, vol. 26, Jan. 2021, pp. 1292–1306. DOI:
10.1007/s00773-020-00787-6.

101

https://doi.org/10.1109/LRA.2018.2801881
https://doi.org/10.1109/ICRA.2018.8463182
http://hdl.handle.net/11250/2616144
http://hdl.handle.net/11250/2616144
http://hdl.handle.net/11250/2622322
http://hdl.handle.net/11250/2622322
https://doi.org/10.1002/rob.21993
https://doi.org/10.1002/rob.21993
https://hdl.handle.net/11250/2780862
https://hdl.handle.net/11250/2780862
https://hdl.handle.net/11250/2780997
https://doi.org/10.1109/JOE.2019.2909508
https://doi.org/10.1002/9781119994138
https://libgeos.org/
https://geographiclib.sourceforge.io/1.52
https://geographiclib.sourceforge.io/1.52
https://doi.org/10.1007/s00773-020-00790-x
https://doi.org/10.1007/s00773-020-00787-6


[54] ETH ASL, Geodetic_utils, GitHub repository, 2022. [Online]. Available: https:
//github.com/ethz-asl/geodetic_utils.

[55] S. Furre, USV Guidance System, GitHub repository, 2022. [Online]. Available: https:
//github.com/sanderfu/usv-guidance-system.

[56] S. Furre, enc_extract_lib, GitHub repository, 2022. [Online]. Available: https:
//github.com/sanderfu/enc_extract_lib.

[57] GDAL/OGR contributors, GDAL/OGR geospatial data abstraction software library,
Open Source Geospatial Foundation, 2022. DOI: 10.5281/zenodo.5884351.
[Online]. Available: https://gdal.org.

[58] QGIS Development Team, QGIS Geographic Information System, QGIS Associa-
tion, 2022. [Online]. Available: https://www.qgis.org.

[59] D. Register, OpenCPN (Open Chart Plotter Navigator), 2022. [Online]. Available:
https://opencpn.org/.

[60] M. Westerdahl, JC_voronoi, GitHub repository, 2022. [Online]. Available: https:
//github.com/JCash/voronoi.

102

https://github.com/ethz-asl/geodetic_utils
https://github.com/ethz-asl/geodetic_utils
https://github.com/sanderfu/usv-guidance-system
https://github.com/sanderfu/usv-guidance-system
https://github.com/sanderfu/enc_extract_lib
https://github.com/sanderfu/enc_extract_lib
https://doi.org/10.5281/zenodo.5884351
https://gdal.org
https://www.qgis.org
https://opencpn.org/
https://github.com/JCash/voronoi
https://github.com/JCash/voronoi


Appendices

103



Appendix A
Relevant COLREG rules

It is important that an USV follows the relevant International Regulations for Preventing
Collisions at Sea [3] such that its behavior is consistent with what a ship captain would ex-
pect from a manned vessel. This appendix is intended to give a brief overview of the COL-
REGs most relevant for mission planning and collision avoidance in unmanned surface
vehicles of limited size. Figure A.1 is intended to illustrate the most common collision-
avoidance COLREG scenarios of relevance and Figure A.2 illustrates how to be compliant
with TSS. The rule descriptions below are from [3]. Only the parts considered relevant for
autonomous operations are given below.

(a) Head-on scenario (b) Crossing scenario (c) Overtake scenario

Figure A.1: Illustration of COLREG compliant maneuvers in relevant collision avoidance scenarios

• Rule 8: Action to avoid collision
(b) Any alteration of course and/or speed to avoid collision, shall, if the circum-
stances of the case admit, be large enough to be readily apparent to another vessel

104



(a) TSS Lanes and separation zone (b) TSS Roundabout and separation zone

Figure A.2: Illustration of compliance (Green) and non-compliance (Red) in the presence of most
relevant TSS objects according to Rule 10 of the COLREGs.

observing visually or by radar; a succession of small alterations of course and/or
speed should be avoided.

(c) If there is sufficient sea-room, alteration of course alone may be the most ef-
fective action to avoid a close-quarters situation provided that it is made in good
time, is substantial and does not result in another close-quarters situation.

(d) Action taken to avoid collision with another vessel shall be such as to result in
passing at a safe distance. The effectiveness of the action shall be carefully checked
until the other vessel is finally past and clear

(e) If necessary to avoid collision or allow more time to assess the situation, a ves-
sel shall slacken her speed or take all way off by stopping or reversing her means of
propulsion

• Rule 10: Traffic separation schemes
(b) A vessel using a traffic separation scheme shall:

– (i) proceed in the appropriate traffic lane in the general direction of traffic flow
for that lane

– (ii) so far as practicable keep clear of a traffic separation line or separation
zone

– (iii) normally join or leave a traffic lane at the termination of the lane, but
when joining or leaving from either side shall do so at as small an angle to the
general direction of traffic flow as practicable.

105



• Rule 13: Overtake situation
(a) Notwithstanding anything contained in the Rules of Part B, Sections I and II, any
vessel overtaking any other shall keep out of the way of the vessel being overtaken.

(b) A vessel shall be deemed to be overtaking when coming up with another ves-
sel from a direction more than 22.5° abaft her beam, that is, in such a position with
reference to the vessel she is overtaking, that at night she would be able to see only
the sternlight of that vessel but neither of her sidelights.

(c) When a vessel is in any doubt as to whether she is overtaking another, she shall
assume that this is the case and act accordingly.

(d) Any subsequent alteration of the bearing between the two vessels shall not make
the overtaking vessel a crossing vessel within the meaning of these Rules or relieve
her of the duty of keeping clear of the overtaken vessel until she is finally past and
clear.

• Rule 14: Head-on situation
(a) When two power-driven vessels are meeting on reciprocal or nearly reciprocal
courses so as to involve risk of collision each shall alter her course to starboard so
that each shall pass on the port side of the other.

(b) Such a situation shall be deemed to exist when a vessel sees the other ahead
or nearly ahead and by night she could see the masthead lights of the other in a line
or nearly in a line and/or both sidelights and by day she observes the corresponding
aspect of the other vessel.

(c) When a vessel is in any doubt as to whether such a situation exists she shall
assume that it does exist and act accordingly

• Rule 15: Crossing situation
When two power-driven vessels are crossing so as to involve risk of collision, the
vessel which has the other on her own starboard side shall keep out of the way
and shall, if the circumstances of the case admit, avoid crossing ahead of the other
vessel.

• Rule 16: Action by give-way vessel
Every vessel which is directed to keep out of the way of another vessel shall, so far
as possible, take early and substantial action to keep well clear

It should be noted that rule 8 can be challenging to quantify compliance with, however it
can be qualitatively discussed in collision avoidance scenarios. Remark that taking early
and substantial action to avoid collision is key for both head-on and crossing scenarios.

106



Appendix B
Relevant ENC Objects for
autonomous operations

All objects in the object catalog of the S-57 product specification are defined in Appendix
A of the S-57 Product Specification [17]. While all objects have some relevance for navi-
gation, not all of them are equally important for navigation of unmanned surface vehicles
of a limited size such as the Viknes 830 vessel. Furthermore, the significance depends
upon what kind of mission the vessel is undertaking. The most important objects are con-
sidered to be the ones describing hazardous areas in which the vessel could ground or
collide. These objects are marked as hazards in Table B.1

Furthermore, objects describing areas where TSS or other navigational restrictions such
as speed limits apply are considered important to ensure that the vessel operates in a safe,
predictable and legal manner. All TSS objects are considered cautions and are given in
table B.2. Additional objects considered as cautions for current and future development of
the guidance system are marked as such in Table B.1. Observe that some objects are both
hazards and caution objects in general, with their attributes determining on an object-by-
object basis which category they truly correspond to.

107



Table B.1: Overview of relevant objects in the S-57 product specification. Acronym, object and
description details are retrieved from [17].

Acronym Object Description Hazard Caution

BCNSPP Special Purpose Beacon
A special purpose beacon is primarily used to indicate an area or feature,
the nature of which is apparent from reference to a chart Yes Yes

BOYLAT Lateral Buoy
Used to indicate the port or starboard hand side of the route to be followed.
They are generally used for well defined channels and are used in conjunction
with a conventional direction of buoyage.

Yes Yes

BRIDGE Bridge A structure erected over a depression or an obstacle such as a body of water. Yes No

CTNARE Caution Area
An area where the mariner has to be made aware of circumstances
influencing the safety of navigation. No Yes

DEPARE Depth Area An area whose water depth is within a defined range of values Yes No

FAIRWY Fairway
The main navigable channel for vessels of larger size. It is also the usual
course followed by vessels entering or leaving harbors, called ’ship channel’. No Yes

LNDARE Land area The solid portion of the Earth’s surface, as opposed to sea, water. Yes No

OBSTRN Obstruction
Anything that hinders or prevents movement, particularly anything that
endangers or prevents the passage of a vessel. The term is usually used to refer to
an isolated danger to navigation.

Yes Yes

OFSPLF Offshore platform A permanent offshore structure, either fixed or floating Yes Yes

PILPNT Pile
A long heavy timber or section of steel, wood, concrete, etc.. forced into the
earth which may serve as a support, as for a pier, or a free-standing pole
within a marine environment.

Yes No

PYLONS Pylon or bridge support
A vertical construction consisting, for example, of a steel framework or
pre-stressed concrete to carry cables, a bridge, etc. Yes No

RESARE Restricted Area
A specified area on land or water designated by an appropriate authority
within which access or navigation is restricted in accordance with certain
specified conditions

No Yes

SOUNDG Sounding A measured water depth or spot which has been reduced to a vertical datum. Yes No

UWTROC Underwater or awash rock
A concreted mass of stony material or coral which dries, is awash or is
below the water surface. Yes No

WRECKS Wreck The ruined remains of a stranded or sunken vessel which has been rendered useless. Yes No

Table B.2: Overview of TSS relevant objects, all of which are considered cautions in the overview
spatial database. Acronym and object name is consistent with the S-57 object Catalogue [17], and
description is paraphrased from it.

Acronym Object Description

DWRTCL Deep water route centerline
Deep water route is area which has been accurately surveyed
for clearance of sea bottom and submerged obstacles.

DWRTPT Deep water route part The deep water route area.
ISTZNE Inshore traffic zone Area between landward boundary of TSS object adjacent coast

PRCARE Precautionary area
Area where ships must navigate with particular caution.
A recommended direction of voyage may be included.

TSELNE Traffic separation line
Line separating traffic lanes. Can be used for direction
separation or ship class separation

TSEZNE Traffic separation zone
Similar to traffic separation line, but instead of just a line is
is an area with some extent.

TSSBND TSS boundary Outer limit of traffic lane part or roundabout
TSSCRS TSS crossing Area where traffic lines cross

TSSLPT TSS lane part
Area in which direction of voyage is specified, and thus
traffic flow uniform.

TSSRON TSS roundabout
Point or zone around which traffic should move in
counter-clockwise direction

108



Appendix C
Guidance system core parameters

The implemented guidance system has many parameters that must be set to appropriate
values. While the final values below primarily are found empirically, the COLAV param-
eters in Table C.1 are to a large extent the same as the ones used in [35]. Please note that
while essential for predictive control selection and simulation, the vessel model parameters
are not given in this appendix. This is done because they are the result of an identification
effort done by Loe [22] and thus should be seen in the context of the identification process.
Furthermore, please note that while it is important that the vessel model is sufficiently real-
istic, the hydrodynamic parameters and vessel dimensions depend strictly on the physical
vessel and are thus not parameters one modifies to enhance guidance system performance.
In the following, the relevant parameters in the COLAV system, the Mission Planner and
the ENC manager are summarized.

109



Table C.1: Collision Avoidance Cost Function Parameters with utilized tune based on [35].

Symbol Description Value
P Collision risk factor time exponent 1.0
Q Collision risk factor distance exponent 4.0
dcl Maximum COLREG consideration range [m] 500
dsafe Minimum safe distance to obstacle [m] 100
Kcol Collision cost scaling factor 0.5
ϕahead Ahead angle [deg] 15.0
ϕot Overtake angle [deg] 68.5
ϕho Headon angle [deg] 42.5
ϕcr Crossing angle [deg] 68.5
κ COLREG Violation Scaling Factor 2.0
kp Velocity correction scaling factor 4.0
kχ Course correction scaling factor 0.6
δp Velocity correction change scaling factor 3.5
δχsb

Scaling factor when penalizing change in course correction to starboard 0.9
δχp

Scaling factor when penalizing change in course correction to port 2.2
kcorr Scaling factor when penalizing course correction different from zero 0.6

Table C.2: Parameters in the Mission Planner.

Symbol/Name Description Value
tsim,u,min Minimum adaptive simulation time underway [s] 30
kt,approach Scaling factor to determine when to switch to approach 0.015
tsim,a,min Minimum adaptive simulation time in approach [s] 15
rprune Pruning radius evaluating if vertex explored/closed [m] 20
αprune Pruning angle evaluating if vertex explored/closed [deg] 10
rtss,roundabout Maximum distance for TSS consideration [m] 3000
kdist Scaling distance-to-goal approximation in Hybrid A* heuristic 1.20
ktss,lane Scaling factor on course delta between USV and TSS Lane 0.20

Table C.3: Parameters in Electronic Navigational Chart (ENC) Manager.

Symbol/Name Description Value
lengthmax,divisor Maximum distance between edge vertices in a Quadtree region [m] 300
areaminimum,region Minimum region size [deg2] 10e-7
βvoronoi Ratio value in Voronoi diagram pruning 1.5
αvoronoi The Voronoi field falloff rate 0.001
satdistance The default distance saturation value [deg] 0.0075

110



Path and M
otion Planning for U

nm
anned Surface Vehicles

Sander Furre

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g 

Cy
be

rn
et

ic
s

Sander Furre

Path and Motion Planning for
Unmanned Surface Vehicles subject
to the International Regulations for
Preventing Collisions at Sea

Master’s thesis in Cybernetics and Robotics
Supervisor: Konstantinos Alexis
Co-supervisor: Mihir Dharmadhikari
June 2022

M
as

te
r’s

 th
es

is


	Abstract
	Sammendrag
	Preface
	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivation
	Problem formulation and contributions
	Assumptions, simplifications and limitations
	Outline

	Literature Review
	Overview Papers
	Path and Motion planning algorithms
	Collision avoidance algorithms

	Background
	Motion Planning
	The motion planning problem
	Configuration space
	World models
	Planning approaches
	Region quadtree
	Robotic paradigms
	Graph terminology and utilization in motion planning

	Path- and motion planning algorithms
	A* Algorithm
	Hybrid A* Algorithm

	Guidance, Navigation and Control
	Guidance Systems
	Navigation systems
	Control systems

	Surface Vessel Modelling
	The equations of motion
	Low-level controller

	Electronic Navigational Charts
	The S-57 Product Specification
	Electronic Navigational Charts in autonomous missions

	Geodesy
	World Geodetic System 1984
	The Mercator Projection
	The inverse geodetic problem


	Method
	Solution concept and system design
	Electronic Navigational Chart Manager
	Information extraction from Electronic Navigational Charts
	Interpreting and representing free space in the mission region
	Generating a free-space Voronoi skeleton for the mission region
	Mission map service

	Mission Planner
	System of reference
	Successor operator design
	Heuristic design
	Adapting Hybrid A* to large-scale environments
	Incorporation of COLREG compliance

	Path tracking
	Collision avoidance system

	Implementation
	Software
	ROS
	OpenMP
	GDAL/OGR
	Geotf
	Odeint
	GeographicLib
	JC_Voronoi

	Electronic Navigational Chart Manager
	Information extraction from Electronic Navigational Charts
	Interpreting and representing free space in the mission region
	Generating a free-space Voronoi skeleton for the mission region
	Mission Map Service

	Mission Planner
	Motion planning with Hybrid A*

	Collision avoidance system
	Simulating and comparing control action combinations
	Evaluating risk and COLREG Compliance


	Results and discussion
	Isolated collision avoidance scenarios
	Head-on scenario
	Crossing scenario
	Overtake scenario

	Mission Planning Scenarios
	Traffic Separation Scheme Compliance
	Large-scale mission planning in a varied coastal environment
	Evaluation of Mission Planner Robustness

	Complete mission scenario
	Results overview
	Obstacle encounters
	Nominal path tracking


	Conclusion and future work
	Conclusion
	Future Work

	Appendices
	Relevant COLREG rules
	Relevant ENC Objects for autonomous operations
	Guidance system core parameters

