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Abstract

This thesis focuses on designing and improving techniques for visual simultaneous
localization and mapping (Visual SLAM or VSLAM) and obstacle avoidance, in
the underwater environment.

From the perspective of underwater robotics, the underwater environment is
rich in opportunities and dangers: examples of opportunities are climate change
monitoring, flora and fauna mapping, biological studies and preservation, mining,
and extraction of natural resources, and monitoring of underwater infrastructure,
while threats are typically represented by obstacles, rough seas and currents, not-
traversable fields, and marine fauna.

While sonars can provide information about physical elements present around
the robot, they cannot capture color and semantic information, making it hard or
impossible to achieve a certain level of autonomy. It becomes clear that the robot
needs to perceive the world also through a camera.

Visual SLAM is the process of utilizing a camera to map the environment and
at the same time localize itself in it, all of this in soft real-time. This is crucial as
such information can be exploited to perform automatic re-routing and obstacle
avoidance.

This thesis presents a stereo-camera-based obstacle avoidance field trial that
demonstrates how a stereo camera, with proper active illumination, can be uti-
lized instead of an acoustic-based sensor to perform active obstacle avoidance and
then presents a series of methods to improve the robustness and performance of
underwater VSLAM.

In particular, an emphasis is placed on monocular VSLAM, as monocular VS-
LAM is highly interesting in terms of robustness: a monocular VSLAM system can
substitute a stereo VSLAM system in case of a single camera malfunction, it is
superior in terms of compactness, as a single camera is easier and cheaper to place
then two, and sometimes a single camera is the only available option for small
robots.

This thesis presents a single image-only, standalone, and global method for
robust loop closure detection, based on the encoded representation produced by
a convolutional autoencoder. It also presents a method for keypoint rejection for
feature-based VSLAM methods which avoid features to be detected on unsuitable
surfaces, such as loose seaweed, marine fauna, and caustics. Finally, it presents a
series of modifications to ORB-SLAM 2, one of the most successful feature-based
monocular SLAM, in order to improve it for use in the underwater environment.

These modifications include a slight change to the initialization procedure, a
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Abstract

way to perform feature matching which yields a higher amount of valid matches,
a partial synchronization between the front-end and the back-end, a procedure to
detect station keeping without the need to know the scale of the movements and a
pruning procedure which enables lifelong operations.

This thesis is edited as a collection of papers.
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Chapter 1

Introduction

Visual simultaneous localization and mapping (Visual SLAM or VSLAM) is the
process of creating a representation of the environment using a camera (or a series
of cameras), while, at the same time, determining the position of the camera,
relative to the environment. VSLAM systems are in general composed of several
algorithms and systems, often running concurrently, with the goal of soft real-time
performance.

VSLAM is a very powerful tool when it comes to navigation and mapping:
camera sensors are ubiquitous today, occupy a very small footprint, and use very
little power. Such a sensor can produce a high-quality, dense, textured, and se-
mantic 3D representation of the environment, no other sensors come close to such
performance.

However, producing such a 3D representation of the environment requires light
to be present in the scene or to be actively generated, images have to be taken
often following a series of principles, like relative angles and scene overlap. In the
underwater scenario, artificial illumination is often required, and dynamic elements
are usually present in front of the camera in a variable quantity and in unpredictable
directions and speeds, such as algae and marine/river fauna. Colors become also
a function of the distance between the camera and the observed elements and
additional image distortion is present (underwater visual perception challenges are
further discussed in Section 2.4).

In this thesis, we focus firstly on reviewing a field trial where a stereo camera
system is used to perform underwater obstacle avoidance, and then we proceed
in exploring various aspects of monocular VSLAM, specifically focusing on loop
closure, initialization, feature matching, synchronization of front-end and back-
end, station keeping detection, and a pruning procedure, which enables lifelong
operations.

It has to be noted that generating a VSLAM estimate often requires all the
computational resources of the most powerful embedded platforms available today,
in case soft real-time performance is required.

The purpose of this introductory chapter is to briefly outline the contributions
of this thesis as well as to explain the background and motivation for this research.
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1. Introduction

1.1 Motivation and Problem Description

The underwater world still contains many secrets, and the exploration of this world
is quite difficult and expensive. The vastness of the oceans, lakes, and rivers, the
eventual presence of salt water, and the immense pressures to which underwater
vehicles have to be subject are just a few examples of the challenges to overcome.

The prize for those who overcome such challenges is in part unknown, however,
such a prize is likely to contain helpful information for monitoring and preserving
the marine environment. There are indeed many threats that the marine environ-
ment is currently facing, such as oil spills, untreated sewage water, and endangered
coral reefs.

Robotics will be absolutely crucial in this task: crewed missions bring with
them high risks, ethical issues, and huge costs, as they involve situations that
could be life-threatening. Robotics also help bring down the cost of the equipment,
underwater robots don’t have to carry all the life support systems that can be
found in submarines. We have many underwater robots today which are able to
perform a great number of tasks, but they require to be operated manually by
an operator, and most of the time the operator has to be connected physically to
the robot (called a remotely operated vehicle, ROV), due to salt water being an
extremely efficient attenuator of electromagnetic waves.

The real turning point for ocean robotics is energy storage, harvesting, and/or
generation development and autonomy. Due to the size of the oceans, it is realistic
that underwater robot tasks could require from a couple of hours to years to be
performed. Assuming the energy problem is solved, autonomy remains an issue.
A robot should first deeply understand its task, its priorities, and capabilities, it
should understand where it is located and how the environment looks around it,
especially in the case of an unknown, unstructured environment, and it has to do
it fast.

Cameras are a great help for autonomy. Contrary to sonar, they do provide
color and semantic information and do provide more dense and continuous infor-
mation about the environment, to enable true situational awareness for the robot.
A camera on board an underwater robot can provide much more mission-sensitive
information, especially when it comes to biological-oriented missions, for example
studying algae and identifying fish species.

For a robot to navigate an environment that it has never seen before, it has at
the same to map the environment and localize itself into it. As mentioned before,
such a process is called simultaneous localization and mapping (SLAM).

The main work of this thesis focuses on understanding how successful camera-
based SLAM, also called VSLAM, could be improved to better perform in unstruc-
tured (not previously known to the robot) underwater environments.

While SLAM underwater is mostly performed with acoustic sensors (due to
the ability of sound to travel in the water much easier than light), the ability to
perform SLAM underwater with cameras allows one to explore and navigate envi-
ronments that are sensitive to acoustic pollution, like some natural environments.
Acoustic-less navigation is also required for military operations, as any form of
acoustic emission could help a hostile entity to identify the position of the emitter,
to the point that submarine design has to take into account the submarine acoustic
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1.2. Research Questions

signature [58] [26]. Acoustic sensors could also be too expensive for certain appli-
cations or impossible to deploy in small robotics platforms, while cameras can be
accessed in a very wide variety of price ranges and sizes.

The underwater environment is tough for cameras: there is a problem in cali-
brating it, as there is another medium (typically a flat glass) in front of a camera,
water can be turbid, and foreign objects or animals can pass in front of the cam-
era, light can be not optimal and true colors are a function of the distance between
the observed object and the camera. Working in such an environment requires
the development of a series of robust algorithms which are designed to tackle the
unpredictiveness of the sea and loss of visibility.

In this thesis, many challenges are explored and addressed, the methodology in-
cludes testing and adapting some of the most successful approaches and techniques
to better tackle the underwater environment.

The methods developed in this thesis are evaluated on publicly available databases
relevant to the community of underwater vision as well as datasets obtained during
field trips involving ROVs and autonomous underwater vehicles (AUVs).

1.2 Research Questions

This thesis work is focused on exploring and tackling the challenges of underwa-
ter visual perception for underwater visual SLAM, with a particular emphasis on
monocular camera systems, even though the investigation started at first with a
stereo-camera system. Several research questions have been posed and answered
during the research period:

• Is it possible to perform obstacle avoidance underwater using a stereo camera
system?

– Empirical tests performed in Paper A demonstrate underwater obstacle
avoidance using solely a stereo camera system. The test involved many
parties and the Candidate’s contribution consisted in developing the
software for tridimensional stereo reconstruction and integration with
the control system. Different stereo-reconstruction approaches have been
tested, and a novel (to the best knowledge of the Candidate at the time)
enhancement to DBSCAN in order to reject noise is also presented.

• How can we improve the robustness of loop closure for monocular underwater
visual SLAM?

– This research question is addressed in Paper B, where a highly paral-
lelizable, standalone algorithm for globally detecting loop closures using
monocular images. Images are reduced to vectors through the encod-
ing side of a convolutional autoencoder and are compared with each
others utilizing the cosine distance. Such an approach is benchmarked
against a bag-of-word approach and shows much higher precision in an
underwater scenario. Limitations of this novel approach due to percep-
tual aliasing are presented to the reader. The Candidate is the author
of all the work and research contributions related to Paper B.

3



1. Introduction

• How can we improve the robustness of keypoint matching for monocular
underwater visual SLAM applications?

– In order to address this research question, a deep-learning based key-
point rejection system has been developed and is presented in paper Pa-
per C. Rejecting keypoints that belong to unsuitable surfaces (i.e. mov-
ing surfaces) increases robustness by avoiding potential wrong initial-
ization and tracking, outperforming approaches dedicated to dynamic
environments. The Candidate is the author of most of the work related
to Paper C, and he is responsible for all the research contributions re-
lated to it.

• How can we improve the best overall performing keypoint-based visual SLAM
system for the underwater environment?

– A series of ORB-SLAM enhancements have led to a system called Un-
derwater Visual SLAM (UVS), presented in paper Paper D. Such en-
hancements touch almost all aspects of the original system and include
specific improvements for underwater applications. UVS outperforms
ORB-SLAM both in terms of median RMSE and loop closure quantity.
The Candidate is the author of all the work and research contributions
related to Paper D.

Research methodology encompasses empirical tests and experiments, as well as
a theoretical test that has been evaluated on publicly available datasets.

The reason why this research has focused more on monocular cameras is that
monocular camera research represents the minimal and fundamental stepping stone
for visual SLAM, also monocular cameras have a series of advantages compared to
stereo cameras:

• A lower overall power consumption, assuming computationally comparable
algorithms are run for both stereo and monocular camera systems

• A higher resilience to hardware faults: a system that relies structurally on
multiple cameras has more exposure to tail risk

• In the case of small robots, this could be the only choice

1.3 List of Contributions and Publications

In this section, the contributions are briefly presented in relation to the publications
relevant to this thesis. We refer the reader to Chapter 4 and attached articles in
Chapter 6.
Paper A: Vision based obstacle avoidance and motion tracking for autonomous

behaviors in underwater vehicles
Authors: Marco Leonardi, Annette Stahl, Michele Gazzea, Martin Lud-
vigsen, Ida Rist-Christensen, Stein M. Nornes
Conference, Venue, Year: IEEE OCEANS Aberdeen, 2017.
Contributions: In a field test it was demonstrated how stereo vision can be
used to perform obstacle avoidance underwater; A modification to DBSCAN
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1.3. List of Contributions and Publications

[45] for point clouds generated from a stereo vision system was presented,
which makes the ε a function of the depth of the triangulated 3D points.

Paper B: Convolutional Autoencoder aided loop closure detection for monocular
SLAM
Authors: Marco Leonardi, Annette Stahl
Conference proceedings, Year: IFAC-PapersOnLine, p. 159-164, 2018.
Contributions: A robust, highly parallelizable, standalone method for de-
tecting globally loop closures was presented, based on a deep convolutional
autoencoder.

Paper C: Deep learning based keypoint rejection system for underwater visual
ego-motion estimation
Authors: Marco Leonardi, Luca Fiori, Annette Stahl
Conference proceedings, Year: IFAC-PapersOnLine 53.2 (2020): 9471-
9477, 2020.
Contributions: A fast supervised way to generate a dataset for keypoint
classification; A CNN-based, plug-and-play keypoint rejection system that
rejects keypoints unsuitable for visual-ego motion estimation, in order to ob-
tain more reliable estimates.

Paper D: “UVS - Underwater Visual SLAM: Robust Monocular Visual SLAM
for Lifelong Underwater Operations”
Authors: Marco Leonardi, Annette Stahl, Edmund Brekke, Martin Lud-
vigsen
Journal, Year: Autonomous Robots, Springer, submitted 10/2020, accepted
with minor revisions 11/01/2023
Contributions: A system including a series of modifications to ORB-SLAM
2 for underwater VSLAM was developed, called Underwater Visual SLAM
(UVS): a three-view initialization procedure, which does not utilize a model
selection procedure; a fast, exact descriptor-matching solution applied to the
nearest neighbor search for triangulation, increasing tracking robustness; a
model that predicts the camera pose in absence of visual information and
map consistency; Partial synchronization between front-end and backend; a
procedure to detect station-keeping operations while using the available com-
puting power for performing global bundle adjustment; the same descriptor-
matching solution applied for triangulating new points is applied for loop
closures detection; a SLAM-friendly map and keyframes pruning procedure
that enables lifelong operations

Other contributions in the overall context: Preliminary results which
show how could be possible to estimate water salinity utilizing only an image
of an object of known shape and size obtained underwater; a series of tests to
determine the achievable performance running UVS on the embedded plat-
form NVIDIA Jetson Nano platform leveraging the GPU; a series of tests
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1. Introduction

to determine the potential performance of UVS on sequences captured from
Eelume’s [39] underwater snake robot.

The research performed has contributed to the field of underwater vision by
providing empirical experiments in underwater obstacle avoidance, and has con-
tributed to the field of underwater visual SLAM by providing a series of standalone
tools capable of improving robustness in underwater applications, as well as a new
visual SLAM system based on ORB-SLAM that effectively overcomes many of the
challenges of operating underwater.

The Candidate, Marco Leonardi stands as the first author of every publication,
having personally and substantially originated the main contributions.

The research period lasted for four years. All publications were produced in
that period. Papers A, B, and C were published during these years and Paper D
was submitted at the end of that period. The journal manuscript was under review
for more than two years and is currently in the minor revision stage ("conditionally
accepted for publication").

1.4 Thesis Outline

The thesis is divided into seven chapters:
• In the first chapter motivation, background, methodology, challenges in un-

derwater vision, and scientific contributions are introduced

• In the second chapter a review of sensors and platforms for underwater nav-
igation is presented

• In the third chapter a review of VSLAM systems and underwater SLAM
methodologies are presented

• In the fourth chapter the research performed by the Candidate is summarized

• In the fifth chapter the conclusions and recommendations for further work
are discussed

• The sixth chapter contains all the original publications

• The seventh chapter contains additional documents which are related to the
last original publication: Paper D: Underwater Visual SLAM system (UVS)

6



Chapter 2

Sensors and Perception for
Underwater Navigation

In this chapter, we will take a look at underwater navigation and mapping tech-
niques. We will conclude with an overview of how visual sensors fit in this scenario,
and how established techniques can benefit from the addition of visual sensors.

2.1 Challenges of Underwater Sensing

The vast majority of the underwater navigation and mapping techniques today
utilize acoustic sensors, the reason lies in the fact that acoustic waves propagate
very well underwater, while electromagnetic waves don’t, especially in saltwater
(except electromagnetic waves of extremely low frequencies).

There are however a series of scenarios where performing navigation and map-
ping using a visual sensor is preferable, for example when utilizing small robots,
where it is likely that fitting acoustic-based navigation and mapping sensors are
prohibitive due to space constraints.

Cost is also a factor: cameras are now ubiquitous and high-quality sensors and
optics can be found on the market for prices that are orders of magnitudes lower
than acoustic systems.

Many acoustic sensors have a minimum clearance from the seabed, it could be
those visual sensors are the only suitable ones for particular applications in shallow
water. Acoustic sensors could impact natural life environments [162]. In applica-
tions where an underwater vehicle has to explore sensitive natural environments,
it can be sensible to use visual sensors instead.

Finally, as acoustic information does not carry color information, cameras repre-
sent the only choice for applications that require 1:1 matching between 3D mapping
and images. In such cases, visual navigation and mapping become a natural choice.
An example of such an application is the studying and mapping of corals, where
3D information is insufficient in estimating the coral’s health status [123].

While navigating underwater is not easy to benefit from global navigation satel-
lite system (GNSS) navigation data, given the strong attenuation of electromag-
netic waves underwater, a detachable specialized element of an underwater vehicle

7



2. Sensors and Perception for Underwater Navigation

Figure 2.1: This figure shows the NOAA DART 4G system. This system is intended to
detect tsunamis, and it uses satellite communication with a buoy. The communication of
variations of pressures from the sensor stationary up to 6000 meters in the sea bottom is
obtained through the use of an acoustic link. Image courtesy of NOAA - Pacific Marine
Environmental Laboratory in Seattle.

could still be used for GNSS positioning, as this detached element could rise to the
surface, and access the GNSS data, and could communicate with the underwater
vehicle through a cable or acoustic communication. An example can be seen in [6],
and in the National Oceanic and Atmospheric Administration (NOAA) Deep-ocean
Assessment and Reporting of Tsunamis (DART), see Fig. 2.1.

2.2 Underwater environment in the light of hardware and
sensors

The ocean represents the most unexplored part of our planet, less than 5% is
explored according to the University of Hawaii at Manoa [121]. Exploring the oceans
requires operating in a challenging environment, which is very hostile for human-
made vehicles and robots. Surfaces exposed to water go through a process called
marine fouling, which is the accumulation of various biological materials on these

8



2.3. Inertial and Magnetic Perception Sensors

surfaces, this, in turn, can damage the surfaces, increase drag, and obstruct sensors
and movements of mechanical parts.

While pure water does not conduct electricity very well, mild contamination
does dramatically increase conductivity, and so in any natural environment, water
represents an immediate danger to any circuit, waterproofing is a critical compo-
nent to deploy electronics onboard vehicles that will be in contact with water.

Operating underwater does bring the complications that the vehicle will be sub-
jected to external pressure which does increase with its distance from the surface.

Salt water also accelerates oxidation processes (commonly called rust), increas-
ing maintenance costs.

Underwater the electromagnetic waves-based human-made navigation and com-
munication infrastructure of satellites and repeaters vanishes very fast, with the
exception of Extremely Low Frequency (ELF) signals, which can carry a very small
amount of information and require up to hundreds of kilometers long antennas [16].
Navigation and communication have then to rely mostly on acoustic devices, with-
out a global reference system in unstructured environments.

2.3 Inertial and Magnetic Perception Sensors

Internal navigation relies on body-specific forces and angular rates. Compared to
GNSS, inertial measurements do not provide a global position, but they are always
available, as they do not rely on an external signal, which could also be scrambled.
While even consumer-grade electronic GNSS systems can provide quite a precise
position estimate, the quality of the measurements coming from an Inertial Mea-
surement Unit (IMU) is highly varying between different sensors and is determined
by the technological choices involved in their design and manufacturing, resulting
in sensors available in very wide performance and price range. One of the principal
characteristics of an IMU is the axis that it does provide:

• Three axes: in general it refers to the ability of the device to measure spacial
accelerations

• Six axes: in general it refers to the ability of the device to measure spacial
accelerations and angular velocities (also-called gyroscope, or more simply
gyro)

Bias stability and scaling stability represent one of the key performance elements
of accelerometers and gyroscopes [125], because biases cannot be observed without
additional sensor readings.

In order to recover the relative position and orientation (attitude) that inertial
measurement devices do provide, one could use the so-called strapdown navigation
equations. These equations are called strapdown, as it refers to the way the IMU
and the robot/vehicle are coupled together: the IMU has to be solidly attached to
the robot/vehicle and it can be considered as a single rigid body.

Integrating the strapdown equations will provide position, velocity, and attitude,
but errors contained in the measurements will accumulate over time, leading to the
so-called drift.

The IMU which can be found in the market is advertised to have more than
6 axes, most commonly 9 and 10 axis. These devices are not properly only IMUs,

9



2. Sensors and Perception for Underwater Navigation

they contain a six-axis IMU, plus a 3-axis magnetometer (for the 9-axis), and a
magnetometer plus a pressure sensor for the 10-axis.

A magnetometer measures the intensity of the magnetic field. As such, it can
be used to locate the north pole (as a compass) in absence of significative magnetic
disturbances. Magnetometer readings are also affected by time-varying biases and
several potential production inaccuracies, like the sensor triad not being perfectly
orthogonal or a different sensibility between the elements of the sensor triad.

2.4 Underwater Visual Perception and Camera Calibration

There are a series of additional challenges to be addressed when performing com-
puter vision/visual perception underwater.

Computer vision is the science of extracting high-level concepts and information
from images or videos, through the means of algorithms. Computer vision is a highly
interdisciplinary science, which typically makes use of statistics, biology, geometry,
and physics, as well as learning algorithms.

The first of the additional challenges for applying computer vision algorithms
to underwater environment scenes is the non-linear absorption of electromagnetic
waves from water [129][142], see Fig. 2.2.

As colors underwater are also a function of the distance of the observation,
tasks that rely on colors, such as object recognition, pixel-to-pixel tracking, and
keypoints matching are made more difficult. Direct visual odometry methods are
at a particular disadvantage given the appearance-based approach (as will be ex-
perimentally demonstrated in Paper D: Underwater Visual SLAM system (UVS)),
also they often require photometric calibration.

Light underwater is not only subject to absorption but also subject to reflection
and refraction. As light is absorbed by water, any operation which is not in shallow
water during a sunny day requires artificial illumination. Such illumination is likely
to come from a location near the camera, and this could create reflections. Artificial
illumination is also likely to illuminate particles suspended in the water, especially
in natural environments, which do represent extra noise for a visual-based motion
tracking system.

Water is not always clear, in both marine and freshwater environments there
could be turbidity. Water turbidity does generally degrade the quality of the image.
Turbidity could be generated by currents raising from the sea bottom various ma-
terial or generated by the robot propelling system itself, as the current generated
by the propellers could move the sea bottom. Specific studies have been performed
trying to address keypoint matching in turbid water [57] [165].
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2.4. Underwater Visual Perception and Camera Calibration

Figure 2.2: This figure illustrates how water absorbs electromagnetic radiation. Water
absorbs warm colors like reds and oranges (known as long-wavelength light) and scatters
the cooler colors (known as short-wavelength light). Image courtesy of Wikipedia commons
[80].

Camera calibration does represent an extra challenge. Compared to in-air ap-
plications, the camera has to be kept away from the water, this implies that a
protected medium is present between the camera and the camera’s optic, called in
the literature port, see Fig. 2.3.

Using a dome port does provide optical advantages, but the pinhole camera has
to be positioned exactly in the focus center of the dome, which is very difficult.
Some have investigated ways to correctly position a pinhole camera [143]. The
more common instance of ports is represented by a flat port, which is represented
by a flat transparent medium present in front of the camera, this kind of setup
does not require the camera and the port to be specifically engineered for each
other. The drawbacks of flat ports are added complexity in calibration, given the
water-glass/acrylic-air refraction chain, which is not modeled in classic calibration
procedures, also, while the refraction in the index of the flat port medium can be
pre-calculated (or just looked up in refraction index tables), the one of the water
cannot be easily known apriori, as it a function of salinity.

Performing the pinhole camera calibration with the gold-standard method [169]
does work well only if both the calibration and the observations are done around
the same distance from the camera. Research shows that does not need to be the
case if a proper model is chosen [99].
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2. Sensors and Perception for Underwater Navigation

Figure 2.3: On the left, is a flat port, in the center is a dome port, and on the right is a
picture of a dome port. In the dome port, in case the camera is correctly positioned, no
light refraction has to be taken into account. Image from article [143].

Most visual odometry/SLAM systems assume that the environment is static, or
at least primarily static so ego-motion can be estimated against the environment.
In many cases, this assumption is violated in natural underwater environments.

Foreign objects could be represented by marine life passing in front of the
camera, many underwater environments can be densely populated with marine
life. One of the publications part of this thesis (Paper C, [90]) is dedicated to
identifying dynamic objects not suitable for keypoint detection and matching for
visual motion estimation.

Marine surfaces could be completely covered with vegetation that moves with
water currents, violating the static environment hypothesis.

One of the few advantages that can be identified in operating cameras under-
water is that given the relatively high density of water compared to air, we can
assume that robots’ accelerations will be smoother and less pronounced, and, as
visual motion estimation requires overlapping frames, a lower framerate will be
needed to satisfy the overlapping frames requirement, compared to, for example,
drone-related applications.

Considering the tremendous challenges involved in exploring the oceans, robots
are often placed first in line: the ability of robots to work almost continuously,
and the ability to be resilient to extreme environmental factors, such as extreme
pressure, temperature, and current, makes robots the perfect candidates for ocean
exploration tasks. Historically, robotic platforms, like Remote Operated Vehicles,
were chosen for underwater explorations. ROVs are connected through cables to
an operative room on a boat or onshore and controlled by a human operator. The
operator has access to a variety of measurement systems, such as cameras, sonars,
and other sensors which can be present on the ROV (an example of ROV can
be observed in Fig. 2.4 ). The operator can guide the ROV and manipulate the
environment around it with robotic arms or dedicated tools fit for the specific task.

Unmanned vehicles which can be used to explore the oceans are divided into
Autonomous Surface Vehicles (ASVs), gliders, and autonomous underwater vehicles
(AUVs). Floating on the top of oceans there are ASVs, these vehicles are the ones
that can provide month-long missions, they do have consistent access to GNSS and
light, which can be used to recharge batteries in case the vehicle is fitted with solar
panels. Being on top of the oceans ASVs are susceptibilities to oceanic waves and
bad weather. Ocean gliders are hybrids between ASVs and AUVs, they operate
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2.4. Underwater Visual Perception and Camera Calibration

Figure 2.4: NTNU’s ROV Minerva, belonging to NTNU’s Applied Underwater Robotics
Laboratory (AURlab) at Trondheim Biological Station (TBS). Author: Marco Leonardi.

most of the time on the surface, while they can dive and operate underwater when
the mission requires.

In this variety of robotic platforms, several tasks can be identified which can
be solved with the help of visual information.

While navigating underwater can be required to perform obstacle avoidance,
in such cases, visual information can help identify the obstacle and determine
alternative navigation paths [89] [37] [73].

In all the applications where a robot has to perform object manipulation un-
derwater, having visual feedback to control the arm or actuators could be crucial,
utilizing visual feedback to control the motion of the robot is called visual servoing
[86] [55] [7].

A typical task for underwater vehicles consists of mapping the seabed [46] [63],
this can be obtained through a technique called visual mosaicking [48] [120] [134].
Seabed mosaicking can also be performed with sonars [9] [108] [124], but sonars
are unable to provide appearance information and fine-grained details which are
accessible only through visual information.

Robots that are placed into an unstructured underwater environment and are
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2. Sensors and Perception for Underwater Navigation

requested to navigate it, are usually required to perform SLAM. Underwater SLAM
can be performed with both acoustic [133] [145] [168] and visual inputs [140] [81]
[127], with the main difference that, exactly like for seabed mosaicking, acoustic in-
formation does not carry appearance information. Acoustic and visual information
can be combined to achieve higher quality SLAM estimates [131].
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Chapter 3

A Review of Simultaneous
Localization and Mapping Systems

In this chapter a review of Visual SLAM and the relevant approaches is presented,
together with a review of Underwater-specific SLAM methodologies, while exam-
ining the available sensors specific to the underwater domain.

3.1 Visual SLAM

Visual SLAM is a form of SLAM where one or multiple cameras are used as sensors.
In the literature, VSLAM is a term that is used also for non-conventional cameras,
like time-of-flight (ToF), structured light, and other kinds of cameras.

3.1.1 Theory

Here are briefly introduced a series of mathematical tools which are important to
facilitate the understanding of Visual SLAM methods.

Corner features

For features extraction is intended the computer vision process of identifying a series
of salient elements in a digital image. The goal of such a process is, in general, the
ability to re-identify such features in other images and so be able to establish a
relationship between two or multiple images.

The most popular form of feature is the corner feature, which can be formally
identified as a region where two edges intersect.

Corner detection is one of the oldest problems in computer vision and so the
literature on this subject is really vast, here is a list of the historically most popular
methods: SIFT [98], Harris corner detector [67], Shi-Tomasi [144], KAZE [5], FAST
[153] and ORB [139].
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3. A Review of Simultaneous Localization and Mapping Systems

Harris corner detector is calculated using the image derivatives, by considering
the Taylor expansion of the sum of squared differences (SSD) of two image patches
from a grayscale image, in order to build a structure tensor, the eigenvalues of the
structure tensor are then used to calculate a response called the Harris response:

R Harris = λ1λ2 − k(λ1 + λ2)2 0.06 ≥ k ≥ 0.04 (3.1)

Where R Harris represents the Harris response, λ1 and λ2 are the two eigenval-
ues of the structure tensor, and k is an empirically determined constant. The higher
the response, the higher the chance of a corner. The Harris response is perfectly
rotation invariant, given that eigenvalues magnitude is rotation invariant.

Shi-Tomasi is an improvement over the Harris corner detector, the response
function is slightly modified [76]

RShi−Tomasi = min(λ1, λ2) (3.2)

Where RShi−Tomasi is the Shi-Tomasi response and λ1 and λ2 are the two eigen-
values of the structure tensor. Shi-Tomasi provided empirically better results [76],
the reason is that keypoints selected in this way are numerically well conditioned
for estimating image displacement [172].

KAZE (Japanese word for wind) applies nonlinear diffusion filtering [159] [135],
in order to offset multi-scale Gaussian-based blurring drawback: the reduction in
localization accuracy [5], as Gaussian blur does smooth in the same manner the
noise and the details. The computational performance of KAZE is pretty poor, as
the authors point out is comparable to SIFT, while the repeatability performance
is superior to both SIFT and SURF in all the tests, which include image blur,
JPEG compression, rotation, zoom and viewpoint change. A less computationally
demanding version of KAZE has been published, with the name of accelerated
KAZE (AKAZE) [4]. AKAZE utilizes the so-called Fast Explicit Diffusion (FED)
[160] to speedup feature detection in the non-linear scale space, plus they utilize
a modified Local Difference Binary [166] that exploits the gradient information
already present in the non-linear scale space.

Features from Accelerated and Segments Test or simply FAST [138], is a method-
ology for finding corner features in a very inexpensive way, compared to many other
methods. FAST defines a so-called segment test detector : it considers the pixels be-
longing to a Bresenham’s circle of radius 3, centered in a candidate corner, in
order to establish if it’s a corner or not. In case n contiguous pixel has a higher,
or lower intensity (plus a threshold), than the candidate corner intensity, then the
candidate might be a corner. A subsequent machine learning approach based on
information content is used to create a decision tree that approximates the segment
test detector.

Oriented FAST and Rotate BRIEF (ORB) [139], represents one of the most
successful combinations of keypoint detector and descriptor, due to its ability to
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3.1. Visual SLAM

perform similarly to SIFT and be two orders of magnitudes faster. ORB utilizes
the FAST corner detector but adds crucial information: orientation. The corner
orientation is calculated starting from Rosin’s intensity centroid [137], however,
they ignore if a corner is dark or bright. Rosin defines the moment m of a patch as
follows:

mpq =
∑

x,y

xpyqI(x, y) (3.3)

Where p and q are the order of the moments, and I(x, y) represents the intensity
of the image at location (x, y). Considering x, y ∈ [0, 1], the centroid is defined as:

C =

(
m10

m00
,
m01

m00

)
. (3.4)

The orientation of the patch is then:

θ = atan2(m01,m10). (3.5)

Descriptors

In order to match features between each other a form of description is needed,
such description is provided by so-called descriptors. Descriptors are in general
algorithms which receive a corner as input and attempt to provide a feature vector
that will uniquely identify the corner, in such a way that it is as invariant as
possible to illumination, change of relative angle of observation, and changes in
scale, typically keeping an eye on its computational complexity. There might be
thousands of corner features in an image, and if each of them has to be calculated
a descriptor, such an operation really benefits from maintaining low computational
complexity.

One of the most popular early keypoint detectors and descriptors is called Scale-
invariant feature transform (SIFT) [98]. Its popularity derives from its robustness,
which derives from its extensive use of derivatives: intuitively, image derivatives
are quite invariant to illumination and scale changes. The SIFT descriptor is built
by taking a 16x16 window around the keypoint, and dividing it into 16 sub-blocks
of 4x4, and for each of these blocks an orientation histogram is created, these
orientation histograms represent the descriptor.

Noticing that SIFT keypoints have a location, a scale, and an orientation, in
order to achieve rotation independence of the feature vector, the rotation of the
keypoint is removed from the feature vector, and to achieve illumination indepen-
dence, the feature vector is normalized. Scale invariance is obtained not through
the descriptor, but in the way the keypoint is found: the keypoint is calculated in a
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scale space where the keypoint would produce the highest response, so at changes
in scale in the image space, the keypoint would be found in the same scale space
and so produce the same descriptor.

Binary descriptors represent a different approach to descriptors. The ability
to have a descriptor that is in a binary form unlocks the ability to calculate the
distance between two descriptors using the Hamming distance, which is orders of
magnitude faster than calculating the L2 distance, especially when it’s possible
to utilize CPU or GPU-specific low-level instructions. An example of a binary
descriptor is Binary Robust Independent Elementary Features (BRIEF).

BRIEF defines the following test τ for an image patch p which is smoothed
using a Gaussian kernel:

τ(p;x, y) :=

{
1 if p(x) < p(y)

0 otherwise
(3.6)

Where p(x) represents the intensity at coordinate x = (u, v). Let’s assume there
is a set nd of (x, y) locations for each patch where this test is performed, the nd
BRIEF descriptor is defined as:

fnd
(p) :=

∑

1≤i≤nd

2i−1τ(p;xi, yi) (3.7)

BRIEF fails to be useful in the case of even small image rotations (see Fig.
7 [139]), for such reason the authors of ORB utilize a so-called rotated BRIEF
(rBRIEF). The solution consists in learning a good set of binary tests to perform,
the ones which have high variance and are uncorrelated over a large dataset.

Kalman Filter

A Kalman Filter is a two-step algorithm whose goal is to produce an estimate
for a set of variables (called state) and its covariance. The Kalman filter is an
optimal filter, in the sense that it provides the minimum possible mean square
error (MSE) error on the state estimate. The optimality of the Kalman filter holds
only the uncertainty of the state, as well as process noise and measurement noise
can be described by a Gaussian distribution, and the system dynamic has to be
linear and time-invariant [79], in addition, the process noise and measurement noise
have to be white noise. The first step is called prediction: in this step, the current
state estimate, as well as the covariance are predicted according to known external
influences and the system dynamics:

x̂k = Fkx̂k−1 +Bkuk (3.8)

Pk = FkPk−1Fk
T +Qk
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Where x represents the state, P the covariance matrix of the state, the notation
·̂ indicates an estimate, u represents the known external influences, B the matrix
which relates the known external influences to the current state, Q the matrix
which represents additional uncertainty given the environment where the state is
estimated in.

The second step is called update: in this step, the estimates from the predic-
tion step are refined with the measurements coming from a series of sensors. The
refinements key step consists in multiplying the Gaussian distribution obtained
by estimating the sensor readings we are expecting to see with the actual sensor
readings distribution:

x̂′k = x̂k +K(zk −Hkx̂k)

Pk
′ = Pk −KHkPk (3.9)

K = PkHk
T(HkPkHk

T +Rk)−1

Where H is the sensor matrix, R the covariance which represents the uncer-
tainty of the sensor measurements, z represents the sensor readings and K is the
so-called Kalman gain, the matrix form of a common term present in both the mean
and the variance equations resulting from multiplying two Gaussian distributions.

The linearity of the system dynamics excludes the possibility to apply the
Kalman filter to many real-world problems. In order to address this issue and
apply the Kalman filter to a much larger class of problems, the so-called EKF (ex-
tended Kalman filter) has been developed. The difference between the KF and the
EKF is that in the EKF the system can be non-linear, but must be differentiable,
as the whole idea of the EKF can be summarized as a linearization around the
current estimate, using Taylor expansion. EKF loses all the optimality properties
of the KF, there is no more guarantee of convergence, and it might be very sensitive
to initialization, depending on the nature of the nonlinearities.

A typical use of an Extended Kalman Filter that has been popular in the past in
Visual SLAM has been to estimate the state of the camera (position and attitude)
together with all the positions of all the features, an example is MonoSLAM [33].

Kalman Filters have been thoroughly studied and adapted to specific problems,
two examples of specialized Kalman Filters are the Unscented Kalman Filter, which
provides better estimates in case F and H are highly non-linear, and the Ensemble
Kalman Filter, suitable for high-dimensional problems.

Maximum a posteriori estimation

The so-called MAP (maximum a posteriori) estimation is the estimation of the
mode of a posterior distribution. MAP is the generalization of the popular maxi-
mum likelihood estimation, where there is no assumption about the prior distribu-
tion of the parameters object of the estimation:
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θ̂MAP = argmax
θ

f(x|θ)g(θ) (3.10)

Where the notation ·̂ represents an estimate, argmaxθ the notation for the
operation that will find the maximum value of θ, θ represent the vector of the
parameters, f(x|θ) the posterior distribution and g(θ) the prior of the parameters.

MAP estimates can be obtained analytically as long as the mode(s) of the
posterior distribution are given in a closed form, this is unlikely to be the case in
computer vision-related estimation problems.

A more typical way to obtain MAP estimates is using numerical optimization
methods such as gradient-based methods, or alternatively, an iterative method such
as expected-maximization [91] or Monte Carlo methods and genetic algorithms.

Fundamental, Essential, Homography Matrix Estimation

In the field of computer vision, more precisely in epipolar geometry (the geometry
of stereo vision), a Fundamental matrix or bifocal tensor is a matrix that relates
two corresponding homogeneous image coordinates. Defining x and x′ two corre-
sponding homogeneous image coordinates, the Fundamental matrix F expresses
the following relationship:

x′
T
Fx = 0 F3×3 , rank(F ) = 2 (3.11)

The estimation of the Fundamental matrix is a well-studied problem and many
algorithms have been published in order to estimate it. In general, such an operation
requires a set amount of image correspondences to be found in order to proceed to
the estimation, however, as for the vast majority of all computer vision tasks, deep
learning methods have been developed [132], which requires no correspondences.

Traditional methods are the so-called 7-point algorithm and the 8-point algo-
rithm [70].

Each correspondence provides a linear equation, which it’s possible to write in
the form:

Af = 0. (3.12)

It turns out that A has only 7 degrees of freedom given the fact that det(A) = 0
and is determined up to scale [69] [31]. The problem is that with only 7 points there
are three possible solutions.

Using instead 8 points, a single solution can be found, as we only have linear
equations, in the same number as the unknowns.

When it comes to practical estimations, given possible wrong and imprecise
image correspondences, more than 8 correspondences are provided to a Random
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sample consensus (RANSAC) framework [68], which internally utilizes 7 points (as
with 7 points there are fewer chances to incorporate noise in the chosen solution).

To the best knowledge of the author of this thesis, the minimal solver for the
Fundamental matrix today is a two-point solver [15], which provides a solution as
accurate as the 8-point algorithm.

Closely related to the Fundamental matrix, there is the Essential matrix E,
first introduced by Longuet-Higgins [95]. The Essential matrix can be obtained
from the Fundamental matrix, by the mean of the Intrinsic matrix K:

E = K ′FKT (3.13)

It is to be noted that in case the two views are related by F originated from the
same camera, then K ′ = K. The Intrinsic matrix K is a 3×3 matrix that contains
the focal length and principal point of a camera modeled accordingly to a pin-hole
camera model.

Exactly like the Fundamental matrix, the Essential matrix relates two corre-
sponding homogeneous image coordinates:

x′
T
Ex = 0 E3×3 , rank(E) = 2 (3.14)

The Essential matrix can be decomposed in relative camera rotation and trans-
lation, up to scale, so this implies that the Essential matrix contains only five
unknowns. This property of the Essential matrix has been exploited by Nistér
[119] in combination with RANSAC in order to obtain a minimal solver for the
Essential matrix for practical uses. First has to be considered Theorem 1 of [119]:
A real non-zero matrix 3× 3 E is an Essential matrix if and only if :

EETE − 1

2
trace(EET )E = 0. (3.15)

This equation results in a cubic constraint later used to recover the Essential
Matrix. Each of the five correspondences gives a constraint in the form:

q̃T Ẽ = 0, (3.16)

where

q̃ ≡ [x1x
′
1 x2x

′
1 x3x

′
1 x1x

′
2 x2x

′
2 x3x

′
2 x1x

′
3 x2x

′
3 x3x

′
3]
T

Ẽ ≡[E11E12E13E21E22E23E31E32E33]
T
. (3.17)
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By stacking five vectors q̃T , one for each correspondence, a matrix of dimension
5 × 9 is obtained. The goal is then to compute the four vectors B̃, Ỹ , Z̃, W̃ that
span the right nullspace of this matrix, and methods such as singular value de-
composition (SVD) or QR factorization can be used. The four vectors B̃, Ỹ , Z̃, W̃
correspond to four 3 × 3 matrices B, Y, Z,W , and so the essential matrix can be
written in relation to these matrices as

E = bB + yY + zZ + wW. (3.18)

With w set conveniently equal to 1, the four scalars are defined up to scale.
Substituting 3.18 into 3.15 and then performing Gauss-Jordan with partial pivoting
and defining a set of four additional equations, a set of five equations is obtained,
in the attempt to find the null space of such system, a tenth-degree polynomial
is obtained, obtaining the root of such polynomial yields the Essential matrix.
The roots can be found using Sturm-sequences to bracket the roots, followed by a
root-polishing scheme [119].

Unfortunately, finding the solution to the ten-degree polynomial could poten-
tially be ill-conditioned [14], this leads to the development of a an iterative five-
point algorithm [100].

More recently a non-minimal Essential matrix solver has proven to be able to
converge to the globally optimal solution [170].

With the goal to estimate the relative camera rotation and translation between
two images, there is an alternative to Fundamental/Essential matrices: the Homog-
raphy matrix.

The Homography matrix is a 3 × 3 matrix that represents a bijective isomor-
phism and is related to the transformation between two planes. Exactly like an
Essential matrix, a Homography matrix can analytically [102] recover rotation and
transition (up to scale) between two images.

There are only four point correspondences needed to estimate a homography,
but unfortunately, these four points have many requirements: at least three points
don’t have to be collinear, they all need to be co-planar and the sample should
consist of points with a good spatial distribution over the image [78].

Classical error functions which are utilized to estimate a homography H are to
use the so-called symmetric transfer error :

smerror = d(x,H−1x′)2 + d(x′, Hx)2 (3.19)

Or the classical reprojection error, also called geometric error :

reProjerror = d(x, x̂)2 + d(x′, x̂′)2 (3.20)
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Where x̂′ = Hx̂ represents the perfect correspondence. Another option is Samp-
son’s error (the first-order approximation of the geometric error).

The problem of Homography estimation has also been approached using deep
learning techniques demonstrating the ability to outperform traditional methods
in particular scenarios as well as high flexibility, and robustness to light changes
[36] [118].

Bundle adjustment

Bundle adjustment (BA) in computer vision is the process of simultaneously re-
fining through optimization of tridimensional coordinates, the camera motion, and
the parameters of the model utilized to represent the camera.

In the VSLAM literature, the definition is slightly different, in general, BA
does not include refinement of the camera parameters until explicitly mentioned.
Furthermore, the following terms can be often encountered:

• motion-only BA: Bundle Adjustment where only the camera poses are being
optimized.

• structure-only BA: Bundle Adjustment where only the 3D points are being
optimized.

• local BA: Bundle Adjustment that encompasses a part of all the available
camera poses and 3D points.

• full BA: Bundle Adjustment that encompasses all the available camera poses
and 3D points. It could also mean that both 3D points and camera motion
are refined when used in opposition to structure-only and motion-only BA,
but with a limited selection of poses and map points.

Formally, bundle adjustment can be defined as the following minimization prob-
lem [78]:

min
P̂ i,X̂j

∑

ij

d(P̂ iX̂j , x
i
j)

2 (3.21)

Where X represents a set of 3D points, and P represents a set of camera
matrices, where P i = Ki[Ri|ti] .

The most often encountered method is typically a sparse Levenberg-Marquardt
[107], however, research has shown there are other options that might be more
suited [97], like a sparse version of Powell’s dog leg non-linear least squares [130].
Bundle adjustment can also be computed using multiple threads [163], making it
possible to perform the desired optimization over a large amount of camera poses
and 3D points. Deep networks can also be specialized to deal with the BA [151].

Pose graph optimization

Many problems in computer vision and robotics can be solved through least squares
optimization, with a cost function in form of a graph [85]: the reason is that a
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variable that we are looking to determine is dependent only on the value itself, as
well as as the position of the sensor. An example of such a case that applies to
computer vision is the determination of a tridimensional point world position, it
depends only on its location and the location of the camera that is observing it. All
the time that a problem can be formulated as a set of pairwise observations, it can
be formulated as a graph, where the nodes are the variables to determine and the
edges between two nodes represent pairwise observations. Superior efficiency can
be obtained when compared to Gauss-Newton, Levenberg-Marquardt, and other
similar methods, the reason is the following:

• Such graphs are naturally sparse: there is no need to infer relationships be-
tween variables, they are built together with the graph

• The formulation of the problem in a graph form allows the application of
several different methods which can greatly increase computational efficiency

Formally, the generic problem that can be solved in the least-square sense of
many robotics and computer vision problems using a graph formulation can be so
written [85] as

x∗ = argmin
x

F (x)

F (x) =
∑

〈i,j〉∈C
( e(xi, xj , zij)

TΩije(xi, xj , zij︸ ︷︷ ︸
Fij

) (3.22)

Where x is a vector of parameters where each element represents a generic pa-
rameter block, x∗ the estimated optimal solution, zij and Ωij represent respectively
the mean and the information matrix of a constraint relating the parameters xi
and xj , and e(xi, xj , zij) is a vector error function that measures how well xi and
xj satisfy the constraint zij . The problem in the equation 3.22 can be represented
as a directed graph: each parameter block xi can be represented as a node and the
ordered constraints can be represented as the edges between these nodes.

Classic methods for solving multivariate functions minimization solve the prob-
lem by performing a first-order linearization around a good initial estimate and
calculating appropriate increments:

x∗ = x̆+ ∆x∗ (3.23)

Where x̆ is the initial guess of a system in such form:

H∆x∗ = −b (3.24)

Such methods assume that the space of x is Euclidean and such an assumption
cannot be made for many robotic and SLAM-related problems, as usually, these
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problems require finding an attitude and rotations belonging to SO(2) or SO(3).
A typical way to go around this limitation is to express the increments ∆xi in a
different space from one of the parameters block x [85].

One of the most successful methods for performing pose graph optimization is
g2o or g2o [85]. The authors of g2o define a new error function where the increments
∆xi are perturbations around the current variable x̆i. The increments ∆xi use a
minimal representation for the rotations (like Euler angles), while xi utilizes an
over-parametrized one (for example rotation matrices or quaternion). Defining the
non-linear operator � : Dom(xi)×Dom(∆xi)→ Dom(xi), the optimized variables
can be obtained with the following:

x∗i = x̆� ∆x∗i
(3.25)

In tridimensional SLAM the increments ∆xi can be represented with a transla-
tion vector and with the axis of a quaternion (normalized), also the operator � can
be substituted with the motion composition operator

⊕
[146]. The error function

can be rewritten as follow:

eij(∆xi,∆xj)
def.
= eij(x̆i � ∆xi, x̆j � ∆xj)

= eij(x̆� ∆x) ' eij + Jij∆x

(3.26)

Where x̆ spans over the original over-parametrized space. The Jacobian Jij is then:

Jij =
∂eij(x̆� ∆x)

∂∆x

∣∣∣∣
∆x=0

(3.27)

The increments ∆x̂∗ need to be remapped to the original over-parametrized
space, as they are computed in the local Euclidean neighbor of x̆ (the initial guess).

Certain problems, like bundle adjustment, result in an H matrix 3.24 that, with
just a reordering of the variables in such a way that the camera poses are at the
top, is possible to obtain further performance increase:

(
Hpp Hpl

Hpl Hll

)(
∆x∗p
∆x∗l

)
=

(
−bp
−bl

)
(3.28)

Where the subscript p stands for poses and l stands for landmarks. This form
allows formulating an equivalent reduced system by taking the Shur complement
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of H [52]. Solving this system allows recovering the increments ∆x∗p, which then
can be used to find the increments for the landmarks ∆x∗l .

Georgia Tech Smoothing and Mapping (GTSAM) [34] is an approach to pose-
graph optimization based on factor graphs [94]. Factor graphs are derived from
a special case of hidden Markov model (HMM): considering the measurements
known, the posterior probability of the states we would like to estimate, given the
measurements is simply given by the product of factors, some of which derive from
the Markov chain, some other which derive from likelihoods defined in the form
L(Xt; z), can be obtained through the multiplication of factors:

P (X0, X1, ..., Xn | Z0, Z1, ..., Zn) ∝
P (X0)P (X1|X0) ... P (Xn|Pn−1)L(X0; z0) ... L(Xn; zn) (3.29)

Similarly to g2o, GTSAM utilized Levenberg-Marquardt and conjugate gradi-
ent optimizer, Gauss-Newton optimizer, Powell’s dogleg, however it also utilizes
incremental Smoothing and Mapping(iSAM)[77].

The approach called iSAM is derived from the previous work called square root
SAM [35]. Following the probabilistic factor graph formulation of SLAM see in
equation 3.29, the joint probability of all variables and measurements present in
SLAM is:

P (X,L, Y, Z) ∝ P (x0)

M∏

i=1

P (xi|xi−1, ui)

K∏

k=1

P (zk|xik , ljk)

(3.30)

Where X = xi, i ∈ 0....M are the robots states, P (x0) is the prior of the initial
state, L = lj , j ∈ 1...N the landmarks, the control inputs U = ui and the the
landmark measurements Z = zk, k ∈ 1...K, P (xi|xi−1, ui) the motion model and
P (zk|xik , ljk) the landmark measurements model, with xi and zk affected by zero-
mean Gaussian noise. Estimating the states and the landmarks can be done by
converting the problem into a least-squares estimation problem, by minimizing the
negative log of the joint probability:

X∗, L∗ = argmax
X,L

P (X,L, Y, Z)

= argmin
X,L

−logP (X,L, Y, Z)

= argmin
X,L

{
M∑

i=1

‖fi(xi−1, ui)− xi‖2Λi
+

K∑

i=1

‖hk(xik , ljk)− zk‖2Γk

}
(3.31)

Where fi(xi−1, ui) represents the robot state estimated through the process
model, hk(xik , ljk) represents the estimates from the measurements model, the
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norm operator represents the Mahalanobis distance, Λi and Γk represent respec-
tively the covariances of the process and measurement noise. Performing lineariza-
tion of the measurement equations leads to a sparse Jacobian and by collecting all
the variables a standard least square problem can be constructed.

The standard least square problem can be solved, for example with Cholesky
decomposition or with QR factorization, iSAM utilizes the latter approach and the
so-called Given rotations [156] approach. At the arrival of new measurements, in-
stead of performing a new factorization, iSAM performs a QR factorization update,
which results in much higher computational efficiency.

Loop closures unfortunately are prone to attack the sparsity of the R matrix,
iSAM utilizes COLAMD [32], an efficient heuristic to re-order the matrix R, im-
proving its sparsity.

In iSAM data association is solved by utilizing the maximum likelihood data
association criteria [13] and the Jonker-Volgenant-Castanon (JVC) assignment al-
gorithm [74].

Other than a great computational efficiency, iSAM provides Gaussian uncer-
tainty estimates for the landmarks and the robot positions, which can be useful in
other aspects of SLAM, such as refining sensor-specific measurements.

Utilized in production by Google since 2010, Ceres [2] is a non-linear least
square solver, which does not rely on the sparsity of the underlying problem, does
not require derivatives to be supplied as it performs numerical differentiation, the
loss function can be regularized and for non-euclidean spaces, the user can specify
the geometry of the local tangent space. Ceres provides two different main solvers
for two different kinds of problems:

• Trust region solvers: these kinds of solvers are for problems that require high
accuracy, as optimizers are available Levenberg-Marquardt, Powell’s Dogleg
and Subspace Dogleg methods [20] [19] and as for linear solvers dense QR
factorization, dense Cholesky factorization and sparse Cholesky factorization
custom Schur complement based dense, sparse, and iterative linear solvers.

• Line search solvers: for very large problems where computational complexity
becomes a problem, line search based comes to help, Ceres offers several vari-
ants of non-linear conjugate gradients, Broyden–Fletcher–Goldfarb–Shanno
(BFGS) and Limited-memory BFGS (LBFGS).

One of the most modern alternatives, SE-Sync [136] re-formulate pose-graph
optimization as a synchronization problem over SE(d), i.e.: estimate the values of
a set of unknown group elements x1, ..., xn ∈ SE(d) given noisy measurements of
a sub-set of their pairwise relative transforms x−1

i xj . SE-Sync is able to recover a
certifiably [12] globally optimal solution to the SE synchronization problem in a
non-adversarial noise regime, and it is able to achieve this by utilizing a semidefinite
relaxation of the MLE which will provide an exact MLE estimation, as long as the
measurement noise is below a certain threshold, with the great property of being
able to verify a posteriori that the previously mentioned threshold has not been
achieved, and so certifying. Experimental evaluations have demonstrated that SE-
Sync is able to recover certifiably correct globally optimal solutions where the
solution is affected by noise an order of magnitude higher than the one typically
encountered in robotic applications.
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A recent comparison [75] shows that there is no single approach that is always
outperforming the other approaches, even taking into consideration a single metric,
however, SE-Sync shows superior performance both in terms of execution time and
accuracy of the solution in many cases [75], showing how it could be the go-to
solution for future SLAM back-ends.

3.1.2 Feature based

The two most important early works in feature-based visual SLAM can be identified
in MonoSLAM [33] and Parallel Tracking and Mapping for Small AR Workspaces
(PTAM) [82].

MonoSLAM is one of the first successful examples of monocular SLAM, as it
achieved drift-free performance which was before inaccessible from Structure from
Motion techniques (SfM). In MonoSLAM the strong correlation in the camera mea-
surements is taken into account, using at the time popular EKF-based approach,
where the state of each tracked 3D point was part of the state of the Kalman filter
and so for each element of the map both the state and the Gaussian uncertainty
were estimated:

x̂ =




ĉ
ŷ1

ŷ2

...
ŷn



, P =




Pcc Pcy1 Pcy2 . . . Pcyn
Py1c Py1y1 Py1y2 . . . Py1yn
Py2c Py2y2 Py2y2 . . . Py2yn
...

...
...

. . .
...

Pync Pyny2 Pyny2 . . . Pynyn



. (3.32)

This is the state used by MonoSLAM (and many other full-state EKF-based
visual SLAM approaches), where the x̂ notation represents an estimate for the
variable x, ĉ represents the state of the camera, position and attitude, while yn
represent the n feature which is present in the state. For modern standards, the
map looks extremely sparse, due to O(n2) computational complexity of the Kalman
filter and the limitation of the hardware at that time. They keep in the map only
100 map points, also initialization had to be performed on an object of known size.

PTAM introduced the concepts of separating tracking and mapping from a
computational point of view: in PTAM one thread has the task to create map
points, and another thread has the task to localize the camera with respect to the
map points which are identified in the current frame. Abandoning the full-state
EKF approach and with the use of keyframes, PTAM was able to produce and
maintain a much larger map compared to MonoSLAM. This time, initialization did
not require an object of known geometry, but instead, it required user cooperation
for the identification of the first 2 keyframes.

The most common form of Visual SLAM is composed of a front-end, a back-
end, and a pose-graph optimization, and ORB-SLAM [113] has been one of the
pioneers of this framework. ORB-SLAM begins to build from PTAM, addressing
many of the most significant PTAM limitations. ORB-SLAM introduces a fully
automatic initialization, which does not require any prior knowledge about the
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scene by calculating at the same time a homography and a fundamental matrix
and choosing one model or another by the mean of the score, based on symmetric
transfer error [78].

The logic behind this strategy is that in planar scenes the ego-motion of the
camera can be well explained by homographies while estimating a fundamental
matrix could yield to an incorrect motion reconstruction, due to the twofold planar
ambiguity [96]. ORB-SLAM extends the intuition of PTAM which splits in different
threads mapping and tracking and adds another thread, which is in charge of loop
closing.

The tracking thread performs also local BA, a key step to enforce the survival
of the fittest for both keypoints and keyframes, enhancing at the same time ro-
bustness, the quality of the map, as well as minimizing the local drift that occurs
tracking the camera position frame after frame. ORB-SLAM builds on several other
concepts and methods, such as a pose-pose covisibility for bounding the computa-
tional efforts [148] [104], a loop closing strategy that is scale-aware (Strasdat et. al
[147]), a bag-of-word approach called Distributed Bag-of-Words (DBoW2) [54] for
place recognition. ORB-SLAM builds a covisibility graph and an essential graph.

The covisibility graph is an undirected weighted graph that represents the re-
lationship between keyframes, with the weight θ on each arc being the number
of common observations. Covisibility information is useful for triangulating new
keypoints, where the newly created keyframe is used in conjunction with frames
directly connected to it in the covisibility graph. The essential graph instead rep-
resents a subset of the covisibility graph, which contains all the nodes, but not all
the edges. The essential graph is built using a spanning tree, starting from the first
keyframe, plus edges with θ > 100 and loop closure edges. The essential graph is a
crucial step to improve optimization efficiency, indeed when performing pose graph
optimization yields almost the same results as a map-wise motion and pose bundle
adjustment.

Places are recognized by the use of DBoW2. The visual vocabulary is cre-
ated offline, using ORB descriptors, on a large database of various images. An
inverted index is built which relates to which keyframe each word is found. Specif-
ically, in ORB-SLAM overlapping keyframes from a visual word’s point of view
are grouped using the covisibility graph. In order to speed-up feature matching,
loop detection, and relocalization, DBoW2 is used also to retrieve candidates for
keypoint descriptors brute-force matching. ORB-SLAM was further developed suc-
cessfully into ORB-SLAM 2 [111] and ORB-SLAM 3 [25]. ORB-SLAM 2 extends
the previous work to allow the use of stereo and RGB-D systems and introduces a
localization-only mode. In ORB-SLAM 2 a full BA is also performed in a separate
thread after the pose graph optimization on the essential graph, such full BA is
performed online, while all the other SLAM operations are running.

Stereo keypoints are classified as close if their relative depth is less than 40 times
the baseline, or as far otherwise. Close keypoints are immediately triangulated and
used for mapping, while far keypoints can provide accurate rotation information
and might be triangulated using more than two views.

ORB-SLAM 3 does bring a visual-inertial integration that relies on maximum
a posteriori (MAP) estimation, a multi-map system, called the Atlas system [41],
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that can allow merging maps created when the tracking was lost, an improved-recall
place recognition, still based on DBoW2 and an abstract camera representation.

Visual-inertial combination allows VSLAM to add robustness in presence of sur-
faces with flat gradients, various blurs, and occlusions, and, in the case of monocular
visual SLAM, it adds precious scale information. The visual-inertial approach in
ORB-SLAM 3 builds on ORB-SLAM-VI [112], it expands the available camera
models and speeds up initialization. Initialization is achieved at a much faster rate
taking into consideration three key observations:

• Monocular SLAM is already able to produce very accurate maps, only with
unknown scale [113]. Having a map can help in IMU initialization.

• Scale estimation converges faster when it is represented as a variable in an
optimization problem [147], compare to estimating it in BA.

• IMU uncertainties have to be known apriori in order to avoid large and
unpredictable errors [24].

Following these observations, first, a map is created without the help of IMU sensor
data, shortly after the IMU-related variables are estimated using MAP estimation,
taking into consideration a stack of sensor readings obtained through the initial
keyframes, finally, a joint optimization is performed to refine together both visual
and inertial parameters.

The Atlas system comes into play as soon as tracking is lost, instead of per-
forming only attempts to relocalization, attempts to re-initialize are made. In case
a re-initialization is achieved, a new map is created, now called the active map.
The active map is disconnected from another(other) map(s) until a match is found
in the Atlas database, with the help of DBoW2 and various geometric and inertial
verification. When a match between different maps is identified and verified, map
merging starts.

Due to the fact that the map merge process could take a lot of time, due to
many overlapping elements, this process is divided into two different steps. First, a
so-called welding window is defined and an initial merge happens here, by utilizing
the now neighbor keyframes between the active map and the non-active map that
is subject to the fusion, second, the correction previously found is utilized to merge
the rest of the two maps, by the mean of pose-graph optimization.

The place recognition system still is based on DBoW2 but compared to the
method present in ORB-SLAM [113], the order of consistency checks is inverted:
the candidate keyframes are first checked for geometrical consistency and then for
local consistency, this inversion directly boosts recall.

ORB-SLAM 3 makes the system compatible with any camera model, as the
ePnP algorithm used for relocation has been substituted with a maximum likeli-
hood PnP algorithm [155].

3.1.3 Direct methods

Direct methods oppose feature-based methods by the fact that they are able to use
all the information present in the image, while feature-based methods are able to
exploit only an abstraction of the image, in general in the form of corner informa-
tion.
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Human-made environments contains a lot of straight and curved edges which
are not taken into account by corner-centered feature-based methods.

The first direct approach-based SLAM is the so-called Large-Scale Direct monoc-
ular SLAM (LSD-SLAM) [42], which is now presented to the reader.

A minimal representation of the camera pose is defined in ξ ∈ se(3), from frame
i to frame j it is written as ξji. Two images are aligned by minimizing through
Gauss-Newton the following energy function:

E(ξ) =
∑

i

(Iref (pi)− I(ω(pi, Dref (pi), ξ)))
2. (3.33)

Where Iref (pi) represents the intensity of the image Iref at point pi, ω a pro-
jective warp function (see [147] ), Dref (pi) represents the depth Dref , relative to
image Iref , at point pi, and in general (I(·)). Minimizing E(ξ) equals performing a
maximum likelihood estimation for ξ, assuming that all the residuals are indepen-
dently and identically Gaussian distributed. During each optimization iteration, a
weight matrix is computed to down-weight all the large residuals.

Initialization happens with the insertion of a keyframe, with a random depth
map with large variance, then the system automatically, after the insertion of a
series of other keyframes, should converge to the true depth (up to scale). The
map is represented as a pose graph of keyframes, the inverse depth map, and its
variance. The depth map becomes defined only in regions of an intense gradient.
Contrary to ORB-SLAM, the tracked frames are utilized to refine the depth map
by performing small-baseline stereo comparisons, and potentially also adding new
points to the map. As a new keyframe is inserted into the system, a set of ten
candidate keyframes is picked up with the help of OpenFABMAP [60], in order
to evaluate a potential loop closure. To avoid closing a wrong loop, a reciprocal
tracking check is performed. For each loop closure candidate keyframe Kjk , it is
then estimated ξjki and ξijk , and only if the two estimates are statistically similar
the loop closures occur. The map is continually optimized in the background using
pose graph optimization, with the help of the framework g2o [64].

Another popular direct method is Direct Sparse Odometry (DSO) [44], which
was first published as just visual odometry, and then extended to SLAM with the
addition of loop detection and closure [56]. DSO is a sparse and direct monocular
visual odometry that jointly optimizes all the model parameters: the poses, the
camera intrinsic, and the inverse depth values. DSO takes into account photometric
calibration, lens attenuation, gamma correction, and known exposure time. DSO
utilized a specific image formation model [43] in order to account for non-linear
intensity response function and vignetting, the first operation that is performed is
the correction for these two effects. A photometric error of a point is defined, as
the sum of squared differences, over a set of neighbor pixels experimentally chosen,
cleverly this neighbor is chosen in a way that enables Streaming SIMD Extensions
(SSE) optimization. The photometric error p, observed in a frame j is so defined:
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Epj :=
∑

p∈Np

wp

∥∥∥∥(Ij [p
′]− bj)−

tje
aj

tieai
(Ii[p]− bi)

∥∥∥∥
γ

(3.34)

Where Np represents the set of neighbor pixels, ti and tj the exposure times of
the images Ii, Ij , ‖·‖γ represents the Huber norm and p′ represents the projected
point position of p. The gradient-dependent weighting wp, with the goal of down-
weights pixels with a high gradient, is so defined:

wp :=
c2

c2 + ‖∇Ii(p)‖2
2 (3.35)

Where c represents the camera intrinsics and ‖∇Ii(p)‖2
2 represents the norm

2 squared of the point p gradient.
The full photometric error over all the frames and points is given by:

Ephoto :=
∑

i∈F

∑

p∈Pi

∑

j∈obs(p)
Epj (3.36)

Where i represents all the frames F , p over all the points in the frame i and
obs(p) in which the point p is visible.

The tracking is performed by a front-end which determines the error terms in
a local Ephoto, composed of 7 frames. The front end also provides initialization for
the parameters needed to optimize Ephoto and decides when a point or a frame
should be marginalized.

New keyframes are inserted by taking note of the mean square optical flow from
the last keyframe. New keyframes are also inserted in case the camera exposure
time changes significantly.

In their papers, the authors show that DSO, compared to LSD-SLAM, greatly
outperforms in terms of accuracy in sequences where no loop closures can be ex-
ploited by LSD-SLAM, and can produce a similar semi-dense map.

A version of DSO includes loop closure called LDSO [56]. LSDO favors corner-
like features in the front end of DSO, this is because corner-like features are re-
peatable and represents something easily recognizable in order to close a loop.
Shi-Tomasi is used to select the corner features, which are added to the points
detected by the standard DSO method. The corner descriptors for loop closures
are calculated on points that are tracked by the front end so that a depth estimate
exists. LDSO so utilizes a Bag of Word approach for closing the loop. Loop clo-
sure candidates are verified geometrically and in the similarity transformations 3D
space SIM(3) by the mean of geometric error estimation. LDSO shows comparable
performance to ORB-SLAM 2 in most of the sequences in the KITTI dataset.

3.1.4 Hybrid methods

Hybrid methods are methods that actively use both direct and indirect features.
Direct and indirect features are not at odds with each other, and so methods that
are able to exploit both can benefit from the robustness and repeatability of the
corners as well as the ability to operate on cornerless.
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A notable work in this space is SVO [50]. SVO extract features only when
new 3D points need to estimate. Feature matching is an implicit result of direct
motion estimation. SVO uses hundred of small patches to roughly estimate the
motion through the minimization of the photometric error and match features,
then it proceeds to perform a three-step bundle adjustment, first amotion-only BA,
then a structure-only and finally a local BA. The photometric error is calculated
between pixels corresponding to the projected location of the same 3D points, this
is expressed with the following equation:

Tk,k−1 = argmin
T

∫ ∫

R̄

[δI(T ,u)]du (3.37)

Where Tk,k−1 represents the transformation between two consecutive camera
poses (k−1 and k), δI is an intensity residual defined by the photometric difference
between pixels observing the same 3D point, R̄ represents an image region for which
the depth du is known in the previous image k−1 and for which the back-projected
points are visible in the image k.

Similar to ORB-SLAM, SVO utilizes a thread for camera motion and a second
one for mapping, in order to maintain responsiveness to new incoming frames.
Each 2D feature has a corresponding probabilistic depth filter which is initialized
when a new keyframe is created. The depth is refined in a Bayesian fashion and
when the uncertainty is low enough, a point is added to the map. SVO has been
extended to exploit also line segments [62], enhancing robustness in structured
environments. SVO has been improved by the original authors with SVO 2.0 [51],
bringing support to multi-camera systems and with SVO Pro [122], which brought
support for visual-inertial SLAM with loop closure using a similar approach to the
one present in ORB-SLAM (DBoW2 and pose-graph optimization).

3.1.5 Deep-learning based

Artificial intelligence has started to dominate the field of computer vision, enabling
previously impossible applications thanks to their “hands-on” prior knowledge cap-
tured by artificial neural network weights.

Learning to estimate motion and map enables VO and VSLAM algorithms to
exploit prior knowledge about the environment to produce estimates impossible
before, like producing depth maps with a single monocular frame [141] [128] [53]
[106].

The need for a supervised algorithm that needs per pixel depth in order to be
trained has been overcome with a self-supervised algorithm with the help of proper
loss functions and image formation models [61].

Networks like the DeMoN (Depth and Motion Network for Learning Monocular
Stereo) network [154], show that specialized networks can be built to estimate the
ego-motion between consecutive camera poses, together with a depth map, all by
needing only two image pairs as input, so regardless of intrinsic camera parameters.

The DeMoN network is constituted of three different works: a bootstrap net-
work, an iterative network, and a refinement network.

The bootstrap network is specialized in creating a first estimate of the depth
map and the motion estimation and is built using a first encoder-decoder which
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computers the optical flow and a confidence map, second another encoder-decoder
takes as input the optical flow, its confidence, the two image pairs and the second
image warped with the estimated optical flow. Its output is the depth map, surface
normals, and camera motion.

The iterative networks have the same architecture as the bootstrap network,
but it takes additional inputs, specifically it converts the depth map and the camera
motion into an estimated optical flow field, and it feeds itself three times.

The refinement network upscales the depth estimated at the third cycle of the
iterative network to the input image size. The representation of the network can
be found in Fig. 3.1.

Figure 3.1: Overview of the DeMoN Network. The networks take as input two image
pairs and estimate depth and ego-motion, without being aware of lens distortion, camera
intrinsic, and photometric calibration. Image from article [154].

Training of the network is performed in a supervised fashion with three different
losses: a point-wise loss which includes inverse depth, surface normals, optical flow
and optical flow confidence, a set of motion losses, and a scale-invariant gradient
loss which is regularized in order to penalize relative depth error between neighbor
pixels.

A naïve VO system could be built just by concatenating estimates from the
DeMoN network.

Deep learning networks developed specifically for VO have been developed,
showing incredible performances.

An example is Deep VO [157], where the authors have utilized AlexNet [84] for
performing transfer learning: AlexNet was modified to take as input two sequential
images, with the object to regress on the relative position and relative attitude.
Deep VO is able to perform well only in environments known at training time [84].

A more recent approach called UnDeepVO [92] exploits stereo images in order to
perform unsupervised learning, at inference time instead the network requires only
consecutive monocular images. UnDeepVO is able to estimate both the differential
pose, as well as the depth map, similar to the DeMoN network. The performance
in terms of accuracy, measured on the KITTI dataset, is able to outperform ORB-
SLAM (when running as VO by disabling the local mapping, defined in the paper as
“ORB-SLAM-M” ), As a personal note on UnDeepVO, the fact that they disabled
local mapping in ORB-SLAM would not allow ORB-SLAM to function even as
only a VO, I expect them to have disabled the loop closure detection, not the local
mapping.

DeepSLAM [93] is a very recent approach that combines unsupervised deep
learning with pose-graph optimization, in order to achieve an almost solely deep
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learning-based monocular visual SLAM. Similar to UnDeepVO [92], at training
time stereo images are supplied, while at inference time only sequential monocular
cameras are supplied, making DeepSLAM a monocular VSLAM system. Deep-
SLAM utilizes three different networks, denominated in the paper with the suffix
“-Net”: a Mapping-Net, a Tracking-Net, and a Loop-Net. The Mapping-Net is a
convolutional autoencoder that has the goal to produce a 3D estimate of the en-
vironment. The Tracking-Net is a convolutional recurrent NN that estimates the
camera ego-motion and Loop-Net is a CNN (Inception ResNet v2 [149]) which
maps images into a feature vector for loop closure detection. Loops are found when
the cosine distance between the current image feature vector and one of the im-
ages in the database is below a certain threshold. Loop closure is then completed
with a pose-graph optimization. DeepSLAM is evaluated on the KITTI [59] dataset
where the performance, measured as a percentage deviation from GT on the path
from 100m to 800m, is considerably worse than ORB-SLAM, but much better than
SfMLearner [171]. DeepSLAM is also evaluated on the RobotCar dataset [101]: the
sequences in the RobotCar dataset contain atmospherically phenomena like rain,
and images captured at night or on a day with a strong sun, in these scenarios
DeepSLAM becomes the only system being able to maintain tracking during these
sequences, showing how a data-driven approach can deeply improve robustness in
such scenarios.

LIFT-SLAM [167] (Learned Invariant Feature Transform) [21] is another deep
learning-based visual SLAM, but to a much less extent when compared to Deep-
SLAM [93]. The authors of LIFT-SLAM recognize that no deep learning-based
SLAM is able to outperform geometry-based methods, but the deep learning based-
methods are able to keep the VSLAM when the images are rich in noise. LIFT-
SLAM systems, instead of relying only on deep learning methods for estimating
motion, combine it with traditional geometry-based VSLAM. More in detail, the
so-called “LIFT” network [167] is a deep network that performs feature extraction,
the rest of the system is based on ORB-SLAM. The LIFT network takes as input
image patches and produces in the output the potential location of the feature
point, then it estimates the orientation of a patch around the potential feature
point, and lastly, a feature vector is produced. Compared to the original ORB-
SLAM system, the creators do not run tracking and mapping threads at the same
time, but they are sequential.

As a personal note, this already could explain superior performance in terms
of position and attitude errors, due to the fact that if frames come faster than the
ability of the mapping thread to generate points, the tracking could be lost or the
performance could be sub-optimal, due to a smaller amount of map points being
available to estimate the ego-motion. LIFT-SLAM has been tested on the KITTI
and on the Euroc dataset [23] and shows slightly better performance compared to
ORB-SLAM, showing why it could be beneficial to combine learning features with
one of the best-performing geometry-based VSLAM still today.
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3.2 Underwater SLAM

Performing SLAM underwater has been mostly performed using acoustic sensors
[164]. The reason for such a choice has been already explored in this thesis, but to
summarize it here we can say that water (especially salt water) greatly attenuates
electromagnetic waves. Nevertheless, approaches using cameras have been explored,
which are able to provide color information on the map and enable small and/or
low-cost robots to perform localization and mapping underwater.

3.2.1 Acoustic-based Underwater SLAM

Acoustic-based or aided navigation for AUVs is by far the most popular option,
given that sound travels in the water much more easily than electromagnetic waves.
Acoustic measurements are also essentially not influenced by water turbidity.

Sensors

There are several acoustic-based sensors that could be used to aid produce SLAM
estimates, the first kind those are acoustic Doppler current profiler (ADCP), which
for underwater vehicles is used as Doppler-Velocity Log (DVL). DVL emits acoustic
pulses in different directions and by sampling the acoustic pulses received back and
measuring the Doppler shift resulting from the fact that the AUV is moving and
the seabed is not, a velocity vector can be estimated as

fo =
vsound + vo
vsound + ve

fe. (3.38)

Where vsound represent the speed of sound in a particular medium (water in this
case),vo and fo are the velocity and frequency of the observer, as the observer is
the seabed, in this case, vo is 0 and fo represents the frequency of waves reflected,
and ve and fe are the velocity and frequency of the emitter, in this case of an
underwater vehicle. The frequency of the emitter is known, and so the only variable
in this equation is ve, the vehicle velocity. DVLs are able to directly observe the
velocity of the underwater vehicle with a zero-mean bias and so are often modeled
as zero-mean Gaussian white noise [40].

Being characterized by a zero-mean noise makes DVLs great sensors for long
underwater operations in unstructured environments. DVLs are not always able to
provide estimates, this can happen when the so-called bottom-lock is lost. First of
all, DVLs have operating ranges, the underwater vehicle could be located outside of
this range (too close or too far from the seabed). Other characteristics which could
make DVLs lose the bottom-lock are characteristic of the seabed, for example, the
seabed could be sloped or could be composed of a material that easily attenuates
the acoustic waves that DVLs emit. Raw DVLs measurements can also be loosely-
coupled with INS measurements [150].

Side-scan sound navigation and ranging (sonar) are other different kinds of
acoustic sensors, they are usually composed of an array of transducers, and they
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are located on the side of a boat or underwater vehicle, or located on a device that
is towed by the boat/underwater vehicle.

Side-scan sonars are able to directly recover underwater 3D structures by mea-
suring distances through acoustic echos, mathematically the distance measured
follows the so-called active sonar equation:

SnR = Sl − 2Tl + Ts − (n−Ag) (3.39)

SnR stands for signal-to-noise level (expressed in decibels), Sl stands for signal
level, Tl transmission level, Ts target strength (a factor dependant on the reflecting
object and its shape), n noise level in the receiver, Ag array gain, given the use of
multiple sensors to receive the same signal (to counter-act the receiver noise).

Sector-scan sonars are a kind of sonar that produces 2-dimensional images by
performing a sweep up to 360 degrees and they are mostly used for obstacle avoid-
ance [11].

Multi-beam echo-sounder (MBES) is another sonar technology for recovering
the 3D shape of the seabed, compared to Side-scan sonar, MBES uses beamforming
(directional signal transmission and/or reception) and works by emitting a fan-
shaped array of acoustic waves directly under the transceiver.

Synthetic aperture sonar (SAS) are amongst the most advanced kind of sonar,
that are capable of producing very high precision maps (down to the cm) for
hundred of meters [38], unfortunately, SAS is also the most expensive kind of
sensors. In Fig. 3.2 a comparison between sector-scan sonars, side-scan sonars, and
synthetic aperture sonars are shown.

3.2.2 Acoustic-based SLAM

An example of a side-scan sonar SLAM is supplied by ATLAS ELEKTRONIK
[145], which shows a simple and effective features-based approach. The scan is
firstly down-scaled and then features are identified with the help of a threshold,
these features are then inserted into a map, and features coming from new scans
are then associated with the help of joint compatibility branch and bound [116] and
heuristics like ambiguity check and time gating, a strategy that addresses specific
artifacts of side scan sonar imaging. The state estimation is based on an EKF.

SAS systems achieve higher spatial resolution by utilizing sensor multiple sensor
readings, obtained at different times, and this is achieved in combination with very
high-quality INS systems. The authors of [28] have proposed to use SLAM instead
for performing a fusion of acoustic and navigational data, abandoning the Gaussian
framework for a factor graph formulation.

3.2.3 Underwater Visual SLAM

The most popular approach for performing underwater visual SLAM has been the
use of stereo camera rigs [127] [71] [161] [27].

A classic approach involves the use of an EKF for performing sensor fusion and
state estimation [127]. Features estimated through SURF are transformed to 3D
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Figure 3.2: In this figure the difference between Sector-scan Sonar, Side-scan Sonar, and
Synthetic Aperture Sonar are illustrated. Image from article [66].
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Figure 3.3: Stereo camera location in [127]

points using the stereo camera equation and are incorporated into the EKF SLAM
state. The stereo camera is placed similarly to a side-scan sonar, see Fig. 3.3.

In the work of Weidner N. et al. [161] a strategy that specifically targets the
exploration of underwater caves is developed. Underwater caves receive a very small
quantity or no natural light, so visual SLAM has to rely only on artificial light. In
their work, they had multiple independent artificial lights, one coming from a light
source dedicated to the stereo camera rig, and multiple sources coming from the
divers which accompanied the stereo camera rig. The light sources coming from
the divers make traditional visual odometry almost impossible, with ORB-SLAM
being found to be the most successful approach.

The authors utilize adaptive thresholding to identify areas with different illu-
mination, then a canny edge detector is used to identify those boundaries, then for
every point of this contour, a SURF descriptor is calculated in order to perform
feature matching between the two stereo images and to perform triangulation. On
a critical node, no information about loop closure is present in the paper, likely
because features taken on the edge between a sharply illuminated area and a dark
area are substantially impossible to replicate.

Carrasco et al. [27] propose a stereo graph-based SLAM with features kept out
of the graph. Each graph node represents a pose and loop closure is constrained at
a region of interest (de-facto making loop closure capabilities sensible to drift, as
the region of interest, could be too small to enclosure the current loop closure op-
portunity). Similar to ORB-SLAM and many other SLAM methods, the framework
g2o is used for performing graph management and optimization.

Given the fact that not always visual information is available due to lack of
illumination, navigation path, and seafloor structure, a common strategy is to fuse
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visual information with INS, both for monocular systems and stereo systems [105].
The authors [105] propose a new camera model which is reported to achieve a
10% lower reprojection error than the pinhole camera model. Projection errors
and photometric errors are jointly optimized and features are matched with the
help of a local optical flow, specifically designed to improve robustness in keypoint
tracking. The authors have tested their work on the AQUALOC dataset [49], as
well as a new dataset that they have built in an artificial environment where they
could obtain a ground truth accurate to the millimeter. The results are excellent in
the artificial environment, but less impressive in the natural environment presented
by [49].

Deep learning-based VO and SLAM have not been popular in underwater-
specific visual ego-motion and mapping applications, simply because the most ef-
fective algorithm in this domain are supervised algorithms, and there has no public
dataset available with, for example, a 3D ground truth coming from a laser sensor.
However, Teixeira et al. [152], have utilized the database recovered by the UN-
EXMIN UX-1 [103], which provides images from flooded deep mines, with ground
truth pose data composed by a sensor fusion from multiple sensors on the robot,
like IMU, DVL.

The authors developed a new network that takes as input both GeoNet and
SfmLearner predictions and IMU readings (not needed at inference time), then
proceeds to stack several Long short-term memory (LSTM) units. The loss function
is a simple MSE, with the rotation parametrized as quaternions, present in the loss
function as a quaternion difference, enclosed in the L1 norm.

According to the authors, in the two sequences analyzed, traditional methods
like ORB-SLAM 2 and LDSO were not able to track at least two third of the
sequence, while SfMLearner, GeoNet, as well the network proposed by the authors
[152] were able to track a higher amount of these sequences, with the network
proposed by the authors outperforming the two other networks.

Loop closures remain an absolutely crucial part of visual SLAM systems, as a
wrong loop closure could render the SLAM estimates no longer useful. A dedicated
deep-learning image descriptor for loop closure called NetHALOC [18] demon-
strates how a simple and fast CNN can perform dimensionality reduction for under-
water images (similarly to [87]), which is fundamental for fast image comparison,
and so loop closure.

NetHALOC has an encoder-decoder structure, where the encoder section is
composed of a series of convolutional and max pooling layers, while the decoder is
instead composed of a flattening layer followed by three dense layers. The output
of the decoder is not an image, it is instead a so-called Global Image Descriptor
(GID). The name NetHALOC represents the network version of HALOC [115], a
GID which has shown to be quite effective underwater [114], for this reason, the
GID learned by NetHALOC has the same dimensionality (384) of the HALOC
GID. The NetHALOC network is cleverly trained using an input of an image, and
as output, the HALOC GID of an image closes the loop, in this way the network
is trained to produce the GID of an image that could close the loop.

The network could be trained in a supervised way, or in an unsupervised way.
The unsupervised way is based on the generation of another image through ran-
dom rotation, shifting, and scaling of the input image, and so the target is the
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GID newly generated image. Results are mixed, with the Aqualoc dataset, having
a recall of only 66%, the authors themselves write that NetHALOC does not rep-
resent a real breakthrough, but still represents a very interesting attempt that can
be further refined.

3.2.4 Future trends: a short glimpse

State-of-the-art in the presented research fields has moved forward very rapidly
in the last years and the field of underwater vision and underwater visual SLAM
has progressed a lot, an example of future trend can be seen in the use of varia-
tional autoencoders for place recognition [158] and unsupervised monocular motion
estimation based on view synthesis and photometric loss [29].

Another field where a lot of progress has been made is obstacle avoidance, a
trend is to use multi-agent reinforcement learning, and adversarial networks [47]
in order to perform obstacle avoidance with single or multiple robots at the same
time.

It has to be noted that the scarcity of underwater visual datasets has been
always a problem for developing robust underwater visual SLAM systems, and
indeed was a problem for the Candidate, however, this issue might be a problem
of the past, thanks to synthetically generated datasets [109, 173].
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Chapter 4

Contributions to Underwater Visual
SLAM

This chapter will present an overview of the research performed during the period
spent at NTNU. The research started with a series of field experiments in order to
gain experience and knowledge in operating vision systems underwater, it continued
exploring applications of deep artificial neural networks to underwater VSLAM and
has been concluded with the identification and development of a set of effective
upgrades to ORB-SLAM 2 in order to generate a robust underwater visual SLAM
system.

4.1 Obstacle Avoidance exploiting Stereo Vision

The research performed on stereo imaging and obstacle avoidance provides empir-
ical evidence of stereo-camera-only underwater obstacle avoidance.

The research was performed through a series of field experiments, utilizing an
ROV equipped with two industrial cameras and an active illumination system. The
hardware setup is reported in detail in Paper A: Stereo obstacle avoidance.

The test location was a shipwreck in the fjord of Trondheim (Norway). Cam-
era calibration has been performed in water utilizing the pinhole camera model,
exploiting three different toolboxes: OpenCV, MATLAB, and Caltech. The calibra-
tion results have been compared, with the MATLAB-integrated stereo calibration
toolbox yielding the best result in terms of reprojection error.

Three different disparity map generation strategies have been tested: Sum of
Absolute Difference (SAD) which is a local strategy, a semi-global strategy called
semi-global block matching [72] and a global strategy, the Kolmogorov and Zabih
stereo matching algorithm [83]. SAD with a 55x55 window (approximately 21/14
times smaller than the rectified image) performed the best in terms of the ability to
detect obstacles in the disparity map. In addition, various pre-processing techniques
have been tested in order to improve the disparity map, but they didn’t provide
any sensible improvement.
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Once obtained the disparity map and 3D points, there comes a need for post-
processing in order to obtain estimates useful for obstacle detection and navigation.
Several approaches have been tested to filter out 3D points irrelevant to obstacle
detection and we have found that a modified version of Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) (a density-based clustering that
classifies data points in low-density area as noise, requires only one parameter ε,
which defines the circular search radius) performed the best. The modification
involved dynamically updating the ε parameter based on the distance of the 3D
point from the camera. The reason why this modification fits very well with stereo-
camera point cloud clustering and filtering is that the points in a point cloud
generated through a stereo-camera system are sparser, as they are further away
from the camera.

Utilizing the same data acquisition for visual obstacle avoidance, rudimentary
visual-inertial odometry based on SURF features and the Nelder-Mead simplex
method [117] optimization has been tested and has been quite successful. During
the experiments, a so-called autonomy layer of the ROV control system took care
of activating a pre-determined change of course as soon as the visual system would
identify an obstacle.

4.2 Machine Learning Elements for increasing SLAM
Robustness

One of the main reasons for the under-performance of visual motion estimation
techniques is the inability to cope with the overall lower quality of underwater im-
ages and the potentially high amount of moving elements in the scene (see Chapter
2, Section 2.4).

4.2.1 Loop closure candidate retrieval

The research performed on loop closure candidate retrieval contributes to the field
of underwater visual SLAM by demonstrating how an autoencoder image-matching
procedure can substitute loop closure candidate retrieval based on the bag-of-words
approach.

Loop closures are a crucial part of SLAM systems that allow bounding the
estimation error, which could be significant if the SLAM estimate is extended in
time and does not benefit from any global positioning system.

Closing a loop requires recognizing a scene or image seen before, this then re-
quires a database where information is stored about each scene or image previously
seen and rises the problem of the limitation of computational resources. It indeed
requires both a very compact image or scene representation and a fast way to search
in such a database for possible matches.

A solution to this problem was to represent images as bag-of-words vocabulary
and build an inverted index [8] [110], unfortunately, this method requires the con-
struction of a vocabulary that will be dependent on the kind of images supplied
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during the training phase, also utilizing only information derived from features
does not guarantee that the images do belong to the same scene.

The solution proposed in Paper B Paper B: Loop closure detection is to avoid
features to compare images, but instead perform a direct comparison, utilizing a
highly compressed version of the original image, generated from the latest layer
of a CNN encoder. The result is an image descriptor of a size of 4096 elements
which is directly generated from the entire image. Cosine distance is then used
to compare the current image representation with the previously collected ones
through the cosine distance. To keep the computation time low and stable, the
search for similar images is performed on the GPU. Utilizing an Nvidia TITAN
6Gb the search time has been demonstrated to be irrelevant to the number of
entries for 4000 images (see Fig. 1 in Paper B: Loop closure detection).

Only after similar images are found, then a keypoint-based comparison is per-
formed to validate the match, this ensures that the keypoint which are compared
between each other are coming from images that have to look similar. Comparisons
with FAB-MAP 2.0 [30] using underwater and street datasets have shown (see Ta-
ble 1 in Paper B: Loop closure detection) that the approach performs retrieves loop
closure candidates which a much higher precision, with a comparable run-time.

4.2.2 Improving feature tracking for visual ego-motion
estimation

The research performed on improving feature tracking for visual ego-motion esti-
mation contributes to the field of underwater visual SLAM by demonstrating how
a simple convolutional neural network can be used to reject keypoints belonging to
surfaces not suited for visual ego-motion estimation, and so improve feature-based
visual ego-motion estimation systems.

The underwater environment can be a highly dynamic environment, especially
near the sea bottom (a reference to many underwater visual ego-motion estima-
tions) as many forms of life of all shapes and sizes populate the sea. The vast
majority of visual ego-motion estimations estimate the ego-motion assuming that
the environment is static, such assumption is often wrong in natural underwater
environments: school of fishes and currents moving together large sections of vege-
tation are common occurrences and can create scenes that have a coherent motion
that can be mistaken for ego-motion [90]. Considering also that many visual ego-
motion estimation strategies are based on features. Filtering such features would
increase the robustness of the ego-motion estimation.

An example of such a system, called keypoint rejection system has been de-
veloped as part of the research performed and presented in Paper C: Keypoint
rejection system.

The strategy employed has been based on a shallow (a quite low amount of
weights and layers) deep learning CNN trained to classify keypoints as suitable
and unsuitable for visual ego-motion estimation. The information provided to the
network for training and inference has been a square 65x65 image patch (for images
of 1280x1024) centered in a previously identified keypoint. A dataset of image
patches that separates suitable and unsuitable keypoints for ego-motion estimation
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was not publicly available, therefore, a method has been developed to manually
build such a dataset.

The procedure involved visualizing an image with keypoints drawn on it and
selecting an area of it through the mean of a series of mouse left clicks, with the
goal of a complex polygon enclosing the highest possible amount of unsuitable
keypoints. The procedure is then repeated until all the unsuitable keypoints are
selected. Then all the keypoints present inside the polygons are used to generate
the unsuitable keypoints patches, and the other keypoints are used to generate
suitable keypoint patches instead. In this way, a very high amount of patches could
be generated in a short amount of time.

The network utilized is a very simple CNN, composed of three layers of convolu-
tional, max pool, and RELU concluded with a fully connected layer and a softmax
function. Inference run-time performance of the network is put in a central spot:
the analysis includes 32 vs 16 floating-point implementations through the Nvidia
TensorRT library, batch inference, and single and multi-threaded implementation
on both GPU and CPU.

The network prediction performance is reported in a form of a confusion matrix
and tested against DynaSLAM [17] on a particular sequence which shows severe
drift due to a moving scene, showing that this approach prevents initialization on
several sequences where fishes move in front of the camera and produce a coherent
motion. Inference time is also greatly reduced compared to the network present in
DynaSLAM (Mask R-CNN).

4.3 Description of the Underwater Visual SLAM (UVS)
System

The development of an improved monocular ORB-SLAM 2 for underwater applica-
tions contributes to the field of underwater visual SLAM by providing the research
community with a new visual SLAM system to compare with, as well as providing
hints on what could improve underwater performance in future underwater visual
SLAM systems.

There was a desire to develop an underwater visual SLAM system "from scratch",
utilizing and improving on several visual SLAM components observed to work well
underwater.

Unfortunately, due to time constraints, the research focused on improving monoc-
ular ORB-SLAM 2 to achieve superior estimates underwater.

The are several reasons that lead to the decision to improve monocular ORB-
SLAM 2.

In terms of the quality of the estimates and the robustness, a monocular camera
visual SLAM is not desirable. There is indeed no doubt that stereo-vision systems
can provide more accurate estimates than monocular systems. However, on small
robots stereo systems can degenerate in a monocular system due to an insufficient
baseline, the space might not be enough to fit two cameras and hardware malfunc-
tions could affect one of the cameras of the stereo system. Having the possibility
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of falling back to a monocular visual SLAM could be a critical feature to many
underwater robotic applications.

ORB-SLAM 2 is a feature-based visual SLAM system. Several so-called direct
methods have been proposed, such as LSD [42] and LDSO [56]. One of the potential
benefits that direct methods would bring in underwater SLAM would be the ability
to estimate the ego-motion in low light conditions and potential areas of the seabed
lacking features.

The fundamental problem of such methods applied to underwater scenes is that
the depth of a 3D point becomes a function of its intensity, which changes due to
the non-linear absorption of light in the water.

Such an issue is accentuated by the fact that most likely the source of light illu-
minating the scene is rigidly attached to the robot, and therefore robot movements
could translate into a change of illumination and so could produce an apparent
change in the depth of the scene. To further complicate the matter, light absorp-
tion by water is also a function of salinity and temperature [126]. Even assuming
that full control of all the physical variables involved could be achieved, such a
solution would be impractical for many underwater applications.

LDSO has been tested underwater [88] and it has been shown to greatly under-
perform ORB-SLAM 2 in terms of Absolute Translation Error (ATE) and in terms
of robustness, losing the ability to perform SLAM of many sequences.

An ideal solution would have been to develop a visual-inertial monocular SLAM
dedicated for underwater, as IMU are likely to be present even in small robots and
do complement very well with visual ego-motion estimation, as inertial sensors do
not require any special environmental condition outside a robot to perform well.
The reason why this path has not been followed relies on the fact that there are not
many available underwater datasets that include inertial data. To further compli-
cate things, it is most likely that many underwater visual-inertial attempts fail to
provide better solutions than visual-only due to camera-IMU relative calibration
being miss-aligned, as the camera-IMU calibration was performed in-air [65].

The research performed has identified many shortcomings of ORB-SLAM 2 for
underwater SLAM and addressed them successfully.

The homography-fundamental matrix initialization in ORB-SLAM does not
suit well underwater environments: a homography would work well only on planar
surfaces, which is unlikely to exist in feature-rich underwater environments, and
estimating the fundamental matrix for estimating the side-way motion with a 6-, 7-
and 8- point algorithm is simply not recommended [119]. The idea is then to utilize
the 5-point algorithm [119] instead and utilize 3 views instead of 2, this guarantees
a unique solution (see Table 1. in [119]). As a conceptual note, all monocular visual
ego-motion estimations which do not have access to external scale estimation, do
benefit from initializing using three views, as monocular ego-motion estimation is
structurally a three-view problem, due to relative scale estimation.

We identified a crucial performance limitation of ORB-SLAM: the way features
are matched between frames. ORB-SLAM performs brute-force matching between
those features that belong to the same vocabulary tree, to dramatically decrease
the computational complexity. This procedure returns only a subset of all the
possible and valid matches, as it is sensible to the performance of the pre-trained
vocabulary.
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Valid matches are the matches where the generated 3D point is validated
through all the quality checks that ORB-SLAM performs on newly generated 3D
points, like for example the epipolar constraint. Attempts made to re-train the
vocabulary with underwater images didn’t improve the overall performance. The
solution is then to perform a real brute-force match, which goes through all the
possible matches. However, a naïve implementation would not be fast enough, in-
stead, because the descriptors that have to be matched are binary descriptors, a
deeply optimized matcher [10], which is based on unrolled loops and the use of
X86_64 instruction _popcnt64() can be used. A speedup of 180X, compared to a
naïve implementation, and 20% more valid descriptor matches can be achieved.

The conclusion is that the computational time required to match two sets of
binary descriptors becomes just higher than the one achieved by the DBoW2-based
brute force. Furthermore, as the matching involves two keyframes at a time, further
parallelization can be achieved by launching a thread for each keyframe pair.

We introduced a fundamental architectural change: in ORB-SLAM the front-
end and the back-end are running asynchronously. To allow ORB-SLAM to be
as responsible as possible for new frames arriving, this is eliminated, in favor of
synchronization between the front-end and back-end. The issue is that the front-
end is indeed dependent on the back-end: in the case, frames arrive faster than the
ability of the back end to produce map points, tracking will be lost, regardless of
the quality of the scene. In terms of robustness, this is a clear design drawback,
which can be easily addressed by forcing the front-end to wait for the back-end
to have completed the map-point generation. In case of frames arrive while the
front-end is waiting on the back-end, frames are inserted into a first-in first-out
(FIFO) queue. Accumulation of frames in this queue is in general to be avoided
(the consequence would be an always increasing time delta between the estimates
and the current position of the robot/vehicle), and this can be achieved by correctly
sizing the hardware required for a specific visual SLAM application.

We introduced a motion model to progress the camera attitude and position
when the tracking is lost. This allows the immediate possibility of re-initialization,
without losing the previously estimated poses and map and without having to wait
for a loop closure to occur, as in ORB-SLAM.

Loop closure detection, which was utilizing the vocabulary for accelerating de-
scriptor matches, is now utilizing the same full deeply optimized brute-force ap-
proach, increasing the number of closed loops by 4.5% in-air and 66% underwater.

In addition, we proposed a scale-agnostic station-keeping detection: the the-
ory is that when performing station-keeping, global optimization could take place.
Carefully considering the robot attitude derivative, the average angle between ve-
locity vectors and the ratio of commonly observed map points is demonstrated using
an in-air sequence 00 of the KITTI dataset, for the lack of better alternatives.

Lastly, the long-term ability to operate is addressed, with a specific pruning
that limits the number of map points and keyframes. This not only guarantees the
possibility to perform SLAM without any time limit but also bounds the compu-
tational complexity for loop closure correction and global BA. The pruning first
addresses map points, creating a new entity in the SLAM system, the so-called
partially pruned keyframe. By pruning map points first, the ability to close loops
is preserved, as map points are pruned in a way that the remaining points are
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uniformly distributed. Such strategy is also instrumental for path-planning and
navigation, as pruning according to a uniform distribution, in absence of other
information, maximizes the probability of maintaining surface reconstructability,
given the Nyquist–Shannon sampling theorem. The creation of a partially pruned
keyframe involves pruning 66% of the keypoints observed by such keyframes, to be
able to close the loop of partially pruned keyframes, the loop detection threshold
is lowered also by 66%. When all the keyframes outside the local map are partially
pruned keyframes, full pruning of keyframes and relative observed map points is
performed, starting from the keyframe further away from the active keyframe, and
proceeds following the creation order through the essential graph.

The overall performance compared to ORB-SLAM is significant, with median
RMSE being 21.5% better on in-air sequences and 213.85% better in underwater
sequences, and in both in-air and underwater sequences, there is an increase in
map points and loop closures. Public underwater sequences where ORB-SLAM
was not able to complete the sequence, like RTMVO 5 and Aqualoc 01, can now
be completed.

A private underwater sequence is also tested, called Kjerringholmen north, from
the Norwegian location where it has been captured. The sequence is captured by
an AUV of the Applied Underwater Robotics Laboratory (AURLab) [1] with a
seabed-looking camera and a led light system. The AUV moves straight and it
lowers itself until the seabed can be seen by the camera.

Calibration has not been performed on-site, but in a pool with a similar height
from the seabed, see Fig. 4.1. ORB-SLAM on such sequence is not able to initial-
ize, while LDSO produces completely wrong estimates, the images are very dark,
so CLAHE is used to enhance them. With and without CLAHE, ORB-SLAM im-
proved for underwater can initialize and provide estimates for all the sections of the
sequence where it would be possible to expect a visual SLAM estimate, as outside
of this section of the sequence the images are too dark, or simply the seabed is not
in the visible.

ORB-SLAM 2 with all the robustness improvements here described has been
called Underwater Visual SLAM (UVS), the paper describing this work is present
in this thesis: Paper D: Underwater Visual SLAM system (UVS).

UVS has been made to run also on a small and low-power platform like the
Nvidia Jetson Nano, see section UVS on Jetson Nano in chapter Additional docu-
ments, and on a series of sequences captured from Eelume’s Snake robot docking,
which include a sequence where the robot is performing underwater docking, a
sequence where the camera looks at floating ice from under the water and a se-
quence where in front the camera appears first human-made structures and then the
seabed. The document is present in this thesis Eelume Snake’s Camera Sequences,
in chapter Additional documents.
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Figure 4.1: AURLab’s AUV camera calibration, performed more or less at the same
distance from the sequence Kjerringholmen North dataset [88]. Author: Marco Leonardi.
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Chapter 5

Concluding Remarks

The research work presented in this thesis has explored several aspects of under-
water vision, like stereo and obstacle avoidance, with a particular emphasis on
improving monocular visual SLAM and its viability, robustness, and long-term op-
eration. The performance of the research produced has been assessed with empirical
full-scale experimentation as well as publicly available datasets and benchmarked
against the state-of-the-art. The research questions that this thesis has aimed to
answer are the following:

1. How should we design an underwater obstacle avoidance system exploiting
stereo vision?

2. How could we increase the robustness of loop detection in underwater sce-
narios?

3. How could we increase the robustness of feature matching on underwater
image sequences for visual ego-motion estimation?

4. What are the key elements necessary to address the limitations of ORB-
SLAM systems when operating underwater?

5.1 Conclusion

Visual SLAM is one of the most complex tasks in computer vision, and sure trying
to perform it underwater does not makes things easier. Water and the waterproof
enclosures required for the cameras can deeply affect vision by introducing a series
of non-linear effects.

Potentially most of these effects can be modeled and so addressed but could
require additional sensors to sample the physical characteristic of the water, like
salinity and temperature. Several works on the calibration of flat-port systems have
been proposed [3] [99], however when it comes to empirical experiments which
involve visual features for visual-ego motion estimation, such non-linear effects can
be substantially ignored.

When it comes to calibration of a pin-hole camera model with a flat camera
port, until the distance between the camera and the checkerboard is uniform and
structures appear to be at a similar distance to the one used in calibration, the
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5. Concluding Remarks

3D reconstruction performance is not particularly affected, resulting in estimates
precise enough for most purposes.

Visual ego-motion estimation performance and robustness in natural underwa-
ter environments can be achieved by utilizing feature-based methods. While di-
rect, hybrid and deep-learning-based methods are not to be excluded. The further
complexity present in underwater environments has proven that work has to be
pursued to make them a viable choice. However, attempts of creating underwater
visual odometry systems based on deep learning have been successful [152].

Robustness has been explored in several aspects, in particular loop closure,
feature filtering, feature matching, and dead reckoning.

Robust underwater loop closure detection has been addressed by utilizing the
compressed representation produced by a convolutional autoencoder and paralleliz-
ing the search for potential loops on a GPU. Utilizing deep learning methods for
loop closure detection has been further researched by the community, both with
unsupervised [22] and supervised [18] methods.

The presence of highly dynamic and unpredictable elements in the environment
constitutes a real danger for visual-ego motion estimation systems underwater.
School of fishes, uniformly moving elements of vegetation, or anything else which
can be transported by currents, could represent a set of coherently moving features
that has the potential to be mistaken for ego-motion estimation, filtering such
features is a must for robust visual motion estimation and has been demonstrated
to be able to be performed using square image patches centered around detected
features and a small and efficient convolutional neural network.

The insufficient amount of feature points as well as their poor quality (for exam-
ple, poor repeatability) have already been identified as problematic in underwater
scenes [114]. For this reason, the departure from vocabulary-based matching is one
of the key improvements for underwater scenarios. In ORB-SLAM 2 such departure
has generated a great increase in performance in almost all the available metrics.

Monocular-only VSLAM requires the presence of a motion model able to per-
form dead reckoning and produce all the possible estimates, as soon as a sufficient
amount of features can be identified in multiple frames.

The lifelong operation which may be necessary underwater requires careful
memory management, which can be achieved by pruning the structures gener-
ated by the VSLAM. When pruning, it is important to maintain the possibility to
perform loop closure. With such a goal in mind, map points can be pruned first,
and the loop detection strategy updated to consider such pruning.

Station keeping is a typical operation in underwater robotics, in such settings,
VSLAM components dedicated to mapping generation are not often needed, so
the map and poses could be optimized. Detecting station keeping could be quite
trivial with a stereo camera system but is indeed not with a monocular camera
as scale information is missing. With a single camera, detecting station keeping
can be achieved by carefully considering the ego-motion velocity vectors, the atti-
tude derivatives, and the ratio of commonly observed map points in a window of
keyframes.
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5.2 Recommendations for further work

Feature and deep-learning-based hybrid visual SLAM systems are likely to outper-
form purely feature-based approaches in the near future, especially in robustness
and ability to maintain the tracking, one of the most critical aspects when operating
underwater, given the relatively low performance of in-air methods.

The way forward stands in creating a tightly coupled visual-inertial system that
takes into account also the other sensors present on the robot, like the sonar system
and the fully integrated SLAM system, which is able to robustly cope with the lack
of one or multiple lacks of the sensors readings.

Preliminary experiments utilizing the Pinax model [99] performed during the
research period, have shown the possibility to use the reprojection error in order
to detect the level of salinity in the water, up to a single-digit precision. Utilizing
such a strategy could help in achieving superior 3D reconstruction performance
in presence of a camera model with salinity as a parameter, without the need for
specialized sensors.
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Chapter 6

Original Publications

6.1 Paper A: Vision based obstacle avoidance and motion
tracking for autonomous behaviors in underwater
vehicles
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Abstract—Performing reliable underwater localization and ma-
neuvering of Remotely Operated underwater Vehicles (ROVs) and
Autonomous Underwater Vehicles (AUVs) near nature protection
areas, historical sites or other man-made structures is a difficult
task. Traditionally, different sensing techniques are exploited with
sonar being the most often used to extract depth information and
to avoid obstacles. However, little has been published on complete
control systems that utilize robotic vision for such underwater
applications.
This paper provides a proof of concept regarding a series of
experiments investigating the use of stereo vision for underwater
obstacle avoidance and position estimation. The test platform has
been a ROV equipped with two industrial cameras and external
light sources. Methods for underwater calibration, disparity map
and 3D point cloud processing have been used, to obtain more
reliable information about obstacles in front of the ROV. Results
from laboratory research work and from field experiments
demonstrate that underwater obstacle avoidance with stereo
cameras is possible and can increase the autonomous capabilities
of ROVs by providing appropriate information for navigation,
path planning, safer missions and environment awareness.

Keywords—underwater stereo vision, obstacle avoidance, ROV, AUV,
motion tracking, position estimation

I. INTRODUCTION

ROVs require a constant supervision during their missions
and information about their environment. Even if underwater
operations are characterized by low speeds, they can be very
challenging due to the difficulty of not having a complete
overview of the surroundings, due to the lack of light, due
to non-linear distortions introduced by the water (relevant
for visual sensors) and due to the impossibility to use high
frequency radar because of high attenuation in salt water.
AUVs started to replace ROVs in several context, but due
to limitations in the current artificial intelligence technology,
their operative context is limited and ROVs are still broadly
used today. ROV navigation is usually performed by one or
more human operators that orient themselves with the help
of a compass, a sonar and several cameras. By improving
safety and success of the ROV missions a certain degree
of autonomy within the ROV operations can be included.
Cameras provide - compared with other sensors - cost effective
information about the environment in high-resolution. That

makes the implementation of such a system very interesting
for obstacle avoidance, motion tracking, station keeping and
drift correction.

A. Related Work

There are several sources in literature about obstacle avoidance
and motion estimation utilizing vision for mobile and partial
autonomous robots, but most of these studies are conducted
for terrain, humanoid or aerial and not so much for underwater
vehicles. An example of robotic vision and machine learning
for autonomous underwater operations can be found in the field
of visual servoing [1], [2].
Examples for underwater obstacle avoidance are in general
based on multibeam echo-sounders [3] or other kind of
sonars [4]. A previous work for underwater obstacle avoidance
presents a structured light based visual subsystem, leading to
the reconstruction of a 3D sea-line profile [5].
For motion estimation using cameras in the underwater en-
vironment the paper [6] can be considered. A collection of
experiments is presented in [7] by testing a developed sensor
fusion approach with a monocular camera and an Inertial
Measurement Unit (IMU) [8]. Mosaicking techniques can also
be exploited for motion estimation and are demonstrated in
[9].

II. HARDWARE SETUP

All field experiments where conducted using a ROV Sperre
SUB-FIGHTER 30K (cf. Fig. 1). The ROV has been equipped
with two Allied Vision Prosilica GC1380 cameras (CCD,
global shutter, GigE Vision complaint, 1360x1024 pixels res-
olution), with a 8mm fixed focal length, an infinity focus
and a maximum opening aperture. The cameras were placed
inside two separate custom-made waterproof enclosures rated
for 3000 meters depth. Two light sources (OSRAM 400W
HMI) were utilized to illuminate the scene in front of the stereo
system. Tests for obstacle avoidance and position estimation
were performed at a depth of around 70 meters. The testing site
we have chosen is the area around a shipwreck (“Hercules”,
a fishing boat) in the Trondheimsfjorden. We have choosen
a baseline of 9.5cm [10]. The cameras were synchronised
using a software trigger and set with the standard factory



Fig. 1: ROV 30K: Stereo camera system (red rectangles),
front looking sonar (green rectangle), light sources (yellow
rectangles). See Fig. 2 for the final camera setup.

Fig. 2: Schematic drawing to illustrate the stereo camera -
light source hardware setup at the ROV. Left: Front view,
light sources (yellow), stereo camera (two circles), d1=40cm
and d2=47cm. Right: Depth distance offset between the light
sources and the cameras with d3=20cm.

parameters except for the exposure time (15ms) and gain (15).
In addition, we exploited a front looking sonar (Kongsberg
Mesotech MS1000 with a high resolution head) for comparing
the 3D information extracted from the stereo setup.
In the following we describe the tests we performed with
respect to camera calibration, disparity map pre-processing,
disparity map computation, 3D point cloud extraction and
processing.

III. CAMERA CALIBRATION

Camera calibration is a crucial step for extracting 3D infor-
mation out of stereo images. Intrinsic and extrinsic camera
parameters are computed along with a set of parameters that
help to correct for lens distortions.
The intrinsic matrix contains the internal pinhole camera model
parameters, and the extrinsic matrix describes the rotation
and translation of the second camera with respect to the first
camera, in a world coordinate frame. Typically, radial and
tangential distortions are corrected. The radial distortion with
parameters k1, k2, and k3 can be described by the following

equation

xr = x(1 + k1r
2 + k2r

4 + k3r
6)

yr = y(1 + k1r
2 + k2r

4 + k3r
6)

r2 = x2 + y2.

Note that such distortions are commonly produced by standard
lenses. The tangential distortion can be expressed as

xt = x+ [2p1xy + p2((x2 + y2)2 + 2x2)]

yt = y + [2p2xy + p1((x2 + y2)2 + 2y2)]

with parameters p1 and p2, that appear in case the lens is
not mounted parallel to the sensor. The elements within the
intrinsic camera matrix

K =

(
fx s x0
0 fy y0
0 0 1

)

are the horizontal focal length fx, the vertical focal length
fy , a skew parameter s (set if the camera pixels are not
perfectly squared) and the components x0 and y0 representing
the principal point offset. The rotation matrix R along with
the translation vector t represent the extrinsic camera parame-
ters. There are many methods available for determining these
unknowns and we refer to [11] for an introduction to multiple
view geometry.
We exploit image rectification in order to simplify the corre-
spondence problem (the problem of finding matching points
between stereo image pairs). When the intrinsic and extrinsic
matrices are computed the homographies needed for rectifying
a pair of images can be calculated algebraically. The first step
is to calculate the fundamental matrix F , a 3 × 3 matrix of
rank 2 that satisfies the following equation:

p′
T
Fp = 0.

Here p and p′ are corresponding points in homogeneous
coordinates between two cameras, so that Fp represents an
epipolar line on which the point p′ must lie in the other image
[11]. The Fundamental matrix F can be calculated directly
using the intrinsic matrices K and K ′ of the cameras along
with the extrinsic rotation R and translation t

F = K ′
−T

[t]×RK
−1,

where the operator [·]× denotes a matrix that performs the
vector cross product. After F is obtained it’s possible to
determine the epipoles by finding the left and right null spaces
of F

e′
T
F = 0, F e = 0.

This can be done by the Singular Value Decomposition (SVD)
of the matrix F as follows

F = UDV >,

where U and V are two orthogonal matrices and D is a
diagonal matrix. The i-th diagonal element of D is defined as
the i-th singular value of F and the i-th column of U and the
i-th column of V are the corresponding left singular vector and
right singular vector, respectively of F . The right null space
of F corresponds then to the column vectors of V that belong
to zero singular values. The left null space of F corresponds
to the rows of U> with singular values equal to zero.



For the following rectification step it is required to find
a projective transformation H ′ that maps the epipole e′ to
the point at infinity (1, 0, 0)

T . Then the matching projective
transformation H , which maps the remaining epipole e to
infinity is computed. Note that this also minimizes the least-
squares distance:

∑

i

d(Hxi, H
′x′i).

The rectification of the images itself is performed by re-
sampling the two images according to the respective projective
transformation H and H ′.
Calibration of a stereo setup is a well studied subject and
several toolboxes for different programming environments are
available. The toolboxes used during our studies are the
MATLAB integrated toolbox [12] (cf. Fig. 3), Caltech toolbox
[13] and calibration functions from OpenCV [14].
When working with computer vision approaches for under-
water applications the low contrast of images [15] impacts

Fig. 3: Visualization of the reconstructed calibration patterns
used in the stereo camera setup.

the ability to detect edges and corners, that is the first pre-
processing step of many calibration toolboxes. Experiments
showed that this problem is not significant and the automatic
detection of the checkerboard worked well for images with
reasonable quality (sharp enough and good illuminated, cf. Fig.
4). In order to assess the quality of the calibration results we

Fig. 4: Illustration of a rectification computed after calibration.
Note that corresponding points are found on corresponding
horizontal lines.

evaluated them in two steps, the first one was to compute the
mean reprojection error. The reprojection error is defined as the
distance in pixels between the actual projection of a calibration
point in 3D and the reprojection of the reconstructed point

onto the camera plane (cf. Fig. 5) using the 4 × 3 camera
matrix P = [R | t]TK. The reprojection error is mostly used

Fig. 5: Representation of the reprojection error: O camera
origin, Q 3D point in space, q actual projection of the point
Q on the camera plane, q̃ reprojected point. The reprojection
distance is the euclidean distance in pixel between q and q̃.

to evaluate the result of a camera calibration, but at the same
time it can be artificial lowered by iteratively removing images
from the calibration images with the highest reprojection error
(and it is also sensible to image resolution). As it may happen
that the reprojection error is low, but the calibration is still
sub-optimal (this occurs for example if the calibration pattern
does not cover the full image [12]) we manually checked the
rectified images for ensuring a good calibration.
The first tool that we tested for calibration was the integrated
MATLAB toolbox. Two papers are cited in the toolbox docu-
mentation: The first one [16] describes a common method for
camera calibration and is based on the identification of an arbi-
trary orientated planar pattern. The second paper [17] describes
a calibration procedure, which consists of multiple steps:
identification of a known pattern, a direct linear method for
computing internal camera parameters that does not take into
account lens distortion, followed by a Levenberg-Marquardt
optimization in order to refine the results and calculate external
parameters, taking into account the lens distortion correction.
The calibration experiments were performed using two
datasets: A dataset composed of 354 and a subset composed of
20 selected stereo-pair images. Using the integrated MATLAB
toolbox we found a robust mean reprojection error of 1.08px
and an average focal length of 1720.17px with an average
estimation error of 0.09%. Removing all image pairs with a
reprojection error of 2 pixels or more the average reprojection
error reduces to 0.74px, the estimation error of the focal length
reduces to 0.06% with an estimated focal length of 1719.36px.
Note, that changing the optimization parameters did not impact
theses results significantly.
The second calibration procedure that we tested was built
from OpenCV calibration functions. OpenCV stereo calibra-
tion functions provide an automatic detection procedure of
the checkerboard. By applying a histogram equalization to the
gray value image and an adaptive threshold a binary image is
generated. The corners of the checkerboard are detected with
subpixel accuracy [18] using the respective OpenCV function
(cornerSubPixel). A final optimization procedure is performed
for estimating the lens distortions. In the used calibration ex-
ample program the intrinsic camera matrices are estimated with



an initial guess. For optimization the Levenberg-Marquardt
method is utilized with a termination criteria of 100 iterations
or a delta change less than e−5.
The calibration procedure using the Caltech calibration toolbox
for a stereo setup starts with a manual independent calibration
of the two cameras. For each camera the images have to
be processed manually by providing the top left, top right,
bottom left and bottom right corners of the calibration board.
This process is not suited for processing a large amount of
images, but allows to obtain a calibration when the automatic
checkerboard detection fails due to non-optimal images (noise,
non-homogenious illumination, etc.). The corners are then
identified with subpixel accuracy using a Harris corner detector
with a Gaussian mask.
The Caltech calibration toolbox estimates by default radial
distortions (two coefficients) and the tangential distortions (two
coefficients). The calibration process involves calibrating the
two cameras separately before the stereo calibration procedure
is called.
A satisfying rectification has been obtained with all three
implementations. In order to evaluate the calibration results
we compare the average reprojection error, the checkerboard
recognition rate, the estimated focal length, the principal point,
the rotation angle and the baseline for each calibration method.
In Table I and Table II fx is the horizontal focal length, fy

TABLE I: Calibration results full dataset

Parameters OpenCV MATLAB
avg fx 1739.67px 1720.18px
avg fy 1739.67px 1719.87px
avg x0 676.39px 677.17px
avg y0 506.54px 512.14px
xd -96.78mm -100.13mm
yd -2.05mm -2.56mm
zd -2.04mm -12.16mm
α −1.32◦ 1.25◦

β −0.89◦ 2.41◦

γ 2.69◦ −2.29◦

Reproj. Err. 2.11px 1.08px
Check. recog. 58 pairs 196 pairs

is the vertical focal length, x0 and y0 are the coordinates of
the principal point, xd, yd and zd are the components of the
translation vector, α, β and γ are the Euler angles around the
x, y and z axis respectively.
The first experiment (cf. Table I) shows that the programm
using OpenCV functions provides a lower detection rate of
the checkerboard. The performance of the calibration in the
OpenCV implementation that we used, in terms of the re-
projection error, is poorer, but the translational displacements
of the second camera relative to the first are more similar to
those that we have physically measured. The biggest difference
between the two implementations in proportional terms is the
zd parameter, MATLAB shows that the second camera is
12mm behind the first one, which is not true.
For the Caltech calibration we generated a subset of 20 images,
since manual selection of the corners was too time consuming
for the entire dataset. In this calibration run (cf. Table II) it is

TABLE II: Calibration results 20 stereo images

Parameters OpenCV MATLAB Caltech
avg fx 1683.73px 1715.78px 1721.29px
avg fy 1683.73px 1718.26px 1721.54px
avg x0 664.41px 699.70px 700.37px
avg y0 511.13px 528.78px 520.00px
xd -102.16mm -99.58mm -101.34mm
yd 2.07mm -3.39mm -1.77mm
zd 1.67mm 6.81mm -5.65mm
α 2.49◦ 1.27◦ −1.47◦

β −0.81◦ 2.31◦ 2.81◦

γ −1.34◦ −3.06◦ 4.09◦

Re-proj. Err. 0.79px 0.75px 0.80px

possible to see that the MATLAB integrated toolbox and the
Caltech toolbox tends to agree on many parameters, but again
a strange behaviour in the offset zd is present, and again all
three implementations does not agree on the rotation angles,
confirming that ideally a penalty term should be introduced
during the parameter optimization forcing the angles close to
zero. The tests that follow are performed using the MATLAB
integrated calibration toolbox. We investigated the calibration
results for different camera setups (cameras without enclosure,
cameras inside the waterproof enclosures, and the stereo cam-
era system underwater). The aim of these experiments was to
determine which lens parameters are suitable for our specific
application and to understand how these three different setups
affect the calibration. Table III shows that the field of view

TABLE III: MATLAB Calibration results

Params Underwater Out. w. encl Out. w.out encl.
Re-proj. Error 1.08px 0.40px 0.33px
Focal Len. px 1720.17 1286.23 1244.00

Focal Len. mm 11.13 8.32 8.05
H. FOV 43.14◦ 55.74◦ 57.62◦

V. FOV 33.03◦ 43.27◦ 44.83◦

decreases on average by 30% due to the refraction of water,
but the combination of the frontal glass and water results in
a decrease of the field of view of about 35%. This is a quite
large change and has to be taken into account when working
with cameras underwater.

IV. DISPARITY MAP CALCULATION

In order to successfully perform visual obstacle avoidance
underwater one has to estimate the 3D world coordinates
of objects detected in front of the ROV, therefore, the next
step after calibration and image rectification is to extract 3D
information from the stereo recordings. This implies finding
correspondences between the stereo image pairs. A disparity
map represents this information and is a matrix of the size
of the rectified image, containing in each element the offset
between corresponding pixels (generally from the left to the
right image).



Many algorithms have been proposed in the literature to solve
the correspondence problem [19]. These methods can be clas-
sified into dense and sparse reconstruction, local, semi-global
and global approaches. For the purpose of robot navigation,
where limited computational resources are available and a
fast reaction time with respect to the constantly changing
environment is required, it’s better to focus on computationally
effective approaches. The algorithms that have been tested
for the disparity calculation are the classical block matching
(local approach), a semi-global block matching [20] and a
global graph cut based algorithm [21], [22]. An open-source
implementation of the graph cut based algorithm can be found
in [23].
Block matching algorithms for disparity estimation calculate
a score for a pixel involving it’s neighborhood (generally the
area involved in the calculation of this score is a square, so the
terminology “block”) and finding the block in the other image
that has the most similar score. The matching is conducted
exploiting the epipolar constraint, so that correspondences
are searched along corresponding horizontal lines and the
matching block is the one with the highest similarity measure.
The similarity measure itself has an impact on computational
efficiency and matching quality.
In our experiments we tested a simple and fast pixel block
similarity measure known as Sum of Absolute Differences
(SAD). Given a pair of square blocks of pixels A and B, both
of dimension n × n, the similarity measure is determined as
follows:

SAD(A,B) =
n∑

i=1

n∑

j=1

|ai,j − bi,j |.

We used the SAD block matching function from MATLAB
with default parameter setting.
The semi-global block-matching approach [20] exploits an
entropy based matching cost. The idea is based on a pixel-wise
matching of Mutual Information and approximation of a global
2D smoothness constraint. The following energy function is
minimized in order to obtain the disparity:

E(D) =
∑

p

C(p,Dp) +
∑

q∈Np

P1T [|Dp −Dq| = 1]

+
∑

q∈Np

P2T [|Dp −Dq| > 1].

The first term is the sum of all pixel matching costs for the
disparities of D. The second term adds a constant penalty P1

for all pixels q in the neighborhood Np of p, for which the
disparity change is maximal 1 pixel. The third term adds a
larger constant penalty P2, for all larger disparity changes [20].
Such a global minimization is a NP-complete problem and the
solution is approximated by aggregating matching costs in 1D
from all directions equally. The computational complexity of
the algorithm is linear in the number of pixels and disparity
range, obtaining an overall accuracy similar to global methods.
The aim of the Kolmogorov and Zabih stereo matching al-
gorithm [21] is to minimize a non-convex objective function
exploiting graph cut techniques. The energy for a match
represented by f is given as follows:

E(f) = Edata(f)+Eocclusion(f)+Esmooth(f)+Eunique(f).

Here the data term measures how well a matched pair fits,
the occlusion term minimizes the number of occluded pixels,

the smoothness term penalizes the non-regularity of the
configuration and the last term enforces the uniqueness of the
match.
Due to the lack of ground truth data the disparity map
evaluation has been performed by manually estimating a
disparity map. Three scenarios were selected: A scene without
an object in front of the ROV, a scene with a fish at the
Hercules site and a scene with the Hercules site occluded
partially by a dust cloud. We estimated the disparity map by
starting with a 19x19 window sized semi-global approach. To
ensure a good quality for the disparity map and to refine the
contour of the objects, stereo anaglyph spectacles were used.
As our goal is obstacle avoidance we first needed only a rough
distance estimate for an object in front of the underwater
robot, as this already allows to plan and perform object
avoidance actions. However, false object detections (noise)
should be restrained in order to prevent unnecessary actions.
We used the following quality measures for evaluating the
computed disparity map: Root Means Square Error (RMSE),
the percentage of “corrent” matchings (within a 3 pixel range)
and the percentage of noise detected in the image. We define
noise as the presence of a false match.
The first batch of experiments (cf. Table IV) were performed
with block matching, first the uniqueness threshold is kept
at 15 and the window size is changed, then the window size
is kept fixed, where the best result (in terms of RMSE and
obstacle detection rate) was reached and others parameters
are varied. The second batch of experiments (cf. Table

TABLE IV: SAD Block matching results

W. size Uniq. T. RMSE Obstacle Detec. Noise Time

7x7 15 27.84 22.11% 7.21% 0.026s

19x19 15 15.60 57.11% 0.25% 0.027s

55x55 15 14.36 67.45% 0.20% 0.162s

149x149 15 14.60 31.98% 0.25% 0.280s

55x55 - 55.47 25.50% 55.83% 0.153s

55x55 8 12.94 58.98% 0.81% 0.161s

55x55 21 14.90 65.38% 0.07% 0.158s

55x55 55 16.17 33.33% 0% 0.153s

V) were performed using the semi-global approach, which
turned out to be sensitive only to the window size. The

TABLE V: Semi-Global Block matching results

W. size RMSE Obstacle Detec. Noise Time

7x7 28.50 33.42% 25.32% 0.45s

19x19 30.74 33.16% 27.61% 0.45s

55x55 15.65 28.41% 0.14% 0.45s

89x89 23.48 25.93% 4.22% 0.46s

149x149 18.87 21.83% 3.39% 0.49s

graph cut (cf. Table VI) approach has been run, where
the penalty parameter K (evaluating occluding pixels), λ1
and λ2 (smoothness parameters) and edge threshold were
automatically determined. The presented results are computed
as the average over the three test scene images. The rectified
image size is 1168x788 pixels and the CPU used for this
experiment was a Intel Core i7-5820K. The best performance
has been achieved with the SAD block matching, with



TABLE VI: Graph cut results

K λ1 λ2 Data cost RMSE Obs. Detec. Noise Time

78.13 58.11 19.4 L2 76.75 0.01% 33.9% 432.5s

respect to computation time and obstacle detection rate. The
semi-global approach provides a slightly more dense disparity
map, but is less accurate and slower. The graph cut approach
turned out to be too slow for real time obstacle avoidance.
Note, that the execution time of the SAD block matching
with a fixed window size depends only on the images size
and the used disparity range.
The generation of the disparity map can be improved by
pre-processing and post-processing operations like gap
filling. Common pre-processing procedures for disparity
map enhancement are homomorphic filtering and histogram
matching. Homomorphic filtering can be applied to remove the
slow changing illumination within an image, while preserving
the high frequency component of the reflectance. Assuming
that the reflectance and illumination is multiplicative within
the intensity one remove the slow changing illumination by
computing the logarithm of the image and applying high-pass
filter to the result. Applying the inverse of the logarithm
leads to an enhanced image. Histogram matching is a process
were the histograms of two images (disparity map) are made
similar, to homogenize the images so that a simple and fast
matching procedure like SAD performs well. The algorithm
calculates the cumulative probability distribution (cpd) of the
reference image and the target image. The two cpd’s are then
used to build a look up table in order to update the intensity
values of the target image. We repeated the disparity map
tests after filtering the rectified images with homomorphic
filtering, histogram matching and the two combinations of
these. We observed that filtering did not improve the disparity
map, given the fact that our performance indexes are not
based on a ground truth, but on a manually refined disparity
map, the performance fluctuations were not significant.

V. 3D INFORMATION EXTRACTION AND PROCESSING

By using the camera parameters we compute for each pixel
with known disparity its corresponding 3D coordinates. The
first step is to calculate the depth (z-coord.)

Zp =
fb

xlp − xrp
, (1)

where f is the focal length, b the baseline, and xlp − xrp the
disparity, i.e. the correspondence difference between the left
pixel and the right pixel of point p. Then x and y coordinates
can be computed as follows:

Xp =
xpZp
f

, Yp =
ypZp
f

. (2)

False matchings (noise) will also appear as points in the
3D point cloud. This noise could be removed already in the
disparity map, however noise filtering in the point cloud leads
to better results.
One possible way to filter the point cloud is by applying a
simple statistical filter [24]:

Pd = {pi ∈ Praw| ‖pi − pj‖ > µ+ dthresh σ },

where Pd is the denoised point cloud, µ and σ are the mean and
standard deviation of the nearest neighbour distances. Another
possibility is to filter noise by point clustering. A subsequent
noise filter can be applied to remove clusters with a low
number of points, unstructured distribution, etc. We define a
cluster-density based hypothesis by: The number of clusters
and their shapes are unknown and we suppose that the cluster
density is a function of depth, given the increased uncertainty
in the stereo 3D reconstruction due to quantization errors [25].
However, in the literature various clustering algorithms are
known, like centroid-based and/or distribution-based clustering
relying on the knowledge of number and/or shape of clusters.
Another more flexible density-based clustering approach, that
also incorporates the presence of noise, is the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN)
approach [26]. The parameters used by this algorithm are
the point cluster density and the minimum number of points
that can build a cluster. We note that the number of clusters
is determined automatically. Hierarchical clustering is also
suitable for this filtering problem, and we tested therefore an
algorithm called Ordering Points To Identify the Clustering
Structure (OPTICS) [27]. It is based on DBSCAN and ad-
dresses it’s major weakness: the inability of finding meaningful
clusters in data of varying density. OPTICS achieve the ability
of finding meaningful clusters in data of varying density by
putting the points that are spatially close to each other in
a points list. Using this list a reachability-plot (a special
kind of dendrogram), a hierarchical structure of clusters can
be obtained. Input parameters for OPTICS are the minimum
number of points per cluster and a search radius ε to consider
point-to-point distances.
We analyzed our cluster-density based hypothesis by extracting
clusters from all images we had (calibration and field test
datasets). The disparity maps have been generated by block
matching with the SAD metric using a window size of 7x7
(leading to noisy disparity maps) and an uniqueness threshold
of 15. In order to reach real time performance the point
cloud has been uniformly downsampled to 10% of the original
amount of points. Clusters have been extracted with OPTICS
with a minimum amount of 10 points and ε=0.05. The cluster
density is the average distance of the cluster points from it’s
centroid. We are interested in removing noise within the 3D
point cloud that could affect the quality of the path planning.
We are looking for a noise removal process that removes points
that do not belong to obstacles and, at the same time, keeps
all relevant points belonging to obstacles. In order to evaluate
the noise removal, we defined two performance indexes, the
first one is related to the ability to not remove relevant obstacle
points and is defined as the percentage of retained points within
0.1m from the points extracted from the estimated disparity
map. The second performance index is related to the noise
removal and is defined as the amount of removed points that
are 0.1m further away from the points extracted from the
estimated disparity map.
In addition to the noise removal that we discussed we added
a modified version of DBSCAN to the test group that exploits
prior knowledge (a empirical determined function about the
clusters density, without compromising it’s running time).
The modification of DBSCAN consists in changing the input
parameter ε to a function of depth of the currently evaluated



point. Note, the function regionQuery(P, ε) returns all the

Algorithm 1 DBSCAN for Stereo Point Cloud

1: procedure DBSCAN(D,MinPts)
2: C = 0
3: for all point P in dataset D do
4: if P is visited then
5: continue
6: mark P as visited
7: NeighborPts = regionQuery(P, f(Pz))
8: if sizeof(NeighborPts) < minPts then
9: mark P as noise

10: continue
11: else
12: C = next cluster
13: expCluster(P, NeighborPts, C, minPts)

Algorithm 2 Subroutine : expandCluster

1: procedure expCluster(P,NeighborP ts, C,MinPts)
2: add P to cluster C
3: for all point P ′ in NeighborPts do
4: if P ′ is not visited then
5: mark P ′ as visited
6: NeighborP ts′ = regionQuery(P ′, f(P ′z))
7: if sizeof(NeighborP ts′) >= minPts then
8: NeighborPts += NeighborP ts′

9: if P ′ is not yet member of any cluster then
10: add P ′ to cluster C

points with the euclidean distance smaller than ε from the
point P including the point P itself. f(Pz) is the empirical
determined function that follows the found average cluster
density in our experimental cluster density analysis.
Following we present an evaluation in terms of kept object
points and correct noise removal of the discussed filtering
approaches.
The point clouds are obtained from disparity maps generated
with block matching and SAD metric. A set of 3 different
window sizes (7x7, 19x19 and 55x55) and an uniqueness
threshold of 15 was used to create the point clouds. The
evaluation include DBSCAN (ε = 0.15, minPts = 200),
OPTICS (same settings as DBSCAN), our modified DBSCAN
(minPts = 200) and a statistical outlier removal approach
[24] that evaluates 30 neighbors with dthresh = 1 by applying
a simple statistical filter. The results in Table VII show that

TABLE VII: Point Cloud Noise Filtering Results

Filter Obj. Preservation Noise Removal

DBSCAN 73.6% 89.5%

DBSCAN Stereo 96.3% 70.1%

OPTICS 53.7% 87.5%

Statistical 99.7% 45.2%

the performance of DBSCAN can be improved by using prior
knowledge about how the cluster density changes (with a small

cost of the noise removal). The statistical approach has shown
great potential by preserving points belonging to the object, but
it removes the least amount of noise. OPTICS does not perform
well as it erodes the obstacles points. Hierarchical clustering
assumes a hierarchical clusters structure (organization) that
not always makes sense in this kind of clusters, and so the
performance of OPTICS is the worst of the set regarding the
preservation rate.

VI. MOTION TRACKING AND ESTIMATION

The stereo recordings were utilized to estimate the motion of
the ROV by tracking features over consecutive image frames.
Features from two consecutive images are first extracted,
matched and then their 3D position is computed. An opti-
mization algorithm provides the transformation that occurred
between the image pair.
Features are extracted from the current stereo image pair
(currL, currR) at time T1 in addition to the features computed
for the image pair (prevL, prevR) from the previous time
T0 = T1 −∆T .
Features are detected in the images separately with the rotation
and scale invariant Speeded Up Robust Features (SURF)
descriptor [28] and then matched together spatially and tempo-
rally. Matching is performed using feature descriptors extracted
from SURF and comparing their norm using the Sum of
Squared Differences (SSD). We identify features that are
present in all four images. These are then used to estimate
the motion.
Let’s denote with Ff the location of the features in frame f .
The difference between matchings of features in frame currL
and frame prevL is defined as

(du, dv) = FcurrL −FprevL. (3)

Once we get such sets, we can use standard stereo reconstruc-
tion methods to estimate the three dimensional position of the
features.
Given the sets of matched features found in the previous step,
one can find the transformation (rotation and translation) which
best describes the relation between the features at time T0 and
at time T1. This can be formulated as an optimization problem
(cf. also Figure 6) where one aims to find the minimum of an
objective function defined as

f : R6 → R f(x, y, z, θ, α, ψ︸ ︷︷ ︸
variables

, PT1 ,Π, u0, v0︸ ︷︷ ︸
given values

) 7→ ε, (4)

where x = (x, y, z, θ, α, ψ) represents the motion (translation
and rotation) of the camera between two frames at time T0
and T1, PT1 are the 3D positions all the features detected at
time T1, Π : R3 → R2 is the projection matrix used to map
3D coordinates onto the image plane. The variables (u0, v0)
are the positions at time T0 of all the features in the image
plane. The median error of all N feature points is defined as

ε = median
i=1...N

{(u0i − uei)2 + (v0i − vei)2} (5)

where (uei , vei) are the positions at time T0 of the estimated
features in the image plane as described in Figure 6. The
optimal value is obtained as

x∗ = arg min
x∈R6

f(x;PT1 ,Π, u0, v0). (6)



Fig. 6: Illustration of the minimisation problem (4). Exam-
ple: Translation along the x-axis. Estimate the transformation
(T (x)) between two frames, where only the 3D position of the
features at time T1 (green) and the position of the point in the
image plane at both times T0 and T1 are known. We estimate
the 3D position of the feature at time T0 (orange) through
the guessed transformation T̂ and project it back to the image
plane obtaining (uei , vei). The desired value of x is the one
that minimises the distance between the two projections (blue
segment).

To perform such a minimisation the Nelder-Mead simplex
method has been used. It is a non-linear unconstrained model-
free optimization procedure. The minimisation algorithm
creates a polytope (simplex) on the variables space whose
vertices sample the function at different locations, this simplex
either expand or shrink in order to find the minimum.
The algorithm for estimating the camera motion between two
frames is outlined in Algorithm 3.

We implemented two versions of the algorithm. The first
one we call (OME3) 1 and it estimates only the translation
and receives the differential angles as input while the other
(OME6)2 estimates all the six variables simultaneously ([29])
(cf. Fig. 9). The reason for that is, in some cases (especially
with few features) the algorithm computes a transformation
which is not the desired one but still explains the projected
features quite well between the images. Note that equation
(4) represents a non-convex optimization.

The camera pose (motion) estimation can be very challenging
in some situations where the algorithm provides only a sub-
optimal solution.

During lab experiments outside of the water we have seen
that single (sparse) feature mismatching occurs regularly like
shown in Figure 7.

1Optimised Motion Estimation - 3 parameters
2Optimised Motion Estimation - 6 parameters

Algorithm 3 Visual motion estimation

1: Get the stereo image pairs of 2 consecutive frames
2: Extract features
3: Match features in left and right images (spatial match)
4: Match them with the ones at previous step (temporal

match)
5: Reconstruct these points which have been both spatially

and temporally matched
6: Determine the camera transformation using Algorithm 4
7: Proceed to next frame and return to step 1

Algorithm 4 Pose estimation function

1: Use the previous time step’s differential pose estimation
as an initial guess

2: Build transformation matrix from previous two current
frames

3: for i = 1 . . . N (N number of matched features) do
4: Solve P̂T0 = TPT1

5: Project P̂T0
to image plane to get (ue, ve)

6: Compute the error ε as defined in (5)
7: Use Nelder-Mead method to update angles and translations
8: if Error is sufficiently low then variables have been

estimated correctly and thus the algorithm can stop
9: else

10: Proceed to next frame and return to step 2

Fig. 7: Feature mismatching between left and right camera

Although such matching errors happen relatively due to the
fact that features are tracked both temporally and spatially,
they are still present in certain situations. Mainly when the
environmental light is not good or texture regions look quite
similar.

Such mismatchings can lead to an erroneous transformation
estimation. However, since the objective function involves the
median of the reprojection errors, outliers are not weighted.
In Figure 8 features are drawn as red dots. The yellow lines
indicate the larger matching positions in the previous frame.
For estimating the motion (between 2 frames) we exploited the
rotation information provided by the IMU and estimated the
differential translation with OME3. This result was refined by a
following complete search finding all six variables (translation
and rotation). From the obtained path in Figure 10 we can see
that the estimated motion path agrees to a certain extend with
the measured motion path. Over time the error accumulates
and introduces a small drift. In all plots the blue line is the
real trajectory while the red one is the estimated one.



Fig. 8: Hercules site in Trondheimsfjorden: Feature matching
result obtained in real time. Difference between real features
(red) and the ones computed with the estimated transformation
(green).

Fig. 9: Estimation algorithm running in mode (OME6)

Fig. 10: Comparison of the estimated reconstructed trajectory
(seconds, meters)

VII. CONTROL SYSTEM FOR COLLISION/OBSTACLE
AVOIDANCE

The stereo vision based collision avoidance system was imple-
mented as a reactive part of an autonomy layer in the mission
control system used for the autonomous ROV intervention
[30]. The autonomy layer contains a deliberative module
switching between several predefined behaviors in parallel with
a system of reactive behaviors taking control of the vehicle in
case of unwanted and unforeseen events, like an obstacle in
the path of the vehicle. The system provides guidance input to
the ROV control system. In our experiment, the vehicle was
sent towards an obstacle known to the operator, in order to pur-
posely test the detection of obstacles and to provoke reactive
behavior for obstacle avoidance using robotic vision. When

the obstacle in the point cloud (non empty), the orientation of
the vehicle, and estimated distance to the obstacle is sent to
the autonomy layer through User Datagram Protocol (UDP)
communication. As a result, the reactive behaviour demands a
change in heading of the vehicle. The vehicle turns until the
obstacle is no longer detected in the stereo images, and a new
way-point is defined straight ahead (cf. Fig. 11). During the

Fig. 11: ROV position in xy-plane during collision avoidance.

field testes it was confirmed that the 3D information coming
from the stereo system were consistent with the information
provided by the front looking sonar of the ROV. Note, fish
were identified as obstacles. This problem can be addressed
by a time analysis, clustering or machine learning approaches.
Using MATLAB running on a i7-3820QM we were able to
evaluate 5 point clouds per second, thus, given the slow speed
of the underwater vehicle, we were able to achieve real-
time performance. Real-time performance can be improved by
reducing the resolution of the images in order to gain a higher
frame rate.

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented a computer vision based ROV steer-
ing module that allows to add a certain degree of autonomy to
a ROV mission. In particular we developed and analysed an
obstacle avoidance module that is based on stereo-vision. It
allows to detected obstacles in real-time and also determines
the distance of the ROV to the object. Factors like turbidity
and more difficult lighting conditions make the analysis of
underwater video recordings in general more challenging than
the analysis of video recordings in the air. Therefore we started
with an analysis of three standard calibration implementations
that are known to work well in air and exploited these for
underwater stereo camera calibration. We found that the overall
quality of the calibrations is lower comparing to calibrating
stereo cameras in air but that all tested approaches in principle
can be used to estimate the intrinsic and extrinsic parame-
ters of the camera system. The task of computing a dense
disparity map turned also out to be more challenging due
to the lower quality of the calibration and due to the low
sharpness of underwater images. However, fine tuning of a
block matching approach with SAD has proven to be accurate



enough. Subsequent filtering of the extracted 3D point cloud
of the scene has been achieved without any prior information
by the means of statistical techniques and clustering methods,
with the latter providing better results. Several tests with a
ROV in the Trondheimsfjorden showed solid performance of
the autonomous tracking and obstacle avoidance based on the
stereo vision analysis even in absence of natural light. Future
plans include the improvement of the underwater disparity
map calculation and promising approaches are likely based on
convolutional neural networks as they show for generic scenes
a performance superior to other methods [31]. However, for a
more accurate analysis and comparison of underwater disparity
map calculations it is desirable to build an underwater ground
truth data set for disparity maps.
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Abstract: A correct loop closure detection is an important component of a robust SLAM
(simultaneous localization and mapping) system. Loop closing refers to the process of correctly
asserting that a mobile robot has returned to a previous visited location. Failing to detect a
loop closure does in general not pose a threat to the positioning and mapping system of a
robot, but a wrong loop closure can lead to drift of the robot and can therefore jeopardize the
robot’s mission. In this paper a robust, highly parallelizable standalone algorithm for globally
detecting loop closures is proposed. The algorithm is purposely built with the goal of avoiding
false positives, while maintaining reasonable true positives performances. Tests conducted on
the KITTI and the Scott Reef 25 dataset show that when bag-of-words approaches perform
poorly, our presented approach is able to avoid wrong loop closures.

Keywords: loop closure detection, monocular SLAM, loop closures, relocation system, error
bounding, underwater navigation, underwater SLAM

1. INTRODUCTION

Loop closure detection is an important task linking to-
gether the localization and the mapping in the SLAM
process. Loop closure detection makes it possible to reduce
drift, perform relocalization when tracking is lost and
allows to reconstruct the true topology of the scene.

Loop closure detection for visual SLAM is currently mainly
based on bag-of-words models Engel et al. (2014) Mur-
Artal et al. (2015) Cummins and Newman (2011), these
have been proven to work very well in practice, but most
of the time these algorithms are employed in indoor or
urban environments. Early work in loop closure is linked
to EKF-SLAM and the use of a validation gate 1 for data
association Bailey and Durrant-Whyte (2006), which make
use of the state estimation and can easily result in a wrong
data association.

In this paper a method for loop closure that does rely only
on images is presented, in this way a global identification of
loop closures occurs, decoupling the drift in position esti-
mation from the performance of the loop closure detection
system. This method is independent from other compo-
nents of a general SLAM system, allowing it to be further
modified and plugged easily into a motion estimation and
mapping algorithm to generate a SLAM algorithm. As this
is an image-to-image method for loop closure detection

? This work was supported by the Norwegian Research Council
through the Centre for Autonomous Marine Operations and Systems
at NTNU
1 After the prediction step in EKF-SLAM a prediction of the
measurement is performed, this yields to a value-range in sensor
space where to expect an observation. The area is called validation
gate and is used to narrow the search and exclude other potential
matches

that does not use any information about the estimated
position at the time images are received, this method does
suffer from the problem of perceptual aliasing, i.e. for equal
sensed images captured at different positions within the
environment (repetitive patterns in the environment), the
algorithm will relocalize to the coordinates where the first
image instance has been captured, thus indicating a wrong
loop closure.

2. RELATED WORK

Early attempts in the field of visual SLAM implemented
loop closing, but not in a global way. The keyframe based
SLAM method called PTAM Klein and Murray (2007)
does provide loop closing based on the correlation of
thumbnails of the keyframes, but this does not allow to
perform large loop closures. Another popular keyframe
based method for SLAM called ORB-SLAM Mur-Artal
et al. (2015) is able to perform global loop closure detec-
tion, but the process is quite complex and involves many
variables relative to the current state of the SLAM algo-
rithm. An equally notable large scale monocular SLAM
approach that provides global loop closure detection is
LSD-SLAM Engel et al. (2014), which similarly to ORB-
SLAM uses a bag-of-words approach for finding loop clo-
sure candidates.

One of the most notable works in appearance based local-
ization is FAB-MAP as presented in Cummins and New-
man (2008) Cummins and Newman (2011). The authors
propose a probabilistic approach for solving the problem
of recognizing places based on visual words and learn a
generative model of place appearance.

Current state-of-the-art monocular SLAM approaches
consist of depth prediction based methods exploiting con-



volutional neural networks Tateno et al. (2017) Ummen-
hofer et al. (2017). Such approaches, thanks to the learned
priors about the shape of the objects, are able to provide
a dense 3D reconstruction, with very low noise. Notably
they are the first kind of monocular SLAM 2 that work in
true scale 3 , but still they don’t provide any loop closure
detection mechanics.

Williams et al. (2009) compares several types of loop
closure detection for monocular SLAM: map-to-map,
where correspondences are sought between features in two
submaps, image-to-map where correspondences are sought
between the latest frame from the camera and the features
in the map and image-to-image, where correspondences are
sought between the latest image from the camera and the
previously seen images. They conclude that image-to-map
systems perform best because such methods use as much
information as possible, especially when combining image-
to-image information and image-to-map information, but
they have the problem of scalability. In a more recent
survey Lowry et al. (2016) concluded that it is still a long
way towards an universal place recognition system, but
deep learning based techniques are the most promising at
the current time.

3. APPROACH

The goal of this work is to build a standalone, global and
highly reliable loop closure detection algorithm for monoc-
ular SLAM applications. The term standalone indicates
the independence of the algorithm from other software and
hardware systems in the robot. With the term global we
indicate the ability to recover a loop closure independently
from time and current position estimation. The term reli-
able means that the loop closure detection has to be robust
and correct. For achieving a standalone algorithm only the
images captured by the camera (and eventually the camera
parameters) and the current single or multiple estimation
of the position are exploited.
To achieve globality the information which can be obtained
from the camera must, at least partially, retained within a
database. Then the information or features coming from a
new image has to be matched with the information stored
previously in a database in order to detect a loop closure.
To achieve reliability we employed a multi-step process
where only images looking similar to each other were
processed exploiting a robust point-wise matcher, which
is robust regarding intensity changes.

A practical implementation of an algorithm would start by
selecting the input images that will be further processed,
since not every image contains useful information that
can be exploited for re-localization (for example images
where only a white wall is present). In addition, the image
information database benefits from maintaining only rele-
vant information, increasing its robustness and reducing
the time needed for search operations. The processing
then proceeds with an information extraction procedure
followed by a matching procedure for identifying loop
closure. After the matching attempt the obtained image

2 Except inertial sensors aided visual SLAM
3 The scale of the world cannot be observed and drifts over time in
monocular SLAM, being one of the major error sources Engel et al.
(2014)

information is also stored in the database, together with
the single or multiple position estimation at the time when
the image has been captured.

Considering related work, we can observe that feature
based image matching methods have proven to be robust
to scale, rotation, shift and illumination changes, but it’s
not computationally efficient to search for a similar image
in a large database. Visual word based methods, thanks
to the inverted index, provide a way to use features to
search for similar images in a large database in a much
more efficient way. However, one of the problems of visual
words methods is that they require the generation of a
vocabulary, which depends on the images supplied in the
training phase. Another problem is that a match based
only on features does not guarantee that the matched
images belong to the same scene, given that matching
features can be also present on partial and common
repetitive patterns in the images. The main contribution
of this paper is the use of a direct method that selects the
images to undergo a further analysis with direct features
matching, in order to avoid wrong image associations.

The direct method used is based on lossy image compres-
sion, which is achieved by reading the encoding layer of
a convolutional autoencoder (CAE). CAEs are a kind of
convolutional neural networks (CNN or ConvNet), which
are deep, feed-forward artificial neural networks that have
been used for feature extraction Masci et al. (2011) Geng
et al. (2015) and image denoising Gondara (2016) Stowell
and Turner (2015). The usage of a CAE still requires
a training phase on a selected database, but as it will
be shown, even a simple CAE is able to generalize very
well, and so this method is able to provide loop closure
candidates over very different types of images.

4. IMPLEMENTATION

In this section we describe the details of the implemen-
tation of the algorithm that was introduced above (sec.
3). In our implementation the images have been resized to
256× 256 pixels. This choice was based on empirical tests
with a convolutional neural network, that required images
of fixed size as input. For higher resolutions the network
did not converge properly within the training phase 4 .

Here the proposed mechanism starts with the analysis of
the output of a Canny edge detector applied to the resized
image and the amount of non-zero pixels is calculated.
The subsequent quality test consist in checking if the ratio
between non-zero pixels and the total pixels of the image
is larger than a threshold (4% in our implementation, the
threshold has been chosen in accordance to the results
of empirical tests, as it turned out that this threshold
helps to avoid the further processing of images without
enough information content). Images that have passed the
quality test are then forwarded to two different processing
stages: In the first SIFT (Lowe (2004)) is used to determine
keypoints long with a descriptor, the second one is the
convolutional autoencoder, which is used for generating
a compressed representation of the images . The output
of the most inner layer of the convolutional autoencoder

4 Machine learning problems are known to be sensible to the input
space dimension Keogh and Mueen (2017)



(which in our implementation has a dimension of 4096)
is then stored in an array together with the current best
estimate of the position. Using a CUDA accelerated search
with cosine distance metric the first 10 nearest compressed
images are selected and their respective keypoint descrip-
tor is retrieved from the database. Searching efficiently for
similar data points in such high dimensions is an open
problem in computer science Aggarwal (2001) 5 . In high
dimensional spaces points essentially become uniformly
distant from each other Aggarwal et al. (2001) when the
Euclidean distance metric is used, and so different compar-
ison metrics have to be employed. Generally these metrics
do not have the strong and intuitive meaning that the
Euclidean distance has. Exhaustive search operations are
very inefficient on CPUs, as exhaustive search on CPU
is an O(n) operation, a CPU implementation is unlikely
to work with real time performance. Given the simplicity
and independence between each of the single operations
of exhaustive searching, a parallel implementation on a
modern GPU (that can run much more threads concur-
rently compared with a single CPU) keeps the observed
search operation time close to constant. The cosine dis-
tance metric is one of the few metrics that can be applied
in such a high dimensional space, and in this particular
application it has proven to be a reliable metric. The
keypoint descriptor of the current image is then compared
to the keypoint descriptors of the 10 retrieved candidate
images and finding 5 close descriptors indicate that the
scene part has been seen before.

The strength of the algorithm is that the keypoint de-
scriptor comparison is performed only between descriptors
coming from images that are considered as similar by
the autoencoder, thereby allowing an independent second
verification of the scene similarity. In the current imple-
mentation the compressed image representation (obtained
by the convolutional autoencoder) is finally inserted in the
database.

In the following we describe the convolutional autoencoder
(CAE) structure and training: The CAE that generates a
compressed representation of the images, takes as input
a RGB image with 256 × 256 pixels using normalized
values in the interval [0, 1]. The encoding step starts with
a convolutional layer based on 32 filters of size 3x3x3, and
relu 6 as activation function, then max-pooling is executed
with a pool size of 2x2. The same set of operations is
repeated 3 times, each time with the output of the previous
set of operations, with the only difference that the last
convolution layer has only 16 filters, with the goal of
further reducing the dimensionality of the encoding layer.
To complete the autoencoder a decoding layer has to be
implemented. A first thought is to perform an inverse
operation of the pooling. Pooling is a sampling process
that involves loss of information, so inverting it can involve
zero-filling or interpolation, preventing such information
from being completely recovered. While there is a strong
consensus in the deep learning community about the supe-
rior performance of the max-pooling Scherer et al. (2010),
there seems to be not such consensus about how to per-

5 All current indexing techniques (based on space partitioning)
degrade to linear search for sufficiently high dimensions Datar et al.
(2004) Weber et al. (1998) Gionis et al. (1999)
6 Rectified linear unit: f(x) = x+ = max(0, x)

form unpooling, so the strategy employed in this work is
just a simple resizing with nearest neighbor interpolation.
After the resizing layer a convolutional layer based on
32 filters of size 3x3x3 is in line, and relu as activation
function, then again another equal resizing layer. The final
structure of the network consists of a convolutional layer
as previously presented and another convolutional layer
where the numbers of filters is equal to the original image
dimensionality. In this convolutional layer the activation
function is a sigmoid function, that also represents the
output of the network for the training phase. A zero-
padding strategy is employed for every operation that
involves sliding window operations, like convolution and
pooling. At the start of the training procedure all the
weights are initialized by sampling from a zero mean
Gaussian distribution with standard deviation of 0.05. The
training procedure involves minimizing the error between
the target and the actual output of the network through
a sigmoid cross entropy given logits 7 function, which al-
lows the network to perform multi-class classification (see
Google Tensorflow documentation (2018)), to act as an
autoencoder. The optimization is done through a first-
order gradient descent method, based on adaptive esti-
mates of lower-order moments called ADAM Kingma and
Ba (2014), which has been found to be one of the most
successful optimization strategies by the deep learning
community Goodfellow et al. (2016). Even if ADAM is a
gradient descent method that is able to adjust the learning
rate, it still needs a reference parameter for it, which has
been set to 0.001. The dataset consists of 300 images of
indoor and outdoor environments captured from a hand-
held camera. The dataset was split in 70% training and
30% validation examples/images. The optimization was
performed on mini-batches of 32 images at the time for
5000 epochs. At every epoch the loss on the validation set
is calculated, finally the network weights which performs
best on the validation set represent the final outcome of
the training procedure.

5. EXPERIMENTS

Performance analysis in SLAM is a complex issue, espe-
cially when it comes to a stability analysis of the SLAM
algorithm. Therefore, they are often produced by simula-
tions or extended field tests. In order to benchmark the
SLAM algorithm a selection of the KITTI dataset Geiger
et al. (2013) is used, which contains large sequences of
images coming from front looking stereo cameras mounted
on a car. We tested our loop closure detection algorithm
on the KITTI dataset (sequences 00 and 02) using only
the left images. As we plan to use this loop closure de-
tection method for underwater SLAM, we tested it also
on an underwater SLAM dataset Scott Reef 25 from the
Australian Centre for Field Robotics mar (2009). Given
that the dataset is composed of stereo images, we choose
again to use the left images.

For comparison we tested the FAB-MAP Cummins and
Newman (2008) on the same datasets. There exists an
improved version of it called FAB-MAP 2.0 Cummins
and Newman (2011), but the implementation is not freely

7 Logits are functions that maps probabilities x ∈ [0, 1] to R
y ∈ (−∞,∞)



available to the public. FAB-MAP has been run with
default parameters, both our algorithm and FAB-MAP
have been run by accepting as loop closure candidates
only frames that have at least 9 frames inbetween. As
FAB-MAP provides a probabilistic value for each couple
of frames to represent a loop closure, it’s needed to choose
a threshold for asserting which of the images represent a
loop closure, this threshold has been set to 99%. We used
for the tests an Intel Core i7-5820K with 32GB of RAM
and a Nvidia TITAN GPU with 6GB of GDDR5.

Fig. 1. Required time in seconds for processing a new image
plotted against the images of KITTI dataset sequence
00.

Table 1 shows the results of the experiments. We observe
a superior performance in terms of correctness of the
identified loop closures on all the datasets, while FAB-
MAP performs better in terms of computation time. The
low performance of FAB-MAP on the underwater dataset
is probably due to the fact that the used vocabulary is not
adequate for the environment. Tests with different values
for the main parameter of FAB-MAP (the true positive
rate p(z = 1|e = 1), that represent the probability of
observing a feature given the existence of that feature)
show little to no effect on the performance. Figure 1
shows a plot of the computation time for the images
present in the sequence 00 of the KITTI dataset. The
computation time of our solution can be approximated
as a constant. Currently the algorithm may detect wrong
loop closures candidates, like shown in figure 2 based on
the observation and detection of single similar images
in the video stream/sequence. This perceptual aliasing
can be reduced or avoided if we also consider temporary
information in the algorithm performing an additional
consistency check for identified loop closure candidates.

Regarding the memory consumption of the algorithm, it
is notable that each stored image occupies 16384 bytes
(4094 32bit floats), assuming a frame rate of 30 frames
per seconds and that every image pass the test of infor-
mation content, the algorithm will allocate around 1.65
GB/hour of GPU memory. Newer GPUs support 16 bit
float natively Ho and Wong (2017), which will immediately
halve the memory consumption without any measurable
performance impact on the algorithm.
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Fig. 2. Sub-optimal loop closure detection due to percep-
tual aliasing.

6. IMPROVEMENTS AND TAILORING

In this first implementation the memory on GPU is allo-
cated and deallocated everytime a set of similar images has
to be retrieved. This does take most of the computation
time required for this operation. A more efficient solution
would be to just add to the GPU memory the new images
compressed by the autoencoder.

The convolutional autoencoder has great potential for
improvements and further research must be conducted
for finding an optimal network architecture for encoding
images. Especially from a training point of view, for
instance a multi step training would be beneficial, because
even ADAM does still suffer from the vanishing gradient
problem. Further parallelism can be achieved by splitting
the image in multiple patches in order to run in parallel
multiple instances of a single autoencoder that, due to the
lower input dimensionality, would be easier to train.

Feeding inertial measurements to a Kalman Filter can
provide a state covariance with a guaranteed physical
meaning of state uncertainty (as the measurement error
is bounded within a certain time period), so restricting
the search of potential matches using the state covariance
can improve robustness and speed up the search process.

As previously stated in the current implementation, at
the end of the algorithm the compressed representation
of the current image is added to the database. A more
efficient solution would be to store a measure of the
position state/keyframe uncertainty (a measure could be
the magnitude of the state covariance matrix if an EKF
is used for position estimation). And, after a loop closure,
eventually replace the matched image in the dataset if the
state uncertainty that comes with the new image is lower
than the matched image currently in the dataset.
It has to be noted that together with position estimation
also attitude could be stored, but current research in non-
linear observer theory has produced globally exponential
stable estimators for attitude estimation Grip et al. (2015)
and as IMUs today are very cheap, very small, and present
in almost every electronic device, attitude estimation using
computer vision is, for most of the applications, no longer
necessary.

7. CONCLUSION

In this paper a global, standalone loop closure detector for
monocular SLAM has been presented. Tests conducted on

relevant datasets known to the SLAM community show
very good performances in correct loop closure detection,
with comparable computation time given parallelization
on GPU.

Using compressed image representations for selecting
which images attempt to match with direct features does
indeed guard the loop closure detection algorithm from
matching images given features that lie on repetitive pat-
terns, and also provide a way to match directly feature
descriptors instead of using visual words.

It has to be noted that our approach does not allow to
detect loop closures with a large variance of the view
points, but is exact where other loop closure detection
systems are more likely to fail.

This work follows the direction of analyzing the use of
deep learning for SLAM purposes, given that the SLAM
community has found deep learning techniques to be
currently irreplaceable for complex SLAM operations.
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Abstract: Most visual odometry (VO) and visual simultaneous localization and mapping
(VSLAM) systems rely heavily on robust keypoint detection and matching. With regards to
images taken in the underwater environment, phenomena like shallow water caustics and/or
dynamic objects like fishes can lead to the detection and matching of unreliable (unsuitable)
keypoints within the visual motion estimation pipeline. We propose a plug-and-play keypoint
rejection system that rejects keypoints unsuitable for tracking in order to obtain a robust visual
ego-motion estimation. A convolutional neural network is trained in a supervised manner, with
image patches having a detected keypoint in its center as input and the probability of such
a keypoint suitable for tracking and mapping as output. We provide experimental evidence
that the system prevents to track unsuitable keypoints in a state-of-the-art VSLAM system. In
addition we evaluated several strategies aimed at increasing the inference speed of the network
for real-time operations.

Keywords: keypoints, monocular SLAM, VSLAM, Visual Odometry, VO, underwater
navigation, underwater SLAM, noise filtering

1. INTRODUCTION

Visual odometry and VSLAM have been successfully ap-
plied in the underwater domain, as for example for ship-
hull inspection Kim and Eustice (2013), Kim and Eustice
(2009) or autonomous underwater navigation Bonin-Font
et al. (2015). Other previous work relies mainly on inertial
navigation system (INS) measurements Krys and Najjaran
(2007), while a very modern work proposes feature based
visual odometry Ferrera et al. (2019). The interest in
this topics is continuously growing and lately a dataset
dedicated to real-time visual underwater localization has
been published by Ferrera et al. (2018). In addition, many
SLAM systems for dynamic non-underwater environments
have been presented by Bescos et al. (2018), Cui and Wen
(2019), and Tan et al. (2013). Unfortunately most of these
systems are very sensitive to moving objects in the scene.
Therefore, our system aims to prevent keypoints detected
at moving objects or dynamic textures, which in a state-
of-the-art approach might have been considered for ego-
motion estimation and mapping. Keypoints are prevented
by using the prior learned by a neural network, so that,
depending on the VO/VSLAM system, the tracking is not
affected by the presence of moving objects or dynamic
textures in the scene.

? This work was supported by the Norwegian Research Council
through the Centre for Autonomous Marine Operations and Systems
at NTNU.

Fig. 1. Keypoints labeled with our system: Keypoints
classified as suitable are circled in green, keypoints
classified as unsuitable are circled in red. Top left:
sandy seabed, top right: caustics, bottom left: seabed
with vegetation, bottom right: a school of fishes.

We provide experimental evidence of this statement in the
result section (section 4).



Fig. 2. Example of unsuitable (left) and suitable (right) keypoint image patches. Unsuitable image patches can contain
fishes, a crab, seaweed, caustics, clean water with high gradient zones, and the effect called marine snow (first row,
third image to the right). Suitable image patches can contain for example man-made objects and different sea bed
types.

We extract patches centered around each detected key-
point as input for a convolutional neural network (CNN)
and train it to distinguish if the keypoint is suitable for
tracking or not. We define keypoints as suitable which
are detected at (static) surfaces, that are not supposed to
move (e.g. rocks), and exclude those keypoints - defined
as unsuitable - which are detected at moving objects, tex-
tures or dynamic physical phenomena (eg. fish, caustics,
etc.; see Fig. 1). Thereby, keypoint neighborhood image
scene information serves as context for the CNN, which
is trained to distinguish if the detected keypoint belongs
to a moving surface or not. This prior knowledge based
selection makes it possible to forward only keypoints to
a motion estimation pipeline that are exploitable for a
reliable ego-motion estimation.

The two main contributions presented in this paper are:

• A fast supervised way to generate a dataset for
keypoint classification

• A novel method for reliable keypoint selection for
underwater visual ego-motion estimation

1.1 Related Work

In Wangsiripitak and Murray (2009) a parallel implemen-
tation of monoSLAM was presented, that incorporates a
3D object tracker into the SLAM system. Moving features
are thereby not included into the map and features that
are known to be occluded by objects are deleted, but as
this work does not detect moving objects, non-stationary
features apart from the ones laying on the tracked moving
object will still corrupt the SLAM estimation. In a similar
way, Riazuelo et al. (2017) implemented an object tracker
dedicated to people tracking. These methods would detect
those a priori dynamic objects, but fail to react on move-
ments of a priori static objects.
In Tan et al. (2013) the authors compare features between
keyframes and the current frame for 3D structure vali-
dation. This method fails when a priori dynamic objects
remain static (like e. g. lifeless marine fauna).

Recently, an ORB-SLAM Mur-Artal et al. (2015) based
approach was presented that operates reasonable well in
dynamic environments Cui and Wen (2019). While ORB-
SLAM is already implicitly robust to small changes in the
scene, the authors improve the robustness of the algorithm
by comparing image patches around the re-projected 3D
point between the current frame and the reference frame.
However, while the system is reported to increase the
tracking performance in dynamic environments, it’s not
able to cope with scenes where many dynamic objects
with a coherent motion pattern are present (e.g. a school
of fishes). The authors suggest the use of object recogni-
tion techniques to improve the robustness, since dynamic
scenes can generate a valid apparent ego-motion.
Similar to the work presented in this paper DynaSLAM
Bescos et al. (2018), and ORB-SLAM2 Mur-Artal and
Tardós (2017), a monocular approach uses Mask R-CNN
He et al. (2017) which is state-of-the-art for object instance
segmentation. The deep network architecture is designed
to classify and to reject keypoints associated with regards
to a list of dynamic object labels (i.e. person, bicycle,
car, etc.). Unfortunately, DynaSLAM doesn’t work in real-
time, as Mask R-CNN alone runs at around 195 ms per
image on a Nvidia Tesla M40 GPU He et al. (2017). Only
a few underwater labeled datasets are available, while to
the best of our knowledge no datasets exist with respect
to semantic segmentation OByrne et al. (2018).
Very recently, an underwater VO and feature-based SLAM
approach Ferrera et al. (2019) was published not taking
into account the dynamics of underwater environments,
exposing the system to be highly sensible to fishes, shallow
water caustics and other dynamic objects present, includ-
ing seaweed transported by current.
Our method falls into the category where keypoints laying
on a priori dynamic objects will always be removed, even
if the objects are most likely going to remain static for
the time they are going to be observed (e.g. lifeless marine
fauna). We argue that the a priori dynamic objects are
extremely unlikely to remain static in the underwater
environment, and that these objects should never be used



for Visual SLAM as they could be only momentarily static
(e.g. a fish resting on the seabed).

Fig. 3. Representation of the network architecture: the
first three layers are a stack of CONV-POOL-RELU
layers, extracting features for the fully connected
layer. The output layer is a softmax layer.

Compared to methods that use deep neural networks
for object-instance segmentation, our approach does not
need to create masks for the training procedure, and the
overall execution time is also positively affected, thanks
also to the highly-parallelizable nature of the problem.
Patch creation and analysis is not directly tied to image
resolution, making a network trained in this way more
future-proof.

2. DATABASE CREATION

We composed our dataset of underwater images from the
following datasets: the Tasmania Coral Point Count, the
Scott Reef 25 and the Tasmania O’Hara 7 from the Aus-
tralian Centre for Field Robotics for Field Robotics (2009),
the An Underwater Observation Dataset of Fish Eickholt
(2018) and images from the Herkules wreck site coming
from several field surveys the authors conducted Leonardi
et al. (2017). For our tests 110 images out of this dataset
were selected and in total 13158 patches were extracted
(see Fig. 1), where 60% were used for the training set,
20% for the validation and 20% for the test set. Possible
underwater dynamic image scenes are presented, including
various fish species, crabs, algae, floating particles, as well
as illumination changes and effects and man-made floating
objects.
The dataset is created utilizing a manual labelling proce-
dure. For each image, up to 1000 keypoints are extracted
using the Oriented FAST and Rotated BRIEF (ORB)
Rublee et al. (2011) feature detector by setting the FAST
threshold to 20, which is a commonly used value.
Images are proportionally scaled, keeping the aspect-ratio,
considering the first image as reference; this process aims
to consistently scale context information in the patches
centered in the keypoints.
We implemented a software interface to ease the process
of differentiation between suitable keypoints (laying on a
priori static objects) and unsuitable keypoints (laying on a
priori dynamic objects), see Fig. 4. Our software visualizes
the image and shows the ORB extracted keypoints as dots.
In the interface the user can draw multiple independent
polygons as successions of segments. Keypoints inside the
polygons are marked unsuitable, while keypoints outside
the polygons are marked as suitable. Image patches of
257×257 pixels (cf. Fig. 2) are extracted around each

keypoint. The size of the patches has been selected in
a process of trial and error, with the goal of jointly
maximizing the contextual information and the inference
time performance of the resulting network. All patches
corresponding to suitable keypoints are stored separately
from those corresponding to unsuitable keypoints.

3. NETWORK ARCHITECTURE

In this section we describe the details of the network
architecture as illustrated in Fig. 3. In our implementation
the keypoint patches have been resized to 65×65 pixels.
This choice was based on empirical tests, since the patches
where originally 257×257 pixels to preserve context in-
formation. For a higher resolution (129×129 and 97×97
pixels) of the patch the network did not gain in precision,
instead decreasing its performance in both memory and
speed. We recommend, that the size of the extracted
rectangular patches should be around 2/10 of the image
width, considering a maximum aspect ratio of 16:9. The
idea is that it should be possible for a human operator to
visually analyze and discriminate successfully the patches.
The proposed network is a convolutional neural network,
counting three convolutional (CONV) layers, one fully-
connected (FC) layer and a soft-max layer.
The first layer is a CONV layer, consisting of 16 filters with
a kernel size of 3×3, stride of 1 in each direction, zero filling
padding strategy, followed by a 2×2 max-pooling (POOL)
and a rectified linear unit (RELU) layer for adding non-
linearity. The second and third layer are identical to the
first one. It follows a flatten layer which is needed to
format the input for the following FC RELU layer. The FC
layer (128x128) is followed by a soft-max RELU layer with
two outputs, representing the suitable/unsuitable posterior
class probabilities, given the input and the network config-
uration. The neural network architecture is inspired by the
original LeNet-5 LeCun et al. (1998) network, with a dif-
ferent amount of layers and a different layer dimensioning
due to the more complex discrimination problem. Different
network topologies and configurations have been tried, the
one we just presented is the network that provided us with
the best ratio between the amount of network weights and
classification performance.

3.1 Training procedure

The training of the network was performed over the
dataset described in section 2, with the patches resized to
65×65 pixels. The batch size was set to 64 and the network
is trained for 1000 epochs. The set of weights which is re-
tained is the one that performs best in terms of validation
loss. The optimizer used is adaptive moment estimation
(ADAM) Kingma and Ba (2014), with a learning rate of
0.001 and ε = 1e − 10. The loss function used in both
training and validation is the mean square error (MSE).
The target follows the one hot encoding. In this way the
inference output of the network approximates posterior
probabilities Richard and Lippmann (1991). We obtained
an accuracy of 96.7% on the test set. In Table 1 the final
confusion matrix is presented.



Fig. 4. Software interface procedure for the selection of unsuitable keypoints. During this procedure, not all of the
unsuitable keypoints are selected by drawing only one polygon. As soon as the first polygon is selected, the procedure
asks to eventually draw another polygon. In the picture on the left, first a polygon is drawn to enclose the keypoints
on the fishes in the top-right quadrant, then in the picture on the right a second polygon is drawn to select the
keypoints laying on the remaining fish.

Fig. 5. Example of ego-motion estimation through a fish swarm present in the LAKSIT sequence 1, generated by
monocular ORB-SLAM with a tuned initialization procedure as described in this paper. On the left the current
image with the tracked keypoints and on the right the 3D map with the camera poses (in blue) with the
covisibility links (in green). Initialization, mapping and tracking operations that follow rely entirely on keypoint
correspondences that are laying on moving objects. To be noted that keypoints highlighted in green on the left part
of the image are the keypoints currently tracked by ORB-SLAM, here they are not indicating suitable keypoints
found by our neural network.

Patches: 2631 Pred. Suitable Pred. Unsuitable

Suitable 1532 - TP 19 - FN

Unsuitable 68 - FP 1012 - TN

Table 1. Confusion matrix calculated over the
test set (cf. section 2): True positive (TP),
True negative (TN), False positive (FP), False
negative (FN). Percentages: FP 2.6%, FN 0.7%

4. RESULTS

In this section we present results in terms of perfor-
mance in drift reduction and in terms of inference speed,
with different execution configurations and different net-
work floating point precision. During all the tests no

pre-processing, like histogram manipulations or brightness
augmentation, is performed. For analyzing the capabilities
of drift reduction, we analyzed several footages recorded
by a static camera inside a fish cage, used at a fish farming
site (LAKSIT project Føre, M., Frank, K., Svendsen, E.,
Schellewald, C., Sunde, L.M., Alfredsen, J.A. and Stahl, A.
(2017), to this date the dataset is not publicly available,
but it may be released in the future). From the LAKSIT
dataset, we selected 3 image sequences composed of 3120
images each with a resolution of 1280 × 1024 pixels. We
compare our system also with DynaSLAM Bescos et al.
(2018), which is based on ORB-SLAM. The monocular
ORB-SLAM is not always able to initialize on such se-
quences, because the apparent relative motion is not al-
ways consistent or the image is too blurred. Therefore, in



order to obtain a higher initialization rate and in order
to demonstrate that 3D map-points are generated from
keypoints which belong to fishes, we decreased the amount
of keypoints required for the initialization step to 25. Since
ORB-SLAM enters the relocalization mode only after the
tracking is lost (and a minimum of 5 keyframes have
been generated), several different sub-sequences have been
chosen from the sequences, in order to find the longest drift
accumulated in each sequence (see Fig. 5). The results are
presented in Table 2.

With this keypoint rejection system, the ORB-SLAM
system does not have to (re-)initialize, and drift does not
accumulate over time, as most of the features detected at
the moving objects would not be considered for mapping
and tracking.
Approaches aiming to perform keypoint rejection for visual
ego-motion estimation (like the one presented in this
paper) using only a priori knowledge, may also reject
suitable keypoints. Examples of this behaviour are shown
in Fig. 6. We assume that in the underwater natural
environment it is unlikely that a priori dynamic objects
will remain static, and for this reason our approach is
negligible impaired by this effect.

DynaSLAM provides two different rejection systems for
the keypoints: a geometric test and a deep learning based
method. While the geometric test is ineffective when
elements in the scene are moving in a coherent way, the
deep learning based method, which masks regions that
should belong to moving objects, is effective in reducing
the drift, even if the network is not trained for underwater
scenarios.
Our system was also tested using the RT MVO dataset
Ferrera et al. (2019) without benchmarking (unavailability
of open source support). DynaSLAM as well as ORB-SlAM
were tested with our proposed keypoint rejection system
on the RT MVO data set and a similar performance for
both systems with respect to the estimated trajectories
were obtained. This is because the RT MVO sequences
does show a very clear sea bed and the moving objects
present in the sequences are only very small fishes, not
showing for example any schooling behaviour.

Seq. ORB-SLAM DynaSLAM DynaSLAM-M Ours

1 29.13m 45.57m 7.75m 0m

2 11.24m 0m 0m 0m

3 14.68m 22.32m 3.09m 0m

Table 2. Absolute translation error (ATE) ac-
cumulated by ORB-SLAM with respect to
three sequences out of the LAKSIT dataset,
without and with the keypoint rejection sys-
tem described in this paper (norm of the trans-
lation vector between the two initialization
frames set to 1). ATE of 0m means that no

initialization did occur.

The next experiments show the result of the different exe-
cution configurations with respect to floating point preci-
sion, parallel instances of the network and batch inference
(we refer to Table 3). Note, due to the incompatibility
to the Tensorflow frozen model with a multi-thread ses-

sion creation procedure, no test has been performed with
a parallel implementation running half precision floating
point models.

Table 3 shows the results of our network with respect to
execution speed using a desktop PC featuring 64Gb of
RAM, a Nvidia GeForce RTX 2080 Ti and an Intel Core i9-
9900K 8 Core @ 3.6Ghz, using a Python 3 implementation.
The results are evaluated over a set of 5426 patches
extracted from 10 test images. The various configurations
evaluated differ by the type of processing unit utilized
(CPU or GPU), the floating-point precision of the model,
the number of threads launched (each executing a different
instance of the graph; each instance elaborates an equal
amount of patches), and whether we pre-loaded all the
test patches in a single feeding dictionary. Regarding the
floating-point precision, we tested the standard model
created by Tensorflow, which uses 32 bit floating-point
values both for constants and variables in the graph
against an optimized version using 16 bit floating-points
generated using the Nvidia TensorRT library. The values
of mean and standard deviation in the table are computed
over the entire images, averaging 543 keypoints (thus
patches) each.

In Table 4 we compare the inference speed of DynaSLAM
(Mask R-CNN) and the network used in this paper. The
mean inference time has been obtained averaging over the
time that took DynaSLAM to generate 100 masks from
underwater images. Our approach is eight times faster on
CPU and almost four times faster on GPU.

Our experiments showed that, given our network archi-
tecture and hardware, it is possible to achieve the high-
est inference speed with FP32 operations and 32 parallel
network inferences on the GPU, performing at around 16
FPS.

5. CONCLUSION AND FURTHER WORK

In this paper a keypoint classification system is used to
improve the robustness of visual ego-motion estimation
in underwater environments. The procedure involved uses
a deep convolutional neural network in order to classify
each keypoint exploiting the surrounding image patch
information. Only the keypoints which are classified as
suitable for tracking will be retained for motion estimation.

The approach has been verified by comparing the drift
accumulated by ORB-SLAM with a static camera record-
ing a dynamic image scene of fishes showing a schooling
behaviour with and without the keypoint rejection system
described in this paper. The approach has been verified
and benchmarked also against DynaSLAM, a state-of-the-
art monocular visual SLAM system which accounts for
dynamic environments.

We also discussed the inference performance for real-time
operation by using state-of-the-art optimization frame-
works for deep neural networks and parallel inference on
CPU and GPU. The results show that the best perfor-
mance can be achieved with a GPU acceleration, a floating
point 32 network with 32 parallel sessions, even if the
performance flattens out already under 16 parallel sessions.
The method proposed in this paper enables feature-based
underwater visual ego-motion estimation systems to oper-



Fig. 6. This image shows the intrinsic risk of using the keypoint/area labeling algorithm: suitable keypoints/areas can
be labeled as unsuitable, lowering the overall robustness of the visual motion estimation. Two different frames,
coming from Sequence 1 of the RT MVO dataset are shown. On the left, circled in red, keypoints wrongly labeled
as unsuitable from the network described in this paper are shown. On the right a masked area which did contain
suitable seabed keypoints from DynaSLAM (Mask R-CNN) are shown.

Processing
Unit

Mean Std. Dev. FP Precision Threads Batch

Graphic 0.134s 0.065s 32 1 7

Graphic 0.080s 0.041s 32 4 7

Graphic 0.067s 0.034s 32 16 7

Graphic 0.062s 0.031s 32 32 7

Graphic 0.066s 0.032s 32 64 7

Graphic 1.139s 0.568s 32 1 3

Graphic 1.139s 0.314s 16 1 3

Central 0.377s 0.199s 32 1 7

Central 0.413s 0.213s 16 1 7

Central 0.213s 0.110s 32 8 7

Central 0.201s 0.097s 32 16 7

Central 3.401s 1.941s 32 1 3

Central 3.359s 1.667s 16 1 3

Table 3. Results of different network configurations for an inference speed analysis. Batch denotes
that the inference is performed on all the patches in a single session.

Algorithm Processing unit Mean Std. Dev.

Mask R-CNN Central 1.665s 0.147s

This paper Central 0.201s 0.167s

Mask R-CNN Graphic 0.230s 0.284s

This paper Graphic 0.062s 0.188s

Table 4. Inference speed of Mask R-CNN (the
network present in DynaSLAM, which per-
forms state-of-the-art object instance segmen-
tation) versus the network present in this pa-
per. The reported mean inference time corre-
sponds to the best performing parallel imple-

mentation for both networks.

ate at close distance from regions of interest for underwater
robotic applications, such as shipwreck or barrier reef

monitoring, which are rich in marine life (causing dynamic
image scenes). The proposed approach can be improved
by using more training data representing unknown fish
species, rock types, or other objects our CNN was not
trained on. Data augmentation techniques, such as rota-
tion, contrast manipulation and noise injection are likely
to improve the generalization capabilities of the network.
Therefore, it is advisable to train the network in such
a manner that the false negative rate (i.e. the suitable
keypoints that get classified as unsuitable keypoints) is
as low as possible. Future work can also include opti-
mizing the network for inference speed on more robotics-
oriented computing platforms like the Nvidia Jetson AGX
Xavier Nvidia (2019a) or even the Nvidia Jetson Nano
Nvidia (2019b). Furthermore, the problem can be approx-
imated by grouping neighbor keypoints and so reducing
the amount of patches to be evaluated for each frame.
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UVS on Jetson Nano

1. INTRODUCTION

In this document, a set of tests are performed to under-
stand if it’s possible to run Underwater Visual SLAM
(UVS) algorithm on an Nvidia Jetson platform and what
are compromises to be made. First is presented a table
containing the main hardware information about several
Nvidia Jetson platforms, Table 1 (note that the form
factor represents the dimension of the chip alone, not of
the development board), then the performance analysis is
discussed in the section that follows.

To perform the analysis the most demanding underwater
visual sequence known to the author of this document is
used, it is the Aqualoc dataset Ferrera et al. (2018) se-
quence 05. The Aqualoc dataset represents one of the first
forms of publicly available dataset specifically targeting
underwater visual SLAM. The two key parameters which
influence UVS performance are the number of keypoints
extracted during the keypoint extraction process, which
happens for each frame, and the number of keyframes
that are involved in the creation of the new map points,
which happens according to a series of SLAM parameters,
normally every 5 to 20 frames. All the combinations of
parameters tested in this document successfully produce
a SLAM estimate on all the sequences of the Aqualoc
dataset, without loss of tracking.

2. RESULTS AND CONCLUSIONS

The results here presented are obtained using both the
CPU and the GPU present on the Jetson Nano. The per-
formance analysis present in Table 2 shows that UVS is not
able to run when the power mode is set to 5W. Allowing
the Jetson Nano to draw 10W, increases the performance
by almost 4X. Disabling the visualization part of the sys-
tem and disabling the Graphic User Interface (GUI) of the
operative system further increase the performance, to the
point of almost matching the 16 fps at which the sequence
was captured. A bottleneck is represented by the storage
system, which is an SD card. Performing pre-fetching al-
lows for avoiding this bottleneck. With pre-fetching, it’s
possible to observe that UVS achieves the target fps and
even passes it when the sequence framerate is artificially
increased. The results obtained with pre-fetching are close
to what to expect in a real implementation, assuming that
the images are fed to UVS using an interface which does
not require a lot of CPU cycles. Examples of methods for
grabbing images using a small number of CPU cycles are
the Camera Serial Interface (CSI) present on the Jetson
and on the Raspberry Pi or USB cameras.
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Jetson CPU GPU TFLOPs Memory Form factor Power Cost

Nano 4 core A57
@ 1.43 GHz

128-core
Maxwell
@ 921 MHz

0.472 4GB
LPDDR4

45x70mm 5W-10W 99$

TX1 4 core A57
@ 1.73 GHz

256-core
Maxwell
@ 998 MHz

1 4GB
LPDDR4

87mmx50mm 10W 7

Not available

TX2/TX2i 4-core ARM
Cortex-A57 @
2 GHz,
2-core
Denver2
@ 2 GHz

256-core Pas-
cal
@ 1.3 GHz

1.33 4GB/8GB
LPDDR4

87mmx50mm 7.5W-15W 450$

Xavier NX 6-core
NVIDIA
Carmel
@ 1.9 Ghz

384-core Volta
@ 1.1Ghz
, 48 Tensor
cores

21 8GB
LPDDR4

69.6mmx45mm 10W-15W 399$

AGX Xavier 8-core
NVIDIA
Carmel
@ 2.26 GHz

512-core Volta
@ 1.37 GHz,
64 Tensor core

32 16GB
LPDDR4

100mmx87mm 10W-15W-
30W

999$

Table 1. The Jetson family, GPU-centric System-On-Chips (SOCs).

Sequence OS Gui Visualization Pre-fetching Watt Keypoints Keyframes Matching Targ. fps Med. fps Avg fps

Aqualoc 05 X X 7 10W 2000 20 16 15.25 7.24

Aqualoc 05 X X 7 10W 2000 5 16 11.40 7.59

Aqualoc 05 X X 7 10W 1500 20 16 13.21 6.87

Aqualoc 05 X X 7 10W 1500 5 16 22.67 7.89

Aqualoc 05 X X 7 5W 2000 20 16 4.02 2.57

Aqualoc 05 X X 7 5W 2000 5 16 4.12 2.85

Aqualoc 05 X X 7 5W 1500 20 16 4.77 3.1

Aqualoc 05 X X 7 5W 1500 5 16 5.14 3.8

Aqualoc 05 X 7 7 10W 1500 5 16 14.87 10.72

Aqualoc 05 7 7 7 10W 1500 5 16 22.8 13.2

Aqualoc 05 7 7 7 10W 1500 5 20 19.71 14.7

Aqualoc 05 7 7 X 10W 1500 5 16 22.14 15.9

Aqualoc 05 7 7 X 10W 1500 5 20 23.8 17.1

Table 2. This table shows how UVS runs on the Jetson Nano, changing the power configuration
and key parameters which more influence the performances.
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Eelume Snake’s Camera Sequences

Marco Leonardi

August 2020

1 Introduction

In this document, the performance of a specialized visual ego-motion estimation
is analyzed with the help of two sequences captured from a single camera, part
of Eelume’s snake robot. The first sequence will be called the Garage’s sequence
and the second one will be called the TBS’s sequence.
The images of the two supplied sequences show a significant lossy compres-
sion noise due to the format of the video file (MPEG-2), this, unfortunately,
compromises severely any visual ego-motion estimation system, see
Fig. 1. Unfortunately, no form of camera calibration is provided, so a pinhole
camera model is used and the parameters are guessed.

2 Garage’s sequence

In this sequence, the robot goes out of its garage, approaches a platform placed
on the seabed which has some markers on it, then looks at ice blocks floating
on the sea surface and goes back into its garage.

Figure 1: Motion JPEG artifacts in the Garage’s sequence, showing how corners
are heavily disrupted by this kind of lossy compression

1



Figure 2: VSLAM under the ice block surface: the blocks results detailed enough
for features to be correctly found and matched

2.1 Garage

This first part of the sequence is very challenging for visual ego-motion estima-
tion systems, as the most gradient-rich areas are composed of repetitive patterns
(the net), especially with feature-based methods.
While direct-based methods could perform better on repetitive patterns, they
have been found to perform much worse in every single other underwater sce-
nario, as they require accurate calibration and modeling of all the non-linearity
involved.
A solution to provide visual-based positioning, in this case, is to use visual
markers, for example, ArUco markers [1], like the ones present in this sequence
around minute 7, but smaller, to fit the location. The markers could be covered
with transparent anti-biofouling paint and/or subject to ultrasonic biofouling
prevention [3], to keep required maintenance at the minimum. While biofouling
would inevitably affect the markers in the long term, also the garage would be
affected, the garage itself would eventually become visually diversified enough
to turn itself into a VSLAM-friendly surface.

2.2 Platform on the seabed

The platform on the seabed contains four markers, unfortunately, they cannot
be easily used for localization without access to the dictionary that was used to
generate the markers. The generous size of the markers should allow a visual
system to recognize them from a distance of several meters if turbidity allows.

2.3 Floating ice

Surprisingly the system is able to sporadically initialize and track while looking
at ice blocks, see Fig. 2.
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Figure 3: Pillars at TBS, in this picture, are shown the limits where features
can be found and matched. In the top-left part of the image features are found,
matched and correctly triangulated, while in the bottom-right part of the image
the lack of gradients is too big for features to be found and correctly matched,
the reasons can be found in the increasing observation distance and lack of
illumination

3 TBS’s Sequence

The sequence starts with the robot looking at the sea surface while submerged,
then the garage appears in the scene. In the following part of the sequence, the
robot navigates back and forth in front of a series of pillars. Several times the
pillars exit temporarily from the scene. The final part of the sequence interest
the seabed near the pillars.

3.1 Garage

While initialization, when the camera looks at the garage, is possible and the
tracking is successful most of the time, the repetitive patterns which appear
given the structure of the garage pose a threat to the system, similarly as in the
previous sequence.

3.2 Pillars

Even with a lot of marine snow, the tracking when the camera moves around
the pillars results in strong navigation, and obstacle avoidance solely on visual
information would be possible, see 3.

3.3 Seabed

Tracking when the camera looks at the seabed result strong, with only minor
surface deformation, due to incorrect calibration. In Fig. 4 it’s possible to see
the SLAM estimates just before the tracking is lost: the camera rises from the
seabed and no structures are present in the scene, so the tracking is lost.
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Sporadically, due to the presence of marine snow, the tracking continues instead
of being lost, this is because the marine snow could create a coherent set of
correspondences, see Fig. 5. Tracking of marine snow could be eliminated by
visual-inertial fusion or through a neural network [2], at a cost of additional
computing power.

Figure 4: In this figure the SLAM estimates of a sequence where the camera
(the frustum in green) after observing the seabed, starts to rise until no seabed
can be seen anymore, and so the tracking is lost

Figure 5: The undesirable tracking on marine snow: the lack of INS data com-
bined with the tracking initialized on the sea bed and the lack of seabed in
the scene tricks the system into thinking that moving marine snow represents
the ego-motion of the camera. Inside the red rectangle there is the result of
undesirable SLAM estimates on marine snow, while inside the green rectangle
there is the previously estimated seabed
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4 Conclusions

The sequences provided are heavily compressed with lossy compression, unfor-
tunately, unsuitable for performing VSLAM, nevertheless, my work was able
to provide SLAM estimates in all the key areas where it could be expected to
perform so. The provided active illumination is sufficient, even if seems to be
generated co-axially with the camera pinhole, this maximizes back-scattering,
an undesired phenomenon. Camera calibration performed underwater would be
beneficial, together with access to the raw images, to improve the performance
in terms of quality and quantity of the SLAM estimates.
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