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Abstract: In this paper, we conduct a theoretical examination of a low-rank matrix single-index
model. This model has recently been introduced in the field of biostatistics, but its theoretical
properties for jointly estimating the link function and the coefficient matrix have not yet been fully
explored. In this paper, we make use of the PAC-Bayesian bounds technique to provide a thorough
theoretical understanding of the joint estimation of the link function and the coefficient matrix. This
allows us to gain a deeper insight into the properties of this model and its potential applications in
different fields.
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1. Introduction

In this study, we investigate a particular type of single-index model, where the re-
sponse variable, denoted by Y, is a real number and the covariate matrix, represented by X,
is a matrix of real numbers with dimensions of d× d. The model is defined in Equation (1)
as

Y = f ?(〈X, B?〉) + ε (1)

In this equation, 〈X, B?〉 = trace(X>B?) represents the inner product between matrices
X and B?, where B? is an unknown coefficient matrix with dimensions of d× d. The link
function f ? is an unknown univariate measurable function. The noise term, represented by
ε, is assumed to have a mean of 0 and is independent of the covariate X.

In line with the recent research presented in [1,2], we make the assumption that the
coefficient matrix B? is a symmetric, low-rank matrix with rank(B?) < d. Additionally, in
order to ensure the uniqueness of the model, we impose the condition that the Frobenius
norm of B? is equal to 1, i.e., ‖B?‖F = 1.

Previous studies have been conducted on a similar model to the one presented in this
paper, where the unknown coefficient matrix B? is assumed to have sparse elements. In
particular, the work of [1] in the field of biostatistics has been used to examine the correlation
between a response variable and the functional connectivity associated with a certain
brain region. Additionally, recent research by [2] has focused on developing methods for
estimating the unknown low-rank matrix B? by using implicit regularization techniques.

The model discussed in this paper can be thought of as a nonparametric version of
the trace regression model that has been previously proposed in the literature, specifically
in the works in [3–5]. This trace regression model utilizes the identity function as the link
function, and encompasses a diverse array of statistical models, including but not limited
to reduced rank regression, matrix completion, and linear regression.

The single-index model is a versatile extension of the linear model, which offers a
natural interpretation. This model only changes in the direction of the parameter (vec-
tor/matrix), and the nature of this change is depicted by the link function f ?. This has
been the subject of extensive research in the literature, with various studies exploring its
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applications and extensions in various fields. Examples of such works include [1,6–14].
These studies have demonstrated the versatility and utility of the single-index model in a
wide range of contexts, making it a valuable tool for researchers in various fields.

Definition 1. Let Sd
1 denote the set of all symmetric matrix B ∈ Rd×d such that ‖B‖F = 1.

Given the covariates {Xi}n
i=1, the response variables {Yi}n

i=1 are i.i.d. generated from
model (1). We define the expected risk for any measurable f : R→ R and B ∈ Sd

1 as

R(B, f ) = E
[
(Y− f (〈X, B〉)2)

]
and denote the empirical counterpart of R( f , B) by

rn(B, f ) =
1
n

n

∑
i=1

(Yi − f (〈Xi, B〉)2).

In this research, we examine the forecasting abilities of the model. More specifically,
we consider a pair ( f , B) to have comparable predictive performance to ( f ?, B?) if the
difference between R(B, f ) and R(B?, f ?) is minimal.

Our approach in this work is built on the PAC-Bayesian bound technique, which is a
powerful tool for obtaining oracle inequalities bounds [15]. Similar to Bayesian analysis,
one important aspect of a PAC-Bayesian bound is specifying a prior distribution over the
parameter space. In our approach, we adopt the prior distribution for the link function from
the reference [11], while the prior distribution for the matrix parameter B is inspired by the
eigen decomposition of the matrix. The specifics of our approach and the details of the
prior distributions we chose are discussed in the next section. The use of the PAC-Bayesian
bound technique in combination with carefully chosen prior distributions allows us to
obtain reliable and accurate estimates of the unknown parameters in our model.

2. Main Result
2.1. Method

We make an additional assumption in our model (1) that E[ε|X] = 0, and the following
conditional moment assumptions on the noise ε are assumed.

Assumption 1. We assume that there exist two constants σ > 0 and L > 0, such that for all
integers s ≥ 2,

E[|ε|s|X] ≤ s!
2

σ2Ls−2.

Remark 1. The assumption stated above implies that the noise term in our model follows a subex-
ponential distribution. This class of distributions includes, for example, Gaussian noise or bounded
noise, as discussed in [16]. In simpler terms, this means that the noise term in our model is charac-
terized by a rate of decay that is slower than that of an exponential distribution. This assumption is
critical for the application of our approach, as it allows us to obtain accurate and reliable estimates of
the unknown parameters under a wide range of noise conditions. This is an important consideration,
as the presence of noise can have a significant impact on the accuracy of the estimates obtained from
our model. By assuming that the noise follows a subexponential distribution, we can be confident
that our estimates are robust to the presence of noise.

In addition to the assumptions stated previously, it is also necessary to assume that
the covariate matrix X is almost surely bounded by a constant. Additionally, the unknown
link function f ? is also assumed to be bounded by some known positive constant. To make
this more precise, we use the notation ‖X‖∞ to represent its supremum norm and ‖ f ?‖∞ to
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denote its functional supremum norm over the interval [−1, 1]. Based on these definitions,
we make the following assumption:

Assumption 2. We assume that ‖X‖∞ ≤ 1 a.s. and ∃C ≥ 1, such that ‖ f ?‖∞ ≤ C.

In order to present the technical proofs in the clearest and simplest manner, we did not
attempt to find the best constant used in the proofs. Specifically, the condition that C ≥ 1 is
just convenient for the proofs in nature, and it could be eliminated by using max[C, 1] in
the proofs.

The link function f ? is approximately estimated through a given specific countable
set of measurable functions (dictionary) {ϕk}∞

k=1. For this purpose, the set of finite linear
combinations of functions from the dictionary is utilized, and we denote this vector space
by F . We assume that each element ϕk in the dictionary is defined on the interval [−1, 1]
and takes values within the range [−1, 1].

Assumption 3. For the sake of simplicity, we assume that the basic functions are differentiable and
there exists some constant Cφ > 0, such that

‖ϕ′k‖∞ ≤ kCφ.

An example of such a collection of functions is the system of non-normalized trigono-
metric functions, where

ϕ1(t) = 1, ϕ2k(t) = cos(πkt), ϕ2k+1(t) = sin(πkt), k = 1, 2, . . .

satisfy this assumption. This assumption on the dictionary functions enables us to approxi-
mate the unknown link function f ? with a finite linear combination of these functions.

Our approach is inspired by the work of [11], where the authors explored the PAC-
Bayesian approach in [15] for a sparse-vector single-index model. The method needs
to first specify a distribution π on Sd

1 × F , similar to the prior distribution in Bayesian
analysis. This prior distribution in our framework should enforce the characteristics of the
underlying link function and the parameter matrix. In this work, we consider the following
prior distribution:

dπ(B, f ) = dµ(B)dν( f ),

in other words, it means that the prior distribution of the index matrix and the prior
distribution over the link functions are assumed to be independent.

In this study, the matrix B is treated as a symmetric matrix and can be expressed in
its eigen-decomposition form B = UΛU>. The matrix U is an orthogonal matrix with
UU> = UU−1 = Id (identity matrix of dimension d × d), and the diagonal matrix Λ
holds the corresponding eigenvalues λ1, . . . , λd. To enforce that ‖B‖F = 1, the sum of the
squares of the eigenvalues λi must equal 1, as ‖B‖F =

√
trace(B2) and trace(B2) = ∑d

j=1 λ2
i .

Additionally, the requirement of low-rankness on B means that most of the eigenvalues
λ1, . . . , λd are close to zero, with only a few being significantly larger.

With the goal of obtaining an appropriate low-rank-promoting prior for B, we propose
the following approach. We simulate an orthogonal matrix V and simulate (γ1, . . . , γd)
from a Dirichlet distribution Dir(α1, . . . , αd). Put

B = Vdiag(γ1/2
1 , . . . , γ1/2

d )V>.

To obtain an approximate low-rank matrix, we take all parameters of the Dirichlet
distribution to be very close to 0, for example, by setting α1 = . . . = αd = 1/d. It is worth
noting that a typical drawing of the Dirichlet distribution leads to one of the γis being close
to 1 and the others being close to 0. For more detailed discussions on how to choose the
parameters for the Dirichlet distribution, one can refer to [17].
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Now, we present a prior distribution on F . We opted to use the prior introduced
in [11]. With any integer M that 0 < M ≤ n, let us put

BM(cΛ) =

{
(β1, . . . , βM) ∈ RM :

M

∑
s=1

s|βs| ≤ cΛ and βM 6= 0

}
, ∀cΛ > 0.

Now, we define FM(cΛ) ⊂ F the image of BM(cΛ) by the function

GM : RM → F
(β1, . . . , βM) 7→ ∑M

j=1 β j ϕj.

Remark 2. Corollary 1 (below) provides a discussion regarding the approximation of Sobolev spaces
(see [18] by the set FM(cΛ)), which become more accurate as M increases.

Now, a prior distribution νM(d f ) is defined on the set FM(C + 1). This is performed
by considering the image of the uniform measure on BM(C + 1) obtained through the
function GM. We consider the following choice for the prior distribution ν on F

dν( f ) =

n

∑
M=1

10−MνM(d f )

1− ( 1
10 )

n
. (2)

The reason for choosing C + 1 rather than C in the above definition of the prior
distribution support is essentially for technical proof. This is to ensure that as soon as the
underlying link function f ? belongs to Fn(C), there then exists a small ball around it that
is contained in Fn(C + 1). One could safely replace it by C + an, where {an}∞

n=1 is any
positive sequence vanishing sufficiently slowly as n→ ∞.

Remark 3. The integer M can be viewed as a measure of the “dimension” of the function f —the
larger the M, the more complex the function—and the prior ν adapts again to the sparsity idea by
penalizing large-dimensional functions f . The coefficient 10−M, which appears in (2), shows that
more complex models have a geometrically decreasing influence. Inspired from the practical results
in [11], the value 10 is a random choice. This choice could be in general changed by another positive
constant, but it requires more technical attention.

2.2. The Proposed Estimator

Definition 2. The Gibbs posterior distribution over Sd
1 ×Fn(C + 1) is defined as

ρ̂λ(B, f ) =
exp[−λrn(B, f )]dπ(B, f )∫

exp[−λrn(B, f )]dπ(B, f )
.

Now, we define an estimator as follows. Let λ > 0 be a tuning parameter, or sometime
called the inverse temperature parameter. Let (B̂λ, f̂λ) be an estimator of (B?, f ?). It is
simply achieved by a random draw from ρ̂λ, the Gibbs posterior distribution above.

2.3. Theoretical Results

As E[Y|X] = f ?(〈X, B?〉) almost surely, it is noted that for all (B, f ) ∈ Sd
1 ×Fn(C + 1),

R(B, f )− R(B?, f ?) = E[Y− f (〈X, B〉)]2 −E[Y− f ?(〈X, B?〉)]2

= E[ f (〈X, B〉)− f ?(〈X, B?〉)]2

(Pythagoras theorem).
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Definition 3. For any positive integer M ≤ n, we set

(B?
M, f ?M) ∈ arg min

(B, f )∈Sd
1×FM(C)

R(B, f ).

Remark 4. It is noted here that the infimum f ?M is defined on FM(C) for each value of M. However,
the prior distribution is defined on a slightly larger set, that is, FM(C + 1).

Let us define

w := 64(C + 1)max[L, C + 1], C1 := 8[(C + 1)2 + σ2].

The theoretical results in this work mainly come from the following theorem, the
proof of which is provided in Section 3. It should be noted that throughout the paper, the
phrase “with probability 1− δ” refers to the probability calculated with respect to both the
distribution P⊗n of the data and the conditional Gibbs distribution ρ̂λ.

Theorem 1. Assume that Assumptions 1 and 2 hold, with

λ =
n

w + 2C1
. (3)

We have that, for all δ ∈ (0, 1), with a probability of at least 1− δ,

R(B̂λ, f̂λ)− R(B?, f ?) ≤ C inf
1≤M≤n

{
R(B?

M, f ?M)− R(B?, f ?)+

log(n)(M + drank(B?) + d log(d)) + log
( 2

δ

)
n

}
,

where C > 0 is a constant depending only on L, σ, C, Cφ.

Remark 5. As in practice, the value of w and C1 are not known, and the theoretical value of
λ cannot be used. However, it provides a good order to tune this parameter, for example, using
cross-validation.

Remark 6. Theorem 1 can be interpreted in a straightforward manner. Essentially, it states that
if there exists a “small” M and rank(B?) is small, such that the difference between R(B?

M, f ?M)

and R(B?, f ?) is minimal, then the difference between R(B̂λ, f̂λ) and R(B?, f ?) will also be small
in the order of log(n)/n. On the other hand, if neither of these conditions are met, then the rate
M log(n)/n or rank(B?)d log(n)/n (or either) will start to dominate, thus resulting in a decrease
in the general quality of the convergence rate.

We can obtain a good convergence rate as soon as a low-rank assumption is considered. This is
typically achievable when B? is already low-rank or can be well approximated by a low-rank matrix.
In the case that f ? is sufficiently regular, we can obtain a good approximation with a “small” M.

As shown in [11], when f ? belongs to a Sobolev space, we can derive a more specific
nonparametric rate for the above theorem. For example, assume that {ϕk}∞

k=1 is the system
of trigonometric functions and in addition that the link function f ? is in the following
Sobolev ellipsoid space [18],

W
(

k,
6C2

π2

)
=

{
f ∈ L2([−1, 1]) : f =

∞

∑
j=1

β j ϕj and
∞

∑
j=1

j2kβ2
j ≤

6C2

π2

}
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where k ≥ 2 is an unknown regularity parameter. In this context, the approximation set
FM(C + 1) is in the following form:

FM(C + 1) =

{
f ∈ L2([−1, 1]) : f =

M

∑
s=1

βs ϕs,
M

∑
s=1

s|βs| ≤ C + 1 and βM 6= 0

}
.

It should be noted that the results presented in this paper are in the so-called adaptive
setting, where the regularity parameter k is not assumed to be known. However, in order
to obtain these results, it is necessary to make an additional assumption.

Assumption 4. We assume that the probability density of the random variable 〈X, B?〉 is defined
on [−1, 1], and it is upper-bounded by a constant A > 0.

Corollary 1. Assume that Theorem 1 and additional Assumption 4 hold. Moreover, assume that f ?

is in the Sobolev ellipsoid spaceW(k, 6C2/π2), where the regularity parameter k ≥ 2 is unknown.
The tuning parameter λ is as in (3). We have that for all δ ∈ (0, 1) with a probability of at least
1− δ,

R(B̂λ, f̂λ)− R(B?, f ?) ≤

C′
{(

log(n)
n

) 2k
2k+1

+
log(n)(drank(B?) + d log d) + log

( 2
δ

)
n

}
, (4)

where C′ > 0 is a constant depending only on L, C, σ, Cφ, A .

The proof for Corollary 1 follows a similar approach to that of Corollary 4 in [11], and
thus, it is not included in this paper.

Remark 7. From an asymptotic point of view, that d is fixed and n → ∞, the leading rate on

the right-hand side in the above Corollary is (log(n)/n)
2k

2k+1 . This is known to be the minimax
rate of convergence up to a log(n) factor over a Sobolev class; see [18]. On the other hand, in
a nonasymptotic setting where n is “small”, we obtain the estimation rate rank(B?)d log(n)/n,
which was also obtained by [2], and it is minimax optimal up to a logarithmic term, as in [3].

From Theorem 1, it is actually possible to derive that the Gibbs posterior ρ̂λ contracts
around (B?, f ?) at the optimal rate.

Theorem 2. Under the same assumptions for Theorem 1 and the same definition for λ, let εn be
any sequence in (0, 1), such that εn → 0 when n→ ∞. Define

En =

{
(B, f ) ∈ Sd

1 ×Fn(C + 1) : R(B, f )− R(B?, f ?)

≤ C inf
1≤M≤n

{
R(B?

M, f ?M)− R(B?, f ?)+

log(n)(M + rank(B?)d + d log d) + log
(

2
εn

)
n

}
.

Then,
E
[
P(B, f )∼ρ̂λ

((B, f ) ∈ En)
]
≥ 1− εn −−−→n→∞

1.
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3. Proofs

For the sake of simplicity in the proofs, we put

R? := R(B?, f ?), r?n := rn(B?, f ?).

We have that for each f = ∑M
j=1 β j ϕj ∈ FM(C + 1), ‖ f ‖∞ ≤ ∑M

j=1 |β j| ≤ C + 1.
The following lemma, Lemma 1, is a Bernstein-type inequality [16] that is useful for

our proofs. We denote by (Z)+ the positive part of a random variable Z.

Lemma 1. Let Z1, . . . , Zn be independent real-valued random variables. It is assumed that there
exist two constants v > 0, w > 0 that for all integers r ≥ 2, ∑n

s=1 E
[
(Zs)r

+

]
≤ r!

2 vwr−2. We have
that with ζ ∈ (0, 1/w),

Eeζ ∑n
s=1(Zs−EZs) ≤ e

vζ2
2(1−wζ) .

Let (A,A) be a measurable space and γ1 and γ2 be two probability measures on
(A,A). Denote by K(γ1, γ2) the Kullback–Leibler divergence of γ1 with respect to γ2.
Lemma 2 is a classical result, and its proof can be found, for example, in [15], (page 4).

Lemma 2. Let (A,A) be a measurable space. For any probability measure ν on (A,A) and any
measurable function g : A→ R, such that

∫
(exp ◦g)dν < ∞, we have

log
∫
(exp ◦g)dν = sup

κ

(∫
gdκ −K(κ, ν)

)
, (5)

where κ is a probability measure on (A,A) and ∞−∞ = −∞. In addition, when g is upper-
bounded on the support of ν, the supremum in (5) is obtained by the Gibbs distribution g, given
by

dρ

dν
(a) =

exp(g(a))∫
(exp ◦g)dν

, a ∈ A.

Lemma 3. We assume that Assumption 1 is satisfied. Put w = 16(C + 1)max[L, 2(C +

1)], C1 := 8[(C + 1)2 + σ2] and take λ ∈
(

0, n
w+C1

)
and put

α =

(
λ− λ2C1

2n(1− C2λ
n )

)
and β =

(
λ +

λ2C1

2n(1− C2λ
n )

)
. (6)

With δ ∈ (0, 1) and any distribution ρ̂λ � π, we have that

E
∫

exp

[
α(R(B, f )− R?) + λ(−rn(B, f ) + r?n)− log

(
dρ̂λ

dπ
(B, f )

)
−

log
2
δ

]
dρ̂λ(B, f ) ≤ δ/2, (7)

E sup
ρ

exp

[
β

(
−
∫

R(B, f )dρ− R?

)
+ λ

(∫
rn(B, f )dρ− r?n

)
−

K(ρ, π)− log
2
δ

]
≤ δ/2, (8)
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Proof. Fix B ∈ Sd
1 and f ∈ Fn(C + 1). We start by using Lemma 1 with the following

random variables:

Ti = −(Yi − f (〈Xi, B〉))2 + (Yi − f ?(〈Xi, B?〉))2, i = 1, . . . , n.

Note that Ti, i = 1, . . . , n are independent, and we have that

n

∑
i=1

ET2
i =

n

∑
i=1

E
{
[2Yi − f (〈Xi, B〉)− f ?(〈Xi, B?〉)]2[ f (〈Xi, B〉)− f ?(〈Xi, B?〉)]2

}
=

n

∑
i=1

E
{
[2εi + f ?(〈Xi, B?〉)− f (〈Xi, B〉)]2[ f (〈Xi, B〉)− f ?(〈Xi, B?〉)]2

}
≤

n

∑
i=1

E
{[

8ε2
i + 8(C + 1)2

]
[ f (〈Xi, B〉)− f ?(〈Xi, B?〉)]2

}
.

≤ 8
[
(C + 1)2 + σ2

] n

∑
i=1

E[ f (〈Xi, B〉)− f ?(〈Xi, B?〉)]2 := v,

where we set C1 := 8[(C + 1)2 + σ2]; and v = nC1[R(B, f )− R?].
Now, for all integers k greater than 3, we have that

n

∑
i=1

E
[
(Ti)

k
+

]
≤

n

∑
i=1

E
{
|2Yi − f (〈Xi, B〉)− f ?(〈Xi, B?〉)|k| f (〈Xi, B〉)− f ?(〈Xi, B?〉)|k

}
=

n

∑
i=1

E
{
|2εi + f ?(〈Xi, B?〉)− f (〈Xi, B〉)|k| f (〈Xi, B〉)− f ?(〈Xi, B?〉)|k

}
≤ 2k−1

n

∑
i=1

E
{[

2k|εi|k + 2k(C + 1)k
]
2k−2(C + 1)k−2| f (〈Xi, B〉)− f ?(〈Xi, B?〉)|2

}
.

In the last inequality, we used the fact that |q + w|k ≤ 2k−1(|q|k + |w|k). We obtain that

n

∑
i=1

E
[
(Ti)

k
+

]
≤

n

∑
i=1

[
22k−2k!σ2Lk−2 + 22k−1(C + 1)k

]
2k−2(C + 1)k−2[R(B, f )− R?]

= v×

[
22k−2k!σ2Lk−2 + 22k−1(C + 1)k

]
2k−2(C + 1)k−2

[2(C + 1)2 + 4σ2]

≤ v×
k!8k−2 max

[
Lk−2, 2k−2(C + 1)k−2

]
2k−2(C + 1)k−2

2
:=

k!
2

vwk−2,

with w = 64(C + 1)max[L, C + 1].

Thus, for any λ ∈ (0, n/w), taking ζ = λ/n, we apply Lemma 1 to obtain

E exp[λ(R(B, f )− R? − rn(B, f ) + r?n)] ≤ exp

(
vλ2

2n2(1− wλ
n )

)

= exp

(
C1[R(B, f )− R?]λ2

2n(1− wλ
n )

)
.

Therefore, we obtain, with the α given in (6),

Eeα(R(B, f )−R?)+λ(−rn(B, f )+r?n)−log( 2
δ ) ≤ δ/2.
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Next, integrating with respect to π and consequently using Fubini’s theorem, we
obtain

E
∫

exp

[
α(R(B, f )− R?) + λ(−rn(B, f ) + r?n)− log(2/δ)

]
dπ(B, f ) ≤ δ/2.

To obtain (7), it is noted that for any measurable function h,∫
exp[h(B, f )]dπ =

∫
exp

[
h(B, f )− log

dρ̂λ

dπ
(B, f )

]
dρ̂λ.

The proof for (8) is similar. More precisely, we apply Lemma 1 with Ti = (Yi −
f (〈X, B〉))2 − (Yi − f ?(〈X, B?〉))2. We obtain, for any λ ∈ (0, n/w),

E exp[λ(rn(B, f ) + r?n − R(B, f ) + R?)] ≤ exp

(
vλ2

2n2(1− wλ
n )

)
.

By rearranging terms, using definition of β in (6), and multiplying both sides by δ/2,
we obtain

E exp

[
β(−R(B, f ) + R?) + λ(rn(B, f )− r?n)− log

2
δ

]
≤ δ/2.

Integrating with respect to π and using Fubini’s theorem, we obtain

E
∫

exp

[
β(−R(B, f ) + R?) + λ(rn(B, f )− r?n)− log

2
δ

]
dπ ≤ δ/2.

Now, Lemma 2 is applied to the integral, and this directly yields (8).

Proof of Theorem 1. Recall that P⊗n stands for the distribution of the sample Dn; the
Equation (7) can be written conveniently as

EDn∼P⊗nE(B̂, f̂ )∼ρ̂λ
exp

[
α
(

R(B̂, f̂ )− R?
)
+ λ

(
−rn(B̂, f̂ ) + r?n

)
−

log
(

dρ̂λ

dπ
(B̂, f̂ )

)
− log

2
δ

]
≤ δ/2,

Now, we use the standard Chernoff trick to transform an exponential moment inequal-
ity into a deviation inequality, i.e., using exp(λx) ≥ 1R+

(x). We obtain, with a probability
of at least 1− δ/2 for any δ ∈ (0, 1) and any distribution ρ̂λ,

R(B̂, f̂ )− R? ≤ λ

α

(
rn(B̂, f̂ )− r?n +

log
(dρ̂λ

dπ
(B̂, f̂ )

)
+ log

( 2
δ

)
λ

)
.

It is noted that we have

log
(

dρ̂λ

dπ
(B̂, f̂ )

)
= log

(
exp(−λrn(B̂, f̂ ))∫
exp(−λrn(B, f ))dπ

)
= −λrn(B̂, f̂ )− log

∫
e−λrn(B, f )dπ;
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thus, we obtain, with a probability larger than 1− δ/2,

R(B̂, f̂ )− R? ≤ 1
α

(
log

∫
exp(−λrn(B, f ))dπ − λr?n + log

(
2
δ

))
.

Now, using Lemma 2, it yields that with a probability larger than 1− δ/2,

R(B̂, f̂ )− R? ≤ λ

α

( ∫
rn(B, f )dρ̂λ − r?n +

K(ρ̂λ, π) + log
( 2

δ

)
λ

)
. (9)

Now, from (8) with an application of the standard Chernoff trick, we obtain, with a
probability larger than 1− δ/2 for any δ ∈ (0, 1) and any distribution ρ̂λ � π,

∫
rn(B, f )dρ̂λ − r?n ≤

β

λ

( ∫
R(B, f )dρ̂λ − R?

)
+
K(ρ̂λ, π) + log

( 2
δ

)
λ

. (10)

Combining (9) and (10) with a union bound argument gives the bound, with a proba-
bility larger than 1− δ,

R(B̂, f̂ )− R? ≤ inf
ρ

{
β

α

( ∫
R(B, f )dρ− R?

)
+ 2
K(ρ, π) + log

( 2
δ

)
α

}
. (11)

The final steps of the proof involve making the right-hand side of the inequality more
explicit. To achieve this, we limit the infimum bound to a specific distribution. This allows
us to have a more concrete understanding of the result and to explicitly obtain the error
rate.

Put B? = UΛU> and let r = #{i : Λi > ε}, with small ε ∈ (0, 1). Take

dρ1
η ∝ 1(∀i : |vi −Λi| ≤ ε; ∀i = 1, . . . , r : ‖ui −Ui‖F ≤ η)π(du, dv)

For any positive integer M ≤ n and any η, γ ∈ (0, 1/n), let the probability measure
ρM,η,γ be defined by

dρM,η,γ(B, f ) = dρ1
η(B)dρ2

M,γ( f ),

with
ρ2

M,γ( f ) ∝ 1[‖ f− f ?M‖M≤γ]νM( f ).

We denote for f = ∑M
s=1 βs ϕs ∈ FM(C + 1), ‖ f ‖M = ∑M

j=1 j|β j|.

Inequality (11) leads to

R(B̂, f̂ )− R? ≤ inf
1≤M≤n

inf
η,γ>0

{
β

α

( ∫
R(B, f )dρM,η,γ(B, f )− R?

)
+

2
K(ρM,η,γ, π) + log

( 2
δ

)
α

}
. (12)

To finish the proof, we have to control the different terms in (12). Note first that

K(ρM,η,γ, π) = K(ρ1
η ⊗ ρ2

M,γ, µ⊗ νM)

= K(ρ1
η , µ) +K(ρ2

M,γ, νM) + log
1− (1/10)n

10−M .



Mathematics 2023, 11, 2065 11 of 16

By technical Lemma 4, we know that

K(ρ1
η , µ) ≤ rd log(16/η) + CD1 d log d(1 + log(2/ε)).

Additionally, by technical Lemma 10 in [11], we have that

K(ρ2
M,γ, νM) = M log

(
C + 1

γ

)
.

Bringing together all the parts, it arrives at

K(ρM,η,γ, π) ≤ rd log(1/c) + CD1 d log d(1 + log(2/δ)) + M log
(

C + 1
γ

)
+ log

1
10−M . (13)

Finally, it remains to control the term
∫

R(B, f )dρM,η,γ(B, f ). To this aim, we write∫
R(B, f )dρM,η,γ(B, f )

=
∫

E
[
(Y− f (〈X, B〉))2

]
dρM,η,γ(B, f )

=
∫

E
[(

Y− f ?M(〈X, B?
M〉) + f ?M(〈X, B?

M〉)− f (〈X, B?
M〉)+

f (〈X, B?
M〉)− f (〈X, B〉)

)2]dρM,η,γ(B, f )

= R(B?
M, f ?M) +

∫
E
[
( f ?M(〈X, B?

M〉)− f (〈X, B?
M〉))

2 + ( f (〈X, B?
M〉)− f (〈X, B〉))2

+ 2(Y− f ?M(〈X, B?
M〉))( f ?M(〈X, B?

M〉)− f (〈X, B?
M〉))+

2(Y− f ?M(〈X, B?
M〉))( f (〈X, B?

M〉)− f (〈X, B〉))

+ 2( f ?M(〈X, B?
M〉)− f (〈X, B?

M〉))( f (〈X, B?
M〉)− f (〈X, B〉))

]
dρM,η,γ(B, f )

:= R(B?
M, f ?M) + A + B + C + D + E.

Computation of C by Fubini’s theorem:

C

=E
[∫

2(Y− f ?M(〈X, B?
M〉))( f ?M(〈X, B?

M〉)− f (〈X, B?
M〉))dρM,η,γ(B, f )

]
=E
{∫ [

2(Y− f ?M(〈X, B?
M〉))

∫
( f ?M(〈X, B?

M〉)− f (〈X, B?
M〉))dρ2

M,γ( f )

]
dρ1

η(B)

}
.

Using the triangle inequality, we obtain that for f = ∑M
s=1 βs ϕs and f ?M = ∑M

s=1(β?
M)s ϕs,

M

∑
j=1

j|β j| ≤
M

∑
j=1

j|β j − (β?
M)j|+

M

∑
j=1

j|(β?
M)j|.

Since f ?M ∈ FM(C), and thus ∑M
s=1 s|(β?

M)s| ≤ C, as a consequence, ∑M
s=1 s|βs| ≤ C + 1

as soon as ‖ f − f ?M‖M ≤ 1. This shows that the set{
f =

M

∑
j=1

β j ϕj : ‖ f − f ?M‖M ≤ γ

}

is contained in the support of νM. In particular, this implies that ρ2
M,γ is centered at f ?M and,

consequently, ∫
( f ?M(〈X, B?

M〉)− f (〈X, B?
M〉))dρ2

M,γ( f ) = 0.



Mathematics 2023, 11, 2065 12 of 16

This proves that C = 0.
Control of A: Clearly,

A ≤
∫

sup
y∈R

(( f ?M(y)− f (y))2dρ2
M,γ( f ) ≤ γ2.

Control of B: We have

B =
∫

E
[
( f (〈X, B?

M〉)− f (〈X, B〉))2
]
dρM,η,γ(B, f )

≤
∫

E
[(

Cφ(C + 1)(B?
M − B)X

)2
]
dρ1

η(B) (using the mean value theorem)

≤ C2
φ(C + 1)2E

[
‖X‖2

∞

] ∫
‖B?

M − B‖2
Fdρ1

η(B) (by Assumption 4).

Using Lemma 6 from [19], we have that∫
‖B?

M − B‖2
Fdρ1

η(B) ≤ (3dc + 2rη)2.

Thus,
B ≤ C2

φ(C + 1)2(3dc + 2rη)2.

Control of E: We have that

|E| ≤ 2
∫

E
[
| f ?M(〈X, B?

M〉)− f (〈X, B?
M〉)|| f (〈X, B?

M〉)− f (〈X, B〉)|
]
dρM,η,γ(B, f )

≤ 2
∫

E
[
| f ?M(〈X, B?

M〉)− f (〈X, B?
M〉)|Cφ(C + 1)|(B?

M − B)X|
]
dρM,η,γ(B, f )

≤ 2
(∫

E( f ?M(〈X, B?
M〉)− f (〈X, B?

M〉))
2dρM,η,γ(B, f )

) 1
2

(∫
E
(
Cφ(C + 1)(B?

M − B)X
)2dρM,η,γ(B, f )

) 1
2

≤ 2
(

γ2
) 1

2
(

C2
φ(C + 1)2(3dc + 2rη)2

) 1
2
= 2Cφ(C + 1)γ(3dε + 2rη).

Control of D: Finally,

D = 2
∫

E[(Y− f ?M(〈X, B?
M〉))( f (〈X, B?

M〉)− f (〈X, B〉))]dρM,η,γ(B, f )

= 2
∫

E[(Y− f ?M(〈X, B?
M〉))( f ?M(〈X, B?

M〉)− f ?M(〈X, B〉))]dρ1
η(B)

(since
∫

f dρ2
M,γ( f ) = f ?M)

= 2E
[
(Y− f ?M(〈X, B?

M〉))
∫
( f ?M(〈X, B?

M〉)− f ?M(〈X, B〉))dρ1
η(B)

]

≤ 2
√
E
[(

Y− f ?M(
〈

X, B?
M
〉
)
)2
]√

E
[∫ (

f ?M(
〈

X, B?
M
〉
)− f ?M(〈X, B〉)

)
dρ1

η(B)
]2

= 2
√

R(B?
M, f ?M)

√
E
[∫ (

f ?M(
〈

X, B?
M
〉
)− f ?M(〈X, B〉)

)
dρ1

η(B)
]2

.

As we have that

| f ?M(〈X, B?
M〉)− f ?M(〈X, B〉)| ≤ Cφ(C + 1)|〈(B?

M − B)X〉| ≤ Cφ(C + 1)‖B?
M − B‖F,
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it leads to[∫
( f ?M(〈X, B?

M〉)− f ?M(〈X, B〉))dρ1
η(B)

]2
≤ C2

φ(C + 1)2
[∫
‖B?

M − B‖Fdρ1
η(B)

]2

≤ C2
φ(C + 1)2(3dc + 2rη)2,

and therefore,

D ≤ 2Cφ(C + 1)(3dc + 2rη)
√

R(0, 0)/2 ≤
√

2Cφ(C + 1)(3dε + 2rη)
√

C2 + σ2.

Thus, taking η = γ = ε = 1/n and assembling all the components, we obtain that

A + B + C + D + E ≤ C1

n
,

where C1 is a positive constant function of C, σ, and Cφ. Combining this inequality
with (12) and (13) yields, with a probability larger than 1− δ,

R(B̂λ, f̂λ)− R? ≤ inf
1≤M≤n

{
β

α

(
R(B?

M, f ?M)− R? +
C1

n

)

+ 2
M log((C + 1)10n) + rd log(16n) + CD1 d log d log(2ne) + log

( 2
δ

)
λ

}
.

Finally, choosing λ = n
w+2C1

, it yields that there exists a constant C2 > 0 depending
only on L, σ, C, Cφ with a probability of at least 1− δ, such that

R(B̂λ, f̂λ)− R? ≤ C2 inf
1≤M≤n

{
R(B?

M, f ?M)− R?+

M log(10Cn) + rd log(16n) + C3d log d log(2ne) + log
( 2

δ

)
n

}
.

This concludes the proof of Theorem 1.

Lemma 4. Let r = #{i : Λi > ε} with small ε ∈ [0, 1). Take

dρ1
η ∝ 1(∀i : |vi −Λi| ≤ ε; ∀i = 1, . . . , r : ‖ui −Ui‖F ≤ η)µ(du, dv)

Then,
K(ρ1

η , µ) ≤ rd log(16/η) + C3d log d log(2e/ε)

where C3 is a universal constant.

Proof. We have that

K(ρ1
η , µ) = log

1
µ({u, v : ∀i : |vi −Λi| ≤ ε; ∀i = 1, r : ‖ui −Ui‖F ≤ η})

= log
1

µ({∀i = 1, r : ‖ui. −Ui.‖F ≤ η}) + log
1

µ({∀i : |vi −Λi| ≤ ε}) .
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The first log term

π({∀i = 1, r : ‖ui. −Ui.‖F ≤ η}) ≥
r

∏
i=1

[
π(d−1)/2(η/2)d−1

Γ( d−1
2 + 1)

/
2π(d+1)/2

Γ( d+1
2 )

]

≥
[

ηd−1

2dπ

]r

≥ ηr(d−1)

24rd .

Note the following for the above calculation: firstly, the distribution of the orthogonal
vector is approximated by the uniform distribution on the sphere [20], and secondly, the
probability is greater or equal to the volume of the (d-1)-“circle” with radius c/2 over the
surface area of the d-“unit sphere”.

It is noted that if γ ∼ Beta(a, b) (beta distribution), then γ1/2 has the pdf as

f (γ) = 2 γ2a−1(1−γ2)b−1

Be(a,b) , 0 < γ < 1 where Be(a, b) is the beta function. The second log

term in the Kullback–Leibler term with a = αi, b = ∑d
i=1 αi − αi, αi = 1/d is

π({∀i : |vi −Λi| ≤ ε}) =
d

∏
i=1

∫ min(Λi+ε,1)

max(Λi−ε,0)

v2a−1
i (1− v2

i )
b−1

2Be(a, b)
dvi

≥
d

∏
i=1

∫ ε

0

v2a−1
i (1− v2

i )
b−1

2Be(a, b)
dvi ≥ C3(ε/2d)d e−d log d.

The interval of integration contains at least an interval of length ε. Thus, we obtain

K(ρ1
η , µ) ≤ log

24rd

ηr(d−1)
+ log

(
(2d)ded log d

C3εd

)
≤ rd log(

16
η
) + C3d log d log(

e2
ε
)

for some absolute numerical constant C3 that does not depend on r, n or d.

Proof of Theorem 2. We also apply Lemma 3, and focus on (7), applied to δ := εn, that is

E
∫

exp

[
α(R(B, f )− R?) + λ(−rn(B, f ) + r?n)− log

(
dρ̂λ

dπ
(B, f )

)
−

log
2
εn

]
dρ̂λ(B, f ) ≤ εn/2

Using Chernoff’s inequality, this leads to

E
[
P(B, f )∼ρ̂λ

((B, f ) ∈ An)
]
≥ 1− εn

2

where

An =

{
(B, f ) : α

(
R(B, f )− R?

)
+ λ

(
−rn(B, f ) + r?n

)
≤ log

[
dρ̂λ

dπ
(B, f )

]
+ log

2
εn

}
.

From the definition of ρ̂λ, for (B, f ) ∈ An, we obtain that
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α
(

R(B, f )− R?
)
≤ λ

(
rn(B, f )− r?n

)
+ log

[
dρ̂λ

dπ
(B, f )

]
+ log

2
εn

≤ − log
∫

exp[−λrn(B, f )]π(d(B, f ))− λr?n + log
2
εn

= λ
(∫

rn(B, f )ρ̂λ(d(B, f ))− r?n
)
+K(ρ̂λ, π) + log

2
εn

= inf
ρ

{
λ
(∫

rn(B, f )ρ(d(B, f ))− r?n
)
+K(ρ, π) + log

2
εn

}
.

Now, put

Bn :=
{
∀ρ, β

(
−
∫

R(B, f )dρ + R?

)
+ λ

(∫
rndρ− r?n

)
≤ K(ρ, π) + log

2
εn

}
.

Using (8), we have that

E
[
1Bn

]
≥ 1− εn

2
.

We now prove that if λ is such that α > 0,

E
[
P(B, f )∼ρ̂λ

((B, f ) ∈ En)
]
≥ E

[
P(B, f )∼ρ̂λ

((B, f ) ∈ An)1Bn

]
and, together with,

E
[
P(B, f )∼ρ̂λ

((B, f ) ∈ An)1Bn

]
= E

[
(1− P(B, f )∼ρ̂λ

((B, f ) /∈ An))(1− 1Bc
n)
]

≥ E
[
1− P(B, f )∼ρ̂λ

((B, f ) /∈ An)− 1Bc
n

]
≥ 1− εn

leads to
E
[
P(B, f )∼ρ̂λ

((B, f ) ∈ En)
]
≥ 1− εn.

To obtain that, assume that we are on the set Bn, and let (B, f ) ∈ An. Then,

α
(

R(B, f )− R?
)
≤ inf

ρ

{
λ
(∫

rn(B, f )ρ(d(B, f ))− r?n
)
+K(ρ, π) + log

2
εn

}
≤ inf

ρ

{
β
(∫

R(B, f )ρ(d(B, f ))− R?
)
+ 2K(ρ, π) + 2 log

2
εn

}
that is,

R(B, f )− R? ≤ inf
ρ

β[
∫

Rdρ− R?] + 2
[
K(ρ, π) + log 2

ε

]
α

We upper-bound the right-hand side similarly as in the proof of Theorem 1, which
leads to (B, f ) ∈ En.

4. Conclusions

In this paper, we conduct a theoretical study of a low-rank matrix single-index model.
The model is used to estimate the link function and the coefficient matrix jointly. We
leverage the PAC-Bayesian bounds technique to gain a deeper insight into the properties of
this model and its potential applications. The study extends previous work in the field by
considering a low-rank matrix, rather than a sparse vector, as the coefficient matrix. We
also provide a detailed explanation of the choice of prior distributions for the link function
and the coefficient matrix, which allows to obtain accurate and reliable estimates of the



Mathematics 2023, 11, 2065 16 of 16

unknown parameters. Overall, this study provides a thorough theoretical understanding
of the low-rank matrix single-index model.

The focus of future research would center on executing the proposed approach. There
are various possible avenues to explore. One of the promising approaches is to use the
reversible jump Markov chain Monte Carlo method, which was successfully applied in the
past to address the sparse vector single-index model, as documented in [11].
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