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Abstract
The placenta is a central organ during early development, influencing trajectories of health and disease. DNA methylation 
(DNAm) studies of human placenta improve our understanding of how its function relates to disease risk. However, DNAm 
studies can be biased by cell type heterogeneity, so it is essential to control for this in order to reduce confounding and increase 
precision. Computational cell type deconvolution approaches have proven to be very useful for this purpose. For human 
placenta, however, an assessment of the performance of these estimation methods is still lacking. Here, we examine the per-
formance of a newly available reference-based cell type estimation approach and compare it to an often-used reference-free 
cell type estimation approach, namely RefFreeEWAS, in placental genome-wide DNAm samples taken at birth and from 
chorionic villus biopsies early in pregnancy using three independent studies comprising over 1000 samples. We found both 
reference-free and reference-based estimated cell type proportions to have predictive value for DNAm, however, reference-
based cell type estimation outperformed reference-free estimation for the majority of data sets. Reference-based cell type 
estimations mirror previous histological knowledge on changes in cell type proportions through gestation. Further, CpGs 
whose variation in DNAm was largely explained by reference-based estimated cell type proportions were in the proximity 
of genes that are highly tissue-specific for placenta. This was not the case for reference-free estimated cell type proportions. 
We provide a list of these CpGs as a resource to help researchers to interpret results of existing studies and improve future 
DNAm studies of human placenta.

Keywords Cell type estimation · DNA methylation · Human placenta · Chorionic villi · Reference-based deconvolution · 
Reference-free deconvolution

Introduction

Since the Developmental Origins of Health and Disease 
(DOHaD) hypothesis was proposed, converging evidence 
supports the high importance of intrauterine conditions for 
development, as well as for health and disease outcomes 
later in life [1–3]. The placenta is a complex organ with a 
central role in fetal development and regulation of the intra-
uterine environment throughout pregnancy [4–6]. Thus, a 
better understanding of the placenta’s critical role for early 
development and its molecular landscape is key to disen-
tangling some of the mechanisms driving DOHaD-related 
developmental aspects [7]. Epigenetic processes are essential 
for placental development and function, and correspondingly 
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healthy fetal development [8, 9]. Consequently, human stud-
ies of the placental epigenome are valuable and can help 
to increase our knowledge about trajectories of health and 
disease originating in early life.

DNA methylation (DNAm) is one of the most commonly 
studied epigenetic marks and it is known to be highly tis-
sue- and cell-type-specific. Accordingly, it is important to 
distinguish direct (true) associations between the exposure 
of interest and DNAm from associations mediated trough 
or otherwise caused by placental cell type distributions [10, 
11].

To this end, cell type deconvolution algorithms have been 
developed to retrieve information about cell type compo-
sition from DNAm data. They can be mainly categorized 
into reference-based and reference-free methods [10]. Ref-
erence-based cell type deconvolution algorithms rely on bio-
logically defined 5′-C-phosphate-G-3′ (CpG) sites that are 
uniquely methylated in purified cell types and were identi-
fied in a reference sample. For reference-free deconvolution, 
no a-priori knowledge about differential methylation from 
purified cell types is necessary, but cell types are predicted 
directly from DNAm using a computational approach [12]. 
The first reference-based method to infer changes in the dis-
tribution of white blood cells using DNAm signatures was 
proposed in 2012 by Houseman et al. [13], and pioneering 
algorithms for reference-free cell type deconvolution were 
published in 2014 [14, 15]. While reference-free methods 
are useful when no reference is available, reference-based 
methods are preferred if a reference is available and there 
is no evidence for other confounders [10, 16]. To date, the 
effectiveness of reference-free cell type deconvolution for 
placenta has not been assessed, and only recently a reference 
profile for placenta was published [17]. The establishment 
and validation of this reference in 28 samples constitutes 
important progress and now allows a reference-based cell 
type estimation in placenta.

However, an assessment of the performance of this ref-
erence-based versus reference-free cell type estimation in 
placenta with larger study samples is crucial for informing 
future research. In the current study, we demonstrate the 
impact of reference-based versus reference-free estimated 
cell types on DNAm in placental tissue and compare their 
informativeness. Further, we provide an overview of esti-
mated cell types in placental samples from three independ-
ent studies, taken at birth (n = 470, n = 139, n = 137) and, 
in the largest of these three studies, also during the first tri-
mester (n = 264). Our study contributes to a more detailed 
understanding of human placental characteristics regarding 
the relatedness of DNAm and cell type composition and 
underscores the importance of considering cell types in 
future DNAm studies using placental tissue.

Materials and methods

Study populations

Placental tissue samples were collected from the InTraUter-
ine sampling in early pregnancy (ITU) study, the Prediction 
and Prevention of Preeclampsia and Intrauterine Growth 
Restriction (PREDO) study [18], and the Betamethasone 
(BET) study [19].

ITU and PREDO are Finnish cohort studies consisting 
of women and their children who were followed through-
out pregnancy and beyond. In ITU, women were recruited 
through the national voluntary prenatal screening program 
for trisomy 21. If this screening indicated an increased risk 
of fetal chromosomal abnormalities based on routine serum, 
ultrasound screening, age and patient history, women were 
offered further testing including chorionic villus sampling 
(CVS) at the Helsinki and Uusimaa Hospital District Feto-
maternal Medical Center (FMC). During this visit, women 
were informed about the ITU study. If the chromosomal 
test indicated no fetal chromosomal abnormality, those who 
had expressed interest in participating were contacted for 
final recruitment. Another set of women were informed 
about ITU when attending the routine screening at mater-
nity clinics. If interest in participating was expressed, they 
were contacted for final recruitment into the ITU study. In 
PREDO, the recruitment took place when women attended 
their first routine ultrasound screening. Some of the women 
were recruited based on having clinical risk factors for 
preeclampsia and intrauterine growth restriction, others 
were recruited independently of these factors [18]. The aim 
of the BET study was to investigate the effect of antenatal 
betamethasone on the transplacental cortisol barrier and fetal 
growth [19]. Pregnant women with preterm labor and cervi-
cal shortening were treated with a single course of antena-
tal BET  (Celestan®, MSD GmbH, Haar, Germany) for fetal 
maturation between 23 + 5 and 34 + 0 weeks of gestation and 
were recruited prospectively before birth. A gestational-age-
matched control group consisted of pregnant women who 
received no antenatal BET.

Placental tissue samples

In the ITU study, first-trimester placental biopsies were 
obtained from leftover CVS, following indications of ele-
vated risk for chromosomal abnormalities between 10 and 
15 weeks of gestation. Placenta samples were also collected 
at birth, whereby midwives/trained staff took nine-site biop-
sies (within maximum 120 min after delivery) from the 
fetal side of the placenta, at 2–3 cm from umbilical cord 
insertion. In the PREDO study, placenta nine-site biopsies 



Reliability of a novel approach for reference‑based cell type estimation in human placental…

1 3

Page 3 of 18 115

(within maximum 90 min after delivery) were taken from 
the decidual side of the placenta. In the BET study, full-
thickness placental biopsies were taken by a uniform random 
sampling protocol [20, 21] from both peripheral and central 
areas. All samples were stored at − 80 °C.

Throughout the manuscript, we refer to all placental sam-
ples collected at birth as ‘term placenta’, and to all placental 
CVS samples collected during early pregnancy as ‘CVS’.

DNA methylation (DNAm)

From the collected samples, DNA was extracted accord-
ing to standard procedures and DNAm was assessed using 
the Illumina Infinium MethylationEPIC array (Illumina, 
San Diego, USA). In total, DNA methylation levels were 
assessed in 1055 samples: n = 277 CVS samples (ITU), and 
n = 500 placental samples (ITU), n = 140 placental samples 
(PREDO), and n = 138 placental samples (BET) taken at 
birth. All DNAm data were pre-processed in the same way, 
using an adapted pipeline from Maksímovíc et al. [22] and 
the R package minfi [23]. Beta values were normalized using 
stratified quantile normalization [24], followed by BMIQ 
[25]. Batch-effects were removed using ComBat [26].

The final data sets comprised 264 CVS samples from ITU 
(n = 716,331 probes) and 486 placental samples (n = 665,190 
probes) from ITU, 139 placenta samples (n = 755,154 
probes) from PREDO and 137 placenta samples (n = 708,222 

probes) from the BET study. Of these, 652,341 probes over-
lapped across all four data sets.

Gestational age, child sex and ethnicity variables

Gestational age (GA) at sampling was based on fetal ultra-
sound. Child sex was extracted from the Finnish Medical 
Birth Register (MBR) in ITU and PREDO and obtained 
from postnatal assessment in the BET study. To retrieve 
information about genetic background, we performed multi-
dimensional scaling (MDS) analysis on the identity-by-state 
(IBS) matrix of quality-controlled genotypes [27]. We used 
the first two components for ITU and PREDO and the first 
four components for the BET study, as it was ethnically more 
heterogenous. In the following, we refer to these MDS com-
ponents as ‘PC 1/2/3/4 ethnicity’, respectively. This informa-
tion was available for n = 200 individuals with CVS tissue 
in ITU, and n = 439 individuals with term placental tissue 
in ITU, in n = 118 individuals with term placental tissue in 
PREDO and n = 136 individuals with term placental tissue 
in BET. Genotyping was performed on Illumina Infinium 
Global Screening arrays for BET and ITU and on Illumina 
Human Omni Express Arrays for PREDO. DNA for geno-
typing was extracted from cord blood in ITU and PREDO, if 
available, otherwise placental tissue was used in ITU. DNA 
was extracted from placental tissue in the BET study. Fur-
ther details about genotypic assessment and quality control 

Table 1  Study sample 
characteristics [Mean (SD) or N 
(%) for each variable]

ITU PREDO BET

CVS Placenta Placenta Placenta

Sample size 264 470 139 137
Phenotypes
 Gestational age 12.79 (0.82) 39.99 (1.55) 39.89 (1.43) 38.16 (1.95)
 Child sex (male) 140 (53%) 238 (51%) 67 (48%) 70 (51%)

Reference-based cell types
 Trophoblasts 0.26 (0.06) 0.01 (0.03) 0.04 (0.05) 0.13 (0.06)
 Stromal 0.17 (0.06) 0.01 (0.02) 0.04 (0.03) 0.11 (0.02)
 Hofbauer 0.00 (0.01) 0.00 (0.01) 0.00 (0.00) 0.00 (0.00)
 Endothelial 0.00 (0.01) 0.01 (0.02) 0.08 (0.03) 0.11 (0.02)
 nRBC 0.00 (0.01) 0.04 (0.03) 0.00 (0.01) 0.00 (0.00)
 Syncytiotrophoblasts 0.57 (0.04) 0.93 (0.06) 0.83 (0.08) 0.66 (0.08)

Reference-free cell types
 C1 0.26 (0.14) 0.11 (0.09) 0.43 (0.19) 0.35 (0.2)
 C2 0.30 (0.15) 0.07 (0.07) 0.51 (0.20) 0.46 (0.2)
 C3 0.14 (0.07) 0.23 (0.13) – 0.14 (0.1)
 C4 0.10 (0.07) 0.13 (0.09) – –
 C5 0.14 (0.10) 0.13 (0.09) – –
 C6 – 0.11 (0.08) – –
 C7 – 0.09 (0.07) – –
 C8 – 0.08 (0.07) – –
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in the ITU and PREDO cohorts, as well as in the BET study, 
have been published elsewhere [28, 29].

An overview of study sample characteristics is given in 
Table 1.

Cell type composition estimation

Reference-based cell type composition into six cell types 
(nucleated red blood cells, trophoblasts, syncytiotropho-
blasts, stromal, Hofbauer, endothelial) was estimated using 
a reference recently published by Yuan et al. [17] and imple-
mented within the R package planet, by applying the robust 
partial correlation algorithm [30].

The result of this cell type estimation is the amount of the 
respective cell types in every person, while all estimated cell 
types add up to 100%.

Reference-free cell types were estimated following the 
protocol suggested in the R package RefFreeEWAS [31], 
which led to five estimated ‘cell types’ in CVS (ITU), and 
eight estimated ‘cell types’ (ITU), two estimated ‘cell types’ 
(PREDO) and three estimated ‘cell types’ (BET) in term 
placenta. We refer to cell types here, although the output of 
this procedure does not give explicit cell types, but latent 
quantities and their respective proportion for every person.

Statistical analyses

All statistical analyses were performed in R, version 
4.0.5/4.1.1 [32].

Filtering of invariable probes in DNAm

To assess the influence of cell types on DNAm, we first 
filtered for variable CpGs by excluding placenta-specific 
non-variable CpGs. We applied a procedure described by 
Edgar et al. [33] to the overlapping CpGs (n = 652,341) of all 
four placental methylation data sets from the EPIC array, to 
identify sites with < 5% range between 10 and 90th percen-
tile in DNAm beta values using our data sets. This resulted 
in 120,548 CpGs (listed in Supplementary Table S1) that 
we identified as non-variable for placental EPIC methyla-
tion data and excluded from further analyses. Identifying 
these CpGs is useful to reduce dimensionality, and becomes 
especially relevant for future studies, e.g., epigenome-wide 
association studies (EWAS), aiming to use our resources. 
Furthermore, the 1050 CpGs used to predict cell type com-
position in the model by Yuan et al. [17] were excluded from 
the following analyses to prevent circular conclusions.

Capturing DNAm variance through principal components 
and filtering of individuals

To capture the major variance in DNAm, we performed 
singular value decomposition on methylation beta values, 
and extracted the first principal component (PC1) explain-
ing most of the variance for every data set (Supplementary 
Fig. S1). For term placenta from ITU we identified n = 16 
outliers representing values greater than three times inter-
quartile-range in PC1 (see Supplementary Fig. S2a). The 
same samples showed lower sample-sample correlations in 
DNAm beta values with the other placenta samples (Sup-
plementary Fig. S2b) and presented different cell type pro-
portions (Supplementary Fig. S2c). Thus, we excluded these 
samples from the ITU placenta data set, resulting in n = 470 
term placenta samples from the ITU cohort. We calculated 
the principal components (PC) without these outliers in the 
ITU term placenta data set. For CVS from ITU and term 
placenta data sets from PREDO and BET no such outliers 
were identified.

Correlation of reference‑free estimated cell types 
with reference‑based estimated cell types and phenotypes

Spearman's rank correlations were calculated both between 
reference-free and reference-based estimated cell types and 
between reference-free estimated cell types and phenotypes 
(GA, child sex, ethnicity PCs and additionally fetal chro-
mosomal testing and BET administration status in the ITU 
and BET placenta, respectively) in every tissue. Adjustment 
for multiple testing was done using Bonferroni correction.

Models to predict DNAm by cell type proportions 
(reference‑based versus reference‑free)

To compare the impact of reference-based versus reference-
free estimated cell types on the main variance in DNAm, 
PC1 of DNAm beta values was regressed linearly on differ-
ent predictors in six models for every data set:

1. PC methylation ~ 1
2. PC methylation ~ GA at sampling + child sex + PCs eth-

nicity
3. PC methylation ~ reference-based estimated cell types
4. PC methylation ~ reference-based estimated cell 

types + GA at sampling + child sex + PCs ethnicity
5. PC methylation ~ reference-free estimated cell types
6. PC methylation ~ reference-free estimated cell 

types + GA at sampling + child sex + PCs ethnicity

Using cross-validation with 10 folds, 500 repeats and 
RMSE as loss function, implemented in the R package 
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xvalglms [34], enabled us to evaluate which model best 
explains variability in placental DNAm. This is defined by 
the number of times a particular model wins in the repeated 
cross-validation procedure, i.e., the number of times that the 
model has a smaller prediction error (RMSE, in our case) 
than all other models considered. RMSE is on the same scale 
as the outcome variable and the partitions of data were the 
same for all models. As RMSE is not comparable between 
the data sets, we additionally report the adjusted R2 values 
of the winning models.

For the BET data set, we observed outliers in RMSE in 
some of the repeats (see Supplementary Fig. S3a). After 
further exploration it became evident that these were driven 
by five samples, which were different in Hofbauer and nRBC 
cell type proportions, i.e., all samples apart from these five 
had no estimated proportions of Hofbauer and nRBC cells 
(see Supplementary Fig. S3b). We also tested if outliers in 
any of the other estimated cell types (see Supplementary Fig. 
S3c) changed the behavior of the model, but this was not the 
case. Furthermore, outliers were present in all data sets and 
are not suspicious per se in samples from heterogenous tis-
sue like placenta. Thus, we only excluded the five samples 
presenting very different in estimated Hofbauer and nRBC 
cells in the BET data set from this analysis.

We further tested how much of DNAm variability in all 
single CpGs could be explained by either reference-based or 
reference-free estimated cell types. Linear models were fitted 
for every CpG by predicting DNAm (beta values) with either 
reference-based or reference-free cell types. For every CpG, 
the adjusted R2 was extracted (see Supplementary Fig. S4 for 
a histogram of R2 values). Afterwards, CpGs with adjusted 
R2 > 0.30 in all four data sets were extracted and considered 
as CpGs at which variability of DNAm (beta values) was 
relatively strongly influenced by cell type proportions. We 
decided to use this criterion based on an evaluation of the 
histograms (Fig. S4) and as the mean adjusted  R2 values of 
the 90% quantile of all data sets was R2

Adjusted = 0.30, and 
our aim to only extract the most informative CpGs, i.e., to be 
rather strict in this selection. For the following enrichment 
analyses, the genes (20,038) mapping to all CpGs (534,510) 
overlapping between the data sets were used as background.

Enrichment analyses

All CpGs were mapped to the closest gene using the R 
package bumphunter functions annotateTranscripts and 
matchGenes [35]. Afterwards, the genes corresponding to 
the extracted CpGs were used as input for the TissueEnrich 
package [36], while the genes corresponding to all CpGs 
overlapping between the data sets (without any filtering for 
R2) were considered as background genes (n = 20,038). The 
same input and background genes were further used for the 
PlacentaCellEnrich Tool [37]. Human placental single-cell 

RNA-Sequencing data [38] were used to retrieve enrich-
ments for placenta cell-specific expression patterns. For both 
enrichment analyses we used an adjusted p value of 0.01 as 
threshold for enrichment, as recommended by the authors of 
the PlacentaCellEnrich Tool [37].

Cell type composition analyses

Differences in reference-based cell type proportions between 
the three term placenta data sets were analyzed using non-
parametric global multivariate analysis of variance [39] 
implemented in the R package npmv [40]. To test for sig-
nificant differences between the study groups, we applied 
the global test using the R function nonpartest with default 
settings, which provides F-distribution approximations, per-
forms multivariate permutation and calculates nonparamet-
ric relative effects. The global test was supplemented with a 
more detailed comparison (R function ssnonpartest) of study 
groups and cell types using the F approximation of Wilks’ 
lambda, to identify which variables/factor levels contribute 
to the significant differences, while controlling for the fami-
lywise error rate (α = 0.01).

Differences in reference-based cell type proportions 
between CVS and term placenta from the same individuals 
(n = 85, ITU) were calculated using paired Wilcoxon signed-
rank tests. All p values were corrected for multiple testing 
(n = 6 cell types) using Bonferroni correction and compared 
to α = 0.01.

Spearman correlations and Wilcoxon signed-rank tests 
were performed to test for relationships between reference-
based cell type proportions and GA and child sex (for 
every cell type separately and corrected for multiple testing 
among the n = 6 cell types using Bonferroni correction and 
α = 0.01).

Results

Reference‑free estimated cell types do not map 
to reference‑based estimated cell types and are 
correlated with child sex

For an illustration of the correspondence between reference-
based and reference-free estimated cell types, Spearman 
correlation coefficients are shown in Fig. 1. Although there 
were some correlations between reference-based and refer-
ence-free estimated cell types, there was no clear matching 
between reference-based estimated cell types and specific 
reference-free components. Furthermore, Spearman correla-
tion coefficients for reference-free estimated cell types and 
included phenotypes are depicted in Fig. 2. It can be seen 
that especially child sex was correlated with the reference-
free estimated cell type components.   
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ITU, c term placenta from PREDO and d term placenta from the BET 
study
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For the majority of data sets, reference‑based 
methods predict variability of DNAm better 
than reference‑free methods

To evaluate the impact of phenotypic variables (GA, 
child sex, ethnicity) vs. reference-based vs. reference-free 
cell type composition on the main variance in DNAm (PC1), 
we compared the predictive performance of six compet-
ing models: an intercept-only model (model 1), phenotype 
model (model 2), reference-based cell type model with or 
without phenotypes (model 3 and 4) and reference-free cell 
type model with or without phenotypes (model 5 and 6). 
All models were tested in each data set among individuals 
with complete information available (n = 200 for CVS from 
ITU, n = 425 for term placenta from ITU, n = 118 for term 
placenta from PREDO and n = 136 for term placenta from 
the BET study with five outliers excluded (see “Materials 
and methods”) resulting in n = 131).

The results of the cross-validation procedure for model 
selection are shown in Fig. 3. Models including cell type 
estimations always performed better than the intercept-only 
model (model 1) or a model including only phenotypes (GA, 
sex, ethnicity; model 2). In CVS data (Fig. 3a), the model 
including reference-based cell types only (model 3) gave the 
most accurate out-of-sample predictions of PC1 (80% of the 
wins), with an average prediction error of 79.58 (95% CI 
[78.57, 80.89]), followed by the model including reference-
based cell types and phenotypes. The adjusted R2 of the win-
ning model was R2

Adjusted = 0.90.
Placental samples taken from the fetal side at birth in the 

ITU cohort were the only data set where reference-free cell 
types outperformed reference-based cell types in the pre-
diction of PC1 DNAm (Fig. 3b). In this data set, the model 
including both reference-free cell types and phenotypes 
(model 6) always won, presenting with an average predic-
tion error of 72.62 (95% CI [71.97, 73.34]). The adjusted 
R2 of the winning model was R2

Adjusted = 0.92. These results 
did not change when information about fetal chromosomal 
testing (yes or no) was included as an additional phenotype 
variable in the models. In PREDO (Fig. 3c), where the pla-
cental samples were taken from the decidual side at birth, 
the model including reference-based cell types together with 
phenotypes (model 4) performed best (79% of wins) with an 
average prediction error of 111.44 (95% CI [107.08, 121.70]. 
In the BET study (Fig. 3d), where placental biopsies span-
ning from the decidual to the fetal side were collected at 
birth, the model including reference-based cell types (model 
3) won in most of the repeats (99% of wins) with an aver-
age prediction error of 87.84 (95% CI [86.48, 89.54]. When 
including BET (administered or not) as a phenotype variable 
for the BET study, the winning model was still model was 
still the model including only reference-based estimated cell 

types (model 3). The adjusted R2 of the winning model was 
R2

Adjusted = 0.86 in both the PREDO and BET placenta.
In both PREDO and BET, the second-best model was 

the other model including either both reference-based esti-
mated cell types and phenotypes (model 4, for BET) or only 
reference-based cell types (model 3, for PREDO).

The conclusions from predicting DNAm variability in 
single CpGs by either reference-based or reference-free esti-
mated cell types were concordant with the model for PC1 in 
DNAm. On average, reference-based cell types explained more 
variance (adjusted R2) in DNAm compared to reference-free 
cell types among CpGs in CVS from ITU (n = 264; R2

Adjusted 
M = 0.13, SD = 0.17 vs. M = 0.12, SD = 0.12), and in placen-
tal tissues at birth in PREDO (n = 139; R2

Adjusted M = 0.11, 
SD = 0.16 vs. M = 0.05, SD = 0.06), and in BET (n = 137; 
R2

Adjusted M = 0.10, SD = 0.13 vs. M = 0.06, SD = 0.07). Only 
placental tissues sampled at birth in ITU (n = 470), reference-
free estimated cell types explained more of the variance in 
DNAm (R2

Adjusted M = 0.18, SD = 0.18) than reference-based 
estimated cell types (R2

Adjusted M = 0.11, SD = 0.15).

CpGs with larger proportions of variability 
explained by reference‑based cell types map 
to placenta‑specific genes

CpGs where estimated cell type composition explained 
more than 30% of variance (adjusted R2 > 0.3) in all four 
data sets were considered as CpGs at which variability was 
relatively strongly influenced by cell type proportions. A 
list of these CpGs and corresponding genes can be found in 
Supplementary Table S2. For the reference-based model, 
this was the case for 26,092 CpGs mapping to 8511 genes. 
For the reference-free model, this was true for 531 CpGs 
mapping to 398 genes.

The results of the tissue enrichment analyses can be 
seen in Fig. 4. When using the reference-based estimated 
cell types, genes mapping to CpGs where variability was 
strongly influenced by cell types were enriched for placenta-
specific genes (Fig. 4a, p < 0.001 and fold-change = 1.291. 
We provide a list of these 186 placenta-specific genes in 
Supplementary Table S3. For reference-free estimated cell 
types, genes mapping to CpGs where variability is strongly 
influenced by cell types were not enriched for placenta-
specific genes (Fig. 4b): only 10 genes were found to be 
placenta-specific. However, there was an enrichment for 
cerebral cortex, with p < 0.001, fold-change = 2.209.

Next, we ran cell-specific enrichment analysis using a 
placenta-specific dataset (PlacentaCellEnrich Tool). Cell-
specific expression patterns can be seen in Fig. 5. Again, 
the results reflect a higher placenta-specificity when using 
the reference-based approach (Fig. 5a), showing a signifi-
cant enrichment for a number of placental cells as follows: 
syncytiotrophoblasts, villous cytotrophoblast, extravillous 
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Fig. 3  Cross-validation results 
for predicting PC1 of DNAm 
comparing 6 models (model 
1 = intercept-only; model 
2 = phenotypes (gestational 
age (GA), child sex, ethnicity); 
model 3 = reference-based esti-
mated cell types; model 4 = ref-
erence-based estimated cell 
types and phenotypes; model 
5 = reference-free estimated 
cell types; model 6 = reference-
free estimated cell types and 
phenotypes). The upper panel 
illustrates the proportions of 
wins among all repetitions for 
each model (models with zero 
wins overlap and hence not all 
colors are displayed), and the 
winning model is listed. The 
panel below shows the boxplots 
of the prediction error (root 
mean square error of prediction, 
RMSEp) for all six models with 
the number of wins for each 
model displayed at the top. The 
panel on the right is a graph 
of density estimates for the 
prediction errors. Models were 
compared independently in four 
different tissue samples, a first 
trimester placenta (CVS) from 
ITU, b term placenta form ITU, 
c term placenta from PREDO 
and d term placenta from the 
BET study
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Fig. 4  Tissue enrichment 
among genes mapped to CpGs 
with a minimum of 30% 
explained variance in DNAm 
predicted by cell type propor-
tions from a reference-based 
cell type estimation and b 
reference-free cell type estima-
tion
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Fig. 5  Enrichment for placental 
cell-specific genes among genes 
mapped to CpGs with a mini-
mum of 30% explained variance 
in DNAm predicted by cell type 
proportions from a reference-
based cell type estimation 
and b reference-free cell type 
estimation
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trophoblast, fetal fibroblasts, stromal cells, endothelial cells 
and decidua perivascular cells. These represent the major 
cell types in the placenta [41], indicating that this approach 
accounted for the majority of confounding possible from 
cell type heterogeneity. Using the reference-free approach 
(Fig. 5b) there was only an enrichment of villous cytotropho-
blasts. A summary of parameters of the cell-specific enrich-
ment can be found in Supplementary Table S4.

Cell type composition

We next wanted to estimate the cell type proportions in the 
different study samples using the reference-based method 
(Fig. 6).

Cell type proportions in term placentas show differences 
between studies

While cell type estimates were highly similar for samples 
within a study, we observed significantly different esti-
mated cell type proportions among the three studies with 
placental samples collected at birth, according to each of 
the four test criteria (ANOVA type, Lawley-Hotelling type, 
Bartlett–Nanda–Pillai type, and Wilks’ lambda type). Test 
statistics are given in Supplementary Table S5. Nonpara-
metric relative effects, quantifying the probability that 
a value obtained from one study sample is larger than a 
value randomly chosen from the other study samples, are 
provided in Supplementary Table S6. The post-hoc testing 
procedure following the global test determined that sam-
ples from all three studies and all cell types contributed to 
these significant differences. In all three term placenta data 
sets, syncytiotrophoblasts were the main estimated cell 
type, but the highest proportion was estimated in term pla-
centa from ITU. Estimates for proportions of trophoblasts, 
stromal and endothelial cells were highest in the BET 
study sample, followed by term placenta from PREDO.

Cell type proportions show intra‑individual changes 
from CVS to term Placenta

The estimated cell type proportions differed significantly 
between early-pregnancy CVS and placenta sampled at 
birth for a number of cell types. Largest differences in 
estimates were observed for stromal cells (Mdn = 17.4% 
in CVS vs. Mdn = 0.0% at birth, Z = 8.0, p < 0.001), syn-
cytiotrophoblasts (Mdn = 56.9% in CVS vs. Mdn = 95.3% 

at bir th, Z  = −  8.0, p < 0.001), and trophoblasts 
(Mdn = 24.8% in CVS vs. Mdn = 0.0% at birth, Z = 8.0, 
p < 0.001) followed by endothelial cells (Mdn = 0.0% in 
CVS vs. Mdn = 0.4% at birth, Z = − 6.1, p < 0.001), nRBC 
(Mdn = 0.0% in CVS vs. Mdn = 3.2% at birth, Z = − 7.7, 
p < 0.001). This was based on 85 individuals from the ITU 
cohort for whom both CVS and placenta tissue at birth 
were available. Syncytiotrophoblasts were the most abun-
dant estimated cell type in both CVS and term placenta 
tissue, but there was a strong median increase of 38.4% in 
this cell type from early-pregnancy to birth. The largest 
decrease from early-pregnancy to birth was in estimated 
trophoblasts from CVS to term placenta (median decrease 
of 24.8%), followed by estimated stromal cells (median 
decrease of 17.4%).

Associations between reference‑based estimated cell types 
and gestational age

Finally, we wanted to see whether the estimated cell type 
proportions follow physiological changes over gestation.

Higher GA at sampling was significantly related to lower 
estimated trophoblast proportions in CVS (rs = −  0.32, 
p < 0.001) and term placenta from the BET study 
(rs = − 0.42, p < 0.001), and to higher estimated syncytio-
trophoblast proportions in CVS (rs = 0.36, p < 0.001) and 
term placenta from the BET study (rs = 0.37, p < 0.001). The 
effects were not significant, though in the same direction, 
for the other two data sets (term placenta from ITU and 
PREDO), where GA was more skewed towards higher ges-
tational age. The relationship of estimated trophoblast and 
syncytiotrophoblast proportions with GA is shown in Fig. 7.

We observed no significant relationships with GA among 
the other estimated cell types.

Similar to Yuan et al. [17] we observed no significant 
sex-specific differences in estimated cell type proportions 
in any of the study samples.

Discussion

In this study, we examined a new DNAm-based reference 
which enables reference-based cell type estimation in pla-
centa [17] in a large data set comprising over 1000 samples 
from three independent studies, with n = 746 placental sam-
ples collected at birth, and n = 264 during the first trimester 
of pregnancy. We investigated intra- as well as inter-individ-
ual differences in estimated cell type proportions. Further-
more, we compared the reference-based to a reference-free 
approach (namely, RefFreeEWAS) [31], regarding its poten-
tial to control for cell type proportions in DNAm studies of 
human placenta. We provide lists of CpGs from the EPIC 
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Fig. 6  Depicted are the mean 
and standard deviation of the 
reference-based estimated cell 
type’s proportion (raw estimates 
using the reference by Yuan 
et al. [17] and robust partial 
correlation algorithm) together 
with an illustration of the rela-
tive estimated cell type propor-
tion in a n = 264 individuals in 
CVS from ITU, b n = 470 indi-
viduals in term placenta from 
ITU, c n = 139 individuals in 
term placenta from PREDO and 
d n = 137 individuals in term 
placenta from the BET study
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array which we found to be (1) non-variable in placental 
tissue (Supplementary Table S1), and (2) highly influenced 
by cell types (Supplementary Table S2).

Using a cross-validation model focusing on the prediction 
of the major variance in DNAm, as well as an investigation 
at single CpGs level, we confirmed the importance of cell 
type composition for variability in DNAm.

At the same time, the latter shows that it is a select sub-
set of CpGs where the impact of cell type proportions on 
DNAm is especially important (Supplementary Table S2).

Both reference-free and reference-based cell type estima-
tion methods can account for variability in DNAm. However, 
for the majority of data sets, the reference-based approach 
better predicted variability of DNAm.

Generally, reference-based cell type estimation allows for 
a more direct interpretation of cell type composition. This 

Fig. 7  Scatterplots showing 
the Spearman correlation (**p 
value < 0.001) of trophoblast 
and syncytiotrophoblast propor-
tions with gestational age in a 
first trimester placenta (CVS) 
from ITU (n = 264), b term 
placenta form ITU (n = 470), 
c term placenta from PREDO 
(n = 139) and d term placenta 
from the BET study (n = 137)
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was underscored by the fact that the overlap in CpGs with 
high amount of DNAm variability explained by estimated 
placental cell types was much more consistent among the 
different data sets when using reference-based cell types 
(26,092 CpGs) versus reference-free cell types (531 CpGs). 
Furthermore, genes mapping to these CpGs with high pro-
portions of DNAm variability explained by estimated ref-
erence-based cell types were enriched for placenta-specific 
genes, while this was not the case when using the reference-
free approach (see Fig. 4). A possible reason for this could 
be that the reference-free methods do not only depict cell 
types, but further unknown sources of variance, and as such 
it is difficult to interpret what the estimated reference-free 
‘cell types’ actually reflect. This also becomes clear from 
Figs. 1 and 2, where we depict that reference-based esti-
mated cell types are not highly correlated with a specific 
reference-free cell type component, but rather with child 
sex. This might also explain why in one of the term pla-
centa data sets DNAm variability was better explained by 
reference-free compared to reference-based estimated cell 
types - probably not only cell types were covered by the esti-
mated ‘cell types’ which contributed to DNAm variability 
in the complex tissue samples. This could suggest that even 
though reference-based cell type correction approaches out-
perform reference-free approaches in most settings, cohort-
specific differences may affect the performance of these 
methods.

Overall, considering the performance of the reference-
based cell type estimation, it may be advisable to use refer-
ence-based methods, such as from Yuan et al. [17] in future 
studies investigating DNAm in human placenta.

Higher GA was associated with higher proportions of 
syncytiotrophoblasts and lower proportions of trophoblasts 
in the placenta samples collected at birth (Fig. 7). This find-
ing was congruent with the changes in estimated cell type 
composition we observed from first trimester to birth pla-
centa samples from the same individuals: trophoblast cells 
showed the largest decrease, syncytiotrophoblasts the largest 
increase. These differences in the estimated cell type propor-
tions between early and late pregnancy are probably reflec-
tive of placental maturation process [42]. Trophoblasts give 
rise to further subpopulation of cells and syncytiotropho-
blasts expand during pregnancy [5]. Yuan et al. [17] reported 
an increase in estimated syncytiotrophoblasts and endothe-
lial cells and decrease in stromal cells from first trimester to 
term placenta samples, which is again concordant with our 
results despite their comparison of samples from different 
individuals, in contrast to our within-sample design in 85 
individuals. Nevertheless, it should be mentioned that we 
cannot rule out that some of the differences in estimated 
cell type proportions may arise from differences in sampling 
and storage conditions of the CVS and the placental tissue.

Regarding child sex, Yuan et al. did not find any associa-
tion with estimated cell composition [17]. We can confirm 
this result, as there was no evidence for sex-specific differ-
ences in reference-based estimated cell type composition.

Additionally, the use of three independent studies (ITU, 
PREDO, BET) enabled us to investigate between-study 
differences in estimated cell type proportions at birth. We 
observed that cell type composition was rather consistent 
among samples within a study but different between studies. 
The larger variance in cell type proportions between studies 
(versus between individuals within a study) might reflect the 
different sampling schemes of placental tissue (see “Materi-
als and methods”). The placenta is a highly complex organ, 
which makes the sampling procedure difficult and particu-
larly prone to differences between studies [21, 43].

An important strength of our study is that we were able to 
investigate placental cell type composition in a large num-
ber of placentas from different independent studies. In addi-
tion to examining placental DNAm at birth, we included 
early-pregnancy placental CVS samples: in a subset of 85 
individuals, longitudinal data on placental DNAm both in 
early pregnancy and at birth were available, giving us the 
rare chance to examine change over time within the same 
placentas. We also provide resources that can be used for 
the interpretation and design of DNAm studies in placenta, 
especially EWAS. However, there are also some limitations: 
we rely on bioinformatic indirect deconvolution, which also 
limits our investigation to the cell types included in the refer-
ence sample [17]. This was in turn limited by the availabil-
ity of unique markers suitable for cell type selection using 
fluorescence-activated cell sorting, and dissection accuracy. 
Future tools based on single-nucleus DNA methylation anal-
yses would undoubtedly improve cell type accuracy as well 
as diversity, thus improving usefulness for deconvolution in 
bulk tissue analyses. Furthermore, we only compared one 
reference-based deconvolution to one of several (semi-) ref-
erence-free approaches available [16]. Thus, our comparison 
of performance between methods is limited to these chosen 
approaches and is only an indication of the ability of the 
reference-based method to account for variability in DNAm 
compared to another often-used reference-free approach, but 
not generalizable to all reference-free methods. Additionally, 
we only used the first principal component of DNAm in the 
cross-validation procedure for model comparison, which is 
a reduction of dimensionality and improves interpretability, 
but at the same time can only capture part of the total vari-
ation in the data.

Overall, addressing cell type heterogeneity in studies of 
DNAm is important to avoid misinterpretation of results, to 
limit confounding and increase precision by distinguishing 
changes in cell type proportions from epigenetic changes 
due to other factors, such as for example environmental 
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exposures [44]. Apart from this, cell type composition is 
also an important factor to consider for understanding gene 
regulatory mechanisms in human tissues [45] and tissue 
function overall. This study contributes to a more detailed 
understanding of the interrelation between DNAm and esti-
mated cell type composition in human placenta and stands as 
a resource to help researchers design future DNAm studies 
of human placenta and interpret results of both existing and 
future studies.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00018- 021- 04091-3.
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