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Abstract
Research at the intersection of social science and 
genomics, ‘sociogenomics’, is transforming our under-
standing of the interplay between genomics, individual 
outcomes and society. It has interesting and maybe 
unexpected implications for education research and 
policy. Here we review the growing sociogenomics 
literature and discuss its implications for educational 
researchers and policymakers. We cover key con-
cepts and methods in genomic research into educa-
tional outcomes, how genomic data can be used to 
investigate social or environmental effects, the meth-
odological strengths and limitations of genomic data 
relative to other observational social data, the role of 
intergenerational transmission and potential policy im-
plications. The increasing availability of genomic data 
in studies can produce a wealth of new evidence for 
education research. This may provide opportunities 
for disentangling the environmental and genomic fac-
tors that influence educational outcomes and identify-
ing potential mechanisms for intervention.
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INTRODUCTION

A key aim of much social science research is identifying modifiable factors that can be used 
for interventions to improve people’s life outcomes. Our genomes are fixed at conception 
and cannot be changed, so why should education researchers –  and social scientists more 
broadly –  be interested in an aspect of human nature that is immutable? Here we discuss 
how researchers can exploit genomic data to enrich research in the social sciences.

Human behaviour is impacted by and associated with both genetic variation (differences 
in DNA between people) and environmental circumstances. However, genetics and the en-
vironment are not simply two independent forces; they are inextricably linked and jointly 
influence human behaviour (Plomin et al., 2014). Most human traits are heritable; that is, sta-
tistical variation in those traits is driven at least partially by genetic variation between individ-
uals (Turkheimer, 2000, for a glossary see Box S1). If our aim is a holistic understanding of 
individual differences in educational or other social outcomes, it is important to incorporate 
genomics. At a practical level, inference from quantitative statistical approaches that fail to 
account for genomic information may lead to spurious conclusions about relationships be-
tween social factors that are in fact influenced by genomic differences between individuals. 
For example, parenting behaviour is related to many offspring outcomes, but parents and 
their offspring share half of their genomes and also often have similar social environments. 
Are these observed correlations driven by parental behaviours, by genetic correlation be-
tween parents and their children, or by a combination of both? Genomic evidence may not 
only capture the causal effect of genomics on education, but also reflect the effects of other 
social or familial processes.

The use of genomic data may also allow researchers to make stronger causal inferences 
than from other observational data. Suppose an investigator is interested in whether myopia 
(shortsightedness) affects educational attainment (discussed in Box 1), an example we will 
come back to later. Here, a correlation between myopia and attainment is not sufficient for 
concluding that myopia causes educational attainment, given the potential impact of con-
founding factors and reverse causation. Confounding could occur if a third factor affected 
both risk of myopia and educational attainment, while reverse causation could occur if pro-
cesses leading to educational attainment (i.e. some aspect of the school environment) af-
fect short- sightedness. Under specific statistical assumptions, methods that exploit genetic 
variation can avoid these issues –  which plague many observational studies –  to reliably 
estimate causal effects. As with all empirical studies, however, a key consideration for in-
terpreting genetic studies is whether the assumptions on which they depend are plausible.

Key insights

What is the main issue that the paper addresses?

This paper reviews the implications of recent discoveries in genomics for education 
research.

What are the main insights that the paper provides?

We describe how genetic data can be used to provide new insights into many re-
search questions of interest, including understanding the causal mechanisms 
that link parents and offspring, and the influence of the environment on students’ 
outcomes.
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Researchers from education, economics, sociology and many other areas of social sci-
ence have investigated the mechanisms which underlie the intergenerational transmission 
of education from one generation to the next. With the increasing availability of large data-
sets which have sampled mothers, fathers and offspring from the same families, research-
ers can use genetic variation to understand how educational advantage is transmitted within 
families.

While the genome is fixed at conception, the way that it affects educational outcomes 
may depend heavily on environmental circumstances. The opposite is also true: environ-
mental impacts on individuals’ outcomes may depend on one’s genetic variation. Research 
in this area explores the interplay between genetic and environmental variation in shaping 
individual outcomes. Understanding whether the impact of different environments on edu-
cational outcomes differs across individuals with distinct genetic variation could help us to 
understand the existence of, causes of and development of educational inequalities within 
the population.

Box 1 The definition of educational attainment

Many measures of the ‘years of education’ used in genome- wide association studies 
(GWASs) like that of Lee et al. were derived from qualifications (e.g. in UK Biobank), 
making them a noisy and imperfect measure. This has implications, particularly 
for Mendelian randomisation (MR) (Howe et al., 2020). Furthermore, these mea-
sures of educational attainment differ across countries and were harmonised to 
a common scale (the International Standard Classification of Education [ISCED]). 
However, clearly there is going to be heterogeneity in what a given number of years 
of education mean in one country at one specific point in time vs. another country 
or even within the same country at different points in time. For example, consider 
two siblings, one has 17 years of education and the other 18 (starting at age 4 and 
leaving at age 21/22). One has a humanities degree from a traditional university, 
the other has a vocational degree from a newer university. Under the International 
Standard Classification of Education (ISCED) both siblings would be coded as hav-
ing the same amount of education, but clearly the educational experiences and the 
downstream consequences of that education may differ. Similar arguments can be 
made about individuals leaving state vs. private education at the same age, or even 
choosing different subjects while at secondary school.

However, despite the heterogeneity in the definition of educational attainment, 
the signal from educational GWASs has been very consistently replicated within 
European ancestry samples. Therefore, the definitions of educational attainment are 
clearly sufficiently consistent across these samples to produce a reliable signal that 
explains around 10% of the variation. Fascinatingly, there is evidence that these sig-
nals do not replicate well in non- European ancestry samples. For example, the as-
sociation of educational attainment and the educational attainment polygenic score 
attenuates 85% in non- European sample samples (Lee et al., 2018). This is prob-
ably because the score was developed largely in samples of European ancestry. 
However to date we do not have particularly good understanding or evidence about 
this because there are relatively few non- European genetic samples compared with 
European samples (Mills & Rahal, 2019).
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Below we provide an introduction to genetics for education researchers, discuss the rele-
vance of recent findings in genomics to education researchers and how they can be used to 
understand the associations found in observational data, and finally explore the implications 
of these approaches for educational and social policies.

GENOMICS 101

The human genome consists of DNA which is stored in our cells as chromosomes. Most 
humans have 23 pairs of chromosomes, one of each pair being inherited from each par-
ent. DNA consists of two coiled chains of nucleotides that are bonded together in pairs and 
stored in a double helix shape. There are four types of nucleotides, defined by a difference 
in their base molecule: (A) adenine; (C) cytosine; (G) guanine; (T) thymine. There are around 
3.2 billion of these nucleotide pairs in the human genome, but only a minority of these differ 
between people (The, 1000 Genomes Project Consortium, 2015). The points of nucleotide 
variation are referred to as single nucleotide polymorphisms (SNPs, pronounced ‘snips’), 
and different copies of these SNPs are referred to as alleles. Because our chromosomes 
come in pairs, for any specific SNP, we normally would have zero, one or two copies of an 
allele. Genomes can be measured from biological material such as blood or saliva, and their 
base pairs can be determined via genotyping.

GENOME- WIDE ASSOCIATION STUDIES

Genome- wide association studies (GWASs) estimate associations between each SNP 
and a particular trait, or phenotype, such as educational attainment. Given the size of the 
human genome, a single GWAS can estimate millions of associations. Because so many 
associations are tested, GWASs use stringent ‘genome- wide’ levels of statistical significance 
(p < 5 × 10−8) to test whether there is strong evidence that a SNP associates with a phenotype 
(Box 2). To further reduce the likelihood of false positives, many GWASs replicate their initial 
results in external, independent datasets, and then use a Bonferroni corrected p- value for the 
number of SNPs exceeding genome- wide significance levels in a replication sample (Box 2). 
An important consideration of GWASs is that they may be based on highly selected samples 
such as the UK Biobank, in which only 5% of people contacted chose to participate. If genetic 
variation is associated with participation in these studies, then GWAS results may not be rep-
resentative of the underlying population (Taylor et al., 2018). Replication in more population- 
representative external cohorts helps to reduce the risk of non- representativeness, but it may 
still exist if replication cohorts are not fully population representative. GWASs can therefore 
be used to detect associations between specific traits and individual SNPs, but what rel-
evance does this have for education and social scientific research?

The latest GWAS of educational attainment, defined as years of completed education (Lee 
et al., 2018), included 1.1 million individuals. It identified 1271 education attainment- associated 
SNPs at genome- wide significance. These results have been replicated across multiple sam-
ples and demonstrate that common genetic variation associates with educational attainment. 
These associations may reflect biological effects of genetic variation on biological, social and 
psychological phenotypes that ultimately affect educational attainment. However, a substantial 
fraction of these associations are likely to reflect demographic and familial processes such as 
assortative mating (i.e. that spouses tend to be similar; see Box S1 for a glossary) and effects 
of parents on their children (i.e. parenting; Brumpton et al., 2020; Davies, Howe, et al., 2019). 
Thus, genetic data can provide compelling evidence not only about purely biological effects, 
but potentially about the impact of parents, the familial environment and society.
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An important finding from GWASs of education and other social/behavioural phenotypes 
is that they are highly ‘polygenic’. That is, these phenotypes are characterised not by a 
small number of SNPs with large effect sizes, but by a very large number of SNPs which 
each have tiny, but statistically detectable, effect sizes. Critically, there is no such thing 
as a ‘gene for’ education; of the 1271 education attainment- associated SNPs, the median 
SNP association was only 1.7 weeks of additional education throughout the lifecourse (1.1 
and 2.6 weeks for the 5th and 95th centile SNPs; see Box 1 for a discussion on measuring 
education). This pervasive collection of tiny effects –  which has been discussed for over a 
century –  has recently been labelled the omnigenic model (Boyle et al., 2017).

Such small effect sizes can only be detected in very large samples. More powerful pre-
dictive models can be constructed by aggregating individual SNPs into a polygenic score, 
which is a weighted average of the associations of the genetic variants and the trait. While 
individual SNP effects can be small, when combined into a polygenic score they can explain 
substantial amounts of trait variation. For example, the best performing polygenic score of 
the most recent education GWAS explains 11– 13% of variation in educational attainment 
(Lee et al., 2018).

SNP HERITABILITY AND GENETIC CORRELATION

Researchers can use GWAS results to estimate the proportion of variation in a trait such 
as educational attainment that can be explained by measured genetic variation.1 This es-
timate is termed the ‘SNP heritability’. Studies may report the proportion of variation in 

Box 2 Statistical significance in GWASs

In the context of GWASs, the genome- wide significance level has proven to be a use-
ful indicator of association (Davey Smith, 2011). It is a relatively high bar, calculated 
on the basis of the number of independent variants in the genome, and the highest 
quality GWASs use a strict policy of replication in an independent sample. Thus, the 
threshold is 5 × 10−8 for discovery in the first sample, and then a Bonferroni cor-
rected p- value is used for the number of SNPs exceeding genome- wide significance 
levels in a replication sample.
All that genome- wide significant signals from GWASs tell us is that there is evi-
dence that a genetic variant is associated with a phenotype in the discovery and 
replication samples. This does not demonstrate that a genetic variant causes the 
phenotype in an individual, or is necessarily associated in the population of interest. 
There are a number of processes that could induce associations between SNPs 
and phenotypes, only one of which is a direct causal effect of the variant on the 
phenotype. Samples which are selected on the phenotype of interest and other traits 
(e.g. educational attainment and body mass index, BMI) may induce spurious cor-
relations between SNPs causally associated with BMI and educational attainment 
and vice versa (i.e. selection/collider bias). Equally, population structure or familial 
effects can induce these associations. Therefore discovery that a genetic variant 
associates with a phenotype like educational attainment is really the first step in a 
scientific process; it is nevertheless an absolutely necessary (but not sufficient) step 
for elucidating the causal links between the genetic variant and a phenotype like 
educational attainment.
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a trait explained by SNPs that were genome- wide significant, or all measured SNPs that 
were associated with the phenotype of interest, irrespective of statistical significance. The 
former approach tells us how much of the variation in a trait can be explained by variants 
with established effects, while the latter indicates how much variation can be explained by 
all measured genetic variation, even where it is noisily measured. Because there are fewer 
genome- wide significant SNPs, they typically explain far less of the variation in a trait than 
estimates using all SNPs; 2– 3% of the variation in educational attainment vs. 11– 13% in the 
most recent education GWAS (Lee et al., 2018). Heritability estimates from genomic studies 
are typically smaller than those from twin studies because they rely on measured rather than 
total genetic variation.

Genetic correlations, the correlations between genetic associations with one trait and 
a second trait, can also be estimated from genomic data. There are two commonly used 
methods for estimating genetic correlation, although they can also both estimate heritabil-
ity as well. The first of these, called LD- score regression (Bulik- Sullivan et al., 2015), uses 
large- scale GWAS data. The second, called Genome- wide Complex Trait Analysis using 
Genome- based Restricted Maximum Likelihood (GCTA- GREML; Yang et al., 2011), uses 
genetic relatedness between individuals which is derived from individual- level genetic data. 
The intuition for GCTA- GREML is that if genetic variation explains (some of) phenotypic vari-
ation, individuals who are more genetically similar are expected to be more phenotypically 
similar (analogous to twin studies).

Studies have shown that higher educational attainment- associated genetic variation is 
also correlated with lower levels of smoking, lower body mass index (BMI), lower risk of 
coronary heart disease, lower triglycerides, higher high- density lipoprotein, being taller and 
being at higher risk of bipolar disorder (Figure 1). These results show that the genetic cor-
relations between genetic variation related to one trait, such as BMI, and another trait, such 
as educational attainment, tend to be similar to their associations in other forms of obser-
vational studies. They also suggest that many genetic variants are likely to affect multiple 
phenotypes (referred to as pleiotropy).

The correlogram in Figure 1 illustrates the genetic correlations between a range of traits. 
This includes the genetic correlations between variants associated with attending college, 
from one of the first GWASs of educational attainment by Rietveld et al., and a range of other 
traits (Rietveld et al., 2013). Each of the squares in the figure represents a genetic correla-
tion between two traits, e.g. attending college and being an ever/never smoker. This figure 
illustrates that genetic variants that associate with attending college also associate with a 
range of health traits. This therefore provides evidence of widespread pleiotropy (i.e. genetic 
variants that associate with multiple traits; Verbanck et al., 2017).

GENES AND ENVIRONMENTS

Researchers can use genetic data to explore the presence of gene– environment correla-
tion (rGE). rGE refers to the fact that certain environments are more prevalent for carri-
ers of certain genetic variants and can arise from three mechanisms (Plomin et al., 1977). 
First, evocative gene– environment correlation occurs when an individual’s genetic variation 
evokes specific responses from others, creating a correlation between the individual’s ge-
netic variants and their environment. For example, having a high polygenic score for edu-
cational attainment (which may manifest in certain learning attitudes and behaviours) may 
invoke different responses from parents and teachers, whereby they create more learning 
opportunities.

Another form is active gene– environment correlation, which refers to the way that an 
individual can select their environment based upon their genetics. For example, are children 
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with a genetic predisposition for creative activities more likely to select certain subjects or 
activities? This is an active choice from the individual, which is correlated with their genetics.

Finally, there are passive gene– environment correlations, which often arise owing to the 
inheritance of both genetic variation and environments from one generation to the next. For 
example, the offspring of parents with high polygenic scores for education are also them-
selves likely to have high polygenic scores for education owing to direct genetic inheritance. 
If these parents create educational nurturing environments because of their genetics, the 
offspring are likely to also inherit environments that improve their learning and education. 
Hence, the genetic variation and environment that offspring inherit are correlated, a phe-
nomenon known as ‘genetic nurture’ (see e.g. Bates et al., 2018; Kong et al., 2018; Plomin & 
Bergeman, 1991; Wang et al., 2021; Wertz et al., 2018).

One way social science research has used genomic data is via studies of gene- by- 
environment interplay which aim to quantify the way that genetic effects may vary with 

F I G U R E  1  Genetic correlations from 25 genome- wide association studies. Squares represent the genetic 
correlation between two traits; blue represents positive genetic correlations while red represents negative 
genetic correlations. Coloured square size corresponds to p- values for tests of difference from zero (no genetic 
correlation), with larger squares denoting smaller p- values. Full- size squares denote values that pass a false 
discovery rate of 0.01, while squares with an asterisk denote values that pass Bonferroni correction for the 
300 tests conducted. Educational attainment was measured in this study using the variable ‘College (yes/no)’. 
This indicates that genetic variation associated with graduating from college is also associated with being less 
likely to be a smoker, to be obese, to have lower triglycerides and LDL cholesterol, to have higher high- density 
lipoprotein cholesterol and to have lower liability to bipolar disorder and Alzheimer’s disease. Reproduced with 
permission from Bulik- Sullivan et al. (2015) 
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environmental context and vice versa (Box 3). Existing studies of gene– environment inter-
actions have for example shown that the social environment moderates genetic vulnerability 
to poor socioeconomic outcomes (see e.g. Belsky et al., 2016, 2018; Meyers et al., 2013; 
Papageorge & Thom, 2020; Rutter, 2006; Shanahan et al., 2008). A challenge in these stud-
ies is having sufficient statistical power (i.e. large enough sample sizes) to reliably detect in-
teractions. Many of the most celebrated (and cited) ‘interactions’ claimed in the behavioural 
and psychiatric genetic fields have failed to replicate (Duncan & Keller, 2011).

However, it is often unclear what may be driving the interplay between genes and envi-
ronments: does one’s genotype truly moderate the environmental effect, or is the interaction 
effect caused by gene– environment correlation? Suppose we are interested in the effect of 
the polygenic score for education on years of schooling. In the presence of genetic nurture, 
the polygenic score will partially capture environmental and familial effects shaped by the 
parental genotype (i.e. passive rGE). If the direct genetic effect and the familial effect op-
erate in the same direction, this will cause upwards bias in the genetic effect, leading us to 
believe that the direct effect is larger than it truly is. Including an additional interaction effect 
of the polygenic score and the environmental factor may also overestimate the coefficient of 
interest owing to this rGE.

The use of family genetic data can address this problem directly as genetic variation is 
random between siblings and for offspring, conditional on parental genetic variation. This 
means that one can identify the causal direct genetic effect by exploiting within- family ge-
netic designs that examine between- sibling differences or control for parental genotypes. 
Again, however, a challenge in these studies is statistical power.

CONFOUNDING, BIAS AND CAUSATION

Disentangling cause and effect from correlation is notoriously difficult. Bias owing to con-
founding factors or reverse causation impedes many studies, making it difficult to reliably 
draw causal inferences from observational data. Suppose a researcher is interested in the 
relationship between myopia (shortsightedness) and educational attainment. Correlations 
between these variables may arise because of a causal effect of myopia on education, a 
background factor that causes both of these variables (such as time spent reading) or a 

Box 3 Gene– environment interactions and correlations

The latest GWAS by Lee et al. (2018) shows that genetic variation explains a sub-
stantial amount of variation of educational attainment. Environmental or family cir-
cumstances, such as parental time and monetary investments in children, are also 
important. A study of the gene– environment interplay can shed light on how these 
two interact in shaping educational outcomes. Indeed, Muslimova et al. (2020), Howe 
et al. (2021) and Demange et al. (2020) build on a well- known literature that shows 
that firstborns, on average, have more years of education than later- born siblings, 
probably owing to additional parental investments in the early years. Muslimova et 
al. (2020) used a sample of siblings from the UK Biobank, where both birth order and 
genetic variation are random. They show that siblings with a higher polygenic score 
benefit more from being firstborn than those with a lower polygenic score. Both one’s 
birth order and one’s genetic variation are random within families, meaning that the 
analysis explores the causal effect of such gene– environment interactions.
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    | 9GENOMIC REVOLUTION AND EDUCATION RESEARCH

reverse causal effect of education on myopia. Ordinary least squares regression techniques 
commonly applied to observational data are unable to distinguish directionality (causation 
vs. reverse causation), while causal effects can only be estimated if the regression model 
includes a sufficient set of confounder variables which are measured without error.

Under specific assumptions, researchers can exploit genomic data to provide more 
reliable causal evidence compared with methods that attempt to measure and adjust for 
confounders (e.g. multivariable adjustment or propensity score approaches). Mendelian ran-
domisation uses the random inheritance of genetic variation from parents to offspring as 
a natural experiment to strengthen causal inference with respect to potentially modifiable 
influences on health and development (Davey Smith & Ebrahim, 2003; Davies et al., 2018; 
Richmond & Davey Smith, 2021, Sanderson et al., 2022). Mendelian randomisation can be 
implemented as an instrumental variable (IV) analysis, with the SNP (or SNPs) acting as an 
IV for the exposure under investigation. The IV methods depend on three instrumental vari-
able assumptions: (a) that the instrument associates with the independent variable of inter-
est (relevance); (b) that there are no factors that affect both the independent (exposure) and 
dependent (outcome) variables (no confounding/independence); and (c) that there are no 
direct paths from the instrument to the dependent variable except via the independent vari-
able of interest (the exclusion restriction). Figure 2 illustrates these assumptions graphically.

Regarding the relationship between myopia and educational attainment, observational 
studies have found evidence that, on average, more short- sighted people remain in school 
for longer. However, it is not clear whether this is because learning- associated factors (such 
as reading books) affect people’s eyesight or whether shortsightedness affects people’s 
progress throughout education systems (Ip et al., 2008). The policy implications of these 
two hypotheses are very different. If short- sightedness affects educational attainment, then 
steps to address students’ eyesight could lead to a fairer education system. If something 
about the educational process affects the risk of myopia, then there might be ways to mit-
igate this risk (e.g. spending more time outdoors; Guggenheim et al., 2012). While obser-
vational studies will not provide evidence about the causal effect driving this association, 
genomic studies can provide more compelling evidence about the direction of the effect. For 
example, we could investigate the associations of myopia- associated SNPs with educational 

F I G U R E  2  A directed acyclic graph illustrating the relationships between the independent variable 
(shortsightedness), dependent variable (educational attainment) and instrument (the genetic variant). The 
association of shortsightedness and educational attainment is potentially biased by socioeconomic position. 
Genetic variation in shortsightedness is unlikely to be related to socioeconomic position, is fixed at conception 
and cannot be affected by either shortsightedness or educational attainment. We can use these genetic variants 
to estimate the effect of shortsightedness on educational attainment (Mountjoy et al., 2018). One of the key 
strengths of MR is in demonstrating that some mechanisms are unlikely to be causal 
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10 |   MORRIS et al.

attainment and the associations of education- associated SNPs with myopia to disentangle 
the direction of causation. If myopia affects educational attainment, we would expect individ-
uals who inherit SNPs associated with myopia to have different educational attainment from 
individuals who do not inherit them. Conversely, if something about the educational process 
affects the risk of myopia, then we would expect that individuals who inherit education- 
associated SNPs to be more likely to develop myopia than individuals who do not inherit 
them (Figure 2). Mountjoy et al. (2018) investigated this hypothesis and found compelling 
evidence that myopia- associated SNPs did not strongly associate with educational attain-
ment but that education- associated SNPs associated with myopia. These results suggest 
that the direction of causation runs from some process leading to educational attainment 
to myopia, rather than vice versa. Studies have been conducted for a wide range of other 
hypotheses and risk factors and can in theory be applied to a wide range of educational and 
social scientific traits where GWASs have been conducted.

Assessing the instrumental variable assumptions

The key to interpreting evidence from genetic studies is to determine whether assumptions 
on which they depend are plausible (Doidge & Dearden, 2017; Hemani et al., 2018a). GWASs 
have identified genetic variants that consistently associate with many traits of interest, so 
the first instrumental variable assumption (relevance) is likely to hold and can be assessed.

At conception, at each point of variation in the genome, offspring randomly inherit either 
their mother’s or their father’s DNA. DNA is set at conception, and so generally the environ-
ment does not affect germline genetic variation during the life course –  a 90- year- old has 
the same DNA they were born with. This makes reverse causation unlikely (e.g. an outcome 
such as myopia, affecting genetic variation associated with educational attainment).

Furthermore, the random allocation of genetic variation at conception means that many, 
but not all, genetic variants are randomly distributed across the population. Hence the sec-
ond instrumental variable assumption (independence) may hold, although this should al-
ways be evaluated.

It is not possible to statistically prove that the genetic variants only affect the outcome 
via the proposed exposure, i.e. that the exclusion restriction holds. However, under the as-
sumption that exposure has a constant effect on the outcome, it is possible to falsify this 
assumption by testing whether different genetic variants imply different effect sizes. If there 
is substantial heterogeneity in the estimates, then this suggests that a simple linear effect of 
the exposure on the outcome is unlikely, or that (one of) the instrumental variable assump-
tions do(es) not hold.

The exclusion restriction requires that instrumental variables only affect the outcome via 
the exposure of interest, i.e. that myopia- associated genetic variants only affect the out-
come (educational attainment) via their effects on myopia. This may be plausible for genetic 
variants related to myopia, but it is more challenging for studies investigating the effects 
of educational attainment as an exposure. Educational attainment is generally considered 
to be a phenotype more distal from the genome than is myopia; therefore genetic variants 
that relate to educational attainment are likely to have more pleiotropic effects (i.e. the ge-
netic variants are likely to be associated with other traits, such as cognition). Pleiotropy can 
be vertical, where a genetic variant affects one trait (e.g. cognition), which then affects an 
outcome (e.g. educational attainment). As long as the primary phenotype which the ge-
netic variant relates to is correctly specified, then vertical pleiotropy is the essence of MR 
(Figure 3a; Davey Smith and Hemani 2014). Alternatively, pleiotropy can be horizontal, when 
a genetic variant affects both an exposure under investigation (e.g. educational attainment) 
and other variables through independent pathways. If one of these independent pathways 
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    | 11GENOMIC REVOLUTION AND EDUCATION RESEARCH

influences the outcome (e.g. short- sightedness), then this violates the exclusion restriction 
and causes bias in MR studies (Figure 3b).

If variants that primarily influence an upstream phenotype are mistakenly taken to be in-
struments for the downstream phenotype then inference will be incorrect (Davey Smith and 
Hemani 2014). For example, if a presumed genetic instrument for education is in fact primar-
ily an instrument for cognition, then MR will estimate the causal effect of cognition –  which 
includes any downstream effects acting through education –  on the outcome. Methods 
exist that can improve the correct identification of the most proximal phenotype to a genetic 
variant (Hemani et al., 2017) (Figure 3c) Particularly problematic is when a genetic variant 

F I G U R E  3  Possible structure of pleiotropic effects. In (a) the genetic variant affects short- sightedness, 
which in turn affects cognition, which in turn affects educational attainment. Vertical pleiotropy does not 
violate the assumptions of Mendelian randomisation (MR) here because educational attainment is purely a 
downstream factor from cognition. In contrast, in (b) if the genetic variant affects the exposure and outcome 
through distinct pathways then MR will be biased because horizontal pleiotropy violates the third instrumental 
variable assumption (exclusion restriction). Here, the variant can independently affect the outcome through the 
exposure or a third variable. In (c) a MR analysis which mistakenly identifies the primary phenotype influenced 
by the genetic variant used as an instrument is shown. If the instruments for education are considered to be 
instruments for a downstream trait influenced by education –  such as short- sightedness –  then inference will 
be in the wrong direction. This can be assessed using Stieger filtering (Hemani et al., 2018a). In this situation 
the pleiotropic effects will correlate with the effects through the exposure of interest, and such correlated 
pleiotropy will distort findings even when using many of the sensitivity analyses that have been developed for 
MR (Richmond & Davey Smith, 2021) 
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12 |   MORRIS et al.

influences a confounder of the exposure to outcome association (Figure 3d). In this situation 
the pleiotropic effects will correlate with the effects through the exposure of interest, and 
such correlated pleiotropy will distort findings even when using many of the sensitivity anal-
yses that have been developed for MR (Richmond & Davey Smith, 2021).

There are multiple methods which seek to evaluate the structure of pleiotropy and esti-
mate the effects of exposure, even if some or all of the genetic variants have horizontally 
pleiotropic effects, or to evaluate the effects of multiple pathways, for example educational 
attainment and cognition, such as Anderson et al. (2020), Davies, Hill et al. (2019) and 
Sanderson et al. (2019). These use standard multivariable instrumental variable estimators 
to estimate the effects of multiple exposures using multiple instruments, e.g. see Greene 
(1993) and Wooldridge (2002).

Horizontal pleiotropy is probably less of an issue for more biologically proximal pheno-
types, and may therefore have less of an impact on studies of some putative exposures that 
affect education (such as myopia) than studies of educational attainment as an exposure 
itself. This is doubly true if an exposure is found to have a precise null effect on educational 
attainment, such as in the example of shortsightedness. Horizontal and correlated pleiot-
ropy are plausible explanations for why we might see associations between genetic variants 
known to associate with a trait like educational attainment and other outcomes such as 
myopia (i.e. false positive findings).

Mendelian randomisation requires a further fourth ‘point identifying’ instrumental variable 
assumption. This assumption can include that the exposure has a constant effect on the 
outcome or that the instrument (genetic variant) has a monotonic effect on the exposure; for 
more on this see Howe et al. (2021b).

Weighing evidence from genetic and randomised studies

The Educational Endowment Foundation (an education research funder in the UK) has funded 
a randomised trial of 700 students across 100 schools to estimate the impact of eyeglasses 
on educational outcomes for 4-  and 5- year- olds who need them (Educational Endowment 
Foundation, 2021). This project will provide gold standard evidence for whether encouraging 
children to wear glasses can improve their reading achievement, mathematics achievement 
and visual acuity. The genetic evidence presented in Mountjoy et al. (2018) suggests that inter-
ventions to increase the use of glasses to overcome myopia (i.e. shortsightedness) are unlikely 
to substantially increase lifetime educational attainment (that is, the years of school attained).

However, there are crucial differences between the outcomes and exposures in the ran-
domised trial and the genetic study. The exposure in the genetic study is myopia, whereas 
the intervention in the randomised trial covers a number of visual conditions, including short 
and long sightedness, amblyopia (lazy eye) and/or strabismus (a squint). The outcome in the 
genetic study relates to educational attainment, whereas the primary outcome for the trial 
is reading achievement measured at the end of the first year of school. Thus it is perfectly 
possible that the trial finds evidence of short- term increases in educational achievement in 
spite of the genetic evidence. Ultimately, the closest comparison will be whether this trial 
affects educational choices in 14 years when participants are aged 18+. This quite neatly 
highlights one of the strengths of genetically informed designs –  that we can potentially pro-
vide some evidence about very long- term effects of interventions like glasses, that would 
take an enormously long time to discover using randomised controlled trials. However, it 
also highlights one of the limitations, that the results of genetic analysis estimate the effects 
of a specific exposure (myopia in the case of Mountjoy et al.) and a specific outcome (edu-
cational achievement/years of education). Both may differ from the hypothesis of interest, 
e.g. does encouraging 4-  to 5- year- olds to wear glasses affect how well they learn to read?
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    | 13GENOMIC REVOLUTION AND EDUCATION RESEARCH

Controlling for genetic variation

Genetic variables generally make very poor covariates. This is because they typically only 
explain a small proportion of the variation in a trait, and we know that there is almost cer-
tainly genetic variation that we have not identified (this is implied by the omnigenic model 
and limited statistical power of GWASs to identify all relevant genetic variation). Therefore, 
studies rarely control for genetic variables, and it is rarely a plausible or useful study design. 
There have been sophisticated attempts to combine instrumental variable analysis and ge-
netic variation to, in effect, control for the mismeasured or unmeasured genetic variation 
contributing to a trait (most notably DiPrete et al., 2018; van Kippersluis et al., 2021) and 
repositories of polygenic indices (preprint: Becker et al., 2021; Richardson et al., 2019).

INTERGENERATIONAL TRANSMISSION

Given the predominance of data collection focussed on individuals rather than families, 
genomic data has historically only been available for unrelated individuals in large num-
bers. However, cohort and longitudinal studies are increasingly collecting genomic data on 
families, which offers new opportunities for studying the molecular and social mechanisms 
that mediate the intergenerational transmission of phenotypes such as educational attain-
ment. For example, GWASs have suggested that the effects of SNPs that associate with 
educational attainment may be mediated via the effects of parents on their offspring. It 
is also possible to investigate the environmental mediation of these education- associated 
SNPs through familial and social factors, such as parenting behaviour. Recent research has 
demonstrated that SNP- educational attainment associations are at least partially mediated 
by environmental factors (Howe et al., 2021; Kong et al., 2018; Selzam et al., 2019). That is, 
estimated genetic associations do not represent just biological effects, but also social and 
demographic processes such as assortative mating and indirect effects such as genetic 
nurture. For example, if people who are more educated tend to have children with people 
who have lower BMI, then genetic variation that affects BMI and educational attainment will 
be correlated in their offspring. Similarly, if parents’ BMI affects their offspring’s educational 
attainment, then we would expect to see associations between genetic variation that affects 
BMI and the offspring’s educational outcomes, even if BMI does not affect educational at-
tainment at the individual level.

The half of parents’ genomes that a child doesn’t inherit, the ‘non- inherited DNA’, can also 
be used to investigate environmental mediation of genetic effects. Here, one can estimate 
parents’ effects on their children through pathways other than direct genetic inheritance 
(Figure 4). Because these SNPs are not inherited, they cannot have a molecular effect within 
offspring and must therefore only impact offspring through the environment. These effects 
could include the impact of the family environment, such as parenting styles or parental 
personality, or population- level phenomena such as assortative mating. Hence, perhaps 
counter- intuitively, incorporating genetic variation in educational analysis can allow research-
ers to directly explore the role of the family environment in shaping offspring outcomes.

EDUCATION POLICY IMPLICATIONS

There has been a debate about the potential use of genetic data for educational policy 
(Grigorenko, 2007; Sabatello, 2018). The data and software resources are increasingly 
available (see Boxes 4 and 5). Some have argued that the presence of genetic associations 
with education and education- associated phenotypes indicates that educational policies 
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14 |   MORRIS et al.

should be tailored to individuals (Plomin, 2019; von Stumm & Plomin, 2021). This could be 
by identifying individuals with low genetic liabilities for education before entering the educa-
tion system and targeting specialist education interventions to support their learning and 
address learning inequities.

However, there are two major issues with genetically informed policies aimed at individ-
uals, such as using genomic information as a basis for school entry selection. First, there is 
growing evidence that observed SNP associations with education also reflect family and de-
mographic factors as outlined above (Howe et al., 2021a; Kong et al., 2018; Morris, Davies, 

F I G U R E  4  Relationship between parents’ educational attainment and offspring educational attainment. 
The non- inherited genetic variation can be used to estimate the effects of parental education (or other parental 
traits) on offspring educational outcomes free from confounding via direct genetic inheritance 

Box 4 UK genetic data available for education researchers

• Avon Longitudinal Study of Parents and Children –  a longitudinal birth cohort study 
that sampled births between 1990 and 1992 in the Avon area. Large sample of 
mother and offspring genetic data, with a small number of samples from fathers. 
Questionnaire data and linkage available to the National Pupil Database, a census 
of exam results taken in UK state schools.

• Generation Scotland –  large family based sample including genetic and epig-
enomic data. Extensive questionnaire, cognitive ability and linkage data.

• Millenium Cohort study –  nationally representative birth cohort which also sam-
pled some family members (i.e. parent– offspring trios). Data available on educa-
tional attainment and linkage to the National Pupil Database.

• National Child Development Study (1958) –  representative cohort of individuals 
born in a single week in 1958 in the UK. Educational data collected during child-
hood and very long follow- up of health outcomes. Genetic data generated in a 
number of different samples, quality- controlled processed data will be available 
soon from the Centre for Longitudinal Studies.

• UK Biobank –  a very large cohort study of nearly 500,000 individuals. The study 
has limited questionnaire data on educational attainment, how long participants 
remained in school and their qualifications. It has detailed health, biomarker, imag-
ing data and linkages to medical records.

• Understanding Society (UKHLS) –  household panel survey with genetic data on 
up to 12,000 individuals sampled by household.
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    | 15GENOMIC REVOLUTION AND EDUCATION RESEARCH

Hemani et al., 2020; Wang et al., 2021). This evidence suggests that polygenic scores are 
likely to reflect not only the causal effects of SNPs on education, but also the influence of 
other social and familial processes. This may not matter if the goal is the prediction of gen-
eral educational performance, but may matter if the goal is to identify specific causal path-
ways for support or to understand mechanisms, because non- causal relationships will not 
make good intervention targets. Second, genetic data currently add very little knowledge to 
individual- level predictions above other data that educators already have access to, such as 
age in year, sex and indicators of socioeconomic position such as free school meals (Morris, 
Davies & Davey Smith, 2020). Polygenic scores are likely to be useful for understanding 

Box 5 Resources for researchers

METHODS

There are a wide range of textbooks available that provide a detailed introduction to 
the use and analysis of genomic data (Asbury & Plomin, 2014; Mills et al., 2020) and 
reviews of the use of genetic data and educational outcomes (Freese, 2018; Plomin 
& von Stumm, 2018). The European Commission, Joint Research Centre (2019) re-
port into social science genomics provides an excellent overview of recent develop-
ments in genomics and their implications for policy- makers. There are also a number 
of published reviews on MR and other genetic approaches, for example Davies et al. 
(2018) and Richmond & Davey Smith (2021) and specifically applied to familial data 
(Davies, Howe et al., 2019; Hwang et al., 2020; Thapar & Rice, 2021). An edited 
volume on a wide range of causal inference approaches involving human genetics is 
Davey Smith et al. (2021). Evans et al. (2021) published a special issue of Behaviour 
Genetics on describing methods for the genetic analysis of complex traits. Cesarini 
and Visscher (2017) provide an excellent summary of the potential uses of genetic 
evidence for educational research, building on earlier papers (Beauchamp et al., 
2011; Benjamin et al., 2012). The Social Science Genetic Association Consortium 
(SSGAC) Summer Institute in Social Science Genomics provides an extensive read-
ing list and lectures (SSGAC, 2021).

SOFTWARE

Genetic data can be used in educational research without specialist software. For 
example, if you have data on a specific genetic variation, i.e. how many alleles (zero, 
one or two) each participant has at a particular locus, these variables can be included 
in regression or other models in the same way as any other variable. However, many 
genetic datasets are provided in bespoke formats for genetic data. This is because 
there are a lot of variables (up to 80 million), and most standard formats (e.g. csv, 
Stata, SPSS, or R data files) struggle to handle this many variables. Common ge-
netic data formats include.vcf (variant call format) and plink format (.bim,.bed and.
fam for the summary information about the genetic variants, the genetic data for 
each participant and the ID information respectively). These files need to be pro-
cessed with specialist software such as Plink (Purcell et al., 2007). Genetic correla-
tions can be estimated using software such as GCTA (Yang et al., 2011). There are 
also specialist software packages and databases for running MR analysis such as 
the TwoSampleMR package for R and OpenGWAS (Hemani et al., 2018b).
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16 |   MORRIS et al.

relationships at the population level, but it is less clear that they will be useful for providing 
individual- level predictions and personalised education (Davey Smith, 2011). Furthermore, 
genetically informing educational policy at the individual study level is unlikely to be politi-
cally acceptable or feasible. For further details see European Commission, Joint Research 
Centre (2019).

Genetically informed policies aimed at the group level, such as interventions designed 
to support pupils’ progress, are probably more feasible. Genomic data also offers policy 
promise through how it can be used to assess structural differences within educational 
systems under differing confounding structures to traditional social scientific data. For ex-
ample, genetic data can be used to investigate the benefits of studying at more advantaged 
schools net of genetic liability (Harden et al., 2020), selection differences between schools 
by socioeconomic position (Trejo et al., 2018), the differential performance of students with 
similar genetic liability for education from advantaged and disadvantaged backgrounds 
(Stumm et al., 2020), the potential role of genetics in fostering intergenerational social mobil-
ity (Belsky et al., 2018) and the robustness of value- added progress measures to pupil- level 
factors (Morris et al., 2018).

ETHICS

There are a number of ethical risks and concerns to the use of genetic data in educational 
research and policy. Schools currently use a wide array of data to select students for entry, 
group formation, targeted interventions or even exclusion. Children may respond to knowl-
edge about their genomes (Van Wietmarschen et al., 2006) in ways that affect their learn-
ing, for example, by reducing their self- esteem (Kuther, 1994). There are also ethical issues 
surrounding informed consent from children and governing access to their genetic data. 
Velarde et al. (2021) argue that citizens should be able to decide ‘who and how to trust’ with 
their genetic information.

Many existing genetic studies have a Eurocentric approach (Mills & Rahal, 2019) and 
polygenic scores do not perform well across populations of different ancestries (Duncan 
et al., 2019). This means that inequalities between groups could be further entrenched 
by the systematically unequal benefit of genetic applications to European- ancestry pop-
ulations. Furthermore, isolating genetic effects from social or environmental effects may 
be difficult given the social stratification that exists in many societies and the differential 
experience of environments between different groups (Martschenko et al., 2019). This 
is contextualised by an ugly history of eugenics that underlies some genetic research 
into intelligence in the nineteenth and twentieth centuries (Martschenko et al., 2019). 
Elements of this continue in the form of race pseudoscience that confuses or obfuscates 
genetic ancestry with race or ethnicity. Ancestry is a process- based concept that refers 
to the genetic similarity of individuals to one another that can be identified using genetic 
data (Yudell et al., 2016). Race is a pattern- based concept rooted in oppression that re-
fers to the way that individuals have historically been ascribed to socially constructed or 
geographically defined groups and cannot be identified using genetic data. Ethnicity is a 
broad pattern- based approach rooted in identity that commonly refers to a broad range of 
shared factors such as traditions, cultural experiences or national origins, and cannot be 
identified using genetic data. For further information, see Birney et al. (2021), who provide 
a detailed discussion and guidance about the importance of the scientific language used 
to describe research using genetics.
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    | 17GENOMIC REVOLUTION AND EDUCATION RESEARCH

SUMMARY

Findings from sociogenomics have the potential to improve our understanding of not only 
the genomic and biological factors, but also familial and social factors that combine across 
the life course to affect educational outcomes. Incorporation and uptake of genomic data 
may help to inform policymaking and the better design of interventions. This may be through 
identifying how nature and nurture interact to shape individual outcomes, elucidating the 
causal mechanisms underlying educational outcomes, and by providing novel insights into 
the transmission of educational advantage across generations. Many insights from genetics 
for education research are likely to be made at the population level (i.e. factors or processes 
that affect people on average), rather than for individual- level prediction (i.e. personalised 
education). With that, genetic data may be able to provide a wealth of evidence for educa-
tion research.
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