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Abstract
With the exponential increase in computer power over the last decades,
data-driven algorithms have become more and more common in different
applications. This includes control systems. Model-based control systems
require a model of the plants they are intended to control. Traditionally,
this was done using the laws of physics and mathematically modelling, but
data-driven methods allow for the use of data to find the desired model
instead.

This thesis implements a Sparse Identification of Nonlinear Dynamics (SINDy)
estimator. With the goal of applying the estimated model on a dynamic
inversion controller to control the pitch rate of an Unmanned aerial vehi-
cle (UAV). This model is then evaluated in simulation of an aircraft under
three different scenarios: clean airfoil, fully iced airfoil, and the transition
between them.
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Sammendrag
Den eksponensielle økningen av datakraft over de siste tiår har gjort datadrevne
algoritmer mer og mer vanlig i et mangfold av applikasjoner, inkludert kon-
trollsystemer. Modellbaserte kontrollsystemer anvender en modell av sys-
temet de er ment å kontrollere. Tradisjonelt er dette gjort ved modellering
via fysikkens lover of matematisk modelleringsprinsipper, men datadrevne
metoder tillater bruk av data til å finne ønskede modeller i steden.

Denne oppgaven implementerer en SINDy estimator med mål om å bruke
estimatoren på en dynamic-inversion-kontroller for å kontrollere stampraten
(pitch rate) til en UAV. Modellen er så evaluert i simulering av et luftfartøy
i tre forskjellige scenarioer: ren aerofoil, fullt iset aerofoil, og overgangen
mellom dem.
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Chapter 1
Introduction

1.1 Motivation and problem description

Unmanned aerial vehicle (UAV) icing has recently emerged as a research
topic because of its limiting factor on the operation of airborne vehicles
[2]. UAV’s have previously seen most use in military operations, but re-
cently, more commercial and research applications have become prominent
[3]. For package delivery, as an example, the aircraft needs to be able to
operate during long stints at a time during a wide variety of weather con-
ditions without any significant performance loss. Atmospheric icing is the
phenomenon where sub-zero temperature water droplets are present in the
atmosphere. When a UAV enters such an area of the atmosphere, icing of
the airfoils can occur [4][5][6]. When icing occurs, the dynamics of the
aircraft will change. The icing of the airfoils will change their geometry,
reduce lift, and increase drag [6]. When this happens, a sound control sys-
tem is a system that handles the change in dynamics and manages to operate
normally.

The modelling of icing is still a topic under research, and to give an ac-
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curate aerodynamic model of any UAV requires extensive testing or Com-
putational Fluid Dynamics analysis [7]. Icing makes modelling more diffi-
cult. To accurately predict the dynamics during icing, a model of how ice
accumulates is necessary. In addition, specialized CFD analysis tools are
needed to get meaningful models of icing, [2]. When accurate empirical
models are challenging to find, a solution can be data-driven modelling.

Data-driven modelling has the goal of giving a model of a system based
on data points of the input and output of the system. There are many tech-
niques which achieve this goal, but a downside to data models is the trade-
off between complexity and accuracy [8]. To get accurate models from
standard data-driven, we usually need a complex model. The more com-
plex a model is, the difficulty in explaining what exactly the model learns
increases. This can also lead to what is known as ”overfitting” the model
[8]. This is especially undesirable in a safety-critical control system on an
aircraft because a change in atmospheric disturbances, icing, or noisy mea-
surements can completely alter the output of the estimated model. When
applying a model to a dynamic inversion controller, it needs to be invertible
and should be a representation of the underlying dynamics so it is able to
handle input data which is taken out of the learned distribution.

We already know models which describe the dynamics of certain UAV’s
like the ”Aerosonde” presented in Beard and McLain [7]. However, this
model is only valid for this specific aircraft. If we wanted to apply the same
model-based control system for a different aircraft, we would need to do the
modelling work again for it specifically. Data-driven modelling can reduce
the workload of the modelling, but testing would still be required to find
an accurate representative model of the aircraft. Hence, a desirable UAV
data-driven model estimating system will be able to:

• Find an accurate representation of the underlying dynamics

2



• Have the found model be able to handle out-of-distribution input

• Do this online during flight to reduce the amount of testing needed

• Invert the estimated model

The goal of this thesis is to use a data-driven method for model discovery of
a UAV system which fulfils these four requirements. The resulting system
will be tested in a self-made simulator which simulates a UAV during icing.
It will be compared to a model-error estimating neural network controller
[1], and a non-model based successive loop closure Proportional Integral
Derivative controller [7].

1.2 Thesis outline

The structure of the thesis is as follows. Chapter two will go through im-
portant theory topics for the simulator and control systems. Chapter three
will be on implementation steps needed to make the algorithm work, and a
high-level description of how the algorithm is implemented in code. Chap-
ter four will present the results, and chapter five will contain a discussion,
conclusion and further work.

1.3 Literature study

Dynamic inversion is a commonly used control scheme for aircraft control.
Adaptive dynamic inversion methods using neural networks are explored in
Calise [9], Lakshmikanth et al. [10], Liu [11], and Johnson [12], and were
used as a basis for the controller developed in Dahl [1] and used here.

For accurate dynamic inversion control, a accurate model is required. Mod-
ern system identification algorithms include Dynamic mode decomposition
[13]. It has been applied to control problems in Proctor et al. [14] with

3



high.dimensional data. Juang et al. [15] implements system identification
via an observer with computed Markov parameters. Juang and Pappa [16]
implements a model reduction method to reduce higher dimensional data
to a lower order for estimation. All these techniques are meant for high-
dimensional data, but in our case, the data is in low dimensions. For this a
different algorithm is preferred.

SINDy is a relatively new algorithm developed in Brunton [17]. It has
been applied to control problems in Morrison and Kutz [18], Kaiser et al.
[19], Fasel et al. [20], and Brunton et al. [21]. Morrison and Kutz [18]
implements control on low-dimensional biological systems, and Hopfield
memory networks. Kaiser et al. [19] implements a model predictive con-
troller for different systems using SINDy with low amounts of data avail-
able. Fasel et al. [20], and Brunton et al. [21] are about control in general
with no specific application being the focus, but Brunton et al. [21] uses a
pitch controller for an aircraft as an example of an application for SINDy
with a model predictive control scheme. No research has been found on the
application of SINDy on a dynamic inversion controller.

Since SINDy is optimal for low-dimensional data, has been applied to con-
trol before, but not with a dynamic inversion scheme, this method was cho-
sen as the system identification method. SINDy is also easily available to
implement the Python package Pysindy [22].

4



Chapter 2
Theory

2.1 Introduction

In this chapter, the theory behind the development of the simulator and the
control systems is presented. The chapter also includes some information
on some useful tools that were used in the development.

2.2 UAV

The UAV parameters used for simulation and testing of the control systems
developed is the Aerosonde UAV. The Aerosonde is an UAV developed
by Textron systems. It is primarily used for atmospheric research, but has
also been used in border patrol and wildlife monitoring [23], [24]. The
Aerosonde is a long-endurance UAV, capable of flying for up to 24 hours
at a time, and can fly at altitudes up to 6000 meters. It is equipped with a
variety of sensors, including weather radar, and can be controlled remotely
or programmed to fly autonomously using GPS navigation. The Aerosonde
is known for its reliability, versatility, and ability to operate in harsh en-
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Figure 2.1: Aerosonde UAV [26].

vironments [25]. In 2.1 we can see an image of the Aerosonde during a
mission.

2.3 Control systems

Control systems in general are necessary when flying an aircraft since they
allow the craft to remain stable. The control system receives inputs from
sensors, like accelerometers, gyroscopes, GPS, barometers, and so on, and
uses the information to adjust the control surfaces of the aircraft to achieve
the desired state (position, velocity, pitch angle, etc.). In addition to control
surfaces, UAV’s need a system to generate thrust.fulfills

The common control surfaces available in an aircraft are rudders, flaps,
ailerons and elevators, as can be seen in 2.2. The Aerosonde does not have
conventional rudders or elevators like the example in 2.2. It has the ailerons
and flaps on each side combined into one control surface which also does
the work of an elevator control surface. On its rear wing it has some rudders
at an angle. However, the controller developed is only for the pitch axis,

6



Figure 2.2: Normal control surfaces for an UAV [27].

thus the elevator is the only control surface we consider. The Aerosonde
uses a propeller system to generate thrust, and this also needs to be a part
of the control system of the vehicle. It is not further mentioned here, but is
developed in Dahl [1].

2.4 Modelling

To be able to simulate the Aerosonde UAV, we need a mathematical model
of how it behaves. The sections from here and including section 2.7 develop
this mathematical model. The simulator is the same is the one developed in
previously in Dahl [1] , so for further details about its implementation, see
Dahl [1].

The notation used in modelling is mainly sourced from [7], and repeated
here in short form.

In local navigation problems, the North East Down coordinate system (NED),
shown in 2.3 is commonly used for displacement and the three Euler angles,

7



yaw, pitch, roll, shown in 2.4, are representations of angular rotation [28].
This constitutes a Six-degrees-of-freedom (6-DOF) system. To model the
UAV in 6-DOF, we combine them in a state vector η 2.2. Here pn, pe, pd
are the displacement in the north-, east-, down direction, and ϕ, θ, ψ are the
rotations about those axes, named yaw, pitch, roll, respectively.

η =



pn

pe

pd

ϕ

θ

ψ


(2.1)

The derivatives of the states are also of interest, and are put into their own
state vector. However, the equations of motion which will be used to update
the linear velocities are better expressed in other frames than NED. The
equations of motion will be expressed in the body frame of the vehicle. We
set the NED frame as the inertial frame which does not move, and the body
frame moves relative to the NED frame. To transform between these states
we use a rotation matrix R, and to express a state in a frame, we use a
superscript of the frame on the value. The rotation matrix has a subscript
that describes which frame it transforms from and to.

ṗnṗe
ṗd

 = Ri
b(ϕ, θ, ψ)

uv
w

 (2.2)

In this 2.2 we are rotating the linear velocities u, v, w of the vehicle in x, y,
z from the body frame to the inertial frame (NED). The rotation matrix is
given by 2.3 where cx and sx are given by cosx and sinx.

8



Figure 2.3: NED compared to ECEF. [29]

Ri
b(ϕ, θ, ψ) =

cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ

cθsψ sϕsθsψ + cϕcψ cϕsθcψ − sϕcψ
−sθ sϕcθ cϕcθ

 (2.3)

The Euler angle velocities are the same in both frames and are given by 2.4.

ϕ̇θ̇
ψ̇

 =

pq
r

 (2.4)

2.5 Longitudinal dynamics

The longitudinal dynamics are only considering the pn, pd, and θ states,
and only the control surfaces and actuators which affect these states. This
results in a nonlinear ordinary differential equation.

9



Figure 2.4: Euler angles of an aircraft. [30]

Figure 2.5: Body frame of an aircraft. [31]
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A general nonlinear model is given by 2.5 which maps a state and control
input to a state derivative,

ẋ = f(x, u) (2.5)

with x being the state vector and u being the control input.

We can rewrite this to a 3-DOF differential equation for our aircraft,

ν̇ = A(ν)ν +
1

m
F(ν, u) (2.6)

where ν are is the velocity state vector in the body frame [u,w, q]T .

Using a rigid body model for our vehicle we can write our model in 2.7,
2.8, and 2.9 [7]

u̇ = −qw +
fx
m

(2.7)

ẇ = qu+
fz
m

(2.8)

q̇ =
M

Jy
(2.9)

Here, fx, fz are the forces in the x and z direction, M is the pitching mo-
ment about the center of gravity, m is the vehicle’s mass, and Jy is the
moment of inertia about the y-axis

fx and fz are divided into three different parts: the gravitational force fg
and aerodynamic force fa in both directions, and propeller thrust ft in the
x direction.

We model gravity in NED with a constant acceleration of g = 9.81ms−2

[
fgx

fgz

]
=

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

][
0

mg

]
(2.10)
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Thrust can be modeled as a front mounted propeller as in [7].

Fxprop =
1

2
ρSpropCprop((kmotorδt)

2 − V 2
a ) (2.11)

Where ρ is the air density, Sprop, Cprop and kmotor are propeller specific
constants. δt is the throttle command given which ranges from no throttle
(0), to max throttle (1).

Va is the air speed of the surrounding air. This is influenced by the speed of
the vehicle relative to the ground and the wind. We model it as 2.12 with
ur and wr defined in 2.13.

Va =
√
ur + wr (2.12)

urvr
wr

 =

ugvg
wr

−
uwvw
ww

 (2.13)

Here we express the relative velocities to the wind. ur is the relative ve-
locity in x, ug is the x-velocity perceived from a stationary ground, and uw
is the wind velocity in the x-direction. The same applies for the y- and z
directions as well. All velocities are expressed in the body frame.

The aerodynamic surfaces are responsible for the remaining forces and mo-
ments. Here it is helpful to introduce another coordinate system frame, the
stability frame. The stability frame is defined to align with the drag- and lift
forces of the aircraft [7]. To transform between the body frame and stability
frame, we rotate by the angle of attack,

α = atan2(
wr
ur

) (2.14)
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Figure 2.6: Angle of attack. Black lines are incoming air stream, and the blue
geometry is the wing. [32]

which can also be seen in figure 2.6.

With the angle of attack, we can rotate the expressions for drag and lift in
stability frame, to body frame by the rotation matrix

Rb
s (α) =

[
cos(α) − sin(α)

sin(α) cos(α)

]
(2.15)

The model for aerodynamic lift, drag, and pitching moment are given by
2.16, 2.17 and 2.18.

Flift =
1

2
ρV 2

a SCL(α, q, δE) (2.16)

Fdrag =
1

2
ρV 2

a SCD(α, q, δE) (2.17)

Mθ =
1

2
ρV 2

a ScCM(α, q, δE) (2.18)

S is the planform area of the wings 2.7 and c is the mean aerodynamic chord
of the wings 2.8. δE is the control input to the elevator control surface. CL,

13



Figure 2.7: Planform area of aircraft wing. [33]

CD, and CM are the nonlinear functions of lift, drag, and pitching moment,
respectively. These functions will capture the aerodynamic model of the
aircraft and will vary from aircraft to aircraft. These are commonly found
numerically through simulation or with wind tunnel testing for high fidelity
simulations [7] [34].

Linearizing the functions gives 2.19, 2.20 and 2.21. The CLx/Dx/Mx values
are constants called stability derivatives [7]. These give a linear model of
the coefficients of lift/drag/pitching moment which will be approximately
correct for small values of α, q, and δe.

Flift =
1

2
ρVa

2S[CL0 + CLαα + CLq
c

2Va
q + CLδeδe] (2.19)

Fdrag =
1

2
ρVa

2S[CD0 + CDαα + CDq
c

2Va
q + CDδeδe] (2.20)

Mθ =
1

2
ρVa

2Sc[CM0 + CMαα + CMq
c

2Va
q + CMδeδe] (2.21)
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Figure 2.8: Mean aerodynamic chord of aircraft wing. [35]

For a higher fidelity model, nonlinear lift/drag/pitching moment coeffi-
cients are needed.

2.6 Wind

Wind is an important factor to model when simulating an aircraft. As shown
in 2.12 and 2.14, we model the airspeed and angle of attack with the veloc-
ity of the aircraft relative to the surrounding air. Which ultimately means
we model the aerodynamic forces of the vehicle relative to the surrounding
air.

We model wind in two separate parts, steady flow, and gusts.

Steady flow is simple, we just model a constant speed in a direction. The
direction is commonly directly facing of directly following the aircraft.

The gusts are more complicated. There are a plethora of gust models, but
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the one used here is the Dryden turbulence model [36] [7]. This model is
based on transfer functions with white noise as input in body frame.

Hu(s) = σu

√
2Va
Lu

1

s+ Va
Lu

(2.22a)

Hv(s) = σv

√
3Va
Lv

(s+ Va√
3Lv

)

(s+ Va
Lv
)2

(2.22b)

Hw(s) = σw

√
3Va
Lw

(s+ Va√
3Lw

)

(s+ Va
Lw

)2
(2.22c)

2.7 Nonlinear aerodynamics

There are two approaches taken here on nonlinear aerodynamics. Coef-
ficient look-up-tables, and higher fidelity models. Beard and McLain [7]
and Vepa [34] develop higher fidelity models. The one developed in [7] is
repeated in short form here.

2.7.1 Higher fidelity model

The resulting model for CL(α) is given by 2.23.

CL(α) = (1− σ(α))[CL0 + CLαα] + σ(α)[2sign(α)2(α) cos(α)] (2.23)

This function merges the linear stability derivative model CL0+CLα with a
nonlinear function 2sign(α) sin2(α) cos(α), while the other stability deriva-
tives are identical.

The merging function, σ(α), used is given by 2.24
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σ(α) =
1 + e−M(α−α0) + eM(α+α0)

(1 + e−M(α−α0))(1 + eM(α+α0))
(2.24)

with α0 as the linear-/nonlinear cutoff, and M as a merging factor.

The coefficient of drag is a simpler model 2.25.

CD(α) = CDp +
(CL0 + CLαα)

2

πeb2/S
(2.25)

with CDp is the shear stress or parasitic drag, S is the planform area of the
wing, and b is the wingspan [7].

2.7.2 Look-up-tables

Look-up-tables are generated from experimental- or CFD data. Airfoil-
tools.com [37] is a large database of look-up-tables for different airfoils.
XFLR5 [38] is an open-source software that can generate look-up-tables
for different geometries of airfoils. Using these tools we can generate a set
of different look-up-tables to simulate a certain airfoil. An example airfoil
look-up-table can be seen in figure 2.9.

2.8 Airfoil icing

Airfoil icing can be categorized by different kinds of ice [6]

• Rime ice

• Glaze ice

• Mixed ice

• Supercooled large droplets
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Figure 2.9: Example look-up-tables of NACA0011 airfoil. ([39])
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Figure 2.10: Example of glaze ice geometry (blue) on cross-section of airfoil
(black) [2].

• Snow and ice crystals

All have different effects on the aircraft, but according to Hann [6], the
type with the highest degradation on aerodynamic performance is glaze
ice. Hence, we will use glaze ice in our simulations, and when referring to
”ice” we mean glaze ice.

In figures 2.10, 2.11 we see examples of glaze ice on airfoils. Although the
details of how an airfoil actually generates lift are disputed [40][41], there

Figure 2.11: Pictures of glaze ice on leading edge of airfoil [6].
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Figure 2.12: The general impact of icing on lift- and drag curves [42].

is consensus that the airfoil needs smooth curves to reduce separation if the
air. With ice on the wings, the resulting aerodynamic performance will in
general be: higher drag, lower lift, and stall conditions at lower angles of
attack. This is illustrated in 2.12.

2.9 PID controller

The development of the PID controller is described in detail in Beard and
McLain [7], but repeated here in short form.

θc = kph(h
c − h) + kih

∫
(hc − h)dt (2.26)

δe = kpθ(θ
c − θ)− kdθq (2.27)

The controller is summarized in the two equations 2.26, 2.27. Equation
2.26 is a proportional integral controller(PI), where θc is the desired pitch
angle, and c and h are the desired height and current height, respectively.
The k terms in both equations are gain parameters for tuning the response.
Equation 2.27 is a proportional derivative controller(PD). This takes the
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desired pitch angle θc as an input, the current pitch angle θ, and the current
pitch rate q. It outputs the elevator control input δe.

The core idea of the controller is to have two controllers in series, meaning
the output of the PI controller is the input to the PD controller. This only
works if the inner-loop controller, in our case the PD controller, is much
faster than the outer loop controller. Another point to take note of is that this
controller makes no assumptions of the plant model it is meant to control.
It is not a model-based controller like the dynamic inversion controller is.

2.10 Dynamic inversion

Dynamic inversion gained traction in the 80s and 90s as a robust nonlinear
control method which did not require expensive testing and gain scheduling
to be effective. It could also be applied to different aircraft with different
characteristics without needing a complete redesign [43].

The basic theory of dynamic inversion is briefly presented in Dahl [1],
which will not be repeated here, but expanded upon further.

For a linear system described by the equations 2.28, it is often desired to
follow a trajectory r(t), which gives the error dynamics equation 2.29.

ẋ = Ax+Bu (2.28a)

y = Cx (2.28b)

e(t) = r(t)− y(t) (2.29)

u = (CB)−1(ṙ +Ke−CAx) (2.30)
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2.30 will stabilize the system as long as the matrices A, B, and C are
known to sufficient accuracy [43], [44], and the gain matrix, K is positive
definite [45].

The system in 2.28 is linear, but dynamic inversion expands to nonlinear
systems as well.

A general nonlinear differential equation with control input can be written
as

ẋ = f(x) + g(x)u (2.31)

It can also be written in companion- or canonical controllable form


ẋ1
...

ẋn−1

ẋn

 =


x2
...
xn

b(x)




0
...
0

a(x)

u (2.32)

Now all the nonlinear terms have been moved to the final state and keeping
the rest linear. Making a virtual control input

v = b(x) + a(x)u (2.33)

and inverting it to gain a control input. Now we can control this variable,
and the rest of the states are controlled linearly.

u = a−1(x)(v − b(x)) (2.34)

Now we can insert the same error-term from 2.29 with a constant positive
definite gain matrix K to control the system.

22



Figure 2.13: Dynamic inversion flow chart [1].

u = a−1(x)(Ke− b(x)) (2.35)

2.11 Artificial neural networks

Artificial neural networks are a broad class of machine learning techniques
for estimation, classification, and data generation. Classical programs have
a pre-defined set of instructions on what to do with a certain input, but ma-
chine learning programs learn the instructions based on the data it receives.
This can happen in a supervised fashion, which means the algorithm is
trained on labeled data, or unsupervised, which means the network has to
infer some structure out of the training data by itself.

Neural networks have been proposed for over half a century [46], but only
recently, with the continuing improvement of computer hardware, have be-
come a prominent method across multiple fields of research. The simplest
form of a neural network is feed-forward network.

2.11.1 Feed-forward neural networks

A feed-forward network is a network with an input layer, output layer, and
n amount of hidden layers in between. The number of nodes in each layer,
the number of hidden layers, choice of cost function, and choice of acti-
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vation function are design parameters for the user. It has been shown that
with two hidden layers and a nonlinear activation function, a network can
approximate any nonlinear function [47]. Hornik [48] showed that a net-
work with a single hidden layer can approximate any nonlinear mapping
from one finite dimensional space to another.

Figure 2.14: Neural network visualization. Input layer(left), hidden
layer(middle), and output layer(right).

The mathematical expression for a single node in a hidden- and output layer
is shown in 2.36. Here, z is the resulting node value, xi are the inputs from
the previous layer, bi is the bias for this node, and wi are the weights from
the previous layer to this one node.

z =
n∑
i=1

xiwi + bi (2.36)

Expanding the expression for a whole layer, it becomes 2.37.
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z1

z2
...
zm

 =


w1,1 w1,2 . . . w1,n

w2,1 w2,2 . . . w2,n

...
... . . . ...

wm,1 wm,2 . . . wm,n



x1

x2
...
xn

+


b1

b2
...
bm

 (2.37a)

Or in vector variable form:

z = Wx+ b (2.37b)

However, to be able to fit nonlinear data, we need to add a nonlinear acti-
vation function. A common activation function is the sigmoid function:

σ(x) =
1

1 + e−x
(2.38)

Meaning our complete expression for a fully connected feed forward net-
work becomes:

z = σ(Wx+ b) (2.39)

Feeding forward is how the network predicts data based on its inputs. When
training the network however, we need to change the weights and biases of
the network based on how well the network did on a prediction. A common
algorithm for doing this is called back propagation.

Backpropagation is to apply gradient descent on a cost function comparing
a networks prediction with the labeled, correct, value ([49]). There are
many such cost functions, but mean squared error (MSE) is a common one.

C =
1

n

n∑
i=1

(y − ŷ)2 (2.40)
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Here ŷ is the network output, y is the correct value, and n is the amount
of outputs from the network. (If the network is a single-value estimator, n
would be 1.)

The ultimate goal of the backpropagation algorithm is to change the weights
so the cost function reaches a satisfactory local- or global minimum. Us-
ing gradient descent with a learning rate parameter α (not to be confused
with the angle of attack), we can tune how fast this convergence happens.
The resulting algorithm is expressed in 2.41 for each weight in each layer.
This has to be done for every weight and bias in every layer, but the basic
expression is the same for all.

wi ← wi − α
∂C

∂wi
(2.41)

For a deeper explanation, see [49].

2.12 Symbolic Regression and SINDy

Sparse identification of nonlinear dynamics (SINDy) is a symbolic regres-
sion algorithm proposed in Brunton [17]. It is a data-driven machine learn-
ing algorithm with the goal of producing the underlying differential equa-
tions which the input data is sampled from. This is similar to different
classes of neural networks (i.e. feed-forward networks, recurrent neural
networks, etc.), but SINDy produces short-form explainable differential
equations [17]. This is different to neural networks which often have a
larger number of parameters, and its behavior is difficult to explain. The
difference from other regression techniques, is that SINDy allows a weigh-
ing of sparsity. Sparsity allows for the resulting model to be more resistant
to overfitting noise. It has also been shown that SINDy can generalize bet-
ter to out-of-distribution data, meaning it generalizes beyond the training
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set better than neural networks.

SINDy is presented in Brunton [17], but repeated in short form here.

We start with gathering data on the plant we wish to model. If the deriva-
tive of the state ẋ is available to measure, we use that. If only the state x

itself is available, we input the state and estimate the derivative with finite
differences or some other method ([22]).

X =


xT (t1)

xT (t2)
...

xT (tm)

 =


x1(t1) x2(t1) . . . xn(t1)

x1(t2) x2(t2) . . . xn(t2)
...

... . . . ...
x1(tm) x2(tm) . . . xn(tm)

 (2.42)

Ẋ =


ẋT (t1)

ẋT (t2)
...

ẋT (tm)

 =


ẋ1(t1) ẋ2(t1) . . . ẋn(t1)

ẋ1(t2) ẋ2(t2) . . . ẋn(t2)
...

... . . . ...
ẋ1(tm) ẋ2(tm) . . . ẋn(tm)

 (2.43)

Next, we define a library of potential candidate functions. These are op-
erations we conjecture that could be done to the input to give an accurate
answer. If we know it is a linear differential equation, we add only linear
terms. If we know it is trigonometric, we add only trigonometric func-
tions. If the useful operations are unknown, we have to experiment to find
a suitable set. A standard polynomial library is a good start. If the SINDy
process is done online and only needs to be valid locally, a polynomial li-
brary can approximate a Taylor expansion of the actual dynamics, and be
accurate enough locally [50].
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Θ(X) =

 | | | | | |
1 X XP2 XP3 . . . sin(X) cos(X) . . .

| | | | | |

 (2.44)

We also merge all linear combinations of states. As an example, the second
order polynomial candidate library would look like 2.45.

XP2 =


x21(t1) x1(t1)x2(t1) . . . x22(t1) . . . x2n(t1)

x21(t2) x1(t2)x2(t2) . . . x22(t2) . . . x2n(t2)
...

... . . . ... . . . ...
x21(tm) x1(tm)x2(tm) . . . x22(tm) . . . x2n(tm)

 (2.45)

The sparsity is enabled through a vector of sparsity coefficients 2.46. These
are the coefficients we run the regression over to determine which candidate
functions are active ([17]).

Ξ =
[
ξ1 ξ2 . . . ξn

]
(2.46)

The resulting regression problem is state as 2.47.

Ẋ = Θ(X)Ξ (2.47)

Once the regression problem is solved and Ξ is found, each state variables
differential equation can be written as

ẋk = fk(x) = Θ(xT)ξk (2.48)
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[17]

The regression problem posed in 2.47 can be solved by different tools. The
original SINDy paper [17] proposes to use least absolute shrinkage and
selection operator (LASSO). However, future developments implemented
in PySINDy [22], give more methods. Sparse Relaxed Regularized Regres-
sion (SR3) and Sequentially-Thresholded Least-Squares algorithm (STLSQ)
are the recommended ones to use.

PySINDy is a python library by [22] which implements the SINDy algo-
rithm described above. With different tools to improve its robustness and
methods to solve it.

PYSR [51] is a python wrapper for the Julia [52] library SymbolicRegres-
sion.jl [53]. It also implements symbolic regression in a similar way to
PySINDy, but uses a genetic algorithm instead of regression to find the ap-
propriate model. The benefit of using PYSR over PySINDy is dependent
on the problem. PYSR is much slower, so not fit for real-time use, but has
higher accuracy if the resulting expression has nested functions and compli-
cated expressions and if the candidate functions are not known. PySINDy
is a better option for short-form expressions and real-time use if the func-
tional basis is known [54].

2.13 Robot Operating System

Robot operating system (ROS) is an open-source framework for robotics
development. It comes with interfaces and plugins for different simulation-
and visualization software. It also takes care of running multiple programs,
or in ROS terms, nodes, simultaneously. Which offloads the task of multi-
threading and passing thread-safe messages between nodes from the user.
This allows for quick development and quickly deployable software. ROS
has native support for the Python- and C++ programming languages, but
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3rd party software is available to develop with ROS in many other lan-
guages as well. A benefit of developing the control software in ROS is that
the road from a prototype in a simulator to production in the real world
is short. The control system only cares about what input it receives and
produces an output. ROS allows for switching between real-world feed-
back from sensors, and simulated ones in a simulator seamlessly, since all
messaging between nodes is done via ROS topics. A topic is just a messag-
ing pipeline that allows nodes to listen to its messages. ROS shortens the
number of steps needed to take to go from a pure simulation project to ap-
plying it to a real-world system. This allows the developed control system
to be tested on an actual UAV in the future without refactoring the entire
program.
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Chapter 3
Method

3.1 Introduction

This chapter will explain the implementation-specific actions that were
taken to achieve the results in the next chapter. The issues that are needed
to solve to make SINDy work on our specific problem are:

• Choice of coordinate system for the input data

• Modify the input data to make the solver converge easier

• Process the icing data into a model possible for SINDy to find

Additionally, a section is added specifically on how the algorithm is imple-
mented in code. There are considerations needed to make it function in a
real-time system, and a solution is presented.

3.2 Continuation of previous work

Dahl [1] developed a dynamic inversion controller based on a neural net-
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work architecture to estimate the error in the linear model. Results were
varying, and the controller had large discrepancies in tracking small differ-
ences in input. The further work proposed in [1] included deeper neural
network architecture, recurrent neural networks, and symbolic regression
as possible improvements to the system. Here, the symbolic regression so-
lution is further explored.

3.3 Model parameters

The table in 3.1 are the values used in the simulation of the UAV. These are
taken from the Aerosonde parameters in [7].

Parameter Value Longitudinal Coef. Value
m 25kg CL0 0.23
Jy 2.135kgm2 CD0 0.043
S 0.55m2 Cm0 0.0135
b 2.8956m CLα -0.98
c 0.18994m CDα 0.30

Sprop 0.2027m2 Cmα -2.74
ρ 1.2682kgm−3 CLq 0

kmotor 80 CDq 0
kTp 0 Cmq -38.21
kΩ 0 CLδE

-0.36
e 0.9 CDδE

0
CmδE

-0.99
Cprop 1.0
M 50
α0 0.4712
ϵ 0.1592

CDp 0
Cnδr

-0.032

Table 3.1: Table of used parameters used in the simulation of the Aerosonde UAV.
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3.4 SINDy

3.4.1 Change of coordinates

We require an accurate model of the pitch dynamics of the aircraft to con-
trol it. Looking at the model in 2.9 and 2.21 we see it is not necessarily too
sparse. The model has four separate terms added together, and the maxi-
mum order of a term is the Cmα term which is multiplied by both V 2

a and
α. This gives a third order model with interacting terms. However, the
terms themselves are functions of the state variables, as shown in 2.12 and
2.14. Having a model of the third degree with interacting terms, square
roots, and a trigonometric function is not sparse. Hence, we need to ex-
press the dynamics of the model in a different coordinate system than the
state variables.

By changing the input to the SINDy algorithm, we do not get an output
of our state variables. Pysindy tries to find a sparse representation of the
input variables + control inputs, meaning, if we change the inputs to better
accommodate the pitch dynamics, we need to do this separately for each
state variable we wish to estimate.

The best change of coordinates we can do for the pitch dynamics is to have
the inputs to the system be Va, α, q, and δe as a control input. SINDy will
now estimate q̇, V̇a and α̇. While V̇a and α̇ contain information on u̇ and
ẅ, their expressions are even less sparse than the pitch dynamics. They
contain rotation from the stability frame to the body frame as well, thus
further transformations of the results are needed, or SINDy will need to try
and estimate these rotations as well.

Either way, for pitch control, we only require the pitch rate dynamics, and
thus we can use the coordinate transformation to Va and α.
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Further transformations can be done. Since the pitching moment 2.21 is
directly proportional to V 2

a , we can divide q̇ by it, to reduce the model dy-
namics to second order. The downside of this is that we need to take care
of our q̇-data ourselves. Pysindy includes different methods to numerically
differentiate the input data to be used as ground truth for the SINDy al-
gorithm. If we wish to pre-divide all q̇ data points by V 2

a , we need to do
this manually, and feed in the ground truth data directly. Another downside
is that this action presumes prior knowledge of the dynamics we wish to
model. If we wish to apply SINDy to model a totally unknown system, we
can not base the usage of the algorithm on prior knowledge.

Some prior knowledge methods like pre-dividing are useful in this applica-
tion, but some other modifications to the inputs can be an important factor
in a general application of SINDy.

3.4.2 Input modification

Pysindy tries to find the coefficients of the terms in the model which have
the largest impact on the result. Considering our goal of modelling the pitch
dynamics, this corresponds to some aerodynamic coefficients we want to
find. But since the whole expression in 2.21 is reliant on V 2

a (2.12), the
coefficients would all need to be quite small. With a Vatrim ≈ 35m/s,
V 2
a ≈ 1200 while |q̇| ≈ 1, would require the desired coefficients for SINDy

to find be on the order of 1/1000. This poses a problem for pysindy, since
it rarely finds such low coefficients, and will just find a larger combination
of higher valued coefficients instead. To combat this, we need to introduce
some tuning variables. These can be inferred from educated guesses of the
desired dynamic model, and the desire is to shift all the coefficients to the
same order of magnitude above 1.

Using the values for simulation given in [1], the linear pitching moment
equation becomes
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q̇ = 0.00042V 2
a − 0.085αV 2

a − 0.11qVa − 0.031δeV
2
a (3.1)

These coefficients are distributed over three orders of magnitude which
makes the sparsification of the regression problem more difficult. If we
augment the inputs to the model we are trying to fit, we can make the prob-
lem easier.

V̄a =
Va
n

(3.2)

Changing our inputs to augmented inputs in the form of 3.2 for some/all of
α, δe and q as well, reformulates the differential equation to

q̇ = 0.00042
V 2
a

n2
1

− 0.085
α

n2

V 2
a

n2
1

− 0.11
q

n3

Va
n1

− 0.031
δe
n4

V 2
a

n2
1

(3.3a)

q̇ = 0.00042V̄ 2
a − 0.085ᾱV̄ 2

a − 0.11q̄V̄a − 0.031δ̄eV̄ 2
a (3.3b)

Now, the only possible way for q̇ to be the same, is if the coefficients are
increased by the same amount the inputs were divided by.

By applying this augmentation to the inputs, and using n1 = 200, n2 =

0.01, n3 = 1 and n4 = 0.001, we get the system in 3.4.

q̇ = 16.755V 2
a − 34.006αV 2

a − 22.518qVa − 12.287V 2
a δE (3.4)

Here, all coefficients are of the same order of magnitude, and the problem
is now much easier for Pysindy to solve.

There is obviously a great advantage to knowing the model the simulator
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uses to tune these augmentation values. In other cases where the model
dynamics are completely unknown, this becomes more difficult. However,
in most applications, there should be some prior knowledge of the system
which can be used to tune these values. But in the end, it does introduce
some additional tuning parameters that need to be considered when using
the SINDy method. Pysindy does have the option to use proprietary op-
timizers similar in form to SciPy optimizers[55]. Using this, it should be
possible to make an optimizer that will not require this augmentation step
to be successful, but this was not further explored in this thesis.

3.5 Airfoil icing

Under icing conditions, it is difficult to get experimental or CFD simulation
data. Oswald et al. [2] has published data on icing conditions for an RG-15
airfoil. While a different airfoil than the one used on the Aerosonde, its ex-
perimental data is still functional as a basis for simulation of the Aerosonde.
To make alterations to this data to fit the Aerosonde would be highly spec-
ulative. Thus, it has been used here without any alterations.

Cm(α) = −0.00042418α2 + 0.00392625α− 0.0039956 (3.5)

In 3.1, Oswald et al. [2] presents experimental data for the pitching mo-
ment derivative vs. angle of attack at a Reynolds number [57] of 2.0 · 105,
meaning turbulent flow. Comparing the plot to the data found in 3.1 and
models in 3.2, we see some similarities in especially the clean foil. Though
the linear approximation is a rough one, with a larger set of angles of at-
tack, we would likely see a similar picture to the one in 3.3. Looking at the
icing wing, we see the same general shape in the higher angles of attack,
but without any obvious symmetry around α = 0. This means at angles
of attack of 0 and below, the Cm(α) coefficient induces some instability to
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Figure 3.1: Experimental icing- and clean data from Oswald et al. [2].
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Figure 3.2: Curve fitting the icing data (left). Comparing Non-iced data with the
Aerosonde linear model (right).

Figure 3.3: Pitching moment coefficients found through wind tunnel testing in
[56].
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the system, as can be seen in the pitch dynamics in 2.9 and 2.21. Negative
angle of attack and a negative coefficient gives positive addition to q̇, which
can give instability if the other derivatives do not reduce it.

For this reason, the model in figure 3.2 and equation ?? was chosen to be
used for testing if the control systems can keep control during icing of the
airfoils.

3.6 Algorithm implementation

There are certain goals of the algorithm we need to consider when imple-
menting it.

• The algorithm should be able to generate a new control model while
running.

• It should be easy to switch from one controller to another mid flight.

• Computational overhead for processing large amounts of data real-
time during flight.

• The estimation algorithm has to be separated from the simulation
software to best model a real-world flight.

To achieve these goals, we create a separate ROS node, or without ROS, a
separate thread. The separate node runs simultaneously with the simulation
and is only started once the simulation has gathered enough data to start the
model training. There is no lower limit on the data one can use, so this limit
should not be the source of much consideration. Next, we need to consider
how much processing power the algorithm should consume. The amount
of data available for training increases at the frequency of the sensors, but
storing and training on all the data during long flights quickly becomes
infeasible using current implementations of SINDy on current computer
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hardware. Thus, a rolling window of past training data has to be used. The
size of this window needs to be evaluated based on priorities: A larger win-
dow gives longer processing times for new models, but the models received
should be more accurate. A smaller window is the other way around.

SINDy implemented with Pysindy has access to multiple solvers for the re-
gression problem 2.47. The recommended ones are sequentially-thresholded
least-squares algorithm (STLSQ) [58], and sparse relaxed regularized re-
gression (SR3) [59]. Both algorithms include a threshold tuning variable
which sets the minimum included coefficient value. If a coefficient found
is below the threshold, then it is not included in the model. Working on
completely unknown data, it can be difficult to know which value to use
as the threshold, so doing the optimization over a range of thresholds, and
picking the model with the lowest error-metric increases the quality of the
output. Some issues with this method are that it is prone to overfitting if the
test-set is part of the training set. Thus, a separate test set with un-seen data
is helpful. Using an error-metric like MSE on the test set does not guar-
antee a sparse model either. If we run the optimization over five different
thresholds, we wish to use the model with the lowest MSE with the testing
data, which is the most sparse, and is better than the current model we are
currently using. From this, a new metric was made, which punishes test set
error, punishes a high amount of terms in the found model compared to the
other found models, and updates the MSE on the estimation done by the
model currently in use. In addition, a small punishment is given to a model
which has been in use for a long time, since the assumption is that newer
data gives a better representation of the dynamics than the older data.

A consideration needed when applying dynamic inversion is that the im-
plementation has to have logic ready to handle a completely wrong model,
but with a low error-metric. If a model is found which has a term with
a quadratic-, cubic-, or higher order control input, the model can not be
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straightforwardly inverted. We have two options when implementing: Check-
ing the model input for resulting square-, cube- or higher order roots that
end up in the inversion to ensure they never take a negative root or limit the
library functions available for the control input. The latter is much easier to
implement in the pitch rate model, but the former is more generalizable to
different models. However, if a model is suspected to have a higher order
control input, it might be easier to modify the input and limit the control
input library since Pysindy easily facilitates this.

The resulting algorithm flowchart can be seen in figure 3.4.
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Figure 3.4: Flowchart of the basic implementation of the online SINDy control
algorithm. Blue nodes are running in the main thread of the program and green
nodes run in a separate thread.
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Chapter 4
Results

Presented are the results of multiple simulations done on the different test
cases. The tracking set points are generated using a random walk [60],
which are then low-pass filtered for smoothing, and lastly, some random
step-functions are added in for diversity. When comparing multiple control
schemes together, the random seed is set constant to get identical tracking
set points. The random walk was also used to generate the test set data for
the SINDy algorithm. It used a different seed to generate the data than it
was run on, so it is only unseen data.

Some plots only contain SINDy and the neural network-based controller.
This is because the two dynamic inversion controllers are made to track
pitch rate, while the PID controller, tracks pitch. The plots that include
all three controllers are the height tracking plots. These could be used as
a basis for all of the plots, but it is often easier to see the difference in
performance between the controllers in pitch rate. Hence, when comparing
the SINDy controller and the neural network controller, pitch rate is the
value of interest.
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Figure 4.1: SINDy tracking of pitch rate running online.

4.1 Non-icing conditions

In figure 4.1 a varying height flight path is simulated with an online esti-
mation of the pitch rate model. The model is updated at specific times, but
only kept if it has improved performance on the testing data. We clearly see
it converging toward the correct model.

The pitch rate derivative is shown in figure 4.2. Zooming in on figure 4.3
we can see some offsets in the pitch rate. Though small, they add up when
integrating the values, and this is the result we in figure 4.1 where the track-
ing diverges.

The resulting model from SINDy gave the model in 4.1, while the actual
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Figure 4.2: SINDy tracking of pitch rate prime running online.
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Figure 4.3: SINDy tracking of pitch rate prime zoomed in. Some small offsets
are clearly present. Integrating these offsets up to pitch rate gives a larger offset in
pitch rate over time.

model used in the simulation was the model in 3.4. These are identical in
form with only small numerical differences. Across multiple runs, small
additional terms can be included in the estimated model. In testing these
appear most commonly as airspeed Va terms to a higher degree. Most com-
mon is CV 3

a , with C being some small constant less than 0.1. Keeping in
mind this model is with the shifted input arguments, Va is less than 0.5,
making these terms insignificant compared to the output.

q̇ = 16.743V 2
a − 33.756αV 2

a − 22.189qVa − 12.185V 2
a δE (4.1)

Since this is a simulation, SINDy had access to perfect data. But adding
wind to the model using the technique presented in section 2.6 adds noisy
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Figure 4.4: Pitch rate estimates using SINDy with added wind to the simulation.
The model converges, but much slower than with perfect measurement data.
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Figure 4.5: Measurements received by SINDy when wind is applied vs. when no
wind is applies. Top plot is the airspeed (2.12). Bottom is angle of attack (2.14).
The constant term in the wind model is set to −3m/s in x and −0.2m/s in z.
This gives the approximately symmetric noise around α, while the added wind
measurements gives a negative shift in air speed plus some added noise.
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Figure 4.6: Added a reference to track. The first part of the model is using pitch
rate control from a different controller.

measurements to the problem which can be seen in figure 4.5. Using a
constant wind of−3m/s in x and−0.2m/s in z, and the Dryden turbulence,
we get the resulting pitch rate tracking in figure 4.4. We can see it converges
much slower, and diverges completely during a large time period. This
was caused by SINDy using the error-metric not finding a better model
during the time span, but towards the end, the algorithm converged to an
expression similar to 4.1.

Given an accurate estimate of the pitch dynamics, we can apply it to pitch
control.

In figure 4.6 we run the online SINDy algorithm to estimate the model.
Once the model MSE on the test data is lower than a set amount, in this case
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Figure 4.7: Clearer visible shift in where the SINDy model starts estimating, and
where it is deemed good enough for control purposes.
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Figure 4.8: Pure open loop control using the found model. Given a perfect esti-
mated model, the tracking should be perfect, but the used model had small numeric
errors. We can see some small errors in tracking the peaks and crevices around the
100 second mark.
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0.001, the model is used as the model in dynamic inversion with a low gain
feedback of Kp = 0.1. In figure 4.7 the shifts are even easier to see. From
t ≈ 60 to t ≈ 80, a SINDy model is found, but deemed too inaccurate for
control by having a higher MSE than the threshold set at 0.01. At t ≈ 80,
a new model is found with MSE below 0.01, and the rest of the run uses
it for the control scheme. Figure 4.8 shows the control algorithm running
without any feedback or adaption, only open loop control.

4.2 Full icing conditions

The most effective way to apply SINDy for control during icing was not to
apply the error-metric with a test set, length punishment and time punish-
ment. What instead gave better results was to always take the latest model
given by SINDy. When applying the found model to control, using the
error-metric allows for a model based on older data to newer data, which
could easily diverge. In figure 4.9 we see the compared models where one
is updated with each new found model, and one is only updated when the
error-metric is lower. Thus, for future SINDy models, the error-metric was
not used.

In figure 4.10 we look closer at the performance of the SINDy model over
time. While the found model usually gets the shape of the model correctly,
it does occasionally introduce an offset in the pitch rate. For control pur-
poses, this means we can not rely completely on the model found for con-
trol as we did in figure 4.6. If we add a simple proportional control term,
where we multiply the pitch rate error with a small gain and include it in the
controller, we can combat this small offset. The neural network controller
also uses this proportional control term, but as we can see in figure 4.11 the
necessary gain is different.

In the graph in figure 4.11 we compare the dynamic inversion scheme using
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Figure 4.9: Comparing the estimation given by SINDy when using the error-
metric to always taking the latest available model. The vertical lines indicate where
the respective model is updated. Using the most recently found model performs
better, as when the error-metric calculates an older model to be better, the perfor-
mance is worse. This is clearly seen around the 300 second mark where one found
model diverges, but is saved at the next found model. The error-metric still deems
this model to have the lowest error and continues to diverge.
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the neural network, and SINDy for control. The performance of both is
quite similar, but the SINDy model reacts better to large jumps in reference.
The major difference is the amount of gain applied. The neural network
needs over 10 times the amount of gain to be able to compete with the
SINDy model. It is preferable to have a smaller amount of proportional
gain since the gain will amplify measurement noise to the system. It can
also lead to non-physical control inputs which either can not be reached, or
they can damage the actuator [61].

By turning down the gain used in the neural network-based controller, we
run into a different issue. The neural network can sometimes diverge and
output some high-frequency noisy control inputs, as was also mentioned in
Dahl [1]. In figure 4.12 we see the raw output pitch rate of the UAV when
using 0.5 gain. With this low gain, the network can occasionally output a
high frequency, noisy signal to the control input which results in the pitch
rate seen in the plot. To combat this, we can add a low-pass filter to the
control input. By doing this we get the clean signal in the plot. However,
a low-pass filter induces some delay to the system [45], which is visible
in figure 4.13. Here we see a clear time delay on the controller using a
low-pass filter.

4.2.1 Model found by SINDy

The benefit to SINDy is that we can actually discover the models of the un-
derlying dynamics. However, the real world is complex with icing, atmo-
spheric disturbances, magnetic disturbances, shifting center of mass, non
rigid-body dynamics, and a multitude of other influences which are not
modelled in a simulation or captured by a sparse equation. Even if all the
influences could be captured in an equation, it would probably not be of
low order or sparse. Which is why, an interesting application to SINDy is
if it manages to capture the higher order dynamics using lower order terms.
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Figure 4.10: SINDy online model estimation. Here, the best of three models are
chosen each iteration, but the model from the last iteration will not be used again
if it has lower MSE.
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Figure 4.11: Comparing the control methods after the SINDy control algorithm is
activated at t = 260. The tracking performance between the controllers is similar,
but the neural network-based controller requires a magnitude higher proportional
feedback gain than the SINDy based controller.
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Figure 4.12: The raw output of the simulator when the neural network diverges,
and the output when the control-input is low-pass filtered
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Figure 4.13: Comparing a high gain neural network controller with a low gain
low-pass filtered control input neural network controller. Here we see the time
delay introduced by the low-pass filter.

This has been tested in the icing example where the CM(α) coefficient
function is interpolated as a quadratic function shown left in 3.2. This leads
to a fourth order model for the pitch dynamics, and inserting the other coef-
ficients in table 3.1, and the input augmentation from 3.4.2, with the values
n1 = 100, n2 = 10, n3 = 1 and n4 = 0.1, we get the model in 4.2.

q̇ = −13.16α2V 2
a +12.182αV 2

a − 1.24V 2
a − 11.26qVa− 30.72δeV

2
a (4.2)

Increasing the order of the candidate library to the fourth order to hopefully
find the model 4.2 never worked well. The combinatorics of a fourth-order
candidate library makes it much larger than the third-order, so the best fea-
sible way to capture the dynamics in a model was to use a third-order library
and allow SINDy a less sparse model to compensate for the missing fourth
order term. This third order model is used in all SINDy based results for
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icing, but with an added linear control input library to hinder the possibility
of a squared control input model, as discussed in section 3.6.

q̇ = −458.4α2q + 448.7α2δe − 25008.7α2Va + 3817.1α2

− 3.479αq2 − 9.86αqδe − 45.1αqVa 4.79αq − 9.65αδe

+ 130.5αV 2
a + 319.7αVa − 49.1α− 0.029qδeVa + 2.29qV 2

a

− 0.53δeVa − 0.55V 3
a − 0.83V 2

a − 11.3qVa − 28.1δeV
2
a (4.3)

One model found is shown in 4.3. It is huge, but captures the dynamics
well. If we look at the last three terms in the found model, we recognize
the last three terms from 4.2, which are quite close to correct. Also, we
have to keep in mind that these are the coefficients for the modified input,
which means the coefficients including Va and α terms will be substantially
smaller in reality, and the terms including δe will be larger.

4.2.2 Height- and angle tracking results

The references shown in the plots above are generated through a PID-
estimator made for tracking a height reference for the UAV. This is de-
scribed further in [1]. The ultimate result we are interested in is how well
the aircraft can fly. In the longitudinal model, we are then interested in how
accurately and quickly the UAV can reach a certain height set point.

The results of the height tracking are shown in figure 4.14 and zoomed in
closer in figure 4.15. The performance between the controllers is similar,
but zoomed in, we notice the SINDy controller is a bit faster during the
later part of the run. This neural network controller also utilized the higher
gain value, but is still not reaching the set point faster.
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Figure 4.14: The performance on height tracking for the different controllers. The
PID-controller diverges after t = 125s. The neural network controller and SINDy
controller use a gain of 5.0 and 0.3, respectively.
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Figure 4.15: The performance on height tracking for the different controllers,
zoomed in for higher detail.
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Figure 4.16: The performance on angle tracking for the different controllers.

The height set points are made into angle set points which are then made
into a pitch rate reference.

The results in figure 4.16 show the resulting angle tracking. Results are
very similar to the height set points, and the SINDy controller is faster and
more accurate than the neural network controller. The results are similar
to the height tracking, and this comes from the fact that these set points
are generated from the set points of height, but with an added saturation of
±50◦.

4.3 Transitioning conditions

An important aspect of handling icing on an aircraft is how the craft is
controlled during the transition from a clean wing to an icy one. We have
looked at the results for a clean wing and an icy wing separately, but transi-
tioning from clean to icing poses difficulties for data-driven models. As we
have seen in previous results, SINDy relies on a relatively large amount of
data to converge with noisy measurements, but during icing, the older data
becomes less and less representative and SINDy could end up discovering
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Figure 4.17: Cm(α) transitioning from a linear model (no icing) to the curve fit
icing data from 3.2.

an incorrect model.

The transition model is generated by merging the linear model 2.21 with
the icing model ??, using the sigma merging function in 2.24. This gives
a linear merging of the two functions which will increasingly become the
icing model. Some sample data from the merging function can be seen in
figure 4.17, with the color indicating how close it is to the clean- and icing
model.

Applying the merging function in the simulation, and transitioning over a
range of time spans, we get the following results. In figure 4.18 we see the
SINDy algorithm applied to the transitioning data over four different time
spans. The model is not fully the icy model until the end, but the dotted
line marks where the transition started, so three of the models have a time
period of just the linear model in the beginning. In the bottom row, we can
clearly see the impact the transitioning data has on the model. It diverges
completely once the pure linear model ends.
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Figure 4.18: The performance of the SINDy algorithm on an airfoil transitioning
from clean to icy. The dotted line represents when the transition from clean to
icing starts, but no model is fully iced until t = 500s.
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Figure 4.19: The performance of the neural network algorithm on an airfoil tran-
sitioning from clean to icy. The dotted line represents when the transition from
clean to icing starts, but no model is fully iced until t = 500s.
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Figure 4.20: Log of MSE of the SINDy and neural network control schemes. Each
data point is the resulting log(mse) of the tracking error to the reference with the
transition to icing starting at t.

The plot in 4.19 shows the same scenario as in 4.18, but the neural network
handles the change of model much better. It follows the reference similar
to the results in the pure icing case. The difference in MSE between the
SINDy model and the neural network model can be seen in figure 4.20,
where the error is almost ten orders of magnitude larger for the SINDy
model.

Finally, we have the PID controller. It performed surprisingly well, as can
be seen in figure 4.21. In the pure icing case, the PID controller diverged
at the first step in reference, but here we see it handles the transition case
well. There is no clear visible difference between any of the four plots in
the image, but the image does not represent the pure icing case. Meaning,
the pitching moment used in the pure icing case seems to be on the limit
of what the controller can handle. But transitioning to the ice model, it
handles well.
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Figure 4.21: PID height tracking at different transition times.
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Chapter 5
Discussion

5.1 SINDy

SINDy is proposed as a middle-ground between the pure black box machine
learning models, and standard physical modelling. Ideally, the algorithm
gives the best of both worlds: an explainable, simple model to describe the
dynamics of a system without doing the work of manually modelling it. In
this thesis, we applied the SINDy algorithm to control an UAV by dynamics
inversion. The controller was applied to three different scenarios: a clean
airfoil, a transitioning airfoil, and an icy airfoil.

The results when applied to the clean airfoil were promising. The under-
lying model was found, but it required some tuning of the input variables.
Extra tuning variables are not desirable if they can be avoided, but with
the underlying coefficients being orders of magnitude different, the STLSQ
solver could not find a satisfactory sparse solution. Hence, the input mod-
ification was necessary. Another downside of having to augment the input
to the solver is that this augmentation is difficult to know beforehand, and
it is highly probable that it will need to change if the underlying dynamics
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change. As we saw in the transition case, once the underlying dynam-
ics change, SINDy struggles to converge to something sensible. A small
change like wind, it was able to handle perfectly, which makes it robust
against noise. However, the larger shifts in dynamics were too much for a
sensible result.

Another issue with using SINDy for this application, is the fact that the
dynamics of an UAV is not that sparse. The simplest model of the pitch
dynamics we used, is still a third-order model with four terms. STLSQ
was able to find the third-order dynamics, but when the order increased to
fourth, the pool of candidate functions became too large for a sparse re-
sult. However, we also saw that we managed to approximate the fourth
order model with a third-order one by increasing the number of terms it
had. A downside to this is that the resulting approximation to the fourth
order model is overfitted to the data. We see this once the transition phase
was initiated from the linear one. If the underlying dynamics were found,
the small shift in pitch dynamics should not cause the system to diverge
immediately, but an overfitted system will behave this way. When we keep
in mind that a real-world UAV is not rigid, has a shifting center of pres-
sure which is not at the center of mass, varying mass, pressure difference at
different heights, and additional sources of uncertainty which are not mod-
elled here, the poor results from the transition into icing do not suggest a
stable control method for real-world application. An upside to the overfit-
ted results is that we can have a way to inspect the resulting model and see
it is overfitted by the number of terms and the size of the coefficients in
front. This is not possible in a traditional neural network. As an example,
in the overfitted model in 4.2, we have terms orders of magnitude higher
than others, −25008.7α2Va and −0.53δeVa in the same equation points to
a non-physical model and overfitting. By applying and extending this prin-
ciple to some heuristic measurement of how probable it is have resulting
model dynamics with a certain amount of coefficients and the span of co-
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efficient values, there can be derived a measurement of how probable it is
for a model to be overfitted. A model like the one hypothesised could be a
useful metric and sanity test when applying SINDy to some system.

The problems with the SINDy algorithm can probably be solved by intro-
ducing new solvers, data-processing, and by adding more heuristic solu-
tions to cover up its shortcomings. Thus, a SINDy-based control system in
a real-world application would be possible, but this implies a much more
exhaustive design of the system. The purpose of this examination of the
SINDy algorithm applied to control was to explore it as a neural network,
but with an explainable solution. However, this is not the case.

The upsides of SINDy, when compared to a neural network, are many. It
can discover dynamics of unknown systems online while in use. It also cov-
ers up a big short-coming of a neural network, which is the stability proof.
A sparse model of dynamics allows for the use of common frameworks for
nonlinear stability analysis, like the common Lyapunov stability analysis
for nonlinear systems[62].

SINDy has been applied with MPC-control before [20], [19], but dynamic
inversion is much less computationally heavy. The Pysindy algorithm it-
self requires large computing power, but the controller does only simple
matrix multiplication. If the controller is supposed to run on an embed-
ded computer, online SINDy should not be used, but the simplicity of the
dynamic inversion controller opens up another possibility. Recording data
from the system using a simple controller first, analyzing the data from
the run using SINDy, and then activating the dynamic inversion controller
with the found model for another run. This gives a simple method for find-
ing an appropriate model for a general nonlinear dynamic inversion con-
troller. Even with an imperfect model, some standard lightweight feedback
terms can be added to compensate for the modelling error from the SINDy
model. But the main point is that the SINDy model will be much more
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accurate than a standard linearized one, and this will hopefully improve
performance and reduce the additional control terms needed to apply a dy-
namic inversion controller. This method does however not work with the
icing wings as shown in 4.18. By changing the underlying dynamics of
the model, SINDy’s found model is rendered less and less useful the more
the dynamics change, and thus cannot be recommended to use on an ic-
ing UAV drastically reducing the amount of data needed for it to converge.
We saw in the linear case that SINDy converged much faster without noisy
measurements, so reducing the measurement noise by some pre-processing
method could reduce the amount of data needed for convergence.

5.2 Neural network

The function of the network is fundamentally different from the SINDy
algorithm. While both are used here to apply dynamic inversion, the neu-
ral network does not try to estimate the pitch dynamics, but tries to learn
the error dynamics between the actual model and the linearized one. The
performance of the network was high if it used a higher gain-term in the
controller as well. Reducing it from 5 to 0.5 gave rise to some unwanted
oscillations. It can be remedied by introducing some delay to the system,
which is generally unwanted, but depending on the application, can work
perfectly fine.

In most of the results presented, the SINDy algorithm gave better system
control than the neural network solution, especially when considering the
fact that it had a tenth of the gain in the controller. The SINDy controller
has closer relation to common control methods. Thus it is preferable since
it allows for further analysis using common tools, like those mentioned
above in section 5.1. The neural network method did however excel in the
most realistic simulation of icing performed in figure 4.19. Since the neural
network is adapted at a high frequency and is not reliant on previous data, it
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will not be affected by the changing of underlying dynamics like the SINDy
model is.

5.3 PID

PID-control is a common control scheme in most applications. The im-
plementation used here is presented in Beard and McLain [7] and in short
form in chapter 2 as the successive loop closure controller. PID control is
not model-based, meaning we do not need a model of the system to apply
it, it uses only error feedback to adjust the input to the system. The lack of
a model simplifies the implementation, and makes the controller generally
applicable to any system. When applied to the icing problem, it had mixed
results. When the empirical model for the RG-15 airfoil during icing in
figure 3.2 was used in the simulation, the PID controller would diverge at
large jumps in tracking reference. The controller was tuned to function in
non-icing conditions, and re-tuning it would probably give better results.
However, the scenario is a realistic one: having a controller tuned to a stan-
dard mode of operation, but also needing to work during edge cases like
icing. In this sense, the PID controller fails.

More can be done to improve the performance of the controller. A common
technique for adapting the tuning the weights online during flight is gain
scheduling [63]. This will improve the performance of the controller, but
increases the complexity and amount of tuning needed. The upside for the
successive loop closure PID controller was the transition case from no icing
to icing. It managed to track the reference at the same performance as in
the pure no icing case. This hints that the icing pitch dynamics are just
on the edge of what the controller can handle. Seeing as that data was the
worst-case scenario, a further developed PID controller should be able to
handle it without increasing the complexity to a model-based controller.
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A PID controller is commonly used as a first iteration in control. If it has
unsatisfactory results, a more specialized controller can be applied. Com-
paring the results with the two other controllers that were tested here, we
see the reason for this. The performance of the controller was excellent in
the common scenario it was applied to. The no icing case is what most
UAV’s experience 99% of the time, which makes the PID controller a good
option. In addition, the controller is extremely simple to implement and
tune.

5.4 Conclusion

In this thesis, SINDy was implemented in a simulation of the longitudi-
nal dynamics of an UAV. It was compared to the neural network adaptive
controller implemented in Dahl [1], and a successive loop closure PID con-
troller from Beard and McLain [7]. The different controllers were applied
and compared on three different test cases for flight: non-icing airfoil, icing
airfoil, and the transition between them.

Results show a promising use-case for SINDy in control during stable dy-
namics, but when introducing a large change in the underlying dynamics,
the SINDy model diverged and became infeasible for control purposes.
SINDy was posed as an explainable machine learning technique, and the
hypothesis was that it would out-perform a neural network approach in
both simplicity and performance. While it did outperform the neural net-
work controller on stable dynamics (fully iced or no ice), it did not in the
transition case. Additionally, it required some additional tuning parameters
and coordinate shifts to converge. The adaptive technique utilizing a neural
network handled all three test cases well, but with the caveat of utilizing
a much higher gain for stable results. The occasional diverging and noisy
control inputs produced by the neural network were present, which made
the network need additional processing to be viable. The classic technique
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of PID control was also applied to compare the model-based techniques
with a simple output feedback system. It performed well in both the non-
icing case and the transition-case, but diverged during normal operation
with a fully iced airfoil. But for nominal use, its performance was similar
to the other controllers, while being much simpler to implement and tune.
In conclusion, to control a UAV during icing, none of the controllers pre-
sented in their current forms are viable. They all have short-comings that
require additional development to be viable options in a safety critical sys-
tem, but the PID controller with some different tuning is the best option
if the system does not require pitch rate tracking. It is reliable, simple to
implement, and simple to understand.

5.5 Further work

Simulation is only an approximation of reality, not a replacement. To be
able to say anything surely about these techniques, they need to be tested
on a real UAV. This is common for all three methods.

For the SINDy control method. Further improvements could be made by
implementing a different solver which does not use a threshold on the
model coefficients to make the model sparse. The threshold-based approach
poses problems for systems like the pitch dynamics used here, where the
coefficients span a multiple orders of magnitude. Further work could also
be done on implementing a better error metric for the algorithm. A funda-
mental problem with the implementation of SINDy for control used here is
the large amount of data needed for the model to converge. If this could be
reduced by some pre-processing, the model would update more frequently
and the model could handle a change in dynamics better.

The neural network method worked well on all test cases. Still, there are
improvements to be made. Ideally, the network would converge to a per-
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fect model of the error dynamics, and no feedback gain would be needed.
But the results do not show this. A large amount of gain (compared to the
SINDy model) was needed for a stable result. This is indicative of the neu-
ral network not converging, and not being able to approximate the differ-
ential equation. Recurrent neural networks [64], long-short-term memory
[65] and transformers [66] are, respectively, the next few steps in time-
series forecasting. Each being more complex than the next, but with higher
performance on time-based data. Further developing the network to one
of these different architectures should increase the performance, but at the
cost of complexity and computational power.
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