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Abstract

The use of robotic control and autonomous robots is at the forefront of today’s industry and
scientific research. With the help of advanced technology, society can now handle complicated and
hazardous situations using remotely operated units overseen by humans. Despite great strides in
controlling individual robots and even small groups of robots, there is still a need for methods to
manage large teams of robots effectively. Real-time strategy(RTS) games have long been able to
control hundreds of units effectively, but more research needs to be conducted between the fields
of robotics and gaming to bridge the gap. This master’s thesis aims to further bridge this gap by
examining existing methods in both fields to find the approaches and principles used in gaming
that are translatable for controlling large-scale robotic teams.

This thesis will present an overview of existing methods for multi-agent control, as well as design
principles based on principles from gaming and the field of Human-Computer Interaction(HCI) to
elevate user experience. A responsive asynchronous multi-agent path planner with robust static
collision avoidance is developed and implemented, along with visual aids and text-based feedback
tools, to enhance performance by giving the operator an intuitive user experience. The planner is
based on an existing implementation of a rapidly-exploring random graph algorithm in combination
with a probabilistic roadmap to provide the ability to handle multiple queries on the same graph
structure. The algorithms are designed to operate in high-dimensional non-convex environments
and the proposed planner will be demonstrated in a range of environments to showcase how they
affect performance. The planner is designed to fit in a more extensive architecture inspired by
existing state-of-the-art AI systems developed for playing RTS games. The work done in this
thesis will hopefully inspire further research and development to bridge the gap between gaming
and robotics to achieve effective systems for large-scale control of robotic teams.
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Sammendrag

Bruken av autonome roboter og robotstyring st̊ar i fokus for n̊atidens industrielle og vitenskapelige
forskning. Ved bruk avansert teknologi kan samfunnet n̊a h̊andtere kompliserte og farlige situas-
joner ved å bruke fjernstyrte enheter overv̊aket av mennesker. Til tross for store fremskritt innen
kontroll av individuelle roboter eller sm̊a grupper av roboter, er det fortsatt behov for metoder for
effektiv h̊andtering av store robotsvermer. Real-time strategy(RTS)-spill har lenge kunnet kontrol-
lere hundrevis av enheter effektivt, men det er et hull i forskningen mellom robotikk- og spillindus-
trien. Denne masteroppgaven ønsker å bygge videre p̊a broen mellom disse feltene ved å undersøke
eksisterende metoder i begge felt for å finne tilnærminger og prinsipper brukt i spillutvikling som
er overførbare til kontroll av store robotsvermer.

I denne oppgaven vil det bli presentert en oversikt over eksisterende metoder for multi-agentkontroll,
samt designprinsipper for å forbedre brukeropplevelsen basert p̊a prinsipper fra videospillutvikling
og menneske maskin-interaksjon (MMI). En responsiv asynkron multi-agent-stiplanlegger med ro-
bust statisk kollisjonsunng̊aelse er utviklet og implementert, sammen med visuelle hjelpemidler og
tekstbaserte tilbakemeldingsverktøy for å forbedre ytelsen ved å gi operatøren en intuitiv bruker-
opplevelse. Planleggeren er basert p̊a en eksisterende implementering av en raskt-utforskende
tilfeldig grafalgoritme i kombinasjon med et probabilistisk veikart for å muliggjøre h̊andtering av
flere forespørsler p̊a samme grafstruktur. Algoritmene er designet for å operere i høy-dimensjonale
ikke-konvekse miljøer, og den foresl̊atte planleggeren vil bli demonstrert i en rekke miljøer for å vise
hvordan operasjonsmiljøet p̊avirker planleggerens ytelse. Planleggeren er designet for å passe inn
i en større arkitektur inspirert av eksisterende toppmoderne AI systemer utviklet for å spille RTS-
spill. Arbeidet utført i denne oppgaven vil forh̊apentligvis inspirere videre forskning og utvikling
for å bygge broen mellom spillindustrien og robotikk for å oppn̊a effektive systemer for storskala
kontroll av robotsvermer.

iii



Table of Contents

Preface i

Abstract ii

Sammendrag iii

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Master thesis goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.1 Multi-agent path planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.2 Collision avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.3 User Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theory 6

2.1 Path and Motion Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Multi-Agent path planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.4 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.5 Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.6 Anytime algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.7 Multi-query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.8 PRM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.9 RRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Implementation and method 13

3.1 Simulation environment and software development . . . . . . . . . . . . . . . . . . 13

3.1.1 Robot Operating System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Robot model and controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

iv



3.3 Pre-requisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.1 VoxBlox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.2 Planner Common . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Multi-Agent Path Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.1 Graph management and core planner . . . . . . . . . . . . . . . . . . . . . . 17

3.4.2 Planning manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.3 Dynamic Obstacle Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.4 User experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Results 26

4.1 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Tuning parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.2 Planning in an open environment . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.3 Planning in a narrow environment . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 User experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Conclusion 36

5.1 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Bibliography 37

Appendix 41

A Planner function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

B Graph expansion function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

C ROS libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

List of Figures

1 An example of a local graph built by an implemented version of RRG in a narrow
corridor. The vertices are marked as orange circles, while an arbitrary path found
in the graph is marked as a green dotted line. The blue triangle is a robot, and
the purple outline is the planner’s local bounding box which limits the reach of the
graph built[1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Visualization of a TSDF where each cell stores the projecting distance from the
sensor to the surface[52] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Visualization of an ESDF where each cell stores the true Euclidean distance to the
surface[52] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Comparison of the visualization of the Gazebo Simulation(a), and the percepted
map created by VoxBlox (b). The MAV in (a) is indicated by the large red, green
and blue axes in the centre of (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

v



5 Proposed architecture of an RTS-inspired AI-system for control of large robotic
teams. Retrieved from the author’s project report in TTK4550 as preliminary re-
search to this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 The queue-based system architecture. Green boxes indicate that the functionality
they provide was developed in this thesis, while yellow indicates largely pre-made
modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 The full architecture of the developed multi-agent planner system. . . . . . . . . . 18

8 The behavior of the implemented planner. . . . . . . . . . . . . . . . . . . . . . . . 21

9 Text-based feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

10 The rviz main window showing a robot and its current path in a narrow environment.
The moving unit is shown inside the path in the bottom right, while an idle unit
can be seen in the top right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

11 The minimap showing unit positions, squares, and their targets, crosses. Each color
corresponds to a unit/target pair. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

12 The two environments used for planner testing visualized in Gazebo. The open
environment is shown in (a), while the narrow environment is shown in (b). . . . 27

13 (a) Shows the evolution of NV when expanding the graph over 15 planner iterations,
while (b) shows the evolution of NE . . . . . . . . . . . . . . . . . . . . . . . . . . 28

14 The planning problem for performance testing in an open environment. White
frames symbolize the target areas, while the blue frame encloses the starting area
of the units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

15 An instance of teamed exploration in a narrow subterranean environment. Frame
1 shows the initialized robot team and VoxBlox occupancy map in the main rviz
window, and the minimap depicts obstacles and robot positions. Frame 2 shows
robot 2 after two iterations. Robot 2 has a yellow color code, and the current path
of the robot is shown as the yellow line. The yellow points are rejected samples,
while the green points are accepted samples. Frame 3 shows the top-down view of a
semi-explored environment in the rviz main window after 3-4 planning iterations per
robot. Representations of the executed paths are drawn in the robot color codes,
with numbered circles representing the orders each robot received. Frame 4 depicts
the minimap at the same timestamp as frame 3, providing a simplistic view of the
whole environment and clearly showing the robots’ positions. A demonstration of a
teamed exploration mission similar to the one depicted in this figure can be found
at https://youtu.be/cdr3fuIi5d0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

List of Tables

1 Complexity of the RRG and RRT* algorithms, where n is the number of vertices in
the tree or graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Performance of the planner with a varying number of vertices NV and outgoing
edges per vertex NEO in the graph in an open environment . . . . . . . . . . . . . 31

3 Planner performance in an open environment with NV = 50 and doubled rT . . . . 31

4 Standard deviation of planner performance with a varying number of vertices NV

and outgoing edges per vertex NEO in the graph in an open environment . . . . . 32

5 Performance of the planner with varying number of vertices NV in tree. Ni denotes
the number of iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vi

https://youtu.be/cdr3fuIi5d0


6 Standard deviation of planner performance with a varying number of vertices NV

and outgoing edges per vertex NEO in the graph in a narrow environment . . . . . 34

7 Average latency time tL and standard deviation σtL of the planner when operating
in an open environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Average latency time tL and standard deviation σtL of the planner when operating
in a narrow environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vii



1 Introduction

1.1 Background

Research on the autonomous control of robots plays a large part in today’s industrial and scientific
community. The advances made have made it possible for industrial companies and other institu-
tions to employ state-of-the-art techniques and methods to utilize robots for challenging tasks such
as fault detection, manual operations, and surveillance[4][5][6]. The majority of methods applied
in today’s society revolve around autonomous control of a single unit or small-scale multi-agent
systems often surveyed by a human operator[7][8]. While some algorithms and software exist,
not much work has been done to develop techniques for large-scale multi-agent control in applied
robotics. A reason for this lack of research could be that it is currently not practically viable nor
a pressing issue to be able to control hundreds of units collaboratively. This thesis aims to explore
the topic of multi-agent control to see which existing methods and algorithms could be used to
make a practically viable multi-agent control system.

A motivation for this project was to explore if some techniques or principles used in real-time
strategy (RTS) games could be applied to controlling large groups of robots in a realistic simulated
environment. RTS games have ways of managing large numbers of robots at once, each with a
specific role and goal, but not all of which are essential for the overall mission to be successful[9].
This type of redundancy in units and abilities could be valuable in real-world situations, such as
disaster response or urban search-and-rescue missions, where mission completion is crucial. These
use cases present a situation where the robots operate in unknown environments and must explore
and search without initially observing the complete operation space. Multi-agent teams can consist
of units with different capabilities and could therefore be used for a broader range of tasks than
a single robot. Additionally, multiple tasks can be assigned to a team, with the units or a unit
manager dividing the tasks among them.

In the preliminary project of this thesis completed in the course TTK4550, it was found that real-
life robotic control and RTS games have some fundamental differences in the lowest unit control and
management level. When the environment is initially unknown, a robot must possess an advanced
motion planning system and a mapping and localization method to function autonomously[1].
These requirements are not present in the case of RTS games as the environment is fully observable,
so accordingly, the techniques used for motion planning, mapping, and localization must stem
from the world of robotics. RTS games can still offer inspiration for solving higher-level unit
management, such as order distribution and choosing the subsequent actions, and providing a
good user experience for the operator. Unit control in RTS games and robotics are highly similar
on a superficial level, especially in visualizing the problem for a player or operator. Therefore,
this thesis will explore existing techniques and methods for problem visualization in RTS games
to emulate this in the proposed multi-agent path planning system.

This project will explore existing multi-agent robotic control methods and investigate how these
can be used in an RTS-like architecture for large-scale robotic teams. The specific use case that will
be investigated is the exploration of unknown environments and how to achieve intuitive robotic
fleet control by employing principles from RTS games.

1.2 Master thesis goals

This thesis aims to further the research done in the author’s project thesis on RTS game-like control
on large robotic teams. The main focus of this report is to present a multi-agent path planner
based on random-sampling algorithms that provide an intuitive way for operators to control robotic
fleets. The planner design will draw inspiration from principles from large-scale unit control in RTS
games, as well as existing methods in multi-agent robotic control. The planner should be tested
in diverse operating spaces to ensure environment agnosticism and showcase the configuration
difference needed to operate in distinct environments. The proposed planner will be designed to
fit into an RTS-like system architecture.
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Some desired properties set for the resulting method are that it should be intuitive to control
for human operators and possess the possibility to scale the controlled fleets. These criteria stem
from the world of RTS games, where human players control hundreds of units simultaneously.
The planning method developed should provide quick, anytime solutions as RTS games and real
environments have strict real-time constraints in their planners as changes in the environment
can frequently happen during the planning phase. The robustness of the planner should not be
compromised by increasing planner speed to such an extent that the paths returned result in
collisions. The planner should take heed of static and known dynamic obstacles in the form of
other units controlled by the same planner. The simulated environments used in this thesis will
be completely static, with the exception of the controlled units. Therefore, local reactive collision
avoidance of unknown dynamic obstacles and path recovery is assumed to limit the thesis scope.

A stable network connection between the units and the planning system is assumed throughout this
thesis to allow for uninterrupted communication. This is a simplification of the planning problem,
as network disruptions may occur in real-life operations. This assumption lowers the needed
autonomy in each unit, only requiring them to have a robust motion controller to command the
robots to a given waypoint. This assumption is reasonable as this project primarily focuses on
software and will obtain all simulation results. The multi-agent path planner is meant to fit into a
larger RTS-like architecture where stable communication is required for operation and information
passing.

This thesis aims to incorporate principles from the field of Human-Computer Interaction(HCI) in
planner development to deliver an intuitive RTS-like experience. Providing an intuitive experience
for operators implies good visualization of the environment and robot positions and simple control
of the robot’s goals. This goal will be achieved by developing a global minimap that gives the oper-
ator a simplistic view of the environments and the agents, as well as utilizing existing visualization
tools to give more detailed information about the agents’ current mission.

The scope of this thesis is to create a robust and quick multi-agent motion planner to work in
conjunction with the existing VoxBlox[10] mapping framework. The planner will be designed to fit
inside a more extensive RTS-like architecture and will be developed to possess the ability to operate
with limited knowledge about the environment a priori. The secondary goal is for the planner to
deliver a satisfactory user experience based on principles from HCI and gaming. Related work in
the fields of robotics and RTS games will be examined to determine the methods suitable for use
in the control of large-scale robotic teams.

1.3 Contributions

This thesis continues the work of bridging the gap between RTS game methods and robotic control
by presenting a proof-of-concept method for the control of large-scale robotic teams with sizes of
up to ten units, which still delivers fast planning. The idea is that the developed planner combined
with a reasonable and robust cohesive leader-follower procedure, such as clearance corridoring[11],
could provide great scalability to control teams for up to hundreds of units. This approach divides
large fleets of robots into multi-agent units to plan for several robots as if they were one. At the
same time, the leader-follower procedure ensures cohesive movement inside each unit. This thesis’
main contributions are

• A functioning asynchronous multi-agent path planner for control of teams for medium-sized
teams demonstrating robust and quick planning in both obstacle-heavy and open envir-
onments. The planner possesses static collision avoidance and conflict detection between
paths to avoid collision between units. The planner is based on a rapidly-exploring random
graph algorithm and contains elements from a probabilistic roadmap method to enable mul-
tiple queries on the same graph and provide effective search in non-convex high-dimensional
spaces.

• Tools for enhancing user experience based on principles in HCI and RTS games. The tools
include a global minimap and configurations of existing visualization packages in the Robot
Operating System(ROS) framework[3].

2



1.4 Related work

A lot of progress has been made in the field of autonomous control of robots over the last decades,
both in academics and industry. In contemporary industry, robots are often tasked with complet-
ing dirty, dangerous, or dull tasks, but the scopes may increase as technology advances[12]. The
demand for large-scale multi-agent control of robots as a fleet may arise to handle the increased
scopes of tasks robots could carry out on their own and to increase their task completion effect-
iveness. To determine which methods from the world of RTS may be viable for use in real-life
robotics, they need to be investigated and compared to their current counterparts in robotics.

1.4.1 Multi-agent path planning

The path planning problem posed by RTS games is, as mentioned, substantially simpler when
compared to real-life robotics. Common path planners used in gaming are BVP[13] or Monte Carlo
algorithms[14], to name a few, which all are based on planning in fully observable environments
that are pre-discretized to cells for path generation and collision checking. As this thesis proposes a
multi-agent path planner meant to function in environments where the operating space is unknown
a priori, the space needs to be discretized online by a sophisticated mapping module that bridges
the gap between continuous actuation control and planning[15]. Due to these key differences,
the multi-agent path planner will primarily be based on existing work and methods from real-life
robotics.

As stated by Kolushev and Bogdanov in [16], it is logical to divide the problem of path planning
for multi-agent robotic systems into two sub-problems. The first is path planning and optimization
for each robot with static collision avoidance and consideration of other units’ movement. This
subproblem could be handled by a decentralized planning algorithm such as the one proposed in
[17]. The algorithm is based on a random sampling algorithm called Closed Loop Rapidly-exploring
Random Tree* (CL-RRT*) explained in[18]. A decentralized approach means that each unit has
a high degree of autonomy as it plans its own local path for execution without necessarily com-
municating with the other units in the system. This approach is typical for large-scale robotic
teams as the scalability for the local planners is linear with the number of agents. This approach
poses a challenge of reaching global feasibility when units have intersecting areas of operations or
need to cooperate. Consensus-based approaches require agents to exchange information on each
agent’s state to reach a global consensus on path choice. This exchange reduces the scalability as
each agent needs to review a proposed path for approval, which increases complexity and latency
in the planning, but has shown potential when operating in sparse environments where planning
is infrequently required. Another approach is to assign a priority to each agent and order the
paths by sequential planning following the priorities[19][20]. The sequential planning approach
used in distributed computer systems may suffer from busy units blocking idle units from task
execution which limits the performance of the system[21]. This approach also assumes uninter-
rupted communication between units which may not be the case in real-life environments. The
D* Lite Multi-Agent path planner proposed in [22] is a decentralized planner where robot paths
are modeled as temporal obstacles where paths are optimized for time. The star(*) class of al-
gorithms[23] are search algorithms that require a pre-existing graph or grid representation of the
environment.

The counterpart of decentralized planners is to have a centralized algorithm where a type of
supervision algorithm plans keeps track of all agent states and subsequently plans paths for them.
This planning manager gathers information about the environment collected from the sensors
onboard all units, as well as the unit’s current motion. The Coordinated Multi-Robot Exploration
Aquila Optimaizer(CME-AO) proposed in [24] is a centralized multi-agent path planner based
on the Aquila optimization algorithm and combines collision-free path planning with a swarming
method. This method is designed for operating in unexplored environments and plans paths
by discretizing the environment in cells. A variant of a planning manager may also be used in
a decentralized algorithm, where it is only used as a synchronization platform for environment
and agent information. In contrast, the planning is done individually by the robots. Utilizing a
planning manager for path-finding tends to increase the complexity of the planning problem due to
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the increased dimensionality of solving paths for several agents simultaneously. This approach uses
synchronized planning where all paths are returned simultaneously. Alternatively, a queue-based
system may be used to decrease the complexity by dividing the multi-agent path planning problem
into sequential single-agent problems. These approaches are prone to the same performance issues
due to blocking as decentralized sequential algorithms due to the fixed queue order.

A requirement for robotic teams operating in unknown or partially explored environments is a
functional online map-building module that discretizes the environment as it is explored for collision
checking during planning. This functionality is crucial for enabling the usage of robots to explore
areas otherwise inaccessible or too dangerous for humans. The Defense Advanced Research Projects
Agency(DARPA) Subterranean Challenge is a prime example of an initiative to accelerate scientific
progress in this area, as the challenge was aimed at encouraging universities and companies to
create autonomous systems capable of navigating unmapped subterranean environments[2]. The
winning entry was called GBplanner. It utilized graph-based path planners, including a local and
global planner, which were based on the Rapidly-exploring Random Graph(RRG)-algorithm[1].
The mapping module used in GBplanner, which is based on Signed Distance Fields, will be used
in this thesis and further explained in section 3.3.1. The competition also featured other path
planning algorithms, such as a variant of the A* algorithm, known as hybrid-state A* [25].

1.4.2 Collision avoidance

The second sub-problem for multi-agent path planning mentioned by Kolushev and Bogdanov
in [16] is local reactive collision avoidance of unforeseen obstacles along with path recovery. This
feature is required for systems where the units operate in dynamic and unpredictable environments
with potentially moving obstacles unknown to the planner a priori. Local collision avoidance
in robotics can be divided into two categories. Avoiding dynamic uncontrollable obstacles and
avoiding teammates controlled by the same planner moving along the same path are two separate
problems requiring their own solutions. Global collision avoidance of static objects and known
teammates moving to other target regions could be handled by a global path planner. A local
collision avoidance module can also handle avoiding teammates that are not part of the same
swarm.

Controlling a large team of robots as a cohesive swarm while not colliding with other swarms
is called segregative behavior. Popular methods for achieving swarm control are often based on
Reynolds Boid -model[26]. The Boid model aims to imitate natural flocks of birds when controlling
the swarm to achieve cohesive movement toward the target area while avoiding collisions between
units in the swarm. Boid is based on the social potential field method, which can suffer from
oscillations and local optima when operating in unexplored environments[27]. Collision avoidance
in potential field methods assumes that the approaching obstacle does not have its own collision
avoidance method, which can create problems when encountering non-cooperative units employed
by a different planner. Velocity obstacle-based collision avoidance, such as the Reciprocal Velocity
Obstacle(RVO) method[28], is an approach that assumes that the encountered unit employs the
same decision process leading to a wait-and-see-like behavior that provides slow, but stable obstacle
passing. Santos et al. propose a hierarchical collision avoidance module that combines velocity
obstacles and flocking by abstracting encountered swarms as a single unit to achieve segregated
behaviour[27]. This method is unfortunately also prone to the same problems as other velocity
obstacle-based methods, such as RVO, as it often acts too conservatively by prioritizing lower
speeds to achieve collision avoidance. Cohesive motion between units can also lead to a possibility
of abstracting the controlled unit as a single unit to drastically reduce global planning requirements,
such as the method described in [11].

Local reactive collision avoidance is not required in RTS games, as the entire state space and
its obstacles are always known a priori when planning for collision-free paths. However, some
RTS games employ versions of flocking algorithms based on the Boid model to achieve cohesive
movement that feels realistic[29]. Global collision avoidance in RTS games is often solved by
combining simple search algorithms, such as A*[30], with potential field algorithms. An example
of this is used in the well-known StarCrafts-series[31]. As the static basic A* algorithm is unable
to deliver satisfactory multi-agent path planning due to the strict real-time constraints of RTS
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games, potential field algorithms are used to repel units away from obstacles as they move along
the path generated by A*. Potential field methods are prone to reaching local optima, but a way
to handle this is to introduce repelling fields along the executed path as the unit passes[31].

1.4.3 User Experience

One of this thesis’ sub-goals is that the proposed planner should deliver some degree of RTS-like
user experience. Achieving this requires an overview of existing principles for human interfacing
used in RTS games to tie the relevant parts into a real-life robotic system. Wenjun and Xiudong
present a hierarchical semantic differential model to categorize elements of HCI and Enjoyment
Quality(EQ) for different groups of systems in [32]. An industrial system for controlling robotic
teams would often fall into the key system where the chief design goal is utility to ensure quick
and errorless operation if mission completion is paramount. Designs with utility in focus are often
minimalistic to ensure non-cluttered information for operators to interpret but often require long
training times. The user interfaces of RTS games deal with how to efficiently organize relevant
information and intuitive control mechanics for the units. As stated in [33], a clear presentation of
player goals with concise feedback to provide a helpful learning experience is critical to achieving
effective game design. An important design decision when designing games in general, including
RTS games, is to categorize which information is necessary for a player to complete a mission[34].
This recommendation translates easily to the world of robotics, where mission failure often has
worse consequences than in games, and filtering out information that may only confuse an operator
is essential for achieving the best possible design.

HCI is also an important topic of discussion and research in the robotics industry, where a subset
of HCI called Human-Robot interaction(HRI) often is the main topic. Yanco and Drury [35] offers
an overview of the taxonomies of HRI with a perspective from the field of HCI. The taxonomy can
work as a guideline for system design, as it presents the needs different systems may require. An
assembly robot frequently needing hardware maintenance demands vastly different design decisions
than a distributed multi-robot system used for exploration or surveillance. The latter needs an
interface similar to a game-oriented user interface from the HCI domain, as the direct human-to-
robot contact is on a superficial level, such as action control or monitoring. Other system features
that should impact system design on a user experience level are the autonomy level of the units,
the people-to-robot ratio, and team size[35]. An example of an implemented and tested system
in the HRI field is the ROS-based TurtleUI[36], which is a generic Graphical User Interface(GUI)
for robot control. TurtleUI bases its implementation on well-known principles from HCI, such as
minimizing screen pollution, while also aiming its design toward software developers who can use
the GUI for easier error identification and localization.

1.5 Thesis structure

This thesis is organized as follows. The first chapter contained some background and motivation
for the thesis, a literature review of the current standings in multi-agent control and collision
avoidance in both robotics and RTS games, and a presentation of some principles and approaches
from HCI and HRI. Section 2 contains relevant theory and concepts used in the rest of the thesis.
Software frameworks and tools are presented in section 3, along with a detailed explanation of the
developed planner. The implemented tools to enhance user experience are described in section 3.
Section 4 presents results from simulating and tuning the multi-agent path planner, along with
some insights on how the tuning affects user experience. Section 5 concludes the report and
provides some thought on further work that could be done concerning the themes explored in this
thesis. The code written for this thesis is enclosed with the report in the delivery of this thesis.
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2 Theory

In this section, the general problem formulation for path planning is recounted before the relevant
theory used to develop the multi-agent path planner is presented. Additionally, the techniques
behind the mapping framework are described. As this master’s thesis is based on the work done
by the author in the specialization project course TTK4550, large parts of the theoretical material
are the same. Parts of this chapter are hence the same as in the preliminary project thesis.

2.1 Path and Motion Planning

Although methods used for path and motion planning in RTS games could be viable for use in
robotics, this project utilizes a method from the world of robotics as these have been tried, tested,
and proven robust for real-life use[37] [38]. As described in [38], the robotic motion planning
problem can be stated as finding a sequence of control inputs to make the robot move from its
initial state to one of the goal states while not colliding with the environment or other obstacles. As
described in section 3.2, the interface between planning and controller allows for simply providing
a waypoint in the form of a pose, described in eq. (2), to make the robot move to said waypoint.
The algorithm described in this part is thus a path planner whose task is to decide the series of
waypoints to describe a path from the start position to the goal region. Ideally, the algorithm used
to solve the path-planning problem should be complete and optimal.

2.1.1 Problem formulation

The path planning problem is formalized in [38] and will be recounted in this section. Let χ = (0, 1)d

be the full configuration space, i.e. full operating environment, where d ∈ N, d ≥ 2. χobs is the
obstacle region such that the closure of the set χ\χobs is the closed set of obstacle-free space χfree.
xinit is the initial condition and is an element of χfree. χgoal is the goal region and is the open
subset of χfree. The triplet (χfree, xinit, χgoal) defines the path planning problem. The function
σ is defined as σ : [0, 1]→ Rd, the total variation of σ TV(σ) can be defined as

TV(σ) =

n∑
i=1

|σ(τi)− σ(τi−1)|

n∈N,0=τ0<τ1<···<τn=1

(1)

If TV(σ) <∞, then the σ can be said to have bounded variation and can be called a path if it is
continuous. A path is collision-free if σ(τ) ∈ χfree for all τ ∈ [0, 1]. A collision-free path is feasible
if σ(0) = xinit and σ(1) ∈ cl(χgoal). The task of the path-planning algorithm is to return the path
σ(τ) if the path is feasible, and failure if not.

2.1.2 Algorithms

The planning algorithm developed in this thesis is based on two existing well-known planning al-
gorithms combined into one algorithm to keep some desired properties from both. This chapter will
include theoretical background on why these algorithms were chosen and some comparisons with
other approaches. The algorithms are a Probabilistic Roadmap(PRM)-algorithm and the Rapidly-
exploring Random Graph(RRG)-algorithm. RRG differs from PRM in that it incrementally builds
a single connected roadmap, while PRM may produce a forest-structured roadmap with discon-
nected segments. The single-unit planner proposed in the author’s preliminary project report from
TTK4550 used the related algorithm RRT* proposed first in [39] as its main planning algorithm.
RRT*, although faster and more memory-efficient than RRG[38], produces a tree structure for
motion planning instead of a graph, which is not convenient for multi-agent planning as a tree only
has one root, corresponding to a single robot starting position, for finding the shortest path.
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2.1.3 Multi-Agent path planning

The classical path planning problem presented in section 2.1.1 can be extended to a multi-agent
path planning problem by having a triplet (χfree,i, xinit,i, χgoal,i) for each unit i. The initial
conditions xinit and goal regions χgoal must be different for each unit, while the obstacle-free space
χfree may be the same in a coupled planning algorithm, such as the one developed in this thesis.
A coupled planning algorithm is an algorithm that aggregates all individual units into one system
and solves the planning problem by applying single-unit planning algorithms[20].

A popular measure of solution quality is the sum of time each agent spends outside their goal areas.
This measure is used in the MA-RRT*, which takes in an n-tuple of starting waypoints (s1, . . . , sn)
and goal waypoints (d1, . . . , dn), where (si, di) denotes the starting waypoint and goal waypoint
of unit i[40]. The algorithm returns a set of paths pi for each robot i where start(pi) = si and
end(pi) = di. The paths returned must be separated to avoid collisions, that is, ∀j, k, t : j ̸= k ⇒
dist(pi[t], pj [t]) > dsep where dsep being some arbitrary separation distance usually in relation to
robot size.

The methods for solving the classical multi-agent planning problem, such as the MA-RRT*, return
paths for all units simultaneously, which is different from the approach developed in this thesis.
Path planning in user-controlled RTS games gets orders one at a time. Hence the approach used in
this thesis is an asynchronous queue-based multi-agent planner. This choice means that the actual
path planner need not solve a multi-agent planning problem but rather be able to solve a sequence
of single-agent planning problems quickly.

2.1.4 Completeness

One of the desired properties of a planning algorithm is completeness. If, and only if, an algorithm
returns a solution in finite time if it exists for a specified input, the algorithm is said to be com-
plete. Otherwise, it should return failure [41]. Complete planning algorithms have high complexity
resulting in high computational costs when dealing with complex environments, thus making them
unsuitable for most practical uses. Therefore, the completeness requirement must be relaxed to
find a suitable planning algorithm. As described in [38], relaxing the constraint only to require
resolution completeness works for explicit representations of environments up to five dimensions.
The planning problem in this thesis is far too complex for these types of representations. Hence
the algorithms need to rely on implicit representations of the configuration space. Sampling-based
algorithms omit the use of explicit environment representation by utilizing a collision-checking
module to determine the feasibility of robot configurations in the configuration space[42]. PRM
and G-RRT* are sampling-based algorithms that fulfill a relaxed completeness requirement called
probabilistic completeness. Algorithms are said to be probabilistic complete if and only if the prob-
ability of failure if there exists a solution approaches zero as the number of sampled configurations
approaches infinity. PRM and RRG-based algorithms have a probability of failure that decays
exponentially with respect to the number of points sampled[43][44].

2.1.5 Optimality

An optimal motion planning algorithm returns the lowest cost path from a starting configuration
to a given goal region with respect to some measure, such as distance traveled, time used, or
energy consumed. Distance traveled will be used in this project as this is not dependent on dif-
ferences in units’ energy consumption or velocity constraints. Although producing optimal paths
has been proven to be very computationally expensive and challenging even in basic cases[45],
there are methods for approaching optimality. As mentioned in [46], RRG is asymptotically op-
timal, meaning that it will, in most cases, produce a reasonably good path without excessive
computational cost[38]. A modification to increase the connection radius from γRRT∗( lognn )1/d to

γRRT∗( lognn )1/(d+1) to properly consider the added time-dimension that decides the ordering of the
randomly sampled points is suggested by [47]. The proof in [46] shows that the total distance cost
of the path returned by RRT* converges to a robust optimum as the number of samples approaches
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infinity.

2.1.6 Anytime algorithms

Another desired trait of a planning algorithm functioning in real-time systems is that it is an
anytime algorithm. As stated in [37], an anytime motion planning algorithm should have some form
of completeness guarantee as well as asymptotic optimality, both of which are qualities possessed
by RRG[38]. Additionally, anytime algorithms should overlap execution and computation in time,
meaning that they should possess the ability to improve the current plan while executing parts of
it. The anytime trait is desirable because a robot usually spends more time executing a plan than
finding the plan. This effect leaves time for online computation on the unit while it is moving,
again decreasing the total time used to solve and execute the planning problem.

2.1.7 Multi-query

As discussed, the RRG algorithm has several desirable qualities for a planner, but it is a single-
query planner. Single-query means that RRG will erase the graph between planning iterations and
start entirely anew when a new goal destination is given to the planner. The graph-building phase
is the most time-consuming in random sampling algorithms, and to allow for greater scalability, a
multi-query algorithm is desired. Multi-query algorithms keep the graph intact between planner
queries allowing for quick look-ups to check if a feasible path already exists and can be returned
immediately. This feature increases the scalability of the queue-based planner because it frees up
computation time for the algorithm when similar queries arrive rather than rebuilding graphs in
the same space for different units. PRM algorithms can easily be multi-query and hence will be
used in the design of the path planner developed in this project[48].

2.1.8 PRM

PRM[48] is a class of sampling-based algorithms that, unlike RRT-based algorithms, does not
erase the built graph or tree between queries, thus possessing the multi-query trait. The basic
PRM algorithm described in [48] is reproduced in algorithm 1, and the primitive procedures and
variables it uses are listed below.

• R is the roadmap consisting of vertices R.V and edges R.E. Vertices are configurations in
the obstacle-free space that are part of the roadmap, while edges are free paths between two
vertices noted by (v1, v2) where v1 and v2 are vertices.

• SampleConf returns a configuration q sampled uniformly from the configuration space at
random.

• FreePath(q1, q2) is a function that returns true if and only configurations q1 and q2 can be
connected with a straight line in the obstacle-free space.

• FreeConf (q) returns true if and only if the configuration q is in the obstacle-free space.

• Vertices(R) returns the number of vertices in the roadmap R.

• N is a tuning parameter deciding how many vertices the roadmap maximum should contain.

8



Algorithm 1 PRM(q1, q2, N)

1: if FreePath(q1, q2) then
2: return Path between q1 and q2
3: end if
4: R.V ← q1, q2
5: repeat
6: qnew ← SampleConf
7: if FreeConf(qnew) then
8: R.V ← R.V ∪ {qnew}
9: end if

10: for each Node v ∈ R.V such that v ̸= qnew do
11: if FreePath(qnew, v) then
12: R.E ← R.E ∪ (qnew, v)
13: end if
14: end for
15: until q1 and q2 are in the same connected component of R ∪Vertices(R) > N + 1
16: if FreePath(q1, q2) then
17: return Path between q1 and q2
18: else
19: return Failure
20: end if

The basic PRM algorithm in algorithm 1 builds a roadmap of vertices and edges to find a way from
q1 to q2 in the obstacle-free configuration space. In this version, the algorithm terminates when q1
and q2 are connected in the roadmap, but this is not required for using PRM. If multiple queries
are expected, one could run the building phase for a set amount of time or until a set amount
of configurations is connected to create a roadmap with good coverage over the configuration
space. Good coverage means that the planner has a higher chance of returning queried paths
between configurations in the free space without the need to sample more points. A requirement
for achieving good coverage with this tactic is that the total state space is known, which is different
in this thesis. Graph building is also the most time-consuming part of random-sampling algorithms,
making this approach a poor choice for situations with real-time constraints. Another approach
is a node enhancement procedure that steps in if the current roadmap is insufficient. The most
straightforward node enhancement procedure is seen in the main loop of algorithm 1, where the
algorithm keeps adding new samples to the roadmap to increase connectivity until the path is
found. This enhancement procedure can be modified to more efficiently explore narrow passages,
focus near the unit, or concentrate on sparse areas in the roadmap[49].

2.1.9 RRG

This project’s main motion planning algorithm will be the RRG algorithm first proposed by Kara-
man and Frazzoli in [39]. The algorithm was a proposed improvement of the existing RRT al-
gorithm, which is not asymptotically optimal. The algorithm’s task is to incrementally build a
traversable undirected graph from unit positions towards the goal region given. The basic RRG al-
gorithm presented in [39] is shown in algorithm 2, with primitive procedures used by the algorithm
listed below. RRG takes an initial unit position xinit and a maximum number of samples N as
input.

• Samplei returns a sampled point xi ∈ R from the obstacle-free space χfree = cl(χ \ {χobs}).
Where cl(·) denotes the closure of a set, χ is the full configuration space, χobs is the obstacle
region.

• Given a graph G = (V,E), where the vertices V ⊂ χ, and a random-sampled point x ∈ R
from χfree, Nearest returns the closest vertex in V in terms of euclidean distance.
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• Given two 3D-points x, y ∈ χ, Steer returns a new 3D-point z ∈ χ such that ∥z − y∥ is
minimized while ∥z − x∥ ≤ µ is still true for a distance µ > 0. In the context of RRG
this function moves the sampled point closer to the closest existing vertex along the line of
direction between the two points. This function only does something if the sampled point
is outside the sphere created with the point returned by Nearest as centre, and µ or the
connection radius proposed in [47] as radius.

• ObstacleFree returns true if the line segment between two given 3D points in χ lies completely
in χfree and false otherwise.

• Near returns the vertices in a given graph G = (V,E) that lies inside a sphere defined by the
given radius r ∈ R > 0 and centre x ∈ R3. This function uses the connection radius proposed
by [44]; r = γRRT∗( lognn )1/(d+1).

• Cost(x) returns the accumulated cost of the distance to travel along the graph G = (V,E)
from the source vertex xinit to the input vertex x.

• Card(V ) returns the number of vertices in the set V .

Algorithm 2 RRG

1: V ← {xinit};E ← ∅; i← 0
2: while i < N do
3: G← (V,E)
4: xrand ← Sample(i); i← i+ 1
5: xnearest ← Nearest(G = (V,E), xrand)
6: xnew ← Steer(xnearest, xrand)
7: if ObstacleFree(xnearest, xnew) then
8: Xnear ← Near(G = (V,E), xnew, min{γRRT∗(log(card(V ))/card(V ))1/(d+1), µ}))
9: V ← V ∪ {xnew}

10: E ← E ∪ {(xnearest, xnew), (xnew, xnearest)}
11: for each xnear ∈ Xnear do
12: if CollisionFree(xnear, xnew) then
13: E ← E ∪ {(xnear, xnew), (xnew, xnear)}
14: end if
15: end for
16: end if
17: end while
18: return G = (V,E)

The RRG expands a graph aimlessly in a configuration space, being able to deliver a path to a
region if, and only if, a point in that region has been sampled. The graph grows denser with the
number of samples, thus providing both asymptotic optimality and the probabilistic completeness
of offering a solution given sufficient time to sample points. When RRG has built its graph, a
target can be searched for by traditional shortest-path algorithms for graphs, such as Dijkstra’s
algorithm[50]. The space and time complexities of PRM and RRG are shown in table 1. Although
PRM offers a better space complexity than RRG, this is at the cost of asymptotic optimality[38],
hence why RRG is used as the core of the planner implemented in this thesis. An example of
a graph created by RRG with a single robot operating in a narrow corridor is shown in fig. 1.
Figure 1 is retrieved from the GBplanner paper[1].
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Algorithm Processing time complexity Query time complexity Memory complexity
RRG O(n logn) O(n logn) O(n logn)
PRM O(n logn) O(n logn) O(n)

Table 1: Complexity of the RRG and RRT* algorithms, where n is the number of vertices in the
tree or graph

Figure 1: An example of a local graph built by an implemented version of RRG in a narrow
corridor. The vertices are marked as orange circles, while an arbitrary path found in the graph is
marked as a green dotted line. The blue triangle is a robot, and the purple outline is the planner’s
local bounding box which limits the reach of the graph built[1].

2.2 Mapping

As the mapping method used in this thesis is identical to the method used in the author’s spe-
cialization project in TTK4550, the following section is retrieved from the project report. The
environments used in this project are high-dimensional spaces with a large number of obstacles,
and describing them explicitly results in a high computational cost to create a solution[38]. This
is not viable considering that the solution paths have to arrive fast to ensure effective planning,
especially when the goal is to achieve an effective planner for the control of large robotic teams.
Therefore the mapping method used in this project describes the obstacles implicitly. Occu-
pancy maps have been a popular method for describing obstacles for robotic motion planning, but
Oleynikova et. al. proposed a method combining Truncated Signed Distance Fields(TSDF) and
Euclidean Signed Distance Fields(ESDF)[42]. This method was later implemented by Oleynikova
et. al. as an open-source C++ module called VoxBlox which is described later in section 3.3.1[10].

Signed Distance Functions(SDF) are methods of measuring how close a given point is to a border of
a metric space[51]. By dividing the volume to be mapped into voxels, i.e., volumetric pixels, SDFs
are a valuable tool for perceiving and mapping the environment with its obstacles and collision
checking for path planning. ESDF and TSDF both use SDFs but in slightly different ways. In
both, a voxel with a positive distance value signals that the voxel is in free space, while a negative
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value signals that the voxel is occupied. Surface detection is done by detecting zero-crossings,
while points in unknown space are not given a distance value. TSDF is a representation most
commonly used for the perception side of mapping due to its high precision of surface detection
and accurate modeling of the error of depth estimates. The distance stored in each voxel in TSDF
is calculated by finding the distance between the center of a given voxel and the closest surface
along the ray direction from the sensor’s viewpoint. Figure 2 shows a TSDF where the black line
symbolizes an object surface. The values are also truncated to only exist near surfaces which makes
for a low space complexity[42]. In ESDFs, the distance is calculated as the Euclidean distance to
the nearest occupied voxel. A visualization of an ESDF is shown in Figure 3 where the black
line represents a surface. ESDF-based methods allow for fast collision checking, which makes them
useful for path-planning and optimization[42]. Figure 2 and Figure 3 are retrieved from Oleynikova
et. al.[52].

The method proposed in [42] combines ESDF and TSDF and results in a single map representation
suitable for online construction and planning. New sensor scans are converted to a TSDF repres-
ented by calculated projective distances inside some truncated distance close to the surface. The
ESDF distances are then found for all other voxels in the explored volume by iteratively computing
the euclidean distances based on the projected distances inside the truncated zone. The method
also allows for dynamically growing of the map by voxel-hashing, as it is not required to know
the maximum map size beforehand[10]. Voxel-hashing is particularly useful when exploring fully
unknown environments, as is assumed in this project.

Figure 2: Visualization of a TSDF where each cell
stores the projecting distance from the sensor to
the surface[52]

Figure 3: Visualization of an ESDF where each
cell stores the true Euclidean distance to the sur-
face[52]
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3 Implementation and method

This chapter contains a description of existing packages and frameworks used in the implementation
of the queue-based path planner. A thorough explanation of the planner’s behavior and reasons
behind design choices will conclude this chapter.

3.1 Simulation environment and software development

This project was created using the Robot Operating System (ROS), an open-source framework
for robotics software development. It is written in C++, as most of the libraries and packages
used in the planner are also in C++. The Gazebo v.11.9.0 simulator was used to test the project
and is compatible with the used ROS version (ROS Noetic). The ROS visualization tool, Rviz,
was used to view the robot’s perception of the environment, including frames, sensor data, and
algorithms[53]. A visualization package developed in conjunction with GBplanner was also used
to display the VoxBlox map and other planner elements in rviz. The environments used to test
the planner are a narrow labyrinth-like environment, as well as an open canyon-like environment
which is further described in section 4.

3.1.1 Robot Operating System

ROS is a framework that enables the development of robotic systems to centralize the majority
of their functionality. This framework provides the services that one would expect from a full
operating system, including but not limited to low-level control, real-time message passing between
processes, and software package management[3]. In this report, certain terms will be introduced and
their definitions provided. Further information on ROS can be found on the ROS documentation
website[54].

• Nodes are executable programs that communicate with other nodes using ROS. In this
project, the nodes include the controller and the planner.

• Messages data structures passed between nodes for communicating. Their structure is
defined by text files with the suffix .msg.

• Topics are buses where messages are sent and can be read. They are defined by a name in
string format. Nodes can publish or subscribe to a topic to respectively send on and read
from the topics. An example of a topic used is the odometry topic used for publishing the
estimated pose of the robot at a given interval.

• Services and service clients form the basis for ROSs’ request/reply communication paradigm.
Text files with the suffix .srv define the data structure of a request and the subsequent reply.
Nodes can advertise a service and have a client that calls a service from another node. The
main planner service is called with a target pose, and the planner then replies with the
solution path if it was able to find one - failure otherwise.

3.2 Robot model and controller

The motion planner developed in this thesis is designed to work with any position controller that
takes a 3D point and orientation in free space as input and moves the robot to that location. The
specific robot used in testing is the Cerberus M100: Medium UAV, a medium-sized unmanned
aerial vehicle that utilizes a sensor fusion that combines 3D medium-range LiDAR, visual camera,
and inertial measurements system to perceive its environment and determine its position[1]. The
M100 is treated as a black box in this project and is accessed through a planner-motion interface
module[55]. The M100 model used in simulations was obtained from the rotorS Gazebo library[56].
For collision checking purposes, the robot is modeled as a 3D box, denoted the robot bounding box.
The interface module was largely pre-existing and only required minor modifications to work with
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the motion planner in this project. It receives a list of poses and passes them to the controller,
which then determines the necessary actuator inputs to move the robot along the specified path.
In this project, only the x and y coordinates of the target points are used, with the z coordinate
always being set to 2m due to the flat nature of the simulation environment. The orientation,
represented by the quaternion subvector q = [q1, q2, q3, w]

T in eq. (2), describes the rotation from
the robot/sensor frame to the world frame. The position controller used in this project is the Lee
Position Controller from the rotorS simulation control library[56].

x =



x
y
z
q1
q2
q3
w


(2)

Equation (2) defines the structure of a pose vector in this project. The first three entries (x, y, z)
describes a point ∈ R3, and the last 4 entries (q1, q2, q3, w) describes an orientation on quaternion
form[57].

3.3 Pre-requisites

This section will provide an overview of the main packages used to construct the autonomous
motion planner. A list of additional libraries used in this project can be found in appendix C.

• The Planner-Control-interface (PCI) acts as a link between the position controller of
the robot and the planner developed in this project. It is discussed in more detail in sec-
tion 3.2[55].

• RotorS Simulator is the library used to simulate the robot and its sensors and control
system in Gazebo[56].

• KdTree is a package that manages a k-dimensional tree[58] object in C++[59].

3.3.1 VoxBlox

VoxBlox[10] is an open-source implementation of the SDF-mapping method proposed in[42], which
is designed to quickly build and update ESDFs from TSDFs for fast local mapping with efficient
collision detection. It runs on the CPU of a Micro Aerial Vehicle (MAV), a type of small unmanned
aerial vehicle. Building a map with VoxBlox can be divided into two steps: constructing and
expanding a TSDF using incoming sensor data and updating the ESDF by propagating changes
from the TSDF to the ESDF. The system uses voxel hashing to store voxels, which allows for
faster insertion and lookup compared to the Octomap framework[60]. Voxel hashing improves the
insertion and lookup complexity from Octomaps O(logn) to Voxblox’s O(1). The robot is modeled
as a 3D bounding box for collision-checking purposes. The VoxBlox system and its maps can be
accessed and visualized through the MapManager interface and Rviz. MapManager is a part of
the Planner Common-package, described in the next section. An example of a Gazebo simulation
compared to the same environment as perceived by VoxBlox and visualized with Rviz is shown in
Figure 4.
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(a) (b)

Figure 4: Comparison of the visualization of the Gazebo Simulation(a), and the percepted map
created by VoxBlox (b). The MAV in (a) is indicated by the large red, green and blue axes in the
centre of (b).

3.3.2 Planner Common

The Planner Common package is a group of packages designed to assist with planning tasks. It
was originally developed by Dang et al. for use in the GBplanner project[1], and was shared
privately for this project. Minor modifications were made to some of the packages for them to
be compatible with the planner developed in this thesis, but the functionality remains the same.
Planner Common is located in the core planner in the architecture shown in fig. 7. The most
important functionality provided by Planner Common is

• Graph Management. An interface between the planner and the k-d-tree package[59] used to
maintain the tree.

• Map Management. An interface between the planner and VoxBlox used to retrieve informa-
tion from the map created by Voxblox, including collision-checking.

• Parameter parsing. Loading sensor, robot and environment parameters from configuration
files.

• Random sampler. A C++ class that enables random sampling from Uniform, Normal and
Cauchy-distributions.

3.4 Multi-Agent Path Planner

The preliminary work to this thesis included a proposed design for a complete architecture for
an RTS-inspired system for large-scale multi-agent control. The architecture in fig. 5 reflects the
recurring theme of hierarchical AI systems in RTS games[61][62]. The hierarchy follows a bottom-
up principle for information flow, while decisions and commands move downwards. The planning
managers, who are employed by function managers, assign targets to the local path planners. Each
group of units has its own designated planning manager. The function managers oversee specific
task types. The highest level of control lies with the operation commander, who creates long-
term plans and ensures their successful completion. The operation commander can be a human
operator or a neural network-based AI. The main objective of the planner developed in this thesis
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Figure 5: Proposed architecture of an RTS-inspired AI-system for control of large robotic teams.
Retrieved from the author’s project report in TTK4550 as preliminary research to this thesis.

is to produce collision-free paths for a multi-agent team while maintaining an RTS-like feel when
controlling the units. This implies that the functionality should cover the Planning manager as
well as the Planner boxes in fig. 5.

The planning algorithm is designed to fulfill the desired traits described in section 2.1. The imple-
mentation provides scalable, fast, anytime path planning for multi-agent path planning problems.
Real-time constraints were prioritized in the development to give an RTS-like control experience.
A simple dynamic obstacle avoidance method is implemented between the units, and the planner
itself accounts for static obstacle avoidance. The resulting planner algorithm is used in a system ar-
chitecture that provides an RTS-like multi-agent control based on a FIFO(first in, first out)-queue
system. The overall system architecture is shown in fig. 6.
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Figure 6: The queue-based system architecture. Green boxes indicate that the functionality they
provide was developed in this thesis, while yellow indicates largely pre-made modules.

3.4.1 Graph management and core planner

The core planner’s task is to expand the global graph towards given goal regions while maintaining
the graph to be used for multi-query purposes. It should prioritize real-time constraints to deliver
an RTS-like experience while still providing robust and cohesive planning. The planner needs a
map for collision-checking while expanding the graph provided by the VoxBlox module described
in section 3.3.1. VoxBlox subscribes to a ROS topic where sensor data from a unit is published
to create the map. When dealing with several robots, combining the sensor data from all units is
preferred to create a single occupancy map for collision checking. Having a single occupancy map
lowers the memory complexity of saving and maintaining the map and offers the perk of utilizing
the perceived environment of all robots without the planner having to iterate through maps to find
the correct information. Perfect localization is assumed for the robots, such that aggregating all
the pointclouds into one is sufficient for combining the map. The full architecture of the planner
and its relations with the planning manager and unit is depicted in fig. 7. The green boxes indicate
the RRG implementation and its internal parts, while the blue boxes are pre-made modules and
config files used inside the planner. The red boxes are parts of the Planning manager, responsible
for managing the queue, publishing results, and aggregating the sensor data. The yellow boxes are
units themselves, described in section 3.2.
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Figure 7: The full architecture of the developed multi-agent planner system.

The implementation is primarily based on the RRG implementation described in section 2.1.9, but
some modifications had to be done to account for additional constraints. The planner operates
in an unknown environment, and goal regions may therefore lay outside of the mapped space. A
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modification to the problem statement is required to account for this challenge.

Recall that χ denoted the full configuration space and was divided into the obstacle space χobs and
free space χfree = cl(χ \ {χobs}). To account for unmapped areas, χunknown = χ \ {χobs ∪ χfree}
is introduced as a new subspace. As presented in section 2.1.1, a part of the definition of a feasible
path is that the path σ(τ) must fulfill σ(1) ∈ cl(χgoal). If χgoal ∈ χunknown the condition that a
path must be collision-free σ(τ) ∈ χfree for all τ ∈ [0, 1] fails. To handle this issue, the planner
must produce shorter path segments completely in χfree while iteratively expanding the graph
when new sensor data is available until χgoal ∈ χfree and thus reachable by the planner. The
desired property of asymptotically optimal global planning can not be reached when the whole
configuration space is not observed. However, the planner may still aim to produce near-optimal
committed paths within the mapped area. The committed paths are produced for each planner
iteration’s first element in the query queue. In every iteration, the following happens.

1. The active unit’s current position is checked in relation to the graph. If it is close enough to
an existing vertex, its position will be added as a new vertex to the graph. Otherwise, the
unit’s position is added as a disconnected vertex to start a new graph segment.

2. The current goal region is connected or disconnected from the graph. If it is connected, the
planner provides the resulting path and moves on to the next query in the queue.

3. The planner samples points from χ inside Vplanner and checks if they are obstructed, free, or
unknown. If the sampled point is inside χfree, it is approved, and the graph expands towards
the sampled point. The tuning variable NV decides how many vertices should maximum be
added in each iteration before moving on.

4. Edges are added from the newly added vertex Vnew to the nearest vertices inside some range
dnear. The tuning variable NE decides how many edges should maximum be added in each
iteration before moving on.

5. The active unit’s next waypoint is decided, and its path is passed to the planning manager.
If a vertex V exists in the same connected graph segment with position xV ∈ χgoal, the
algorithm will provide a path to the goal. The goal region may lie inside an obstacle, xV ∈
χobs. In this case, the planner provides a path to the closest vertex Vn of χgoal called the
target neighbor. If no point inside χgoal is sampled, an intermediate waypoint is determined
by minimizing the euclidean distance from each vertex to the goal. The heuristic is

h(V ) = c(line(xV , xT )) (3)

where c(line(xV , xT )) returns the cost of the line segment between vertex V ’s position xV

and the target position xT .

6. Dijkstra’s algorithm[50] is used to find the shortest path on the graph from the unit’s position
to the current waypoint.

The random sampler is limited to selecting points within a specific area around the robot’s position,
known as the planner’s local bounding box, in order to improve the chances of finding a point that
can be connected to the existing tree. The size of this area should be determined based on the
environment and task at hand. When working in an unknown area, the initial local bounding box
should be at least slightly smaller than the sensor range to increase the chances of finding points
within the mapped area. The bounding box could also be dynamically adjusted as the graph grows.
A measure of vertex density in the graph could tell the sampler to exclude areas with sufficient
coverage to increase the probability that valuable points are being added to the graph further.
To limit the scope of this project, a static bounding box of 20m x 20m x 2m is used with the
robot’s position as the center, while the tuning variables mentioned above will be used to affect
the planner’s performance.
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Algorithm 3 Main planner loop

1: it← 0
2: Vunit.x← xunit ▷ Update unit vertex state with current position
3: G← Vunit

4: if isTargetConnected(xtarget, Vunit, G) ∩NumWaitingUnits > Nu then
5: return GetShortestPath(Vtarget, Vunit, G)
6: end if
7: while ReachedTarget == False ∩ card(V ) < NV ∩ card(Eadded) < NEO ∩ it < Nit do
8: it← it+ 1
9: Vi = SampleVertexi

10: if expandGraph(T = (V,E), Vi) == false then ▷ Check if vertex is successfully added to tree
11: continue
12: end if
13: if c(line(Vi.x, xtarget)) <targetRadius then ▷ Check if added vertex is close enough to target
14: WP ← Vi ▷ Update waypoint as target
15: ReachedTarget ← true
16: break
17: end if
18: if ReachedTarget == False then
19: WP ← getNearestVertex(xTarget, G)
20: end if
21: end while
22: return getShortestPath(WP, Vunit, G = (V,E)) ▷ Return shortest path to waypoint

Algorithm 3 describes the main loop of the path planner. The first thing that happens in each
iteration is checking if a feasible path already exists from the unit to its goal in the graph. To
prioritize short planning time to allow for more robots, an eventual preexisting path can be returned
without improvement if the queue size is larger than the variableNu. Nu is a variable communicated
from the planning manager to the planner expressing how many units are currently waiting for
their next path segment. The variable is included to enable the planner to balance quick query
results and being able to exploit RRG’s asymptotic optimality described in section 2.1.5 through
sampling more points. Nu could be a percentage of the total amount of robots or an absolute
number telling the planner to quickly return a path if the queue grows to that size. It could
also be manually tuned and remain constant if this fits the use case. Nu = 0 makes the planner
immediately return an existing obstacle-free and feasible path if it exists. In contrast, Nu larger
than the actual number of units makes the planner aim to improve the path by sampling more
points. Nu = 0 will be used for the rest of this thesis. The code for the main planner loop is
enclosed in appendix A, while the ExpandGraph-function is included in appendix B.

If a path does not initially exist, the planner expands the graph. The planner has four termination
triggers for the graph expansion that can be tuned to control the length of each iteration. The
variable it is a basic incremental variable that decides the maximum number of points the planner
should try to add to the graph. NV and NE are, respectively, the maximum numbers of vertices
and edges added to the graph in each planning iteration. The last termination case is if the planner
manages to find a path to the final target, in which case it will return the path to the target. it, NV ,
and NE affect the duration of the graph-expansion phase and should be tuned to fit the operational
environment, temporal constraints, and the number of units. The tuning of these variables will be
discussed in section 4.1.

Suppose the destination is not within the mapped area and, therefore, cannot be reached by
the tree created by the RRG algorithm. In that case, the next destination is chosen using the
heuristic described in eq. (3). This heuristic is simple but effective in selecting an appropriate
intermediate target waypoint. This path planner is intended to be used in a real-time strategy
game-like environment where an operator, whether it is an AI or a human, will oversee the robot’s
actions. Due to this, the robot does not require advanced autonomy. The simple heuristic does
make the planner prone to finding some local optimum or ”dead end” where it is currently on the
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best vertex in the graph and unable to expand closer to the goal region. If the planner causes the
robot to become stuck, it will return an empty path to the planning manager, indicating that the
unit needs to be helped by the operator directing it to a different target. A stuck robot may also
get help from other units, coincidentally expanding the graph in the right direction, but this can
not be guaranteed. The fully implemented behavior of the planner is illustrated in fig. 8.

Planning manager
queries a path to a

new target

Expand graph by
random sampling

Immediately 
return path?

Graph contains
target? Stuck?

Target area 
in free  
space?

Get shortest path to
target
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Return path
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Figure 8: The behavior of the implemented planner.

3.4.2 Planning manager

The main idea behind the planning manager is to utilize computational downtime when units
are moving to improve current paths or start planning for other units. Using a FIFO queue-based
system simplifies the multi-agent planning problem to a sequence of single-planner problems, which
are solved by the planner described in section 3.4.1. As RRG is both anytime and asymptotically
optimal, it can produce a resulting path quickly, with increasing quality the more time it gets to
expand its graph. There exists only one instance of the planner and planning manager independent
of the number of units, meaning that more units give longer queues and, thus, longer waiting times
for each unit. Tuning the planning variables mentioned in section 3.4.1 can help the planner
become more efficient, although producing worse paths as RRG samples fewer points. Decreasing
the planning time for each iteration also increases the probability of RRG failing to produce an
obstacle-free feasible path due to the probabilistic completeness of the algorithm described in
section 2.1.4. In short, shortening planner time yields diminishing returns as the number of robots
grows, and another approach needs to be considered. The idea behind this implementation is
that the queue system, which is effective for medium-sized teams, can be expanded by adding
sophisticated swarming or following algorithms to make the units move in cohesive teams treated
as one unit by the planning manager. This design choice could make it possible for large-scale
robotic team control by globally abstracting the units to simplify the problem and solve cohesive
movement locally. The addition of swarming or unit following into this system is outside the scope
of this thesis and should thus be researched further.

The planning manager keeps track of all units, their positions, and their goals while communicating
with each unit through their respective PCI mentioned in section 3.2. After the PCIs execute an
initialization movement, the units constantly transmit their current positions and goals to be used
by the planner. This information is also used to aggregate the pointclouds used in the creation of
the VoxBlox map. The system architecture’s mode of operation is centralized and communicates
on a need-to-know basis. Hence all mission-critical information is kept at the planner/planning-
manager level in the hierarchy shown in fig. 5. This design trait causes the robots to be unaware
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of each other, thus marking friendly units as obstructed. Viewing other robots as obstacles seems
beneficial for collision avoidance but pose a problem when iterating through the queue. As an
aggregate of all pointclouds is used for collision-checking, each robot exists inside an obstructed
area in the VoxBlox-map. A pointcloud filter was added to tackle this problem by removing all
points in a sphere around the units, thus making them invisible to each other. The filter does not
affect obstacle avoidance between units, as the planner has all robots’ current positions and paths.

3.4.3 Dynamic Obstacle Avoidance

To account for several units operating in the same space, some form of dynamic obstacle avoidance
method must be in place. Dynamic obstacle avoidance is not the main focus of this thesis; hence
the method chosen was simplistic to limit the time used in the implementation phase. The method
needed rather be more conservative than liberal to ensure that the robot did not collide with each
other. The collision check happens after the planner returns the path to the planning manager
before delivering the path to the robot for execution. The implemented collision checking method
consists of the following procedures.

• Partitioning the path of the current robot ua into segments consisting of straight lines between
the vertices of the path.

• Predicting the time ua will be at each vertex and each segment midpoint.

• Iterating through all the other units uc. If the uc is currently moving, the same partitioning
and time prediction is made to this unit’s current path. If the unit is idle, only the unit’s
current state needs to be checked for collisions.

• If the path of ua intersects with any of the paths of moving uc at similar times or states of
idle uc, a possible collision is detected, and ua’s path is deleted. No re-planning method has
been implemented in this thesis if a possible collision is detected. The planner simply returns
an empty path and asks the operator to re-queue a different target or at a different time.

3.4.4 User experience

One of the goals of this thesis is that the developed multi-agent planner should deliver an RTS-like
experience for operators when commanding units. A subset of more concise design objectives was
set, drawing inspiration from the fields of HCI and HRI mentioned in section 1.4.3 to achieve the
goal of delivering an RTS-like experience. The first subgoal is that the proposed interface design
should enable the operator to understand the current progress of mission execution. Clear and
concise feedback and visualization are needed to ensure the operator’s interpretation is straightfor-
ward. There are some limitations in the visualization software rviz, so a terminal is used alongside
it to provide feedback messages. The messages are limited to a single terminal for all unit- and
planner-related feedback to minimize screen pollution. Using a single terminal for all feedback
messages can lead to an overload of information from a single source. However, it is counteracted
by only printing information in the terminal that is not exhibitable in rviz. The messages are easily
customizable as print statements in the system code and can be tailored to a specific use case if
needed. For this thesis, the messages have been limited to informing the operator of graph expan-
sion updates, path execution status, queue status, and error messages. An example of a terminal
showing text-based feedback is depicted in fig. 9. All planner or PCI messages are marked with a
unit ID, while messages originating from the planning manager are marked with MANAGER.
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Figure 9: Text-based feedback

The GBplanner visualization package mentioned in section 3.1 is used for the visualization of
robots, their paths, and the environment in the rviz main window. A unit and its current path
visualized in rviz are pictured in fig. 10. The rviz main window requires the operator to pan
and move the camera around manually to localize the robot they want to inspect, which may be
challenging when working with a multi-agent system in a large environment. An overview of the
total explored area, as well as the units and their positions, is provided by a minimap developed
for this thesis. The minimap is a dynamic image visualized in a tab in rviz. It communicates with
the planning manager to constantly have updated positions and map information. A depth image
style was used for the minimap to visualize a three-dimensional environment in 2D. The elevation
of obstacles is illustrated by gradually changing pixel color by z-coordinate. Each robot was given
a color corresponding to its unique identification number to differentiate between the units. This
color was also used for coloring the paths in the main rviz window to make the association between
the minimap and the main window simpler for operators. The resulting minimap is shown in fig. 11
where four units operate in an open, canyon-like environment. The minimap shows unit positions
as colored squares, their targets as colored crosses, and the environment as a gray-scaled depth
image.
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Figure 10: The rviz main window showing a robot and its current path in a narrow environment.
The moving unit is shown inside the path in the bottom right, while an idle unit can be seen in
the top right.
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Figure 11: The minimap showing unit positions, squares, and their targets, crosses. Each color
corresponds to a unit/target pair.

The second subgoal is that the interface should offer intuitive and simplistic control of where the
units move. The chosen approach for this is utilizing the existing rviz tool called Publish Point to
broadcast a 3D point clicked in the rviz main window to the /clicked point [unit id] topic. The
developed User-Planner interface(UPI) module shown in the architecture drawing in fig. 6 listens
on all clicked point topics and relays the point to the correct PCI based on the unit identification
number in the topic. The PCI then enters the loop of querying the planner for a path to the clicked
point until it is reached or the unit is stuck. The clicked point tool is somewhat limited as it only
detects clicks where the ray from the mouse click collides with a texture. This limitation means
that only mapped voxels are viable for this user input method. However, it is possible to query
the robots to targets in unexplored areas by using the existing ROS functionality of accessing the
UPI node through a terminal. The UPI only extracts x- and y-coordinates from the clicked points,
keeping the z-coordinate to 2m above ground level. The main window in rviz should be angled to
a top-down view to get the desired behavior of the clicked point function.

The last subgoal is related to the planner itself and states that latency should be minimized in
the system to achieve RTS-like adherence to real-time constraints. The latency minimization is
considered during tuning and configuring the planner parameters in section 4.1. Achieving low
latency is also kept in mind for the feedback message system, as the operator gets affirmations
from the UPI momentarily after ordering a robot and error messages as soon as they occur.
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4 Results

This section presents a thorough analysis of the multi-agent planner’s performance. The planner
will be tested in various environments to showcase the operating environment’s impact on path
quality and graph maintenance. Firstly, the planner will be tested in a canyon-like open environ-
ment with few obstacles other than smooth elevation changes. The second environment is a narrow
labyrinth-like environment where robot motion is naturally much more constrained. The results
will lead to a proposed configuration of planner parameters that fit the different environments and
an analysis of how the parameters should be tuned to fit other operating environments. The values
presented are coarsely tuned to showcase the impact they have on performance. Other values
may result in better planning, especially in different operating environments. None of the tests
resulted in collisions with the environment or between units as the rather conservative collision
avoidance module described in section 3.4.2 was used. Finally, some tuning results concerning the
user experience will be presented to provide insight into how well the planner system succeeds in
delivering an RTS-like experience.

4.1 Computational results

To analyze the performance of the planner, planning with a team of six robots will be performed
in two different environments. The developed planner in this master’s thesis is asynchronous,
meaning that the timing and order of target commands will significantly impact planner behavior.
The targets will be issued to the planner at approximately the same intervals by a human operator
to make the tests as comparable as possible. This is to get results corresponding to the intended
use-case where an operator, human or AI, commands the units. Additionally, the operator will
pick the targets pseudo-randomly by clicking the map to achieve some degree of diversity in the
tests conducted.

The planner will first be tested in an open valley-like environment with a few static obstacles as well
as some changes in the ground level to show that the planner handles elevation differences as well
as horizontal planning. The open environment is from an open-source Gazebo world project called
Gazebo models and worlds[63]. The planner will then be tested in a more open-spaced environment
to showcase the impact differences in environments make on performance. The second environment
is a flat, narrow labyrinth-like environment where the number of static obstacles is high, but
the feasible operating space for a robot to move in is more limited than the first. The narrow
environment is a model of the National Institute for Occupational Safety and Health (NIOSH) mine
in Pittsburgh. The model is retrieved from the Autonomous Robotics Lab at NTNU, which was
used in the DARPA-challenge[2] under the development of the exploration planner GBplanner[1].
The environments are shown top-down in fig. 12 where they are visualized in Gazebo.
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Figure 12: The two environments used for planner testing visualized in Gazebo. The open envir-
onment is shown in (a), while the narrow environment is shown in (b).

4.1.1 Tuning parameters

Several parameters influence the performance in addition to the environment when testing the
planner. Some of the parameters are highly correlated and must be tuned with some coherence to
achieve satisfactory performance. The tuning parameters deemed the most important are

• NV , the maximum number of vertices added to the graph each planner iteration. This para-
meter directly influences how good coverage the graph achieves over a specific volume, as well
as how quickly the planner approaches optimal path planning as discussed in section 2.1.5.

• NE , the maximum number of edges added to the graph each planner iteration.

• NEO, the maximum number of outgoing edges per vertex. This parameter greatly influences
the connectivity of the graph, as well as path optimality.

• dE,max and dE,min are, respectively, the maximum and minimum lengths of edges added to
the graph. These parameters decide the step resolution of the graph while also affecting the
maximum reach of the graph expansion per iteration.

• rT is the radius of the sphere with the target point as the center. The sphere is called the
target area and should be adjusted to fit the accuracy requirements of the planner.

• Vplanner is the bounding box of the planner, described in section 3.4.1, which defines the
volume from where the random sampling algorithm may pick points.

The scope of the testing was limited by pre-tuning some of the parameters to reasonable values that
produced acceptable results. As the planner is to adhere to strict real-time constraints mimicking
the behavior of an RTS game, one of the most important performance metrics is planner time.
Total planning time can be divided into graph expansion time TG and path extraction time TP ,
the latter including the simple collision checking routine described in section 3.4.2. Through the
testing, it was found that path extraction using Dijkstra’s algorithm gave negligible contributions
to the total planner time, making TG the most important metric. This trend can clearly be seen in
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the fourth column in both table 2 and table 5. The graph expansion part of the planner is RRG-
based and has, as mentioned in section 2.1.9, a processing and query complexity of O(n logn),
where n is the number of samples added as vertices to the graph. This means that NV , along
with NE , directly affects TG. When having a limit on NE , the planner exhibited a behavior where
the number of it would reach NE each iteration before reaching NV , with increasing pace. The
reason for this effect is that as the multi-query graph grows, there are more vertices to connect
with for each vertex added. The limitation of NE resulted in a slow stagnation of vertices added
while the graph grew. To account for this issue, NEO, which limits the number of outgoing edges
per vertex, was introduced to enable the planner to add more vertices without reaching NE too
quickly. Testing with respectively NEO = 80 and NE = 10000 gave similiar growth of NE,total,
however, NEO did not stagnate NV . The results from this test can be seen in fig. 13. Using NEO

distributes the edges more evenly among the vertices and will always result in less than, or equal
to, the number of edges added with a restriction NE , making NE superfluous as a tuning variable
and was therefore omitted from further testing.
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Figure 13: (a) Shows the evolution of NV when expanding the graph over 15 planner iterations,
while (b) shows the evolution of NE

An important criterion of the planner is to reach a given target area χgoal. The planner’s ability
to produce a path to the target area depends on the random sampler picking points to add to the
graph. The probability that a sampled point is in the obstacle-free volume Vfree is

pfree =
Vfree

Vplanner

where Vplanner is the bounding box of the sampler. The following probability that a sampled point
is inside χgoal, modeled as a sphere with the volume Vtarget =

4
3πr

2
T , is given by

ptarget = pfree ∗
Vtarget

Vfree
=

Vtarget

Vplanner

rT should be adjusted to fit the accuracy requirements of the planning problem, but it is important
to note that decreasing rT too much without adjusting other parameters may yield unsatisfactory
results. The planner tended to oscillate around the target area as the probability of sampling inside
the target area gets very low. To enable low rT , NV needs to be increased as the total probability
that a sampled point inside VT with NV vertices is given by

ptarget(NV ) = 1− ptarget
NV

ptarget(NV ) = 1− (1− ptarget)
NV

ptarget(NV ) = 1− (
Vplanner − VT

Vplanner
)NV
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which approaches 1 when NV → ∞. Decreasing Vplanner will also result in a larger probability
to sample inside VT , but Vplanner was held constant as NV was deemed more interesting to vary
because of its direct influence on TG. It is also important to note that ptarget only affects the
planner if the target area is inside Vplanner. If a target further away is queried, the planner will
continue to add vertices until NV or NEO is reached to find the path to the vertex inside Vplanner

closest to VT . Tuning showed that rT should at least be half the size of the robot bounding box
mentioned in section 3.2 for the planner to produce paths ending reasonably close to the target
point without oscillating due to low ptarget.

The planner should also provide reasonably short and smooth paths to minimize robot movement,
and total distance traveled, as path execution is more time-consuming than planning in most
cases. The path lengths were compared to direct lines from the units’ current position to their
current waypoint to measure the optimality of the paths produced by the planner. Parameters
tightly coupled with path shape are the edge length restrictions dE,max and dE,min. Having a high
dE,min and dE,max limits the planner to only taking large steps between vertices, which respectively
decreases the graph’s maximum and minimum resolution. Larger steps make for worse collision
avoidance as longer edges give coarser turns in the returned paths. Additionally, too high dE,min

often resulted in the mentioned oscillation around VT as the short edge needed for the robot to
enter VT could not be added. Lowering dE,max and dE,min, respectively, increases the minimum
and maximum resolution of the graph, as longer edges are not added. However, this restricts
the reach of the graph per iteration if NV is not increased accordingly, resulting in more planner
iterations needed for the robots to cover a distance. To keep the perk of having smooth turning
with high maximum graph resolution, as well as the ability to travel long straight distances where
possible to shorten the total path length, a reasonably large interval dE = dE,max − dE,min was
chosen. The parameters were held constant through testing at dE,min = 0.3 and dE,max = 6, which
gives the planner freedom to add edges of fitting length, although with less predictability than a
lower dE .

4.1.2 Planning in an open environment

A total of 13 tests were conducted to investigate the impact of NV and NEO on TG in an open
environment and how they affect path optimality. Each test consisted of querying the planner
between 20 and 30 times to command the robots around in the environment depicted in fig. 12 (a).
A team consisting of four to six robots was used. The units were initialized in the center of the
map, depicted in fig. 14 as a blue frame, at [x, y, z] = [2.5i, 0.0, 1.5], where i is the unit ID number
of the robot going from 0 to Nu − 1. The planner was tasked with moving the units to different
map sections, depicted as white frames in fig. 14.
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Figure 14: The planning problem for performance testing in an open environment. White frames
symbolize the target areas, while the blue frame encloses the starting area of the units.

The performance results are shown in table 2, where each column’s best value(s) is highlighted in
bold. The path extraction time TP results showed that it was negligible, as expected, in all cases
compared to TG. The lowest pairing of NV and NEO resulted in the lowest average graph building
as expected. Having NV = 50 consistently gave quick planning but also had the worst overall path
quality, with paths around 20% longer than the optimal path. This result is intuitive to understand
as fewer vertices give fewer configuration options for the planner to build a path. Additionally,
the data path optimality results for NV = 50 are skewed due to the planner producing short
straight paths around the target area due to the oscillation described in section 4.1.1. Doubling
rT allowed the planner to more quickly find a bath to VT without oscillating and gave even worse
path optimality results around 40% longer than the optimal path. These results and their standard
deviations can be seen in table 3, exhibiting by far the worst path optimality. As seen in table 2,
increasing NV generally resulted in better path quality, although only up to a certain point. Having
NV = 500 and NEO ∈ [20, 40, 80] gave as worse paths as NV = 50. The reason for this is that the
planner had a too harsh restriction on adding edges. Limiting a sampled point to only connect
to the NEO closest vertices when NV >> NEO made the edge lengths shorten, as most points
had many near existing vertices as the graph grew. Having only short edges limited the reach of
the graph as NEO quickly was reached, creating clusters of very dense graph parts while unable
to reach large parts of the map in only one iteration. The effect was self-reinforcing as dense
areas tended to become denser with NEO capping out quicker and quicker. A test was done with
NEO = 160 to tackle the clustering issue, which resulted in better path quality, but TG grew to
almost 3 seconds which is unacceptably long for a planner with strict real-time constraints.
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The clustering effect was also observed with NV = 250 and NEO = 20, but the threshold NEO

needed for acceptable path quality was much lower than with NV = 500. This threshold is tightly
correlated with NV as NEO needs to be high enough for the planner to approach the practical
upper limit of path quality set by NV by avoiding clustering, giving a more uniformly dense graph.
Having NV = 250 and NEO = 40 gave satisfactory path quality while also resulting in substantially
lower TG than NV = 500. This configuration also resulted in the most pre-existing path queries
as the graph grew uniformly distributed. Having high NV generally made the planner able to
find pre-existing paths for units moving to previously explored space. However, the clustering at
NV = 500 again created problems for units that needed to move through sparse areas of the graph.
After the units had moved to their initial target regions, they were commanded to another target
area.

The standard deviations σ of the results in table 2 can be seen in table 4. The standard deviation
of TG is naturally tightly coupled with the number of vertices, where lower values of NV generally
give more predictable building times. NV = 250 exhibited the best overall consistency in path
quality as it was not affected by the clustering as much as NV = 500, while still having enough
configuration options to produce good quality paths.

The parameters should be tuned to fit the use case, where real-time constraints must be weighed
against path quality desires. To provide scalable, fast planning like an RTS game, lowering TG

should be prioritized over path quality. N = 100 gave much lower TG than NV = 250 while not
worsening the path quality substantially as long asNEO was high enough, although the path quality
consistency was much worse than NV = 250. NV = 100 also provided an acceptable rate of pre-
existing paths found. The parameter configuration of NV = 100 and NEO = 80 is recommended
for use in an open environment. Having NV ∈ {100, 250} and NEO ∈ {40, 80} seems, in any case,
to provide satisfactory planning in an open environment with a static Vplanner of 20m x 20m x
2m.

Multi-agent planner performance with varying NV and NEO in an open environment
NV NEO Mean TG[s] Mean TP [s] Pre-existing path rate Path optimality

50
20 0.051 0 6.2% 1.214
40 0.062 0 0% 1.166
80 0.089 0.001 7.7% 1.248

100
20 0.061 0 5.0% 1.188
40 0.131 0.001 15.8% 1.186
80 0.235 0.002 14.3% 1.106

250
20 0.172 0.001 20.0% 1.235
40 0.406 0.004 25.0% 1.091
80 0.621 0.005 25.0% 1.070

500

20 0.566 0.006 10.5% 1.229
40 1.081 0.010 10.5% 1.185
80 1.964 0.011 14.3% 1.167
160 2.693 0.026 24.0% 1.088

Table 2: Performance of the planner with a varying number of vertices NV and outgoing edges per
vertex NEO in the graph in an open environment

Performance results of NV = 50 with increased rT
NEO Path optimality σ of path optimality
20 1.429 0.463
40 1.365 0.397
80 1.378 0.298

Table 3: Planner performance in an open environment with NV = 50 and doubled rT
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σ of performance results in an open environment
NV NEO σ of TG[s] σ of path optimality

50
20 0.011 0.294
40 0.018 0.172
80 0.043 0.290

100
20 0.009 0.295
40 0.025 0.431
80 0.083 0.216

250
20 0.026 0.443
40 0.120 0.116
80 0.160 0.125

500

20 0.116 0.309
40 0.173 0.215
80 0.473 0.251
160 0.724 0.077

Table 4: Standard deviation of planner performance with a varying number of vertices NV and
outgoing edges per vertex NEO in the graph in an open environment

4.1.3 Planning in a narrow environment

A total of 12 tests were conducted to investigate the effect NV and NEO has on planner perform-
ance in narrow environments. Navigating several robots in a narrow environment requires more
consideration from the operator than in an open environment due to the increased spacial limit-
ations. The operator must wait for a robot to move far enough at the start before commanding
another robot to avoid the planner returning with an empty path due to a possible collision detec-
ted as the robots are initialized close to each other. The test is designed with exploration in mind;
thus, the robots will split from each other at each junction in the labyrinth in the map shown in
fig. 12 (b). The units were initialized similarly to the previous test at [x, y, z] = [2.5i, 0.0, 1.5],
where i is the unit ID number of the robot going from 0 to Nu − 1. Each test was conducted with
a team of five robots and ran until the total number of queries was between 20 and 30.
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Figure 15: An instance of teamed exploration in a narrow subterranean environment. Frame 1
shows the initialized robot team and VoxBlox occupancy map in the main rviz window, and the
minimap depicts obstacles and robot positions. Frame 2 shows robot 2 after two iterations. Robot
2 has a yellow color code, and the current path of the robot is shown as the yellow line. The
yellow points are rejected samples, while the green points are accepted samples. Frame 3 shows
the top-down view of a semi-explored environment in the rviz main window after 3-4 planning
iterations per robot. Representations of the executed paths are drawn in the robot color codes,
with numbered circles representing the orders each robot received. Frame 4 depicts the minimap at
the same timestamp as frame 3, providing a simplistic view of the whole environment and clearly
showing the robots’ positions. A demonstration of a teamed exploration mission similar to the one
depicted in this figure can be found at https://youtu.be/cdr3fuIi5d0.

The performance test results in a narrow environment can be seen in table 5, while the standard
deviations of the results are shown in table 6. The graph-building time results, and their standard
deviation, were similar to the results from the open environment, as this mostly is a function of
NV and NE . However, the planner produced much better path quality and path consistency with
all parameter configurations due to the nature of the environment. The narrow hallways of the
labyrinths are the only part of Vplanner that is in χfree, which means that Vfree is much smaller
for the narrow environment than the open one, resulting in a much lower pfree. As the number
of samples taken by the planner is not restricted directly, only the number of vertices added, the
planner can create a much denser graph with few vertices inside the smaller Vplanner than in the
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open field from the first tests. This ability could also lead to increased building time, as the random
sampler has to provide more points to account for the lower pfree, but as the results in table 5
show, this seems to have had little impact on TG. A smaller volume for the graph to span makes
more vertices useful for path construction as there are much fewer directions for the units to move
in.

The more restricted planning problem posed by the narrow environment allowed for generally
lower NV , giving a much lower TG, as it still provided good path quality. As seen in table 5,
NV = 50 resulted in paths of almost the same quality as higher values for NV while keeping TG

much lower. Increasing NV above NV = 100 only increased TG without producing noticeably
better-quality paths. The path consistency results in table 6 show that the configuration NV = 50
and NEO = 80 gave the best consistency, while average graph building time was kept consistently
at under 100ms. The rate of pre-existing paths found was also generally higher than in the
open environment because of the more restricted operating space. The planner was tested with
NV = 25 to limit-test how few vertices were needed in this particular environment. However, this
configuration illustrated that there was a lower bound for NV before the path quality worsened.
The results for NV = 25 are skewed due to the same oscillating phenomenon as the planner was
prone to in the open environment with NV = 50, only returning short straight paths close to VT ,
but using more iterations than should be needed to reach the target area.

Multi-agent planner performance with varying NV and NEO in a narrow environment
NV NEO Mean TG[s] Mean TP [s] Pre-existing path rate Path optimality

25
10 0.011 0 30.4% 1.027
20 0.128 0 12.5% 1.147
40 0.019 0 31.6% 1.094

50
20 0.036 0 25.0% 1.056
40 0.057 0.001 36.8% 1.024
80 0.065 0.001 35.0% 1.019

100
20 0.064 0 38.9% 1.021
40 0.141 0 18.6% 1.016
80 0.238 0.004 45.5% 1.024

250
20 0.161 0.002 36.4% 1.112
40 0.425 0.003 36.8% 1.051
80 0.641 0.005 30.0% 1.035

Table 5: Performance of the planner with varying number of vertices NV in tree. Ni denotes the
number of iterations

σ of performance results in a narrow environment
NV NEO σ of TG[s] σ of path optimality

25
10 0 0.193
20 0.002 0.048
40 0.505 0.255

50
20 0.017 0.100
40 0.024 0.023
80 0.031 0.017

100
20 0.009 0.041
40 0.033 0.037
80 0.083 0.045

250

20 0.052 0.191
40 0.129 0.104
80 0.276 0.069

Table 6: Standard deviation of planner performance with a varying number of vertices NV and
outgoing edges per vertex NEO in the graph in a narrow environment
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4.2 User experience

User experience is a complex metric to measure. However, in the context of this thesis, it will
come down to how responsive the planner feels for an operator in addition to the visual tools
presented in section 1.4.3. The responsiveness of the planner will be judged by the latency time tL
experienced from querying a path to a target until the path is returned and the unit starts to move.
tL was measured during the same tests as in section 4.1 to see how the parameters affected it. The
results can be seen in table 7 and table 8. The latency measurements from planner operation in an
open environment are expectedly directly correlated with the size of NV and NEO. In contrast,
the results from the open environment have less correlation. These results likely originate from
latency being strongly dependent on query input timing and existing queue size. When testing in
a narrow environment, periods between queries had to be longer due to the restricted movement
options for the units. Longer planner intervals shorten latency for cases with larger NV as the
planner gets more time to work through the queue before a new order arrives. The latency should
be minimized for the planner to deliver an RTS-like experience. However, it could be wise not to
use it as the primary tuning measurement due to its strong dependency on the operator.

Average tL and σtL

NV NEO tL[s] σtL [s]

50
20 0.095 0.067
40 0.19 0.15
80 0.12 0.077

100
20 0.21 0.34
40 0.25 0.41
80 0.24 0.45

250
20 0.23 0.27
40 0.30 0.33
80 0.43 0.23

500

20 0.27 0.41
40 0.40 0.50
80 0.87 1.2
160 1.1 0.45

Table 7: Average latency time tL and standard deviation σtL of the planner when operating in an
open environment

Average tL and σtL

NV NEO tL[s] σtL [s]

25
10 0.097 0.009
20 0.132 0.205
40 0.090 0.028

50
20 0.12 0.013
40 0.090 0.030
80 0.097 0.013

100
20 0.099 0.002
40 0.091 0.024
80 0.096 0.017

250

20 0.092 0.021
40 0.172 0.076
80 0.192 0.122

Table 8: Average latency time tL and standard deviation σtL of the planner when operating in a
narrow environment
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5 Conclusion

This thesis has presented a successful path and motion planner for medium-sized robotic teams,
delivering robust collision avoidance of static obstacles and other known units. The planner’s core is
a rapidly-exploring random graph algorithm based on the RRG used in [1]. The algorithm has been
modified with elements from a probabilistic roadmap approach to provide multi-query possibilities
to utilize existing paths in previously explored areas. The planner functions in both mapped
and unmapped areas as it utilizes an expanding mapping framework based on a combination
of truncated signed distance fields for surface detection and euclidean signed distance fields for
collision checking. The planner exhibits controller agnosticism, which means it works in conjunction
with any MAV with a functioning position controller.

The planner is designed to fit the proposed more extensive RTS-like architecture presented in
section 3.4.2 for controlling large robotic teams based on hierarchical AI systems designed for
playing RTS games. The architecture allows for a relatively low autonomy level in each unit, making
the robots prone to getting stuck in local optima due to the simple heuristic responsible for choosing
waypoints when the target area is out of reach. The user experience has been elevated by adding
simple visual tools and message-based feedback to keep the operator in the loop to handle stuck
robots or other errors. The system employs a queue-based solution to multi-agent path planning
to reduce the problem into a series of single-agent path planning problems. This approach gives
an asynchronous behavior that mimics the player experience in RTS games. Planning speed has
been prioritized in the tuning process to reduce planning latency and exhibit the planner’s ability
to adhere to strict real-time constraints. There is a general trade-off between path quality and
planning time when configuring the planner, which should be tailored to the operating environment.
The planner performs considerably worse in open spaces compared to narrow environments due to
the random nature of the graph-building algorithm.

5.1 Further work

The proposed multi-agent planner yields satisfactory results; however, it could be further improved.
Introducing online dynamic parameter adjusting could drastically enhance planner performance.
The handling of the online parameter tuning could be approached by investigating neural-network-
based learning methods that adjust parameters based on feedback from the units and environment.
The user experience should be researched and tested further by conducting user tests to gather
feedback as a part of an iterative implementation process.

The proposed multi-agent planner should be ready for simple control of medium-sized robotic
teams, but more research needs to be conducted to achieve large-scale RTS-like control of robots.
The interface of the proposed planner requires target points and unit identification numbers, which
in this thesis are designed to fit a human operator. The operator could be exchanged with a neural
network-based AI or even a finite state machine to further expand the system towards effective
RTS-like control of large teams.

Further work includes the development of a cohesive swarming strategy to enable the planner
to handle more robots by abstracting swarms as one unit. The units also need a local reactive
collision avoidance and path recovery method to account for unknown dynamic obstacles. The
system architecture presented in section 3.4.2 should be reviewed and can be used as a sketch
for expanding the system to include more functionality, such as surveillance or patrolling. Many
elements in the architecture still need to be developed to fully evaluate the whole system, where
each part individually needs extensive testing and optimization.
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Appendix

A Planner function

Prm::GraphStatus Prm::planPath(geometry_msgs::Pose& target_pose,

std::vector<geometry_msgs::Pose>& best_path){↪→

START_TIMER(ttime);

// tuning parameters

int loop_count(0);

int num_vertices_added(0);

int num_edges_added(0);

int num_target_neighbours(0);

std::vector<geometry_msgs::Pose> best_path_temp;

StateVec target_state;

convertPoseMsgToState(target_pose, target_state);

units_[active_id_]->final_target_ = target_state;

minimap_->setTarget(active_id_, &(units_[active_id_]->final_target_));

minimap_->setTargetStatus(active_id_, true);

units_[active_id_]->current_waypoint_ = units_[active_id_]->current_vertex_;

Eigen::Vector3d dir_vec(units_[active_id_]->current_state_[0] -

target_state[0],↪→

units_[active_id_]->current_state_[1] -

target_state[1],↪→

units_[active_id_]->current_state_[2] -

target_state[2]);↪→

double dir_dist = dir_vec.norm();

double best_dist = 10000000; //inf

// catch if robot is already at target

if (abs(dir_vec.norm()) < random_sampling_params_->reached_target_radius) {

units_[active_id_]->reached_final_target_ = true;

ROS_INFO("UNIT %d: already at target given", active_id_);

return Prm::GraphStatus::OK;

}

bool stop_sampling = false;

detectTargetStatus(active_id_);

if (units_[active_id_]->target_status_ == Prm::StateStatus::CONNECTED){

ROS_INFO("UNIT %d: Target already connected! Returning path without expanding

graph", active_id_);↪→

stop_sampling = true;

num_target_neighbours++;

units_[active_id_]->reached_final_target_ = true;

total_already_exists_++;

//minimap_->setTargetStatus(active_id_, false);

}

41



std::vector<Vertex*> target_neighbours;

stat_->init(units_[active_id_]->current_vertex_->state);

while ((!stop_sampling)&&(loop_count++ < planning_params_.num_loops_max) &&

(num_vertices_added < planning_num_vertices_max_) &&

(num_edges_added < planning_num_edges_max_)) {

StateVec new_state;

if (!sampleVertex(new_state)) {

if ((loop_count >= planning_params_.num_loops_cutoff) &&

(num_vertices_added <= 2)) {

break;

}

continue; // skip invalid sample

}

ExpandGraphReport rep;

expandGraph(roadmap_graph_, new_state, rep);

if (rep.status == ExpandGraphStatus::kSuccess) {

num_vertices_added += rep.num_vertices_added;

num_edges_added += rep.num_edges_added;

// Check if state is inside target area

Eigen::Vector3d radius_vec(new_state[0] - target_state[0],

new_state[1] - target_state[1],

new_state[2] - target_state[2]);

// Check if sampled vertex is close enough to target area

if (radius_vec.norm() < random_sampling_params_->reached_target_radius) {

target_neighbours.push_back(rep.vertex_added);

num_target_neighbours++;

units_[active_id_]->reached_final_target_ = true;

units_[active_id_]->current_waypoint_ = target_neighbours[0];

//

if (num_target_neighbours >

random_sampling_params_->num_paths_to_target_max){↪→

// stop samling if we have enough sampled points in target area

stop_sampling = true;

}

}

if ((num_target_neighbours < 1) && (radius_vec.norm() < dir_dist) &&

(radius_vec.norm() < best_dist)) {↪→

// if no points in target area is sampled, we go to the point closest to

the target in euclidean distance↪→

best_dist = radius_vec.norm();

units_[active_id_]->current_waypoint_ = rep.vertex_added;

}

}

if ((loop_count >= planning_params_.num_loops_cutoff) &&

(num_vertices_added <= 2)) {

break;

}

}
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ROS_INFO("Formed a graph with [%d] vertices and [%d] edges with [%d] loops,

ntn[%d]",↪→

roadmap_graph_->getNumVertices(), roadmap_graph_->getNumEdges(),

loop_count, num_target_neighbours);↪→

Prm::GraphStatus res = Prm::GraphStatus::NOT_OK;

if(roadmap_graph_->getNumVertices() < 2){

ROS_WARN("UNIT %d: Sampler failed, try again");

return res;

}

stat_->build_graph_time = GET_ELAPSED_TIME(ttime);

if(stat_->build_graph_time > 0.05){

build_times_.push_back(stat_->build_graph_time);

}

total_build_time_ += stat_->build_graph_time;

if (num_target_neighbours < 1) {

Vertex* waypoint;

roadmap_graph_->getNearestVertex(&target_state, &waypoint);

units_[active_id_]->current_waypoint_ = waypoint;

ROS_INFO("UNIT %d: Target not yet reached by roadmap, updated waypoint as

best vertex", active_id_);↪→

}

START_TIMER(ttime);

std::vector<int> path_id_list;

roadmap_graph_rep_.reset();

roadmap_graph_->findShortestPaths(units_[active_id_]->current_vertex_->id,

roadmap_graph_rep_);↪→

// Get the shortest path to current waypoint, and collision check the path if

in lazy mode↪→

if(lazy_mode_){

bool collision_free_path_found = false;

while(!collision_free_path_found){

roadmap_graph_->getShortestPath(units_[active_id_]->current_waypoint_->id,

roadmap_graph_rep_, false, path_id_list);↪→

for(int i = 0; i < path_id_list.size()-1; i++){

Vertex* v_start = roadmap_graph_->getVertex(path_id_list[i]);

Vertex* v_end = roadmap_graph_->getVertex(path_id_list[i+1]);

if (!checkCollisionBetweenVertices(v_start, v_end)){

// edge is not collision free

roadmap_graph_->removeEdge(v_start, v_end);

ROS_WARN("UNIT %d: Collision found in path, replanning", active_id_);

roadmap_graph_->findShortestPaths(units_[active_id_]->current_vertex_->id,

roadmap_graph_rep_);

↪→

↪→

break;

}

if (i == path_id_list.size()-1) {

// We have iterated through the whole path without having a collision

collision_free_path_found = true;

res = Prm::GraphStatus::OK;

}

}

}
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if (!collision_free_path_found) {

res = Prm::GraphStatus::ERR_NO_FEASIBLE_PATH;

}

} else {

// Get the shortest path to current waypoint

double traverse_length = 0;

double traverse_time = 0;

std::vector<StateVec> best_path_states;

roadmap_graph_->getShortestPath(units_[active_id_]->current_waypoint_->id,

roadmap_graph_rep_, true, best_path_states);↪→

Eigen::Vector3d p0(best_path_states[0][0], best_path_states[0][1],

best_path_states[0][2]);↪→

std::vector<Vertex*> best_path_vertices;

roadmap_graph_->getShortestPath(units_[active_id_]->current_waypoint_->id,

roadmap_graph_rep_, true,↪→

best_path_vertices);

const double kLenMin = 0.5;

std::vector<Eigen::Vector3d> path_vec;

roadmap_graph_->getShortestPath(units_[active_id_]->current_waypoint_->id,

roadmap_graph_rep_, true,↪→

path_vec);

double total_len = Trajectory::getPathLength(path_vec);

if (total_len <= kLenMin) {

ROS_WARN("UNIT %d: Best path is too short, requeue different target");

return Prm::GraphStatus::ERR_NO_FEASIBLE_PATH;

}

for (int i = 0; i < best_path_states.size(); ++i) {

Eigen::Vector3d p1(best_path_states[i][0], best_path_states[i][1],

best_path_states[i][2]);↪→

Eigen::Vector3d dir_vec = p1 - p0;

tf::Quaternion quat;

quat.setEuler(0.0, 0.0, best_path_states[i][3]);

tf::Vector3 origin(best_path_states[i][0], best_path_states[i][1],

best_path_states[i][2]);↪→

tf::Pose poseTF(quat, origin);

geometry_msgs::Pose pose;

tf::poseTFToMsg(poseTF, pose);

best_path_temp.push_back(pose);

double seg_length = (p1 - p0).norm();

traverse_length += seg_length;

if ((traverse_length > planning_params_.traverse_length_max)) {

units_[active_id_]->reached_final_target_ = false;

break;

}

p0 = p1;

}

roadmap_graph_->getShortestPath(units_[active_id_]->current_waypoint_->id,

roadmap_graph_rep_, true, path_id_list);↪→

res = Prm::GraphStatus::OK;

}

stat_->shortest_path_time = GET_ELAPSED_TIME(ttime);

total_path_extraction_ += stat_->shortest_path_time;

ros::Time cctime;

START_TIMER(cctime);
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// collision checking

for (auto& u: units_){

if ((u->id_ != active_id_)){

double active_time = ros::Time::now().toSec();

double active_time_segment = 0;

// Iterate through segments in the current units path

for(int v_active_id = 0; v_active_id < path_id_list.size() - 1;

v_active_id++){↪→

// get first vertex in segment

Vertex* v0 = roadmap_graph_->getVertex(path_id_list[v_active_id]);

// get second vertex in segment

Vertex* v1 = roadmap_graph_->getVertex(path_id_list[v_active_id+1]);

// convert to vector

Eigen::Vector3d p0(v0->state.x(), v0->state.y(), v0->state.z());

// convert to vector

Eigen::Vector3d p1(v1->state.x(), v1->state.y(), v1->state.z());

// calculate segment vector

Eigen::Vector3d active_segment = p1 - p0;

active_time_segment = active_segment.norm()/planning_params_.v_max;

// timestamp start of segment

double t0 = active_time;

active_time += active_time_segment;

// timestamp end of segment

double t1 = active_time;

//---------------------Make segment-cuboid for

collisionchecking----------------↪→

Eigen::Vector3d active_center = (p1+p0)/2;

Eigen::Vector3d active_half_dim = robot_box_size_/2;

Eigen::Vector3d active_min_point = active_center - active_half_dim;

Eigen::Vector3d active_max_point = active_center + active_half_dim;

Eigen::AlignedBox3d active_cuboid(active_min_point, active_max_point);

if((u->currently_moving_)&& (!u->current_path_id_list_.empty())){

// Variable to keep tracked of checked time

double checked_time = u->moving_time_start_.toSec();

double checked_time_segment = 0;

// iterate through segments in all other unit paths

for(int v_check_id = 0; v_check_id < u->current_path_id_list_.size() - 1;

v_check_id++){↪→

// get first vertex in segment

Vertex* vc0 =

roadmap_graph_->getVertex(u->current_path_id_list_[v_check_id]);↪→

// get second vertex in segment

Vertex* vc1 =

roadmap_graph_->getVertex(u->current_path_id_list_[v_check_id+1]);↪→

// convert to vector

Eigen::Vector3d pc0(vc0->state.x(), vc0->state.y(), vc0->state.z());

// convert to vector

Eigen::Vector3d pc1(vc1->state.x(), vc1->state.y(), vc1->state.z());

// calculate segment vector

Eigen::Vector3d check_segment = pc1 - pc0;

// get the duration the other unit has been moving

//double time_diff = active_time - u_start_time;

// predict where the unit would be if it only moves along this segment

//Eigen::Vector3d predicted_segment = pc0 +

(time_diff-checked_time)*planning_params_.v_max*check_segment.normalized();↪→
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// Add the time the robot has taken to complete the segment

checked_time_segment = check_segment.norm()/planning_params_.v_max;

// timestamp start of segment

double tc0 = checked_time;

checked_time += checked_time_segment;

// timestamp end of segment

double tc1 = checked_time;

//---------------------Make segment-cuboid for

collisionchecking----------------↪→

Eigen::Vector3d check_center = (pc1+pc0)/2;

Eigen::Vector3d check_half_dim = robot_box_size_/2;

Eigen::Vector3d check_min_point = check_center - check_half_dim;

Eigen::Vector3d check_max_point = check_center + check_half_dim;

Eigen::AlignedBox3d check_cuboid(check_min_point, check_max_point);

if(!doCuboidsIntersect(active_cuboid, check_cuboid)){

//The segments with robot-size does not intersect, hence collision

checking not required↪→

continue;

}

// If we go here, it means that a segment in the best path found by the

planner potentially↪→

// crosses with a path that is currently being executed by another

unit↪→

// and that the unit we may collide with has not executed the scary

part yet↪→

// We finally checks if the timing seems scary to see if the active

robot should wait or not↪→

if (!((t1 <= tc0)||(t0 >= tc1))){

// The timing ranges are scary

ROS_WARN("Planner detected possible collision, requeue at later

time");↪→

return Prm::GraphStatus::ERR_NO_FEASIBLE_PATH;

}

}

} else if (!(u->currently_moving_)){

//check if path passes through idle robot

//---------------------Make segment-cuboid for

collisionchecking----------------↪→

Eigen::Vector3d check_center(u->current_state_.x(),

u->current_state_.y(), u->current_state_.z());↪→

Eigen::Vector3d check_half_dim = robot_box_size_/2;

Eigen::Vector3d check_min_point = check_center - check_half_dim;

Eigen::Vector3d check_max_point = check_center + check_half_dim;

Eigen::AlignedBox3d check_cuboid(check_min_point, check_max_point);

//---------------------Make vertex-cuboid for

collisionchecking----------------↪→

Eigen::Vector3d vertex_center = p1;

Eigen::Vector3d vertex_half_dim = robot_box_size_/2;

Eigen::Vector3d vertex_min_point = vertex_center - vertex_half_dim;

Eigen::Vector3d vertex_max_point = vertex_center + vertex_half_dim;

Eigen::AlignedBox3d vertex_cuboid(vertex_min_point, vertex_max_point);

if(doCuboidsIntersect(active_cuboid, check_cuboid) ||

doCuboidsIntersect(vertex_cuboid, check_cuboid)){↪→

//The path passes through an idle robot

ROS_INFO("idle collision");
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return Prm::GraphStatus::ERR_NO_FEASIBLE_PATH;

}

}

}

}

}

ROS_INFO("UNIT %d: No collisions detected", active_id_);

stat_->collision_check_time = GET_ELAPSED_TIME(cctime);

units_[active_id_]->current_path_id_list_ = path_id_list;

if (!(best_path_temp.empty())){

num_queries_++;

double yawhalf = units_[active_id_]->current_state_[3] * 0.5;

best_path_temp[0].orientation.x = 0.0;

best_path_temp[0].orientation.y = 0.0;

best_path_temp[0].orientation.z = sin(yawhalf);

best_path_temp[0].orientation.w = cos(yawhalf);

}

for (int i = 0; i < (best_path_temp.size() - 1); ++i) {

Eigen::Vector3d vec(best_path_temp[i + 1].position.x -

best_path_temp[i].position.x,↪→

best_path_temp[i + 1].position.y -

best_path_temp[i].position.y,↪→

best_path_temp[i + 1].position.z -

best_path_temp[i].position.z);↪→

double yaw = std::atan2(vec[1], vec[0]);

tf::Quaternion quat;

quat.setEuler(0.0, 0.0, yaw);

best_path_temp[i + 1].orientation.x = quat.x();

best_path_temp[i + 1].orientation.y = quat.y();

best_path_temp[i + 1].orientation.z = quat.z();

best_path_temp[i + 1].orientation.w = quat.w();

}

best_path = best_path_temp;

if (!(best_path.empty())){

double total_len = Trajectory::getPathLength(best_path);

Eigen::Vector3d opt_vec(units_[active_id_]->current_state_[0] -

best_path[best_path.size()-1].position.x,↪→

units_[active_id_]->current_state_[1] -

best_path[best_path.size()-1].position.y,↪→

units_[active_id_]->current_state_[2] -

best_path[best_path.size()-1].position.z);↪→

double opt_dist = opt_vec.norm();

double optimality = total_len/opt_dist;

total_path_optimality_ += optimality;

path_optimalities_.push_back(optimality);

}

visualization_[active_id_]->visualizeSampler(random_sampler_);

random_sampler_.reset();
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visualization_[active_id_]->visualizeBestPaths(roadmap_graph_,

roadmap_graph_rep_, 0, units_[active_id_]->current_waypoint_->id);↪→

if (roadmap_graph_->getNumVertices() > 1){

visualization_[active_id_]->visualizeGraph(roadmap_graph_);

} else {

visualization_[active_id_]->visualizeFailedEdges(stat_);

ROS_INFO("Number of failed samples: [%d] vertices and [%d] edges",

stat_->num_vertices_fail, stat_->num_edges_fail);

res = Prm::GraphStatus::ERR_KDTREE;

}

return res;

}

B Graph expansion function

void Prm::expandGraph(std::shared_ptr<GraphManager> graph,

StateVec& new_state, ExpandGraphReport& rep){

// Find nearest neighbour

Vertex* nearest_vertex = NULL;

if (!roadmap_graph_->getNearestVertex(&new_state, &nearest_vertex)) {

rep.status = ExpandGraphStatus::kErrorKdTree;

return;

}

if (nearest_vertex == NULL) {

rep.status = ExpandGraphStatus::kErrorKdTree;

return;

}

// Check for collision of new connection plus some overshoot distance.

Eigen::Vector3d origin(nearest_vertex->state[0], nearest_vertex->state[1],

nearest_vertex->state[2]);

Eigen::Vector3d direction(new_state[0] - origin[0], new_state[1] - origin[1],

new_state[2] - origin[2]);

double direction_norm = direction.norm();

if (direction_norm > planning_params_.edge_length_max) {

direction = planning_params_.edge_length_max * direction.normalized();

} else if ((direction_norm <= planning_params_.edge_length_min)) {

// Should not add short edge.

rep.status = ExpandGraphStatus::kErrorShortEdge;

return;

}

// Recalculate the distance.

direction_norm = direction.norm();

new_state[0] = origin[0] + direction[0];

new_state[1] = origin[1] + direction[1];

new_state[2] = origin[2] + direction[2];

// Since we are buiding graph,

// Consider to check the overshoot for both 2 directions except root node.

Eigen::Vector3d overshoot_vec =

planning_params_.edge_overshoot * direction.normalized();

Eigen::Vector3d start_pos = origin + robot_params_.center_offset;

if (nearest_vertex->id != 0) start_pos = start_pos - overshoot_vec;

Eigen::Vector3d end_pos =

origin + robot_params_.center_offset + direction + overshoot_vec;

// Check collision if lazy mode is not activated
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if ( MapManager::VoxelStatus::kFree ==

map_manager_->getPathStatus(start_pos, end_pos, robot_box_size_, false)

|| lazy_mode_) {↪→

Vertex* new_vertex =

new Vertex(roadmap_graph_->generateVertexID(), new_state);

// Form a tree as the first step.

new_vertex->parent = nearest_vertex;

new_vertex->distance = nearest_vertex->distance + direction_norm;

nearest_vertex->children.push_back(new_vertex);

roadmap_graph_->addVertex(new_vertex);

++rep.num_vertices_added;

rep.vertex_added = new_vertex;

roadmap_graph_->addEdge(new_vertex, nearest_vertex, direction_norm);

++rep.num_edges_added;

// add more edges to create graph

std::vector<Vertex*> nearest_vertices;

if (!roadmap_graph_->getNearestVertices(

&new_state, planning_params_.nearest_range, &nearest_vertices)) {

rep.status = ExpandGraphStatus::kErrorKdTree;

return;

}

origin << new_vertex->state[0],new_vertex->state[1],new_vertex->state[2];

for (int i = 0; i < nearest_vertices.size(); ++i) {

//ROS_WARN("noe: %d"

,roadmap_graph_->getNumOutgoingEdges(nearest_vertices[i]->id));↪→

if (roadmap_graph_->getNumOutgoingEdges(nearest_vertices[i]->id) >=

planning_params_.max_num_outgoing){↪→

// Constraint the amount of outgoing edges per vertex

continue;

}

direction << nearest_vertices[i]->state[0] - origin[0],

nearest_vertices[i]->state[1] - origin[1],

nearest_vertices[i]->state[2] - origin[2];

double d_norm = direction.norm();

if ((d_norm > planning_params_.nearest_range_min) &&

(d_norm < planning_params_.nearest_range_max)) {

Eigen::Vector3d p_overshoot =

direction / d_norm * planning_params_.edge_overshoot;

Eigen::Vector3d p_start =

origin + robot_params_.center_offset - p_overshoot;

Eigen::Vector3d p_end =

origin + robot_params_.center_offset + direction;

if (nearest_vertices[i]->id != 0) p_end = p_end + p_overshoot;

// Check collision if lazy mode is not activated

if (MapManager::VoxelStatus::kFree ==

map_manager_->getPathStatus(p_start, p_end, robot_box_size_,

true) || lazy_mode_) {↪→

roadmap_graph_->addEdge(new_vertex, nearest_vertices[i], d_norm);

++rep.num_edges_added;

}

}

}

} else {
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stat_->num_edges_fail++;

if (stat_->num_edges_fail < 500) {

std::vector<double> vtmp = {start_pos[0], start_pos[1], start_pos[2],

end_pos[0], end_pos[1], end_pos[2]};

stat_->edges_fail.push_back(vtmp);

}

rep.status = ExpandGraphStatus::kErrorCollisionEdge;

return;

}

rep.status = ExpandGraphStatus::kSuccess;

}
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C ROS libraries

This appendix presents the ROS packages used for this project that are not mentioned in the
report. A link to the respective GitHub repositories are supplied. All packages listed with the
exeption of catkin simple are created by the Autonomous Systems Lab at ETH Zürich.

• catkin simple v0.1.1 https://github.com/catkin/catkin simple

• eigen catkin v3.2.12 https://github.com/ethz-asl/eigen catkin

• eigen checks v2.8.3 https://github.com/ethz-asl/eigen checks

• gflags catkin v2.2.1 - https://github.com/ethz-asl/gflags catkin

• glog catkin v0.3.5 - https://github.com/ethz-asl/glog catkin

• mav comm - https://github.com/ethz-asl/mav comm

• minkindr v0.0.1 - https://github.com/ethz-asl/minkindr

• minkindr conversions v0.0.0 - https://github.com/ethz-asl/minkindr ros/tree/master/minkindr conversions

• yaml cpp catkin v0.5.90 - https://github.com/ethz-asl/yaml cpp catkin
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