
Digital Twins of Mobile Manipulators
Focused on KUKA KMR iiwa

Jørgen Usterud Myrvold

2022-05-12

Preface

This specialization project is part of my master’s degree in Engineering & ICT at
NTNU and this paper concludes the project at the Department for Mechanical
and Industrial Engineering at NTNU in the spring of 2022. The project revolves
around digital twins of mobile manipulators with the goal of gathering as much
knowledge as possible before the master’s thesis will be written in the fall of 2022.

The focus of this project has been to explore possibilities for digital twins of
mobile manipulators and see what has previously been done in the field. The
project also lays a theoretical foundation within the control of manipulators and
mobile platforms.

I want to thank my supervisor Lars Tingelstad for guidance and support through-
out this project.

Summary

Mobile manipulators are an essential part of Industry 4.0 where increased au-
tomation and customization is in focus. One major issue of such robots is the
development cost. Digital twins are replicas of the actual robot in a virtual sim-
ulation environment which allows for testing of robotic applications without the
need for a physical robot, thus lowering the development cost significantly.

Recent developments in computer hardware have enabled highly realistic simula-
tors that narrow the sim-to-real gap significantly compared to earlier simulators.
This provides more realistic development environments in addition to enabling
possibilities for machine learning and synthetic data generation that can be used
for training such models.

In addition to the digital twins, the project also presents fundamental kinematics
for controlling manipulators and holonomic wheeled robots using mecanum wheels
such as the KUKA KMR iiwa. For controlling mobile robots, navigation and
mapping are also essential, and this project presents the theory behind this as
well.

Contents

Preface i

Summary iii

1 Introduction 1
1.1 Background and motivation . 1
1.2 Problem description . 2
1.3 Outline . 2

2 Robot kinematics 3
2.1 Poses and frames . 3
2.2 Manipulator kinematics . 4

2.2.1 Kinematics of a 7-dof manipulator 6
2.3 Wheeled robots . 9

2.3.1 Kinematic model for a four mecanum wheeled mobile robot 10

3 SLAM and Navigation 15
3.1 Maps . 15
3.2 SLAM – Simultaneous Localization and Mapping 17

3.2.1 Kalman Filter . 18
3.2.2 Particle Filter . 19
3.2.3 Graph-based Optimization 20

3.3 Navigation . 21
3.3.1 Costmap . 22
3.3.2 Adaptive Monte Carlo localization 23
3.3.3 Dynamic Window Approach 24

4 Digital twins 25
4.1 Robotic simulators . 26

4.1.1 Simulator comparison . 28
4.2 Sim-to-Real . 29

4.2.1 How to narrow the sim-to-real gap 29

vi Contents

5 Conclusion and Further Work 33
5.1 Conclusion . 33
5.2 Further work . 34

List of Figures

2.1 6 examples of common robot joints [18, p. 16] 5
2.2 Example of an anthropomorphic manipulator 6
2.3 Horizontally mounted LBR iiwa with corresponding DH frames il-

lustrated [7] . 7
2.4 Example of omni wheel (left) and mecanum wheel (right) [18, p. 514] 9
2.5 Common configurations of omni wheels (left) and mecanum wheels

(right) to achieve holonomic drive [18, p. 516] 10
2.6 Here the variables used to derive the inverse kinematics for the

robot are shown [10] . 11

3.1 Example of an OGM and associated .yaml file created by Turtlebot
3 [27, p. 325] . 16

3.2 Graphical representation of the SLAM problem [30, p. 1154] . . . 17
3.3 Illustration of the concept of the Kalman filter [27, p. 334] 19
3.4 Example of a costmap corresponding to the map in Figure 3.1a [27,

p. 338] . 22
3.5 Relationship between the distance to the object and the costmap

value [27, p. 356] . 23

4.1 Intuition behind domain randomization [35] 30
4.2 Example of domain randomization using Isaac sim [24]. Shows

different lighting, textures, and object positions while the camera
position remains the same. 31

List of Tables

2.1 A possible set of DH parameters for LBR [7] 7

4.1 Comparison between popular robotics simulators [3]. (NVIDIA
Isaac was not part of the original table from [3]) 26

4.2 Comparison between different robotics simulators used for mobile
ground robotics [3]. (NVIDIA Isaac was not part of the original
table from [3]) . 27

4.3 Comparison between different robotics simulators used for manip-
ulators [3] . 27

Chapter 1

Introduction

1.1 Background and motivation
Industry 4.0 is revolutionizing production and manufacturing by utilizing automa-
tion, machine learning, and real-time data to monitor production within a factory,
as well as across different production plants. Every part of the supply chain is
connected through the internet, and this provides immense opportunities for more
efficient production and customized products.

A significant part of this transition is the widespread use of autonomous robots.
We have already seen adoption where robots have taken over tasks that are labor-
intensive and tedious so that human personnel can do other tasks. Still, one of
the significant advances in Industry 4.0 is more versatile robots that can adapt to
new situations. This will enable robots to take on tasks that only humans could
previously accomplish, and free up employees to do other tasks.

One large category of such robots is mobile manipulators, such as KUKA KMR
iiwa. These are robots that can move around on a factory floor, or in other areas,
in addition to manipulating objects. This enables the robot to do pick and place
tasks where the robot is tasked with picking up an object from one location and
dropping it off at another. Such robots will become important tools for future
factories, but they are not yet at that stage.

One major challenge in developing such robots is the cost of the equipment and
development. One of the proposed solutions for lowering development costs is
using digital twins in virtual simulation environments. However for a digital twin
to be useful it has to resemble the real world to a high degree so that the behavior
observed in the simulation represents the behavior in the real world. Recent
development in computer hardware have enabled highly realistic simulators both
concerning physics and being photo-realistic.

2 Chapter 1 Introduction

This paper will explore which possibilities a digital twin of the KUKA KMR
iiwa provides and how it can affect the development of robotic applications. The
advantages of not having to test multiple iterations of the application on a physical
robot are immense and it also enables applications including machine learning as
the simulation is not limited to running in real-time.

1.2 Problem description
The end goal of the master thesis is to create a digital twin for the KUKA KMR
iiwa in a suitable simulation environment. The digital twin should be tested and
compared to the real-world robot, and the goal is that the digital twin can be
used as a development platform for future robotics applications using the KUKA
KMR iiwa. This paper does not focus on the implementation of such a digital
twin, but rather it explores the possibilities and discusses how such a solution can
be implemented.

1.3 Outline
This paper is a literature study and will discuss topics relevant to a digital twin
of a mobile manipulator such as the KUKA KMR iiwa. Chapter 2 presents the
fundamentals of robotic kinematics. Section 2.1 explains some terms and ba-
sic concepts for understanding the following sections which present manipulator
kinematics (Section 2.2) and kinematics for wheeled robots (Section 2.3).

Chapter 3 presents the theory behind SLAM and navigation, which are essential
parts of mobile robots. Section 3.2 presents different approaches to SLAM while
Section 3.3 presents some commonly used approaches for autonomous navigation.

Chapter 4 presents the term Digital Twin and discusses its use cases. Section 4.1
presents a comparison of different simulators, and the chapter ends with a discus-
sion on the relation between the simulator and the real world. Finally, Chapter 5
concludes the paper and discusses further work.

Chapter 2

Robot kinematics

This chapter presents fundamental theory relevant for understanding robotic con-
trol and methods described in later chapters. Usually previously developed li-
braries and packages will be used for controlling the robot, but some theoretical
background is necessary to use them efficiently.

Section 2.1 gives an introduction of poses and frames which are essential for con-
trolling robots. Section 2.2 describes the kinematics of manipulators with an
example of a 7-dof manipulator, and lastly, Section 2.3 describes the kinematics
of a wheeled robot using mecanum wheels.

2.1 Poses and frames
A pose is used to describe a position and orientation for an object in 2D or 3D
space. Relative to a reference frame S, the pose of an object in 2D can be described
as

X =

x
y
θ

 (2.1)

In the case of a 2D plane, an object has 3 degrees of freedom (dof). It can
move in the x and y direction or it can rotate θ degrees around the z-axis, hence
the vector X is sufficient to describe any pose in 2D space. Even though X is
sufficient to describe the pose of an object in 2D it can be somewhat cumbersome
to work with, and a more common description of poses is using homogeneous
transformation matrices. A homogeneous transformation matrix, T , consists of
a rotation matrix, R, and a column-vector, p, describing translation, as shown

4 Chapter 2 Robot kinematics

in Equation 2.2. The transformation matrix describes rotation and translation
relative to a reference frame S.

T =
[
R p
0 1

]
(2.2)

In the case of 2D p = [x, y]T and R as described in Equation 2.3 [18, p. 64]. All
rotation matrices R ∈ SO(2) in 2D or R ∈ SO(3) in 3D. This means that for all
R it holds that RT R = I and det(R) = 1 [18]. These are properties that imply
that there is no scaling involved in the rotation and that the rotation is uniquely
defined.

R =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(2.3)

There are two main benefits of using this notation. The first is that it makes
transformations between different frames to a matter of simple matrix multipli-
cation, and the second one is that the procedure for transformations is the same
in 3D. The only difference being that R ∈ SO(3) and not SO(2), and p ∈ R3×1.

The reason for the increased dimensions in R and p in 3D is that a rigid body
in 3D has 6 dof, translation in x, y, and z-direction, and rotation in roll, yaw,
and pitch direction. To accommodate for this increase in degrees of freedom the
homogeneous transformation matrix T has to be in R4×4, but it still retains the
shape described in Equation 2.2.

There are multiple ways of describing poses and frames such as exponential coordi-
nates, Denavit-Hartenberg parameters (DH-parameters), and quaternions which
each have their use cases, but for a basic understanding of robotic control, this
is sufficient. Section 2.2 describes the kinematics of a manipulator using DH-
parameters.

2.2 Manipulator kinematics
A robotic manipulator consists of joints and links. A link is a rigid body that is
part of the robot while a joint connects exactly two links. There are different types
of joints, and they provide the robot with varying degrees of freedom. Figure 2.1
shows 6 examples of commonly used joints.

• Revolute: One rotational dof. Rotates around a given axis.

2.2 Manipulator kinematics 5

Figure 2.1: 6 examples of common robot joints [18, p. 16]

• Prismatic: One translational degree of freedom. Translates along a given
axis.

• Helical: Also called a screw joint with one dof. It allows for a combined
translational and rotational motion along a screw axis.

• Cylindrical: Allows independent translation and rotation around one axis,
with two dof.

• Universal: A combination of two revolute joints arranged orthogonally
which provides two dof.

• Spherical: Provides 3 dof similar to a shoulder. Works like a universal
joint in addition to providing rotation around the axis of the outer link.

Most modern robotic manipulators use only revolute joints and are often referred
to as n-dof manipulators, where n is the number of joints. In general, a manip-
ulator operating in 2D needs 3 dof for the end-effector to reach all poses within
its workspace, while a manipulator in 3D space needs 6 dof. The workspace of a
robot is the space that the end-effector can reach. This is primarily determined
by the robot’s structure and is independent of the task [18, p. 33]

As a 6-dof robot can reach any position with its end-effector 6 dof should be
sufficient. However, only having 6 degrees of freedom may cause issues with
singularities and obstacle avoidance. A singularity occurs when the end-effector
loses the ability to move instantaneously in one or more directions [18, p.191].
Examples of common singularities in 6-dof robots are two collinear revolute joint
axes, three coplanar and parallel revolute joint axis and four revolute joint axes
intersecting at a common point [18, p.201]. Having an extra degree of freedom
simplifies this problem and allows the manipulator to move more freely which in

6 Chapter 2 Robot kinematics

many cases avoids such singularities.

More generally a 7-dof manipulator is kinematically redundant. This means that
while a 6-dof has a single configuration that takes the end-effector to the desired
position, a kinematically redundant manipulator has infinitely many configura-
tions to achieve that. This also means that a 7-dof manipulator has the ability
to avoid obstacles and it can create solutions to the inverse kinematic problem
which is optimal with respect to some criterion [18, p. 226].

2.2.1 Kinematics of a 7-dof manipulator

There exist multiple kinds of 7-dof manipulators, but this section will focus on
the kinematics of KUKA LBR iiwa (hereby referred to as LBR), which is the
manipulator on the KUKA KMR iiwa. This section will describe the kinematics
of the robot using Denavit-Hartenberg parameters (DH-parameters). The choice
of parameters and the calculations are based on [7].

There are multiple ways of describing the kinematics of a manipulator and the rea-
son for choosing DH parameters is that it uses the minimum number of parameters
for describing transformations between frames. This saves computational power
which improves real-time performance. One drawback of DH-parameters is that
they are prone to ill-conditioned parameters. This can happen if two adjacent
joints are nearly parallel. There exist other kinematic models such as the product
of exponentials (PoE), which has the benefit of treating rotational and prismatic
joints equally. In addition, PoE has an explicit definition of frames, whereas
DH-parameters have multiple conventions for assigning link frames. The main
drawback of PoE is that it requires 6 parameters to define a twist which is more
computationally expensive.

The LBR is a 7-dof manipulator with zero link offset with an anthropomorphic
arm structure. This means that the manipulator bears similarities to a human
arm and the joints are often described as shoulder, elbow, and wrist as shown in
Figure 2.2

Figure 2.2: Example of an anthropomorphic manipulator

2.2 Manipulator kinematics 7

Before computing the forward kinematics of the LBR the DH parameters has to
be defined. When choosing these parameters there is some freedom of choice but
for simplicity, the same parameters as in [7] are used. This is shown in Figure 2.3.

Figure 2.3: Horizontally mounted LBR iiwa with corresponding DH frames il-
lustrated [7]

In Figure 2.3 θi describes the angle of joint i and dij is the distance between
the base, wrist, elbow, and flange. To calculate the forward kinematics a set of
DH-parameters has to be chosen. Based on Figure 2.3 one possible set of such
parameters is shown in Table 2.1.

Table 2.1: A possible set of DH parameters for LBR [7]
i ai [mm] αi [rad] di [mm] θi [rad]
1 0 −π

2 dbs θ1
2 0 π

2 0 θ2
3 0 π

2 dse θ3
4 0 −π

2 0 θ4
5 0 −π

2 dew θ5
6 0 π

2 0 θ6
7 0 0 dwf θ7

Using DH parameters, the parameters for joint i are always relative to joint i − 1.
The list below explains each parameter in Table 2.1

• ai – The distance between zi−1 and zi along xi.

• αi – The angle between zi−1 and zi with the rotational axis along xi.

• di – The distance between xi−1 and xi along zi−1.

• θi – The angle between xi−1 and xi with the rotational axis along zi−1.

Table 2.1 defines all the necessary parameters for computing the transformation
between each adjacent link. Using all the transformations, i−1Ti, the forward

8 Chapter 2 Robot kinematics

kinematics of the manipulator can then be calculated by multiplying all transfor-
mations sequentially. Each transformation can be described as Equation 2.4 [18,
p. 590]

i−1Ti = Rotx̂(αi−1)Transx̂(ai−1)Transẑ(di)Rotẑ(θi) (2.4)

where

Transẑ(di) =

1 0 0 0
0 1 0 0
0 0 1 di

0 0 0 1

 Rotx̂(αi−1) =

1 0 0 0
0 cos αi−1 − sin αi−1 0
0 sin αi−1 cos αi−1 0
0 0 0 1

Transx̂(ai−1) =

1 0 0 ai−1
0 1 0 0
0 0 1 0
0 0 0 1

 Rotẑ(θi) =

cos θi − sin θi 0 0
sin θi cos θi 0 0

0 0 1 0
0 0 0 1

(2.5)

Combining all matrices from Equation 2.5 the resulting transformation is shown
in Equation 2.6

i−1Ti =

cos θi − sin θi 0 ai−1

sin θi cos αi−1 cos θi cos αi−1 − sin αi−1 −di sin αi−1
sin θi sin αi−1 cos θi sin αi−1 cos αi−1 di cos αi−1

0 0 0 1

 (2.6)

Now that each transformation is known by Equation 2.6 the final pose of the
end-effector in the base frame can be calculated as the product of all frames

0Tn =0 T1...n−1Tn (2.7)

where n=7 for the LBR.

Inverse kinematics is the other important problem to solve for controlling the
robot. This is a much more complicated problem and will not be solved here.
There exist other papers that have comprehensive explanations of this such as [7,
32, 13]

2.3 Wheeled robots 9

2.3 Wheeled robots
In many modern robotics applications, manipulators are placed atop mobile bases.
This makes the robot more versatile, but it also comes with some challenges when
modeling its behavior. This section will discuss the kinematics of wheeled robots.

In this section, we assume that the robot moves on a plane surface with no skid-
ding. This is to create a consistent model of how the wheels’ rotation affects the
robot’s pose.

There are two main categories of wheeled robots; holonomic drive and non-
holonomic drive. A formal definition is that a robot with holonomic drive has
no constraints on its velocity q̇ = (ϕ̇, ẋ, ẏ), while a robot with non-holonomic
drive has a single Pfaffian velocity constraint. An example of a non-holonomic
robot can be a car where the constraint prevents the car from moving directly
sideways, despite that it can reach any configuration (ϕ, x, y) in an obstacle-free
environment [18, p. 514].

Even though a non-holonomic robot can reach any configuration in an obstacle-
free environment this is not always true in real life where obstacles exist. The
main advantage of holonomic robots is that they are more maneuverable. The
ability to move directly sideways allows them to access spaces that non-holonomic
robots can’t access, and in many cases maneuvering a holonomic robot is simpler
than maneuvering a non-holonomic robot. There are, however, advantages to
using non-holonomic robots as well. To achieve non-holonomic drive the robot
needs special wheels that can move in multiple directions which makes them more
fragile and not suited for higher speeds. Usually, holonomic robots use omni
wheels or mecanum wheels shown in Figure 2.4. Both types have rollers with a
small diameter which works best on flat, hard surfaces [18, p. 515].

Figure 2.4: Example of omni wheel (left) and mecanum wheel (right) [18, p.
514]

The rest of this section will focus on kinematics for holonomic robots as the KMR

10 Chapter 2 Robot kinematics

has holonomic drive. There are two main types of wheels used in holonomic
robots, namely omni wheels and mecanum wheels, shown in Figure 2.4. Both
types allow the wheels to move sideways and in line with the wheel’s direction.
The omni wheels consist of multiple rollers around the circumference of the wheel
which are oriented in line with the plane of the wheel, whereas the rollers on the
mecanum wheels usually are mounted at about 45◦ to the plane of the wheel [18].
There are multiple ways of configuring a robot with omni wheels or mecanum
wheels, but two common ones are shown in Figure 2.5

Figure 2.5: Common configurations of omni wheels (left) and mecanum wheels
(right) to achieve holonomic drive [18, p. 516]

In Figure 2.5 the driving direction of the wheel is the direction in which the motor
drives the wheel and the free sliding direction is the direction in which the rollers
can roll freely without any power from the motor. In this illustration, the rollers
on the mecanum wheels are mounted at γ = 45◦.

2.3.1 Kinematic model for a four mecanum wheeled mobile robot

Kinematics is used to describe the motion of a robot based on some input. The
forward kinematics describes the robot’s motion based on input from each joint’s
position, and the inverse kinematics describes what the input to each joint or
motor has to be to achieve a certain movement. This chapter will discuss the
kinematics for the mobile base in the 2D plane.

The KMR iiwa is a robot with holonomic drive using mecanum wheels. That
means that the forward kinematics describes where the robot moves given some
input to the four wheels, while the inverse kinematics outputs the way each wheel
has to move in order to reach some target velocity [vx, vy, ω]T . The derivation of
the kinematic model is based on the paper of Taheri, Qiao, and Ghaeminezhad
[31].

In the plane, the robot’s motion can be described by a vector [vx, vy, ω]T which
corresponds to the forward and backward velocity in the x-direction, the left and

2.3 Wheeled robots 11

right velocity in the y-direction, and the rotational velocity around the z-axis.
This is relative to the robot’s X-Y frame. In addition, each wheel of the robot
has two velocities, the angular velocity of the wheel, ωi, and the velocity of the
rollers, vir. Equation 2.8 shows how these velocities relate.

[
ωi

vir

]
= T

vxR

vyR

ωR

 (2.8)

The task at hand is to calculate T to find an inverse kinematic. Figure 2.6 shows
a schematic illustration of one mecanum wheel and the relevant constants needed
to derive the inverse kinematics.

Figure 2.6: Here the variables used to derive the inverse kinematics for the robot
are shown [10]

The constants in Figure 2.6 are described in the list below [10]

• XR-YR, hereby references as X-Y, is the robot frame

• E-S is the wheel frame

• vir and ωi is the angular velocity of the rollers and the wheel in the wheel
frame (E-S).

• β is the angle between the S-axis and the X-axis.

• γ is the angle between the vr and the E-axis.

12 Chapter 2 Robot kinematics

• α is the angle between the X-axis and the line from O to the center of the
wheel P.

• ly and lx are the horizontal and vertical distances from the center of the
robot.

• r is the radius of the wheel.

In Equation 2.8 T is the transformation matrix between the robot frame and the
wheel frame. This transformation matrix consists of three main transformations

1. Transform the wheel’s velocity ωi and vir to the center of the wheel, wiTP .

2. Transform the velocities from the wheel’s frame to the frame of the robot,
P TR

3. And lastly transforming the velocity of the robot to the wheel’s, T ′

The first point is to transform the velocities ωi and vir into the E-S frame. vE

is directly proportional to the roration ωi and the radius of the wheel r, and is
described in Equation 2.9

vE = ωir (2.9)

Including the velocity of the rollers the velocity of the wheel in the E-S frame can
be described as

[
vS

vE

]
=

[
0 sin γ
r cos γ

] [
ωi

vir

]
=wi TP

[
ωi

vir

]
(2.10)

Further the transformation from the E-S frame to the robot’s frame X-Y. The
only transformation between the two frames is a pure rotation of β around the
z-axis. To calculate this Equation 2.3 can be used, which results in Equation 2.11

[
vxR

vyR

]
=

[
cos β − sin β
sin β cos β

] [
vS

vE

]
=P TR

[
vS

vE

]
(2.11)

The last transformation describes the transformation between the velocity of the
wheels in the robot frame [vxR, vyR]T and the robot’s velocity [vxR, vyR, ωR]T . As
the mecanum wheels have planar movement, the angular velocity of the robot
affects both the velocity of the wheels and the rollers. This transformation is
shown in Equation 2.12

2.3 Wheeled robots 13

[
vxR

vyR

]
=

[
1 0 −ly
0 1 lx

] vxR

vyR
ωR

 = T’

vxR

vyR
ωR

 (2.12)

Combining all the transformations from Equation 2.10, 2.11, and 2.12, the result-
ing transformation matrix T can be expressed as shown in Equation 2.13

T =wi T−1
P

P T−1
R T’ =

[
0 sin γ
r cos γ

]−1 [
cos β − sin β
sin β cos β

]−1 [
1 0 −ly
0 1 lx

]
(2.13)

Using the fact that lx = l cos α and ly = l sin α with trigonometric functions the
expression can be simplified to Equation 2.14. The detailed calculations can be
found in [31].

T = 1
−r sin γ

[
cos(β − γ) sin(β − γ) l sin(−α + β − γ)
−r cos β −r sin β lr sin(−α + β)

]
(2.14)

As the velocity of the rollers, vir cannot be controlled by the motor, it is desired
to express the inverse kinematics as a function of only the angular velocity of the
wheels. The correlation between the velocity of the roller vir and the angular
velocity ωi is given by Equation 2.15

vir = 1
cos γ

rrωi (2.15)

Using Equation 2.15 the inverse kinematics can be expressed as Equation 2.16

ω1
ω2
ω3
ω4

 = −1
r

cos(β1−γ1)

sin γ1
sin(β1−γ1)

sin γ1
l1 sin(β1−γ1−α1)

sin γ1
cos(β2−γ2)

sin γ2
sin(β2−γ2)

sin γ2
l2 sin(β2−γ2−α2)

sin γ2
cos(β3−γ3)

sin γ3
sin(β3−γ3)

sin γ3
l3 sin(β3−γ3−α3)

sin γ3
cos(β4−γ4)

sin γ4
sin(β4−γ4)

sin γ4
l4 sin(β4−γ4−α4)

sin γ4

 (2.16)

As mentioned at the beginning of this section mecanum wheels are usually mounted
parallel to the forward direction of the robot, as shown in Figure 2.5. In other
words this means that β = π

2 ∨ −π
2 . In addition, the rollers of mecanum wheels

are mounted at a 45◦ angle. This leaves γ with only four possible values, γ =
π
4 ∨ −π

4 ∨ 3π
4 ∨ −3π

4 . Using this simplification Equation 2.16 can be rewritten as
Equation 2.17

14 Chapter 2 Robot kinematics

ω1 = 1
r

(vx − vy − (lx + ly)ω)

ω2 = 1
r

(vx + vy + (lx + ly)ω)

ω3 = 1
r

(vx + vy − (lx + ly)ω)

ω4 = 1
r

(vx + vy + (lx + ly)ω)

(2.17)

Equation 2.17 concludes the inverse kinematics problem for a robot with mecanum
wheels mounted parallel to the direction of travel which is the case with KMR.

Chapter 3

SLAM and Navigation

There are two major challenges using mobile manipulators, or more specifically
autonomous mobile robots (AMRs), which are the problems of navigation and
mapping. For a robot to move efficiently in an area it needs a map, however, the
creation of such a map can be challenging. Navigation of AMRs involves many
problems such as localization, path planning, and object avoidance. [27] mentions
four core requirements to achieve such a task.

1. Map
2. Pose of the robot
3. Sensing
4. Path calculation and driving

If the robot knows its pose and can sense its surroundings it is possible to create a
map using SLAM. If the robot also has a map available it enables it to accomplish
navigation tasks which takes the robot from point A to point B. This chapter
will consider the mobile manipulator as an AMR where navigation of the mobile
platform is in focus.

The following sections will discuss these topics more in detail. Section 3.1 describes
maps and how to represent them, then Section 3.2 discusses how maps are created
using SLAM, and lastly, Section 3.3 describes the process of navigation and path
planning. The map and navigation section is mainly based on [27] whereas the
SLAM section is based on [30].

3.1 Maps
Maps are fundamental to navigation for AMRs. They can contain different kinds
of information and come in different formats. Traditionally a 2D occupancy grid
map (OGM) has been used, but in recent years 3D maps have been used and

16 Chapter 3 SLAM and Navigation

sometimes in combination with object segmentation [27, p. 324]. As the KMR is
a mobile manipulator moving on a plane factory floor, a 2D map is sufficient for
navigation purposes and will therefore be the focus of this section.

2D occupancy grid maps are commonly used within the ROS community and will
also be sufficient for this application. An OGM is represented as a greyscale image
as shown in Figure 3.1a. Here the white area is where the robot is free to move,
the black area is occupied and the gray area is unknown.

(a) Example of an occupancy
grid map

(b) Example of .yaml file associated with the
map

Figure 3.1: Example of an OGM and associated .yaml file created by Turtlebot
3 [27, p. 325]

When computing the map each pixel is assigned a value based on the probability
that it is occupied, denoted as occ. This probability is calculated using the pos-
terior probability of Bayes’ theorem. If the value of occ is close to 1 indicates a
higher probability that the area is occupied and if occ is closer to 0 indicates a
free area. These values are published as ROS messages and converted to integers
[0, 100] including −1 which indicates that the area is unknown [27].

Accompanying the map is a configuration .yaml file which specifies properties of
the map. Resolution specifies the area of a pixel in meters and the origin is the
2D pose of the lower-left pixel on the form [x, y, yaw] (yaw is often ignored) [9,
34].

An important addition to the OGM is the costmap which is used for navigation.
This will be further discussed in Subsection 3.3.1

3.2 SLAM – Simultaneous Localization and Mapping 17

3.2 SLAM – Simultaneous Localization and Mapping
As discussed in the previous section maps are essential to AMRs, but they are
not always available. Simultaneous localization and mapping, or SLAM, is the
problem of creating a map using a mobile robot with different sensors.

A formal definition of the SLAM problem is presented in [30].

A mobile robot roams an unknown environment, starting at an initial
location x0. Its motion is uncertain, making it gradually more diffi-
cult to determine its current pose in global coordinates. As it roams,
the robot can sense its environment with a noisy sensor. The SLAM
problem is the problem of building a map of the environment while
simultaneously determining the robot’s position relative to this map
given noisy data.

The challenge of SLAM is to do both localization and mapping at the same time,
whereas each task separately can be done easily.

A graphical representation of the SLAM problem is shown in Figure 3.2.

Figure 3.2: Graphical representation of the SLAM problem [30, p. 1154]

In Figure 3.2 t ∈ [0, T] is the time interval and T is the terminal time. xt is
the robot’s pose at time t and m is the map which is static and therefore time
irrelevant. ut is the relative motion of the robot, often derived from odometry,
and zt is the observations of the map gained from sensors. Together the SLAM
problem can be defined probabilistically as

p(xt, m|Zt, Ut) (3.1)

18 Chapter 3 SLAM and Navigation

Equation 3.1 describes the online SLAM problem which is when the robot calcu-
lates its pose and the map in real-time, as it discovers the world. The counterpart
of online SLAM is known as full SLAM which can be described as p(XT , m|ZT , UT).
This is usually done in batches such that the robot explores the world for a while
before it terminates and then generates the estimated map and path. The rest of
this section will mainly focus on online SLAM described in Equation 3.1.

To calculate this probability the robot needs a model that relates the odometry,
ut, to the location, xt, and the observations, zt, to the map, m. The two main
models that are used are shown in Equation 3.2.

Motion model: p(xt|xt−1, ut)
Measurement model: p(m|xt, zt)

(3.2)

The motion model describes the probability that the robot is located at xt given
the last position, xt−1, and the odometry in the last interval ut, whereas the
measurement model describes the probability of doing the observation zt given it
pose xt and the current map [30].

There are three main paradigms in SLAM used to calculate these probabilities
and finally to create a map. The first SLAM applications used extended Kalman
filters (EKF SLAM), but in most cases, EKF has been replaced by particle filters
for online SLAM. The last paradigm is graph-optimized approaches which were
primarily used for full SLAM but have recently seen adoption in online SLAM
applications as well [30, 15]. The following sections will present a brief overview
of the different paradigms.

3.2.1 Kalman Filter

Kalman filter, or extended Kalman filter (EKF), has historically been the most
influential method used for online SLAM [30]. The filter uses a model to estimate
the current state from the previous one. Then the error between the prediction of
the previous state and the measured values of the current state is used to update
the estimation to be more accurate [27]. A schematic illustration of this is shown
in Figure 3.3.

A drawback of the regular Kalman filter is that it is limited to linear models.
Extended Kalman filters use Taylor series expansion to linearize the models so
that they can work with non-linear systems as well.

The EKF algorithm uses a single state vector, µt, where the estimated pose of the
robot is stored in addition to the estimated locations of a set of features detected

3.2 SLAM – Simultaneous Localization and Mapping 19

Figure 3.3: Illustration of the concept of the Kalman filter [27, p. 334]

by the sensors. The algorithm presents the estimate by a multivariate Gaussian
as shown in Equation 3.3 [30]

p(xt, m|Zt, Ut) = N (µt, Σt) (3.3)

µt describes the pose of the robot and location of N features and its dimension
is 3 + 2N as three variables are needed to describe the robot’s pose and 2 co-
ordinates are needed for each feature. The matrix Σt is the covariance of the
robot’s assessment of its expected error in the guess µt, which is of dimension
(3 + 2N) × (3 + 2N) [30].

The dimension of Σt highlights one of the main drawbacks of this approach as its
size increases quadratically. After some time this will cause an issue with mem-
ory and performance will significantly decrease. Different alternative approaches
have been suggested focusing on reducing the problem of the dimension of the
covariance matrix [30].

3.2.2 Particle Filter

In recent years particle filters have become the most popular algorithm in object
tracking [27]. Contrary to EKF which uses an approximated linear model to search
for parameters to describe the state, particle filters predict these parameters based
on a probabilistic trial-and-error method [27]. A particle can be thought of as a
guess of the true current state of the system. In addition to the state, each particle

20 Chapter 3 SLAM and Navigation

also contains a weight that indicates the importance of the particle, based on the
new sensor measurement.

When initializing the particle filter, N particles are distributed near the robot’s
initial pose. Each particle is assigned a weight of 1/N which indicates that they
are all equally important. N is a parameter that is empirically determined, usually
in the hundreds [27]. After initialization 4 main steps are repeated [27].

1. Prediction: The particles are moved based on the motion model (Equa-
tion 3.2)

2. Update: The probability and weight of each particle are calculated based
on the new sensor information

3. Pose estimation: The pose of the robot is estimated using the position,
orientation, and weight of all the particles

4. Resampling: New particles replace less weighted particles and inherit in-
formation from the highly weighted particles. There still have to exist N
particles after this step.

There exist different variants of particle filters, but the main idea behind them
is roughly as described above. Examples of implementations are Monte Carlo
localization (MCL) which is commonly used in pose estimation algorithms [27],
and Rao-Blackwelled particle filters which utilize a combination of Kalman filter
and particle filter [27].

Particle filters are commonly used in SLAM systems, but they suffer from two
main problems. The first is that the number of particles, N , is set empirically.
This greatly affects the performance of the system and is tightly coupled with the
amount of uncertainty the filter needs to represent. The other problem is that
the system is prone to particle depletion in the case of nested loops and re-visits.
Particle depletion means that there is a lack of particles representing the true
state [30]. There exist approaches attempting to improve the situation, but they
do not eliminate the problem in general.

3.2.3 Graph-based Optimization

Graph-based optimization techniques for SLAM were mainly used for full SLAM
problems, but in recent years the technique has also been adopted in online SLAM
applications. The idea is that the pose of the robot and the location of landmarks
are represented as nodes in a graph. Each pair of points, xt−1, xt, along the
robots path is connected with an edge containing information from the odometry
ut. The edges between the robot’s location xt and a landmark mi describe the

3.3 Navigation 21

soft constraint between them [30]. Finally, this results in a sparse graph used to
generate the map.

When the graph is created the optimization problem is to minimize the error
caused by the soft constraints. There exist different approaches for this, such as
[14, 2].

One major advantage of this approach is that the sparse graph allows much higher
dimensional maps compared to EKF SLAM. Due to the limited space used to
store, and update the graph, graphical SLAM can create significantly larger maps
compared to other methods.

One example of a framework implementing graph-based optimization for SLAM
is Google’s Cartographer [11], however, their system works for online SLAM. The
system combines both local and global approaches to 2D SLAM where each scan of
the environment is matched against a submap M . Matching each scan to a submap
will, over time, accumulate errors. When mapping larger areas multiple submaps
are created and their poses are stored in memory for the loop closing optimization.
Once a submap no longer changes each pair of submaps are considered for loop
closing, and if a good match is found the relative poses of the submaps are added
to the optimization problem [11].

3.3 Navigation
Navigation is the task of moving the robot from an initial pose to a goal pose
using a map created by for example SLAM as discussed in Section 3.2. The robot
should be able to plan a path and avoid obstacles and possible moving objects
autonomously. The task consists of the following four subtasks [27]

1. Sensing: The robot gathers information from the wheel encodes and other
sensors that describe the pose of obstacles such as walls, furniture, and other
objects relative to the robot.

2. Localization / Pose estimation: Based on the sensory input, the pose
of the robot is estimated on the map. Multiple such methods exist, but one
commonly used is AMCL which will be discussed in Subsection 3.3.2.

3. Motion planning / Path planning: Creates a path from the current
pose to the goal pose on the map. Usually, this task is separated into a
global path which creates a path throughout the whole map, and a local
path which handles path planning for a small area around the robot.

4. Move / Obstacle avoidance: When the robot follows the planned path
obstacles and moving objects can occur. Obstacle avoidance is the task

22 Chapter 3 SLAM and Navigation

of avoiding collision with these objects and planning an alternative path.
DWA is one algorithm used for this task, and it will be explained in Sub-
section 3.3.3.

The following subsections will present three main components of navigation; costmaps,
Adaptive Monte Carlo Localization (AMCL), and Dynamic Window Approach
(DWA)

3.3.1 Costmap

As a result of SLAM, a static map for navigation is generated. It defines occupied
areas, free areas, and unknown areas. A costmaps is an extension of this map
describing the cost for the robot to move in different parts of the map. A higher
cost indicates a higher probability of colliding. An example of a costmap is shown
in Figure 3.4

Figure 3.4: Example of a costmap corresponding to the map in Figure 3.1a [27,
p. 338]

The costmap is generated based on the OGM in Figure 3.1a and the brighter
colors are the parts of the map that is recognized by the robot from its current
pose.

Costmaps can be separated into two types with the first being a global costmap
which is used for navigation over the entire fixed map, and the second is a local
costmap used for obstacle avoidance and path planning in the area close to the
robots. Both maps are represented the same way with a grid containing values
between 0 and 255 which indicates the cost. Figure 3.5 shows the relationship
between the distance to the object and the costmap value.

Using this map it is possible to use different pathfinding algorithms such as A*
and others. There exist multiple ROS packages and other implementations which

3.3 Navigation 23

Figure 3.5: Relationship between the distance to the object and the costmap
value [27, p. 356]

automate the process of path planning. One such example is the ROS package
Navigation 2 [19].

3.3.2 Adaptive Monte Carlo localization

Adaptive Monte Carlo localization (AMCL) is based on the Monte Carlo localiza-
tion (MCL) pose estimation algorithm using particle filters discussed in Subsec-
tion 3.2.2. The main benefit of AMCL is that it has better real-time performance
which it achieves by using fewer samples (equivalent to particles) than MCL.

The procedure of localization is similar to the general algorithm for particle filters
which consists of predicting possible samples of the pose, updating the samples
with sensor information, estimating the pose, and resampling which creates new
likely samples. The details of particle filters are discussed in Subsection 3.2.2.

This algorithm is commonly used in packages for navigation using ROS. One
example of this is the Navigation 2 [19] package which provides functionality for
autonomous navigation in ROS applications.

24 Chapter 3 SLAM and Navigation

3.3.3 Dynamic Window Approach

Dynamic Window Approach (DWA) is a commonly used collision avoidance strat-
egy in ROS. The robot initially follows a global path, but when obstacles occur
that are not present on the map, the robot needs to plan a local path and DWA
is one strategy for planning this path.

The robot has a limited number of available movements based on the dynamics
of the robot. A holonomic robot can move in x and y direction in addition to
rotation θ around the z-axis. The task of DWA is to continuously choose the
optimal collision-free velocity. DWA does not primarily consider the robot in the
2D xy-plane, but rather in the velocity space consisting of (vx, vy, ω), where ω
is the rotational velocity around the z-axis. The algorithm searches the velocity
space for possible velocities and chooses the best one.

To choose the best, an objective function G(vx, vy, ω) considers different metrics
and decides what combination of (vx, vy, ω) yields the best outcome. To choose
what is the best outcome the objective function may consider cost on the costmap,
distance to global path, distance to goal, orientation to goal, and orientation to
path [17]. When the best velocities are determined so that the objective function
is maximized the robot executes this.

Chapter 4

Digital twins

Autonomous mobile robots (AMRs) and mobile manipulators will be an essential
part of manufacturing and industrial work, and it is one of the primary building
blocks of Smart Factories and self-organization Industry 4.0 [16]. One of the main
challenges of developing such robots is that testing is time-consuming and that it
requires expensive resources. An essential criterion for the widespread adaptation
of such robots is that the development cost is lowered and that testing becomes
less resource-demanding.

In general, a Digital Twin (DT) is a virtual model of a physical entity with similar
properties. This allows us to expose the DT to a variety of situations and observe
how the physical entity is likely to be affected or behave. The characteristics of a
digital twin are as follows [1]

1. To integrate various types of data from the physical entity and to map the
physical entity faithfully.

2. To exist along the lifecycle of the physical entity and evolve with the physical
one, and to accumulate knowledge from the physical one

3. Not only to describe the physical entity but also to optimize the physical
one based on the cyber model.

In the field of robotics, the DT allows developers to efficiently test new algorithms
and check that the robot behaves as expected. This significantly reduces the cost
of development and also provides a safe environment where humans nor robots
are exposed to hazards.

Section 4.1 discusses common features of robotics simulators and compares some
of the most used simulators. Section 4.2 discusses the main problem of simulators
which is the gap between the real world and the simulation.

26 Chapter 4 Digital twins

4.1 Robotic simulators
In order to develop a DT and be able to test it, a simulator is needed to simulate
the real world. It needs a physics engine to replicate collisions between objects
and to provide the robot with the possibility to affect the environment.

[3] defines a robotics simulator as an end-user software application that includes
at least the following functionality:

1. Physics engine for realistic modeling of physical phenomenon

2. Collision detection and friction models

3. Graphical User Interface (GUI)

4. Import capability for scenes and meshes

5. API especially for programming language used by the robotics community
(C++/Python)

6. Models for an array of joints, actuators, and sensors readily available

Table 4.1 shows an overview of some common robotics simulators with their fea-
tures.

Table 4.1: Comparison between popular robotics simulators [3]. (NVIDIA Isaac
was not part of the original table from [3])
Simulator

RGBD
+

LiDAR

Force
sensor

Linear +
Cable

actuator

Multi-Body
Import

Soft-Body
Contacts

DEM
Simulation

Fluid
Mechanics

Headless
Mode

ROS
Support HITL Teleoperation Realistic

Rendering
Inverse

Kinematics

Airsim ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓, Unreal ✗

CARLA ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓, Unreal ✗

CoppeliaSim ✓ ✓
Linear
only ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓

Gazebo ✓ ✓
Linear
only ✓ ✗

Through
Fluidix

Through
Fluidix ✓ ✓ ✓ ✓ ✗ ✓

MuJoCo ✓ ✓ ✓ ✓ ✓ ✓ Limited ✓ ✗
HAPTIX

only
HAPTIX

only ✗ ✗

PyBullet ✓ ✓
Linear
only ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓

SOFA ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓, Unity ✗

UWSIM RGBD
only ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓, custom ✗

Chrono ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓, offline ✓

Webots ✓ ✓ Linear ✓ ✗ ✗ Limited ✓ ✓ ✗ ✓ ✗ ✗

NVIDIA Isaac ✓[24] ✓[3] ✓[24] ✓[24] ✓[3] Through
Flex [25]

Through
Flex [20] ✓[24] ✓[24] ✓[22] ✓[21] ✓, Omniverse ✓[3]

There exist multiple simulators that are suitable for different robotics applica-
tions. [3] divides robotics applications into 7 main categories; (i) Mobile Ground
Robotics, (ii) Manipulation, (iii) Medical Robotics, (iv) Marine Robotics, (v)
Aerial Robotics, (vi) Soft Robotics, and (vii) Learning for Robotics. As the main
focus of this paper is the mobile manipulator KMR the rest of this chapter will
focus on simulators developed for (i) mobile ground robotics and (ii) manipulation

4.1 Robotic simulators 27

Mobile Ground Robotics

Mobile ground robotics is a wide sub-domain in the field of robotics. It consists
of many other domains such as locomotion, perception, cognition, and navigation
[29]. A simulator for mobile ground robotics, therefore, needs to provide an in-
terface that makes simulations in all these domains possible. One of the main
enablers for this is that the simulator provides a comprehensive sensor suite. In
Table 4.2 a list of simulators is shown with some of the essential features.

Table 4.2: Comparison between different robotics simulators used for mobile
ground robotics [3]. (NVIDIA Isaac was not part of the original table from [3])
Simulator GPS Tracks Wheels Legs Mecanum/Omni

Wheels
Heightmap

Import
OpenDrive/

OpenStreetMap Pathplanning ROS
Support RGBD LiDAR Realistic

Rendering

Gazebo ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗

CoppeliaSim ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗

Raisim ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓, Unity
Webots ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

PyBullet ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✗

CARLA ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓, Unreal
Chrono ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓, POV-Ray
NVIDIA Isaac ✗[21] ? ✓[24] ✓[24] ✓[24] ✗[26] ✗ ✓[21] ✓[24] ✓[24] ✓[24] ✓[24]

Table 4.2 is a general comparison with a large scope. The features are selected
to cover the entire space of mobile ground robots, however, the use case for the
KMR is narrower. The KMR is designed for indoor use, on a flat surface where it
moves over relatively small distances compared to e.g. an autonomous car. This
has to be considered when choosing the appropriate simulator.

Manipulators

Table 4.3 shows a list of popular simulators mainly used for manipulators.

Table 4.3: Comparison between different robotics simulators used for manipula-
tors [3]
Simulator Pathplanning Inverse

Dynamics
Inverse

Kinematics Suction Deformable
Objects

Force/Torque
Sensor

Realistic
Rendering

SimGrasp ✓ ✓ ✓ ✗ ✗ ✓ ✗

Gazebo ✓ ✓ ✓ ✗ ✗ ✓ ✗

CoppeliaSim ✓ ✗ ✓ ✓ ✗ ✓ ✗

PyBullet ✓ ✓ ✓ ✗ ✓ ✓ ✗

MuJoCo ✗ ✓ ✗ ✗ ✓ ✓ ✗

NVIDIA Isaac ✓ ✗ ✓ ✓ ✓ ✓ ✓

For manipulators, a different set of features are important. One major difference
between the mobile ground robots is that manipulators interact with smaller ob-
jects in pick-and-place tasks. This requires a finer control and stable physics that
robustly handles contacts. The simulator also needs position, velocity, and torque

28 Chapter 4 Digital twins

control for joints to control the arm, in addition to visual sensors such as RGB
and RGB-D. Specific to manipulators are features such as inverse and forward
kinematic solvers as well [3].

4.1.1 Simulator comparison

The section above gives an overview of a range of different simulators and their
pros and cons. This section will discuss three promising options for creating a DT
of a mobile manipulator.

Gazebo

Gazebo was the most widely used robotics simulator counted by citations in the
period 2016-2020 [3]. It is an open-source, general-purpose simulator and it sup-
ports the most common features for robotics simulators as shown in Table 4.1, 4.2,
and 4.3. The simulator supports multiple physics engines such as Bullet, Dynamic
Animation, Robotics Toolkit, Open Dynamics Engine, and Simbody [8]. It also
offers many common sensors such as cameras, RGB-D and GPS, however Gazebo
does not support realistic rendering which means that what the cameras in the
simulator sees does not transfer very well into real world application.

Gazebo has two main benefits over other simulators, namely, its tight integration
with ROS and its large open-source community. The tight integration with ROS
provides efficient testing of control software, and the large community means that
there exist lots of resources if issues occur during development.

PyBullet

PyBullet is a python module used for physics simulations, robotics, and deep
reinforcement learning (RL) based on the Bullet Physics SDK which is written
in C++ [5, 4]. PyBullet is easy to use, but it has rather minimal support for
relevant sensors compared to other simulators even though it has features such
as inverse dynamics, inverse kinematics, deformable objects, and force and torque
sensors [3].

NVIDIA Isaac Sim

NVIDIA Isaac Sim was first released in 2019 and has later been updated with the
latest version being 2021.2 and version 2022.1 announced at GTC 2022 [6, 24, 23].
Due to its young age, there have not been as many publications using Isaac sim
compared to Gazebo or other popular simulators, however, this does not mean
that the simulator is not suited for the use case.

4.2 Sim-to-Real 29

NVIDIA Isaac Sim is a robotics simulator based on NVIDIA Omniverse. Isaac
sim is suitable for both navigation and manipulation tasks. It simulates sensor
data such as RGB-D, LiDAR, and IMU data in addition to supporting ROS and
ROS 2 [24]. Isaac SDK is a tightly coupled toolkit that provides building blocks
and tools to efficiently develop robotics applications which can easily be tested
using Isaac sim [21]

Isaac Sim also supports realistic rendering using real-time ray and path tracing
[23]. This is tightly integrated with NVIDIA’s GPUs which provides Isaac Sim
with one of the most photorealistic environments, while at the same time being
efficient. Photorealism is one of Isaac Sim’s major benefits. The simulator also
features a synthetic data generation tool for generating photorealistic datasets
which makes training and deploying AI models more efficient.

One of the drawbacks of Isaac sim is that it is still in an early stage, and the
resources available are somewhat limited. The documentation is comprehensive,
but the lack of an established community might be a disadvantage. The simulator
is proprietary which for some might also be a drawback.

Despite some drawbacks, Isaac sim looks to be a promising robotics simulator
with the necessary features for developing and testing the mobile manipulator,
KMR.

4.2 Sim-to-Real
Simulators create a replication of the real world, however, they are never perfect.
This gap between these two worlds is called the sim-to-real gap, or sometimes the
reality gap. For the development of robotics applications, it is essential that this
gap is small so that the testing in the simulator actually represents how the robot
will behave in the real world. This is also an important factor when developing
robots using RL transferred onto physical robots.

The sim-to-real problem is mainly related to RL applications, however, this section
will briefly discuss some challenges and possible solutions. This is also relevant for
mobile manipulators as they may also be used in robotic applications utilizing RL.
This has been done with some degree of success so far [33], however, researchers
have had larger success with RL using stationary manipulators [28, 12].

4.2.1 How to narrow the sim-to-real gap

There exist multiple methods for narrowing the sim-to-real gap as presented in
[35].

30 Chapter 4 Digital twins

Domain Randomization

As the domain of the real world and the domain of the simulator differs according
to the sim-to-real gap, domain randomization attempts to bridge this gap by
extending the simulation domain using randomness such that at least some part
of the simulation domain overlaps with the domain of the real world as shown in
Figure 4.1

Figure 4.1: Intuition behind domain randomization [35]

[35] divides domain randomization into visual randomization and dynamics ran-
domization depending on which parts of the simulation are being randomized.
Dynamics randomization targets the physical attributes of the simulator such as
object dimensions, object and robot link masses, surface friction coefficients, and
robot joint damping coefficients [35].

Most RL robotics applications rely heavily on computer vision for tasks such as
object detection, pose estimation, and semantic segmentation. A simulation en-
vironment will provide objects with different textures and lighting that probably
will not work as intended when transferred into the real world. Visual random-
ization targets this by randomizing different visual attributes in the simulation,
e.g. different textures on objects, different camera positions, and different light
sources. An example of visual randomization using NVIDIA Isaac Sim is shown
in Figure 4.2

4.2 Sim-to-Real 31

Figure 4.2: Example of domain randomization using Isaac sim [24]. Shows dif-
ferent lighting, textures, and object positions while the camera position remains
the same.

Simulation environment

Different simulators have different features, as discussed in Section 4.1, and the
choice of simulators is key to closing the sim-to-real-gap. In general, more realistic
simulators will naturally yield better results, however, one might measure more
realistic slightly differently based on the application. If the application uses an
autonomous vehicle mainly relying on cameras as sensory input, photorealism will
be an important feature. However, a simulator used for training an AI for robotic
grasping may place more importance on physically accurate simulations.

A mobile manipulator is a hybrid of different robots and thus it requires a general-
purpose simulation environment. It needs to be physically accurate to enable re-
alistic testing of robotic grasping with the manipulator while at the same time
providing the relevant sensors for AMRs. Cameras would be a natural sensor to
utilize in a mobile manipulator application, and for this a photo-realistic environ-
ment would be a major benefit.

NVIDIA Isaac sim has not been tested during this project, however, it appears
to provide most, if not all, of the necessary features for a digital twin of a mobile
manipulator. Many simulators have functionality for different parts of such a
robot, but Isaac sim appears to provide support for the entire mobile manipulator
and will likely be suited for a digital twin of the KMR iiwa.

Chapter 5

Conclusion and Further Work

5.1 Conclusion
This paper has presented fundamental kinematics and control of both manipu-
lators and wheeled robots focusing on holonomic robots using mecanum wheels,
such as the KUKA KMR iiwa. In addition, theory behind navigation and mapping
has been presented as this is an essential part of autonomous mobile robots.

The paper also discussed the use of digital twins and how this may be imple-
mented using a robotic simulator. This is a particularly interesting topic as it
enables cheaper and more efficient development of robotic applications. In recent
years simulators have become more physically accurate which allows for more re-
alistic interactions between the robot and its environment. These advancements
have significantly improved simulations of robotic grasping where fine control of
the manipulator is essential, and the physics has to be accurate. Previously most
robotic simulators used for manipulators have focused on physics whereas pho-
torealistic environments have been a missing feature. However recently simula-
tors such as NVIDIA Isaac sim have introduced photorealistic real-time rendering
while at the same time providing physically accurate environments. This allows
for more realistic testing of camera-reliant robotic applications.

These advancements contribute to narrowing the sim-to-real gap which has been
one of the main challenges facing robotic simulation. This is especially true of
machine learning models that are trained in simulation and later deployed in the
real world. The goal is that no further training is needed before transferring the
models to the real world, but this has usually not been the case because of the
sim-to-real gap.

34 Chapter 5 Conclusion and Further Work

5.2 Further work
Further work on this project may include testing how robots developed using a
simulator, such as Isaac sim, behaves in the real world. As this has not been done
with the KMR iiwa the first challenge would be implementing a digital twin of
the robot in the simulation environment with the necessary controls and sensors.
In addition, a simulation environment of the MANULAB at NTNU has to be
created to test the robot’s behavior.

For the digital twin to be of any value a similar control interface has to be im-
plemented for the digital twin and the robot. ROS 2 is the most commonly used
interface in robotics applications and it is the obvious choice for this task as well.
Isaac sim supports ROS out of the box which is an advantage, but the KMR iiwa
does not. This will require some extra configurations, but some work has been
done on this in [10]. If time allows testing a simple pick-and-place task would be
interesting as it will test multiple parts of the system.

References

[1] Stefan Boschert and Roland Rosen. Digital twin-the simulation aspect Mecha-
tronic Futures. Berlin, Germany: Springer Verlag, 2016.

[2] Luca Carlone, Rosario Aragues, José A. Castellanos, and Basilio Bona. “A
fast and accurate approximation for planar pose graph optimization”. In:
The International Journal of Robotics Research 33.7 (2014), pp. 965–987.
doi: 10.1177/0278364914523689.

[3] Jack Collins, Shelvin Chand, Anthony Vanderkop, and David Howard. “A
Review of Physics Simulators for Robotic Applications”. In: IEEE Access 9
(2021), pp. 51416–51431. doi: 10.1109/ACCESS.2021.3068769.

[4] Erwin Coumans and Yunfei Bai. PyBullet, a Python module for physics
simulation for games, robotics and machine learning. 2021. url: http://
pybullet.org (visited on 04/27/2022).

[5] Erwin Coumans, Yunfei Bai, and Jasmine Hsu. pybullet 3.2.4. 2022. url:
https://pypi.org/project/pybullet/ (visited on 04/27/2022).

[6] Steve Crowe. “NVIDIA Isaac SDK now available for robotics developers”. In:
The Robot Report (Apr. 19, 2019). url: https://www.therobotreport.
com/nvidia-isaac-sdk-now-available-for-robotics-developers/
(visited on 04/26/2022).

[7] Carlos Faria, Flora Ferreira, Wolfram Erlhagen, Sérgio Monteiro, and Es-
tela Bicho. “Position-based kinematics for 7-DoF serial manipulators with
global configuration control, joint limit and singularity avoidance”. In: Mech-
anism and Machine Theory 121 (Mar. 2018), pp. 317–334. doi: 10.1016/
j.mechmachtheory.2017.10.025.

[8] Gazebo. Physics Parameters. url: https://classic.gazebosim.org/
tutorials?tut=physics_params&cat=physics (visited on 04/26/2022).

[9] Brian Gerkey and Tony Pratkanis. map_server. 2020. url: http://wiki.
ros.org/map_server (visited on 05/02/2022).

[10] Charlotte Heggem and Nina Marie Wahl. Configuration and Control of KMR
iiwa with ROS2. NTNU, Dec. 2019.

https://doi.org/10.1177/0278364914523689
https://doi.org/10.1109/ACCESS.2021.3068769
http://pybullet.org
http://pybullet.org
https://pypi.org/project/pybullet/
https://www.therobotreport.com/nvidia-isaac-sdk-now-available-for-robotics-developers/
https://www.therobotreport.com/nvidia-isaac-sdk-now-available-for-robotics-developers/
https://doi.org/10.1016/j.mechmachtheory.2017.10.025
https://doi.org/10.1016/j.mechmachtheory.2017.10.025
https://classic.gazebosim.org/tutorials?tut=physics_params&cat=physics
https://classic.gazebosim.org/tutorials?tut=physics_params&cat=physics
http://wiki.ros.org/map_server
http://wiki.ros.org/map_server

36 References

[11] Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel Andor. “Real-time
loop closure in 2D LIDAR SLAM”. In: 2016 IEEE International Conference
on Robotics and Automation (ICRA). 2016, pp. 1271–1278. doi: 10.1109/
ICRA.2016.7487258.

[12] Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov,
Alex Irpan, Julian Ibarz, Sergey Levine, Raia Hadsell, and Konstantinos
Bousmalis. “Sim-To-Real via Sim-To-Sim: Data-Efficient Robotic Grasping
via Randomized-To-Canonical Adaptation Networks”. In: 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2019,
pp. 12619–12629. doi: 10.1109/CVPR.2019.01291.

[13] I. Kuhlemann, A. Schweikard, P. Jauer, and F. Ernst. “Robust inverse
kinematics by configuration control for redundant manipulators with seven
DoF”. In: 2016 2nd International Conference on Control, Automation and
Robotics (ICCAR). 2016, pp. 49–55. doi: 10.1109/ICCAR.2016.7486697.

[14] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and
Wolfram Burgard. “G2o: A general framework for graph optimization”. In:
2011 IEEE International Conference on Robotics and Automation. 2011,
pp. 3607–3613. doi: 10.1109/ICRA.2011.5979949.

[15] Mathieu Labbé and François Michaud. “Long-term online multi-session graph-
based SPLAM with memory management”. In: Autonomous Robots 42.6
(Aug. 2018), pp. 1133–1150. issn: 1573-7527. doi: 10.1007/s10514-017-
9682-5.

[16] Heiner Lasi, Peter Fettke, Hans-Georg Kemper, Thomas Feld, and Michael
Hoffmann. “Industry 4.0”. In: Business & Information Systems Engineering
6.4 (Aug. 2014), pp. 239–242. issn: 1867-0202. doi: 10.1007/s12599-014-
0334-4.

[17] David V. Lu. Fundamentals of Local Planning. Unpublished manuscript,
Conference notes. 2017. url: https://roscon.ros.org/2017/presentations/
ROSCon % 5C % 202017 % 5C % 20Fundamentals % 5C % 20of % 5C % 20Local % 5C %
20Planning.pdf.

[18] Kevin M. Lynch and Frank C. Park. Modern Robotics. Cambridge, England:
Cambridge University Press, 2017. isbn: 978-1-10-715630-2.

[19] Steve Macenski, Francisco Martín, Ruffin White, and Jonatan Ginés Clavero.
“The Marathon 2: A Navigation System”. In: 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 2020, pp. 2718–2725.
doi: 10.1109/IROS45743.2020.9341207.

[20] NVIDIA. Fluid Dynamics UAV, blimp, subsea. 2021. url: https://forums.
developer.nvidia.com/t/fluid-dynamics-uav-blimp-subsea/187145/
2?u=user164 (visited on 04/20/2022).

https://doi.org/10.1109/ICRA.2016.7487258
https://doi.org/10.1109/ICRA.2016.7487258
https://doi.org/10.1109/CVPR.2019.01291
https://doi.org/10.1109/ICCAR.2016.7486697
https://doi.org/10.1109/ICRA.2011.5979949
https://doi.org/10.1007/s10514-017-9682-5
https://doi.org/10.1007/s10514-017-9682-5
https://doi.org/10.1007/s12599-014-0334-4
https://doi.org/10.1007/s12599-014-0334-4
https://roscon.ros.org/2017/presentations/ROSCon%5C%202017%5C%20Fundamentals%5C%20of%5C%20Local%5C%20Planning.pdf
https://roscon.ros.org/2017/presentations/ROSCon%5C%202017%5C%20Fundamentals%5C%20of%5C%20Local%5C%20Planning.pdf
https://roscon.ros.org/2017/presentations/ROSCon%5C%202017%5C%20Fundamentals%5C%20of%5C%20Local%5C%20Planning.pdf
https://doi.org/10.1109/IROS45743.2020.9341207
https://forums.developer.nvidia.com/t/fluid-dynamics-uav-blimp-subsea/187145/2?u=user164
https://forums.developer.nvidia.com/t/fluid-dynamics-uav-blimp-subsea/187145/2?u=user164
https://forums.developer.nvidia.com/t/fluid-dynamics-uav-blimp-subsea/187145/2?u=user164

References 37

[21] NVIDIA. Isaac SDK. 2022. url: https : / / docs . nvidia . com / isaac /
isaac/doc/index.html (visited on 04/20/2022).

[22] NVIDIA. Multi robot control support. 2021. url: https://forums.developer.
nvidia.com/t/multi-robot-control-support/184937/2?u=user164
(visited on 04/20/2022).

[23] NVIDIA. NVIDIA Isaac Sim. 2022. url: https://developer.nvidia.
com/isaac-sim (visited on 04/26/2022).

[24] NVIDIA. Omniverse: Isaac Sim. 2022. url: https://docs.omniverse.
nvidia.com/app_isaacsim/app_isaacsim.html (visited on 04/20/2022).

[25] NVIDIA. Physics Core - Omniverse Create. 2022. url: https://docs.
omniverse.nvidia.com/app_create/prod_extensions/ext_physics.
html (visited on 04/20/2022).

[26] NVIDIA. Questions regarding USD scenes and Isaac Sim. 2021. url: https:
/ / forums . developer . nvidia . com / t / questions - regarding - usd -
scenes-and-isaac-sim/186793/5?u=user164 (visited on 04/20/2022).

[27] YoonSeok Pyo, HanCheol Cho, RyuWoon Jung, and TaeHoon Lim. ROS
Robot Programming: A Handbook is written by TurtleBot3 Developers. ROBO-
TIS Co.,Ltd., 2017. isbn: 979-11-962307-1-5.

[28] Kanishka Rao, Chris Harris, Alex Irpan, Sergey Levine, Julian Ibarz, and
Mohi Khansari. “RL-CycleGAN: Reinforcement Learning Aware Simulation-
to-Real”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). June 2020.

[29] Francisco Rubio, Francisco Valero, and Carlos Llopis-Albert. “A review
of mobile robots: Concepts, methods, theoretical framework, and applica-
tions”. In: International Journal of Advanced Robotic Systems 16.2 (2019).
doi: 10.1177/1729881419839596.

[30] Cyrill Stachniss, John J. Leonard, and Sebastian Thrun. “Springer Hand-
book of Robotics”. In: Berlin, Heidelberg: Springer, 2008. Chap. 46. Simul-
taneous Localization and Mapping.

[31] Hamid Taheri, Bing Qiao, and Nurallah Ghaeminezhad. “Kinematic Model
of a Four Mecanum Wheeled Mobile Robot”. In: International Journal of
Computer Applications 113 (Mar. 2015), pp. 6–9. doi: 10.5120/19804-
1586.

[32] Pavel Trutman, Mohab Safey El Din, Didier Henrion, and Tomas Pajdla.
“Globally Optimal Solution to Inverse Kinematics of 7DOF Serial Manip-
ulator”. In: IEEE Robotics and Automation Letters 7.3 (2022), pp. 6012–
6019. doi: 10.1109/LRA.2022.3163444.

https://docs.nvidia.com/isaac/isaac/doc/index.html
https://docs.nvidia.com/isaac/isaac/doc/index.html
https://forums.developer.nvidia.com/t/multi-robot-control-support/184937/2?u=user164
https://forums.developer.nvidia.com/t/multi-robot-control-support/184937/2?u=user164
https://developer.nvidia.com/isaac-sim
https://developer.nvidia.com/isaac-sim
https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim.html
https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim.html
https://docs.omniverse.nvidia.com/app_create/prod_extensions/ext_physics.html
https://docs.omniverse.nvidia.com/app_create/prod_extensions/ext_physics.html
https://docs.omniverse.nvidia.com/app_create/prod_extensions/ext_physics.html
https://forums.developer.nvidia.com/t/questions-regarding-usd-scenes-and-isaac-sim/186793/5?u=user164
https://forums.developer.nvidia.com/t/questions-regarding-usd-scenes-and-isaac-sim/186793/5?u=user164
https://forums.developer.nvidia.com/t/questions-regarding-usd-scenes-and-isaac-sim/186793/5?u=user164
https://doi.org/10.1177/1729881419839596
https://doi.org/10.5120/19804-1586
https://doi.org/10.5120/19804-1586
https://doi.org/10.1109/LRA.2022.3163444

38 References

[33] Cong Wang, Qifeng Zhang, Qiyan Tian, Shuo Li, Xiaohui Wang, David
Lane, Yvan Petillot, and Sen Wang. “Learning Mobile Manipulation through
Deep Reinforcement Learning”. In: Sensors 20.3 (2020). issn: 1424-8220.
url: https://www.mdpi.com/1424-8220/20/3/939.

[34] Brian Wilcox. ROS2 Index: nav2_map_server. 2022. url: https://index.
ros.org/p/nav2_map_server/ (visited on 05/02/2022).

[35] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. “Sim-to-Real
Transfer in Deep Reinforcement Learning for Robotics: a Survey”. In: 2020
IEEE Symposium Series on Computational Intelligence (SSCI). 2020, pp. 737–
744. doi: 10.1109/SSCI47803.2020.9308468.

https://www.mdpi.com/1424-8220/20/3/939
https://index.ros.org/p/nav2_map_server/
https://index.ros.org/p/nav2_map_server/
https://doi.org/10.1109/SSCI47803.2020.9308468

	Preface
	Summary
	Introduction
	Background and motivation
	Problem description
	Outline

	Robot kinematics
	Poses and frames
	Manipulator kinematics
	Kinematics of a 7-dof manipulator

	Wheeled robots
	Kinematic model for a four mecanum wheeled mobile robot

	SLAM and Navigation
	Maps
	SLAM – Simultaneous Localization and Mapping
	Kalman Filter
	Particle Filter
	Graph-based Optimization

	Navigation
	Costmap
	Adaptive Monte Carlo localization
	Dynamic Window Approach

	Digital twins
	Robotic simulators
	Simulator comparison

	Sim-to-Real
	How to narrow the sim-to-real gap

	Conclusion and Further Work
	Conclusion
	Further work

