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Abstract. Prior to Stokes integration, the gravitational effect of atmospheric masses must be removed from 

the gravity anomaly Dg. One theory for the atmospheric gravity effect on the geoid is the well-known 

International Association of Geodesy approach in connection with Stokes’ integral formula. Another strategy 

is the use of a spherical harmonic representation of the topography, i.e. the use of a global topography 

computed from a set of spherical harmonics. The latter strategy is improved to account for local information. 

A new formula is derived by combining the local contribution of the atmospheric effect computed from a 

detailed digital terrain model and the global contribution computed from a spherical harmonic model of the 

topography. The new formula is tested over Iran and the results are compared with corresponding results from 

the old formula which only uses the global information. The results show significant differences. The 

differences between the two formulas reach 17 cm in a test area in Iran.  
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1 Introduction 

 
The geoid is frequently determined from gravity data by the well-known Stokes’ formula. This formula is the 

solution of an exterior-type boundary value problem, implying that masses exterior to the geoid, i.e 

topography and atmospheric masses, are not permitted in the solution. Consequently, the effect of the 

atmospheric masses must also be removed or reduced prior to Stokes integration, which corresponds to the 

so-called direct atmospheric effect. Gravity anomalies corrected for this effect (also other effects, e.g. the 

direct topographical effect) are allowed to be used in the Stokes integral. Thereafter, Stokes’ formula 

computes a so-called co-geoid height with respect to the reference ellipsoid, which is later corrected using the 

so-called indirect effect (restoration of the topography and the atmosphere) to the geoidal height. 

 Ecker and Mittermayer (1969) derived a formula for the direct atmospheric effect on gravity, which 

was later named the International Association of Geodesy approach (IAG). They investigated atmospheric 

effects on observed ground gravity. They formulated the atmospheric potential of the ellipsoidal shell that was 

split into a harmonic and a non-harmonic part. The harmonic part was added to the normal field of the solid 

reference ellipsoid (normal field), while the non-harmonic part of the atmospheric potential was responsible 

for the atmospheric gravity correction derived as its negative vertical derivative. Ecker and Mittermayer 

evaluated a table of positive atmospheric corrections to gravity as attractions of a series of homogeneous 

ellipsoidal shells (all of them being outside the Brillouin sphere) using the Newtonian theory with a point 

mass of the atmosphere being computed by a developed recursion formula. An exponential function 

modulated by a higher degree polynomial was used for the evaluation of the atmospheric density. The 

coefficients in this equation were estimated by fitting this function to the standard atmospheric models (CIRA, 

US Standard). The obtained corrections vary from 0:869 (mean sea level) to 0.000 mGal (46 km). The IAG 

approach is described in Moritz (1980). Anderson et al. (1975) computed the global values of the atmospheric 

corrections to gravity and the geoid. They used a surface spherical harmonic representation of the Earth’s 

topography. The atmospheric density was modeled by the piecewise linear function with the upper limit at a 

height of 40 km. They assessed the magnitudes to be about 0:87 mGal for the first-order atmospheric 

correction and about 0.1 mGal for the second-order correction. Sjöberg (1993) emphasized that there could 

be additional significant direct and indirect atmospheric effects stemming from a more detailed treatment of 
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the Earth’s topography than is made in the IAG approach. The IAG approach assumes that the Earth is 

approximately spherical (with radius R) with a spherical layering of the atmosphere. Consequently, the 

approximation from a more likely ellipsoidal layering to a spherically layered atmosphere is assumed 

negligible and all space above a geocentric sphere through the computation point is assumed to consist of 

atmosphere. This means that topography is more or less ignored. It should be mentioned that the effect of the 

ellipticity of the atmosphere is not investigated in this article. Sjöberg (1999) and Sjöberg and Nahavandchi 

(2000) investigated the direct and indirect atmospheric gravity and geoid effects in Stokes’ original and 

modified formulas. They derived formulas for the direct atmospheric gravity and geoid effects using a 

spherical harmonic representation of the topography. It was shown that the atmospheric effect is the first-order 

effect of elevation and its direct effect on the geoid reached 40 cm (Sjöberg and Nahavandchi 2000). As 

mentioned above, Anderson et al. (1975) also studied the direct atmospheric effect. They noted that the real 

atmosphere is neither laterally homogeneous nor regular in shape. In particular, its lower boundary is very 

irregular and, in- deed, takes on the shape of the Earth’s topography. Consequently, the atmospheric gravity 

effect is not the same even for points of equal altitude. Anderson et al. came up with the second-order 

atmospheric effect on gravity and the geoid. The magnitude of the corresponding correction to gravity reached 

a few hundreds of microGal for gravity and more than 40 cm for the geoid. 

 In this paper, the previous formula of Sjöberg and Nahavandchi (2000) for the direct atmospheric 

effect is improved by accounting for a better treatment of the Earth’s topography. The Sjöberg and 

Nahavandchi (2000) formula includes only global information (due to the spherical harmonic representation 

of topography), omitting significant short-wavelength contributions. A new formula for the direct atmospheric 

gravity and geoid effects is derived by combination of the local contribution and the set of spherical harmonic 

coefficients of the topography. 

 

 
2 Direct atmospheric effect computed only from a spherical harmonic representation of topography 

 
Following the approach presented in Sjöberg and Nahavandchi (2000), the atmospheric potential at an 

arbitrary point P on the topography can be written 

 

𝑉𝑎(𝑃) = ∬ ∫
𝜌𝑎𝑟2𝑑𝑟

ℓ𝑃

∞

𝑟𝑠𝜎
𝑑𝜎     (1) 

 

where 𝜌𝑎   is the density of the air scaled by the gravitational constant G; ℓ𝑃 = √𝑟𝑃
2 + 𝑟2 − 2𝑟𝑃𝑟 cos 𝜓; 𝑟𝑃, r 

and 𝑟𝑠 are the geocentric radii of P, the running point in the integration and the Earth's surface (𝑟𝑠 = 𝑅 + 𝐻), 

respectively; 𝜓 is the geocentric angle between r, and  𝑟𝑃; and  denotes the surface of the unit sphere. It 

should be noted that if the density is considered constant, it can be put outside the integral in Eq. (1). The 

atmospheric potential to a first-order approximation with respect to the topographic height H reads finally 

(Sjöberg and Nahavandchi 2000):  

 

𝑉𝑎(𝑃) ≐ 4𝜋𝜌0𝑅2 {
1

𝜐−2
− ∑

1

2𝑛+1
(

𝑟𝑃

𝑟
)

𝑛 𝐻𝑛(𝑃)

𝑅
∞
𝑛=0 }   (2) 

 

where 𝜌0 is the density of the atmosphere at sea level (𝜌0) multiplied by the universal gravitational constant 

(G), 𝜐 > 2 is a constant: R is the mean Earth radius, and 

 

 

𝐻𝑛(𝑃) = ∑ 𝐻𝑛𝑚𝑌𝑛𝑚(𝑃)𝑛
𝑚=−𝑛      (3) 

 

are usually called Laplace harmonics of the height function H, where 
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𝐻𝑛𝑚 =
1

4𝜋
∬ 𝐻

𝜎
𝑌𝑛𝑚𝑑𝜎      (4) 

 

are spherical harmonic analysis of the height function H and 

 

𝐻𝑃 = ∑ 𝐻𝑛𝑚𝑌𝑛𝑚(𝑃)𝑛,𝑚       (5) 

 

 

are spherical harmonic synthesis of the height function H. Here the harmonics 𝑌𝑛𝑚, usually called surface 

spherical harmonics, obey 

 
1

4𝜋
∬ 𝑌𝑛𝑚𝜎

𝑌𝑛′𝑚′𝑑𝜎 = {
1           if n=n' and m=m'
0                          otherwise

  (6) 

 

Thereafter, the atmospheric gravity and gravity anomaly are derived as (Sjöberg and Nahavandchi 2000): 

 

𝑔𝑎(𝑃) = −
𝜕

𝜕𝑟𝑃
𝑉𝑎(𝑃) ≐ 2𝜋𝜌0𝐻(𝑃)    (7) 

 

The result of Eq. (7) is gravitation or gravitational attraction of atmospheric masses at the point P. Equation 

(7) represents gravitational attraction of an infinite layer of thickness H(P) and constant density considered at 

a point that is located at its upper boundary. Thus it represents an analogy to the Bouguer plate effect. 

 Also 

 

Δ𝑔𝑎(𝑃) = − (
𝜕

𝜕𝑟𝑃
+

2

𝑟𝑃
) 𝑉𝑎(𝑃) ≐ 4𝜋𝜌0 ∑

𝑛+2

2𝑛+1
𝐻𝑛(𝑃)∞

𝑛=0  (8) 

 

The right-hand side of Eq. (8) represents both the so-called direct atmospheric effect on gravity and the 

(secondary) indirect atmospheric effect on gravity (Heiskanen and Moritz 1967, p. 142). The latter is the 

second term on the right-hand side of the equation. It accounts, strictly speaking, for a change (shift) of the 

actual equipotential surface passing through the point P as a consequence of the direct atmospheric effect on 

potential (all equipotential surfaces including the geoid are shifted due to the change of the geopotential). The 

first term on the right-hand side of the Eq. (8) is the direct gravity effect. The second term is the effect on 

gravity due to the change of level surface in Stokes’s formula from the geoid to the atmospheric to-geoid. The 

second term can also be regarded as the so called second secondary indirect effect on gravity. The series 

expansions in Eqs. (7) and (8) are limited to the first-order terms in the topographic height H(P). The direct 

gravity anomaly correction, i.e. the correction on the gravity anomaly by removing the atmosphere, is 

obviously −Δ𝑔𝑎. The direct geoid correction is the correction to the geoid for removing the atmosphere. It 

should be noted that the effect of downward continuation of the gravity anomaly to the geoid due to the 

atmospheric masses is not studied here. However, this effect has been computed in Nahavandchi (accepted). 

The direct geoid effect becomes 

 

𝑁dir
𝑎 (𝑃) =

𝑅

4𝜋𝛾
∬ 𝑆(𝜓)

𝜎
Δ𝑔𝑎𝑑𝜎             (9) 

 

where 𝑆(𝜓) is the Stokes function and 𝛾 is the normal gravity at sea level. Finally, expanding the Stokes 

integral into the spectral form, the atmospheric geoid effect was derived as (neglecting zero and first-degree 

effects) (Sjöberg and Nahavandchi 2000)  

 

𝑁dir
𝑎 (𝑃) ≐

𝑅

𝛾
∑

Δ𝑔𝑛
𝑎(𝑃)

𝑛−1
∞
𝑛=2      (10) 

 

or 
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𝑁dir
𝑎 (𝑃) ≐

4𝜋𝜌0𝑅

𝛾
∑

𝑛+2

(2𝑛+1)(𝑛−1)
𝐻𝑛(𝑃)∞

𝑛=2    (11) 

 

Sjöberg and Nahavandchi (2000) computed Eq. (11) using the height coefficients up to degree and order 360. 

The direct effect reached values of up to 40 cm over Antarctica and the Himalayas. These results agree with 

the so-called second-order effect determined by Anderson et al. (1975). 

 

3 A new formula for direct atmospheric effect computations 

 

A more detailed treatment of the Earth’s topography may lead to significant improvement in computing the 

direct atmospheric effects. The IAG approach assumes a spherical Earth and spherically layered atmosphere. 

However, the formulas for the direct atmospheric effect derived by Sjöberg and Nahavandchi (2000) 

represented the topography using spherical harmonic coefficients. It is obvious that spherical harmonics 

provide global information and that short-wavelength contributions are missing. To solve this problem, a new 

formula for the direct atmospheric effects is derived. To achieve this, we first rewrite Eq. (8) as follows: 

 

Δ𝑔𝑎(𝑃) ≐ 4𝜋𝜌0 ∑
1

2
(

3

2𝑛+1
+ 1) 𝐻𝑛(𝑃)∞

𝑛=0           (12) 

 

Inserting  

 

𝐻𝑛(𝑃) =
2𝑛+1

4𝜋
∬ 𝐻𝑃𝑛(cos 𝜓)

𝜎
𝑑𝜎          (13) 

 

and considering that  

 

∑ 𝑃𝑛(cos 𝜓) =
𝑅

ℓ0

∞
𝑛=0             (14) 

 

where ℓ0 is the distance function for two points at the surface of the reference sphere of radius R, we arrive 

at 

 

Δ𝑔𝑎(𝑃) ≐ 2𝜋𝜌0 [𝐻𝑃 +
3𝑅

4𝜋
∬

𝐻

ℓ0𝜎
𝑑𝜎]         (15) 

 

where the notation below is used 

 

𝐻𝑃 = ∑ 𝐻𝑛(𝑃)∞
𝑛=0       (16) 

 

We finally obtain 

 

Δ𝑔𝑎(𝑃) ≐ 2𝜋𝜌0𝐻𝑃 + 6𝜋𝜌0�̅�𝑃          (17) 

 

 

where 

 

 

�̅�𝑃 = ∑
1

2𝑛+1
𝐻𝑛(𝑃)∞

𝑛=0       (18) 

 

 

Equation (17) can also be derived from Eq. (8) directly by considering the expansion in Eq. (16) only. 

The first term on the right-hand side of Eq. (17) includes height of computation points and it can be computed 
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using a local detailed digital terrain model (DTM). This part of the formula is here considered as the local 

contribution. The second term on the right- hand side of Eq. (17) is obviously a representation of topography 

including a smoothing factor and it can be computed using the set of spherical harmonics. Further, Eq. (10) 

or (11) can be used to compute the direct atmospheric geoid effect. These formulas obviously treat the direct 

atmospheric effect in a more precise way as the heights of computation points are also included in the 

formulas. It should be mentioned that the effect of atmosphere on the downward continuation of surface data 

to the geoid is not considered here. However, this effect has been computed in Nahavandchi (accepted). The 

correction term of Eq. (17) for removing the effect of atmospheric masses from the gravity anomaly Δ𝑔 must 

be used prior to Stokes integration (other correction terms to the gravity anomaly, the most important ones 

being the topographical corrections, must also be accounted for). 

 
 

4 Numerical investigations 

 
In order to investigate the atmospheric effects, the Sjöberg and Nahavandchi (2000) formula for the direct 

atmospheric gravity effect [Eq. (8)] and the new formula for the atmospheric effect [Eq. (17)] are evaluated 

over Iran. The topography over Iran, depicted in Fig. 1, varies from 0 to 5671 m. The height coefficients 𝐻𝑛𝑚  

are determined from Eq. (4). For this, a 30′ × 30′ DTM is generated using the Geophysical Exploration 

Technol- ogy (GETECH) 5′ × 5′ DTM (GETECH, 1995). This 30′ × 30′ DTM is averaged using area 

weighting. Since the interest is in continental elevation coefficients and we are trying to evaluate the effect of 

the masses above the geoid, negative heights over seas are all set to zero. Parameter definitions are as follows: 

𝜌0 = 𝐺𝜌0, where 𝐺 = 6.673 × 10−11 m³ kg⁻¹ s⁻² and 𝜌0 = 1.23 kg/m³, R=6371 km, and 𝛾 = 981 Gal. The 

coefficients 𝐻𝑛𝑚 are computed to degree and order 360 so that the corresponding cell size is 30′ × 30′. A       

1 𝑘𝑚 × 1 𝑘𝑚 DTM over Iran is used to compute the height of computation points in the new formula. The 

computation points are the same as the location of the 1 𝑘𝑚 × 1 𝑘𝑚 DTM over Iran. The local contributions 

in the new formula are the heights of the computation points (𝐻𝑃), obtained from the local DTM. For the 

global contributions, the new formula uses the spherical harmonic representation of �̅�𝑃 at a computation point. 

 

 
Fig. 1. Presentation of topography over Iran. Units: m 

 

 
Figure 2 shows the direct atmospheric effect on gravity computed by the Sjöberg and Nahavandchi 

(2000) formula over Iran. It reaches 0.195 mGal over the Damavand mountainous area with a maximum 

elevation of 5671m. This effect is also computed with the new formula and is depicted in Fig. 3; it reaches 
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0.347 mGal. The local contributions are the reason for the differences. The difference between these two 

approaches is shown in Fig. 4; it reaches 0.176 mGal. The difference between the two methods is large, 

reaching the magnitude of the direct effect computed by the old formula [Eq. (8)]. This magnitude of 

difference was expected, as the old formula only used a spherical harmonic representation of the topography, 

whereas the new formula uses both the spherical harmonics and a dense DTM in this study. It is obvious that 

a denser DTM than the one used in this study (1 𝑘𝑚 × 1 𝑘𝑚) will reveal better local irregularities. 

 

 
Fig. 2. The direct atmospheric gravity effect with the old formula [Eq. (8)]. Units: mGal 

 

 

 
Fig. 3. The direct atmospheric gravity effect with the new formula [Eq. (17)]. 

Units: mGal 
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Fig. 4. The differences on direct atmospheric gravity effect between the old [Eq. (8)] and new [Eq. (17)] formulas. 

Units: mGal 

 
In order to gain further insight into the differences between the old and new formulas, the direct 

atmospheric effect on the geoid is also computed [see Eq. (11)] using both methods. A test area in Iran limited 

by latitudes 54 and 56° N and longitudes 33 and 35° E is chosen. The elevation in this area varies from 600 

to 2290 m. The direct atmospheric geoid effects are computed by the new and old formulas in this test area. 

The direct atmospheric effect on the geoid reaches 16 cm using the old formula [Eq. (8)], while it reaches 33 

cm using the new formula [Eq. (17)]. Preliminary results show that the use of the new direct atmospheric 

correction  in  gravimetric  geoidal  height computations yields a better agreement with the global positioning 

system (GPS)–leveling-derived geoidal heights, which are used to demonstrate such improvements, than the 

results of gravimetric geoidal heights for the same GPS stations but using the old formula. 

 

 
5 Conclusions 

 

The classical IAG formula assumes that the Earth is approximately spherical (with radius R) with a spherical 

layering of the atmosphere, and the topography is also more or less ignored. The Sjöberg and Nahavandchi 

(2000) formula treats the Earth as a sphere of radius R with a variable topography of height H on top of the 

sphere, such that 𝑟𝑠 = 𝑅 + 𝐻. Sjöberg and Nahavandchi finally derive a formula for the direct atmospheric 

effect using a spherical harmonic representation of the topography. It is obvious that only the global 

information is considered in their formula (considering the resolution of the global heights used in that study). 

The present study improves on the Sjöberg and Nahavandchi (2000) formula. The direct atmospheric effect 

in gravimetric geoid determination is reformulated and a new formula is derived which uses the global 

topography and the local DTM for the computations. This implies that the previous formulas may have some 

numerical problems in representing all significant contributions. The local contributions in the present study 

are the heights of computations points derived from a dense DTM. The results of a comparison between the 

old and the new formulas for the direct atmospheric effect show some significant differences. These reach to 

0.176 mGal for gravity, which is quite significant. On the geoid, the differences reach 17 cm. The reason for 

these differences is the better treatment of the Earth’s topography using the new formula for the direct 

atmospheric effect. The use of the local DTM in the new formula significantly improves the atmospheric 

effects in geoid computations. 
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