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A B S T R A C T

Efficient data storage and query processing systems play a vital role in many different research areas. Blockchain
technology and distributed ledgers attract massive attention and trigger multiple projects in various industries.
Nevertheless, blockchain still lacks the features of a Database Management System (DBMS or simply databases),
such as high throughput, low latency, and high capacity. For that purpose, there have been many proposed ap-
proaches for handling data storage and query processing solutions in the blockchain. This paper presents a
complete overview of many different DBMS types and how these systems can be used to implement, enhance, and
further improve blockchain technology. More concretely, we give an overview of 10 transactional, an extensive
overview of 14 analytical, 9 hybrids, i.e., translytical, and 13 blockchain DBMSs. We explain how database
technology has influenced the development of blockchain technology by unlocking different features, such as
Atomicity, Consistency, Isolation, and Durability (ACID), transaction consistency, rich queries, real-time analysis,
and low latency. Using a relaxation approach analogous to the one used to prove the Consistency, Availability,
Partition tolerance (CAP)-theorem, we postulate a “Decentralization, Consistency, and Scalability (DCS)-satisfi-
ability conjecture” and give concrete strategies for achieving the relaxed DCS conditions. We also provide an
overview of the different DBMSs, emphasizing their architecture, storage manager, query processing, and
implementation.
1. Introduction

Cryptocurrency has recently attracted immense attention from the
industry and academia. The first cryptocurrency, Bitcoin [1], has been
quite successful so far, with its capital market reaching 922 billion USD in
December 2021 [2]. The initial acceptance of Bitcoin was triggered by its
usage as a token of value that provided an alternative to
government-issued currencies. However, after Bitcoin, many crypto-
currencies were designed that brought a paradigm shift in the financial
market. As a result, the financial market of cryptocurrencies is growing
rapidly and is currently worth around 2 trillion USD [2]. In the mean-
time, several new financial forms based on blockchain have been intro-
duced, such as the “Decentralized Finances (DeFi)” with a market
capitalization of 140 billion USD and “Collectibles & Non-Fungible To-
kens (NFTs)” with a market capitalization of 58 billion USD (as of
December 2021 [2]).
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Blockchain was first proposed in 2008 and implemented in 2009 [1].
It is viewed by some authors as a disruptive technology [3] that has ul-
timately changed the market, the financial market in particular, and has
triggered a new way of thinking across many industries. Blockchain can
be interpreted as a public, distributed ledger for peer-to-peer (P2P)
transactions executed securely and stored in an immutable way. Block-
chain stores transactions in a growing chain of blocks. Its characteristics
are decentralization, persistence, anonymity, and auditability. It can
work in a decentralized environment enabled by integrating several core
technologies, such as cryptographic hash functions, digital signatures
(based on asymmetric cryptography), and a distributed consensus
mechanism [4]. Blockchain transactions occur in a decentralized fashion.
In a decentralized network, there is no point of single failure, and thus,
the network becomes secure and tamper-proof. In contrast, a centralized
network is much less secure since a failing central server or database will
result in the failure of the entire network. The absence of a central
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authority increases the computational cost of the transactions, but the
overhead costs decrease. The P2P transfer of value between the parties
does not rely on an external or third-party authority, eliminating the need
for the parties to know each other. The consensus makes most of the
forgery attempts impossible because every transaction is validated,
reducing the risk of tampering. Other than that, blockchain networks are
much more accessible: anyone with a computer and an internet
connection can join the network. Although blockchain has enormous
potential in terms of efficiency, it still suffers from challenging short-
comings. Some of them comprise, but are not limited to, scalability, en-
ergy consumption, privacy leakage, and selfish mining. With the recent
advances in blockchain technology, however, these challenges have been
addressed by appropriate solutions [5].

Apart from its application to finance, blockchain can also be used in
the Internet of Things (IoT), public and social services, reputation sys-
tems, or act as a service providing security and privacy. Blockchain can
also be viewed as a database (DB) because it equips a storage mechanism
[6]. After the emergence of Bitcoin, questions arose about the difference
between blockchain and databases and whether blockchain can be used
as a database mechanism [7]. While blockchain does provide a storage
mechanism, it has, in fact, many critical differences with traditional
databases, chiefly its decentralization, cryptographic security using
chained hashes, no administration control, immutability, and freedom to
transfer without the permission of any central authority [8]. Many en-
terprise applications have switched to blockchain storage to provide a
more secure implementation and involve less trust among the parties in
the industry.

As many enterprises are focusing [9–11] on decentralized cloud
storage, the question that arises is to what extent blockchain provides a
better storage solution than decentralized cloud storage or just a tradi-
tional database. Not only does blockchain pertain to the features
mentioned above, but it also offers better capabilities, user privacy, and
security using cryptographic primitives. On the other hand, blockchain
lacks some of the features provided by traditional databases, such as rich
queries. The efforts to include these DB functionalities in the blockchain
are continuously growing and progressing.

If blockchain storage is measured by the traditional DB criteria, it
does not provide promising results. It has a throughput of just a few
transactions per second (tps), a 10-min latency before a single confirmed
write (for Bitcoin), and a capacity of just a few dozen gigabytes. In
blockchain, adding nodes to the network increases traffic but also re-
duces performance. On the other hand, a modern distributed database
can have a throughput exceeding 1 million tps, several terabytes of ca-
pacity, and a latency of only a fraction of a second. Finally, adding nodes
improves the throughput and capacity of the system [6].

Analogously, one approach to transforming blockchain into an effi-
cient storage mechanism is by blending traditional databases with
existing blockchain technologies, which is currently being done by many
platforms. The goal is to produce an enhanced storage mechanism with
high throughput, scalability, low latency, and a greater extent of security
since this mechanism would be built on top of the existing blockchain
technologies.

Another approach is to use the so-called blockchain databases that
have been evolving extensively in recent years [6,12–17]. These data-
bases have their own consensus mechanism for the network parties’ joint
agreement on a data block. They are disturbed and offer support for
complex data types, rich query structures, and ACID-compliant trans-
actions [18]. Furthermore, they provide low latency, fast scalability, and
cloud hosting. Hence, leveraging blockchain and database functionality
together makes these databases a promising alternative in many enter-
prise solutions. Moreover, many of the blockchain platforms are now
integrated with some databases. The existing databases, which are used
in some of the blockchain systems, either have master-slave or P2P ar-
chitecture through which the replication of transaction logs and states
[19] takes place among the nodes. As the database can be SQL/relational
or post-relational, selecting the database for use in blockchain should be
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based on many critical points, such as database structure and query
processing speed.

The development of databases integrated with blockchain features is
an active research topic. This paper analyzes the blockchain capabilities
and the fit for blockchain of modern database solutions. In general,
blockchain capabilities are enabled by either adding a blockchain layer
on top of the existing database layer or, vice versa, by implementing
blockchain functionalities within the database layer and the architectural
model. First, we sublimate seven baselines, namely, decentralization,
consistency, scalability, immutability, low latency, high throughput, and
sharding, that add up to the fir of database systems for blockchain. Then,
we describe and analyze 10 transactional, 14 analytical, 9 hybrid, and 13
blockchain database systems concerning these baselines. This work is the
first of its kind and aims to provide a summarized overview that will help
choose the database management system that best fits their needs.

The rest of the paper is organized as follows. In Section 2, we provide
an overview of the CAP and DCS theorems and how the two mutually
influence each other. We also analyze the main characteristics of the
types of databases and present a table that summarizes the database
systems’ fit for blockchain according to the properties, capabilities, and
features needed for the blockchain. The different types of blockchain
databases, split into three categories—transactional, analytical, and
hybrid (i.e., translytical)—are described in Section 3. In Section 4, we
provide a detailed explanation of how database and blockchain tech-
nology mutually influence and improve each other. We continue with the
challenges of joining these two technologies in Section 4.2 and provide a
summary of databases adapted for blockchain. Section 5 presents a brief
overview of the databases and the DCS theorem. Finally, Section 6 con-
cludes the paper with future research directions.

2. DCS: the CAP theorem for blockchain

CAP refers to Consistency, Availability, and Partition tolerance. CAP
was introduced 20 years ago by Brewer [18] as a principle or conjecture,
and two years later, it was proven in the asynchronous network model as
a CAP theorem by Gilbert and Lynch in Ref. [20]. In the same paper, they
proved similar impossibility results for a partially synchronous network
model. Additionally, by weakening the consistency conditions, they
showed that it is possible to achieve all three properties in the so-called
t-Connected Consistency model. The CAP theorem is a fundamental
theorem for defining the transaction properties of a distributed system. A
distributed system is defined as a set of computing nodes connected over
a network that communicate with one another to perform some tasks.

In more detail, the CAP theorem identifies the three specific system
properties for any distributed/decentralized system. These properties are
Consistency, Availability, and Partition tolerance.

� Consistency—Any read in the distributed system gives the latest
write on each computing node.

� Availability—A client always receives a response at any point of time
irrespective of whether the read is the latest write, which means a
request for some data is always available.

� Partition tolerance—In the case of a partition between nodes in the
distributed system (when a subset of nodes fail to operate), the system
should still be functioning.

The CAP theorem states that it is possible to achieve two of these
three properties as guaranteed features in a distributed system, but it is
impossible to accomplish all three features simultaneously. In practice, a
distributed system always needs to be partition tolerant, thus leaving us
to choose one property from Consistency or Availability. Hence, there is a
trade-off between consistency and availability. After the influence of CAP
in the NoSQL movement [21], it became a big debate on the trade-offs in
database systems to achieve strong consistency guarantees for the data-
base systems [22].

The CAP theorem has also influenced the blockchain realm (see, for
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example, Ref. [23]). In the blockchain context, CAP properties mean: 1)
Consistency: All nodes in blockchain have an identical ledger with the
most recent update; 2) Availability: A transaction generated at any point
of time in the network will be accepted and available in a block of the
blockchain; 3) Partition tolerance: Even if a part of nodes in the block-
chain P2P network fails to operate, the network can still perform the
normal operations. Partition tolerance corresponds to decentralization in
the blockchain context. A CAP theorem in the blockchain context refers
to that a widely accepted blockchain is hard to exist without all three
properties.

If we pick Availability over Consistency, any reads are not guaranteed
to be up-to-date, and we call the system AP. However, if we choose
Consistency over Availability, the system called CP would be unavailable
at the time of partition and might disrupt the consensus. Thus, in
blockchain systems, both properties are desirable. Although blockchain
does not always require strong consistency, eventual consistency can
serve the purpose and can be achieved through consensus. For example,
in the case of Bitcoin, the longest chain method brings eventual consis-
tency, but there are no fixed methods to achieve eventual consistency,
which leaves this topic for debate. Fig. 1 shows the different database
systems according to the CAP theorem.

PACELC Theorem: The Partition, Availability, Consistency, Latency,
and Consistency (PACELC) theorem [30] is grounded on the CAP model.
It is best described by the following statement: “If Partition (P) happened,
then choose between Availability (A) or Consistency (C), Else (E) choose
between Latency (L) or Consistency (C).” It is considered a more perti-
nent approach to the design of distributed systems (since blockchain by
itself is a concrete type of distributed system) and has had a more sig-
nificant influence than the CAP theorem. The generally perceived influ-
ence of CAP is rather overestimated [30]. At its core, PACELC extends to
Latency in addition to Consistency, Availability, and Partition tolerance
by adding a logical exclusion between the combinations of the four
concepts based on whether or not a network partition has occurred.
PACELC also introduces a new pertinent trade-off—between consistency
and latency—that has influenced the design of modern distributed
database systems. As soon as the system replicates data, provided no
network partition has happened, based on how the system handles reads,
the consistency-latency trade-off subsumes: (1) synchronous replication,
entailing consistency over latency (the master node waits until all up-
dates have made it to the replicas, ensuring consistency to the detriment
of latency), (2a) asynchronous replication with routing through the
master node, entailing consistency over latency (routing the read re-
quests through the master node ensures consistent read results, but a
busy, failed, or a distant master node increases the latency of the reads),
(2b) asynchronous replication with reads served from any node, entailing
latency over consistency (different nodes have different versions of the
requested data item), and (3) synchronous and asynchronous replication
(a combination of (1), (2a), and (2b) that allocates a subset of nodes to
which data are replicated synchronously, while the rest of the nodes are
updated asynchronously; if reads are routed to at least one synchronously
updated node, then consistency is retained at the expense of latency,
otherwise, the reads have a low latency, but likely inconsistent results).

DCS Theorem: The Decentralization, Consistency, and Scalability
(DCS) theorem [31,32] was proposed as an analogy to the CAP theorem
for blockchain. The DCS theorem states that a blockchain system can
Fig. 1. CAP (Consistency, Availability, Partition tolerance) triangle for database
systems [24–29].
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simultaneously satisfy at most two out of the three properties: decen-
tralization, consistency, and scalability. Although the PACLEC theorem is
built on top of the CAP theorem for real systems, it is easier to illustrate
the DCS theorem analogous to CAP. Due to the fact that both theorems
state that a distributed system can satisfy at most two out of three
properties, it is also easier to map DCS properties with CAP properties.
The DCS properties are defined as follows:

� Decentralization—There is no trusted entity controlling the
network, hence no single point of failure. Blockchains are inherently
decentralized, but in the DCS triangle, we are considering the case of
complete decentralization. In the case of complete decentralization,
any node can join the network and participate as a validator.

� Consistency—The blockchain nodes will read the same data at the
same time. A query for the blockchain data on any blockchain node
should fetch the same result. The consistency in blockchain should
prevent double-spending and should be brought from the consensus
algorithm used.

� Scalability—The performance of blockchain should increase with an
increase in the number of peers and the number of allocated
computational resources. The system’s throughput and capacity
should be high, and latency should be low.

Similar to CAP, we can also categorize the blockchain systems in DCS
as DC, CS, and DS systems in terms of trade-offs between the DCS
properties. Fig. 2 depicts the various systems, according to the DCS
theorem. Following, we define these systems in detail:

� DC Systems. The main focus of these systems is to provide a
consistent blockchain state in a decentralized network environment.
Most of the cryptocurrencies, such as Bitcoin [1] and Ethereum [33],
fall into the category of DC systems. Many of these systems have Proof
of Work (PoW) as their consensusmechanism, where each node stores
the full data of the blockchain. Furthermore, nodes (miners) in these
systems are incentivized to increase their chances of successfully
mining a block using ASIC (Application-Specific Integrated Circuit)
farms. Therefore, over time, these systems do not scale.

Achieving higher performance negatively impacts the consistency of
these systems. Therefore, to achieve eventual consistency, these systems
employ some techniques such as the longest chain rule in Bitcoin or the
GHOST protocol [36] in Ethereum as the branch selection rule.

� CS Systems. All the permissioned blockchains do not have complete
decentralization; hence, they can be regarded as CS systems if they
achieve a planetary scale. These systems have a certain degree of
decentralization, as not every node can be a validator that takes part
in consensus. The nodes in these systems have distributed computing
resources, and to join the consensus, a node can become a validator by
a fair voting mechanism among the existing federation of nodes.

Permissioned blockchains such as Hyperledger Fabric [37] have
scalability bottlenecks due to the use of communication-intensive pro-
tocols, such as the Practical Byzantine Fault Tolerance (PBFT) protocol
[38]. A decent amount of work [39,40] has been done to scale the
Fig. 2. DCS (Decentralization, Consistency, Scalability) triangle for blockchain
systems [1, 33-35].
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Hyperledger Fabric. Furthermore, a recent work [41] provides a novel
method to practically improve the scalability of permissioned
blockchains.

� DS Systems. These systems are decentralized and provide good
scalability with compromise on consistency. A node of this system
does not try to store the whole network; instead, it is limited by the
node’s capacity. The Interplanetary File System (IPFS) [35] is a DS
system that does not provide consistency, as different parts of the data
are distributed to different nodes. It is like a mashup of Git and
BitTorrent.

Although consistency prevents double-spending, DS systems can still
be useful in many applications that do not store tokens of values, such as
storing data and assets. The IPFS can have eventual consistency by
employing Conflict-free Replicated Data Type (CRDT) [42].

Conjecture 1. (DCS-satisfiability). There exists a well-balanced and
relaxed set of requirements for DCS properties such that a blockchain
system can have all three properties satisfied.

While for the CAP theorem, the relaxation of the requirements was
achieved by introducing the t-connected consistency model [20], and we
can apply a similar relaxation approach to prove the above conjecture.
Slepak and Petrova [31] showed that a decentralized consensus system
cannot have all three properties simultaneously. They also presented two
methods to get around the DCS triangle.We use a similar idea to present a
set of requirements or methods so that a blockchain system can have all
three properties. Following, we present requirements/methods for each
of the above-defined three systems to get around the DCS triangle. Note
that we describe only a few methods for the DCS-satisfiability conjecture;
we do not exhaust all the possible requirements/methods.

The following discussion presents general methods to get around the
DCS triangle, especially those more aligned with blockchain systems.
These methods are applied to make blockchain systems achieve DCS
properties and can also be employed in real systems. Nevertheless, for
databases, a brief description is provided in Section 4.1. Section 4.1
presents many examples of different databases and how these databases
can achieve all three DCS properties simultaneously.

� DC Systems → DCS: DC systems can achieve scalability by a few
methods. We describe the following two methods for DC systems to
scale.

1. Using Layer-2 Solutions DC systems can scale by employing layer-2
scaling protocols [43]. Layer-2 solutions handle the transaction in an
off-chain manner and hence provide scalability. Although there are
many layer-2 solutions, some of the solutions tend toward centrali-
zation. Therefore, finding a decentralized layer-2 solution is neces-
sary in order to make a DC system scalable. These decentralized
layer-2 solutions (e.g., Lightning Network [44]) can be categorized
as DS systems. Thus, combining a DC system with a DS system makes
the whole system DCS, as depicted in Fig. 3.

2. Using Sharding DC systems can scale using sharding [45]. Sharding
is a technique where the transactions are split among a group of nodes
called shards. These shards work in parallel to improve the
throughput and hence achieve better scalability. These shards should
have a certain degree of transparency to trust the other shards and
Fig. 3. DC System to DCS using Layer-2 solutions.
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participate in consensus. A shard can be considered a small DC sys-
tem. Hence, the parallel working of shards corresponds to combining
multiple DC systems that make the whole system DCS, as depicted in
Fig. 4.

� CS Systems → DCS: CS systems can have decentralization by having
interoperability among multiple CS systems. In this sense, a single CS
system does not have full control of the system. Interoperability in
blockchain systems can be achieved using cross-chain methods such
as cross-chain communication protocols [46] or using cross-chain
interoperability using transactions [47]. Cross-chain methods basi-
cally combine multiple CS systems and make a DCS system, as
depicted in Fig. 5.

� DS Systems→DCS: DS systems can achieve consistency by using safe
and verifiable smart contracts [48,49], together with making the
blockchain attack-resilient and handling the forks. Verifiable smart
contracts help to maintain the consistency of blockchain data. In
addition to such smart contracts, preventing blockchain attacks, e.g.,
double-spending attacks, and by handling the event of forks in
blockchain can lead DS systems towards greater consistency. Vali-
dation in such systems is simpler, usually by only checking hashes,
and there is no strict order of transactions to maintain. However,
there is implicit ordering based on the hashed objects. There are three
levels of consistency: no consistency, strong eventual consistency, and
CAP consistency. Data replication methods can also be used to ach-
ieve a certain level of consistency in DS systems, hence making the DS
system DCS. One example is CRDT [42], which ensures consistency
and data integrity when there are conflicts between different data
updates.

DS systems, such as IPFS, use CRDT, which guarantees strong even-
tual consistency. CRDT is a code-versioning system with the addition of
no-merge conflict. However, CRDT does not solve all problems, and
double-spend attacks persist in DS systems. Nevertheless, Ref. [50] ad-
dresses the double-spend attack by building a swarm coin on top of a
CRDT that makes the attack expensive. The DS system can hence become
DCS.

3. Databases fit for blockchain and blockchain databases

The databases summarized in Table 2 show how individual systems
comply with the DCS theorem and our conjecture. Here, we describe and
analyze in detail 10 transactional, 14 analytical, 9 hybrid (also called
“translytical”), and 13 blockchain database solutions in terms of the
functionalities they provide out of the box for implementing blockchain.
Each of the three types has its advantages with respect to the others when
implementing or storing a blockchain. Most well-known solutions offer
functionalities that support blockchain out of the box, such as the Oracle
Database andMicrosoft SQL Server, while others, such as PostgreSQL and
MySQL, can also be leveraged for blockchain, although they do not
provide application-ready functionalities. But there are also emerging
technologies that are good candidates because of their creative archi-
tectural models and features that aim to meet the demand of contem-
porary applications. Before describing the transactional, analytical,
hybrid, and blockchain database systems, we emphasize decentralized
and distributed systems.

Decentralized systems do not have a central node. Instead, the system
Fig. 4. DC System to DCS using sharding.



Fig. 5. CS System to DCS using cross-chain methods.
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has multiple central nodes that store the copy of resources. In a decen-
tralized system, each node of the system makes its own decision. The
final behavior of the system is the aggregate decision of the individual
nodes. This ensures that no single node has complete system information.
Decentralized systems are more tolerant of faults. This is because when
one or more central nodes fail, the other nodes still keep the system
running.

Distributed systems are similar to decentralized systems, but the
decision-making can be performed in a centralized or decentralized
manner. In a distributed system, nodes are physically separated but
communicate and coordinate by passing messages. In a distributed sys-
tem, nodes have equal access to data, though the privileges can be
enabled when required. These systems promote resource sharing and
have better fault-tolerant and scalability.
3.1. Transactional databases

One can store a blockchain in a traditional SQL database. This kind of
storage allows fast access to blockchain data and an efficient mechanism
for analyzing blockchain data by complex queries. Thus, SQL adds many
capabilities for the blockchain and makes it easier to work on blockchain
data using SQL tools and libraries. Below, we give an extensive analysis of
the usage of different SQL databases for blockchain and their
characteristics.

AergoLite1 allows us to have a replicated SQLite database secured by
a private and lightweight blockchain. Each app has a local replica of the
database. New database transactions are distributed to all the peers, and
once they reach a consensus on the order of execution, all the nodes
execute the transactions. As the execution order of the transactions is the
same, all the nodes have the same resulting database content. AergoLite
uses special blockchain technology focused on resource-constrained de-
vices. The consensus protocol uses a Verifiable Random Function (VRF)
to determine which node will produce the next block, and the nodes
cannot discover which node is selected ahead of time, which makes it
safe against Denial of Service (DoS) attacks. AergoLite uses absolute fi-
nality. Once the nodes reach a consensus on a new block and confirm the
transactions, there is no way back. Only the last block is required to check
the blockchain and the database state integrity; therefore, the nodes do
not need to keep and verify all the history of blocks and transactions. It is
also possible to set up some nodes to keep all the history for audit rea-
sons. It also uses a hash of the database state.

CovenantSQL (CQL) is a decentralized, trusted, and GDPR-compliant
database with blockchain features built on top of SQLite that makes the
database immutable. It is a Byzantine Fault Tolerance (BFT) relational
database built on SQLite. It can be used as a low-cost Database as a
Service (DBaaS). CQL has a layered architecture consisting of a global
consensus Layer, SQL consensus Layer, and datastore Layer. It supports
two consensus algorithms: Delegated Proof of Stake (DPoS)2 and
Byzantine Fault Tolerant RAFT (BFT-RAFT) [51]. CovenantSQL provides
an infrastructure to facilitate and build decentralized apps with full SQL
support. It can also be integrated into asset management and IoT
solutions.

Dqlite (“distributed SQLite”) is an open-source, fast, disk-backed
1 https://aergolite.aergo.io/.
2 https://en.bitcoinwiki.org/wiki/DPoS.
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database with in-memory options. It supports SQLite transactions, and
it uses the C-RAFT consensus, which is an optimized RAFT [52] with high
performance, ultra-low latency, and fault tolerance. In case one or more
machines fail, consensus ensures data persistence as long as the majority
survives. Hence, it is best suited for fault-tolerant IoT and Edge devices.
Dqlite has not been used in blockchain, but it can be helpful in blockchain
implementation.

Microsoft SQL Server [53] is a proprietary Relational Database
Management System (RDBMS). As a mainly centralized system, it offers a
wide variety of native data types and supports a wide variety of trans-
action processing, business intelligence, and analytical applications in
corporate IT environments. Azure Blockchain Workbench offers an
SQL database suitable for blockchain. It is built on top of Azure SQL [54],
the intelligent, scalable, and distributed relational database cloud service
using the Microsoft SQL Server Engine. Azure Blockchain Workbench
delivers data from distributed ledgers to an off-chain SQL Database, of-
fering a messaging API and a REST API for abstraction. The REST API
allows users to create and manage blockchain applications and work-
flows within a blockchain consortium, with full support for blockchain
transactions. It also offers high availability, tuning, backups, and
execution of complex SQL queries and is mainly suited to build private
blockchains. Its PACELC categorization is PC/EC, which ensures consis-
tency in all cases.

MySQL [55] and its community-developed fork MariaDB is an
open-source relational database system with advanced replication and
clustering features. In MySQL, the biggest challenge in implementing the
blockchain life-cycle is its distribution and replication across multiple
instances. In terms of PACELC, it is a consistency-favoring system to the
detriment of availability under network partition and latency under
normal operation. OurSQL3 is a standalone server connected to a MySQL
database. It is a combination of blockchain and MySQL. OurSQL can be
used for private blockchain applications. It supports PoW-type consensus
algorithms. It is mostly suited to build private blockchains.

Oracle Database 21c [56] is a proprietary, scalable, reliable, and
secure RDBMS built around the relational database framework. Oracle
Database 21c resolves concurrency issues by using various types of locks
and a multi-version consistency model. To manage the multi-version
consistency model, it creates a read-consistent set of data when a table
is queried (read) and simultaneously updated (written), thus falling into
the consistency-favoring PC/EC category of the PACELC design principle
due to its ACID property.

PostgreSQL [57] is an open-source enterprise RDBMS. It has a wide
variety of native data types and supports user-defined objects, which can
be beneficial for defining blockchain assets in a blockchain system. It is
highly modular and extensible, and supports isolation on different levels.
PostgreSQL has been used to create a so-called blockchain relational
database, where the replicas are managed by different organizations that
do not trust each other [58]. PostgreSQL is a PC/EC system that favors
consistency over availability/latency in terms of the PACELC principles
and supports both immediate and eventual consistency. The latter is used
for scaling reasons, and upon a write, all blockchain nodes will be in sync
sooner or later, while, in the meantime, the write might be reflected on a
blockchain node or still operating on another blockchain node. In
contrast, immediate consistency asserts that every read operation will
return the value stored by the latest write in the whole system, regardless
of the accessed blockchain node.

RQLITE is an open-source, lightweight, fault-tolerant, and distributed
relational database. RQLITE uses SQLite databases and RAFT [52] as the
consensus mechanism. It allows the dynamic creation of a cluster of
nodes and provides node-to-node encryption. Therefore, RQLITE appears
to be a potential candidate to be used in blockchain systems, especially
lightweight blockchain solutions.
3 https://en.bitcoinwiki.org/wiki/DPoS, http://oursql.org, https://covenant
sql.io, https://dqlite.io, http://www.rqlite.com/.
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SQLite [59] is an embedded, non-client-server, ACID-compliant
relational database system. It is suitable to be embedded as a local
database in the blockchain nodes. To implement blockchain in SQLite, it
is first necessary to implement the basic crypto, blockchain, and database
operations. Then, it is essential to implement the networking interface
that will render SQLite as a P2P network. Finally, key management op-
erations will allow entities to sign someone else’s key as the most
important process. However, automatic key management is still a chal-
lenging functionality. Usually, there will be no cryptocurrency layer, and
the metadata for each block in the chain will be stored in the database.
The consensus rules for accepting new blocks would have to be adapted
in a database fashion.

VoltDB [60] is an open-source, in-memory distributed database that
focuses specifically on fast data. Increasing the number of nodes in a
VoltDB cluster both increases throughput (by increasing the number of
simultaneous queues in operation) and increases the data capacity (by
increasing the number of partitions used for each table). The new version
of VoltDB V8 adds many blockchain capabilities. It provides SQL support
for the traversal of blockchain records with recursive Common
Table Expressions (CTEs). Using CTE, implementing a blockchain in
VoltDB provides high throughput and low latency and allows complex
queries. Ultimately, VoltDB is a PC/EC system in terms of the PACELC
design principles, favoring consistency over availability under network
partition and latency under normal operation.

3.2. Analytical databases

This section gives an extensive overview of 14 analytical database
engines, including column stores and analytical systems used for data
warehousing. The most popular and commonly known system is the
Apache Hadoop framework, whose blockchain-related features are
analyzed in detail in the next section.

Apache Hadoop [61] is a framework that provides distributed stor-
age and allows the processing of large data sets across clusters of com-
modity hardware. It delivers a high-availability service by automatically
redirecting jobs to healthy nodes when a node failure occurs, consoli-
dated by data replication. Unlike traditional relational databases, it
supports unstructured data, such as text, images, and videos.

There has been much research done on integrating the Hadoop sys-
tem with blockchain technology, such as Refs. [62–64]. The substantial
and diverse Hadoop ecosystem contains six prominent modules suitable
for storing and analyzing blockchain data: HBase, HBasechainDB,
Spark, Hive, Pig, and Kudu.

HBase [65] is a scalable, distributed, column-oriented non-rela-
tional database management system. It is tuned for storing massive data
sets by leveraging master-slave replica architecture. It provides a
fault-tolerant mechanism for storing sparse data sets, which are com-
mon in big data use cases. It is well suited for real-time data processing
or random read/write access to large volumes of data. It ensures con-
sistency over availability/latency and is thus a PC/EC system in terms of
PACELC.

Spark [66] is a data processing framework that can quickly perform
processing tasks on very large data sets by distributing the processing
tasks to multiple nodes, either on its own or in combination with other
distributed computing tools. Its integration with HBase enables de-
velopers to perform high-performance analytic tasks.

Kudu [67] is a free and open-source column-oriented storage sys-
tem developed for Apache Hadoop. It supports low-latency random
access millisecond-scale access to individual rows together with great
analytical access patterns. It aims to integrate HDFS and HBase. Kudu
merges the upsides of HBase and Parquet4, being as fast as HBase at
ingesting data and almost as quick as Parquet when it comes to
analytical queries. As required, Apache Kudu uses the RAFT consensus
4 https://parquet.apache.org/.
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algorithm to scale up or down horizontally. It also has an
update-in-place feature. It can scale up to tens of cores per node and
even benefit from SIMD operations for data-parallel computation. Kudu
has already been used for Ethereum blockchain analytics5, integrated
with Hadoop.

Apache Cassandra [27] is one of the most popular NoSQL databases
developed by Facebook. Due to the excellent throughput of massive
writes, many large enterprises like Netflix, Instagram, GitHub, and eBay
use Cassandra. It is a fully decentralized system and provides excellent
performance, durability, and fault tolerance without compromising
availability. In addition, Cassandra supports lightweight transactions to
establish consistency. The wide-column storage architecture, the Paxos
Consensus, and the similarity to DynamoDB make it a good fit for
blockchain. It is a definite candidate for blockchain storage solutions,
but, to this date, no concrete implementations exist.

In terms of PACELC, Apache Cassandra is a PA/EL system, which
means that if partition occurs, it favors availability to the detriment of
consistency, and otherwise, its normal operation favors low latency over
consistency.

BigQuery is an enterprise, scalable data warehouse that solves the
massive data sets problem by enabling super-fast SQL queries using the
processing power of Google’s infrastructure. It is a cloud-based big data
analytics service provided by Google. Because of the high performance
offered by this service, it is most suitable for blockchain data analytics.
One such approach is explained in Ref. [68], where BigQuery is used to
query an Ethereum network. Also, six cryptocurrency blockchain data
sets are released for comparative analyses.

ClickHouse6 is an open-source column-oriented DBMS. Because of its
high-performance characteristics, ClickHouse is a viable storage solution
for blockchain and analytics performed on blockchain data, as explained
in Ref. [69].

CouchDB [29] is a key-value database by Apache that provides rich
querying capabilities similar to MongoDB. For instance, CouchDB sup-
ports content-based JSON queries, which in turn makes it appropriate to
be used in Hyperledger Fabric. In Hyperledger Fabric [37], CouchDB acts
as a state database for storing chaincode-processed transaction data as
key-value pairs. It supports rich queries against chaincode data. Hyper-
ledger Composer also uses CouchDB by converting SQL queries into the
aforementioned content-based JSON queries supported by CouchDB.
Another benefit of CouchDB enabling it to be leveraged for blockchain is
its scalable clustering ability. The cluster can run on an arbitrary number
of nodes. CouchDB supports multiple levels of availability, making it an
‘eventual-consistency’ system, sacrificing immediate consistency for
huge performance improvements as data grow. Thus, CouchDB is a
PA/EL system in terms of PACELC, but its adjustable availability makes it
possible to have a PC/EC system.

CrateDB7 is a distributed database that integrates a fully searchable
document-oriented data store based on a shared-nothing architecture. It
offers the scalability and flexibility typically associated with a NoSQL
database and is designed to run on inexpensive commodity machines. Its
shared-nothing architecture provides greater deployment flexibility in
heterogeneous environments. To date, there has been no research done
on the integration of CrateDB in a blockchain system, but based on its
high performance, it could be a possible solution.

DynamoDB [28] is a fully managed NoSQL database service that
provides fast and predictable performance with seamless scalability
offered by Amazon Web Services (AWS). It provides key-value and
document models and delivers single-digit millisecond performance at
any scale. It is a multi-master, durable database with built-in security and
in-memory caching. DynamoDB’s encryption at rest eliminates the
a/.
6 https://clickhouse.tech/.
7 https://cbrate.io/.
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operational burden and complexity involved in protecting sensitive data.
DynamoDB has already been employed in many different blockchain
systems [70,71], where it has been used on the same level as the
blockchain system, serving only for storage and validation purposes.
However, with the AWS modules for blockchain support, DynamoDB’s
usage is extended even further in blockchain solutions. DynamoDB ad-
heres to PA/EL, sacrificing consistency for the sake of availability when
network partition occurs, or low latency under normal operation.
Although DynamoDB’s fit for blockchain is obscure, one such approach is
explained in Ref. [72], where it has been used as a building block for
private Ethereum networks.

Elasticsearch [73] is a distributed open-source search and analytics
engine for textual, numerical, geospatial, structured, and unstructured
data. It stores data as JSON documents and provides Elasticsearch queries
for querying the data. It provides a quorum-based consensus algorithm
and the primary-backup approach. Elasticsearch’s fit for blockchain is
related to the Elastic Stack (ELK Stack) built on top of it, a set of
open-source tools for data ingestion, enrichment, storage, analysis, and
visualization. The ELK Stack is very commonly used for observability on a
blockchain, enabling users to easily monitor their blockchain systems.
One such approach is the integration of the Elastic Stack as a monitoring
tool for the Hyperledger Fabric framework, as explained in Ref. [74].

ScyllaDB8 is an open-source distributed NoSQL column-oriented data
store. Its shard-based design makes it compatible with Apache Cassandra
while achieving significantly higher throughput and lower latency. At
each node, it handles data in parallel by sharding it into multiple subsets
and assigning each shard to a different CPU core. The cores do not share
shards but rather communicate when they need data from another core.
Although there is still no implementation using ScyllaDB as a storage
solution in blockchain projects, this database has been used in the IOTA
project9, which is a Tangle that falls under the same top-level category as
blockchain-distributed ledgers. ScyllaDB has been used as the distributed
storage solution because it provides fault tolerance, data consistency, fast
and efficient data queries, and other features essential for distributed
ledger technologies [75].

TiesDB [76] is a public, decentralized, and distributed database. The
ties Network is a deep modification of the Cassandra database. Because of
its flexibility regarding the underlying NoSQL database, TiesDB inherits
most of its features. It adds BFT, while most NoSQL databases lack BFT. It
supports sharding, smart contracts, and incentive schemes. It can be used
to build decentralized applications providing fast data retrieval. Inter-
estingly, TiesDB uses blockchain technology to enhance the architecture
of the database [77]. However, it does not store data on the blockchain
unit due to its complexity, which cannot ensure high-speed data opera-
tions over large volumes of storage. Nevertheless, TiesDB implements
blockchain technology to build a decentralized management center that
stores mostly passive and read-only key meta-information that does not
affect the operational speed of the database.

Voldemort10 is a distributed key-value store used by LinkedIn for
highly scalable storage. Voldemort cannot satisfy arbitrary relations and
is not ACID-compliant. It is rather a large, distributed, and persistent hash
table. Its fit for blockchain originates from the built-in fault-tolerant
Paxos-style consensus algorithm and in-memory caching. It has high
performance, following the PA/EL PACELC principle for ensuring high
availability/low latency when replication occurs, and, as such, is a
promising solution for blockchain systems.

3.3. Hybrid (translytical) databases

This section presents an overview of nine hybrid databases.
Aerospike [78] is an open-source distributed key-value in-memory
8 https://www.scylladb.com/.
9 https://www.iota.org/.

10 https://www.project-voldemort.com/voldemort/.
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NoSQL database with excellent scaling capabilities. It supports flexible
data schemas, high availability and scalability, and ACID transactions. It
also supports SSD storage persistence. Because of its flash-optimized and
SSD storage layer and architecture, it provides high performance and
almost the best massive write performance on the market. Thus, it has a
big potential for use in blockchain applications.

Azure CosmosDB [79] is Microsoft’s globally distributed, fully
decentralized, multi-model database. It supports key-value, graph, and
document data models. The key features of CosmosDB are its huge
storage capability, high throughput, low latency, and high scalability. It
delivers high availability and consistency with comprehensive Service
Level Agreements (SLAs). It offers multi-master replication across various
regional distributions. From a PACELC perspective, it follows PA/EL,
favoring availability under network partition or low latency under
normal operation at the expense of consistency in both cases. However,
CosmosDB supports multi-level consistency tuning, making it possible to
follow PC/EC, which essentially follows the latency-consistency trade-off
introduced in Ref. [30]. Many enterprises can benefit from building a
decentralized blockchain application using CosmosDB.

CockroachDB [80] is a scalable and distributed key-value database
that is highly adaptive and open-source. It supports strongly consistent
ACID semantics and horizontal scalability. It also uses the RAFT
consensus protocol for replica synchronization and uses an SQL API for
querying and structuring the data. CockroachDB is currently being used
by the company Tierion to implement its blockchain. CockroachDB
provides a variety of benefits that ease the process of implementing
blockchain. In short, they use Merkle Trees to build resistant hashes
starting from the leaf nodes of the tree and use a specific rewarding
system to reward healthy blockchain nodes.

Greenplum Database [81] is a Massively Parallel Processing (MPP)
database server with an architecture specially designed to manage
large-scale analytic data warehouses and business intelligence work-
loads. MPP (also known as a shared-nothing architecture) refers to sys-
tems with two or more processors cooperating to carry out an operation,
each processor with its own memory, operating system, and disks.
Greenplum uses this high-performance system architecture to distribute
the load of multi-terabyte data warehouses and can use all of a system’s
resources in parallel to process a query. The GreenplumDatabase is based
on the PostgreSQL open-source technology, where several PostgreSQL
instances are organized into a distributed, shared-nothing database
management system. It inherits most of the PostgreSQL features, such as
SQL and transactions.

InfinityDB11 is an embedded NoSQL database engine, a hierar-
chically sorted key-value store based on a Bþ Tree. InfinityDB supports a
rich data representation space. ItemSpace is the lowest-level data model
containing a set of items. The basic data model can be used to define huge
spare arrays, matrices, any mixture of trees, graphs, key/value maps,
key/value maps, or user-defined structures. It is a high-performance,
multi-core, flexible, and maintenance-free database. InfinityDB is
appropriate for embedded hardware platforms, text indexing engines,
distributed industrial data collection systems, and heterogeneous data
environments. InfinityDB Encrypted12 is identical to InfinityDB but
encrypts 100% of the database 100% of the time; hence, it is fit for the
blockchain.

MongoDB [24] is the fastest-growing document-based database in
the market. The distributed architecture of MongoDB makes it an ideal
platform for building blockchain databases. MongoDB offers data model
flexibility, high scalability, robust security, complex queries, and SQL
capabilities. Due to its powerful technological features, it is used bymany
leading enterprises nowadays. The MongoDB Enterprise edition supports
encryption, auditing, sharding, and access control. From a PACELC
perspective, MongoDB is a PA/EC system, ensuring high availability at
11 https://boilerbay.com/.
12 https://boilerbay.com/infinitydb-encrypted/.
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the expense of consistency when partition occurs, while under normal
operation, it ensures consistency, making data retrieval latency a second
priority. It implements a consensus protocol and leader election and also
offers SQL capabilities.

OrientDB [82] was developed as a direct response to polyglot
persistence. It is a multi-model open-source NoSQL DBMS that combines
the power of graphs with document, key/value, reactive, object-oriented,
and geospatial models into a single scalable, high-performance opera-
tional database. It also provides support for ACID transactions. The
multi-model flexibility allows it to store data in different formats and
makes it a very promising storage system for blockchain.

Redis [26] is an open-source, in-memory data structure store that is
widely used as a database, cache, or message broker. It supports data
structures such as strings, hashes, lists, sets, sorted sets with range
queries, bitmaps, hyperloglogs, geospatial indexes with radius queries,
and streams. Redis has built-in replication, Lua scripting, Least Recently
Used (LRU) eviction, transactions, and different levels of on-disk
persistence and provides high availability via Redis Sentinel and auto-
matic partitioning with Redis Cluster. Because of its in-memory data set,
it provides outstanding performance. Apart from its usage as a storage
system, Redis has been used as a message broker for many blockchain
systems [83,84].

TiDB [85] (“Titanium DB”) is an open-source and distributed SQL
database with strong consistency and high availability. It supports
Hybrid Transactional and Analytical Processing workloads. It has a
modular design containing three components for cluster coordination,
replicating key-value stores, and scheduling SQL queries. It uses the
RAFT consensus protocol for replica consistency.

3.4. Blockchain databases

This section presents an overview of 13 blockchain databases.
BigchainDB [6] is like a database possessing blockchain character-

istics, hence providing decentralization and immutability. It claims to
solve the transaction speed and storage problem. BigchainDB works by
offering an API on top of the underlying database. It was initially built
upon the RethinkDB [86] cluster, and it provides rich query functional-
ities, high throughput, and low latency, hence achieving high perfor-
mance. It enables enterprises to design decentralized applications by
deploying proof-of-concept on them. Recently, it collaborated with
MongoDB, and from version 2.0, it employs Tendermint consensus [87]
over a set of independent MongoDB instances, each owned by different
organizations. BigchainDB supports storing multiple assets of various
types, e.g., an intellectual property right, a data set.

BlockchainDB [88] implements a database layer on top of an existing
blockchain system. The database layer provides an abstraction called a
shared table and stores all data in its storage layer. The shared tables are
partitioned (i.e., sharded), which allows each shard to be implemented as
a separate blockchain network. The shards are only replicated to a
limited number of peers. To obtain higher speeds, not all peers store all
data locally. In BlockchainDB, a peer can be either deployed as a full peer
that hosts a database and a replica of at least one shard or as a thin peer
that only connects to other remote peers to access data in a shard. In this
way, a peer participates in a network and allows clients to read/write
data into a shared database. Having thin peers enables parties with only
limited resources to participate in a BlockchainDB network and access
the shared tables.

ChainifyDB [17] adds a blockchain-characteristic layer on top of a
standard database layer, and the standard database is plugged into the
ChainfyDB network to synchronize the database records. Hence, it allows
enterprises to build decentralized cutting-edge blockchain applications
on top of their database systems. ChainifyDB implements the WLC model
(Whatever-Ledger Consensus), a novel processing method. The core idea
is not to seek consensus on what actions should be taken but to seek
consensus on the effect of the actions after they have been performed.
One of the core features of ChainifyDB is to upgrade existing
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infrastructures consisting of several DBMSs. However, the challenge is
that the existing infrastructures can be highly heterogeneous, i.e., every
participant could potentially run a different DBMS where each system
can interpret a specific transaction differently. As a result, the effects
across participants may differ.

EthernityDB [89] integrates database functionalities in the Ethereum
blockchain [33]. It modularizes the Ethereum smart contracts and de-
ploys the database functionalities in it. EthernityDB uses MongoDB as the
database for coupling with the Ethereum blockchain and provides an
interface to perform rich queries on deployed smart contracts using the
Solidity language.

FalconDB [15] is a shared database consisting of multiple servers
with verification interfaces accessible to clients. FalconDB stores the di-
gests for query/update authentications on a blockchain. Using block-
chain as a consensus platform and a distributed ledger, FalconDB is able
to work without any trust in each other. Meanwhile, FalconDB requires
only minimal storage cost on each client and provides
anywhere-available, real-time, and concurrent access to the database. As
a result, FalconDB overcomes the disadvantages of needing expensive
hardware or having low performance and enables individual users to
participate in the collaboration with high efficiency, low storage cost,
and blockchain-level security guarantees.

FlureeDB [90] is a scalable blockchain database. It consolidates
blockchain with the document and graph databases to support a broad
range of industrial use cases. It provides rich access capability directly
inside the database. It offers transactions, sharding, censorship resis-
tance, privacy, and cloud hosting. It uses composite consensus that en-
ables multiple databases to be queried as a single database. Each block of
blockchain in FlureeDB represents a unique time moment, and this
feature is called “time-travel”. FlureeDB comes with key features, e.g.,
multiple sharding, cloud hosting, and low latency.

HBasechainDB [91] is a scalable big data store based on the concept
of blockchain. It adds the blockchain characteristics of immutability and
decentralization to the HBase database. HBasechainDB can be used as a
tamper-proof, decentralized, and distributed big data store. It can also be
used for Hadoop-enabled existing ecosystems for efficient immutable
data storage.

LedgerDB [14] is a centralized ledger database built on Alibaba
Cloud, with tamper-evidence and non-repudiation features similar to
blockchain. LedgerDB provides strong auditability by adopting a
two-way peg protocol called TSA, which prevents malicious behaviors
from users and service providers. LedgerDB supports verifiable data re-
movals demanded by many real-world applications, which are able to
remove obsolete records for storage savings and hide records for regu-
latory purposes without compromising their verifiability. The authors
claimed that LedgerDB has much higher throughput compared to
blockchains, and based on their experimental evaluation, LedgerDB’s
throughput is 80� higher than state-of-the-art permissioned blockchains
(i.e., Hyperledger Fabric). They also claimed that many blockchain cus-
tomers on Alibaba Cloud have switched to LedgerDB for its high
throughput, low latency, strong auditability, and ease of use.

Modex BCDB [92] is a blockchain database that applies Proof of
Stake (PoS) consensus and supports multiple databases, including SQL
and NoSQL databases. It provides a blockchain layer between a database
and a client application. It also has a plug-and-play approach for orga-
nizations to develop blockchain-enabled software systems. It supports
multiple blockchain frameworks, such as Hyperledger Sawtoothlake and
Tendermint, as a blockchain layer. It also supports multiple database
systems, such as MongoDB and MySQL.

TheOracle Blockchain Platform is a comprehensive and distributed
ledger cloud and on-premise platform that enables the building of
blockchain networks and the support for many types of tables, including
blockchain tables. The platform uses cryptographic hashing for tamper-
resistance, and digitally-signed updates are mandatory in transactions.
It offers a distributed ledger replicated across organizations, multi-
signature and decentralized trust, and smart contracts across multiple
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nodes. A key blockchain feature of the platform is that it is interoperable
with other Hyperledger Fabric blockchain nodes.

The blockchain table in Oracle Database 19c/21c is a simpler concept
but offers higher throughput for insert transactions and an SQL or PL/
SQL programming model. It is a tamper-proof, insert-only table with an
associated table-level and row-level retention period, where rows are
organized into chains, with each row containing a hash of the data
contained in the row, and the hash of the previous row data.

Postchain [93] is the first consortium database, as claimed by the
company ChromaWay. It combines the features of a mature distributed
database and blockchain. A blockchain solution can be implemented
using Postchain and SQL. Postchain is BFT-enabled, secure, flexible,
scalable, and has powerful features to manage integrity, validation, and
data independence, along with the inherited traits from the underlying
standard database. Postchain applies Proof of Authority (PoA) consensus
to maintain the data in a network of nodes. Postchain transactions are
defined using SQL, and a network of validator nodes handles these
transactions. These transactions are communicated by using encryption
and signed messages. The nodes from the validator set validate the proof
and synchronize their databases.

ProvenDB [94] adds the blockchain characteristic layer on top of the
MongoDB database. Hence, it leverages enterprises to build decentralized
cutting-edge blockchain applications on top of their database systems. It
is compatible with MongoDB and stores multiple versions of the data-
base, which are cryptographically provable, immutable, and
tamper-proof. It solves the performance dilemma by anchoring several
thousands of database transactions to the blockchain in a single opera-
tion. ProvenDB delivers a temper-resistant secure digital data store where
all sorts of sensitive data can be stored, such as legal and financial
records.

QLDB Amazon QLDB [95] is a ledger database that abstracts many
blockchain features. It renders a tamper-resistant, transparent, and
cryptographically verifiable ledger of transactions. To implement a
blockchain using QLDB, it is necessary to set up an entire blockchain
network with multiple nodes and implement verification procedures for
each transaction in the blockchain.

QLDB lacks decentralization and hence does not follow any consensus
algorithm. Therefore, it best suits enterprises that do not require any
consensus and still want to have the immutability of their data. QLDB
also supports SQL queries, leveraging SQL developers to run complex
queries on the stored data.

Veritas [16] is a new abstraction for trusted data sharing in the cloud
by adding trust and auditability to existing database management sys-
tems. To be able to add these capabilities to existing database systems,
the authors proposed the implementation of shared, verifiable database
tables. These tables integrate the tables from the blockchain database
directly into the databases of the nodes—as if they were to share a single,
common instance of this table. The authors also proposed using the
Caesar Consensus to support tamper-evident collaboration across mutu-
ally untrusted entities.

4. Databases and blockchain: Mutual influence and development

The primary motivation behind this paper was to investigate how
databases and blockchain can be coupled together and benefit each
other. Blockchain and databases can both achieve many functionalities
and features, adding to each other. If we frame blockchain as a database
that provides a storage mechanism, then we can analyze how it differs
from existing database systems.
4.1. The key features

The following are the key points where blockchain and database
differ in their properties, but both can leverage and enhance the char-
acteristics of each other.
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� Traditional blockchain throughput decreases when the processing
capacity of nodes participating in the blockchain increases. Yet, in the
case of the distributed database, the throughput increases when the
nodes increase. Hence, throughput can be enhanced.

� The latency of transactions in the blockchain is usually high
compared to the latency in the database. Thus, the latency can
potentially be lowered using a database.

� Transactions in blockchain require serializable isolation, which can
be achieved by consensus algorithms, providing strong consistency,
and other mechanisms—in databases, there is a well-understood
mechanism called two-phase locking and concurrency control [96].
However, new blockchain databases, such as BlockchainDB [88],
based on MongoDB [24], are beginning to offer new transaction
mechanisms based on blockchain. Blockchain transactions should be
ACID-compliant [18], which is an inbuilt property of the database.

� Most blockchain platforms do not support complex queries in their
historical data. These queries are needed in many applications to
retrieve the desired information. The complex query feature is
available in most databases, but the provenance queries on historical
data can be supported by the use of Multi-Version Concurrency
Control [97].

� The decentralization feature of blockchain has rewired most of the
financial systems and industries over the last decade. However,
decentralization is not available in the traditional distributed data-
base. With the advent of new blockchain-style databases, decentral-
ization is now possible and has promising potential for many
applications.

� The transaction replication feature of blockchain has had a significant
influence on the development of new distributed database systems.
Blockchains replicate an ordered log of transactions (or ledger), while
distributed databases replicate the ordered log of read and write
operations on top of the storage. This paradigm has been adopted in
so-called ‘NewSQL’ distributed databases, which aim to retain ACID-
ity and attain vertical scalability in addition to horizontal scalability
through the adoption of various blockchain-inspired consensus al-
gorithms [98].

� One of the other excellent features of blockchain is the immutability
or tamper-resistance of transactions. Tamper-resistance can be ach-
ieved in database systems by mechanisms that disallow deletes and
updates in the database.

� Blockchain allows the creation and movement of digital assets, which
is not permitted in a classical database. However, a blockchain-style
distributed database can have this feature as a built-in feature.

In Table 1, we give a summary of this mutual influence and the
entangled development of databases and blockchain.

Describing the similarities and differences between blockchain and
databases, one should not forget about the CAP [20] theorem for a
database system that can help make the right choice of database to suit
the blockchain needs. Therefore, in the next section, we discuss the CAP
theorem modeled for the blockchain.

The entangled development of databases and blockchain is most
evident in distributed databases. There is a clear distinction between
blockchain and distributed databases in four aspects: replication,
concurrency, storage, and sharding [98]. Table 1 gives a slightly different
comparison to the one provided by the authors of Ref. [98] and provides
information on how databases and blockchain domains influence each
other. For instance, the low transaction latency. In recent years, the
development of distributed databases fully supporting decentralization
has been accelerated by different consensus algorithms, such as RAFT
and Paxos variations. In terms of decentralization, Aerospike [78] is an
interesting example of a distributed database (a flash-optimized in-me-
mory distributed database) that fully supports high-speed distributed
cluster formation based on a Paxos gossip algorithm to ensure agreement
on a critical shared state. In terms of the movement of digital assets, its
design allows for shards of the data to move from one server to another in



Table 1
A summary of the mutual influence and the entangled development of databases
and blockchain.

Feature Database domain Influence
direction

Blockchain domain

High throughput
and scalability

✓ (in distributed
databases)

→ To be implemented

Transactions
latency

Low → High

Serializable
isolation

Alternatives to two-
phase locking

← ✓

ACID properties ✓ → Hyperledger Fabric
[37] due to CouchDB
[29]

Complex queries on
the historic data

✓ → Techniques such as
VQL [99]

Decentralization New, blockchain-
style databases

← ✓

Replication ✓ (via a trusted
transaction
manager, a main
replica, and
consensus: Paxos,
PBFT, RAFT)

← ✓ (primary-backup
and chained
replication) [98]

Immutability
(tamper-
resistance)

Mechanisms that
prevents deletes and
record updates’
history

← ✓

Movement of
digital assets

New, blockchain-
style distributed
databases

← ✓

CAP (Consistency,
Availability,
Partition
tolerance)

✓ → DCS
(Decentralization,
Consistency,
Scalability)
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order to handle nodes coming in and out of the cluster while ensuring
sufficient replication for horizontal scaling besides the inherent vertical
scaling. While Aerospike can support tens of millions of transactions per
second using DRAM and millions using Flash storage, cutting-edge
distributed blockchain databases like BigchainDB [6], which add block-
chain properties on top, introduce a much higher transaction latency and
sacrifice vertical scalability. In general, such properties are still in a very
premature phase of development in the blockchain domain.

Replication is tightly coupled with decentralization. Replication in
the blockchain is implemented on the transaction level. In contrast,
distributed databases traditionally maintain a trusted entity that man-
ages the replication of the read/write operations so that the nodes are
unaware of the transaction logic. Without the presence of such an entity,
blockchains replicate the entire transaction whose execution can then be
replayed by each participant. There are two types of replication ap-
proaches in blockchains: primary-backup, in which a primary replica
synchronizes its state with backup replicas, and a chained, state-based
replication approach. The first approach has already been adopted by
many distributed databases, such as Apache Cassandra, a widely used
open-source database management system. The second approach,
chained replication, is more complex and uses consensus protocols on top
of a state model to implement and maintain an ordered shared log of
transactions. The consensus protocols help the replicas agree on the or-
dered log [98]. Protocols such as Paxos, RAFT, PBFT, and other
non-blocking protocols have increasingly become popular for adoption in
distributed database systems. With the rise of cloud-based distributed
applications, horizontally and vertically scalable graph databases such as
Neo4j [100] and Dgraph [101] have become increasingly popular. Neo4j
has adopted chained replication with a non-blocking consensus algo-
rithm, while Dgraph uses RAFT. Aerospike [78] is another example of an
in-memory and flash-optimized distributed database that adopted the
Paxos protocol to attain extreme degrees of vertical and horizontal
scalability.

From CAP and PACELC to DCS in blockchain. As stated in Section 2
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and the last row in Table 1, in the blockchain domain, the CAP theorem is
replaced by the DCS theorem. In this part, we analyze several blockchain
systems, such as BigchainDB, BlockchainDB, Blockchain Relational
Database, and ChainifyDB, with respect to the DCS theorem and the DCS-
Satisfiability Conjecture given in Section 2. In distributed systems, the
more applicable PACELC theorem implies that to balance out the trade-
off between latency and consistency when data are replicated, the
hybrid combination of synchronous and asynchronous replication could
reduce the intensity of the trade-off, providing satisfactory levels of both
latency and consistency. Furthermore, the relaxed DCS requirements
have been adopted in the design of some of the systems of concern in
order to balance out the trade-off between the remaining two properties
when one of decentralization, consistency, or scalability is desired.

Scalability (DC→DCS). The most critical factors affecting scalability
are the consensus algorithm and the replication strategy. When scal-
ability is desired in a blockchain, a trade-off between decentralization
and consistency arises.

The crucial advantage of BlockchainDB is to avoid replicating the data
to all peers, thus avoiding the high overhead of a blockchain consensus.
Instead, shared tables are partitioned (i.e., sharded). This means that
each shard is implemented as a separate blockchain network. The shards
are only replicated to a limited number of peers, allowing better trade
performance and trust characteristics depending on the application’s
requirements.

ChainifyDB creates a network of possible heterogeneous DBMSs with
different transaction processing systems, where each DBMS keeps an
actual replica of the database. If a database deviates for any reason, there
is a robust recovery mechanism. The system uses the powerful features of
well-established DBMSs, such as SQL, the relational model, and high
transaction processing performance. Also, ChainifyDB provides parallel
transaction execution based on the strategy when a block of transactions
is received by the execute-subphase, and the system first identifies all
existing conflict dependencies between transactions. This allows for the
formation of mini-batches of transactions that can be executed safely in
parallel, as they have no conflicting dependencies.

For a blockchain relational database, some improvements and opti-
mizations should be implemented in the communication layer to ensure
the system’s scalability.

BigchainDB inherits characteristics of modern distributed databases:
linear scaling in throughput and capacity with the number of nodes, a
full-featured NoSQL query language, efficient querying, and permis-
sioning. Scalable capacity means that legally binding contracts and cer-
tificates may be stored directly on the blockchain database.

Decentralization (CS→ DCS). As soon as decentralization is desired
in a blockchain system, then a trade-off between consistency and scal-
ability arises.

BlockchainDB assumes that the parties who want to share data are
previously authenticated and known to each other, similar to permis-
sioned blockchains. However, parties do not need to trust each other
since they may have contrary goals. BlockchainDB inherits several se-
curity characteristics and guarantees the underlying blockchain systems,
like peer authentication using public/private keys, replay protection, and
several tolerable malicious nodes.

ChainifyDB is a flexible permissioned blockchain system. It provides
encrypted communication among the databases plugged into the
network through an end-to-end encryption mechanism. Moreover,
ChainifyDB is seamlessly invasive when plugged into a database, does not
require any tool for its maintenance, and presents a web front-end to
perform that.

The blockchain relational database is suitable for building a private
and permissioned network of organizations that are known to one
another but may be mutually distrustful. A new organization must be
permissioned to join the decentralized network.

BigchainDB can be used in a fully decentralized setting or as a mild
extension of a traditional centralized computing context. In cases where
decentralizing just storage brings the majority of benefits or where
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scalability needs are more significant than the capabilities of existing
decentralized processing technologies. In these cases, BigchainDB pro-
vides a bridge to eventual fully-decentralized systems.

Consistency (DS → DCS). As soon as consistency is desired, a trade-
off between decentralization and scalability arises. Some systems support
tuned consistency levels, while others use custom methods such as
snapshot isolation.

BlockchainDB provides different consistency levels on top of block-
chains. A sequential consistency guarantees a client to see new values; it
has a much higher latency than eventual consistency since it forces a
client to wait until pending writes for a key are committed. In contrast,
eventual consistency has a significantly lower latency but does not pro-
vide any guarantee of the staleness of retrieved values. An eventual
consistency with bounded staleness allows clients to trade off staleness
for improved read latency. Moreover, it allows online and off-chain
verification methods.

In ChainifyDB, the WLC model implies that organizations cannot
commit to the effects of their actions if consensus on the effects of specific
actions cannot be reached. The core idea behind the WLC model is not to
seek consensus on what actions should be taken but to seek consensus on
the effect of the actions after they have been performed. This allows the
authors to drop assumptions on the concrete transaction processing
behavior of the organizations. It also allows them to detect any external
tampering with the data. The system supports using arbitrary vote-based
mechanisms or consensus mechanisms, such as Paxos and PBFT,
depending on the required guarantees. Also, it enables the consensus
policy parameter to be set, which defines the number of organizations
that must agree to transactions.

In Blockchain Relational Database, the system uses the SSI (Serial-
izable Snapshot Isolation) method to ensure the serializability of the
transactions. Also, it provides two approaches to building a consistently
replicated ledger across untrusted nodes starting from a relational data-
base: order-then-execute and execute-order-in-parallel. While the first
approach is more straightforward and requires fewer modifications to the
relational database, the second approach has the potential to achieve
better performance. SSI, if directly applied, does not guarantee serial-
izability and consistency across nodes for the execute-order-in-parallel
approach.

BigchainDB has the blockchain benefits of decentralized control,
immutability, and creation and transfer of assets. The decentralized
control is via a federation of nodes with voting permissions. The voting
operates at a layer above the DB’s built-in consensus. Immutability is
achieved via several mechanisms: shard replication, reversion of dis-
allowed updates or deletes, regular database backups, and cryptographic
signing of all transactions, blocks and votes.

4.2. Databases adapted for blockchain technology

This section summarizes the availability of blockchain features in
database systems and the extent to which transactional, analytical, and
hybrid database systems offer blockchain features, characteristics, and
capabilities. We used seven baselines—decentralization, consistency,
scalability, immutability, low latency, high throughput, and shar-
ding—to analyze and rate the capabilities of a database system to
implement blockchain. Table 2 lists all the database systems for which
there is enough blockchain-related information available. The right-most
column shows the database system’s overall rating regarding its fit for
blockchain. Some of the database systems described in Section 3 are not
included in the table because of scarce information regarding their fit for
blockchain. However, some of them are new on the market and possess
the potential to implement blockchain.

Our methodology in Table 2 categorizes 29 database management
systems into three levels of fitness for blockchain: low, medium, and
high. Systems that satisfy all seven baselines, namely decentralization,
consistency, scalability, immutability, low latency, high throughput, and
sharding, are considered the most suitable for implementing blockchain.
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Data Model. The data model plays a significant role when imple-
menting blockchain. The databases analyzed in Table 2 have different
models: relational databases, key-value stores, document-oriented data-
bases, graph databases, and wide-column stores. The majority of the
systems most suitable for implementing blockchain are relational, but
document-oriented key-value or column stores slightly outnumber them.
Each model has its own advantages, such as offering SQL capabilities,
while graph databases offer modern query language support, such as
GraphQL. In general, this means that NoSQL and NewSQL databases are
as capable as relational databases when it comes to blockchain fit.
However, in general, Table 2 shows that one-third of all the databases are
relational, while the rest are document-oriented. Graph databases are the
least frequent.

Consensus. The consensus algorithm also plays an important role.
The most suitable databases for implementing blockchain use all kinds of
different consensus algorithms, and there is no dominant one. These
databases use consensus algorithms such as Zen Discover, RAFT, ZAB
(ZooKeeper Atomic BoardCast) Consensus, PBFT, BFT-RAFT, Two-Phase
Commit, and others. The most widely used consensus is RAFT or its
variations.

Decentralization. Almost all of the databases in Table 2 are decen-
tralized. This is one of the key properties required in blockchain. A third
of the databases that do not support decentralization implement a rela-
tional data model.

Consistency. Most of the databases that cannot guarantee consis-
tency are relational. They are ChainifyDB, Dqlite, OurSQL, and TiesDB.
The rest of the databases have the full capabilities of consistency, and
only a few have eventual consistency or configurable consistency.

Scalability. Scalability can be either horizontal or vertical. Hori-
zontal scalability enables the distributed database to easily manage huge
amounts of replicated data with high availability. In contrast, vertical
scalability allows the databases to handle large amounts of transactions
in a short period of time. As shown in Table 1, replication approaches
from blockchain have been adopted in distributed databases to attain
vertical scalability.

Immutability. Immutability is another key feature of blockchain.
Traditional databases do not always feature immutability, and since they
are tightly coupled with blockchain, databases that do not support
immutability cannot be regarded as highly fit for implementing block-
chain. Table 2 shows 13 such databases, i.e., more than a third of all 29
databases.

Low latency.Most of the databases feature low latency, but there is a
significant number of databases for which such conclusions cannot be
drawn. This is also an important feature required to implement block-
chain, and these databases are thus not considered highly fit for
blockchain.

High throughput. High throughput is correlated with low latency.
Table 2 shows the correlation clearly. Database systems that do not have
high throughput are considered either a low or a medium fit for block-
chain. The absence of low latency and high throughput decreases their
suitability for blockchain. High throughput is usually attained by vertical
scalability.

Sharding. Sharding is an important baseline for implementing
blockchain. There are no highly fit databases that do not support
sharding since it has a direct influence on horizontal and vertical scal-
ability. One of the biggest problems in blockchain is scalability, so
sharding is a basic prerequisite when implementing blockchain.

The comparison matrix indicates that 9 out of 29 studied database
management systems possess properties that render them highly suitable
for implementing blockchain. The majority of these systems are
document-oriented, some being key-value stores or wide column stores,
while only a third are traditional relational database systems. Moreover,
these three systems have been commercially successful over the last few
decades: Microsoft’s SQL Server, Oracle Database, and PostgreSQL; it is
well known that PostgreSQL is an open-source project that generally
follows the Oracle Database’s development life-cycle and inherently



Table 2
Comparison matrix for different systems.

System Data Model Consensus Decentral-
ization

Consistency Scalability Immutability Low
Latency

High
Throughput

Sharding Blockchain
Fit

BigchainDB Document
oriented

Tendermint
[87]

✓ ✓ ✓ ✓ ✓ ✓ ✓ High

BlockchainDB Key-Value Underlying ✓ ✓ – ✓ ą ą ✓ Medium
Blockchain
Consensus

Cassandra Wide Column
store, Key-
Value

Paxos [102] ✓ ✓* ✓ ą ✓ ✓ ✓– Medium
Consensus

ChainifyDB Relational Whatever
ledger

✓ – ✓ ✓ – ✓ – Medium

ClickHouse Column
oriented

ZAB [103] ✓ ✓ ✓ – ✓ ✓ – Medium
Consensus

CockroachDB Key-Value RAFT ą ✓ ✓ ą ✓ – ✓ Medium
Consensus

CosmosDB Key-Value,
Document
oriented,
Graph

No ą ✓** ✓ ą ✓ ✓ ✓ Medium
Consensus

CouchDB Key-Value No ą ✓* ✓ ą ✓ ✓ ✓– Medium
Consensus

CovenantSQL Relational DPOS1, ✓ ✓ – ✓ – – – Medium
BFT-RAFT
[51]

CrateDB Document
oriented

Zen Discovery ✓ ✓* ✓ – ✓ ✓ ✓ Medium
Consensus
[104]

Dqlite Relational C-RAFT [52]
Consensus

ą – – ą ✓ ✓ – Low

DynamoDB Document
oriented Key-
Value

Paxos [102] ✓ ✓ ✓ ✓ ✓ ✓ ✓ High
Consensus

Elasticsearch Document
oriented

Zen Discovery ✓ ✓* ✓ ✓ ✓ ✓ ✓ High
Consensus

FlureeDB Document
oriented,
Graph

PBFT, ✓ ✓ ✓ ✓ ✓ ✓ ✓ High
RAFT

HBasechainDB Wide Column
store

No, but uses ✓ ✓ ✓ ✓ ✓ ✓ ✓ High
Blockchain

Microsoft Relational IBFT
Consensus

✓ ✓ ✓ ✓ ✓ ✓ ✓ High

MongoDB Document
oriented

RAFT ą ✓ ✓ ą – ą ✓ Medium
Based

Oracle Relational RAFT
Consensus

✓ ✓ ✓ ✓ ✓ ✓ ✓ High
Database
OurSQL Relational PoW type

Consensus
✓ – – ✓ – – – Low

Postchain Relational BFT ✓ ✓ ✓ ✓ – – – Medium
Based

PostgreSQL Relational Two-Phase ✓ ✓ ✓ ✓ ✓ ✓ ✓ High
Commit

ProvenDB Document
oriented

Not ✓ ✓ – ✓ – ą – Medium
Mentioned

QLDB Document
oriented

No
Consensus

ą ✓ ✓ ✓ – – – Medium

Rqlite Relational RAFT ą ✓** – ą – – – Medium
Consensus

ScyllaDB Wide Column
store

RAFT ✓ ✓ ✓ ✓ ✓ ✓ ✓ High

Key-Value Consensus
TiesDB Document

oriented
BFT ✓ – – ą – – ✓ Low
Based

TitaniumDB Key-Value RAFT ą ✓ ✓ ą – – ✓ Low
Consensus

VoldemortDB Key-Value Paxos [102]
Consensus

✓ ✓* ✓ – ✓ ✓ – Medium

VoltDB Relational No
Consensus

ą ✓ ✓ ą ✓ ✓ ✓ Medium

Here, ‘✓’ indicates that the feature is present, ‘ą’ indicates that the feature is not present in the corresponding system, ‘✓*’ represents eventual consistency, ‘✓**’
represents configurable consistency, ‘✓–’ represents that the database has its own sharding method, ‘–’ represents inconclusive data.
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implements most of its features. Other widely used solutions, such as
MySQL, MariaDB, and SQLite, have still not reached the required
maturity level. However, they have ‘chainified’ variants (forks) with
Table 3
Original databases adapted for the blockchain ecosystem, along with the different fe

Category Original DB Chainfied DB Maturity Blockchain
Type

Architectu
Type

OLTP MySQL OurSQL Prototype Private Out-of-the
Database

OLTP SQLite Aergolite Framework Private Out-of-the
Database
Blockchain

OLTP SQLite CovenantSQL Framework Public Out-of-the
Blockchain

OLTP * Postchain Framework Private &
Public

Permission
Blockchain

OLTP PostgreSQL Blockchain
relational DB

Research
prototype

Permissioned Out-of-the
Database

OLAP CouchDB Hyperledger
Fabric

Framework Private Permission
Blockchain

OLAP HBase HBasechainDB Research
prototype

/ NoSQL
Databases

OLAP TiesDB TiesDB In use Private Permission
Blockchain

HTAP CockroachDB Tierion Prototype / NewSQL
Databases

HTAP FlureeDB FlureeDB In use Private &
Public

Out-of-the
Database
Blockchain

HTAP MongoDB MongoDB
Atlas

In use / NoSQL
Databases

HTAP MongoDB BigchainDB In use Private &
Public

Out-of-the
Database
Blockchain

HTAP QLDB QLDB In use / Quantum
Ledger
Databases

Here, ‘*’ in the column Original DB means that any database can be used, while ‘/’
Processing), OLAP (Online Transaction Processing), HTAP (Hybrid Transactional/An
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concrete implementations of blockchain, listed and discussed in more
detail in Table 3. The consensus algorithm does not have a significant
influence on the systems’ fit because most of them use well-studied and
atures of the chainified database.

re Replication and
Architecture

Implementation
& Development

Concurrency
Control

Query
Processing

A blockchain
replication tool on
top of relational
database

Golang, SQL MVCC, 2 PL Tuple-at-a-
time model

s

Replicated SQLite
database secured by
a private and
lightweight
blockchain

C/Cþþ, SQL 2 PL Tuple-at-a-
time model

Decentralized SQL
database
management system
derived from SQLite
and built on top of a
blockchain

Python, Golang,
Java, JavaScript,
SQL

2 PL Tuple-at-a-
time model

ed
s

Combines the
features of a mature
distributed database
and blockchain

Java, NodeJS,
PostgreSQL

/ /

Decentralized
replicated relational
share nothing DB
with blockchain
properties

Cþþ, SQL MVCC, 2 PC Tuple-at-a-
time model

ed
s

State database for
storing chaincode
processed
transaction data as
key-value pairs

Erlang, JavaScript,
C, Cþþ

MVCC /

Scalable big data
store based on the
concept of
Blockchain

Java MVCC Tuple-at-a-
time model

less
s

TiesDB uses
blockchain
technology to
enhance their
security

Solidify, NodeJS / /

Company turning
blockhain into global
platform for
veryfying data

SQL, NodeJS MVCC Tuple-at-a-
time,
Vector-at-a-
time model

s

Scalable graph
database which
provides the benefits
of blockchain
technologies, such as
immutability,
replayability and
fault tolerance

GraphQL,
SPARQL, FlureeQL

/ /

Enterprise grade
blockchain database
on top of MongoDB

SQL, JavaScript,
NodeJS, Python

2 PL Tuple-at-a-
time model

s

Blockchain
characteristics on top
of distributed
database

RazorSQL, Java,
Python,
JavaScript,
NodeJS

2 PL Tuple-at-a-
time model

Purpose-built ledger
database that
provides a complete
and
cryptographically
verifiable history of
all changes made to
the application data

PartiQL, Java,
.NET, NodeJS, Go,
Python

Optimistic CC /

means that there is no information for that property. OLTP (Online Transaction
alytical Processing)
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proven consensus algorithms.
The absence of specific properties renders the systems unfit for

blockchain. One such property is sharding, which maintains consistency.
The support for sharding while data consistency is not maintained cate-
gorically places the systems into the low-fit category. The absence of
immutability prevents the systems from being considered a good fit for
implementing blockchain.

Table 2 shows that even well-known commercial solutions, such as
the Oracle Database and Microsoft SQL Server, are suitable for imple-
menting blockchain. Other database systems that stand out are Big-
chainDB, BlockchainDB, DynamoDB, Elasticsearch, FlureeDB,
HBasechainDB, and ScyllaDB.

While many databases are fit to be adapted for usage in blockchain
technology, there are still challenges when trying to adapt databases into
the blockchain ecosystem. One of the challenges is scaling blockchains by
optimizing the consensus protocols, which are addressed by the authors
in Refs. [106,107]. In addition, the authors in Ref. [107] explained that
all the different stages that a transaction goes through before it is
considered committed to the blockchain could also be a potential
bottleneck and be subject to future optimizations.

However, there is a very close similarity between the flow of a
transaction in a distributed database and the transaction flow in the
blockchain system. In fact, the most significant difference is the
consensus protocol. Because of the close similarity between the database
technologies and the blockchain systems, the authors in Ref. [107] pro-
posed four different approaches inspired by the database design that
would improve blockchain performances, as listed below. We also add
replication to the list due to the closely entangled replication approaches
in blockchain and distributed databases:

� Decoupling the layers and optimizing them individually. This
approach would decouple the storage, execution engine, and
consensus layer from each other and proceed to optimize and scale
them independently.

� Embracing new hardware primitives. This approach would take
hardware optimized for data processing systems, as explained in Refs.
[108–110].

� Sharding. This approach would use the sharding technique of
distributed databases while still maintaining consistency.

� Supporting declarative language. This approach would use a set of
high-level operations that can be composed in a declarative manner,
making it easy to define complex smart contracts.

� Replication. Some decentralized database systems use non-standard
and optimized data replication strategies, slightly sacrificing data
availability for the sake of reducing the replication bottleneck. Usu-
ally, this is done by reducing the number of transactions replicated
using the shared logs. This can be done by replicating to a smaller
group of trusted replicas (managers) that periodically synchronize
with the main manager or replica while maintaining a relatively
satisfying data availability.

While all these approaches for optimizing blockchain by adapting
database concepts are only defined theoretically, many databases are
adapted and optimized for usage in the blockchain ecosystem. Advances
in sharding and replication have contributed significantly to improving
the performance and scalability of databases. The different blockchain
databases, their original database, their general category, their maturity,
their blockchain type, architecture type, their replication and architec-
ture details, the supported implementation and development languages,
the concurrency control mechanism, and the query processing mecha-
nism are given in Table 3. The general category is divided into 1) Online
Transaction Processing (OLTP), 2) Online Analytical Processing (OLAP),
and 3) Hybrid Transactional/Analytical Processing (HTAP).

The databases in Table 3 are categorized into six categories derived
from the type of database architecture. The table provides the informa-
tion currently available for each database across the literature and the
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internet. Out-of-the-database blockchains are a hybrid design approach
that starts with a database and then adds blockchain features to it. Out-of-
the-blockchain databases are another hybrid approach that starts with a
blockchain-like system and adds database features on top of it [98].
NewSQL databases are a category of databases following a design
approach that starts with NoSQL databases in order to provide the scal-
ability they offer but, at the same time, maintain the ACID properties of
traditional RDBMS.

The concurrency control mechanisms given in Table 3 are used to
ensure the correctness of the results of concurrent operations or trans-
actions in the database. Major methods used in databases are optimistic
timestamp ordering and pessimistic Two-Phase Locking (2 PL), as well as
Two-Phase Commit (2 PC). However, Multi-Version Concurrency Control
(MVCC) is most widely used today since it is considered optimal for
mixed workloads and has been used for accelerating analytical process-
ing [111]. Query processing is generally categorized as Tuple-at-a-time,
Operator-at-a-time, or Vector-at-a-time. Tuple-at-a-time is used by most
database management systems, and the query plan is executed such that
each operator calls next on their child to get the next tuple to process.
Operator-at-a-time is ideal for in-memory OLTP database engines
because it materializes the entire output of the parent operator, resulting
in a reduced number of function calls and tuples per operator. The
Vector-at-a-time approach processes query plans such that each operator
calls next on their child to obtain the next vector (batch) of data to
process.

PostgreSQL has a chainified variant that is still a research prototype: it
is a decentralized and replicated relational database with blockchain
properties that implements a permissioned blockchain and uses the
Postgres storage manager. PostgreSQL was chainified by implementing
two new components, i.e., background workers: communication mid-
dleware to communicate with other nodes and block a processor to
process blocks. It uses additional shared memory data structures and
blockchain-related catalog tables. Currently, PostgreSQL’s blockchain
relational database supports blockchain features such as immutability,
decentralization, and data replication but is still a research prototype.

OurSQL is a prototype for a blockchain replication tool, implemented
on top of the MySQL relational database, and implements a private
blockchain. MySQL is chainified into an OurSQL by adding a replication
middleware acting as a blockchain replication tool on top of MySQL. It
uses PoW consensus.

CouchDB’s blockchain counterpart is Hyperledger Fabric, which is a
state database for storing chaincode processed transaction data as key-
value pairs. It implements a private blockchain, uses a B-tree-based
storage engine, and supports transient and persistent replication.

There are two chainified variations of SQLite. The first, Aergolite, is a
replicated SQLite database secured by a private and lightweight block-
chain. As a framework, Aergolite was implemented using a bottom-up
approach as a replicated transactional database with blockchain on top
of the base database. It uses VRF-based consensus and implements ab-
solute finality, eliminating the need for nodes to keep and verify all the
history of transactions and blocks. The second, CovenantSQL, is a
decentralized SQL database management system derived from SQLite
and built on top of a public blockchain. As a framework, it was imple-
mented using a top-down approach in which the database functionalities
are added on top of the blockchain.

Postchain is a natively chainified database. It combines the features of
a mature distributed database and public and private blockchains, along
with the redundancy of replicated data. Its core defines interfaces that
help with code organization and enable interoperability between
different modules; its base provides tools for building custom block-
chains, particularly enterprise private/federated blockchains. Here, GTX
defines a Generic Transaction Format, and Postchain uses the EBFT
(efficient BFT) consensus protocol inspired by Castro’s PBFT but works
on the block level and restricts concurrency as much as possible.

ChainifyDB is a blockchain-characteristic layer on top of a database
layer, implementing permissioned blockchain. It is a natively chainified
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database that upgrades existing infrastructures consisting of several
database management systems by adding a layer of blockchain func-
tionalities on top of them.

TiesDB is a fully chainifed database that is actively in use and uses
blockchain technology to enhance security, and permissions are stored in
a blockchain. Nodes and users are registered in the blockchain, and node
owners make security deposits to protect the network from malicious
behavior. Mutual settlements between users and nodes are also per-
formed via blockchain.

HBase is a scalable big data store based on the concept of blockchain.
It uses an HDFS storage system andwas chainified in a research prototype
called HBasechainDB that adds the blockchain characteristics of immu-
tability and decentralization to the HBase database.

CockroachDB is chainified in a system called Tierion that aims to turn
blockchain into a global platform for verifying data. This system is still
only a prototype.

FlureeDB is a scalable graph database that provides the benefits of
blockchain technologies, such as immutability, replayability, and fault
tolerance. It implements both private and public blockchains and is an
actively used enterprise blockchain-based database solution that com-
bines blockchain’s security, immutability, decentralization, and distrib-
uted ledger capabilities with a feature-rich graph-style database.

QLDB is a purpose-built ledger database that provides a complete and
cryptographic verifiable history of all changes made to the application
data. In particular, it is a fully managed ledger database that provides a
transparent, immutable, and cryptographic verifiable transaction log.

MongoDB has two active chainified variations: MongoDB Atlas and
BigchainDB. MongoDB Atlas is an enterprise-grade blockchain database
implemented on top of MongoDB. On the one hand, MongoDB Atlas is a
blockchain-enabled MongoDB that wraps the core database (MongoDB)
and implements the three blockchain characteristics of decentralization,
immutability, and assets. On the other hand, BigchainDB implements
blockchain characteristics on top of a distributed database. It is a big data
distributed database that adds the following blockchain characteristics
on top of MongoDB: decentralized control, immutability, and the transfer
of digital assets.

Enterprise cloud service providers have also begun offering block-
chain capabilities to their customers to comply with the recent trends of
moving to the cloud. Enterprise-grade cloud-hosted systems offer fully
integrated blockchain solutions. IBM supports Hyperledger Fabric nodes
and advertises its blockchain solution as enabling trusted data exchange
and workflow automation with a distributed ledger. Amazon’s AWS of-
fers a full enterprise blockchain solution and provides partnership-based
support for all major blockchain protocols, including Hyperledger
Sawtooth, Ethereum, Quorum, Kadena ScalableBFT, and others. Other
cloud service providers, such as Microsoft Azure and HP, also offer
blockchain solutions. One aspect that has a stake in most cloud-based
systems is the lack of decentralization. They are inherently scalable,
and most of them provide the means to ensure consistency (immediate or
eventual). However, they are not decentralized. At the time of writing,
there have been signs of cloud decentralization initiatives by leveraging
blockchain. By contrast, blockchain systems in the most widely used
cloud platforms are not decentralized.

All the different chainified databases have advantages and disad-
vantages in their architecture and implementation and should be used
based on the use case. However, many chainified databases take a
database layer and put the blockchain characteristics on top of the
database layer, whether a relational or distributed database is used. On
the other hand, some databases do not add the blockchain characteristics
on top of the storage system but rather incorporate characteristics of the
blockchain directly in the database, as shown by FlureeDB.While some of
the systems are still prototypes, their implementations imply that
merging blockchain and database technologies provides the systems with
extraordinary performances.
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5. Discussion

This section first presents a discussion about advancements in
blockchain databases and distributed file storage systems. Further, it
discusses the implementation and challenges in adding database-related
functionality in blockchains and adding blockchain-related functionality
in databases. Finally, a short description with some future research di-
rections about DCS is presented.

Many of the blockchain databases discussed in Section 3 have SQL
capabilities. Nevertheless, a few of the databases are only NoSQL data-
bases, which are of different types, such as key-value, document, or graph
stores. These NoSQL databases are fast and do not require any fixed table
schema. SQL databases cannot be truly distributed due to the restrictions
of the CAP theorem [112]; hence, most of the blockchain databases are
NoSQL. To make the distributed database, the NoSQL database sacrifices
consistency over availability but reaches eventual consistency.

As discussed above, the databases in blockchain are either SQL or
NoSQL; therefore, a new blockchain database application platform can be
designed to support both SQL and NoSQL databases. It can have the
decentralized, distributed, and audibility features of the blockchain,
quick query processing, and a well-designed data structure of the
distributed databases. An open-source system, CHAINSQL [113], sup-
ports both SQL and NoSQL databases and integrates the database system
with the blockchain network. It is equipped with a mechanism for
auditable transaction logs and means for safe and cost-effective recovery
backup. In addition, it has a consensus mechanism supporting high
throughput and fast validation time. Therefore, although many available
database systems can be used in blockchain, the construction of new
blockchain database systems supporting SQL and NoSQL capabilities
would be an interesting direction to work.

Although blockchain employs traditional databases for storage,
which are discussed in Section 3, there are other storage systems used in
different systems, such as file storage or cloud storage systems. It would
be interesting to study the similarities and relations of blockchain data-
bases with other storage systems.

Speaking about storage systems, Decentralized File Storage (DFS)
systems have been showing rapid growth recently. DFS is a P2P file
storage system that allows the sharing of files on different systems. The
concept is based on BitTorrent and a distributed hash table13. The new
IPFS [35] is a decentralized and secure solution to store files in a
distributed way. It gives high throughput and low latency. However,
there are a few limitations in IPFS that can be lifted using the decen-
tralized cloud file storage systems. These storage systems are similar to
cloud storage but differ in storing the file on users’ systems rather than in
cloud data servers. These storage systems are fast, highly reliable, and
have a huge capacity for data storage. There are many projects on
decentralized cloud file storage systems such as Storj [9], Sia [11], and
Ethereum Swarm14. An extensive analysis of the available DFS systems
can be an interesting research direction to study their co-relation with
traditional databases, their applicability in blockchain, and their pros and
cons.

Adding database-related functionalities to blockchain systems.
There have been many advancements to provide efficient database-
related functionalities in the blockchain. The umbrella of these func-
tionalities is enormous and can be studied and scrutinized rigorously.
Verifiable efficient data query capabilities, such as those provided by
vChain [114] and VQL [99], can be further studied and applied in
blockchain. Researching the best suitable databases for decentralized
apps (dApps), such as OrbitDB [115], can be an interesting area to
explore. Furthermore, choosing an appropriate database for a blockchain
project is a challenging problem. Many factors need to be considered
while deciding on the perfect fit for a blockchain project. The major
13 https://en.wikipedia.org/wiki/Distributed_hash_table.
14 https://ethersphere.github.io/swarm-home/.
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factors to consider while choosing the best fit for the database involve
security, performance, fault tolerance, cost support, and query capabil-
ities. Therefore, another interesting direction of work can be to explore
all possible factors involved in making the right choice of database for the
blockchain project.

Adding blockchain-related functionalities to database systems.
To implement a blockchain functionality-enabled database, there must
be some factors and challenges that are needed to be considered and
addressed. These challenges are handling the low throughput and high
latency of the blockchain database, addressing the scalability issue when
more nodes are added to the network, and enabling querying capabilities
in the blockchain database. Next, while designing a blockchain database
is the parties involved in the decentralized network, whether it is inside
an enterprise or a consortium of individuals or companies. Furthermore,
the database can be set to operational and non-operational, wherein in an
operational mode, a client can directly access the query response from
the database; however, in a non-operational mode, intermediaries are set
to provide a response for the client queries. All these things should be
considered while designing a blockchain database. Therefore, a research
direction would be to investigate all the major factors to be considered
while designing a blockchain database.

Discussion on the DCS theorem. Regarding the DCS Theorem,
Section 2 gives a brief overview of DCS; however, a lot more research is
required to get around the DCS triangle. In Section 2, we presented a few
ways to make the systems like DCS, but it would be interesting to explore
more ways to provide all three properties. More research is required to
dig into the available methods that can help achieve the DCS system or
new methods or requirements that can be constructed or presented to
achieve the goal. It would be interesting to argue about the degree of
consistency, such as eventual consistency or full consistency. Eventual
consistencymeans that all the nodes see the same data eventually (e.g., in
Bitcoin), and full consistency means that all the nodes see the same data
all the time. A similar discussion goes for the degree of decentralization,
such as server-based or server-free decentralization. Server-based
decentralization means that a node can become a validator only when
it is voted by an existing federation; however, in server-free decentral-
ization, any node having enough computation power can become a val-
idator in the system. More discussion and research are required to define
and assess the degree of DCS properties in the blockchain system.

6. Conclusions

The last decade was a decade of intense interchanged and mutually
influenced the development of database and blockchain technologies.
This paper is the first systematized and comprehensive study of these
development trends. We provided a tabular rating of many database
systems concerning their blockchain compatibility based on seven
baseline criteria: decentralization, consistency, scalability, immutability,
low latency, high throughput, and sharding. We provided a detailed
summary of traditional databases that are being used or can be used in
the design of blockchain platforms or applications. Further, we presented
a detailed explanation of different decentralized solutions that use un-
derlying traditional databases to deliver blockchain-enabled solutions.
We also discussed the DCS theorem, an analogy for the CAP theorem for
traditional databases, and postulated an analogous DCS-satisfiability
conjecture.
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