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Summary
The fishing industry faces both challenges and opportunities in the wake of the
green transition in fisheries.1 Challenges stem from attempts to reduce the carbon
footprint of activity while simultaneously providing food security. Opportunities
arise where reducing fuel consumption can both drive down operating costs and in-
crease the value of landings, a positive sum result for stakeholders. Technological
innovation have reduced costs in the past and likely will in the future. However,
innovations have also led to negative effects on fish stocks, and fisheries manage-
ment is key to mitigating undesirable outcomes. To facilitate both economic and
environmentally sustainable harvesting, real-time information about the state of
the fish stock is advantageous. Sophisticated modelling approaches can be used
to predict ocean resources at high spatial and temporal resolutions, and provide
insight into the state of ecosystems. This thesis proposes a model-based estima-
tion approach to predicting real-time geographical distribution and abundance of
fish stocks. Providing recurrent predictions of fish distributions has the potential to
reduce the time vessels spend searching for suitable fishing grounds and decrease
fuel consumption in the fishing industry.

The model-based estimation approach is inspired by work done by Jens Glad Bal-
chen, the founder of the Department of Engineering Cybernetics (ITK) at NTNU.
He was an advocate of the power of modelling and estimation theory to predict
ocean resources for harvesting. In that vein, we combine a model commonly used
in fisheries research, called an Individual-Based Model (IBM), with an estimation
procedure familiar in cybernetics, called an Ensemble Kalman Filter (EnKF). We
chose the commercially important Norwegian Spring Spawning Herring (NSSH)
as the model stock based on discussions with fishers participating in the project.
The IBM forecasts the spawning migration of NSSH, with behaviour of individuals
driven mainly by the Norwegian coastal current. The model structure was calib-
rated using survey data and compared with catch data from the Norwegian fishing
fleet. After finding a suitable agreement between model output and observations,
random disturbances were added to the IBM, accounting for unmodelled phenom-
ena and other uncertainties in the model structure. This includes annual variations
in migration patterns, reflected in variations in fishing grounds and search routes
for fishing vessels. Incorporating random disturbances produced an ensemble of
instances of the NSSH migration, with the variability within the ensemble repres-
enting the uncertainty in the model predictions. For compatibility with the EnKF,
each realization of the IBM was mapped to a density field forming a state space
for the EnKF correction step, and corrections were applied to the field based on

1https://www.frontiersin.org/research-topics/41245/green-transition-and-sustainability-in-
fisheries
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incoming measurements. The IBM was then adjusted to account for the applied
corrections. The model predictions were improved using the assimilation pro-
cedure, which was demonstrated using a twin model simulation experiment. In
addition, we proposed a machine learning method for generating synthetic obser-
vations using vessel positional systems as input and normalized fish densities as
target output. This increased the number of measurements available to correct the
IBM.

Data Assimilation reduces model uncertainty and provides information on unob-
served areas with high catch potential during the fishing season. The model-based
estimation approach is therefore being integrated into a web-based Decision Sup-
port System (DSS) developed during this project. We discuss how fishers have
contributed to the development of the system through questionnaires and project
meetings. The DSS can both integrate the real-time estimates from modelling work
and facilitate systematic data capture by fishing vessels. Furthermore, data from
fishing vessels can improve model structure and predictions by providing input to
the assimilation procedure. Future work may include more state variables in the
IBM, consider alternative representations of the underlying model and estimation
procedure or find new sources of measurements. In addition, one may extend the
migration model to include the winter migration from open sea to winter stay areas.
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Chapter 1

Introduction

1.1 Importance of the fishing industry in Norway
The modern fishing fleet is of key importance to Norwegian economic activity,
particularly in rural coastal regions (Ølmheim 2021). This is unsurprising given
the extensive 2500 km of coastline that wraps from the Barents Sea in the north,
to the North Sea further south (Elde et al. 2018). In particular, Northern Norway
is a disproportionately active community in wild fisheries, with 9% of the Norwe-
gian population, but 38% of wild captures. Approximately 70% of marine traffic
in Northern Norway is from fishing fleet activity alone (Stoeva et al. 2022). Along
with agriculture, marine fisheries have been traditionally very important in Nor-
way. Archaeological evidence shows dried cod has been traded as a commodity in
Lofoten since the 12th century.1

In modern times, the export market for Norwegian seafood is much larger than the
domestic market, where 95% of Norwegian seafood is consumed abroad (includ-
ing farmed fish), with Germany being the most important of the 140 international
markets (Elde et al. 2018). To meet international demand, both the catch volume
and value must be high. For illustration, in 2021, total catch of groundfish and
pelagic species was 1 and 1.5 million tonnes, and the total catch value was 14 and
9 billion kroner respectively (Ølmheim 2021). The operating margins of Norwe-
gian groundfish and pelagic fleets have been increasing for decades (see Figure
1.1).

Broadly, the changes to the fishing industry can be described as capital (mainly
vessel equipment) gradually replacing labour (Hannesson 2007). Since the 1950s,

1See: https://www.skrei.net/exhibit/the-beginning-of-the-stockfish-trade/

1



2 Introduction

the labour force has decreased by 85%, and the value of catch has doubled, with
higher returns for larger, better equipped vessels (>28m), while governmental sup-
port has all but ceased (Fisheries Directorate 2021, Ølmheim 2021). These long-
term trends in the industry are primarily due to the continuous proliferation of new
technologies, particularly in the second half of the 21st century (Hamre and Na-
kken 1971). Introduction of innovations to the industry generates a positive feed-
back loop, where the adoption of new technologies leads to higher catch values,
allowing more capital investment, facilitating the purchase of better equipment,
and further increasing catch values (Hamre and Nakken 1971). It is important to
note smaller fishers or fisheries that don’t have the access to capital to invest in
new technologies tend not to reap these benefits to the same extent (Hannesson
et al. 2010). Regardless, modern technologies have been instrumental in increas-
ing catch value in the industry.

Figure 1.1: Operating margins for Norwegian groundfish and pelagic fleets from 1980 to
2019. Figure courtesy of the Norwegian Directorate of Fisheries (Ølmheim 2021).

1.2 Historical uptake of fishing technologies
The earliest developments in fishing activity began when fish surplus to nutritional
requirements was traded. The invention of preservation techniques such as drying,
salting and smoking preserved fish against rotting, providing the initial impetus
to trade fish as a commodity (Jennings et al. 2001). In Norway, drying has been
a historically important preservation technique.2 Crucially, the development of
modern onboard refrigeration and freezing technologies, such as refrigerated sea
water, allowed the preservation of high quality fresh catch during long voyages
and increased landing prices (Dellacasa 1987, Jennings et al. 2001, Nakken 2008).

The gradual mechanization of the fishing industry also had a significant effect. The
first industrial revolution brought the steam engine and with it a boost in towing

2See: https://www.skrei.net/exhibit/the-beginning-of-the-stockfish-trade/



1.2. Historical uptake of fishing technologies 3

power, which increased hauling speeds, the distances travelled for fishing and the
size of the gear available (Jennings et al. 2001). Uptake of diesel engines in the
early 1900s reduced journey times of boats, while electric lighting allowed fishing
at night and in darker winter months (Jennings et al. 2001, Nakken 2008). Mechan-
ized fish pumps increased the volume of catch loaded onboard, while mechanical
winches automated the setting and hauling of gear, both reducing manual labour
(Jennings et al. 2001). The power block, a type of winch used in purse seining,
was introduced in the 1960s allowing gear to be hauled onboard without the as-
sistance of auxiliary vessels, reducing the manpower and time needed for fishing
operations significantly3 (Hamre and Nakken 1971, Gordon and Hannesson 2015).
In the 1950s, non-rotting synthetic fibres facilitated the production of larger, pres-
sure resistant fishing nets that trebled catch efficiency in cod fisheries (Gordon and
Hannesson 2015). Finally, the total engine power of fishing vessels has increased
gradually over time (Fisheries Directorate 2021).

The adaptation of communication technologies has been particularly important in
more recent times. The telegraph, the first near real-time communications tech-
nology, offered frequent updates on the state of the fishery as early as the 1840s,
before real-time weather reports and news of fish migrations became available
through the introduction of radio transmitters and receivers to fisheries around the
1930s (Hannesson et al. 2010, Gordon and Hannesson 2015). The implementation
of echosounders, specifically the Norwegian SIMRAD system in 1947, allowed
detection of mid- and deep-water concentrations of fish and extended the spatial
extent for searching and exploiting offshore grounds (Nakken 2008, Gordon and
Hannesson 2015). In the 1960s, sonar was adapted to detect large shoals of fish
by their characteristic shape through horizontal profiling, without relying on fish
being underneath the vessel (Jennings et al. 2001, Gordon and Hannesson 2015).
Moreover, both echosounders and sonar improved the actual operation of fishing
gears, which were becoming mechanized, reducing the manual labour needed to
haul nets (Nakken 2008). In the 1960s radar was introduced as a navigation tool,
allowing more advanced planning of operations on a large spatial scale (Gordon
and Hannesson 2015). The rapid developments of improved electronic navigation
and telecommunication technology quickly became standard in the industrialized
fisheries (Gordon and Hannesson 2015).

To conclude this section, the adoption of preservation, gear and communication
technologies have had a profound effect on the fishing industry, increasing the
length of fishing trips, the value of landings, the quality of those landings and the
overall spatial extent of fishing operations (Figure 1.2). Technological develop-
ment has been driven from the bottom up through individual adoption, but also

3See: https://www.fao.org/fishery/en/equipment/powerblock
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through collaboration with Norwegian institutions. For example, the development
of the SIMRAD echosounder is considered a successful example of strategic col-
laboration between the Norwegian Defence Institute and the Institute of Marine
Research in Bergen (Handegard et al. 2021). Collaborative projects are key to
achieving economic and environmental sustainability in wild fisheries in modern
times.

Figure 1.2: Individual positions of 186 vessels targeting Norwegian Spring Spawning
Herring from September to December 2020. This illustrates the spatial extent of coastal
and offshore fishing operations. Data is courtesy of the Norwegian Coast Guard.4

1.3 Sustainable harvesting of marine resources

1.3.1 Fisheries management

The steady march of technology is not all good news for marine fisheries. In
the fishing industry, productivity gains from new technology are often countered
by the reduction in fish resources (Hannesson et al. 2010). Illustratively, the cu-
mulative impact of technological innovation, especially mechanical hauling, led
to increased catch rates and the collapse of the Norwegian herring stock in the
1970s (Fiksen and Slotte 2002, Gordon and Hannesson 2015, Standal and Asche
2018). To create value in a sustainable manner international cooperation combined
with government policies to control the cumulative effects of fishing on shared re-
sources are key (Squires 1994, Ølmheim 2021).

To reduce the likelihood of similar collapses (and reduce overcapacity), Norwe-
gian governance has introduced many policy measures since the herring collapse.

4https://www.kystverket.no/en/
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These include individual vessel quotas, a tradeable quota system, decommission-
ing schemes, real-time closures of fishing grounds, discard bans and harvest con-
trol rules (Squires 1994, Hannesson 2007, Gullestad et al. 2015; 2014, Standal and
Asche 2018, Ølmheim 2021). Gullestad et al. (2017) describes the modern Nor-
wegian quota setting system as the annual regulatory cycle. This cycle involves
negotiations with other states, regulatory meetings at the Norwegian Directorate of
Fisheries and advice from international organisations such as ICES.5 The Norwe-
gian regulatory cycle is highly regarded internationally, with Norway rating high
on compliance to the UN Code of Conduct for Responsible Fisheries (Gullestad
et al. 2017). However, uncertainties owing to changes in the dynamics of fish
populations and the introduction of new exploitation methods, mean rational pre-
cautionary approaches to management will remain important in the future.

1.3.2 Food security

During the green revolution of the 1960s, the breeding of high yield varieties of
wheat is estimated to have reduced starvation from 60 to 14 percent between 1960
to 2000 (Swaminathan 2009). Such measures were needed at this time to feed
booming populations requiring sustenance. Food security still remains an issue.
By the year 2100, the human population is projected to reach approximately 10
billion people (Figure 1.3). Population growth presents a stark challenge for global
food supply. For 4.5 billion people, more than 15% of their protein intake comes
from fish, making it an essential consideration for food security (Béné et al. 2015).
Fish is a a source of fatty acids and micronutrients that are important to brain de-
velopment and cognition (Beveridge et al. 2013, Béné et al. 2015). Intuitively,
the benefits of fish consumption should raise consumer demand in increasingly
health conscious societies. To meet the nutritional needs, irrespective of consumer
demands, is likely to present a challenge for already heavily exploited global fish-
eries (Beveridge et al. 2013).

1.3.3 Energy use

Increasing energy prices and volatility in prices are becoming more common due
to factors such as declining supply of fossil fuels, geopolitical conflicts and energy
intensive human lifestyles (Pelletier et al. 2014). Globally, between 30 and 50% of
fisheries costs arise from fuel usage (Parker and Tyedmers 2015). It is estimated
that the global average anthropogenic greenhouse gas emissions per tonne of fish
landed grew by 21% between 1990 and 2011 (Parker et al. 2018). The IPCC
recommends authorities to take "actions that limit global warming to close to 1.5°C
would substantially reduce projected losses and damages related to climate change
in human systems and ecosystems" (Pörtner et al. 2022). Governmental actions,

5International Council for the Exploration of the Sea: https://www.ices.dk/Pages/default.aspx
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such as carbon taxes, may nudge the fishing industry to rapidly adapt fuel usage to
limit carbon footprint and their own costs.

A life cycle assessment of Norwegian seafood products found that herring frozen
and shipped in bulk produced the lowest emissions, producing 0.7 kg CO2 per kg
of edible product (Ziegler et al. 2013). In the same study, the carbon footprint of
demersal species was rated higher than that of pelagic species. Other work has
shown Norwegian Sea purse seiners as relatively fuel efficient, using approxim-
ately 0.1 kg of fuel per kg of fish caught (Schau et al. 2009). This illustrates how
both the stock targeted and gear used influence fuel consumption, and will likely
influence the development of new fisheries and fishing techniques in future.

Figure 1.3: World population estimates from 1950 to 2100, calculated based on historic
demographic trends.6

1.3.4 Fish population dynamics

It’s also important to consider the future trends in fish population dynamics, partic-
ularly the impact of climate variability on marine ecosystems. Historic responses
of fisheries to climate change have been studied extensively, and shifts in thermal
niches are the most notable effect. Gvoždík (2018) defines thermal niches as the
"range of body temperatures maintaining positive population growth". Studies
have pointed to significant thermal niche shifts in plankton and mackerel with

6Source: United Nations, Department of Economic and Social Affairs, Population Division
(2022). Custom data acquired via website:
https://population.un.org/wpp/Graphs/Probabilistic/POP/TOT/900.
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smaller effects in demersal species (Beaugrand et al. 2002, Perry et al. 2005, Bruge
et al. 2016). The shifts are predominantly northwards in the northern hemisphere,
with the shift in overall preferences of marine species averaging 0.23 degrees
celsius for non-tropical species (Cheung et al. 2013). One of the most significant
average extensions was for warm-water copepods, showing a shift of 10 degrees
latitude (Beaugrand et al. 2002). This suggests lower trophic levels may be more
sensitive to warming.

There are several predicted effects of thermal niche shifts. Firstly, the lack of
synchrony between pelagic species and plankton phenologies (recurrent annual
life cycle events) may lead to trophic mismatch, decoupling relationships between
predators and prey and reassembling food webs (Edwards and Richardson 2004,
Pinsky et al. 2020). Secondly, such shifting in geographical niches is related faster
life cycles and smaller body sizes (Perry et al. 2005). Thirdly, research suggests
marine species are more sensitive to climate change than terrestrial species. Al-
though marine species have better capacities to colonize new regions, they tend
to have less behavioural adaptations and to be more physiologically sensitive to
disturbances (Pinsky et al. 2019).

The changes in distribution range may also depend on time of year. Reductions in
sea-ice extent are predicted to lead to more efficient fish foraging and seasonal ex-
pansions of fish to higher latitudes (Varpe et al. 2015, Langbehn and Varpe 2017).
This could mean that migratory fish such as herring will move further north during
summer, but back south during winter. Modelling and monitoring the effects of
climate disturbances on ecosystems will help predict and respond to consequences
of changing climates.

1.4 Modern monitoring of marine ecosystems
Possessing advanced knowledge of fish stocks will aid in transitioning to envir-
onmentally and economically sustainable harvesting. Thus, there is increasing
interest in monitoring fish stocks using data from commercial vessels. Indices of
abundance from fishing fleets are an important source of information for stock
assessment (Hilborn and Walters 2015). Reference fleets are particularly useful
for analysing data from non-commercially important species, where there are no
research surveys to scientifically study stocks. An article by Jones et al. (2022)
demonstrates how high resolution data from the US reference fleet has contributed
to abundance indices for several stocks, while footprints of fishing vessels can in-
form planning of offshore wind projects. A Norwegian reference fleet programme
found that gathering species and age composition data from fishing vessels is a
cost-effective method of sampling and producing abundance time series for cod,
haddock and redfish (Hatlebrekke et al. 2021).
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In addition to biological samples from commercial vessels, fishing effort can be
estimated at a high spatial resolution using satellite positional systems (Natale et al.
2015). For example, the fishing activity of tuna purse seiners has been estimated
in this way (Bez et al. 2011). Analysing such information can screen for illegal
fishing activity, map global footprint of effort and estimate abundance of fish stocks
(de Souza et al. 2016, Kroodsma et al. 2018, Adibi et al. 2020). Global Fishing
Watch is a large initiative that aims to increase transparency of marine activity
through such analysis7.

Finally, there are many cutting-edge projects seeking to reap novel observations of
marine ecosystems. The Centre for Research-based Innovation in Marine Acous-
tic Abundance Estimation and Backscatter Classification (CRIMAC) is develop-
ing algorithms for processing and classification of acoustic data, with applications
to fisheries at centre stage (Handegard et al. 2021). Sea kayaks are Unmanned
Survace Vehicles (USVs) that can be rigged with an echosounder for assessment
of small fish living in shallow waters in coastal regions e.g. sandeels (Totland
and Johnsen 2022). Scantrol deep vision is an example of a product being de-
veloped, in cooperation with scientific institutions, to automatically record species
and size information on fishing vessels in situ (Handegard et al. 2021). Similarly,
the Fishguider DSS described in Chapter 5 is proposed as a method for capturing
information from fishing vessels and delivering decision support services.

1.5 Model-based estimation of marine resources
Jens Balchen, the founder of the ITK department at NTNU, had strong views on
the importance of using model-based estimation for analysing marine ecosystems,
believing mathematical modelling "... is the most effective single tool to help un-
derstand the basic internal mechanisms of ocean subsystems and the interaction
between such subsystems." (Balchen 2000). He wrote in the 1980s of the im-
portance of "estimating the resources of fish and managing the utilization of these
resources" (Balchen 1980). He also stressed the importance of validating state and
parameter estimation of mathematical model with true measurements for: "Re-
cursive estimation of fish aggregate quality and location" (Balchen 1981). His
Ocean Bio Model project in 1975 reflected this vision, where he integrated mod-
els of hydronamics, nutrients, phytoplankon, and migration behaviour (Balchen
1980; 2000, Breivik and Sand 2009). Balchen (2000) suggested four reasons for
modelling fish dynamics (paraphrased):

1. To simulate and study the behaviour of the entire system.

7See: https://globalfishingwatch.org/
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Figure 1.4: Block diagram illustrating the proposed model-based estimation system with
the relevant paper contributions to the research objectives (labelled P1:P4 for related Paper
X in the List of Articles). It shows the bidirectional information transfer between the
modelling and estimation loop (left block) and fishing vessel activity (right block).

2. To estimate model variables and parameters not directly observable.

3. To estimate ocean resources for control of harvesting.

4. To control the behaviour of individuals in a biological population.

This thesis echoes the importance of such objectives, where we contribute meth-
ods for: estimating fish migration patterns (1), assimilating real-time fisheries ob-
servations for estimation of unobserved state variables (2), and estimating catch
potential of ocean regions (3). Although a curious research idea, controlling the
behaviour of individual fish was beyond the scope of our work (4). Ultimately, this
thesis argues that Balchen’s vision of model-based estimation is becoming more
feasible as access to new measurement systems become available (Figure 1.4).

1.6 Objectives and contributions of the thesis

1.6.1 Objective 1: To develop an IBM of the NSSH spawning migration

To test the model-based estimation system, a model was needed as a proof-of-
concept. Following discussions with fishers participating in the project, NSSH was
chosen as the model stock. The spawning migration was modelled given its large
spatial extent and the many hypotheses about the drivers of the migration available
(Fernö et al. 1998). It also overlaps with a key period in the fishing season, and
thus understanding the development of the migration can aid in planning fishing
operations. IBMs are a suitable tool for simulating migrations, given one can ex-
plicitly represent fine-scale interactions between individuals and their surrounding
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environment. In addition, IBMs have been developed to estimate migration pat-
terns of many pelagic fish species (Barbaro et al. 2009, Politikos et al. 2015, Boyd
et al. 2020).

Contribution

This objective was met by developing an IBM of the NSSH spawning migration
which was coupled to an ocean model developed at SINTEF, allowing individu-
als to respond to local environmental conditions. Although the implementation
was based on local interactions, many interesting large-scale patterns emerged that
were stable across simulations. Many of these patterns overlapped with patterns
observed from fishers logbooks and those described during research surveys. The
high spatial and temporal resolution of the model adds to its potential operational
utility.

1.6.2 Objective 2: To implement a Data Assimilation approach for strength-
ening IBM estimates

Any IBM of fish migratory behaviour is subject to multiple sources of uncertainty,
from misrepresentation of complex interactions to lack of knowledge of true fish
behaviour. In addition, IBMs are trained on historical data sources that are subject
to their own uncertainties. Thus, the IBM is prone to overfitting based on both
the modellers intuitions and idiosyncrasies in the available datasets. To overcome
this limitation, one may incorporate uncertainties through modelling an ensemble
of model instances and subsequently, correcting model states based on available
measurements. This approach is known as Data Assimilation. Data Assimilation
can improve model predictions and strengthen the utility of the IBM developed as
part of Objective 1.

Contribution

This objective was met by extending the herring IBM to include uncertainties in
the orientation and speed of individuals. The corrections of model states were cal-
culated using an EnKF and a twin model simulation experiment determined the
capacity to correct model states with a variable number of measurements. One
challenge was adapting the IBM for this setup, so we proposed an algorithm for
mapping between state estimates in the IBM and the EnKF. This was similar to
an approach described in Cocucci et al. (2022) as randomized redistribution. Ul-
timately, we showed that the model predictions could be improved by using the
EnKF setup, especially in cases where the forecast IBM was highly inaccurate.
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1.6.3 Objective 3: To assimilate synthetic measurements derived from fish-
ing vessel activity

In order to effectively correct the IBM as described in Objective 2, one needs ac-
cess to a large array of available measurements. The data available from surveys
or catch logs are extremely sparse. As measurement sources are currently quite
limited, deriving novel patterns from available data can supplement the assimila-
tion procedure. We aimed to train a machine learning algorithm to predict NSSH
densities based on vessel activity, convert predictions to synthetic measurements
and input these measurements to the assimilation procedure. We also aimed to
suggest how assimilated fields can inform catch potential of ocean regions.

Contribution

This objective was met by developing a method for utilizing output from a neural
network as synthetic measurements to correct the IBM in the EnKF setup. The
neural network predicted relative densities of NSSH based on fusion of vessel
activity and electronically recorded catch logs. Assimilation of synthetic meas-
urements drove model scenarios with dissimilar forecast states towards common
spatial patterns. Tuning of the observation uncertainty parameter influenced the
degree to which the model states were altered. In the case of inaccurate model
forecasts, the IBM was improved with assimilation of synthetic measurements, re-
lative to the control scenarios. Using an occurrence-based metric for catch poten-
tial, we illustrated how assimilation of synthetic measurements improved predic-
tions of catch areas. Assimilated fields can suggest catch potential of unexplored
territories during the fishing season.

1.7 Thesis outline
• Chapter 1 has given a brief background to the challenges faced by the Nor-

wegian fishing industry in achieving economic and environmentally sustain-
able harvesting. It has also laid out the rationale behind the model-based
estimation approach in aiding with these challenges.

• Chapter 2 introduces IBMs as tools for modelling complex systems and their
application in fisheries ecology. It elaborates on the background to the her-
ring IBM before describing the model setup and calibration.

• Chapter 3 describes the limitations of a single realization of the IBM, and
how one can improve IBM estimates using Monte Carlo simulations and
Data Assimilation. It then lays out the main steps involved in adapting the
IBM to the Data Assimilation procedure.

• Chapter 4 discusses the capacity to relate vessel activity data to patterns in
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stock distributions that can be used as input to modelling work. It is illus-
trated how we generated synthetic observations from a neural network using
vessel activity as input. Furthermore, it is shown how these measurements
are integrated with the Data Assimilation procedure to predict catch poten-
tial of NSSH.

• Chapter 5 illustrates how DSS can aid fishing vessels in strategic, tactical
and operational decision-making. It presents the progress in development of
the Fishguider DSS tool during this project.

• Chapter 6 concludes and reflects on the contribution of this thesis. It also
discusses alternative representations of the model and estimation systems,
further analysis of spatial patterns and future collaboration possibilities.



Chapter 2

Individual-based modelling of
herring migrations

2.1 Modelling complex systems
Complex systems that exhibit non-linear dynamics are ubiquitous in nature from
networks of neurons to ecological systems (Strogatz 2001). To understand com-
plex systems, key properties must be captured in mathematical models, and often,
modelling simple interactions lead to complex dynamics. Famously, John Con-
way demonstrated how a "game of life", which simulated real-life processes like
births, deaths and survival, could produce stable, symmetric population-level pat-
terns (Gardner 1970). In Williams and Martinez (2000), it is illustrated how feed-
ing behaviours such as cannibalism and omnivory can be explained in complex
trophic food webs through assignment of simple rules such as randomly drawn
niche values. Similarly, Cocucci et al. (2022) shows how COVID-19 transmission
patterns can be modelled through simple individual-level attributes in compart-
mental models that count susceptible, infected, and recovered individuals (SIR
models). Studies of small-world networks show how variable propagation speed
of infectious diseases is influenced by local connectivity (Watts and Strogatz 1998)

Mechanistic models are used where causal mechanisms are derived from human
observation of the phenomenon of interest. This is in contrast to machine learning
methods which predict outcomes of complex mechanisms without need of under-
standing the phenomenon (Baker et al. 2018). One can effectively transition from
theory to study of complex systems through a series of stages of calibration and
validation of mechanistic models (Baker et al. 2018). Mechanistic models come
in many flavours, depending on the scales being studied, the nature of interactions

13
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and so on. For example, spatially explicit landscape models (SELMs) deal at a
coarse level of aggregated cohorts, with limited depictions of individuals, and dis-
turbances on a large scale (e.g. droughts) are forcing the model (Perry and Enright
2006). Eulerian models express dynamics of population in terms of differential
equations to represent time, space, age, length and weight in a continuum. They
are useful in modelling lower trophic levels where processes such as advection
dominate life stages, as in copepods, fish larvae and capelin (Reed and Balchen
1982, Alver et al. 2016). At a finer reolution, complex adaptive systems (CAS) are
used to model conditional actions (if/then rules) through sequential sets of rules.
Adaptation and evolution of agents can be understood using CAS (Holland 2006).

2.2 Individual-based modelling
Individual-Based Models (IBMs), simulate the complex interactions between indi-
viduals and their environment, and produce emergent behaviours at the population
level (Grimm and Railsback 2005). IBMs are related to the field of CAS, where
they similarly examine system level changes associated with changing capabilities
of agents (Railsback 2001). IBMs may also be referred to as Agent-based models
(ABMs), although ABMs tend to be used in simulating human systems as opposed
to IBMs usage in simulating non-human systems (Bonabeau 2002, Grimm et al.
2006, McLane et al. 2011, DeAngelis and Grimm 2014). Finally, one can char-
acterize IBMs as microscopic models and opposite approaches as macroscopic
models, reflecting the focus on local interactions in IBMs (Bonabeau 2002).

Historically, the development of individual-based models was a response to the
issue that most models at the time didn’t distinguish between organisms location,
meaning they were spatially inexplicit (Huston et al. 1988). Models were limited to
describing populations by single undifferentiated variables such as population size.
IBMs were considered a distinct approach in ecological modelling in 1988, and in
the 90s their usage expanded due to their explanatory power (Huston et al. 1988,
Grimm 1999). The advance in computational power allowed movement towards
modelling of individual units in ecosystems, using local interactions encoded in
numerical simulations, which were difficult to incorporate into previous analytic
models (Grimm et al. 2006). This allows variation at a finer resolution (Figure 2.1).
Using differentiated state variables, such as position and velocity, one can incor-
porate more sophisticated dynamics in ecosystems and explore spatial variability,
local interactions and movement (DeAngelis and Mooij 2005).

There are two contrasting approaches to IBMs, depending on the motivation. On
one hand, there are pragmatic approaches, where although the model is informed
by theory, it is not meant to prove or disprove hypotheses from classical theory.
On the other hand, a paradigmatic approach makes explicit reference to claims in
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Figure 2.1: An illustration of how individual dynamics and interactions between individu-
als are at the core of population-level and community-level phenomena. Environmental
conditions both faciliatate and constrain process at all levels. This conceptualization is
adapted from (Huston et al. 1988).

theoretical ecology (Grimm 1999). For example, Huse et al. (2002) illustrates how
the directed behaviour of a critical mass of individuals can redirect targeted move-
ments of schools of herring, supporting the adopted-migrant hypothesis. One can
also explore hypotheses related to simulating movement through complex land-
scapes, competition, community dynamics and evolutionary processes (DeAngelis
and Mooij 2005, Pe’er and Kramer-Schadt 2008).

Conservation planning is an example of the pragmatic approach, where IBMs are
used to assess the response of individuals to changes in habitat, especially critical
ones (McLane et al. 2011). By predicting the consequences of changes to eco-
logical systems, one may minimize adverse consequences (Stillman et al. 2015).
This thesis will explore a pragmatic approach to IBMs given the applied nature of
the project work.

2.3 Individual-based models in fisheries ecology
Balchen (2000) suggests that the individual dynamics of fish are extremely com-
plex on short time scales, where schools of fish or "big fish" should be modelled
instead. These aggregate units, now referred to as super-individuals, can take
the average expected motion or other properties of groups of individuals. Super-
individuals are initialized in grid cells simulating external conditions before the
model is stepped forward in time. Functions are called to communicate informa-
tion to individuals about these external conditions (Grimm and Railsback 2005).
Differential or difference equations are used to calculate these steps forward in
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time. In this way, IBMs are useful in modelling spatiotemporal dynamics of fish
(Giske et al. 1998).

Bauer and Klaassen (2013) describes migratory behaviour as the persistent and
directional movement with distinct departing and arrival behaviours. The primary
motivations for fish to migrate en masse, at large scales, are to reproduce, forage
and avoid predators (Tamario et al. 2019). For example, mackerel is highly mobile
in distribution area of annual migratory cycles and spawning areas range from the
west coast of Portugal to the southwest coast of Norway.1 IBMs have been applied
to simulate migratory behaviour of many fish species including capelin, anchovy
and mackerel (Barbaro et al. 2009, Tu et al. 2012, Politikos et al. 2015, Boyd et al.
2020). Our work was informed by such models for the purpose of spatially and
temporally explicit predictions of herring migration patterns.

2.4 Background to the herring IBM
NSSH is a migratory pelagic stock mainly distributed along the Norwegian, Faroese
and Icelandic coast, migrating vast distances during its life cycle (Dragesund 1970).
It is one of the most commercially valuable stocks in the North Atlantic (Touzeau
et al. 2000). Additionally, lack of information about spatial distributions has led
to unsustainable harvesting historically (Fernö et al. 1998). Through project meet-
ings and conferences attended by fishers involved in this project, it was concluded
that we should prioritize model input for herring decision support (elaborated on
in Chapter 5). Therefore, it’s advantageous from both the fishing industry and
management point of view to maximize information available about the stock.

In Paper 1 we developed a novel mechanistic IBM of the NSSH spawning migra-
tion, which predicts the geographic distribution of NSSH over short time incre-
ments. There were two reasons we focused on large-scale predictions. Firstly, we
don’t have access to data on individual histories of fish, such as swimming speed,
body condition, and other biological characteristics. We thus focused on assimilat-
ing fish densities, as described in Chapters 3 and 4. Secondly, real-time estimates
are useful for informing vessels of which fishing grounds have high catch poten-
tial throughout the season. Therefore, the model simulated large scale patterns of
distribution, driven primarily by coupling fish behaviour to ocean states.

1See: https://www.hi.no/en/hi/temasider/species/mackerel
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2.5 Development of the herring IBM

2.5.1 Model setup

The herring IBM was coupled to the SINMOD ocean model developed at SINTEF
(Slagstad and McClimans 2005). At each time step k, individuals in the IBM
accessed environmental conditions at their local SINMOD grid cell. The IBM was
developed with difference equations that stepped forward the movements of each
individual, where position p was updated on a continuous grid:

p[k + 1] = p[k] + ∆t (vf [k] + vc[k]) (2.1)

where:
vf [k] = −Φvc[k] + vb[k] (2.2)

where vb is a vector with the horizontal velocity components of an individual fish
in the x and y directions, based on behavioural cues. Similarly, vc is a vector with
the horizontal current velocity components in the x and y directions. The intended
swimming velocity vb is thus tempered by the prevailing current vc, leading to a
realized velocity of vf . This formulation reflects the fact that the spawning migra-
tion proceeds counter to the Norwegian coastal current (Slotte and Fiksen 2000),
and thus the model term Φvc adds a counter-current component to the horizontal
speed controlled by the parameter Φ.

The vector vb was calculated as:

vb[k] = rb[k]

([
cos(θ[k])
sin(θ[k])

])
(2.3)

where:
θ[k] = f(∇T [k],∇D[k]) (2.4)

where ∇T [k] and ∇D[k] are the temperature and bathymetry gradients, and the
intended swimming speed is rb. The the right term in Equation 2.3 is a unit vec-
tor determining the orientation of the individual, while rb is the magnitude of the
movement. The NSSH spawning migration develops southward alongside the con-
tinental slope (Slotte and Fiksen 2000). Additionally, herring are physostomous
with an open swim bladder, which facilitates more rapid vertical movements, and
vertical escape is considered central in predator avoidance (Blaxter 1985, Nøt-
testad 1998, Langård et al. 2014). The modelled response to ∇D incorporated this
theory. NSSH avoid low temperatures and higher temperatures are associated with
superior body condition and thus the response to ∇T encodes this response (Fernö
et al. 1998). More details on the functional mechanisms are provided in Paper 1.
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Figure 2.2: Transformed survey values used to compare against model values on specified
dates in 2017. Black dots indicate the centre of mass of trawl positions on the date tran-
scribed above the box. The black lines demarcate the outer boundary of cells included for
the comparison. The colourmap indicates estimated number of individuals in grid cell j.

2.5.2 Parameter calibration

Survey data from herring research surveys were used to tune model parameters.
The survey is carried out for approximately 14 days, beginning in the south of
Norway and proceeding northwards (Figure 2.2). This offers a short time win-
dow where we tested the IBM estimates. The values from the survey were spatial
abundance estimates based on trawl and acoustic sampling, so these were normal-
ized to values that were equivalent to IBM output for comparison. The IBM output
was the number of individuals in each 4 km2 SINMOD grid cell. The model was
iterated for several years (2015-2020) to optimize parameters and minimize devi-
ations between these transformed observation values and the model predictions.

2.5.3 Comparison to catch data

Once the parameters were calibrated, the model was compared to independent log-
book catch data for years simulated (2015-2020). For qualitative comparison, Fig-
ure 2.3 show catches take place along branches of the migration where the model
predicts higher densities in 2016. Survey distribution also corroborate findings in
early February with observations of high densities around 66-67 degrees latitude
(Slotte et al. 2016). However, there is interannual variability. For example, both
survey and catch observations show a more offshore distribution in 2015. Figures
from 2015-2020 are included in the supplementary material of Paper 1.

Quantitatively, spatial indices of the development of the model were used to gauge
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Figure 2.3: Model output (colourmap) with catch points (black circles) overlayed for
selected periods in 2016. Size of circles are scaled according to the catch weight in kg.
The colourmap gives the average number of individuals in grid cell j for a 5 day period.

the model performance. The centre of gravity (CG) measured the latitude and
longitude points weighted by the density of individuals at each position. The global
index of collocation (GIC) was used an index of the overlap between the model and
observation spatial distributions. The comparisons were over 5 day time windows
(Figure 2.4).

2.6 Discussion
The IBM modelled an undifferentiated mass of fish. Further work on the model
may include age-class structure, bioenergetics, energy budgets or other configura-
tions that were beyond the scope of the project work. These may add information
for theoretical simulations. For example, one may study the effect of counter-
current migration patterns on energy expenditure of individual fish.

IBMs are subject to uncertainties from a number of sources including assumptions
about the model structure and lack of knowledge of the real system. Addition-
ally, the SINMOD ocean model itself has uncertainty caused by limits in model
resolution, our knowledge of the processes resolved by the model, uncertainty in
initial values, boundary conditions, parameter values, and inaccuracies in numer-
ical implementations. Furthermore, climatic fluctuations can play an important
role in survival of recruits and thus, biomass estimates. Therefore, understanding
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Figure 2.4: Model and observation comparison across all years. The x axis displays the
time period (inclusive). The y axis displays the latitude centre point for catch and model
values in the time period. The error bar shows the square root of the inertia values in each
time interval.

how variability in environmental conditions can manifest as variability in the IBM
structure is important further work.

Although we can improve SINMOD output and improve our understanding of the
herring, it is not feasible to make a model that predicts the migration without uncer-
tainty. Assimilation of observations from the real system will always be necessary
for the model to provide useful real-time predictions (see Chapter 3).

2.7 Conclusion
Paper 1 presented a novel IBM of the NSSH spawning migration based on as-
sumptions derived from theoretical studies. Particularly, this work corroborates
the theory that memory- and gradient- based reactive mechanisms may drive the
spawning migration of NSSH (Fernö et al. 1998). The model produces stable pat-
terns from simple behaviour rules which show good agreement with survey and
catch observations. The IBM is modelled with individual mechanisms, but is in-
tended to produce large-scale estimates. Pragmatically, this IBM predicts near
real-time estimates of the herring migration which can inform fishing activity.



Chapter 3

Model corrections using
observations

3.1 Uncertainties in the IBM
In Paper 1, the IBM was calibrated based on the minimization of errors between the
model and estimates from the survey. This produced a viable migration trajectory
when compared with the spatial development of commercial catches. However,
there are uncertainties in both the IBM and SINMOD model estimates, and there
are gaps in our knowledge of true herring behaviour. Likewise, available measure-
ments are prone to errors arising from sources such as size selectivity of nets and
reporting inaccuracies.

As Evensen (2009) points out, the solution to a dynamical model is one of infinitely
many realizations, and so we should consider the development of the Probability
Density Function (PDF). Furthermore, Baker et al. (2018) explains that the utility
of a model calibrated on historical data is limited in forecasting scenarios. Adding
noise terms to model variables and parameters can be used to produce an ensemble
of estimates through Monte Carlo experiments. States and parameters can be se-
quentially estimated when combining these model ensembles with measurements
(Ward et al. 2016). The herring IBM can be considered one of an infinite number
of possible migration scenarios. A large space of alternative migration dynamics
can be envisioned given uncertainties owing to process noise, non-linearities in
the model dynamics and high dimensionality of the model domain. These realized
scenarios may emerge in the form of a more rapid rate of migration southward, or
a trajectory that develops further offshore (Figure 3.1).

21
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Figure 3.1: Conceptualization of the Data Assimilation procedure employed to predict the
hypothetical true migration centre of mass (x), based on melding a forecast model (x̂) and
available measurements (d). Note that this a highly simplified illustration.

In Paper 2, we aimed to incorporate both model and observation uncertainties to
improve the real-time estimates from the herring migration IBM. Specifically, we
wished to develop a system where incoming real-time measurements are melded
with corresponding model simulation output (Figure 3.1). This process of com-
bining measurement and model values is known as Data Assimilation. There were
two main objectives of this work. Firstly, to adapt the IBM to the Data Assimil-
ation framework. Secondly, to test the capacity of the assimilation framework to
correct unobserved model states.

Using this procedure one can predict the fish migration trajectory as it is develop-
ing, and control the divergence of the model from realistic trajectories. This has
applications in real-time monitoring of the stock by fishing vessel and in studying
novel migration patterns that may be related to shifts in thermal niches or recruit-
ment dynamics. Finally, this represents the incorporation of a cybernetic approach
uncommon in fisheries research.

3.2 Data Assimilation
Observations in fisheries are sparse and only give indirect information about the
system while mathematical models diverge from realistic representations of fisher-
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ies systems owing to uncertainties. Data Assimilation controls model divergence
through a set of mathematical techniques for combining model states with ob-
servations, sequentially in time, to provide the best possible estimate of the state
of a physical system. It operates under the assumption that models or observa-
tions alone contain incomplete information in resolving the real system. One must
therefore apply statistical correction terms (i.e. gains) to model estimates based
on incoming measurements, melding both sources of information (Fu et al. 2011,
Alver and Michelsen 2015). Data Assimilation has been used in estimation within
fishery models, predictive ecology, the terrestrial carbon cycle and traffic simula-
tion (Niu et al. 2014, Ward et al. 2016, Kieu et al. 2020). In addition, it is a crucial
element in weather forecasting.

Theoretically, Data Assimilation is generally categorized as a Bayesisan estima-
tion problem, where the repeated, sequential updating of model states is referred
to as recursive Bayesian estimation. It steps forward a probability distribution
function for a variable X . Bayesian estimation estimates the PDF f(x), which is
the probability that variable X will take on a particular value x. Bayes theorem
proposes that the posterior PDF of a model state given measured states f(x|d) is
proportional to the PDF of the prior model state f(x|d) times the conditional PDF
of the measurement given the model state f(d|x), also called the likelihood:

f(x|d) = f(x)f(d|x)
f(d)

(3.1)

This proposition considers the posterior state f(x|d) the best possible estimate
given the prior model states and available measurements. In other words, our
certainty in the model estimate increases when we sequentially observe attributes
of the real system. Formally, the Fokker–Planck equation is the analytical solution
for stepping the probability distribution forward sequentially in time, but in high
dimensional systems this is not feasible, so simplified representations are chosen.
The Ensemble Kalman Filter (EnKF) is one such simplified representation.

3.3 The Ensemble Kalman Filter
The EnKF is a Data Assimilation method, initially developed by Evensen (2009),
that uses Monte Carlo simulations to explicitly represent random process noise
through simulation of N separate instances of the prediction model. Theoretically,
if the set of N were infinitely large, it would perfectly represent the probability
distribution. Computationally, we can represent the probability distribution with
a high N , and treat the covariances C across the ensemble as a sufficient estim-
ate of the probability distribution. The covariances C are estimates of the true
covariances of the probability distribution of the model states, given the assumed
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process noise. When observations are available, a correction term is applied to
each instance of the model based on C and observation error covariances (Evensen
2009). The EnKF is used for state and parameter estimation of non-linear systems
e.g. atmospheric and ocean systems (Houtekamer and Mitchell 2001, Alver and
Michelsen 2015). In Paper 2 we aimed to extend the IBM developed in Paper 1 to
incorporate both model and observation uncertainties.

Generally, the EnKF works well in forecasting estimates of non-linear models, so
it’s a suitable approach for IBM or ABMs. Macro-scale estimates such as pop-
ulation size can be estimated from combining IBMs and Data Assimilation (Niu
et al. 2014). Micro-scale adjustment of variables and parameters can be achieved
using Data Assimilation to correct IBMs, although this is less explored territory.
In an article in 2022, Cocucci et al. (2022) showed that attributes in SIR models,
such as individuals susceptible to COVID-19 can be updated using assimilation.
However, this presents a challenge as we usually don’t have access to detailed
measurements on micro-scale characteristics for fish such as length, body weight,
condition factor, but rather macro-scale characteristics, such as geographical loc-
ation and density of fish. We cannot link observations to specific individuals in
the IBM, just to properties such as density. Therefore, as in Cocucci et al. (2022),
we aimed to develop an algorithm in Paper 2 that mapped from microscopic to
macroscopic states.

3.4 Data Assimilation framework for the herring IBM

3.4.1 Monte Carlo Simulations

The prediction model of the herring IBM was extended to N instances, represent-
ing process noise not accounted for in the single IBM. The full set of N instances
is referred to as the ensemble and the approach for stepping each instance forward
is known as Monte Carlo simulation. Concretely, position p and velocity v of in-
dividuals were extended from the single IBM to N ensemble members, notated by
the state matrices P and V, both with N columns:

P = P +∆t
(

V + Ṽ
)

(3.2)

In Paper 1, estimates of spatial indices were the focus, but with the EnKF setup,
the mass of fish can be estimated when measurements are incorporated. Thus,
biomass B of individuals was added as another state in this work. The biomass
state B was forecasted as follows:

B = B −∆t
(

B̃ + ω
)

B (3.3)

where ∆t was the time increment, reduction in biomass was controlled by the con-
stant parameter ω, and divergence in states V and B were caused by the stochastic
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errors Ṽ and B̃. The expected value E [Ṽ] = E [B̃] = 0. These errors produce
prediction uncertainty in the system, representing errors in individuals migration
direction, speed and mass leading to divergence in the model development (Figure
3.2). By adding stochastic noise representing the uncertainty in inputs and model
dynamics, we get an ensemble spread which represents the covariance structure of
the PDF of the model states, and such a covariance estimate is a prerequisite for
computing the Kalman Gain in the EnKF.

Figure 3.2: Time series of mean CG of latitude (first row) and longitude (second row)
values during the simulation period, for three scenarios with increasing number of meas-
urements from S1 to S3) and the true CG being estimated. The shaded areas show the
standard deviation in spatial variation amongst ensemble members, arising from the addi-
tion of process noise.

3.4.2 Adapting the IBM to the Data Assimilation framework

The EnKF uses the error covariance structure of the ensemble forecast to calculate
the correction term. However, the full covariance matrix (n× n) is too large to be
explicitly calculated, and so an equivalent representation by Mandel (2006) was
implemented:

X̄f =
1

N

N∑

i=1

Xf
i

Af = Xf − X̄f
(3.4)
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whereXf is the forecast state matrix mapped from the IBM states, X̄f is the mean,
and A are the model anomalies. The Kalman Gain is then calculated as follows:

HA = HXf −HX̄f

P =
1

N − 1
HA(HA)T Im +R

K = L⊙
(

1

N − 1
Af (HA)TP−1

) (3.5)

where H is an m× n matrix that maps between model states and measured states,
Im is an m × m identity matrix, R is the m × m observation error covariance
matrix, where each element on the diagonal is the variance of observation noise
(Ω). The parameter Ω is an important parameter to tune, as it determines the
strength of the final correction value. L is anm×N localization matrix which adds
a penalty to model covariances that are distant from the measurment points. For a
small ensemble and high dimensional system, localization is necessary to limit the
impact of spurious correlations in the ensemble (Houtekamer and Mitchell 2005).
Finally, K is the Kalman Gain, which is used to calculate the correction term. The
analysis equation is calculated:

Xa = Xf +K(D −HXf ) (3.6)

where the posterior estimate Xa is calculated based on the measurement matrix
D, the forecast estimate Xf and the Kalman Gain K. One issue with using obser-
vations of fish densities is the non-negative nature of measurement values. Obser-
vations are usually perturbed with Gaussian noise to produceD ofm×N , but this
causes instabilities in the IBM where there are low fish densities, and instead the
N columns were treated as N replicates of the m× 1 measurement vector d. Per-
turbations avoid the contraction of variance across the ensemble of model states.
In Paper 2, we use an inflation factor to maintain variance:

Xa
z = X̄a + ψ

(
Xa

z − X̄a
)

(3.7)

where z is the ensemble member and X̄a is the mean of the analysis states.

The IBM states P, V and B represent information about individual fish in the IBM.
This presented a challenge, as it required a mapping between micro-state repres-
entations of IBM states to macro-states of the EnKF. We developed a mapping
function to minimize redistribution and maximize information retained. Mapping
from the IBM to a density field is straightforward, where we use the position P and
biomass B of individuals to generate Xf (see Algorithm 1 in Paper 2). However,
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on mapping from the field representation Xa back to the IBM, we are careful to
avoid loss of information. We used a randomized redistribution method to assign
Xa estimates back to P and B states, moving individuals to grid cells with non-
zero density values and assigning new density values if necessary (see Algorithm
2 in Paper 2).

3.4.3 Twin model experiment

To test the setup described above, a twin model experiment was devised, where a
twin IBM represented the true migration scenario and was used to generate syn-
thetic measurements for correction of the model IBMs. The advantage of using a
model as the true distribution is that we have full knowledge of the true state values
at any given time. This allows us to infer the impact of corrections on unobserved
states. The observation system devised was fixed for each scenario, so measure-
ments were made at equal increments (once per day) in identical locations during
the model time frame. The number of observations was varied in each scenario.

The twin model was similar to the herring IBM developed in Paper 1, but with a
modified swimming speed parameter. The parameter was lower in the twin model,
representing a true trajectory that develops more slowly than our prior model in-
dicates. In Paper 2, we show the capacity of different scenarios to converge on this
true model estimate (Figure 3.2 & 3.3).

Figure 3.3: The local 3D representations of X̄a for four scenarios with assimilation (S1,
S2, S3 and S4), one scenario without assimilation (Control) and the twin model (Truth).
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3.5 Discussion
Small ensemble sizes can lead to inaccurate covariance estimates, while larger
ensembles are computationally heavy (Keppenne et al. 2008). An ensemble size
of 100 was chosen, but this may need to be reduced in an operational setting, and
simulations in our work suggest that the EnKF estimates are stable with at least
50 ensemble members. Fundamentally, the EnKF provides an appropriate solution
for the purposes of this work, estimating parameters and states in the model that
are not directly observable (Balchen 2000). Future work may sequentially estimate
the swimming speed parameter to further improve the model predictions.

Although the IBM states were perturbed with Gaussian errors, upon simulation
the distribution of the ensemble of states becomes non-Gaussian. However, while
the EnKF implicitly assumes a Gaussian state-space, it provides good approxim-
ate solutions in cases where systems violate this assumption (Katzfuss et al. 2016).
Additionally, for statistical consistency, measurements are usually perturbed with
Gaussian noise. Perturbing measurements in our system produced an excessive
amount of non-zero values. Instead, we used unperturbed measurements and ap-
plied an inflation factor to model states instead, as described in Evensen (2009). In
Paper 3 we employed a deterministic EnKF, which better handles this problem (as
described in Chapter 4).

3.6 Conclusion
The twin model experiment demonstrates that it is theoretically feasible to es-
timate the spatially explicit distribution and abundance of NSSH using the EnKF
approach. Uncertainties in the development of the migration were included in ex-
tension of the IBM from Paper 1 to an ensemble of 100 instances. This was an
appropriate number to represent the process noise in the model. We proposed a
simple approach to mapping between IBM microscopic states and the EnKF mac-
roscopic states, limiting the loss of information. This procedure was similar to
randomized distribution in Cocucci et al. (2022). The model predictions were im-
proved in this work, where an alternative migration of the NSSH was successfully
estimated from simulated inaccurate priors. Ultimately, it is demonstrated that
IBM estimates can be strengthened with Data Assimilation.



Chapter 4

Model-based estimation of catch
potential

4.1 Fisheries-dependent data
Although showing the capacity for the Data Assimilation procedure to correct IBM
estimates, real measurements were not utilized in Paper 3. To strengthen model es-
timates, it’s valuable to incorporate measurements from the real fisheries system.
As explored in Chapter 1 and later in Chapter 5, fishing vessels have access to
breadth of unformalized information about marine ecosystems. In fisheries re-
search, the term "fisheries-dependent data" is used to refer such data, reflecting
the unsystematic structure of these datasets. However, fisheries-dependent data
provide wide spatial coverage, long time series and variety in target species (Pen-
nino et al. 2016).

For the purposes of this work, integrating fisheries-dependent data with the IBM
controls its divergence from reality. In addition, the advantage of our model-based
estimation approach is that we can account for observation errors. Thus, concerns
of bias or errors in fisheries-dependent data can be somewhat mitigated. The final
estimate is a melding of recurrent model and measurement values, and thus is less
prone to overfitting idiosyncrasies in the data source.

Inferring patterns from nature is advantageous in modelling work, where clearly
identifiable structures in nature or data extracted from nature contain hidden in-
formation and memory of system dynamics, which can be used to inform process
variables and parameter estimates (Wiegand et al. 2003). This is known as pat-
tern oriented modelling. Explicitly predicting occurrence of ubiquitous species
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using environmental factors is known as species distribution modelling, and are
useful in identifying regions with large, stable, viable populations through spatial
maps (Waldock et al. 2022). This chapter touches on pattern oriented and species
distribution modelling, where we infer patterns from fishing activity data to use
as observation input for the EnKF, thus predicting NSSH distribution patterns in
real-time.

4.2 Relating fishing activity to stock distributions
The primary method of linking fishing activity to stock abundance is in the form of
Catch per Unit Effort (CPUE) indices, which assumes the catch obtained per unit
effort input (e.g. fuel consumption) is proportional to the abundance of fish scaled
by a catchability parameter. Give survey data is costly and non-exhaustive, man-
agement advice often relies heavily on CPUE as an indirect measure of relative
abundance of fish stocks (Hilborn and Walters 2015). CPUE is often imbalanced
due to technological innovations that increase catchability (e.g. fish aggregating
devices in tuna fisheries), or decreases due to decline in stock for reasons unre-
lated to fishing, and thus there have been efforts to standardize CPUE using statist-
ical models, relating catch rates to geographical coordinates and other explanatory
variables (Maunder and Punt 2004, Maunder et al. 2006). In CPUE estimation,
zero catch values are often introduced as small perturbations or omitted, meaning
that the information on non-catch events are not explicitly defined (Maunder and
Punt 2004).

In more recent works, there has been a focus on improving effort estimates, through
mining patterns from the vessel trajectories themselves. Many projects are expli-
citly analysing fishing vessel activity at the individual level, notably Global Fish-
ing Watch, a global monitoring system that aims to increase transparency of hu-
man activities at sea, through monitoring of fishing effort.1. Several studies have
used fishing vessel activity as input to classification algorithms which categorize
large-scale movements such as searching, steaming and fishing (Bez et al. 2011,
de Souza et al. 2016, May Petry et al. 2020). These algorithms use vessel specific
data like catch, heading, speed and position from positional systems and catch logs,
to discriminate between fishing and non-fishing events (de Souza et al. 2016). Fur-
thermore, observers on board vessels may expertly validate and label these events
(Walker and Bez 2010). The innovation of these methods are the high spatial and
temporal resolution of predictions, which may be useful in dynamic monitoring of
ocean resources (Kroodsma et al. 2018).

Related work from Adibi et al. (2020) used semantic trajectories and machine

1See: https://globalfishingwatch.org/about-%20us/
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learning methods to relate environmental variables, daily catch reports and vessel
activity to CPUE estimates. Similarly, in Paper 3, we used patterns from fishing
activity as input to an Artificial Neural Network (ANN) and normalized catch data
was set as target output. The predicted values were converted to synthetic measure-
ments compatible with the assimilation setup, representing both presence and ab-
sence of NSSH. Assimilation of synthetic measurements was shown to strengthen
the model predictions in cases when the model was inaccurate. Additionally, we
converted the assimilated fields to representations representing catch potential of
ocean areas, which is a useful input to decision support.

4.3 Assimilating synthetic data generated from neural network
output

4.3.1 Synthetic measurements

Automatic Identification System (AIS) data for 186 vessels was accessed from the
Norwegian Coast Guard for a total of six years from January 2015 to December
2020, covering the Norwegian Exclusive Economic Zone. The sample consisted
of vessels primarily targeting NSSH with purse seiners and pelagic trawls, of both
coastal and oceanic fleets. The data was interpolated over 10 minute intervals.

Spatial, temporal and motion related features were calculated from AIS data for
years 2015:2018, to generate a p × q matrix of input data vi for a shallow ANN
to predict normalized NSSH densities as output ai, a p × 1 vector of estimates.
Each row of p represented the features in one 4 km2 grid cell of daily activity of all
vessels present. The target output ti was the min-max normalized catch recordings
of NSSH in the corresponding grid cell. The network minimized mean squared
error between network outputs ai and target outputs ti:

F =
1

N

N∑

i=1

(ti − ai)
2 (4.1)

After minimizing F , ANN predictions ai were converted to a p × 1 measurement
vector d. We calibrated the top 10% of percentiles of ai as a threshold to determine
non-zero catch values, where above this value d is a Gaussian random number
is selected with mean and standard deviation based on ti. Below this threshold,
values were treated as absence with a value of zero for d (Figure 4.1). The vector d
was calculated for the model simulation period of 15.01.2020 - 28.02.2020 and was
assimilated with model forecast estimates for the same period. The transformation
from a to d was based on the assumption that the filter can’t really distinguish
between high and low presence values, and furthermore, we needed a way to map
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filter outputs to reasonable values for model corrections. This is why we used a
standard value perturbed with random Gaussian measurement noise.

Figure 4.1: Illustration of the coverage of fishing vessels relative to the catch positions
recorded in electronic logs. The left panel shows the syntetic measurements predicted
by the neural network, with light red points indicating absence and dark red indicating
presence. The predictions uses the independent AIS dataset from early January to late
February 2020. The panel on the right shows electronically logged catch points for the
same period.

4.3.2 Assimilation of synthetic measurements

One issue with using observations of fish densities is the non-negative nature of
measurement values in d. Observations are usually perturbed with Gaussian noise,
leading to an m × N matrix of measurement values D. Perturbing zero values
leads to instabilities in the IBM, and so unperturbed observations are used in the
EnKF. In Paper 2, an inflation factor was implemented to maintain variance in
model. However, using synthetic measurements, we had access to approximately
2000 incoming measurements per day. For statistical consistency, this required a
reformulation of the EnKF, and we used the variant known as the deterministic
EnKF (Sakov and Oke 2008):

X̄a = X̄f +K(d−HX̄f )

Aa = Af − 1

2
KHAf

Xa = Aa + X̄a

(4.2)
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Figure 4.2: The λ̄ and ϕ̄ values at each model time step for Ω = 10000. The different r
scenarios are shown ascending from light to dark grey lines, with the centre of gravity of
catch values displayed at daily increments.

where Xf and Af are calculated as in Equations 3.4, and K is calculated as in
Equations 3.5. The Equations 4.2 replace Equation 3.6 in calculation of the Xa

estimate, and this removes the need to inflate Xa as in Equation 3.7.

4.3.3 Simulations and Analysis

The model was simulated with a number of scenarios, based on a set of various
standard deviations in observation errors (Ω) and swimming speed parameter val-
ues (r). Each simulated scenario was designed with the same random seeded num-
bers, so any variation was a function of these two parameters. The corrections
based on d had a clear effect on the model spatial distribution when comparing
against a control model without assimilation. The latitude and longitude centre
of gravity (λ̄ and ϕ̄) converged on similar values when there was a low Ω value
(Figure 4.2). In comparison, there was less convergence with higher Ω values and
λ̄ and ϕ̄ developed more similarly to the control scenario with no assimilation.

4.3.4 Catch potential

In Paper 3, to demonstrate the ability of model output to inform fishing activity, we
mapped Xa to ICES grid cells with approximately 55 km 2 resolution, summing
the densities over these larger areas. The top 10% of cell were selected as presence
of NSSH. Catch potential was calculated as the fraction of cells with at least one
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catch point with presence predicted by the model during the simulation period.

Compared to a strategy of choosing the top 10% of cells at random (28/280), even
poor models performed almost twice as well. The best performances occurred for
models with lower Ω values, which performed approximately 5 times better than
the random strategy. In general, models that with a higher r values didn’t respond
as well to corrections, compared to models with lower r values. Figure 4.3 shows
a visual illustration of catch potential with varying Ω values over a 5 day period,
although we note that the metric used in Paper 3 is calculated daily.

Figure 4.3: Illustration of catch potential calculated from X̄a for different Ω values and a
control scenario, where r = 0.2 from 30th of January 2020 to 3rd of February 2020. The
black points are the NSSH catch locations during this period. The red squares show the
top 10% of model cell values. Note that catch potential estimates were calculated daily in
Paper 3.

4.4 Discussion
The assimilation approach presented in this article utilized vessel movement data
to generate synthetic measurements using a neural network, providing a large array
of measurements, predicting both absence and presence of fish, with which to
correct model states. Given assimilated scenarios only have access to synthetic
measurements in d trained on independent datasets, with no direct information on
catches, this illustrates the power of using assimilation of indirect synthetic data
to improve model predictions. The final filtering of model output has immediate
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utility in informing fishing activity.

However, scaling synthetic measurements according to neural network output a
loses connection to absolute densities of fish. Further work is required to build
a more accurate filter that can predict absolute values. For example, labelling
activity along trajectories provides more refined information on vessel behaviour
such as searching, steaming, pumping and fishing, and these features can improve
predictions of densities (Adibi et al. 2020). Additionally, we exclusively used catch
logs of NSSH in the ANN, but adding multispecies information on distribution of
competitors, predators and prey may also improve predictions. The shallow ANN
developed is a proof-of-concept for a more complex system of pattern recognition
for complimenting modelling efforts.

We have shown that the model estimates can be strengthened with assimilation
of synthetic measurements, but given we have incomplete knowledge of fish dy-
namics, scaling errors and other sources of uncertainty, it is challenging to relate
predictions to real processes. For the pragmatic purpose of predicting catch po-
tential, this is not a major issue, but when using such a model to test theoretical
considerations in ecology, further work to include more individual states and para-
meters may be required. Regardless, the Data Assimilation procedure gives insight
into the state and parameter values that better fit observations, so if models accur-
ately represent real biological states and parameters, assimilation can sequentially
estimate true states in nature.

4.5 Conclusion
The model-based estimation system presented in Paper 3 assimilates synthetic
measurements generated from an ANN, with the IBM developed in Paper 1, us-
ing the assimilation procedure developed in Paper 2. Where we lack coverage of
measurements over the model domain, we show how one can use vessel activity
to synthesize measurement values for assimilation. Spatial indices show that the
model responds to the assimilation of synthetic measurements, and with lower Ω
values, the model is heavily altered. The corrected model forecasts outperform
uncorrected forecast estimates when model output is converted to a catch poten-
tial metric, especially when the uncorrected forecast estimates are inaccurate. All
model estimates perform better than picking fishing grounds at random. Further
work can refine the ANN predictions, assess false positive rates in estimates and
analyse the utility of the model-based estimation system in decision support.
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Chapter 5

Decision support in the
commercial fishing industry

5.1 Utilizing Fishers Knowledge
Globally, the spatial extent of fisheries is estimated at four times higher than agri-
culture (Kroodsma et al. 2018). Thus, knowledge from fishers is vast, both from
personal experiences and information systems onboard (Stephenson et al. 2016).
Therefore, there is interest in using this in decision-making processes. For ex-
ample, in small scale Norwegian salmon fisheries, fishers put specific emphasis on
passing on local ecological knowledge to next generations (Dyrset et al. 2022). At
a larger scale, surveys of Norwegian fishers have been used to quantify the aban-
donment and pollution caused by fishing gears (Deshpande et al. 2019). Reference
fleet programmes are effective at constructing abundance indices of species not
surveyed by research vessels (Jones et al. 2022). Finally, positional information
(such as AIS used in Chapter 4), is being used to monitor global fishing activ-
ity, both to map spatial distribution of fishing effort and screen for illegal fishing
activity (de Souza et al. 2016).

However, there are headwinds in utilitzing fishers knowledges. Information is
biased to ocean areas where catch takes place, in addition to such data being un-
systematically gathered (Hind 2015, Karp et al. 2022). In addition, going from
unstructured data, experiences and claims to legitimate and salient information
for decision makers is challenging (Röckmann et al. 2015, Reite et al. 2021a).
Still, there are possible paths to utilizing information with systematic protocol. As
shown in Chapter 1, the modern Norwegian fishing fleets have high coverage of
ocean areas and many vessels are equipped with advanced gear and communic-
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ation technology. Additionally, as shown in Chapter 3 and 4, there are statistical
methods that can incorporate the uncertainties in data sources to improve near real-
time estimates of fish distributions. Decision support systems can provide the link
between research activity and fishing activity to improve our knowledge base of
marine ecosystems.

A key goal of the Fishguider project is to leverage such observations from fishing
vessels to meet two objectives. Firstly, to supply information that reduces time
and fuel spent searching for fishing grounds. Fuel consumption can reach as much
as 70% of the annual costs, depending on the vessel and target species, and with
better planning and routing, costs can be reduced (Reite et al. 2021a). Secondly, to
systematically capture and organize information gathered by fishing vessels while
at sea. Meeting these objectives can further collaboration between researchers and
fishers, through bidirectional information transfer. Therefore, Paper 4 focused on
compiling relevant work on utilizing fishers knowledge for decision support, and
shows the work done as part of the Fishguider project in this context.

5.2 Decision support systems
Decision support systems (DSS) are mainly computer-based programs that integ-
rate diverse knowledge sources in order to support complex decision- making pro-
cesses (Truong et al. 2005, Bal Beşikçi et al. 2016, Granado et al. 2021). DSS
have a broad range of applications including aiding manufacturers in delivering
products to customers, informing decisions on complex activities within a large or-
ganization and improving healthcare delivery in clinical settings (Jacob and Pirkul
1992, Sala et al. 2019, Sutton et al. 2020). In the maritime context, the major
applications have been in the shipping industry. They have been mainly applied
to optimize routing and scheduling of vessels, which can limit total fuel use and
avoid collisions between vessels (Granado et al. 2021).

The designs of DSS vary, but they can be reduced to two principal components
common to all systems. Firstly, DSS require knowledge sources that can be used
as input. Data-driven sources may come from remote-sensing, weather archive
data, national and international databases (Iglesias et al. 2007, Lee et al. 2018).
Model-driven knowledge sources can be obtained from sophisticated analysis of
data sources (Bal Beşikçi et al. 2016). Secondly, there is a user interface that
displays the relevant output in a cogent manner. Usually, the information from
knowledge sources are displayed in a number of interactive layers, where the user
can manually choose which information to draw for the decision (Granado et al.
2021). As these systems are designed to support rather than execute decisions,
there can be several layers of information available for the user at all times (Figure
5.1).
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Figure 5.1: Conceptual figure of the components of the Fishguider DSS, where users (1)
may both contribute and access information. Model simulations and data sources (2) can
inform decisions and in the case of models, are improved through feedback. Structured
international and national databases alsonprovide detailed information (3). The user inter-
face (4) collects and integrates these sources for user.

In Paper 4, we summarize some of the main applications of DSS within the fish-
eries context in Table 1. There a wide range of inputs for DSS. For management
applications, such as ecosystem-based approaches, interdisciplinary knowledge,
trans-disciplinary partnerships, systems approaches, questionnaires and stock as-
sessment are relevant inputs (for examples, see: (Lane and Stephenson 1998, Aza-
divar et al. 2009, Dowling et al. 2016). For work similar to our application, in sup-
porting fishing activity and reducing fuel consumption of ships, common informa-
tion sources used include remote sensing of ocean states, oceanographic modelling
and simulations, catch data analysis and vessel speed and heading (for examples,
see: (Iglesias et al. 2007, Lee et al. 2018, Reite et al. 2021b)). Considering mul-
tiple sources of inputs is preferable where there can be biases and errors in any one
taken alone.

In supporting fishing activities, there are three levels of decisions which can be
defined. Strategic decisions involve long-term planning of fishing based on the
market situation and fishing possibilities (Reite et al. 2021b). Tactical decisions
involve planning which fishing grounds to visit, the number of grounds to visit
and in what order. Operational decisions involve immediate control of the ves-
sels position, speed and heading and are made on short time scales, such as the
manoeuvring of the vessel relative to fish schools (Haugen and Imsland 2019). In-
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tuitively, the information sources will depend on the level of the decision-making.
The focus of Paper 4 is the proof of concept for a DSS that can inform strategic
and tactical decisions.

5.3 The Fishguider DSS tool

5.3.1 Pilot programme description

The Fishguider project began in 2019 as a science-industry research collaboration
between NTNU, SINTEF, the University of Bergen on the research side, and the
North Atlantic Institute for Sustainable Fishing (NAIS), an umbrella organisation
of fishing companies. Consultation between industry and research partners led to
the suggestion to build a DSS tool to reach objectives defined in Section 5.1.

The DSS designed in the Fishguider project is a proof of concept, with a 19 vessels
from NAIS now utilizing the pilot system. The classes of the vessels are: 6 coastal
vessels, 3 large coastal vessels, 7 ocean-going trawlers and 3 ocean-going purse
seiners. A total of 16 vessels are above 21m in length. These classes determine
the quotas and areas where the vessel operates. For example, ocean-going vessels
cannot operate within fjords without special permission.

Figure 5.2: Important factors in strategic decision-making from the perspective of
Fishguider partners. Blue bars indicate the average importance today, and the yellow bar
indicates the average importance predicted in the future (N = 13).
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5.3.2 Fishers knowledge in design of DSS tool

To gauge the factors that are important in strategic and tactical decision-making
for herring and mackerel a questionnaire was delivered to 13 skippers of vessels
in NAIS. It was conducted in Norwegian by phone and translated to English. Re-
spondents were asked to rate the importance of factors when planning the fishing
season in advance (strategic decisions) and factors involved when actively search-
ing for fishing grounds (tactical decisions). Each factor was evaluated on a rating
scale from 1 to 6, 1 being the lowest and 6 being the highest value. Items were
further categorized based on their importance to fishers now and their potential im-
portance in the future. This questionnaire was designed based on project meetings
between NAIS and other participants.

The results of the questionnaire revealed that practical considerations such as the
vessel’s quota, catch history and Norwegian fishing activity are important to stra-
tegic decision making now, and are expected to be in the future (Figure 5.2).
In terms of tactical decision making, fishers regard communication, market and
weather forecasts, and knowledge of other vessels as of high importance (Figure
5.3).

Figure 5.3: Important factors in tactical decision-making from the perspective of
Fishguider partners. Blue bars indicate the average importance today, and the yellow bar
indicates the average importance predicted in the future (N = 13).
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5.3.3 Pilot version of the Fishguider DSS tool

The interface was built to include considerations from both the questionnaire and
what was available. In Figure 5.4, a selection of layers pulled from the web portal
are displayed. Below are the key developments in the user interface, based on the
questionnaire and project meetings:

• Communication between vessels is facilitated through messaging apps.

• Weather forecasts from the meteorological institute.

• The lunar phase from the meteorological institute, which is considered a
signal of migration initiation by fishers.

• Model-based estimates: Sea temperature, nitrate, calanus, and the fish mi-
gration model developed in Paper 1.

Figure 5.4: A selection of layers from the user interface in the pilot version of the
Fishguider DSS tool. Layer 1 shows the main screen on the interface, layer 2 shows the
weather forecast data from the meteorological institute and layers 3 - 5 show geographical
distribution of copepods (Calanus finmarchicus), horizontal current velocities and nitrate.
A beta version of the herring IBM is being integrated into the interface.

5.4 Discussion
The DSS tool seeks to provide a technical aid to a complex problem. The research
knowledge contributed should be matched with the needs of the users in industry
for widespread uptake (Röckmann et al. 2015). Otherwise, we may over-optimize
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on components of the model structure that have little practical value. Thus, fishers
should play an active role in the development of such systems.

Bad weather, rough waves, icing, operation of fishing gear and preservation of
catch are all variables that can create issues and variability in costs. Although the
catch phase is only one part of the total values chain of fish food production, it
is the dominant contributor to pollution (Schau et al. 2009). Further work should
investigate more thoroughly which costs of fishing activity are most amenable to
the model-based estimation solution provided here.

There are strengths and limitations of the questionnaire as a source of data. It’s
useful as a way to extract information about the experiential knowledge of fish-
ers. However, their priorities in the "future" category are challenging to interpret
since the questions didn’t differentiate between the likelihood of achieving differ-
ent solutions. Additionally, it’s generally difficult to predict what will be useful in
the future with accurate foresight.

5.5 Conclusion
The Fishguider DSS tool integrates various sources of information to help guide
fishing operations. Model-based estimates of physical and biological variables are
of interest to fishers involved in this project. The project seeks to increase the
number of participants and invite feedback from users. This is particularly useful
in the strengthening of the model-based estimation approach described earlier in
earlier chapters of this work.
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Chapter 6

Conclusion & Future
Considerations

6.1 Conclusion
In Chapter 1, the background for the cybernetic approach to fisheries modelling
was established, with the theoretical roots stemming from Jens Glad Balchen’s
material in the 1970s. The model-based estimation procedure Balchen put forward
both has theoretical value in prediction of model states not directly observable and
pragmatic value in estimation of ocean resources for harvesting. The challenges
with estimation of fish dynamics lie in the sparsity of real measurements and non-
linear dynamics arising from individual fish behaviour.

There are increasingly more projects, from CRIMAC to Global Fishing Watch, that
seek to process and analyse data from commercial fishing vessels. We anticipate
an explosion in the quantity of data that will become available. However, sparsity
in the spatial distribution of measurements, as well as infrequency in sampling
rate will remain a challenge, not to mention uncertainties from sampling bias to
calibration of sensors.

Drawing on cybernetic methods of estimation, we have demonstrated how one can
combine these new incoming data sources with models to correct and recursively
estimate model states, while explicitly accounting for model and observation un-
certainties. We illustrate both the challenges and opportunities of implementing
model-based estimation to inform fishing activity.
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6.2 Future considerations

6.2.1 Model structure

For the pragmatic purpose of our work, the focus was on spatiotemporally explicit
estimates. Extension of the IBM to include more biological states is a possible
route. Dynamic energy budget (DEB) modelling focuses on quantifying meta-
bolic activity of organisms at an individual level, and assumes mechanisms are not
species-specific (Sousa et al. 2010). Energy can be partitioned generally as storage
for reserves, maintenance of body structure or reproduction (Kooijman 2009). It’s
primarily used to study life cycles of individuals based on chemical and physical
principles, employing species-specific parameters to determine the allocation of
energy. There is freely available matlab data for energetics of animal species, code
for estimating parameters and DEB parameters.1Extending the model in such a
way may allow testing of hypotheses related to the interplay between energetics
and fish behaviour. During the thesis, we experimented with DEB states and para-
meters for herring, but didn’t find an immediate use case. Quantifying energy
consumed during migrations or the effect of energy consumption on migration
patterns are two interesting paths.

The EnKF was used to estimate IBM states in this work, but it can also be used
to estimate parameters, such as swimming speed. Simply extending the state mat-
rix to include a vector of the perturbed parameter facilitates sequential parameter
estimation, as described in Ward et al. (2016). Each instance of the parameter is
corrected based on the covariance structure of the model state variables. As the
parameter is not measured directly, the correction is indirect, but this method is
still useful in sequentially calibrating the IBM.

6.2.2 Alternative representations

There are two ways in which the model representation may be altered. One may
change either the underlying process model (the IBM) or the estimation model (the
EnKF). Although we laid out the advantages of the IBM-EnKF approach, there
are possible alternatives that may also be suitable for model-based estimation. For
one, the IBM represents the behaviour mechanics of super-individuals at each sim-
ulation step and a coarser model that represents the dynamics without modelling
super-individuals (e.g. Eulerian represenations) may produce similar predictions.
No mapping between the IBM and the EnKF is necessary if densities are explicitly
modelled. This comes at the cost of being less intuitive and losing the mechanics
of individuals. Furthermore, IBMs are the preferred modelling setup for studying
fish migrations in fisheries research.

1See DEB code at Add my pet: https://www.bio.vu.nl/thb/deb/deblab/add_my_pet/
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As for the estimation procedure, a particle filter is an alternative approach that
uses Monte Carlo methods to sample from complex high-dimensional distributions
(Moral and Doucet 2014). The term particles is used to describe a large cloud of
random samples, and at each simulation step, particles with high potential values
are duplicated, while those with low values are removed. It is possible to apply
this method to the sequential estimation of biological systems. The EnKF was
used as it has been successfully used in estimation of high dimensional, non-linear
systems.

6.2.3 Catch potential

For estimating catch potential, a simple transformation from model output to an
occurrence index was employed. To further strengthen the predictive capacity of
the ANN, the behaviour of vessels may be classified. An example of classification
of vessel behaviour can be found in de Souza et al. (2016), where fishing activit-
ies were detected using vessel speed as an observation input to a Hidden Markov
Model. Alternatively, AIS data can be passed to an unsupervised clustering al-
gorithm that groups activities. Applying such filters to the vessel data may provide
more refined information for generating synthetic measurements.

More attention may be paid to exactly how model results can be transformed into
patterns that are useful for fishing vessels. Delving further into identifying em-
pirical patterns from predictive models may yield useful findings (Gallagher et al.
2021). For example, the Fuzzy Kappa statistic can calculate spatial autocorrel-
ations and find agreement between spatial maps of distributions (Hagen-Zanker
2009). In addition, Fuzzy Inference has been discussed in project meetings as a
feasible approach for predicting large-scale spatial patterns of fish stocks.

6.2.4 Collaboration

Finally, it is important to emphasize that collaboration between industry, research-
ers, authorities and other Norwegian institutions are central to achieving solutions
that are mutually beneficial. Operationalizing the model-based estimation system
can assist decision-making for fishers, while at the same time automatically cap-
turing and systematizing information for research analysis. It can thus achieve a
positive sum solution that is mutually beneficial for researchers and fishers. Fur-
ther establishing recurrent meetings and workshops between project participants is
essential, as well as analysing the successes and failures of the modelling work.



48 Conclusion & Future Considerations



Chapter 7

Articles

Paper 1
Kelly, C., Michelsen, F. A., Kolding, J., and Alver, M. O. (2022). Tuning and
Development of an Individual-Based Model of the Herring Spawning Migration.
Frontiers in Marine Science 8, 754476. doi:10.3389/fmars.2021.754476

© This is an open access article distributed under the terms of the Creative Commons CC-BY license, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited. One is not required to obtain permission to reuse this article.

49



50 Articles



ORIGINAL RESEARCH
published: 13 January 2022

doi: 10.3389/fmars.2021.754476

Frontiers in Marine Science | www.frontiersin.org 1 January 2022 | Volume 8 | Article 754476

Edited by:

Jie Cao,

North Carolina State University,

United States

Reviewed by:

Chongliang Zhang,

Ocean University of China, China

Francisco Leitão,

University of Algarve, Portugal

*Correspondence:

Cian Kelly

cian.kelly@ntnu.no

Specialty section:

This article was submitted to

Marine Fisheries, Aquaculture and

Living Resources,

a section of the journal

Frontiers in Marine Science

Received: 06 August 2021

Accepted: 15 December 2021

Published: 13 January 2022

Citation:

Kelly C, Michelsen FA, Kolding J and

Alver MO (2022) Tuning and

Development of an Individual-Based

Model of the Herring Spawning

Migration. Front. Mar. Sci. 8:754476.

doi: 10.3389/fmars.2021.754476

Tuning and Development of an
Individual-Based Model of the
Herring Spawning Migration
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Norwegian spring spawning herring is a migratory pelagic fish stock that seasonally

navigates between distant locations in the Norwegian Sea. The spawning migration takes

place between late winter and early spring. In this article, we present an individual-based

model that simulated the spawning migration, which was tuned and validated against

observation data. Individuals were modelled on a continuous grid coupled to a physical

oceanographic model. We explore the development of individual model states in

relation to local environmental conditions and predict the distribution and abundance

of individuals in the Norwegian Sea for selected years (2015–2020). Individuals moved

position mainly according to the prevailing coastal current. A tuning procedure was used

to minimize the deviations between model and survey estimates at specific time stamps.

Furthermore, 4 separate scenarios were simulated to ascertain the sensitivity of the

model to initial conditions. Subsequently, one scenario was evaluated and compared

with catch data in 5 day periods within the model time frame. Agreement between model

and catch data varies throughout the season and between years. Regardless, emergent

properties of the migration are identifiable that match observations, particularly migration

trajectories that run perpendicular to deep bathymetry and counter the prevailing current.

The model developed is efficient to implement and can be extended to generate

multiple realizations of the migration path. This model, in combination with various

sources of fisheries-dependent data, can be applied to improve real-time estimates of

fish distributions.

Keywords: individual, model, migration, observation, catch, tuning, comparison, spawning

1. INTRODUCTION

Incomplete knowledge or inadequate access to time-sensitive spatial distributions can result in
inefficient harvesting of fish stocks. This is especially true of migratory species that migrate vast
distances for periods of their life cycle. Such species prove difficult to quantify, manage, and exploit
given flexibility and variability in migration strategies (Fernö et al., 1998; Tamario et al., 2019).
However, as fishing operations advance, fishing vessels attain access to more fine grain sources
of data (acoustic, satellite etc.). Specifically, acoustic technology now makes use of a multi-beam
system that can resolve multiple targets at once (Chu, 2011). Such data is an untapped resource
for understanding the development of stocks throughout a fishing season, as it provides good
coverage of stocks in real-time, all-year round (Pennino et al., 2016). One of the limitations of such
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data is bias toward presence data. Regardless, developments
in technology and access to additional observations will likely
improve our ability to quantify abundance and distribution.

The Norwegian spring spawning herring (NSSH) (Clupea
harengus L.) is an Atlanto-Scandian herring that is mainly
distributed along the Norwegian, Faroese, and Icelandic coast.
NSSH is a schooling, migratory pelagic stock that move large
distances during it’s life cycle. The principal fishery for adult
NSSH is along the western Norwegian coast prior to and during
the spawning season (Dragesund et al., 1980). NSSH is one
of the largest stocks in the entire Atlantic, and one of the
most commercially valuable (Touzeau et al., 2000). Although
the bulk of the revenues and employment are in Norway, this
stock is also harvested by Iceland, Russia, the Faroe Islands, and
the EU (Bjørndal et al., 2004). The lack of spatial information
on abundance of this species has contributed to unsustainable
harvesting in the past, specifically to unforeseen stock collapses
(Fernö et al., 1998). For example, collapse of the stock in the
1960s has been attributed to overfishing resulting from advances
in harvesting technology, suboptimal management and climactic
fluctuations (Arnason et al., 2000; Toresen and Østvedt, 2000;
Fiksen and Slotte, 2002; Bjørndal et al., 2004). The fishery closed
in the 1970s to allow recovery of the stock (Bjørndal et al.,
2004). One issue is that attaining reliable spatio-temporal data
is difficult due to interannual fluctuations in abundance and
changing migration patterns (Dragesund et al., 1980). Modelling
migration patterns can improve time-sensitive estimates of
stock distributions.

Bauer and Klaassen (2013) define migratory behaviour
as being persistent and directional with distinct departing
and arrival behaviours. The functions of such migratory
behaviour include reproduction, feeding, and avoidance of
predators (Tamario et al., 2019). NSSH conserve energy through
overwintering in fjords in northern Norway, prior to moving
southwards toward spawning grounds along the Norwegian coast
in spring, before migrating westwards to feed offshore for the
summer months (Varpe et al., 2005). During each installment
of the annual cycle, some drivers are likely to supersede others.
For example, during the overwintering period, movement is
limited and energy is conserved. In contrast, the spawning
migration takes place across a distance of approximately 800 km
counter-current and is characterized by rapid energy depletion
(Slotte and Fiksen, 2000).

Mechanistic models incorporate the main mechanisms by
which discrete individual components in a system may behave
through fundamental assumptions and equations. Differential/
difference equations plus stochastic noise are common features
used to explore variability in these models. The utility of a
model is gauged through its capacity to match observations from
the real system. Transitioning from theory to application of
such models demands a series of stages of refinement through
tuning/calibration and validation of the model (Baker et al.,
2018). There is much theory about what drives the spawning
migration of NSSH. There is a need to translate this theory into
model output that provides estimates throughout the season.

Individual-based models (IBMs) are a class of mechanistic
models that are built to explore the emergent properties at

the population level, arising from individuals interacting with
other individuals and their surrounding environment (Grimm
and Railsback, 2005). IBMs have been used to predict spatial
patterns of many migratory fish species during periods of
their life cycle (Barbaro et al., 2009; Politikos et al., 2015;
Boyd et al., 2020). Coupling models of physical oceanography
with IBMs is an effective method for simulating the complex
interactions between individuals and their local environment.
Furthermore, physical models simulate the main environmental
conditions that force individual behaviour and the physical
transport of larval stages and prey items (Giske et al., 2001;
Alver et al., 2016). In the case of many migratory pelagic species,
environmental variables such as currents and temperature have
been demonstrated to provide useful information for successful
navigation of individuals between distant areas (Barbaro et al.,
2009; Tu et al., 2012). There is evidence NSSH use similar
mechanisms (Fernö et al., 1998; Slotte and Fiksen, 2000). For
Icelandic capelin, current and temperature data, without the
use of forcing terms, reproduced the observed migration route
(Barbaro et al., 2009). Without using forcing terms, one can
easily add noise to IBM components and extend simulations
more efficiently. The novel use of multiple realizations of the
IBM, together with observations, can improve estimates of the
NSSH distribution in real-time. These estimates can support
stakeholder decisions in the fishing industry. The IBM developed
in this article shall be used in this way.

This paper describes the development of an IBM of
the NSSH spawning migration, centred on an individuals
response to environmental forcing. The focus is on modelling
memory- and gradient- based reactive mechanisms (Fernö et al.,
1998). This work also explores sensitivity of the migration to
initial conditions, specifically initial location. Following, model
densities are compared to observed patterns from 2015-2020
catch data using geospatial indices. Ultimately, the IBM was
developed as a tool for comparison and correction with real-
time observations, so this work focuses on model agreement
with available observations, and where and how disagreements
may be resolved. As mentioned before, this can support efficient,
sustainable harvesting of NSSH. The description of the model is
informed by IBM protocol developed by Grimm et al. (2006).

2. METHODS

2.1. Purpose and Structure of Model
The purpose of the model is to predict spatial patterns of
abundance for the spawning migration along the Norwegian
coast. This model provides discrete estimates across the
model area that can be used to compare against concurrent
observations. Furthermore, this model is designed to improve
estimates when observations become available. A brief schedule
of the main operations is presented in Table 1. The movement of
individuals is modelled by changes in orientation and horizontal
speed. In particular, the response of individuals to the Norwegian
Coastal Current (NCC), along with temperature and depth
gradients are modelled. The individuals also utilize knowledge of
previous states, such as orientation angle, when moving.
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TABLE 1 | Overview of the main components of the model algorithm with

reference to associated sections and equations.

Overview of model algorithm

Input data:

• Load environmental data from SINMOD (Section 2.2).

• Load survey and catch data.

Initialization:

• Initialize parameter values (Table 3).

• Initialize position and orientation of individuals (Section 2.3).

• Initialize individuals on 2D grid in mid-January.

Simulation:

• Update date and time.

• Access environmental values based on positions of individuals and current time

(Section 2.3).

• Pass environmental values to functions which calculate the individual’s response

to cues (Section 2.4.2).

• Update horizontal speed, orientation and position respectively (Equation 6, 4

and 1).

Analysis:

• Tuning using survey data (Section 2.5).

• Comparison with catch data (Section 2.6).

2.2. Model System
Estimates of environmental conditions were loaded from
SINMOD, a physical oceanographic model that is based on
the primitive Navier–Stokes equations, and uses a z-coordinate
grid (Slagstad and McClimans, 2005). The configuration used
has 970 × 635 horizontal grid cells with 4km resolution and
centres on the Norwegian Sea. The model is divided into 34
vertical depth layers. The IBM developed in this paper modelled
individuals in a 2D environment where position was updated
on a continuous horizontal plane in a Lagrangian approach
(Figure 1). Environmental variables were calculated based on
assumptions of the herring’s depth preferences, described in
section 2.4.1. State variables were updated at discrete time
steps of 1t = 4h. Temperatures and current speeds were
extracted from SINMOD output from 2015 to 2020, and along
with the bathymetry field of the model area, drove changes
in fish movements.

The model was developed in MATLAB, which is a matrix-
based programming language that is suited for iterative analysis
involving numerous matrix operations. Below, the development
of the model is outlined in regards to the model system, the main
equations, parameters and state variables. Thereafter, we explore
tuning and comparison against observations of the real system.

When referring to vectors that can take on continuous values,
x and y indices will be used, while the index j will indicate
the discrete linear index of a grid cell, ranging from 1 to the
number of elements in the grid. Finally, boldface characters
denote vectors.

2.3. State Variables
The individual state variables used were position p, orientation
angle θ , horizontal speed rb, and horizontal speed offset ro.

Position was updated at each discrete time k, with time step 1t:

p[k+ 1] = p[k]+ 1t
(

vf [k]+ vc[k]
)

(1)

where:

vf [k] = −8vc[k]+ vb[k] (2)

where p is a vector [px py]
T with the x and y coordinates of the

individual in the continuous space of the model grid and vb is a
vector [vbx vby]

T with the horizontal velocity components of an
individual fish in the x and y directions, based on behavioural
cues. Similarly, vc is a vector [vcx vcy]

T with the horizontal
current velocity components in the x and y directions. The
superscript T denotes the transpose of the vector. The spawning
migration proceeds counter to the NCC (Slotte and Fiksen, 2000).
This is modelled by the term −8vc that adds a counter-current
component to the horizontal speed controlled by the parameter
8. An individual’s realized swimming velocity vf is composed
of the counter current term and behavioural responses from vb.
This formulation demands individuals respond to the prevailing
current with higher priority, relative to other cues. To prevent
unrealistic dynamics in the first-order approximation of velocity
(vf + vc), the short 1t of 4h was used. The vector vb was
calculated as:

vb[k] = rb[k]

([

cos(θ[k])
sin(θ[k])

])

(3)

where rb is the horizontal speed of the individual in m s−1 and
θ the orientation angle according to gradient cues. As indicated
before, when ‖vc‖ approaches zero, the individuals approach a
speed of rb with the orientation angle θ . The angle θ was updated
as follows:

θ[k+ 1] = αθ[k]+ (1− α)G[k]

θ[k] = 6 vb[k]
(4)

where α is a weighting parameter, and G is the angle of the
vector inputs calculated from near-field gradients, as explored
in section 2.4.2. It is likely NSSH base their movements on
comparison of conditions from previous experience and present
information when calculating their new orientation (Fernö et al.,
1998). To account for this, α acted as a low-pass filter, avoiding
erratic changes in θ , similar to a formulation by Føre et al.
(2009). Furthermore, rb was calculated as a random process with
a deviation ro from the cruising speed:

rb[k+ 1] = r̄b + ro[k+ 1] (5)

where r̄b was the cruising speed in m s−1 of the individual. The
value was calibrated during the tuning procedure in section 2.5.
The offset ro was then calculated as a Gauss-Markov process
with exponential auto-correlation. This meant ro and rb were
correlated with recent values. The offset was included to model
randomness in the horizontal speed. It was updated as follows:

ro[k+ 1] = e−β1tro[k]+
√

1− (e−β1t)2 N (0, σ 2) (6)
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FIGURE 1 | The continuous model system with individuals plotted at two time stamps in the same simulation scenario. The colourmap and colourbar display the

bottom depth of grid cell j in metres, while the lines of latitude and longitude extend from ticks along the y and x axes, respectively. The map displays the Norwegian

coast and Norwegian Sea from 62 to 72 degrees north, including bathymetry features important in ocean circulation.

from a normal distribution N with zero mean, a standard
deviation σ in swimming speed and shaping parameter
for auto-correlation β .

2.4. Environmental Forcing
The spawning migration follows overwintering, a stationary
period characterized by slow swimming speeds and low energy
use. NSSH mainly spawn in southern regions of coastal Norway
before migrating westwards to feed over summer. The spawning
migration begins early to mid-January and spawning usually
begins in late-February/early-March (Dragesund et al., 1980).
Temperature and current data for the period from mid-January
to the end of February (2015–2020) were loaded from SINMOD,
along with the bathymetry. Below, the responses that play a role
in the spawning migration are outlined.

2.4.1. Environmental Values
Depth is an important variable as it influences the temperature
and currents that an individual experiences. Environmental
values were calculated as a linear combination of values taken
from a depth layer in the upper water column (0–75 m) and the
lower water column (75–300 m):

vc = (1− d)vcl1 + dvcl2 (7)

T = (1− d)Tl1 + dTl2 (8)

where vc is the horizontal current velocity,T is the temperature, l1
and l2 are the vertical indices of layers sampled in the upper and
lower water column, respectively, d was the fraction of daylight
at the sampled time and latitude (hours of daylight/24). This
approximation allows variability in environmental values, rather

than use of values from a constant depth layer. The choice of
d as a variable reflected the individuals need to spend time in
layers that provide light conditions which facilitate the capacity
to school and sense local surroundings (Huse and Ona, 1996).
The vertical indices l1 and l2 were chosen based on min(‖vc‖),
as herring have the ability to choose depth layers with favourable
current speeds (Nøttestad et al., 1996).

2.4.2. Environmental Cues
Apart from the direct response to current, individuals responded
to the temperature and bottom depth gradients at their location.
The orientation angle G was calculated as:

G[k] = w 6 GD[k]+ (1− w) 6 GT[k] (9)

where the angles 6 GD and 6 GT are the gradient dependent
orientation angles calculated based on the depth and temperature
gradients, respectively, andw is the weighting parameter on 6 GD.

Bottom depth: The NSSH spawning migration develops
southward alongside the continental slope (Slotte and Fiksen,
2000). Herring are physostomous with an open swim bladder,
which facilitates more rapid vertical movements (Blaxter, 1985;
Nøttestad, 1998). Vertical escape is considered central in predator
avoidance (Langård et al., 2014). For these reasons, GD was used
to direct individuals movements perpendicular to the direction
of the depth gradient, in the southerly direction:

GD =



















−
∇D[k]

‖∇D[k]‖
, if D ≥ 400

([

0 −1

1 0

])

∇D[k]

‖∇D[k]‖
, otherwise

(10)
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FIGURE 2 | Transformed survey values used to compare against model values on specified dates in 2017. Black dots indicate the weighted sum of trawl values on

the date transcribed above the box. The black lines demarcate the outer boundary of cells included for the comparison. The colourmap indicates estimated number of

individuals in grid cell j.

where ∇D is the bottom depth gradient and D is the
bottom depth at grid point j. The first case reorients
individuals toward the coast, while the second case directs
individuals southwards along isobaths. The y component of
∇D is multiplied by sign(y) prior to the calculation in the
second case.

Temperature: NSSH avoid low temperatures and higher
temperatures are associated with superior body condition (Fernö
et al., 1998). Therefore, individuals oriented toward higher
temperatures, based on the local gradient. If temperatures
reached an upper limit, the herring reoriented toward cooler
waters based on the near field gradient. The function was
formulated as below:

GT =















−
∇T[k]

‖∇T[k]‖
, if T ≥ 12

∇T[k]

‖∇T[k]‖
, otherwise

(11)

where ∇T is the temperature gradient calculated from the T field
in Equation (8).

2.5. Tuning
To develop the individuals responses to environmental
information, the parameters [8 α w]T in Equations (2), (4), and
(9) were tuned and then analysed. Simulations with 2017–2020
environmental values and 4 separate initialization scenarios
were investigated. In order to model reasonable responses of
individuals to their environment the model was tuned using a
numerical optimization algorithm that took parameter values
as input and minimized the deviation between the model and

observed distributions at specific time stamps. NSSH survey data
from the Norwegian Institute of Marine Research was used for
this purpose (Salthaug et al., 2020). The survey data combines
acoustic and trawl data to estimate abundance in predefined
strata areas. To ensure consistency, 2017 and 2018 estimates were
used for tuning, when the dates sampled were in the last two
weeks of February. 2019 and 2020 data provided an independent
data set to validate the optimization.

2.5.1. Tuning: Setup
To allow fine grain comparison on specified dates, the following
transformation of strata values was carried out, converting
observation estimates into numbers per grid cell j:

• A 12 km2 sliding penalty used acoustic zero values to penalize
areas sampled with low abundances. This meant that grid cells
with strata values in close proximity to those with zero acoustic
values were set to zero.

• A 20 km2 slidingmeanwas then calculated to smooth out areas
and maintain spatial patterns of densities.

• The weighted sum of trawl data was used to centre the
comparison for single days from the survey. A 52 km2 grid
was drawn around the centre as a bin for comparison.

• The transformed observation values were then normalized
and scaled according to the number of model individuals
(Figure 2).

This procedure offered individuals specific objective functions
for a set of time stamps on the migration path. Thus, an
optimization routine was used to find theminimum f in Equation
(12). This algorithm tuned the parameters [8 α w]T and
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FIGURE 3 | Latitude and longitude centre points during the migration period from S2. Each point was calculated from the weighted sum of individuals per grid cell j.

constrained them to between 0 and 1. The densities of individuals
were compared with the fraction of modelled individuals at the
sampled date as follows:

f =

∑y
i=1

(√

1
N

∑N
j=1 (xj − x̂j)2

)

y
(12)

where i is the year, y is the number of years, N is the number
of cells, and xj and x̂j are the number of observation and
model individuals in grid cell j, respectively. For simplicity,
indices indicating day are omitted, where the Root Mean Square
Deviation (RMSD) calculation (in parentheses) is executed on the
relevant date (Figure 2).

2.5.2. Tuning: Simulations
One source of uncertainty is the intialization of the spawning
migration. Given we can perform temporal comparisons above,
4 scenarios with different initial locations were selected, based
on information from the NSSH survey and the Norwegian
Directorate of Fisheries. They represented scenarios where the
central mass of individuals were at variable distances from
the coast and variable distances north (Table 2). This design
tested the sensitivity of the migration to initial conditions.
The probability of an individuals presence in grid cell j (pj)
was calculated from a gaussian radial basis function with the

TABLE 2 | Centre points for each scenario.

Scenarios ĉ latitude ĉ longitude

S1 69 12

S2 70 15

S3 71 12

S4 70 9

following equation:

pj = exp

(

−‖cj − Ĉ‖2

2ρ2

)

(13)

where cj are floored x and y coordinates of grid cell j, Ĉ is the
floored centre point x and y coordinates, and ρ is a parameter
that controls the spread around Ĉ, which was calibrated in
conjunction with the optimization routine. This strategy allowed
the fine grain control of initial distribution by proving spatial
correlations in p based on distance from Ĉ. These simulations
aimed not to fully describe the distribution prior to migration,
but provided insights into how such variation can influence
model output.

2.5.3. Tuning: Analysis
Normalized RMSD values between transformed survey values
and model output was used to gauge the sensitivity of parameters
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across to initialization scenarios S1 to S4. The parameter values
from one scenario was then selected for the remainder of the
comparisons. The 2015–2020 SINMOD environmental values
were coupled with the IBM to produce 6 distinct realizations.

To inspect the tuning results at high resolution (section 3.2),
densities of individuals were post-processed. The number of
individuals in each model grid cell j were summed to calculate
density per grid cell. Following, a sliding mean calculation for
20 km2 was used to derive spatial correlations in densities. To

TABLE 3 | Model parameter values.

Parameters Description Unit Value

1t Time step h 4

r̄b Cruising speed m s−1 0.32

σ Standard deviation in swimming speed m s−1 0.1

8 Weight of counter-current response - 0.91

α Weight of previous orientation angle - 0.56

w Weight of depth gradient cue - 0.72

β Gauss-Markov time constant - 0.2

ĉ lat Initialization centre point latitude ◦ lat 70

ĉ long Initialization centre point latitude ◦ long 15

ρ Spread around centre point - 1.57

visualize the central tendency of the trajectory, the weighted sum
of latitude and longitude points of individuals were computed
for each day. Thereafter, acoustic density values from the NSSH
survey were converted to the relative fraction along all transects
for the sampled time. Each grid cell j along the transect was
sampled for the number of model individuals. The model and
observation values were interpolated within 50 m bins from 0
to 500 m based on the bottom depth in grid cell j. Finally, we
calculated the fraction of model and observation values in each
depth bin. This calculation can illustrate the spread of model and
observation values off-coast. The 16-18th of February 2019 and
2020 were chosen for visual inspection.

2.6. Geospatial Comparisons
The model output was compared with 2015–2020 catch data
from Norwegian Fisheries Directorate in 5 day ranges. The
catch data used were the x and y starting locations of trawling
and associated catch weight in kg. The main purpose of this
comparison was to investigate where and when the model
deviates from observations and what this reveals about the
capacity for the IBM to resemble realistic NSSH distributions.
The initial model distribution was fixed in each year to focus on
relative comparisons.

Observation and model densities were allocated 5 day
windows, where catch and model positions and values were

FIGURE 4 | Environmental values that NSSH utilized on the 30th January 2020 relative to their position on the grid. The maps cover the same area as Figure 1: (A)

The bottom depth in m (colourmap) and gradient (arrows) (B) The temperature in ◦C (colourmap) calculated from Equation (8) and gradient (arrows) (C) The x and y

components of vc (arrows) calculated from Equation (7). The colourmap shows the magnitude ‖vc‖ in m s−1 (D) The fraction of daylight d along the Norwegian coast

(colourmap), which was used in Equations (7) and (8).
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FIGURE 5 | Densities of individuals at 3 time stamps along the migration for 2019 (left column) and 2020 (right column). The colourmap shows the number of

individuals in grid cell j.

described by their centre of mass. These were described as
latitude and longitude centre points. Then, model output was
analysed using geospatial comparisons, as described in Woillez
et al. (2007). The global index of collocation (GIC) indicates
how geographical distinct two ditributions are. It is based
on the distance between the centre points and the variance
around these centres (inertia). A value of 0 means there is no
overlap, whilst a value of 1 implies identical distributions. The
average GIC value for each year was used to score the model
and observation overlap. In addition, RMSD values indicated
the average error for the year. Using GIC and RMSD indices
illuminate where the model and observations disagree. It also
offers insight into potential limitations of comparing model and
observation output.

3. RESULTS

3.1. Sensitivity Analysis
Of the 4 simulation scenarios run, 3 scenarios produced
reasonable migration patterns. S1, S2, and S3 performed relatively
well (Supplementary Material). S4 is far from continental slope,
which is vital information for orientation and therefore couldn’t
minimize Equation (12) properly. The average8 value, produced
by the tuning process for the four scenarios, was quite high
and displayed higher variability (0.78 ± 0.2) compared to α

(0.59 ± 0.08) and w (0.65 ± 0.1). This illustrates the sensitivity

of the response to the current in relation to starting point. The
relatively high α value also shows the importance of fish retaining
knowledge of previous states in the migration. These simulations
highlight the centrality of the continental slope as a landmark
in the migration and how individuals are likely to utilize it.
Further comparisons from 2015 to 2020 were made using the
fitted parameter values based on S2 values (Table 3).

3.2. Scenario Analysis
3.2.1. Trajectory
There was variation in the trajectories of individuals in the
migration, especially with regards to longitude (Figure 3).
In all cases, the beginning of the migration is quite slow,
reflecting the strong current magnitude around the Lofoten basin
(Figure 4C). For example, in 2020, the Latitude centre point
moves approximately 1 degree from 15/1 - 25/1, in comparison
with 1.5 degrees from 9/2 - 19/2. In addition, the longitude
centre is more consistent amongst years from 15/1 - 25/1, again
reflecting the convergence of environmental cues at this stage,
especially ∇D (Figure 4A). There is divergence after this point
due to inter-annual variation in T and vc. This demonstrates
that environmental variability can produce distinct realizations
of the IBM.

The spatial distribution of individuals illustrates the emergent
structures from the simulation (Figure 5). For example, in the
2019 simulation, midway through the migration, emergence of
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FIGURE 6 | Fraction of estimated model and observation values along acoustic transects at 3 time stamps in 2019 (left column) and 2020 (right column), with

associated bottom depth.

FIGURE 7 | Model output (colourmap) with catch points (black circles) overlayed for selected periods in 2015. Size of circle is scaled to the catch weight. The

colourmap gives the average number of individuals in grid cell j for a 5 day period.
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FIGURE 8 | Model output (colourmap) with catch points (black circles) overlayed for selected periods in 2016. Size of circles are scaled according to the catch weight

in kg. The colourmap gives the average number of individuals in grid cell j for a 5 day period.

two branches of migration trajectories appeared. One branch
extends alongside the continental slope, whilst another curves
down toward the coast at approximately 67 degrees latitude and 9
degrees longitude. The 2020 simulation shows similar branching
but there is more movement between branches. Toward the end
of the migration the individuals push further off-coast, with high
densities at 64 degrees latitude and 6 degrees longitude. The two
branches join at this point and form a continuous tail that is
prominent at the end of February.

3.2.2. Survey Comparison
The high resolution comparison of densities of individuals along
acoustic transects with acoustic estimates was useful. It revealed
that the model predicts a high spread off coast, not bunching
individuals at one particular location (Figure 6). Due to the
design of the model, densities are high before tailing off at deep
bathymetry (D ≥ 400m), a pattern present in the acoustic
data also.

3.3. Comparison With Catch Data
3.3.1. Qualitative Analysis
In 2/3 of the years there is good agreement between model and
catch values (2016, 2017, 2019, and 2020). However, there is
intra- and inter-annual variation that can be the result of changes
in both fish and vessel behaviour. Below, two simulations are

presented with poorer and better agreement between model and
observations, respectively (Figures 7, 8).

In 2015, the model migration proceeds southerly in a manner
that appears slower than the development of catch during this
period, particularly from the end of January to the beginning of
February, where there are catches in traditional spawning areas
at a very early stage of the migration (Figure 7). Survey estimates
of abundance from this year were uncertain, where a shift in
strong NSSH year classes and immigration from off-coast areas
in early February listed as possible explanations for discrepancies
(Slotte et al., 2015). Given the comparisons here, it seems there is
immigration from off-coast regions.

In contrast, the 2016 catches take place along branches of the
migration where the model predicts higher densities (Figure 8).
The development of catches overlap with the model evolution.
Survey distribution also corroborate findings in early February
with observations of high densities around 66–67 degrees latitude
(Slotte et al., 2016). The figures from 2017 to 2020 are included in
the Supplementary Material.

3.3.2. Quantitative Analysis
The centre points for fishing activity is in the northern fjords
in mid-January, and the simulations were designed around
these starting points. The longitude varies more in this period,
suggesting that that the variability is mainly off-coast. In 2018,
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FIGURE 9 | Model and observation comparison across all years. The x axis displays the time period (inclusive). The y axis displays the latitude centre point for catch

and model values in the time period. The error bar shows the square root of the inertia values in each time interval.

there was an high off-coast component of catches at the
beginning of the season. The least overlap (GIC) and the largest
error (RMSD) in location comes from this time (Figures 9, 10).
Toward the end of the 2018 seasonmany catches shift to northern
regions. The simulation in 2015 deviated from catches also, for
reasons which are described in the previous section.

In general, early February showed the highest GIC values,
with lowest RMSD values, suggesting the model dynamics in this
period provide reliable geospatial estimates. Both the model and
observations shift southward during the simulation time frame.
The southern evolution of the catch and the model relate to how
NSSH migrates. The spatial variation in centre points (inertia)
varies more in observations than model estimates. There are
many time periods where there appear catch points spread in
space (19/2-23/2 2018) and others when catches are concentrated
in one area (4/2-8/2 2018). As the model is physics-based, it has
a more constant spatial distribution (inertia and centre points),
although there are local differences (Figures 7, 8).

4. DISCUSSION

In general, the model showed good agreement with survey
and catch observations (Figures 9, 10). Emergent properties
of the migration trajectory overlap with vessel catch data.
Regardless, there are limitations to modelling behaviour at such
low resolutions. There are many sources of uncertainty not fully
resolved in this model. Therefore, in conjunction with discussion

about the simulations in this paper, we shall detail how models
can be improved in future work to improve estimates.

4.1. Model Development
Themodel formulation requiredmany steps of refinement to give
reasonable output. In Equations (1) and (2), the response of the
individual was formulated to account for the physical response
directly against the prevailing current. Removing the counter-
current response led to passive drifting northwards. Running
simulations with environmental variables sampled close to the
surface resulted in similar drifting patterns, as the magnitude
of vc is very high close to the surface, especially around the
Lofoten basin (Figure 4C). A formulation that incorporated
vertical conditions was important to model, as in Equations (7)
and (8).

It is difficult to decouple the low resolution effects of
local environmental values on model states, as they are
spatially correlated in the horizontal plane. However, the
combined effect of reacting to gradients from deep bathymetry,
and current patterns seemed the most consistent properties
amongst simulations (Figure 4). This study shows that memory-
and gradient based reactive mechanisms can be used to
model the migration of pelagic fish species such as NSSH
(Fernö et al., 1998).

The energetic states of individuals were not included in this
study, but may provide more insight into variations in observed
patterns. Further work in this project aims to incorporate
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FIGURE 10 | Model and observation comparison across all years. The x axis displays the time period (inclusive). The y axis displays the longitude centre point for

catch and model values in the time period. The error bar shows the square root of the inertia values in each time interval.

Dynamic Energy Budget theory, that can be used to model
energetic costs of migration (Kooijman, 2000). Thus, state-
dependent selection of spawning grounds can be explored, testing
the effect of body length and condition on choice of area (Slotte
and Fiksen, 2000). Natural mortality may also be included here.
Interactions between individuals was explored, such as attraction
and repulsion, but deemed difficult to model at the 4 km2 scale.
There may be a case to model interactions between schools,
where information transfer could potentially give access to novel
information, but this is beyond the scope of the project at
this stage.

It should be mentioned that the ocean models that
force the behaviour of the IBM are subject to their own
limitations. Ocean model outputs have uncertainty caused by
limits in model resolution, our knowledge of the processes
resolved by the model, uncertainty in initial values, boundary
conditions, parameter values, and inaccuracies in numerical
implementations (Lermusiaux et al., 2006). Additionally, climatic
fluctuations can play an important role in survival of recruits and
thus, biomass estimates (Toresen and Østvedt, 2000). Therefore,
understanding how variability in climate can manifest as
variability in individual state and parameter values is important
moving forward.

4.2. Initialization and Tuning
The initialization procedure presented above functioned to
generate a generic distribution that was applied to all model

scenarios. This provided a realistic initial distribution as
input for the tuning procedure. In reality, there is much
uncertainty around the initial distribution of NSSH. This may
be explained by changes in winter stay areas, which has historic
precedent (Dragesund, 1970). Thus, in future work, we shall
model initial distributions based on prescient knowledge of
winter stay areas and recent catch observations preceding the
model run.

Tuning the migration model against survey data allowed for
high resolution, time-sensitive estimates of fish densities. There
was good agreement between tuned models and independent
datasets. Nevertheless, developing the means to calibrate the
model was challenging. One difficulty was the progression of
the migration in comparison to surveys. The survey starts in
southern Norway and progresses northward, the inverse of the
NSSH migration. This meant estimates at the beginning and end
of survey largely consisted of acoustic absence. In the course
of this work, many objective functions for tuning of different
resolutions were provided for the individuals and there is room
for further experimentation here.

The model was trained using data that has its own biases
(e.g., gear selectivity) which may bias the model tuning as a
result. Additionally, fisheries data is sparse in space and time.
Immigration and recruitment will also sporadically alter fish
abundance. As such, one model realization cannot encapsulate
the full variation in fish distributions. Adding noise terms
to model parameters can be used to produce an ensemble
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of estimates through Monte Carlo experiments. State and
parameter estimates can be obtained effectively in this way
(Ward et al., 2016).

4.3. Comparison With Catch Data
The catch data served to judge the performance of the model
across the time frame and highlight discrepancies. This shows
what the model can and cannot resolve, and at what scales.
The physics- based model used assumptions of responses to
the prevailing current and gradients to reproduce the likely
migration at large-scale. In contrast, catch data reflects which
locations were targeted based on market value, quotas, weather
conditions, etc. This is variability the model cannot capture. The
model output is useful in predicting relevant catch locations
in space and time at low resolutions (Figures 9, 10). It gives
insight into where the development of model densities is
matched with fishing activity and where it does not. The output
will have operational use when it is combined with real-time
fisheries-dependent data, as described below. The novel use
of real-time observations can give time-sensitive estimates that
are more reliable than use of model or observation values
in isolation.

4.4. Future Developments
In future, information on vessel activity will be incorporated
to improve observation quality. Classifying vessels in terms of
search vs. fishing activity can provide fine-grain, continuous
information on the behaviour of fishermen. Thus, one can
improve coverage of observations and incorporate absence data.
Finally, using a data assimilation procedure, we can improve
estimates by combining a model, such as the one developed
here, with observation data. Such estimates require expansion
of the model to include uncertainties in initial conditions,
environmental variables, parameters, etc. We have developed one
realization of the model here, but modelling such uncertainties
produces multiple realizations, from which one can calculate the
most probable estimate of the model state (Evensen, 2009).
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A B S T R A C T   

This article presents a novel method for estimating large scale spatiotemporal distribution patterns of fish 
populations modelled at the individual level. A single realization of an individual-based model calibrated on 
historic data has weak predictive capacity, given the underlying uncertainties faced when modelling a relatively 
small cluster of individuals operating in a high dimensional spatial plane. By incorporating real-time data sources 
to update these models, we can improve their predictive capacity. When correcting estimates from a large 
population of individuals, we don’t have access to information about individual histories, such as information 
derived from tagging data. We propose mapping individuals to derived density matrices, which can be corrected 
using conventional data sources which describe a mass of individuals e.g. catch data. An ensemble of derived 
states are used as forecast inputs to an assimilation procedure, that calculates an analysis state matrix of the same 
form. An individuals’ position and biomass values are updated based on the analysis values. To assess the effect 
of corrections, we setup a simulation experiment to explore the impact the number of measurement points has on 
the updated spatiotemporal distribution. The measurement points were sampled from derived states of a twin 
model that resembles the original model. The output of the twin model serves as the true distribution. With an 
increasing number of measurement points the centre of mass of the modelled distribution converges on the true 
distribution and the two distributions increase in overlap. Additionally, the absolute error between model and 
true values decreases. This estimation method, applied to individual-based models and coupled with real-time 
fisheries data, can improve spatially explicit estimates of fish distributions.   

1. Introduction 

Individual-based models (IBMs) simulate interactions between a 
population of model individuals and their surrounding environment 
(Grimm and Railsback, 2005). IBMs capture large scale phenomena with 
simple interactions. Complexity arises from modelling bottom-up pro
cesses, rather than imposing population level parameters such as birth 
and death rates (DeAngelis and Grimm, 2014). It is the individuals local 
input information that produces unique responses. Infection trans
mission models in epidemiology demonstrate this. Contact rates and 
transmission probabilities vary in accordance with the unique behaviour 
of individuals. The social network of the individual matters too (Koop
man and Lynch, 1999; Buchwald et al., 2020). For these reasons 
population-level features are not a simple sum of parts. The subtle dif
ferences between individuals alter system behaviour over time. Differ
ences arise as individuals update state variables, such as position and 

velocity, at frequent time intervals (DeAngelis and Grimm, 2014). In this 
way, internal states represent the integration of past and present input 
over time. Incrementing states forward in time, in distinct simulation 
scenarios, can explain the evolution of higher level phenomena. For 
example, an individual fish’s response to temperature and current ex
plains variation in migratory routes (Barbaro et al., 2009; Tu et al., 
2012). 

These properties make IBMs attractive explanatory tools. However, 
IBMs have weak predictive capacity at a precise location and time, and 
are of limited operational use. As Baker et al. (2018) has pointed out, 
mechanistic models rely on oversimplified assumptions that are narrow 
in nature and limited in broad predictive power. Models are tuned once 
using historical data, validated on an independent dataset, before fore
casting future estimates. This is useful for points trained on the historical 
data, but as the model progresses, states diverge from reality owing to 
uncertainties (Ward et al., 2016; Kieu et al., 2020). We consider model 
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simplifications, intialization values, mechanistic assumptions, parame
ters and inputs as main sources of uncertainty. Integrating real-time, 
real-world observations to correct model states is a way of controlling 
divergence. Data Assimilation updates model states based on real-time 
observations. It operates under the assumption models or observations 
alone cannot resolve the real system (Fu et al., 2011). It estimates the 
real system by applying a statistical correction term to model estimates 
(Alver and Michelsen, 2015. Data Assimilation has been applied suc
cessfully to applications in fishery models, predictive ecology, the 
terrestrial carbon cycle, traffic simulation, amongst other areas (Niu 
et al., 2014; Kieu et al., 2020). 

The Ensemble Kalman Filter (EnKF) is a Data Assimilation method 
initially developed by Evensen (1994). It is used for state and parameter 
estimation of non-linear systems e.g. atmospheric and ocean systems 
(Houtekamer and Mitchell, 2001; Alver and Michelsen, 2015). The EnKF 
simulates separate instances of a model in a Monte Carlo setup where 
instances diverge over time due to random perturbations which repre
sent the uncertainty in the model and its inputs. The divergence in model 
states is used to calculate error statistics. When observations are avail
able, a correction term is applied to each instance of the model, based on 
these error statistics (Evensen, 2009). Although the EnKF implicitly as
sumes Gaussian distributions of prior states, it is effective in approxi
mate estimation of states in non-linear systems that violate this 
assumption, which is often the case (Katzfuss et al., 2016). 

Assimilating measurement data with IBM output can vastly improve 
predictions. This has been explored in the case of population-level es
timates (Niu et al., 2014). Here we focus on high dimensional spatially 
explicit patterns of abundance in fish distributions. Real-time integra
tion of available observations has the potential to facilitate the goal of 
time sensitive decision-support for stakeholders in the fishing industry. 
There are two main challenges to achieving this objective. Firstly, at 
large spatial scales, we currently don’t have access to measurement data 
that describe individual fish with unique identities tracked through time 
to compare with IBM output directly. Secondly, the real spatially explicit 
distribution of fish stocks at any given time is highly uncertain, due to 
the sparsity of observations. 

We propose a novel approach for correcting the IBM that is 
compatible with measurement sources that don’t preserve an individual 
fishes identity, such as catch data. This method maps IBM output onto a 
two dimensional spatial grid, where derived density estimates are uti
lized as prior states in the EnKF. With minimal manipulation, the anal
ysis estimate is remapped to the IBM individuals. The EnKF is 
advantageous for this purpose, as the IBM model mechanics are not 
altered directly, avoiding degeneracy of the model structure (Katzfuss 
et al., 2016). Additionally, the EnKF is suitable for assimilation when we 
don’t fully understand the sources of errors. 

To address the issue of the true underlying distribution, we use a twin 
model experiment to simulate observations. That is, we simulate an 
altered IBM and treat it as the true migration pattern. The IBM is based 
on the spawning migration of the Norwegian Spring Spawning Herring, 
as described in Kelly et al. (2022). The model IBM mechanics are 
extended from the single realization described, to an ensemble of esti
mates, through addition of stochastic perturbations to model compo
nents. In the true scenario, the deterministic realization is simulated 
alongside the ensemble of models, then sampled for measurement 
points. The measurement values are assimilated with each instance of 
the ensemble. We then investigate the impacts of measurements on the 
model distribution, given we have full knowledge of the true 
geographical distribution. The convergence of the ensemble on the true 
distribution indicates the capacity to correct the IBM. Spatial indices 
were used to measure this convergence and scenarios run in this study 
examined the influence of number of observations on spatial patterns. 

With improvements in technology, observations will become less 
sparse and thus, our capacity to correct models shall improve (Fu et al., 
2011). For example, acoustic technology today involves use of a 
multi-beam system that can resolve multiple fish at once (Chu, 2011). 

Additionally, studies have shown it is possible to classify fishing activity 
with high precision, from available vessel data at an individual level, 
such as position, speed and turning angle of boats (Bez et al., 2011; de 
Souza et al., 2016). Assimilating such sources of fisheries data with 
spatially explicit model predictions can improve our collective under
standing of dynamics of large scale fish distribution patterns. 

2. Materials and methods 

The purpose of the model is to improve spatiotemporal estimates of 
fish distributions through integration of observations when they become 
available. The following description primarily focuses on two aspects: 1) 
Modifying the IBM to make it compatible with the EnKF procedure for 
assimilating data. 2) Setup of the twin model experiment to analyse the 
impact of measurements on the model (Fig. 1). 

2.1. Ensemble of IBM trajectories 

The IBM prediction model developed in Kelly et al. (2022) of a single 
model trajectory of herring is reproduced here for completeness, with 
the following set of difference equations at each time step k: 

p[k] = p[k − 1] + Δt
(
vf [k − 1] + vc[k − 1]

)
(1)  

vf [k − 1] = − Φvc[k − 1] + vb[k − 1] (2)  

vb[k − 1] = rb

([
cos(θ[k − 1])
sin(θ[k − 1])

])

(3)  

θ[k − 1] = f (∇T[k − 1],∇D[k − 1]) (4)  

where p is the vector of positions, vc are the horizontal current com
ponents vector at the individuals position in m s− 1, Φ is a parameter that 
controls the response to the current, rb is the swimming speed of the 
individual and θ is the angle of orientation, which is a function tem
perature and bathymetry gradients (T and D). This configuration allows 
the individual to respond with a higher priority to the horizontal com
ponents of the prevailing current. 

As Evensen (2009) notes, the solution to a dynamical model is one of 
an infinite many realizations, and for meaningful solutions, we must 
consider the time series of the probability density function. The IBM 
modelled one realization of the herring migration pattern, optimized 
based on a narrow set of assumptions (Kelly et al., 2022). Numerous 
alternative realizations are possible, given uncertainties in model evo
lution over time. Here, we add random perturbations to the IBM state 
variables to generate a set of N divergent instances sequentially in time. 
This generates N trajectories of the original IBM, which are held in 
memory and updated independently at each time step. 

Position p and velocity v of individuals were extended from the 
single IBM to N instances, notated by the state matrices P and V, both 
with N columns. Additionally, biomass B of individuals in kg is added as 
another state here, where each individual was treated as a mass of fish 
(also referred to as a superindividual): 

P[k] = P[k − 1] + Δt(V[k] + Ṽ[k]) (5)  

B[k] = B[k − 1] − Δt(B̃[k] + ω)B[k − 1] (6)  

where Δt was the time increment, reduction in biomass was controlled 
by the constant parameter ω, and divergence in states V and B were 
caused by the stochastic errors Ṽ and B̃. The expected value E [Ṽ] = E [B̃]
= 0. These errors produce prediction uncertainty in the system, repre
senting errors in individuals migration direction, speed and mass and 
were formulated as follows: 

Ṽ[k] = R̃[k]
[

cos(Θ̃[k])
sin(Θ̃[k])

]

(7) 
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R̃[k] = α1R̃[k − 1] + α2

(
esx1N

(
0, ϵ2

R

)

1xN

)
+ N

(
0, σ2

R

)

sxN (8)  

Θ̃[k] = α1Θ̃[k − 1] + α2

(
esx1N

(
0, ϵ2

Θ

)

1xN

)
+ N

(
0, σ2

Θ

)

sxN (9)  

B̃[k] = α1B̃[k − 1] + α2

(
esx1N

(
0, ϵ2

B

)

1xN

)
+ N

(
0, σ2

B

)

sxN (10)  

where temporally correlated, slowly varying errors were controlled by 
the parameters α1 and α2, esx1 is an sx1 vector of ones, where s is the 
number of individuals and ϵR, ϵΘ and ϵB represent standard deviation in 
speed, angle and biomass for each of the ensemble members. Applying 
these errors cause the N columns to diverge, creating an ensemble of 
random realizations.The standard deviations were calibrated to main
tain spread between ensemble members and limit the severity of cor
rections when data was assimilated. This formulation is similar to 
system noise modelled in ocean models that use temporal autocorrela
tion of random noise to account for errors in representation of certain 
processes (Keppenne et al., 2008). In this case, we represent the errors in 
the individuals state matrix, resulting from uncertainties in the evolu
tion of migration patterns. In addition to the temporally autocorrelated 
ensemble noise, spurious gaussian noise is added to each individual with 
mean of zero and standard deviations of σR, σΘ and σB. These individual 
noise components account for uncertainties in the migration of indi
vidual fish, regardless of ensemble member. 

2.2. Data Assimilation framework 

Before assimilation, the forecast IBM position Pf and biomass Bf from 
Equation (5) and (6) are converted to derived estimates: 

Xf = f (Pf ,Bf ) (11)  

where Xf is an nxN grid of density values, with each cell representing the 
sum of the biomass of all individuals within that grid cell. 

The EnKF uses the error covariance structure of the ensemble fore
cast Xf to calculate the correction term. However, the full covariance 
matrix is too large to be explicitly calculated here. We employ an 
equivalent implementation by Mandel (2006), which avoids the 

calculation of the full error covariance matrix and derives directly the 
prediction error covariance matrix in the observation space: 

A = Xf −
1
N
(
Xf eNx1

)
e1xN (12)  

HA = HXf −
1
N
( (

HXf )eNx1
)
e1xN (13)  

P =
1

N − 1
HA(HA)T Im + R (14)  

K = L ⊙

(
1

N − 1
A(HA)T P− 1

)

(15)  

where H is an mxn matrix that contains ones at m measured states, Im is 
an mxm identity matrix, R is the mxm observation error covariance 
matrix, where each element on the diagonal is the variance of obser
vation noise (σ2

O), L is an mxN localization matrix and finally, K is the 
Kalman Gain, which is used to calculate the correction term. Localiza
tion adds a penalty to model covariances that are distant from the 
measurment point. For a small ensemble and high dimensional system, 
localization is necessary to limit the impact of observations (Houte
kamer and Mitchell, 2005). The operator ( ⊙ ) is the Schur product, an 
elementwise operation acting on all covariance values. The full L matrix 
was calculated from a radial basis function: 

Lij =

⎧
⎪⎨

⎪⎩

0, if ‖ gi − gj‖
2 > c

exp
(
− ‖ gi − gj‖

2

2ρ2

)

, otherwise

⎫
⎪⎬

⎪⎭
(16)  

where we calculate the euclidean distance between the xy grid coordi
nate for each model grid cell gi and the measured grid cell gj. The value is 
calculated for all model coordinates (i = 1: n) and measurement point 
coordinates (j = 1: m). When i equals j, the value of L equals one, and as i 
moves away from j there is exponential decline in the value of L. To 
controls spatial correlations around the measurement point, the con
stant parameter ρ is used. In addition, to avoid spurious correlations, a 
cut-off point c sets distant spatial covariances to zero. 

The analysis estimate Xa is calculated as follows: 

Fig. 1. A conceptualization of the assimilation of data using the twin model experiment.  
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Xa = Xf + K(D − HXf ) (17)  

where D is the mxN measurement matrix. The standard EnKF adds 
N (0,R) realizations of observation errors to generate observational 
perturbations. However, in this study, where we are sampling from a 
non-negative distribution with mostly zero values, perturbation of ob
servations led to inaccuracies in the posterior field. Instead, the columns 
of D are treated as replicates of the original measurement vector. 
Treating the observations as deterministic contracts the variance across 
the ensemble in the analysis estimate (Burgers et al., 1998). To 
compensate for this contraction in spread between columns of Xa, an 
inflation factor ψ was used to replace the analysis estimates, as 
mentioned in Evensen (2009): 

Xa
z = Xa

+ ψ
(
Xa

z − Xa) (18)  

where z is the index for the ensemble member and Xa is the ensemble 
mean of the analysed derived states. 

Following assimilation, the IBM is modified to reflect updated grid 
cell biomass values and this is achieved with minimum manipulation of 
the underlying model structure. The derived analysis estimate Xa is 
converted back to IBM states: 

[Pa,Ba] = f (Xa) (19)  

where Ba and Pa are the analysis biomass and position values for in
dividuals, calculated from Xa. 

2.3. Data assimilation adapted for the IBM 

In this section, we detail how the conversion between IBM and EnKF 
states was achieved in Equations (11) and (19). Mapping from individ
ual representations to derived density states means aggregating infor
mation from individuals into a grid representation that describes 
geographical distribution and abundance. Cocucci et al. (2022) de
scribes this as a transition between micro- and macro-states. To achieve 
this mapping, the forecasted states are derived individual by individual, 
as shown in Algorithm 1, until the Xf matrix is furnished with an 
ensemble of density fields. 

Algorithm 1. Algorithm for mapping from IBM states to forecast states 
Xf in Equation (11).  

Mapping from the high dimensional analysis field to relatively fewer 
individuals is more challenging, and Algorithm 2 was designed to 
maximize the retention of density values, while limiting adjustments to 
the IBM. Each cell is checked for the analysis estimate and if it is greater 
than zero, the value is assigned as individual biomass, divided evenly 
amongst individuals at that position. If the analysis estimate is greater 
than zero, but there are no individuals present, one individual posi
tioned in a cell with a zero analysis estimate is randomly moved there 
(assuming there is an individual available to move). 

Algorithm 2. Algorithm for mapping from analysis states Xa to IBM 
states in Equation (19).  

(continued on next column)  

(continued ) 

This method is similar to the randomized redistribution described in 
Cocucci et al. (2022), where individuals are moved between categories 
where needed and attributes are updated. In this case, Pa and Ba are 
estimated from the macro- to micro-state mapping. This mapping con
serves density estimates with higher priority than individual histories, 
given real fisheries observations are of aggregated individuals. 

2.4. Twin model development 

The observations used in this study were synthetically generated 
using a twin model, which represents the true distribution here. Twin 
model design has been used to give insight into capacity to correct model 
components with few observed variables (Simon and Bertino, 2009. 
Specifically, we are testing the data assimilation procedure and 
observability of the system in our setup. Here, we observe a derived 
variable from the twin model (XT), which is a density field with di
mensions nx1. This was sampled in the assimilation procedure to furnish 
the D matrix in Equation (17). The samples were taken from a predefined 
grid along the Norwegian coast (Fig. 2). Like the model IBM, these 
values were derived from individual state variables: 

XT = f (PT ,BT) (20)  

where PT and BT were position and biomass of twin model individuals. 
Unlike the model IBM, the twin individuals were stepped forward with 
no feedback from the assimilation procedure. The twin IBM was updated 
using the same dynamics as the main IBM, with the exception of the 
swimming speed rb in Equation (3), which was reduced in the twin 
model. This hypothetical scenario represents a situation where the 
model overestimates the true migration speed of the herring. 

2.5. Model Simulation 

The environmental conditions were obtained from a run of the 
physical-biological ocean model SINMOD (Slagstad and McClimans, 
2005 set up in a domain with 4 km horizontal resolution covering the 
Norwegian and Arctic Seas. The same grid resolution was used for the 
derived states, where n = 941 × 620. The IBM modelled individuals in a 
2D environment where position was updated on N continuous horizontal 
planes. The s individuals initialized in each ensemble member had their 
position P centred in an area in Northern Norway in mid-January. The 
biomass B states for each ensemble were initialized from a Gaussian 
distribution with mean μB and standard deviation ΣB. These values were 
divided among individuals based on their proximity to the centre point 
of the starting position. The model was simulated for a period of 45 days 
during the herring spawning migration. The time increment Δt was 4 h, 
for a total of 270 time steps. The simulation period was split into 
assimilation and non-assimilation periods. The assimilation period 
operated from day 18–37. During the assimilation period, corrections 
were performed once per day. This left a period prior- and 
post-assimilation for the states to diverge from the ensemble mean. 
Model parameters were calibrated to stabilize the assimilation 
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procedure, specifically to avoid extreme correction terms (Table 1). 
To investigate the number of observation points needed to make the 

ensemble converge towards the true state, four separate scenarios were 
setup to test varying number of observation points, where S1 = 100 
points, S2 = 200 points, S3 = 400 points and S4 = 800 points. The points 
were sampled at equally spaced intervals in the observation area 
(Fig. 2). To implement a fixed virtual observer system, these same points 
were sampled on each day of the assimilation period. The output from 
these scenarios was compared to a control model, which was run in 
parallel with no assimilation of data. 

2.6. Analysis 

Quantitative and qualitative measures of performance investigated 

the capacity to correct the four model scenarios with samples of mea
surement points and thus, represent the spatiotemporal patterns of the 
true fish distribution. This is important in the geographical mapping of 
fish stocks. The quantitative measures used were based on equations 
from Woillez et al. (2007). The Centre of Gravity (CG) measures the 
weighted position of the density estimates at a given time. We investi
gated how this diverged from the control model and converged towards 
the true CG. Global index of Collocation (GIC) is a measure of the 
overlap of two separate distributions. It takes into account the CG of the 
two distributions and the variance around the CG. A value of one is 
perfect overlap between the two and a value of zero indicates distinct 
populations. Both CG and GIC were described in terms of latitude and 
longitude coordinates. They were calculated from the densities of the 
derived states X and XT, where X is the ensemble mean of the model. The 
derived states were saved once per day during the model simulation, and 
after the assimilation step. 

In addition to spatial estimates, the raw error between the density 
values of the model and true model were analyzed. This ground truth 
error was taken as the difference root-mean squared difference between 
density estimates from the model and the true derived density estimates: 

eT =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
l
∑l

i=1
(Xi − XT i)

2

√

(21)  

where i is the model coordinate and l is the number of indices within the 
observation area (Fig. 2). 

3. Results 

3.1. Qualitative analysis 

The ensemble mean of the model (X) is the best estimate of the model 
at each time step, and thus in the following results, X is the focus for 
analysis. The modelled migration moves south, with an offshore distri
bution prior to assimilation. During assimilation, the control simulation 
continues with this development, while the corrected scenarios develop 
a more coastal distribution, reflecting the true distribution. Following 
assimilation, all corrected scenarios deviate from the true distribution, 
but to a lesser degree than the control distribution. 

To visualize the impact of corrections, we plotted derived density 
maps from two time stamps during the assimilation period, one at day 25 
(Fig. 3) and another at day 35 (Fig. 4). The visual comparisons show 

Fig. 2. The area sampled for measurement point during assimilation (black rectangle), where the colored cells represent the true distribution of derived density 
values (XT), in kilograms, on day 25 of the simulation. The contours represent the depth in metres. For convenience, the colorbar represents the scale of both XT and 
depth. Longitude and latitude ticks extend from the x and y axis, respectively, along the Norwegian coast. 

Table 1 
List of model variables and parameters for ensemble simulations.  

Name Description Unit Value 

State variables    
P Model position of individuals   
B Model biomass of individuals   
X Model derived density states   
PT True position of individuals   
BT True biomass of individuals   
XT True derived density states   
Parameters    
N Number of ensemble members – 100 
s Number of individuals – 10000 
m Number of observations – – 
n Number of derived states – 583420 
Δt Time step h 4 
ϵR Standard deviation in ensemble magnitude m s− 1 0.1 
ϵΘ Standard deviation in ensemble angle ∘ 45 
ϵB Standard deviation in ensemble biomass – 0.002 
ω Biomass reduction for ensemble – 0.005 
μB Mean total initial biomass kg 5e06 
σR Standard deviation in individual magnitude m s− 1 0.01 
σΘ Standard deviation in individual angle ∘ 4.5 
σB Standard deviation in individual biomass – 0.002 
σO Observation noise kg 250 
ΣB Standard deviation in initial biomass kg 1e06 
α1 Temporal correlation parameter – 0.984 
α2 Temporal correlation parameter – 0.129 
ρ Localization parameter – 6 
c Localization cut-off – 15 
ψ Inflation factor – 1.01  
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Fig. 3. (a) Large scale 2D plot of derived density states of model (X) and true distribution (XT) over a selected area of the Norwegian coast on day 20 of the 
simulation. The density colormap shows values in kg, while the contour lines show depth in metres. The black point shows the centre point (CG). The same colorbar 
scale is used for both. (b) The local 3D representations of derived states taken from the squared area in (a). Black dots show the location of measurement points. No 
measurement points were sampled for the control scenario. 
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Fig. 4. (a) Large scale 2D plot of derived density states of model (X) and true distribution (XT) over a selected area of the Norwegian coast on day 35 of the 
simulation. The density colormap shows values in kg, while the contour lines show depth in metres. The same colorbar scale is used for both. The black point shows 
the centre point (CG). (b) The local 3D representations of derived states taken from the squared area in (a). Black dots show the location of measurement points. No 
measurement points were sampled for the control scenario. 
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large scale distributions (2D plot) concatenated vertically with local 
distributions (3D surface plot). The large scale model distributions 
become more similar to the true distribution in the assimilated sce
narios. The model CG converges on the true value also. The true dis
tribution tends towards the coast and is concentrated more northerly. 
Further north (higher on the x axis) there is a clear increase in density 
values in assimilated scenarios, where measurement values from the 
true distribution are higher. Further south (lower on the x axis), the 
density values decrease, as a result of adjustments using zero measure
ment values. 

In any given cell, local densities vary from true values, but on 
average the ensemble mean approaches the topography of XT. Location 
and density of measurement points impact the scale of corrections. The 
peaks and valleys in the local densities of Fig. 3b and 4b are concen
trated in varying locations, related to the position of measurement 
points. In the case of the control model, the derived density topology is 
distinct from the true derived topology. With an increasing number of 
measurement points, the density map starts to resemble the true map. 
For example, the ridge in S4 resembles the surface features of the true 
model (Fig. 4b). In any given cell, the density estimates from X may not 
reflect those from XT, but on average with increased observation 
numbers recreates a similar topography. 

3.2. Quantitative analysis 

The time series of CG of the ensemble mean for three scenarios was 
compared to the true CG. The CG is calculated in both latitude and 
longitude axes (Fig. 5). During the assimilation period there is conver
gence of CG towards the true point. The standard deviation across the 
ensemble reduces during the assimilation period and is sharply reduced 
with a higher density of observations. This sharp reduction is pro
nounced on the first call to the assimilation function. A large number of 

instances of the model are heavily penalized at this point. The standard 
deviation increases rapidly post-assimilation. There is faster conver
gence on latitude, reflecting the greater difference in latitude points, 
which was the main axis of variation for the simulation period. The 
inflation factor (ψ) is partly responsible for maintaining the standard 
deviation across the ensemble. The CG and standard deviation identical 
in all scenarios prior to assimilation. With a low density of observations, 
there are relatively weak corrections and convergence on the truth. In all 
cases there is divergence from the true CG post-assimilation. However, 
with a higher density of observations, there is less divergence. This is 
clear when we compare S3 to S1. 

In Fig. 6, we compare each scenario to the true and control CG 
(Fig. 6a) and overlap (Fig. 6b). Before the assimilation period, the model 
and true distribution diverge and there is less overlap. The non- 
assimilated control model continues to diverge from the truth during 
the assimilation period. There is immediate divergence from the control 
on day 18 and convergence to the true CG for all scenarios. This is re
flected in the overlap, which approaches a value of one over time. 

The ground truth error (eT) evaluates the raw error in the observation 
area between the model derived density values and the true derived 
density estimates from Equation (21). The error increases initially as the 
initial distribution of the truth and ensemble diverge in spatial charac
teristics. This pattern continues for the control model, until it eventually 
plateaus. The eT is generally reduced from S1 to S4, with an initial sharp 
reduction, followed by a gradual decline in errors, with some irregu
larities. The eT remains lower than the control for some days post- 
assimilation, until it eventually converges to a similar value at the end 
of the simulation. 

4. Discussion 

In this article, we have presented a novel general method for 

Fig. 5. Time series of Centre of Gravity (CG) in terms of latitude (first row) and longitude (second row) values during the simulation period. The CG of the true 
derived states (XT) is shown with the dotted blue line in each panel, while the CG of the ensemble mean of the model derived states (X) is shown with the black line, 
with each column representing a separate scenario. The vertical dotted grey lines represent the boundaries of the assimilation period. 
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assimilating data with an IBM operating in a high dimensional system. 
Assimilating data sources with a population of unique, discrete in
dividuals is challenging, given observation sources like catch data, 
which do not preserve individual identity. Our suggestion is the use of 
derived states, which map individuals onto a discrete grid, with each 
grid cell expressing total densities of individuals. These derived states 
can then be assimilated with observation data, using an ensemble 
approach, to calculate a posterior density grid. Derived states can be 
remapped to the IBM states, without excessive manipulation of the 
model structure. Such a method is particularly useful for spatially and 
temporally explicit predictions of fish distributions. In the setup tested 
here, we compared scenarios for a bounded time period, where obser
vations were available at frequent discrete intervals. The prior- and post- 
assimilation periods assumed no access to observations. In scenarios 
with access to many measurement points, the large scale and local 
density field converge on the true distribution. Importantly, we have 

shown how the assimilated scenarios outperform the non-assimilated 
control scenario in spatiotemporal predictions during the assimilation 
period. Performance is also superior for the time stamps directly suc
ceeding assimilation. Towards the end of the time series, the model es
timates eventually diverge from the true distribution and converge on 
the control case. Future work on incorporating fisheries dependent data 
can improve predictions and validate this method with real data. 

4.1. Making the IBM compatible with the EnKF 

The EnKF was chosen given the highly non-linear nature of the sys
tem modelled. Additionally, the EnKF shifts values in the model, rather 
than reinitializing model components. This prevents degeneracy of the 
model structure since each IBM instance is altered with minimal 
manipulation during assimilation. The IBM states were perturbed with 
Gaussian errors, but upon simulation the distribution of the ensemble of 

Fig. 6. (a) Time series of centre points (CG) for the four 
scenarios, true distribution and control model in terms 
of latitude (top panel) and longitude (bottom panel). 
The vertical dotted grey lines represent the boundaries 
of the assimilation period. (b) Time series of overlap 
(GIC) between the model and true distributions for the 
four scenarios and control model in terms of latitude 
(top panel) and longitude (bottom panel). The vertical 
dotted grey lines represent the boundaries of the 
assimilation period.   
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derived states becomes non-Gaussian. However, while the EnKF 
implicitly assumes a Gaussian state-space, it provides good approximate 
solutions in cases where systems violate this assumption (Katzfuss et al., 
2016). 

In the real system, the observations will be sampled from an un
derlying non-negative concentration field (fish per unit area), and 
furthermore the field will have a bias towards values of zero in locations 
outside of the distribution of the migrating fish at any time. This has two 
consequences. First, the assumption of gaussian measurement noise is a 
poor fit to real world observations outside of the area covered by the 
migrating fish. Second, perturbation of observations using gaussian 
distributed random values will lead to a high number of negative values 
in those same areas. For these reasons, observations were treated as 
deterministic in this study. To compensate for the lower ensemble 
spread resulting from this choice, an ensemble inflation factor was 
applied (Evensen, 2009). To relax the need for adding observation er
rors, a square root EnKF variant could be considered (for example: 
Bishop et al., 2001). In future studies using real world observations, the 
statistics of the sampling process should be investigated in detail for the 
actual observations made, and the assimilation process customized 
accordingly. One approach could be to use approximate Bayesian 
inference along the lines proposed by Eidsvik et al. (2008). 

An innovation of our method is the use of derived states that convert 
from particles to a field of density values. This allows corrections of 
density values rather than unique individual values, for which we don’t 
have measurement data to describe. This would require, for example, 
large-scale tagging studies or time-sensitive acoustic back-scattering 
data, which are not fully developed as of now. Also, a spatial density 
field is easier to interpret and compare with observation data sources, 
relative to a cloud of particles at large spatial scales. When mapping the 
posterior state back to individual states, there were two manipulations. 
Firstly, the negative Xa values were removed to omit negative biomass 
values. Secondly, individuals that had zero biomass values (post- 
assimilation), were moved into positions with positive Xa values, until 
either none remained to be moved or all positive Xa values were 
assigned, in a process similar to the randomized redistribution described 
in Cocucci et al. (2022). This prevented loss of information during 
assimilation, without heavily intruding on the mechanics of the IBM 
directly. 

The parameter values in assimilation were calibrated to ensure cor
rections were applied without extreme effects. The inflation factor kept 
spread around the ensemble, preventing excessive convergence of model 
on the observations, given observations were treated as deterministic. 
Localization was used to limit impacts of observations spatially and the 
choice of localization distance affects the corrections of cells between 
measurement points. Random perturbations on model states generated 
variance in the evolution of the migration scenarios. Balance between 
observation noise and model perturbations determined the overall scale 
of the corrections. One must note that assimilation is an approximate 
method of estimation, and operates under the assumption of uncertainty 
in model states and parameters. More persistent effects of the data 
assimilation can be achieved by also estimating model parameters in the 
data assimilation process, and for the present system the average 
swimming speed is a natural choice. Using parameter estimation, one 
would not only update the model state, but also attempt to tune the 
model to better match the real system at a fundamental level. 

4.2. Impacts of measurements on the fish distribution 

We used the twin model experiment (Fig. 1) to generate virtual ob
servations, gauging the impact of corrections on the model IBM. The 
twin model was designed to configure a hypothetical shift in the spatial 
distribution of the fish relative to the prior assumption of our model. 
Inter-annual shifts in distribution are common in many migratory fish 
species, as captured often in surveys. For example, the herring spawning 
migration usually ends with masses of individuals spawning around 

Møre, but often, spawning occurs further north (Slotte and Fiksen, 
2000). Our intention was not to explicate those reasons, but to gain 
insight into how assimilation of real-time data may modify the distri
bution to reflect a hypothetical disagreement between modelled and 
true distributions. In reality, fish distributions are highly uncertain in 
real-time as we have access to sparse observations, such as catch data. 
The twin model experiment design is useful as we are omniscient of the 
underlying true distribution and can easily analyse the impact of 
measurements. 

Qualitatively, the large scale and local spatiotemporal distributions 
increasingly resemble the true distribution with denser clusters of ob
servations (Fig. 3 and 4). Quantitatively, the centre points and overlap of 
the model converge on the true indices during assimilation to an 
increasing degree with more observations (Fig. 6a and b. Additionally, 
the deviations between ensemble instances is reduced with measure
ments, meaning the estimates are of higher certainty (Fig. 5). Finally, the 
ground truth error between the model and true derived density states is 
reduced with observations, showing, with access to more measurements, 
the model becomes more predictive in an absolute sense (Fig. 7). 

At any one location, corrections are highly sensitive to placement of 
observation points. For example, at the coordinate (5,38) in (Fig. 3b) 
there are high density values in scenarios S1, S2 and S3, while this peak is 
absent in S4. This is related to the position of measurement points at this 
step of the analysis and the previous position of measurement points. 
However, on average, the denser the observations, the more the features 
reflect the true spatial distribution. The overall topography of S4 re
sembles the true distribution more closely at the large and local scale 
(Fig. 3a and 3b). 

4.3. Opportunities for model implementation 

Today, there is much interest in utilizing fisher’s knowledge, as it is 
considered part of the best available information for research studies. 
This is complementary to research survey data, which much work has 
relied on until now. Utilizing spatially explicit data, such as position and 
speed from vessel monitoring systems, we can improve our under
standing of the state of the fishery in real-time. The estimation approach 
presented in this article is intended to be coupled with such data sources 
and thus, facilitate real-time monitoring of fish stocks. This has potential 
applications in fisheries management, marine planning and tracking of 
migrations. We note that this method is suggested to support decisions in 
these areas alongside complementary sources of information. Explicit 
decisions in fisheries systems are complex and require human deliber
ation and intervention. Thus, our model offers increased situational 
awareness without explicitly directing the decision-making process. 
Decision-making is the responsibility of the end user. 

The method also has theoretical value for tuning parameters and 

Fig. 7. The ground truth error (eT) between the model and true distribution for 
the simulation period in kg. The vertical dotted grey lines represent the 
boundaries of the assimilation period. 
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improving models of fish dynamics. We have shown that applying cor
rections to model estimates improve prior predictions and with enough 
coverage, model estimates converge on the true spatial distribution. 
Further work will attempt to validate this method with real fisheries 
observation data. Furthermore, we wish to improve predictions when 
observations are not available, for example during time windows with 
little access to measurements. 
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There is increasing interest in utilizing fishers’ knowledge to better understand the

marine environment, given the spatial extent and temporal resolution of fishing

vessel operations. Furthermore, fishers’ knowledge is part of the best available

information needed for sustainable harvesting of stocks, marine spatial planning

and large-scale monitoring of fishing activity. However, there are difficulties with

integrating such information into advisory processes. Data is often not

systematically collected in a structured manner and there are issues around

sharing of information within the industry, and between industry and research

partners. Decision support systems for fishing planning and routing can integrate

relevant information in a systematic way, which both incentivizes vessels to share

informationbeneficial to theiroperationsandcapture timesensitivebigdatasets for

marine research. The project Fishguider has been developing such a web-based

decision support tool since 2019, together with partners in the Norwegian fishing

fleet. The objectives of the project are twofold: 1) To provide a tool which provides

relevant model and observation data to skippers, thus supporting sustainable

fishing activity. 2) To foster bidirectional information flow between research and

fishing activity by transfer of salient knowledge (both experiential and data-driven),

thereby supporting knowledge creation for research and advisory processes. Here

we provide a conceptual framework of the tool, along with current status and

developments, while outlining specific challenges faced. We also present

experiential input from fishers’ regarding what they consider important sources

of information when actively fishing, and how this has guided the development of

the tool.Wealsoexplorepotential benefits of utilizing suchexperiential knowledge

generally. Moreover, we detail how such collaborations between industry and

researchmay rapidly produce extensive, structureddatasets for researchand input

into management of stocks. Ultimately, we suggest that such decision support

services will motivate fishing vessels to collect and share data, while the available

data will foster increased research, improving the decision support tool itself and

consequently knowledge of the oceans, its fish stocks and fishing activities.
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1 Introduction

There is a global movement towards better understanding

and utilization of data and experience of fishers in order to

inform research activity and management decisions (Johannes

et al., 2008; Stephenson et al., 2016; Dyrset et al., 2022). This is

due to an increasing awareness that it is advantageous to

consider fishers’ knowledge, as the quantity of information

available to modern fleets is vast given the temporal and

spatial extent of global fisheries operations, which is estimated

at four times the spatial extent of agriculture (Kroodsma et al.,

2018). Such knowledge includes the experiences of fishers

themselves and information processing systems onboard, and

is considered part of the best available information (Stephenson

et al., 2016). This information can be used in stock assessment,

marine spatial planning and mapping species abundance and

distribution (Holm and Soma, 2016). Modern applications to

real-time monitoring of vessel tracks can screen for illegal fishing

activity and map the global footprint of effort (de Souza et al.,

2016; Kroodsma et al., 2018). Remote sensing of environmental

variables may be a cost-effective method of supporting fishing

activities (Santos, 2000). The recent paper from Jones et al.

(2022) demonstrates how high resolution data from the US

reference fleet has contributed to abundance indices for several

stocks, while footprints of fishing vessels can inform planning of

offshore wind projects. A similar Norwegian reference fleet

program found that gathering species and age composition

data from fishing vessels is a cost-effective method of sampling

and producing CPUE time series for cod, haddock and redfish

(Hjelle et al., 2021).

Given the multitude benefits of using fishers’ knowledge to

inform policy, it begs the question why it’s underutilized? For

catch data, there is the issue of bias in samples for density

estimates, as catch logs exclusively record instances of fishing

activity, neglecting areas not targeted by fishers, which biases

predictions of species distributions (Karp et al., 2022). Also,

given the unsystematic way much of fishers’ knowledge is

handled, it is often neglected (Hind, 2015). This means that

although the quantity of information is high, the quality is highly

variable and potentially skewed. It’s challenging to filter from

individual knowledge claims to scientific input that is legitimate

and salient for decision-making (Brattland, 2013; Röckmann

et al., 2015). Regardless, there is the charge that biologists don’t

take fishers ecological knowledge seriously, where such

information can avert collapses of spawning stocks (Johannes

et al., 2008).

In addition to the benefits to decision makers of

incorporating fishers’ knowledge, there are increasingly clear

incentives for fishers to contribute in meaningful ways. The

historical trajectory of the Norwegian fishing industry has been

to long-term sustainable harvesting. For example, advances in

fish finding equipment, with the uptake of echosounders and

sonar, has improved vertical and horizontal profiling of fish and

led to more offshore and targeted exploitation of stocks (Nakken,

2008; Gordon and Hannesson, 2015). Advances in mechanical

winches for trawling gear reduced the labour involved in hauling

nets, and introduction of non-rotting synthetic fibres made nets

pressure resistant, increasing catch efficiency (Hamre and

Nakken, 1971; Jennings et al., 2001). A modern purse seiner

makes particularly effective use of the listed advances, and is

relatively fuel efficient, using approximately 0.1kg of fuel per kilo

of fish (Schau et al., 2009). In addition to technological

developments, structural changes to the fleet, from

introduction of tradeable quotas, decommissioning schemes

and general movement of labour away from the industry, have

reduced overcapacity and increased operating margins (Standal

and Asche, 2018; Fisheries Directorate, 2021). However, such

technological advances are a double-edged sword. The

cumulative impact of technological innovation, especially

mechanical hauling, led to increased catch rates and the

collapse of the North-East Atlantic herring stocks in the 1970s

(Fiksen and Slotte, 2002; Gordon and Hannesson, 2015; Standal

and Asche, 2018). Therefore, prudent management of stocks is

essential alongside such developments.

Such modernization of the industry means vessels spend

long periods at sea with advanced equipment such as echo-

sounders and sonars, covering vast geographical areas, and thus,

have access to large quantities of information. To utilize such

information effectively, collaboration between researchers and

fishers is important. Increased knowledge of the environment

fishers operate within can contribute to achieving long-term

objectives. In this work, the first objective is to supply fishers

with information that reduces time spent searching for fishing

grounds, while simultaneously reducing fuel use of vessels. The

second objective is to build a system that automatically captures

and stores data gathered while vessels are at sea.

Decision support systems (DSS) are tools that can integrate

knowledge sources to achieve these objectives. Formulations of

DSS include: manufacturing DSS that help deliver products and

services to customers, clinical DSS used to improve healthcare

delivery using clinical knowledge and patient information, and

organizational DSS used to inform decisions on complex

activities within a large organization (e.g. governmental body),

through integration of knowledge such as norms and roles in the

organization (Jacob and Pirkul, 1992; Sala et al., 2019; Sutton

et al., 2020).

In the maritime context, the major application of DSS tools

have been in the shipping industry, aimed mainly towards

optimizing speed and routes of vessels and avoiding collisions

between vessels (Lazarowska, 2014; Bal Bes ̧ikçi et al., 2016; Lee
et al., 2018). As described in Gilman et al. (2022), forms of

shipping DSS can be applied to support fishing route

optimization. In this article we will refer to such computer

based tools in the context of supporting stakeholder decisions

in the fishing industry specifically. In this context, DSS that have

been applied to support management decisions in spatial
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allocation of effort and bycatch management (Truong et al.,

2005; Granado et al., 2021). Moreover, they have been used to

provide model estimates on presence and size of fishing banks

directly to fishers, thus reducing time and fuel spent on fishing

operations (Iglesias et al., 2007). There are a wide range of actors

who may benefit from such tools, from managers to ship owners

and skippers. As researchers, it’s important that research

knowledge is integrated with the needs of industry to facilitate

uptake of tools Röckmann et al. (2015). In this way, DSS can

provide a vital link between research and the fishing industry,

where two way information transfer can garner interest in results

of research as directed towards their operation, while at the same

time encouraging more engagement between parties.

The Fishguider project began in 2019 as a science-industry

research collaboration aimed at both reducing fuel use and search

time of the Norwegian fishing fleet and fostering two-way

information transfer between fishers and researchers. Importantly,

this was an industry directed project, where an umbrella

organization of motivated fishing companies was founded to

partially fund work activities, under the name of the North

Atlantic Institute for Sustainable Fishing (NAIS). In consultation

between NAIS and researchers, a DSS tool was conceived of as an

appropriate method to co-create knowledge necessary to achieve

long-term objectives of industry. Such co-creation of knowledge

between research and industry is an effectiveway of buildingmutual

trust between researchers and fishers (Holm and Soma, 2016).

Additionally, the delivery of such a software solution is well placed

for systematically capturing and sharing data between participants,

and supporting management decisions through production of

salient and legitimate knowledge. A key component of the project

is the participation of fishers in the pilot program to ascertain the

feasibility of the DSS tool. There is evidence suggesting that

participation can increase in science-industry collaborations if

results are perceived to be positive for industry (Calderwood

et al., 2021).

In this article,wepresent the conceptual framework for theDSS

tool being developed as part of Fishguider and it’s current status,

reflecting on similarities to other DSS tools mentioned above. The

capacity to systematically capture and share information through a

user interface is explored andwediscuss howdata-driven input and

experiential knowledge inform thedevelopment of this interface. In

addition, a questionnaire is presented, detailingfishers’ experiences

of which factors are most relevant when considering when and

where to fish. Finally, we consider challenges in interpreting,

capturing and sharing knowledge through this project.

2 Literature on DSS tools in the
fisheries context

DSS tools are described as computer-based programs that

integrate diverse information sources in order to support complex

decision-making processes (Truong et al., 2005; Bal Besi̧kçi et al.,

2016; Granado et al., 2021; Gilman et al., 2022). In a DSS,

computer output virtually represents the real fisheries system,

reducing uncertainties that constrain decision making (Truong

et al., 2005). Decisions that require support systems usually

address problems where there are competing interest groups,

such as fishing effort allocation. Therefore, human participation

and intervention are essential in the process (Bal Besi̧kçi et al.,

2016; Gilman et al., 2022). In this way, DSS plays a supporting role

in decision-making, rather than an executive role. Regardless,

there are a multitude of areas where they can give insight, as

shown in Table 1. The two broad applications are within fisheries

management and industry-related optimization. A diverse range

of inputs are used, from data-driven input such as remote sensing

and vessel speed to knowledge based input from interdisciplinary

collaboration and stakeholder engagements.

Fishers face many practical issues when searching for fishing

grounds, such as uncertainties in weather conditions, quality and

location of fish, and prices and costs being variable. In the face of

these issues, theymustmake concrete decisions on how to organise

fishing activities. The scales of fishing activity decisions can be

separated based on duration into three categories: strategic, tactical

and operational decisions. Strategic decisions (weeks to months to

years) refers to long-termplanningof location and timing offishing

based on expectations of both the market and fishing possibilities

(Reite et al., 2021). Tactical decisions (hours to days) are decisions

aboutwhich fishing grounds to visit, the number of grounds to visit

and where and when to return to port to land catches (Granado

et al., 2021). Long-term tactical decisionsmay involve, for example,

planning of whether to target herring ormackerel based onmarket

prices (Reite et al., 2021). Short-term tactical decisions include

motion planning of fishing vessels and controlling position and

course of vessels relative to schools of fish (Haugen and Imsland,

2019; Haugen and Kyllingstad, 2021; Kyllingstad et al., 2021).

Operational decisions (near real-time) involve immediate control

of the vessel, such as speed and heading of fishing vessels between

waypoints defined through tactical decisionsGranado et al. (2021).

Assuming waypoints are clearly defined, operational decisions can

be informed through routing optimization, which has been

addressed using DSS tools in the shipping industry to reduce fuel

consumption (Bal Beşikçi et al., 2016; Granado et al., 2021).

However, defining strategic and tactical decisions is a complex

task for fishing vessels searching for fish, given the uncertainties in

stock distribution and abundance at these scales and therefore, the

Fishguider DSS tool is designed to support these decisions.

DSS tools are designed with of a number of interconnected

components. Fundamentally, they require high quality data

sources, where data can be obtained from remote sensing of

environmental variables such as sea surface temperature,

weather archive data, information systems on board such as

positional data, as well as manual input from ship operators

(Iglesias et al., 2007; Bal Bes ̧ikçi et al., 2016; Lee et al., 2018). Data
can also be gathered from national or global databases, such as

historical catch data, where the data is directly relevant to fishers
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operations and can improve their situational awareness. This

data is uploaded to a database, where information is compiled

and can be queried directly by the user. There is also typically a

model solver which takes input and produces estimates of

relevant information. Often the problems are complex and

require pattern detection through machine learning and data

mining algorithms, where artificial neural networks have been

particularly effective (Bal Bes ̧ikçi et al., 2016).
This information is mapped to a user interface, where the

user (fisher or manager) may query databases directly (Bal

Bes ̧ikçi et al., 2016). User interfaces are typically tuned to the

experience and requirements of the user. Information is often

displayed in interactive layers which compile the most salient

knowledge for decision making. For example, (Granado et al.,

2021) describes decision layers developed for fishers to display

routes based on an optimization algorithm which allows for

interaction with the user. In addition, explicit costs associated

with decisions may be displayed, such as in management

decisions where there are multiple conflicting objectives such

as safety and economic viability (Gilman et al., 2022).

3 Case study: The fishguider DSS tool

3.1 Description

The Fishguider DSS tool was requested by fishing companies

working together in an umbrella organization called North

Atlantic Institute for Sustainable Fishing (NAIS), who spend

much time and fuel searching for fishing grounds, while lacking

systemized knowledge to assist in making informed decisions on

where and when to fish. The system desired should aid in

communication of information between fishing vessels and

allow them to both contribute and ascertain relevant

information to minimize uncertainties when operating.

Importantly, the fishers involved are motivated to collaborate

with researchers and understand the ecosystem they operate

within. The interested parties wish to build a knowledge base to

ensure present and future sustainable harvesting. Specifically, a

DSS system may aid in handling decisions made in light of the

complexities of climate change, the potential shifts in

distributions of fish stocks and instabilities in fuel prices.

Improving the situational awareness through knowledge co-

creation will help the fishers meet these demands, specifically

aiding with strategic and tactical decision making.

The DSS is currently designed as a proof of concept which

can be refined and scaled for industrial use. The scaling of the

system relies in part on connecting more vessels to the project.

Therefore a pilot programme of vessels is underway, where

they are now utilizing the system during the fishing season.

Participants are from a variety of fisheries, targeting both

demersal and pelagic species, with different gears, quotas and

sizes of vessels. At the time of writing, there are 19 vessels

involved with the pilot project. Of those 6 are classed as coastal

vessels, 3 large coastal, 7 ocean-going trawlers and 3 ocean-

going purse seiner. In addition, 16 of these vessels are above

TABLE 1 A selection of literature sorted chronologically on decision support in fisheries and shipping, describing the input used and the area
of application.

Article Input Application

Lane and Stephenson (1998) Interdisciplinary knowledge Co-management of fisheries

Truong et al. (2005) Fisheries-dependent data Optimize fishing schedules

Koutroumanidis et al. (2006) Time series modelling of fisheries landings Fisheries management

Iglesias et al. (2007) Remote sensing Prediction of fishing banks

Carrick and Ostendorf (2007) Spatial information and survey data Economically sustainable fishing activity

Jarre et al. (2008) Knowledge-based logical system Ecosystems approach to fisheries management

Vinu Chandran et al. (2009) Remote sensing Identify potential fishing grounds

Azadivar et al. (2009) Systems approach- optimization of schedules Spatial management of stocks

Dowling et al. (2016) Questionnaire and stock assessment Management strategy evaluation

Hobday et al. (2016) Dynamic ocean modelling Fishing activity

Bal Beşikçi et al. (2016) Vessel speed Reducing fuel consumption of ships

Reite et al. (2017) Vessel operation and energy system Reducing fuel consumption of ships

Lee et al. (2018) Vessel speed Reducing fuel consumption of ships

Macher et al. (2018) Stakeholder engagement Management Strategy evaluation

Skjong et al. (2019) Combining onboard sensors and mathematical models Generic decision support

Granado et al. (2021) Vessel speed and heading Fishing route optimization

Macher et al. (2021) Transdisciplinary partnerships Ecosystem based management in fisheries

Reite et al. (2021) Oceanographic simulations, catch data analyses Prediction of fishing grounds

Gilman et al. (2022) Categorization of mitigation Bycatch management
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21m in length. These classes determine the quotas and areas

where the vessel operates. For example, ocean-going vessels

cannot operate within fjords without special permission. For

pelagic species, the fishers are most active from October to

December when herring overwinter near the coast and in

Northern fjords and then again January to March during the

spawning migration and spawning for the herring, while

mackerel are mainly targeted during their wintering cycle in

southern Norway from September to December when the

market prices are highest, although there is inter-annual

variability (Varpe et al., 2005; Nøttestad et al., 2016;

Ølmheim, 2021; Reite et al., 2021). The following sections

describe the DSS tool according to its data sources, model-

based inputs and the user interface (Figure 1).

3.2 Knowledge sources for DSS

3.2.1 Experiential
In an effort to build a tool that is useful for the fishers, a

survey in the form of a questionnaire was designed and 13 of the

skippers in NAIS responded. The questionnaire was conducted

by phone in 2020 in Norwegian and answers were translated into

English. An online or paper-based solution were not possible

due to logistic challenges with communication. The skippers

surveyed are the most actively involved in the project. They

target both pelagic and demersal species, but we learned from

project meetings that they perceive the most immediate use of

the tool in targeting herring and mackerel. Therefore, the

questionnaire focused on these two species.

There were two categories of questions asked. The first related

to the importance of a variety offactors in decidingwhenandwhere

the newfishing season shouldbegin (Figure2). This set of questions

corresponded to strategic decisions. The second related to to the

importance of factors during the season (Figure 3). This set of

questions corresponded to tactical decisions. The survey was

designed to gauge the information fishers in NAIS consider

important, regardless of availability, in making decisions to

choose fishing grounds. Questions were chosen based on wide-

ranging project meetings between researchers and active fishers in

NAIS. Fishers expressed the importance of a full ecosystem

understanding in decision-making, from plankton to whales, and

therefore, questions of this nature were included.

Respondents were asked to rate the importance of items from

both categories on an evaluative rating scale from1 to 6, 6 being the

highest value. Items were categorized based on their importance to

fishers now and their potential importance in the future. The

questionnaires displayed are the results for questions related to

the targetingof herring. Themeanvalues for the 13 respondents are

displayed in the horizontal barplots (Figure 2 and 3). Given the

sample surveyed, we don’t assume this is completely representative

of the fishing industry as a whole, especially given the number of

large vessels involved. Additionally, social factors such as business

structures andworking rhythmmay influence strategic and tactical

decisions (Schadeberg et al., 2021). Nevertheless, the survey offered

relevant input to the design of the support tool in order to make it

FIGURE 1

Conceptual model of the Fishguider tool: 1) The Norwegian Fleet of vessels over 11m in length who may contribute information, both from
experiential knowledge and from information systems onboard vessels (such as satellite and acoustic data). 2) Fishers can access external
information, such as meteorological forecasts, real-time auction prices and relevant model output. 3) The data sources are collected in
databases developed in conjunction with the project. 4) The final user interface is a web portal that displays relevant layers to the skipper. The
design of the interface is largely driven by the requests of participating fishers.
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relevant for industry implementation, which was our main

objective. A table of questionnaire responses for both herring and

mackerel can be found in the appendix, with additional informal

commentary from respondents included (Appendix A).

Generally, practical considerations such as the vessel’s quota,

catch history and Norwegian fishing activity are important now

and are considered important in the future in strategic decision

making (Figure 2). Ecological information such as whale

concentration, plankton forecasts and information about

predators are not strategically utilized now, but attaining such

information is perceived as useful in the future.

Similarly, when asked what factors are important in tactical

decision making, plankton forecasts and distribution of seabirds

and whales are not utilized now, but such information may be

valuable in the future (Figure 3). It must be noted that the

perspective offishers on the data they use today is likely based on

their ongoing assessment of the quality of data available, while

the question of future utility is made under the assumption that

high quality data may be readily available. In real-time fishing

activity, communication with other vessels, market forecasts and

weather forecasts are seen as the most important factors

to consider.

The questionnaire, complimented by meetings with fishers,

has informed the development of the web portal over the past

two years. Many of the information sources fishers deem

important are publicly available and a major part of the work

is compiling these in one place. Currently, communication

between fishers is being facilitated through messaging options

in the portal, weather forecasts are attained from the

meteorological institute, such as wind speeds and swell at the

vessels’ location, and oceanographic data (particularly ocean

currents), plankton and fish distribution data from model

simulations are included. In addition, based on project

meetings, it was discovered that fishers deemed the lunar

phase an indicator of the timing of the initiation of herring

spawning migrations. This factor was thus included in the

questionnaire, and has been integrated into the support tool

(Figure 4). Finally, the catch history of vessels, market

information such as auction prices and vessel quotas, and the

trajectories of individual vessels are now being connected to the

portal. In the next sections, we explore the major knowledge

sources available for the DSS tool.

3.2.2 Data-driven
In addition to the fishers’experiences as obtained from the

questionnaire, data is being gathered from several sources. The

catch and activity reporting (ERS) and Vessel Monitoring

System (VMS) are electronic reporting systems for fisheries

data provided by the Norwegian Directorate of Fisheries

(https://www.fiskeridir.no/English/Fisheries/Electronic-

Reporting-Systems). Whereas ERS data includes vessel positions

for fishing activities such as ‘in catch operation’, ‘pumping’ and

‘steaming’ to and from harbour, VMS data includes more

detailed position data for all types of vessels with a length of

15 meters and above, logged at minimum one hour sampling

frequency. The ERS logs replaced physical logs of catches in 2005

where there is a principle of reporting all Norwegian fishing

activity, with widespread adoption (https://www.fiskeridir.no/

English/Fisheries/Electronic-Reporting-Systems).

Automatic identification systems data (AIS) are, like VMS

data, detailed position data for all types of vessels. There are

many sources available such as Marine Traffic (https://www.

FIGURE 2

Response to Question: How important are the following factors when deciding when and where the new fishing season should begin? The blue
bars indicate how important they are now, while the yellow bars signal the importance of better information in the future. The bars display the
mean value (N = 13).
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marinetraffic.com/en/ais/) and The Norwegian Coastal

Administration (https://www.kystverket.no/en/navigation-and-

monitoring/ais/access-to-ais-data/), which provides AIS data in

real time, either as raw data or online traffic information

displayed in charts. AIS data is primarily used by coastal

administration to avoid shipping collisions and locating a

given vessel quickly in an emergency situation. Given the time

sensitivity needed to avoid collisions or respond to emergencies,

data is transmitted approximately every 10 seconds. ERS, VMS

and AIS data are complementary data for monitoring fishing

vessel movements which are being integrated in the DSS tool.

The Norwegian Fishers’ Sales Organization for Pelagic Fish

(or Norges Sildesalslag in Norwegian: https://www.sildelaget.no/)

is a fisher-owned sales organization that trades fish through an

electronic auction. Fresh catches are offered to buyers while

vessels are at sea, after the catch is registered over phone, and a

commission price on the value of each catch is payed by the

fisher (0.65 percent of each catch). Real-time auction prices are

highly relevant to direct decisions on fishing, as reflected in the

questionnaire responses, and will be integrated in the DSS

tool (Figure 3).

Finally, vessels in the Norwegian fleet continuously gather

observations using sonar and echosounder, but this data is

usually discarded. A future version of Fishguider is expected to

collect, aggregate and make decision support based on a fleet

supplying such observations, and this work has begun.

3.2.3 Model simulations
Model simulations of conditions alongshore and offshore the

Norwegian coast are currently being integrated into the DSS

tool. Ocean model estimates of sea surface temperature, current

and salinity are loaded from a model called SINMOD (Slagstad

and McClimans, 2005). The output from this model has a 4km

resolution and is centered on the Norwegian Sea. The model has

a time resolution of 10 seconds. An eulerian model of the

copepod species Calanus finmarchicus has been coupled to the

SINMOD model, where plankton distributions are mainly

driven by atmospheric fields including wind, air temperature

and precipitation, river discharge, and bottom topography

(bathymetry) (Wassmann et al., 2006). This species is a key

prey item for many pelagic stocks in the Norwegian Sea. In

addition, a model of the spawning migration of herring is

coupled to SINMOD, where information on current,

temperature and bathymetry are used to drive the fish motion

towards their spawning areas (Kelly et al., 2022). All model

ouputs are loaded to the web portal in near real-time.

Minimizing the gap between the true system and the model

estimates depends on integrating as many vessels into the

project. Capturing of data by vessels included in the project

can strengthen input to these models, which improves their

predictive capacity. An Ensemble Kalman Filter setup has been

designed to allow assimilation of observation data into the

migration model (Kelly et al., submitted). In the long-term this

can develop larger datasets for studying effects of climate change,

understanding life cycles and migrations of fish, and providing

input into stock assessment.

3.3 Databases

Both national and international databases are being

integrated into the web portal. FishGuider is currently being

FIGURE 3

Response to Question: How important are the following factors for choosing a fishing spot during the season? The blue bars indicate how
important they are now, while the yellow bars signal the importance of better information in the future. The bars display the mean value (N=13).
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integrated with FiskInfo (https://fhf-prod.azurewebsites.net),

Kystverkets NAIS service (https://nais.kystverket.no/),

BarentsWatch (https://www.barentswatch.no/en), Marine

Traffic (https://www.marinetraffic.com/en/ais/), Ocean

Resource Watch (https://resourcewatch.org/dashboards/ocean-

watch) and other complementary information tools.

3.4 User interface

The user interface of Fishguider web portal provides layers of

information tailored to the needs of the fisher. As mentioned, it

has been curated according to the experiences of fishers,

considering important features when planning fishing

operations and in real-time (Figures 2, 3). The web portal has

a fleet overview tab, which details the vessels involved in the

project and their specifications. There are also messaging

possibilities and contact points for the fishers, if they have any

difficulties with usability of the tool. The tracks that are displayed

in the interface are based on GPS transmitters installed onboard,

which are being trialed (Figure 4). This interface has facilitated

information flow between fishers and researchers, where fishers

now have access to spatiotemporal data on current, temperature,

nitrate, plankton and herring from research-based models

developed, while researchers have access to observations from

vessels which provide input to the models (Figure 4). This input

can allow improvement of the accuracy of the model predictions,

while also correcting errors in model output.

4 Takeaways

4.1 Knowledge co-creation

Such collaborations between industry and research may

rapidly produce extensive, structured datasets for research and

input into management of stocks. Involving enough fishers

and/or vessels improves collaboration and will give more

access to quality information. In general, the more vessels

involved, the better. The vessels involved are representative

of a subset of the coastal and oceanic fleet in Norway. The

project results are presented at project meetings and industry

conferences, such as Norfishing and The Midsund Conference

(Midsundkonferansen). In this way, both participants and

industry at large can provide input and feedback on the

design of the tool. Additionally, as fishing companies are

partly funding the project, key results are communicated to

these larger audiences. Fishers seem interested to participate

FIGURE 4

A selection of output layers in the Fishguider portal, with Norwegian text: 1) Homepage with tabs for various layers centered on the Norwegian
Sea. The red, blue and green lines are the tracks of individual vessels based on GPS coordinates. 2) Weather data and forecast from the position
of one of the NAIS vessels based on meterological institute data. 3) Modelled Calanus finmarchicus distribution and abundance in grams of
carbon per meter squared 4) Sea surface temperature output on a single day in degrees Celsius. 5) Horizontal components of current velocities
in meters per second.

Kelly et al. 10.3389/fmars.2022.1051879

Frontiers in Marine Science frontiersin.org08

108 Articles



and share data on condition that the platform will yield useful

input in guiding operations.

Sharing of information between researchers and fishers is

key to achieving this. Given that the fishers themselves are

interested in this work, they have been quite open to sharing

vessel data. Due to competition between fishers there is a

potential scepticism in sharing information, but this issue has

become less important the last decade, as individual vessel

quotas are the main limiting factor, less vessels participate and

there is more transparency because of open data sources (AIS,

VMS, ERS). By limiting the spread of information to those who

contribute, this should not be a big issue for this project in the

future. Furthermore, engagement with the DSS tool will develop

the user experience and friendliness of the application, which in

turn will encourage more participants to join the project.

The questionnaire results give insight into what fishers deem

important factors in strategic and tactical decision making.

However, the small sample size and evaluative scale used

means we cannot gauge the prioritization of factors by fishers.

Further work should consider ranking factors and matching

available knowledge based on this. It is important to avoid the

inclusion of all desired sources in the DSS tool at the cost of

adequate user experience.

4.2 Research-based inputs

Collaboration between fishers and scientists has provided

direct results that are salient for decisions regarding fishing

activity. For example, fishing routes can be optimized to meet

strategic, tactical and operational decisions (Granado et al.,

2021). Spatially and temporally explicit maps of fish

distribution are particularly useful for planning operations,

and can be obtained through analysing remote sensing data

(Iglesias et al., 2007). In our work, a migration model has been

implemented to estimate the development of the herring

spawning migration (Kelly et al., 2022). Lifting the modelling

of fish migration, implementation and visualisation of the model

to a level that gives the fishers useful additional information and

promotes more active engagement with the tool.

Coordinating the various ideas and requirements from the

diverse set of fishers is challenging, as there can be variability in

the problems they face, depending on the target stock, vessel size

and fuel consumption. Additionally, when asked about the

utility of various factors in the future, almost all were

considered useful in some way, especially research output

which is not capitalized upon today (Figure 2 and Figure 3).

Therefore, continuous dialogue and soliciting of feedback from

fishers is central to qualifying the true importance of

information for decision making. Understanding the behaviour

of fishing vessels themselves is also important and progress has

been made on categorizing activities automatically based on

position, speed and heading of vessels (de Souza et al., 2016).

4.3 Advisory processes

Finally, DSS tools can contribute to advisory processes by

reducing uncertainties involved in executive decision making. For

example, offshore wind farms are planned along the coast of

Norway, and the potential conflicts with industry may be

anticipated and captured through understanding the movements

of fishing vessels. Firstly, the formalized knowledge of fishers is

relevant input into decision-making on management of stocks

throughout the season. Fine grain information about individual

vessels can improve CPUE indices, an important input for stock

assessments (Campbell, 2004). Secondly, the legality of fishing

activity can be monitored through automatic detection of vessel

activities (Arasteh et al., 2020). Automatic monitoring of activity

from data they can contribute, may be more desirable and less

invasive than physical monitoring through observers or drones.

Thirdly, collaboration between researchers, fishers and managers

can improve decision-making on these issues. Of crucial

importance is that the knowledge base is considered legitimate

to decision-makers (Röckmann et al., 2015).

5 Conclusion

The Fishguider project has developed a functional pilot of a

DSS tool which is being used for testing and development of the

interface, databases and models, while simultaneously helping

connect more vessels to the project. Currently, only small

number of companies are involved, but the entire Norwegian

fleet of fishing vessels are seen as potential participants.

Fishguider was setup to primarily facilitate environmentally

sustainable fishing activity by reducing search time and fuel

consumption of fishing vessels. As the project has evolved, fuel

prices have risen, and concerns about climate change have

grown, making DSS tools like this one even more crucial. The

knowledge being created should therefore be central to fishing

activity, marine research and management going forward.
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network based decision support system for energy efficient ship operations.
Comput. Operations. Res. 66, 393–401. doi: 10.1016/j.cor.2015.04.004

Brattland, C. (2013). Proving fishers right. effects of the integration of
experience-based knowledge in ecosystem-based management. Acta Borealia. 30,
39–59. doi: 10.1080/08003831.2013.768053

Calderwood, J., Marshall, C. T., Haflinger, K., Alfaro-Shigueto, J., Mangel, J. C.,
and Reid, D. G. (2021). An evaluation of information sharing schemes to identify
what motivates fishers to share catch information. ICES. J. Mar. Sci., 1–22.
doi: 10.1093/icesjms/fsab252

Campbell, R. A. (2004). CPUE standardisation and the construction of indices of
stock abundance in a spatially varying fishery using general linear models. Fish. Res.
70, 209–227. doi: 10.1016/j.fishres.2004.08.026

Carrick, N., and Ostendorf, B. (2007). Development of a spatial decision support
system (DSS) for the Spencer gulf penaeid prawn fishery, south Australia. Environ.
Model. Software. 22, 137–148. doi: 10.1016/j.envsoft.2005.07.025

de Souza, E. N., Boerder, K., Matwin, S., andWorm, B. (2016). Improving fishing
pattern detection from satellite AIS using data mining and machine learning. PloS
One 11, e0158248. doi: 10.1371/journal.pone.0158248

Dowling, N., Wilson, J., Rudd, M., Babcock, E., Caillaux, M., Cope, J., et al.
(2016). “FishPath: A decision support system for assessing and managing data- and
capacity- limited fisheries,” in Assessing and managing data-limited fish stocks. Eds.
T. Quinn II, J. Armstrong, M. Baker, J. Heifetz and D. Witherell (Alaska, United
States: Alaska Sea Grant, University of Alaska Fairbansk). doi: 10.4027/
amdlfs.2016.03

Dyrset, G., Margaryan, L., and Stensland, S. (2022). Local knowledge, social
identity and conflicts around traditional marine salmon fisheries – a case from
mid-Norway. Fish. Manage. Ecol. 29, 131–142. doi: 10.1111/fme.12522

Fiksen, Ø., and Slotte, A. (2002). Stock-environment recruitment models for
norwegian spring spawning herring (clupea harengus). Can. J. Fish. Aquat. Sci. 59,
211–217. doi: 10.1139/f02-002

Fisheries Directorate (2021). Profitability survey of the Norwegian fishing fleet
2019 (Norway: Fisheries Directorate).

Gilman, E., Hall, M., Booth, H., Gupta, T., Chaloupka, M., Fennell, H., et al.
(2022). A decision support tool for integrated fisheries bycatch management. Rev.
Fish. Biol. Fish. 32, 441–472. doi: 10.1007/s11160-021-09693-5

Gordon, D. V., and Hannesson, R. (2015). The Norwegian winter herring
fishery: A story of technological progress and stock collapse. Land. Econ. 91,
362–385. doi: 10.3368/le.91.2.362

Granado, I., Hernando, L., Galparsoro, I., Gabiña, G., Groba, C., Prellezo, R.,
et al. (2021). Towards a framework for fishing route optimization decision support
systems: Review of the state-of-the-art and challenges. J. Cleaner. Prod. 320,
128661. doi: 10.1016/j.jclepro.2021.128661

Hamre, J., and Nakken, O. (1971). “Technological aspects of the modern
norwegian purse seine fisheries,” in Modern fishing gear of the world, vol. 3. Ed.
H. Kristjonsson (Oxford: Fishing News (Books) Ltd).

Haugen, J., and Imsland, L. (2019). Optimization-based motion planning for
trawling. J. Mar. Sci. Technol. 24, 984–995. doi: 10.1007/s00773-018-0600-0

Haugen, J., and Kyllingstad, L. T. (2021). Course planning for purse seiners
(Norway: SINTEF). Available at: https://hdl.handle.net/11250/2991650.

Hind, E. J. (2015). A review of the past, the present, and the future of fishers’
knowledge research: a challenge to established fisheries science. ICES. J. Mar. Sci.
72, 341–358. doi: 10.1093/icesjms/fsu169

Hjelle, H., Gundersen, S., Nedreaas, K., Vølstad, J. H., and Kolding, J. (2021).
“Fleet composition, fishing effort and contributions to science,” in The coastal
reference fleet 2007-2019 (Norway: Institute of Marine Research).

Kelly et al. 10.3389/fmars.2022.1051879

Frontiers in Marine Science frontiersin.org10

110 Articles



Hobday, A. J., Spillman, C. M., Paige Eveson, J., and Hartog, ,. J. R. (2016).
Seasonal forecasting for decision support in marine fisheries and aquaculture. Fish.
Oceanography. 25, 45–56. doi: 10.1111/fog.12083

Holm, P., and Soma, K. (2016). Fishers’ information in governance — a matter
of trust. Curr. Opin. Environ. Sustainabil. 18, 115–121. doi: 10.1016/
j.cosust.2015.12.005

Iglesias, A., Dafonte, C., Arcay, B., and Cotos, J. (2007). Integration of remote
sensing techniques and connectionist models for decision support in fishing
catches. Environ. Model. Software. 22, 862–870. doi: 10.1016/j.envsoft.2006.05.017

Jacob, V. S., and Pirkul, H. (1992). Organizational decision support systems. Int.
J. Man-Machine. Stud. 36, 817–832. doi: 10.1016/0020-7373(92)90074-U

Jarre, A., Paterson, B., Moloney, C. L., Miller, D. C., Field, J. G., and Starfield, ,. A.
M. (2008). Knowledge-based systems as decision support tools in an ecosystem
approach to fisheries: Comparing a fuzzy-logic and a rule-based approach. Prog.
Oceanography. 79, 390–400. doi: 10.1016/j.pocean.2008.10.010

Jennings, S., Kaiser, M. J., and Reynolds, ,. J. D. (2001). Marine fisheries ecology
(Oxford ; Malden, MA, USA: Blackwell Science).

Johannes, R., Freeman, M., and Hamilton, R. (2008). Ignore fishers’ knowledge
and miss the boat. Fish. Fish. 1, 257–271. doi: 10.1111/j.1467-2979.2000.00019.x

Jones, A. W., Burchard, K. A., Mercer, A. M., Hoey, J. J., Morin, M. D., Gianesin,
G. L., et al. (2022). Learning from the study fleet: Maintenance of a Large-scale
reference fleet for northeast U.S. fisheries. Front. Mar. Sci. 9. doi: 10.3389/
fmars.2022.869560

Karp, M. A., Brodie, S., Smith, J. A., Richerson, K., Selden, R. L., Liu, O. R., et al.
(2022). Projecting species distributions using fishery-dependent data. Fish. Fish. 1–
22 doi: 10.1111/faf.12711

Kelly, C., Michelsen, F. A., Kolding, J., and Alver, M. O. (2022). Tuning and
development of an individual-based model of the herring spawning migration.
Front. Mar. Sci. 8. doi: 10.3389/fmars.2021.754476

Koutroumanidis, T., Iliadis, L., and Sylaios, G. K. (2006). Time-series modeling
of fishery landings using ARIMA models and fuzzy expected intervals software.
Environ. Model. Software. 21, 1711–1721. doi: 10.1016/j.envsoft.2005.09.001

Kroodsma, D. A., Mayorga, J., Hochberg, T., Miller, N. A., Boerder, K., Ferretti,
F., et al. (2018). Tracking the global footprint of fisheries. Science 359, 904–908.
doi: 10.1126/science.aao5646

Kyllingstad, L. T., Haugen, J., Tenningen, M., and Breen, M. (2021). Catch
control in seine fisheries targeting pelagic species (Norway: SINTEF). Available at:
https://hdl.handle.net/11250/2991646.

Lane, D. E., and Stephenson, R. L. (1998). Fisheries co-management:
Organization, process and decision support. J. Northwest. Atlantic. Fishery. Sci.
23, 251–265. doi: 10.2960/J.v23.a16

Lazarowska, A. (2014). Ant colony optimization based navigational decision
support system. Proc. Comput. Sci. 35, 1013–1022. doi: 10.1016/j.procs.2014.08.187

Lee, H., Aydin, N., Choi, Y., Lekhavat, S., and Irani, Z. (2018). A decision
support system for vessel speed decision in maritime logistics using weather archive
big data. Comput. Operations. Res. 98, 330–342. doi: 10.1016/j.cor.2017.06.005

Ølmheim, O. (2021). Economic and biological figures from Norwegian fisheries –
2020 (Norway: Fishery Directorate).

Macher, C., Bertignac, M., Guyader, O., Frangoudes, K., Frésard, M., Le Grand,
C., et al. (2018). The role of technical protocols and partnership engagement in
developing a decision support framework for fisheries management. J. Environ.
Manage. 223, 503–516. doi: 10.1016/j.jenvman.2018.06.063

Macher, C., Steins, N. A., Ballesteros, M., Kraan, M., Frangoudes, K., Bailly, D.,
et al. (2021). Towards transdisciplinary decision-support processes in fisheries:
experiences and recommendations from a multidisciplinary collective of
researchers. Aquat. Living. Resour. 34, 13. doi: 10.1051/alr/2021010
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