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Abstract: The implementations of the theory of multicomponent dry friction [1-19] for analyze the dynamics of 
some robotic systems, such as a butterfly robot [16-18, 20] or a humanoid robot is proposed. Since the main 
controlled element of these systems is a spherical, elastic composite shell, it is required to calculate the 
distribution of normal contact stresses inside the contact spot. The contact pressure distribution for such elements 
is constructed using the S. A. Ambartsumyan’s equation for a transversally isotropic spherical shell. This 
equation is modified by introducing the averaged contact pressure and normal displacements for the shell. The 
construction of the resolving integral equation for the contact pressure is based on the principle of superposition 
and the method of Green's functions. For this, the corresponding Green's function is constructed, which is the 
normal displacement of the shell as a solution to the problem of the effect of concentrated pressure. Green's 
function as well as the contact pressure, it is sought in the form of series expansions in Legendre polynomials, 
taking into account additional relations for the reduced contact pressure and normal displacements. Using the 
Green's function, an integral equation solving the problem is constructed. As a result, the problem is reduced to 
determining the expansion coefficients in a series of the reduced contact pressure.  Restricting ourselves to a 
finite number of terms in the series of expansions, using the discretization of the contact area and the properties 
of Legendre polynomials, the problem is reduced to solving a system of algebraic equations for the expansion 
coefficients for the reduced pressure. After that, from the additional relation, the coefficients of the required 
expansion of the contact pressure in a series in Legendre polynomials are determined. To describe the conditions 
of shell contact with the surface, the theory of multicomponent anisotropic dry friction is used, taking into 
account the combined kinematics of shell motion (simultaneous sliding, rotation and rolling). The coefficients of 
the dry friction model can be calculated using simple explicit formulas [1-19] based on numerical experiments. 
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INTRODUCTION 
 
The theory of the multicomponent dry friction is 
very effective instrument for the correctly 
describing of effects of the combined dry 
friction in many engineering systems. One of 
the distinguished features of this theory is 
possibility to carry out analytical investigation 
of the equations of motions. Connection 
between the parameters, which are defined the 
force state inside of contact spot, and the 
kinematical parameters is given by the simple 
analytical functions. It’s so-called the 
approximate model of the combined dry friction 
or phenomenological model. Only six numeric’s 
coefficients are required to calculate. These 
coefficients can be calculated analytically, 
numerically or defined from the experiments. 
Procedure of analytical or numerical definitions 
of the friction model coefficients is based on the 
calculation of the first moments of the 
distribution of the normal pressure inside of 
contact patch. In order to use these results to 

analyze the dynamics of some robotic systems, 
such as a butterfly robot or a humanoid robot, it 
is necessary to calculate the normal pressure 
inside the contact spot for various composite 
spherical shells.  
In investigation described below the contact 
pressure distribution is constructed using the S.A. 
Ambartsumyan’s equation for a transversally 
isotropic spherical shell. This equation is 
modified by introducing additional relationships 
for the reduced contact pressure and normal 
displacements. The construction of the resolving 
integral equation for the contact pressure is based 
on the principle of superposition and the method 
of Green's functions. For this, the corresponding 
Green's function is constructed, which is the 
normal displacement of the shell as a solution to 
the problem of the effect of concentrated 
pressure. Green's function as well as the contact 
pressure, it is sought in the form of series 
expansions in Legendre polynomials, taking into 
account additional relations for the reduced 
contact pressure and normal displacements. 
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Using the Green's function, an integral equation 
solving the problem is constructed. As a result, 
the problem is reduced to determining the 
expansion coefficients in a series of the reduced 
contact pressure. Restricting ourselves to a finite 
number of terms in the series of expansions, 
using the discretization of the contact area and 
the properties of Legendre polynomials, the 
problem is reduced to solving a system of 
algebraic equations for the expansion coefficients 
for the reduced pressure. After that, from the 
additional relation, the coefficients of the 
required expansion of the contact pressure in a 
series in Legendre polynomials are determined. 
 
 
CONTACT PROBLEM SOLUTION  
 
To determine the contact pressure, we pose a 
static contact problem for a spherical shell of 
radius R , thickness h  and an absolutely rigid 
reference plane  [21]. We assume that the shell 
is made of a transversely isotropic material in such 
a way that the main direction of elasticity, 
perpendicular to the plane of isotropy, at each 
point of the shell coincides with the outer normal 
n  to the middle surface of the shell. 
Contact between shell and reference plane  
occurs along a flat circular area (contact patch) 

 some radius r belonging to the plane : 
(fig. 1). Taking into account the small 

size of the contact area r R  the radius of the 
contact spot in the zero approximation is 
determined from the condition of intersection of 
the undeformed middle surface of the shell 
 

sin ,  arccos ,TR wr R
R

 (1.1) 

 
where Tw  - displacement at the frontal point of 
the shell. 
In this case, in the contact area, the normal 
displacements of the shell are determined as 
follows (Fig. 1) 
 

1 cos .Tw R w   (1.2) 

 

 
Figure 1. Contact problem 

 
Assuming that the contact problem is 
axisymmetric, we use the S.A. Ambartsumyan 
[21] for a transversely isotropic spherical shell, 
connecting the normal displacements of the 
shell w   with influencing pressure on her p   
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E  - Young's modulus for directions in the plane 

of isotropy,  Poisson's ratio, which 

characterizes the contraction in the plane of 
isotropy under tension in the same plane,  
G  - shear modulus for planes normal to the 
plane of isotropy. 
Note that the structure of equation (1.3) does not 
allow us to apply expansions in series in 
Legendre polynomials, since the presence of the 
operator factor 2  on the left side turns it to 
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Using the Green's function, an integral equation 
solving the problem is constructed. As a result, 
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number of terms in the series of expansions, 
using the discretization of the contact area and 
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for the reduced pressure. After that, from the 
additional relation, the coefficients of the 
required expansion of the contact pressure in a 
series in Legendre polynomials are determined. 
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static contact problem for a spherical shell of 
radius R , thickness h  and an absolutely rigid 
reference plane  [21]. We assume that the shell 
is made of a transversely isotropic material in such 
a way that the main direction of elasticity, 
perpendicular to the plane of isotropy, at each 
point of the shell coincides with the outer normal 
n  to the middle surface of the shell. 
Contact between shell and reference plane  
occurs along a flat circular area (contact patch) 

 some radius r belonging to the plane : 
(fig. 1). Taking into account the small 

size of the contact area r R  the radius of the 
contact spot in the zero approximation is 
determined from the condition of intersection of 
the undeformed middle surface of the shell 
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where Tw  - displacement at the frontal point of 
the shell. 
In this case, in the contact area, the normal 
displacements of the shell are determined as 
follows (Fig. 1) 
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[21] for a transversely isotropic spherical shell, 
connecting the normal displacements of the 
shell w   with influencing pressure on her p   
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E  - Young's modulus for directions in the plane 

of isotropy,  Poisson's ratio, which 

characterizes the contraction in the plane of 
isotropy under tension in the same plane,  
G  - shear modulus for planes normal to the 
plane of isotropy. 
Note that the structure of equation (1.3) does not 
allow us to apply expansions in series in 
Legendre polynomials, since the presence of the 
operator factor 2  on the left side turns it to 

zero at 1n , where n Is the number of a 
member of the expansion series. To overcome 
this difficulty, in contrast to the solution 
proposed in [21], we introduce auxiliary 
functions of averaged pressure as well as 
averaged deflection for the shell as follows: 
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Then equation (1.3) in new functions takes the 
form 
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In this case, the form of equation (1.5) allows us 
to apply the expansion in series in Legendre 
polynomials to the solution. 
To solve the contact problem, we use the 
Green's function ,G , which is a solution to 
the following equation 
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where  Is the Dirac delta function. 

We expand the required function ,G  and 

in series in Legendre polynomials 
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Substitution of (1.7) into (1.6) taking into 
account the relation 
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to the equation 
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Where does it follow 
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Using the Green's function, we obtain an 
integral connection between normal 
displacements and the function p  [22-26] 
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Let's expand p  in a series in Legendre 
polynomials 
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Substituting (1.10) into (1.9), we obtain 
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Insofar as 2
2 1nk knn

, where kn  Is the 

Kronecker symbol, relation (1.11) takes the 
form 
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Let us construct a system of linear algebraic 
equations for the coefficients np ... On the right-
hand side of (1.12), we restrict ourselves to 
taking into account the first 1N  terms 
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Suppose that displacements w  set in the 

contact area : 0, , where 

arcsin r R  - define the boundary of the 
contact area. 
Select in the contact area 1N  points with 
coordinates k , 0,1, 2,...k N ... Replacing 
the approximate equality (1.13) by the exact 
one, for each k-th point k  we obtain an 
algebraic equation containing 1N  unknown 

np .Thus, since the number of such 
equations 1N , we get the system from  

1N  equations for 1N  unknown 
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the solution of which is the vector p  expansion 
coefficients (1.10). 
Desired contact pressure p  can also be 
represented as a series expansion in Legendre 
polynomials 
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Representation (1.4) implies a connection 
between the coefficients np  and np  
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from which the first 1N  expansion 
coefficients in a series of the required contact 
pressure. 
As an example, consider a contact problem for a 
shell with the following parameters:  

1R  m, 1 20h  m, 0.3 , 112 10E  Pa, 
100.7 10G  Pa, 0.01 .Tw R  

Figure 2 shows the distribution of shell 
displacements in the contact zone 

: 0,  

 
 

 
Figure 2. Distribution of displacements over the 

contact area 
 
 
Figure 3 shows the distribution of contact 
pressure as a solution to problem (1.14) - (1.16). 
The solid curve corresponds to 20N , dashed 
line - 30N ... 
Further improvement of the solution of the 
contact problem based on the transient function 
approach [27] could require higher-order shell 
theories approximating the three-dimensional 
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Figure 2. Distribution of displacements over the 
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Figure 3 shows the distribution of contact 
pressure as a solution to problem (1.14) - (1.16). 
The solid curve corresponds to 20N , dashed 
line - 30N ... 
Further improvement of the solution of the 
contact problem based on the transient function 
approach [27] could require higher-order shell 
theories approximating the three-dimensional 

stress state in irreducibility domains near 
contact spot boundaries (e. g. see [28-30]). 

 

 

Figure 3. Contact pressure distribution 
 
 
DRY FRICTION MODEL OF SHELL 
CONTACT WITH THE ROUGH PLANE  
 
The dynamic interaction of a weakly deformed 
solid with a rough reference plane is determined 
by the normal reaction N , the resulting vector 
of tangential forces T , the rolling resistance 
moment M  and the dry friction 
moment M  [2]. These values can be 
determined by integrating the normal contact 
pressure, as well as the total tangential pressure 
obtained under the assumption of the validity of 
the differential form of the Amonton-Coulomb 
law for a small element of the area inside the 
contact spot [1-13] along the contact area S . 
Taking into account the anisotropy of dry 
friction, the integral model of the force state 
inside the contact spot has the form 
 

 

0 3

0 3

=

= ;

S

S

dS

dS

r h w
N e

w

r h w
M r e

w  (2.1) 

 
0 3

0 3

0

= 1
S

R
dS

r h w
T e

w

f v w e w r
v w r

 

 
Here 0v  is the longitudinal absolute velocity; 
w  angular rolling velocity; w  angular 
spinning velocity; ( )R M  radius of curvature of 
a rolling body calculated at a point M ; 

( )Mr  radius vector of a point M S  in the 
contact plane; 3e  normal unit vector of the 
contact plane; = hh e e  "rolling friction 
tensor" for an anisotropic elastic body: 
 
 T= > 0.w w q w h w  
 
A detailed analysis of equations (2.1) was 
carried out in [2]. In particular, it was shown 
that in most engineering problems, it is 
sufficient to consider orthropic dry friction 
defined by the following friction tensor as it was 
shown in [2, 5, 10]: 
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f f
k
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where f  and f  are the main components of 
the friction tensor. 
It is convenient to write the proposed friction 
model (2.1) in a coordinate system Oxy , with 
the origin in the center of the contact spot, such 
that the corresponding basis vectors 1e  and 2e  
are collinear to the main directions of the 
friction tensor. In addition, it is natural to 
assume that static contact pressure has the 
property of axial symmetry: 

0 0( , ) = ( , )x y x y , and rolling friction is 
isotropic. 
An approximate analytical model of the force 
inside interaction the contact spot is constructed 
under the assumption that the rolling shell 
moves with longitudinal velocity 0 1= vv e  along 
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the axis of the global stationary coordinate 
system, with angular velocity of rolling 

2= rw e  and angular velocity of spinning 
. 

It is assumed that the contact area has axial 
symmetry with a characteristic size of the 
contact spot R  (for example, the diameter of the 
corresponding set on the plane ,x y ). 
In the presence of motion, tangential stresses 
arise, leading to distortion of the symmetrical 
diagram of the distribution of normal contact 
stresses. Assuming that the displacement of the 
center of gravity of the contact spot relative to 
the geometric center is described by a vector d  
whose modulus was calculated in [1, 6-12], the 
symmetry breaking can be represented by the 
following formula:  
 

0( , ) = ( , )(1 )x yx y x y d x d y  
 

where xd  and yd  are the projections of the 
vector d  on the axis x  and y , respectively. 
The resulting friction force vector can be 
represented as the sum of two components: 

1 2= T TT e eP , where TP is the longitudinal 
abut T  is transverse components of the friction 
force. As it was shown in [1-12], the latter of 
them arises due to the relationship of friction 
effects. 
As a result, integral representations (2.1) can be 
substantially simplified, as it was implemented 
in [1-12]. 
However, integral relations are too complex to 
apply to the analysis of the dynamics of real 
systems, while their approximations by 
analytical functions are quite accurate and 
simple at the same time. Using the technique 
described in detail in previous works [1-12], 
an approximate analytical model of friction 
describing the interaction of an elastic rolling 
shell with a solid surface, in the case of 
combined kinematics and orthotropic friction, 
can be presented in the following form: 

      

2
0 0 0

2 2 6 6

0
2 2

= , = ,
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F v kF vuF F
v au v b

M uM
u mv
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Here =u R , 0F  is the longitudinal 
component of the friction force of the beginning 
of the motion, but 0M  is the friction torque of 
the beginning of the motion. The coefficients of 
the model (2.3) can be calculated using simple 
explicit formulas [2] based on numerical 
experiments, the results of which are presented 
in Fig. 2-3. 
 
 
CONCLUSIONS 
 
A formulation is proposed and a method is 
developed for solving the problem of the motion 
of a composite spherical transversely isotropic 
shell on a solid surface, taking into account the 
combined dry friction. Taking into account the 
assignment of the reduced contact pressure 
function, S.A. Ambartsumyan's modified 
equation was used, which allows us to apply 
series expansions by Legendre polynomials. 
Using the Green's function, the problem is 
reduced to solving a system of algebraic 
equations with respect to the coefficients of 
decomposition into a series of functions of the 
reduced contact pressure and displacements. 
The relationship between the true and reduced 
contact pressure allows us to determine the 
coefficients of the contact pressure 
decomposition series. 
To describe the conditions of shell contact with 
the surface, the theory of multicomponent 
anisotropic dry friction is used, taking into 
account the combined kinematics of shell 
motion (simultaneous sliding, rotation and 
rolling).  
The coefficients of the approximated dry 
friction model (2.3) can be calculated using 
simple explicit formulas [2] based on numerical 
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function, S.A. Ambartsumyan's modified 
equation was used, which allows us to apply 
series expansions by Legendre polynomials. 
Using the Green's function, the problem is 
reduced to solving a system of algebraic 
equations with respect to the coefficients of 
decomposition into a series of functions of the 
reduced contact pressure and displacements. 
The relationship between the true and reduced 
contact pressure allows us to determine the 
coefficients of the contact pressure 
decomposition series. 
To describe the conditions of shell contact with 
the surface, the theory of multicomponent 
anisotropic dry friction is used, taking into 
account the combined kinematics of shell 
motion (simultaneous sliding, rotation and 
rolling).  
The coefficients of the approximated dry 
friction model (2.3) can be calculated using 
simple explicit formulas [2] based on numerical 

experiments, the results of which are presented 
in Fig. 2-3. 
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