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Abstract: The implementations of the theory of multicomponent dry friction [1-19] for analyze the dynamics of
some robotic systems, such as a butterfly robot [16-18, 20] or a humanoid robot is proposed. Since the main
controlled element of these systems is a spherical, elastic composite shell, it is required to calculate the
distribution of normal contact stresses inside the contact spot. The contact pressure distribution for such elements
is constructed using the S. A. Ambartsumyan’s equation for a transversally isotropic spherical shell. This
equation is modified by introducing the averaged contact pressure and normal displacements for the shell. The
construction of the resolving integral equation for the contact pressure is based on the principle of superposition
and the method of Green's functions. For this, the corresponding Green's function is constructed, which is the
normal displacement of the shell as a solution to the problem of the effect of concentrated pressure. Green's
function as well as the contact pressure, it is sought in the form of series expansions in Legendre polynomials,
taking into account additional relations for the reduced contact pressure and normal displacements. Using the
Green's function, an integral equation solving the problem is constructed. As a result, the problem is reduced to
determining the expansion coefficients in a series of the reduced contact pressure. Restricting ourselves to a
finite number of terms in the series of expansions, using the discretization of the contact area and the properties
of Legendre polynomials, the problem is reduced to solving a system of algebraic equations for the expansion
coefficients for the reduced pressure. After that, from the additional relation, the coefficients of the required
expansion of the contact pressure in a series in Legendre polynomials are determined. To describe the conditions
of shell contact with the surface, the theory of multicomponent anisotropic dry friction is used, taking into
account the combined kinematics of shell motion (simultaneous sliding, rotation and rolling). The coefficients of
the dry friction model can be calculated using simple explicit formulas [1-19] based on numerical experiments.
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Application of the Theory of the Multicomponent Dry Friction in Some of Control Robot Systems

Annoranus: Ilpexanmoxena peanm3anus TEOPUH MHOTOKOMIIOHEHTHOTO cyxoro TpeHms [1-15] mms amammsa
TUHAMAKA HEKOTOPBIX POOOTH3MPOBAaHHBIX CHCTEM, TaKWX Kak poOoT-0abouka WM pPOOOT-TYMaHOW.
ITockosbKy OCHOBHBIM ~ YIIPABIISIEMBIM 3JIEMEHTOM JTHX CHCTEM SABISIETCS c(epudecKkasl 3IacTH4Has
KOMITO3UTHAst 000J104Ka, TPeOyeTCsl pacCUUTaTh PACIpee/ICHNE HOPMAIbHBIX KOHTAKTHBIX HANPSKEHUH BHYTPH
ISITHA KOHTaKTa. PacnpeseneHne KOHTaKTHOTO JAaBJICHUS Ul TaKUX 3JIEMEHTOB MOCTPOEHO C HCIIOIb30BaHUEM
ypaBuenust C. A. AwmOapiymsiHa JJisi THONEPEYHO-U30TPONHON chepuueckoil 0000uKu. DTO ypaBHEHHE
MOAMMUIMPYETCSl TyTEM BBEJCHUS YCPEAHEHHOIO KOHTAKTHOTO JIABJICHHS M HOPMAJBHBIX TEPEMEICHUN st
o6osouku. [locTpoeHue paspelnaroniero HHTErpaibHOrO ypaBHEHHs JUIsi KOHTAKTHOTO JABJICHUS OCHOBAHO Ha
NPUHLUIIE CYNepno3uiu 1 Metoae GpyHkumii ['puna. st aToro ctpoutcs cooTBercTBymomas GpyHkuus ['prHa,
NpeAcTaBisifoniass co0OH  HOpManbHOE CcMelleHne O0OJOYKM Kak pemieHue NpoOieMbl  BIMSHUS
KOHIIGHTPUPOBAaHHOIrO fAaBiieHud. DyHKuus ['puHa, Tak ke, Kak U KOHTAaKTHOE MAaBJICHME, WIIETCS B BUAE
pa3yioKeHnit B psAAbl B TOJIMHOMAaX JlexaHapa ¢ y4eToM JIOTOJHHUTEBHBIX COOTHOLICHUH AJISI MOHMKCHHOTO
KOHTaKTHOT'O JIaBJICHWS! M HOPMaJIbHBIX NepeMerieHuid. Mcenonb3ys ¢ynknuio ['puHa, cTpOMTCS MHTErpajibHOE
ypaBHEHHe, pelaroniee 3a/1a4y. B pe3ynbpraTe 3a1a4a CBOAUTCS K ONPEICIICHUIO KO (GHUIIMEHTOB PACIIMPEHNUS B
psiy TOHIKEHHOTO KOHTAKTHOTO AaBieHHs. OTpaHMYMBAsACh KOHEYHBIM YHCIIOM WICHOB B PSy Pa3IOKEHHH,
WCTIONB3Yys IMCKPETH3AlMIO IJIOMAAN KOHTAKTa M CBOWCTBAa MOJMHOMOB JlexaHnpa, 3agada CBOJUTCS K
PEUICHNIO CHCTEMBI anreOpanuecKux YpaBHEHHH Uil KO3()(UIMEHTOB pacIIMpEHUst Uil IOHMKCHHOIO
nasneHus. Ilocie 3TOro M3 JOMONHUTEIBHOI'O COOTHOIICHUS OHpenessitoTcs Ko3(pGhHUIUEHTH TpeGyemMoro
pacmupeHuss KOHTAaKTHOIO MIaBJiEHUsl B psiiy B nonumHomax Jlesxanmpa. [lns onmMcaHust yCIOBMH KOHTaKTa
000JI0YKH € TOBEPXHOCTBIO MHCIOJIb3YETCSI TEOPUsI MHOTOKOMIIOHEHTHOT'O aHH30TPOIIHOIO CYXOTo TPEHHS,
YUUTHIBAIOIIAs KOMOWHUPOBAHHYIO KHHEMATHKY JIBU)KEHHSI 000JIOUKH (OJHOBPEMEHHOE CKOJIbKEHHE, BpaIllCHUE
u kadeHue). KoappuuueHTsl MOJEIN CYXOTro TPEHUSI MOTYT OBITh PAacCYMTaHbI C MOMOUIBIO IPOCTHIX SBHBIX
(hopmyi [2], OCHOBaHHBIX HA YHCIICHHBIX SKCIICPUMCHTAX.

KaroueBble ciioBa: C(bCpI/I‘leCKaSI KOMITIO3HUTHasA 0601’[0‘{1(3; KOHTaKTHas 3ajJiaya,
TEOPUS MHOTOKOMITOHCHTHOI'O aHU30TPOMHOT'O CYyXOIr'o TPCHUA.

INTRODUCTION

The theory of the multicomponent dry friction is
very effective instrument for the correctly
describing of effects of the combined dry
friction in many engineering systems. One of
the distinguished features of this theory is
possibility to carry out analytical investigation
of the equations of motions. Connection
between the parameters, which are defined the
force state inside of contact spot, and the
kinematical parameters is given by the simple
analytical ~ functions. It’s  so-called the
approximate model of the combined dry friction
or phenomenological model. Only six numeric’s
coefficients are required to calculate. These
coefficients can be calculated analytically,
numerically or defined from the experiments.
Procedure of analytical or numerical definitions
of the friction model coefficients is based on the
calculation of the first moments of the
distribution of the normal pressure inside of
contact patch. In order to use these results to
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analyze the dynamics of some robotic systems,
such as a butterfly robot or a humanoid robot, it
IS necessary to calculate the normal pressure
inside the contact spot for various composite
spherical shells.

In investigation described below the contact
pressure distribution is constructed using the S.A.
Ambartsumyan’s equation for a transversally
isotropic  spherical shell. This equation is
modified by introducing additional relationships
for the reduced contact pressure and normal
displacements. The construction of the resolving
integral equation for the contact pressure is based
on the principle of superposition and the method
of Green's functions. For this, the corresponding
Green's function is constructed, which is the
normal displacement of the shell as a solution to
the problem of the effect of concentrated
pressure. Green's function as well as the contact
pressure, it is sought in the form of series
expansions in Legendre polynomials, taking into
account additional relations for the reduced
contact pressure and normal displacements.
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Using the Green's function, an integral equation
solving the problem is constructed. As a result,
the problem is reduced to determining the
expansion coefficients in a series of the reduced
contact pressure. Restricting ourselves to a finite
number of terms in the series of expansions,
using the discretization of the contact area and
the properties of Legendre polynomials, the
problem is reduced to solving a system of
algebraic equations for the expansion coefficients
for the reduced pressure. After that, from the
additional relation, the coefficients of the
required expansion of the contact pressure in a
series in Legendre polynomials are determined.

CONTACT PROBLEM SOLUTION

To determine the contact pressure, we pose a
static contact problem for a spherical shell of
radius R, thickness h and an absolutely rigid
reference plane IT [21]. We assume that the shell
is made of a transversely isotropic material in such
a way that the main direction of elasticity,
perpendicular to the plane of isotropy, at each
point of the shell coincides with the outer normal
n to the middle surface of the shell.

Contact between shell and reference plane I1T
occurs along a flat circular area (contact patch)
Q some radius rbelonging to the plane IT:
Q eIl (fig. 1). Taking into account the small

size of the contact area(r [ R) the radius of the
contact spot in the zero approximation is

determined from the condition of intersection of
the undeformed middle surface of the shell

r =Rsinp,, B, =arccos R RWT :

(1.1)

where w; - displacement at the frontal point of
the shell.

In this case, in the contact area, the normal
displacements of the shell are determined as
follows (Fig. 1)

w=R(1-cosp)—w;. (1.2)

1
w,I
- E < L >
Figure 1. Contact problem
Assuming that the contact problem is

axisymmetric, we use the S.A. Ambartsumyan
[21] for a transversely isotropic spherical shell,
connecting the normal displacements of the
shell w with influencing pressure on her p

[ (A+1) +1-h"A | (A+2)w=

:R_Z(l_h*A)(A+1—v) p, (1.3)
A:_Li(sinﬁij,
sinp op op
C12(1-v?)R?
he = Eh?

10(1—v2)RZG"

E - Young's modulus for directions in the plane

of isotropy, v— Poisson's ratio, which

characterizes the contraction in the plane of
isotropy under tension in the same plane,
G' - shear modulus for planes normal to the
plane of isotropy.

Note that the structure of equation (1.3) does not
allow us to apply expansions in series in
Legendre polynomials, since the presence of the
operator factor A+2 on the left side turns it to
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zero at "=1, where Nis the number of a
member of the expansion series. To overcome
this difficulty, in contrast to the solution
proposed in [21], we introduce auxiliary
functions of averaged pressure as well as
averaged deflection for the shell as follows:

p=(1+1A)p, W=(1+1A)w. (L1.4)

Then equation (1.3) in new functions takes the
form

[ (A+1)" +1-h"A |
R (1.5)
h(l h'A)(A+1-v)p.

In this case, the form of equation (1.5) allows us
to apply the expansion in series in Legendre
polynomials to the solution.
To solve the contact problem, we use the

Green's function G(,&), which is a solution to
the following equation

[ (A+1)°+1-h'A]G(B,E) =
RZ
" Eh

(1.6)
——(1-h"A)(A+1-v)3(B-8),

where 3(B—¢) Is the Dirac delta function.
We expand the required function G(B,&) and
8(B—&) in series in Legendre polynomials

=iGn P, (cosp),
iSn cosB a.7)
6n(a)_2”2 b (cose)sine.

Substitution of (1.7) into (1.6) taking into
account the relation
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AP, (cosp)=-mP,(cosB), m=n(n+1) leads

to the equation

[ (1-m)’ +1+h'm |G, (&) =
R; (1+h'm)(1-m=v)3, (&).

Where does it follow

G, (&)=A,P,(cosg)sing,
. n +1(1+ h*m)(l—m—v)
2Eh ¢?(1-m)’ +1+h'm’

(1.8)

A1:

Using the Green's function, we obtain an

integral connection between normal
displacements and the function p [22-26]
-[G(B.e)p(e)de  (1.9)
0

Let's expand P(B) in a series in Legendre
polynomials

p(B)= i B.P. (cosp).  (L.10)
Substituting (1.10) into (1.9), we obtain
W(p) =
=Y > ABR (cosPr, (11D

Cop = ]EPH (cos&) R, (cos&)sin&dE

Insofar as ¢, =——3,,, where 3, Is the

2n+1
Kronecker symbol, relation (1.11) takes the
form
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Let us construct a system of linear algebraic
equations for the coefficients p, ... On the right-

hand side of (1.12), we restrict ourselves to
taking into account the firstN +1 terms

N

)~>_B,P,P, (cosB).

n=0

(1.13)

Suppose that displacements w(p) set in the

={B:pe[op ]}
B =arcsinr/R - define the boundary of the

contact area.
Select in the contact area N +1 points with
coordinates B, €Q, k=0,1,2,..N ... Replacing

the approximate equality (1.13) by the exact
one, for each Kk-th pointB, we obtain an
algebraic equation containing N +1 unknown
p,.Thus, since the number of such

equationsN +1, we get the system from
N +1 equations for N +1 unknown

contact area where

Bp =W
B = (b )y P=(Fo) o
W:(Wk)N+1x1’
b, = B,P, (cosB, ),
w, =w(B,),

(1.14)

the solution of which is the vector p expansion
coefficients (1.10).
Desired contact pressure p(p) can also be

represented as a series expansion in Legendre
polynomials

CoS B (1.15)

=Zmﬂ

Representation (1.4) implies a connection
between the coefficients p, and p,

p, =(2-m)p,, (1.16)
from which the first N+1 expansion
coefficients in a series of the required contact
pressure.

As an example, consider a contact problem for a
shell ~with the following parameters:
R=1m, h=1/20 m, v=0.3, E=2-10" Pa,
G'=0.7-10" Pa, w, =0.01R.

Figure 2 shows the distribution of shell
displacements in  the  contact  zone

={p:p<[op]

-0.005

w/

0 0.05 0.10 p

Figure 2. Distribution of displacements over the
contact area

Figure 3 shows the distribution of contact
pressure as a solution to problem (1.14) - (1.16).
The solid curve corresponds toN =20, dashed
line- N=30...

Further improvement of the solution of the
contact problem based on the transient function
approach [27] could require higher-order shell
theories approximating the three-dimensional

18 International Journal for Computational Civil and Structural Engineering



Application of the Theory of the Multicomponent Dry Friction in Some of Control Robot Systems

stress state in irreducibility domains near
contact spot boundaries (e. g. see [28-30]).

i /

//
|

0 0.05 0.10 B

Figure 3. Contact pressure distribution

DRY FRICTION MODEL OF SHELL
CONTACT WITH THE ROUGH PLANE

The dynamic interaction of a weakly deformed
solid with a rough reference plane is determined
by the normal reaction N, the resulting vector
of tangential forces T, the rolling resistance
moment M_ and the dry friction

moment M, [2]. These values can be

determined by integrating the normal contact
pressure, as well as the total tangential pressure
obtained under the assumption of the validity of
the differential form of the Amonton-Coulomb
law for a small element of the area inside the
contact spot [1-13] along the contact area S .
Taking into account the anisotropy of dry
friction, the integral model of the force state
inside the contact spot has the form

N = J.GO |:e3 +M:| ds
S

w

T

\Volume 18, Issue 1, 2022

IG{ rth)eB}

f-(v,—Rw, xe,+w, xr,)

ds

Vo +W, xr|
Here v, is the longitudinal absolute velocity;
w_angular rolling velocity;  w, angular
spinning velocity; R(M) radius of curvature of

a rolling body calculated at a point M;

r (M) radius vector of a point M €S in the
contact plane; e, normal unit vector of the
contact plane;

tensor" for an anisotropic elastic body:

h=h, e’ "rolling friction

vw,.=w_(q) w!-h-w_>0.

A detailed analysis of equations (2.1) was
carried out in [2]. In particular, it was shown
that in most engineering problems, it is
sufficient to consider orthropic dry friction
defined by the following friction tensor as it was
shown in [2, 5, 10]:

f=f1 L O,f;ﬁO,K;tO
0 k

where f and «f are the main components of
the friction tensor.

It is convenient to write the proposed friction
model (2.1) in a coordinate system Oxy, with
the origin in the center of the contact spot, such
that the corresponding basis vectors e, and e,

are collinear to the main directions of the
friction tensor. In addition, it is natural to
assume that static contact pressure has the
property of axial symmetry:
o,(X,y) =o,(£x,xy), and rolling friction is
isotropic.

An approximate analytical model of the force
inside interaction the contact spot is constructed
under the assumption that the rolling shell
moves with longitudinal velocity v, = ve; along

(2.2)
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the axis of the global stationary coordinate
system, with angular velocity of rolling
w_=-Qe, and angular velocity of spinning
.

It is assumed that the contact area has axial
symmetry with a characteristic size of the
contact spot R (for example, the diameter of the

corresponding set on the plane {x, yi).

In the presence of motion, tangential stresses
arise, leading to distortion of the symmetrical
diagram of the distribution of normal contact
stresses. Assuming that the displacement of the
center of gravity of the contact spot relative to
the geometric center is described by a vector d
whose modulus was calculated in [1, 6-12], the
symmetry breaking can be represented by the
following formula:

o(X,y) =o,(x, y)(1+d,x+d,y)

where d, and d, are the projections of the

vector d on the axis x and y, respectively.

The resulting friction force vector can be
represented as the sum of two components:
T=Teg, +Te,, where T, is the longitudinal

abut T, is transverse components of the friction

force. As it was shown in [1-12], the latter of
them arises due to the relationship of friction
effects.

As a result, integral representations (2.1) can be
substantially simplified, as it was implemented
in [1-12].

However, integral relations are too complex to
apply to the analysis of the dynamics of real
systems, while their approximations by
analytical functions are quite accurate and
simple at the same time. Using the technique
described in detail in previous works [1-12],
an approximate analytical model of friction
describing the interaction of an elastic rolling
shell with a solid surface, in the case of
combined kinematics and orthotropic friction,
can be presented in the following form:

_ Ry _ pkRvu®
i W rau? i \/(v6 +be’)
(2.3)
M = M,u
TJu+my?
Here u=o,R, F, is the longitudinal

component of the friction force of the beginning
of the motion, but M, is the friction torque of

the beginning of the motion. The coefficients of
the model (2.3) can be calculated using simple
explicit formulas [2] based on numerical
experiments, the results of which are presented
in Fig. 2-3.

CONCLUSIONS

A formulation is proposed and a method is
developed for solving the problem of the motion
of a composite spherical transversely isotropic
shell on a solid surface, taking into account the
combined dry friction. Taking into account the
assignment of the reduced contact pressure
function, S.A. Ambartsumyan's modified
equation was used, which allows us to apply
series expansions by Legendre polynomials.
Using the Green's function, the problem is
reduced to solving a system of algebraic
equations with respect to the coefficients of
decomposition into a series of functions of the
reduced contact pressure and displacements.
The relationship between the true and reduced
contact pressure allows us to determine the
coefficients of the contact  pressure
decomposition series.

To describe the conditions of shell contact with
the surface, the theory of multicomponent
anisotropic dry friction is used, taking into
account the combined kinematics of shell
motion (simultaneous sliding, rotation and
rolling).

The coefficients of the approximated dry
friction model (2.3) can be calculated using
simple explicit formulas [2] based on numerical
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experiments, the results of which are presented
in Fig. 2-3.
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