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ABSTRACT: Model-based optimization of simulated moving bed reactors (SMBRs) requires efficient solvers and significant
computational power. Over the past years, surrogate models have been considered for such computationally demanding optimization
problems. In this sense, artificial neural networks—ANNs—have found applications for modeling the simulated moving bed (SMB)
unit but not yet been reported for the reactive SMB (SMBR). Despite ANNSs’ high accuracy, it is essential to assess its capacity to
represent the optimization landscape well. However, a consistent method for optimality assessment using surrogate models is still an
open issue in the literature. As such, two main contributions can be highlighted: the SMBR optimization based on deep recurrent
neural networks (DRNNs) and the characterization of the feasible operation region. This is done by recycling the data points from a
metaheuristic technique—optimality assessment. The results demonstrate that the DRNN-based optimization can address such
complex optimization while meeting optimality.

1. INTRODUCTION rate of propylene glycol methyl ether acetate and conversion of

The simulated moving bed reactor (SMBR) extends the ethyl acetate solved with interior point OPTimization

. 7 . . .
simulated moving bed (SMB) process, where the continuous tect}.m%qli_es. R%y and RiY d P rop;)se(i a.t}rln ultIlIO b(]IiTCStgzi
chromatographic separation enhances chemical reactions. The opfumization using nonsorted genetic algorithim

SMBR has attracted significant attention in the past years,"” II) to maximize yield and purity in biodiesel production.

. ) . Subramani et al® presented a multiobjective optimization
especially for synthesizing oxygenated compounds and isomer- . O
ization reactions.” problem for the methyl tertiary butyl ether synthesis in a

Model-based optimization of SMBR units implies the Varicol SMBR optimized with the NSGA algorithm. Nogueira

9 . . . . .
simultaneous solution of dynamic nonlinear partial differential et al. P roposed a smgle‘ ob]ectnfe optimization problem for
. . : o producing n-propyl-propionate with true moving bed reactor
equations, requiring efficient solvers and significant computa-

. . .. .. approximation using a particle swarm optimization (PSO
tional power. Moreover, several other issues arise in optimizing PP &3P P ( )

SMBRs due to the coupling of reaction and separation. It mat}}llod. timi Ives the SMBR model 1 4 ¢

reduces the degree of freedom;> that is, fewer variables can be evalu:teoiﬁ?lfg'esc(;izzs furfction durrﬁlo eo St?r‘:ir;tiolrrlnefl’hz

manipulated to achieve purity and conversion requirements simulation time ]c an orow sienificantl %e fn dine on 'mo del

and conflicting objectives; namely, improving one performance & & Y dep &

indicator worsens the others in a nontrivial way.
Therefore, SMBR optimization is not a trivial task that Received:  October 19, 2022

motivated many studies to address it with mixed approaches— Accepted: January 19, 2023

first-principles models with varying simplifications and Published: February 7, 2023

deterministic/heuristic optimization methods. Tie et al’

proposed an epsilon-constrained multiobjective optimization

with a full-discretization model to maximize the production
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simplifications—reaction rate law, equilibrium equations,
number of columns per zone, and nonisothermal operation.
For the design of the SMBR, the optimization time may not be
prohibitively high. However, the high-fidelity model may
become an unfeasible option in an actual plant coupled with
up- and downstream equipment or in real-time applications.
Simplifications of the high-fidelity model are often employed
for SMB separation by using the true moving bed (TMB)
concept and the SMBR with the true moving bed reactor
(TMBR). However, it has been shown that this approximation
can fail to describe the SMB and SMBR in several
scenarios. "'

Over the past years, reduced-order/surrogate models have
been considered for optimization problems. Surrogate models
are mathematical models identified using statistical techniques
and attenuating the associated computational costs of an
optimization problem. In this sense, artificial neural net-
works—ANNs—have found applications for these systems for
modeling the SMB unit (without reaction)."””"* However,
they have not yet been reported for the reactive SMB (SMBR).
ANNSs are powerful models composed of multiple processing
layers that learn representations of data with various levels of
abstraction'® and are proven to be able to approximate any
nonlinear C, continuous functions'® and overcome the curse of
dimensionality.

Despite ANNs’ high accuracy for nonlinear function
approximation, assessing their converges and capacity to
represent the optimization landscape competently is essen-
tial.'"” To this end, it is important to use strategies to identify
high-accuracy surrogates (low bias) and investigate the
optimality, that is, convergence to the true global optimum.
However, a consistent method for optimality assessment using
surrogate models is still an open issue in the literature.
Optimality is usually assessed by visual inspection and point-
wise (i.e,, by comparing the high-fidelity model-based optimal
point with the surrogate model-based optimal one).

A few works have recently shown one approach to evaluating
the optimization results with a cluster of points instead of a
single evaluation. Park (2013) proposed a bootstrap approach,
and Nogueira et al.'® and Rebello et al."” used recycled data
from PSO—however, using the high-fidelity model. As shown
in refs 9 and 19, it is possible to map the optimal region
through the data population generated from the PSO
algorithm. As such, the method allows using an available
massive database from PSO to produce meaningful informa-
tion about the optimal solution and increase its robustness
level by evaluating its associated uncertainty. Addressing this
issue is one main contribution of this work and still an open
issue in the literature.

Hence, two main contributions of this work can be
highlighted: the SMBR optimization based on deep neural
networks (DNNs) and the challenging characterization of the
feasible operation region (FOR). Therefore, the DRNN-based
optimization is assessed in the optimization of an SMBR unit.
This is done by recycling PSO data points, allowing the
optimality assessment. A case study presents the synthesis of n-
propyl-propionate in an SMBR-4 unit. The present work
proposes a novel framework for SMBR units’ PSO-oriented
optimization based on DNN models.

2. METHODOLOGY

2.1. SMBR Model. The SMBR comprises a set of fixed-bed
columns arranged in a recirculation loop. There are two inlets
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(feed and desorbent) and outlet streams (extract and
raffinate). The packing material(s) have either adsorptive or
catalytic properties, and the feed stream contains the
reactant(s). The products are separated from the reactants as
the reaction occurs within the unit. Figure 1 illustrates a four-
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Figure 1. Diagram of a SMBR unit.
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Figure 2. Proposed stacked RNN model.

zone SMBR for a reversible bimolecular hypothetical reaction.
For such cases, it is usual that one of the reactants is used as a
desorbent. The reactants (A + B) are fed between sections II
and III; the raffinate stream is located between sections III and
IV. It is where the less adsorbed product (C) is collected, the
desorbent stream is located between sections I and IV, and the
extract stream lies between sections I and II from which the
more adsorbed product (D) is withdrawn.

In the present work, the SMBR-4 model for the synthesis of
n-propyl gropionate proposed in ref 11 was implemented in
gPROMs™ to serve as the high-fidelity model to be optimized
and source of data for the DRNN. In this case, propanoic acid,
propanol, n-propyl propionate, and water play the A, B, C, and
D roles, respectively, considering Figure 1 as a reference. The
model equations and parameters are displayed in Tables Al
and A2. The parameters were previously estimated by
Nogueira et al.”

https://doi.org/10.1021/acsomega.2c06737
ACS Omega 2023, 8, 6463—6475


https://pubs.acs.org/doi/10.1021/acsomega.2c06737?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06737?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06737?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06737?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06737?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06737?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06737?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06737?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c06737?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Omega

http://pubs.acs.org/journal/acsodf

Table 1. Input and Output Signals’ Ranges

variable minimum maximum
Input Signals (Designed)
CgA¢/(mol/L) 1.40 X 107! 1.33 x 10
Qp/(dm*/min) 1.00 x 1073 499 x 107
t./(min) 1.00 x 10 5.99 x 10!
Output Signals

raffinate purity/(%) 0.65 99.99
conversion/(%) 1.28 99.97
productivity/(mol/L/day) 3.432 X 107° 16.74
desorbent consumption (L/mol) 4.785 x 107" 89.95

Table 2. Hyperparameter Search Space for the RNN

hyperparameters search space

initial learning rate {1 x 107, 3.162 x 107%
1x 1073}

batch size {4, 8, 16}

number of recurrent layers {1, 2,3}

recurrent layer type {GRU, LSTM}

number of neurons in the recurrent layers {100, 180}

activation function in the recurrent layers {relu, tanh}

number of neurons in the intermediate fully {20, 60}

connected layer

activation function in the fully connected layer {relu, tanh}

A total of four performance indicators of separation and
reaction were considered: raffinate purity, limiting reactant
conversion, productivity, and desorbent consumption. Table
Al shows the equations for raffinate purity, conversion,
desorbent consumption, and productivity in the case study of
propyl-propionate synthesis.

2.2. DNN Model—Building and Estimation. Tables A1l
and A2 show that the SMBR is an inherently dynamic process.
Hence, using the discrete-time recurrent neural network
(RNN) model is the most appropriate way of introducing
inductive bias and shortening the amount of training data
needed for long-horizon predictions (simulation mode). The
difference between prediction and simulation is well discussed
elsewhere.'* Thus, this architecture is proposed as a surrogate
model of SMBR-4. Several RNNs, one for each performance
indicator (time-averaged raffinate purity, conversion, desorbent
consumption, and productivity), were identified, that is,
multiple input single output (MISO). Here, we propose a
flexible approach with a mixed stack of state-of-the-art RNN
architectures built—long—short-term memory (LSTM) or

Table 4. Rescaled Decision Vectors at the Optimal Point for
Rigorous and DRNN Models (Rescaled to the Original
Units of Measurements)

D .
min C"A/(mol/L) t,/(min) objective function

model
DRNN 1.68 x 1073 13.33 47.76 -1.17
rigorous 1.77 X 1073 13.33 47.51 —-1.14

gated recurrent unit (GRU) and feed forward layers. Figure
2 illustrates the proposed approach.

Once the general model architecture is proposed, the
identification procedure, that is, a parameter estimation
strategy, has to be developed, which includes the design of
experiments (DoE) or data acquisition, time series preprocess-
ing, and the parameter estimation itself, which involves
defining the neural network topology, cost function and
training policy—training set size, optimizer type, and
parameters.

Among all possible input variables in the SMBR, the ones
with the highest impact on its performance indicators were
chosen, according to a strategy developed by Santana et al.'' —
the concentration of the limiting reactant in the feed stream
(propanoic acid), the desorbent flow rate, and the switching
time. Then, the DoE was performed using the Latin
Hypercube Sampling (LHS) algorithm®' to sample the input
space (R*) with minimal cross-correlation between variables.
The sampled inputs were fed to the high-fidelity model
simulator as a sequence of step signals persisting until the
system reached the cyclic steady state. The simulator outputs
(performance indicators) were collected and stored. The LHS
is one among many options available for DoE, which includes
the popular Sobol sequences.”” Each method has its own
advantages and disadvantages. The literature in ANN-based
surrogates presents relevant usages of both methods.'”**~**

The available time series preparation into “experiments”,
often named “time windows”, forces the model to learn the
whole response to a step change in the input variables. In
simple terms, a set of small chunks of time series are created,
wherein each experiment (chunk) E; consists of a set of tuples
{(u; - J’z): (uy = )’3): oy (U — )’n:)}-

The time series preprocessing involves identifying long-term
dependencies (order) in the time series data. In the present
work, the dynamic system is modeled as a nonlinear state space
representation as described in ref 29 It implies that for a given

Table 3. Results of Best Hyperparameters for Each Performance Indicator for the RNN

hyperparameters

initial learning rate
batch size
number of recurrent layers

recurrent layer type

number of neurons in the recurrent
layers

activation function in the recurrent
layers

number of neurons in the intermediate
fully connected layer

activation function in the intermediate
fully connected layer

productivity

1x1073
4
3

{layer 1: LSTM, layer 2: LSTM,
layer 3: LSTM}

{layer 1: 180, layer 2: 180,
layer 3: 180}

{layer 1: relu, layer 2: relu,
layer 3: relu}

20

Relu

desorbent
consumption

3.162 x 107*
4
2

{layer 1: GRU,
layer 2: GRU}

{layer 1: 180,
layer 2: 100}

{layer 1: relu,
layer 2: relu}

60

relu
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purity
1x1073
4
3

{layer 1: GRU, layer 2: GRU,
layer 3: GRU}

{layer 1: 100, layer 2: 100,
layer 3: 180}

{layer 1: relu, layer 2: tanh,
layer 3: relu}

60

relu

conversion

1x1073
4
3

{layer 1: LSTM, layer 2: GRU,
layer 3: GRU}

{layer 1: 180, layer 2: 100,
layer 3: 180}

{layer 1: relu, layer 2: relu,
layer 3: tanh}

20

Tanh

https://doi.org/10.1021/acsomega.2c06737
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Table 5. Performance Indicators at the Optimal Point for the Rigorous Model and RNNs

model urity/ (%) conversion/(%) desorbent consumption/(L/mol) roductivity/(mol/L/day)
purity P P ty. .
DRNN 99.58 93.10 1.18 3.56
rigorous 97.32 90.86 1.11 3.69
0, The objective function, evaluated at a cyclic steady state, and
° constraints can be written as
1o} (@) OO min Ey,; = Prod X wp,,q + Conv X gy, + De X wpe + wWpy, Xy,
£(9* )\*) © o O e o ° [Prod, conv, Dc, Pur] = f(x)
o @) OO OO 00 Spye = 1if Pur(k) < Pur,;,
@) .
Opye = 0 if Pur(k) > Pur,,
A(Ok,)\k) O O O Pur L ur( ) Z Ul
e (ONNG) Fin S X S Xy
h L (Ot aks Ak+ak) (1)
h
where Prod, Conv, D¢, and Pur are time-averaged productivity,
e 16 conversion, desorbent consumption, and purity, respectively,
£ (68, 2%) and x is the decision vector that contains the input variables
0. values. w; are real values that weight each performance
i+1 i g P
indicator; Oy, is an indicator function that penalizes the

Figure 3. 2D geometrical illustration for confidence region derivation.

discrete-time dynamic system with white noise v(k), noisy
observations y depend on exogenous inputs # and past
estimated states z. It can be written

z(k)

F(lz(k = 1), .., z(k = 1 — n), u(k — d),
vy u(k —d — n)])
z(k) + v(k)

y(k)

where n, and n, are the number of past values and d is the
delay. The system order (n, and ny) is independent of the
chosen function used to approximate the true unknown F and
should be carried before any parameter estimation.'”** To
identify n, and n, the Lipschitz coefficient® method is used.

The neural network topology, cost function, and training
policy are known as hyperparameters. They define the
optimization problem and must be determined beforehand,
that is, before the RNNs’ weights and biases are estimated. The
hyperparameter space comprises a set of both discrete and
continuous variables, which makes their selection a complex
task. In this sense, the state-of-the-art HYPERBAND>*
optimization algorithm is used here as it wisely allocates
resources for training the most promising configurations. The
search space for the hyperband comprised continuous and
discrete variables: type of each recurrent layer, number of
stacked layers, number of neurons per layer, activation function
type, learning rate, and minibatch size. Despite using
hyperband, other efficient automatic hyperparameter selection
methods exist, such as multiobjective optimization problem
training loop™® ™" and TRANSFORM.’ At each run of
HYPERBAND, the RNNs were trained with least-squares loss
function and adaptive moment estimation (Adam) with
TensorFlow default parameterization. After selecting the best
configuration, the final architecture was trained longer with
early stopping. Neural network building, training process, and
hyperparameter tuning were implemented in TensorFlow 2.5.

2.3. Optimization Problem Formulation. The optimi-
zation problem is framed as a single objective function by
weighting the SMBR performance indicators constrained by
the model equations and decision variables’ limits.
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objective function with w,,, if the purity is lower than Pur,.
f(x) is the model (mechanistic or DRNN) that maps the
decision vector to the performance indicators. It can be either
the rigorous SMBR-4 model or the RNN.

As shown in the previous section, the SMBR has four main
performance indicators usually taken into account: productiv-
ity, conversion, purity of the product of interest, and desorbent
consumption. The first three are usually desired to be as high
as possible and the last as low as possible. It means that the
corresponding weights in the objective function should reflect
it; that is, the performance indicators to be maximized need a
negative weight and vice versa. An in-house implementation of
the global PSO method®” is used to solve this optimization
problem.

PSO was used as the optimization method as it has been
demonstrated as an efficient and suitable approach for
charalcs’tsgiaiglg confidence regions in optimization prob-
lems. 7"~

2.4. Feasible Operating Region around the Optimal
Point. The strategy for determining the feasible operating
region around the optimal point here used was proposed by
Nogueira et al.'® The uncertainty map is the denominated
feasible operating region (FOR) in the referred work. The
FOR is a subdomain of process operating variables where the
process can attain a defined performance with a certain
confidence. Given the population-based optimization method
(PSO), a statistical evaluation of the swarm history in the
optimization is performed. Usually, the likelihood approach is
employed as it considers the system’s nonlinearities. This
approach can be employed using the Fisher—Snedecor
criterion. All details of the deduction of this criterion for
single objective process optimization are beyond the scope of
this work. It is presented elsewhere.'” Here, the intuition and
some mathematical basis is presented.

The key idea is that the Lagrangian (L), which is the sum of
the objective function with weighted vector of constraints (C),
can be treated as a random variable, and the decision vector
points are statistically compared using the Fisher—Snedecor.
The Lagrangian and Fisher—Snedecor can be expressed,
respectively, as

L(9, 2) = Ey(0) + A" C(0) (2)

https://doi.org/10.1021/acsomega.2c06737
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Mg

L(0) < L(¥) + E(ng, m. = ny — n, + 1)

m—ng—n, +1 (3)
it compares the Lagrangian L(6™) at the minimum found in
the optimization, 6%, with a given decision vector € with
objective function L(#) using the Fisher—Snedecor distribu-
tion F, with confidence level & and n; — ny — n, + 1 degrees of

freedom, where n, is the total number of performance
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indicators, ny is the number of iterations in the optimization,
and ny is the number of operating variables (decision vector).
Thus, the history of swarm position and objective function can
be evaluated to compose an a confidence-level region when
passing the inequality criteria described in inequality (3).
Equation 3 derivation is adapted from the confidence region
evaluation for parameter estimation presented by Schwaab et

https://doi.org/10.1021/acsomega.2c06737
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al. (2008)*" and Benyahia et al. (2013).*" In the proposal of
Nogueira et al. (2019)* and here adapted, the methodology
was adapted in order to evaluate the feasible operating region
of the process operating variables after the optimization.

In Figure 3, € represents the distance between the optimum
analytical point and the optimum point found by the PSO.
This concept allows us to determine the normalized squared
error (¢) concerning the variance (V;), according to the
following equation

2 (L(ei*; A1*) L(eig) A’ig))z
e =
' V ’ '

1

4)
where n; is the number of decision variables of the PSO
algorithm.

The error can be defined for all instances, n;, obtained in the
optimization process, as follows

Py Y-y YA

i=1 k=1

- L(aig; /1,%) )2

i=1 k=1 ‘/1

©)
the variance V. (0;, A;) between the global optimum and the

total number of points considered in optimization L(6), A,.) is
defined as

Vi(O, Ay) = Z (L(0F, A) = LGy, 4y))*

Melk=1 (6)
combining 5 and 6
SR G )V( Ay)
-3y i)
i=1 k=1 (7)

at this point, a chi-squared distribution for ¢*, »? is assumed.
This probability distribution has n, — (ny — 1) degrees of
freedom, where n; is the total number of iterations developed
by the PSO and n, is the total number of objective functions
considered in the optimization.
2
e2—>)((nk—ny+1) (®)
The error is calculated between the global analytical
optimum and the remaining points belonging to the PSO

population, represented in Figure 3, by h. The mathematical
expression for h is defined as

"o (LG A) —

L0 ary Aierar)’
Vi

h?

€

extending the determination of error h to all points in each
evaluation of the objective function about the analytic global
optimum, we have the following normalized expression

Z B = Z Z () Va0 s arys i a)

k=1

i=1 k=1 Vi (10)
where the variance V;; can be defined by
( i(k+Ak)? z(k+Ak))
m—1
Z (L6 L0 s sk Aieran))’
M\ k=1 (11)
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therefore, the assumed chi-square distribution premise for h*
was also assumed for ¢?, whose degrees of freedom are
expressed by m, — (n; + ny, — 1), as follows

[ ;(Z(nk —m—n, + 1) (12)

thus, differences between the errors presented can be expressed

by

W - > ;(z(nj) (13)

these distributions are independent; it becomes a Fisher—
Snedecor distribution as
-
n;
B - EI(”H e —

n—nyg+1

n9+1)

(14)

where « is the confidence level of the Fisher—Snedecor test.
Finally, a Taylor series expansion can be derived around the
optimal point to express the objective function

L(g % 1) = L( i;ck’ ’lit) + (Qk -

Hy(0, — 0

OIVLy: + (0 — O

(13)

where VL« is the gradient vector and Hy+ is the Hessian
matrix of the objective function, which is correlated with the
covariance matrix optimal points as

-1
Hy; =2V, (16)
replacing eq 14 in 13, one obtains
L6, Ay) — L( i A
= (0, vy, (0
— 2
=y (ni) (17)

simplifying eq 12, it is possible to rewrite it by equaling eq 15,
obtaining

L(G, Ay) — L(OF, A)
N i (m)Vi(Oy, Ay) n;
i A i:’ ’Ii;ck) m—ng+1
(ni, e — ng + 1) (18)

assuming that V;; is a good approximation for V, the optimal
region meets the following test

ey

L(oild Aik) < L( i?:’ /li;k) +

nk—n9+1a

(n, m — ny + 1) (19)

3. RESULTS AND DISCUSSION

3.1. Identification. A set of 800 steps with ranges shown in
Table 1 were created with LHS. Note that each step persisted
for 250 time steps (prior estimated system settling time),
leading to a total of 250.000 points. Three variables could be
subject to step changes—concentration of propanoic acid in
the feed stream (Cg"™%°), desorbent flow rate (Qp), and switch
time (t,), and four performance indicators outputs were
collected—time-averaged conversion, productivity, desorbent
consumption, and raffinate purity.
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Figure 6. Hexabin parity plots for all performance indicators on the test set for the DRNN.

The remaining input variables and parameters necessary to
simulate the SMBR-4 model were taken from, namely, feed
stream flow rate (Qg), recycling stream flow rate (Qyy), and
extract stream flow rates (Qy), whose values are 1.400 X 1077,
1.2135 X 107* and 9.000 X 107* (in dm®/min), respectively.
Table 1 shows the ranges of the designed inputs as well as the
outputs. The input space ranges were selected according to the
physical limits of a lab-scale SMBR unit and made large
enough to collect a considerable amount of information. It is
worth remarking that the concentration of the limiting reactant
cannot surpass its molar volume at working temperature, and it
was the upper limit value for Cg"A,

As described in 1.2, the original data set was partitioned into
“experiments”. Figure 3 shows a sample of a single experiment
described for both input and output signals. Note that all
variables are already rescaled. It is possible to note that the
performance indicators have very distinct dynamic behavior,
which justifies the MISO approach. 680 patterns (85% of first
data set) similar to the one presented in Figure 3 were used for
training and the remaining ones were used for hyperparameter
tuning. A separate data set was generated and used for testing.

As described, the Lipschitz coefficient method was used to
determine the order, that is, assess long-term dependencies of
the system encoded in n, and ny, parameters. These numbers
were determined using a graphical approach. This analysis was
run for each performance indicator as it deals with a MISO
case. The orders are defined as the pair (n, n,) at which the
order index stops changing significantly as the order increases.
From Figure 3, it can be seen that the purity, conversion,
desorbent consumption, and productivity orders are (4,1),
(8,1), (9,1), and (9,1), respectively.

In order to find a combination of hyperparameters that
result in the minimum mean squared error of the validation set,
HYPERBAND parameter maximum epochs were set to 200.
The factor (proportion of discarded configurations) was set to
S. The HYPERBAND method was used with early-stopping
regularization to prevent overfitting. Additionally, the proposed
optimality assessment is a robust method for demonstrating
generalization capacity.
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Table 2 shows the search space of the hyperparameters for
the RNN.

Table 3 shows the best found hyperparameters for each
performance indicator of the RNN. It can be seen that for
some performance indicators, the best architectures involves
stacked LSTM and GRU cells. A similar pattern is observed for
the activation function.

These architectures achieve satisfactory performance for all
performance indicators: 0.0243 for productivity, 0.209 for
conversion, and 0.710 for purity (considering mean absolute
error for the whole validation set). Figure S shows hexabin
parity plots for all performance indicators for the DRNN in the
test set. On the x-axis are the DRNN predictions, and on the y-
axis are the test data. The dynamic data and predictions are
also presented in Figure 6 for the test set.

One important aspect to consider in black-box models is the
accuracy/computational time trade-off. While the gPROMs
simulator takes about 566 s to run the response for one single
step perturbation, the RNN surrogate takes about 150 X1073
seconds (both running in an Intel i7-7500U—2.7 GHz CPU).
As is demonstrated in the next sections, the simulation time
difference becomes essential for optimization.

3.2. Optimization for 95% Raffinate Purity Require-
ment. The PSO algorithm was used to solve the optimization
problem described in eq 1 with both the rigorous and DRNN
models. The decision vector is x = [f, Q Cp %], where the
variables are the scaled switching time, desorbent flow rate, and
concentration of propanoic acid in the feed stream,
respectively, according to Table 1. They are the same ones
used to train the DRNN. Thus, the intervals were large enough
to cover several possible operating conditions. However,
expanding these intervals beyond the input space where the
DRNN was trained can lead to inaccurate calculations of the
objective function. It is a drawback of all surrogate models;
that is, they can only be made accurate in the identification
region. However, this work generated data in a broad region
using LHS based on the constraints of a real lab-scale plant.
Therefore, it ensures that the identified models will represent
the system under evaluation well.
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Weony = —4 X 107, wee = 3 X 107", w9 = =3 X 107}, and
Wy = SO were chosen as the set of weights in the objective
function, and Pur,;, was set to 95%. The weights reflect the
objective from a process point of view—a negative value means
that increasing the corresponding performance indicator
magnitude will favor the objective function minimization and
vice versa. Since the variables were rescaled, the upper and

lower limits are 0 and 1, respectively.
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When the SMBR-4 rigorous model was used in the
optimization, SO particles and 40 iterations were set. When
the DRNN was used, 400 particles and 400 iterations were set.
As mentioned in Section 2.1, the rigorous model is very costly
to simulate. The number of particles and iterations is limited to
the available time to perform the optimization. This specific
case took 56 h with the rigorous model and 0.75 h with the
DRNN.

Figure 4 shows the swarm minimum values’ (global best)
evolution over the iterations. Even though the optimization of
the DRNN was carried out up to 400 iterations, only 60 are
shown. It can be seen that the convergence of the optimization
with the DRNN model is quicker. Still, both objective
functions stop decreasing before the 10th iteration.

Table 4 shows the decision variables at the optimal point for
both rigorous and DRNN models. It can be seen that the
decision vectors at the optimal point are close to each other,
and the highest discrepancy is found for the desorbent flow
rate component (Qp).

Table S shows the values of performance indicators that
compose the objective function at the optimal point for each
model and are evaluated using the same model; that is, DRNN
optimal is evaluated with the DRNN model and rigorous
optimal is evaluated with the rigorous model. It can be seen
that the output values are close to each other. However, using
single points to compare the optimization results of the two
models can lead to misleading conclusions. One of the
advantages of PSO is that it is a population-based algorithm
which allows the building of the feasible operating region
(FOR).

The DRNN optimal point could be run in the rigorous
model, leading to an important perspective about the surrogate
model optimal point robustness. However, the operating
region characterization is a more complete and rigorous way of
analyzing optimality. Furthermore, the proposed strategy is
meant to demonstrate that the ANN result is equivalent to the
rigorous model results. If this demonstration is done, it is
proven that the optimizations are equivalent.

Figures 5 and 6 depict a 3D representation of swarm
particles across iterations that meet the minimum purity
requirement for both the rigorous model and DRNN,
respectively. The x- and y-axis represent the scaled decision
variables, and the z-axis is the objective function. The markers
are colored according to the objective function value with a
legend indicated in the color bar. In Figures 5b, 6b, 5S¢, and 6c,
it can be seen that most of the swarm positions lie in a line
where the concentration of the limiting reactant is close to the
scaled upper limit 1. This value is a physical limit since the
concentration of the component in the feed stream cannot
surpass its molar density at a given temperature and pressure.
Propanol feed concentration was calculated using its molar
density for each value of propanoic acid concentration; that is,
it is linearly correlated with Ci"*¢ and removed from the
inputs to avoid input space collinearity.

3.2.1. Feasible Operating Region. The points obtained
from the optimization with a rigorous model and the surrogate
DRNN model are used to build their corresponding
confidence regions. A more reliable way to verify if the two
models lead to the same optimal point than simply comparing
the global best is by comparing the two confidence regions.
Suppose a significant degree of superposition of the two
regions is verified. In that case, the surrogate model can be
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time view.

reliably used to optimize searches within the domain it was
identified.

Figure 7 shows a pair-wise scatter plot of the decision
variables that passed a 99.5% test. It also includes the 99.7%
probability ellipse (3 standard deviations) fitted using three
bivariate Gaussian density distributions (one for each pair of
inputs). In Figure 7a,b, it can be seen that most of the points

lie in two lines of either constant Cp™'° or Q, and F,

respectively, indicating that the Gaussian density may not be
the ideal probability density function to fit. In Figure 7c, the
Gaussian density seems to fit well in both clusters. Comparing
the rigorous model with the DRNN, it can be seen that the
points show a similar distribution pattern around their optimal
points, and the ellipses have a significant degree of super-
position. Moreover, it is possible to observe that the desorbent
flow rate and the switching time have an inverse correlation,
that is, less desorbent can be used, and similar performance can
be achieved as soon as the switching time is increased (Figures
8—11).

4. CONCLUSIONS

The SMBR is challenging to optimize through first-principles
models. In this sense, previous works in the literature
concerning surrogates for its simpler version, the SMB, and
other cyclic adsorptive processes indicate that using surrogate
models may offer several benefits for SMBR optimization.
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However, there are no works published in the literature
proposing surrogate models for the SMBR to our knowledge.
Moreover, when surrogate models are used for optimization,
optimality issues are barely considered; that is, only the
optimal point found is tested in the rigorous model and used as
the performance metric. It may lead to misleading conclusions
about the model quality for optimization. In this setting, the
present work shows that the proposed framework for SMBR
units’ optimization based on DNN models and PSO optimizer
with optimality evaluation provides a robust tool for SMBR
surrogate identification and addresses optimality issues
through the process feasible operating region.

A single objective function optimization problem was
formulated by weighting the SMBR performance metrics.
With this setting, a 448X speed up in the optimization time
was observed when using the surrogate model compared to the
rigorous SMBR model, with a significant overlap of the FOR
regions for all decision variables. It is worth mentioning that
this speed up is calculated to compare run times for online
applications where both models are already identified and the
goal is obtaining the optimal solution. Rigorous real-time
optimization for such a system would be computationally
infeasible due to the associated computational effort. The
speed up is calculated by the ratio between mechanistic model
simulation (1 dynamic response) elapsed time and surrogate
model simulation elapsed time for the same response and in
the same computer. Even sacrificing physics, the surrogate
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Table A1l. SMBR—4 Model Equations

Material balance in volume elements of column k for component i and velocity variation equation:

2

9Cix 9 L= 1, Cix

5% T a(ukci,k) + . Kipla;, — q;,) = Duk PR

9q

ik 3 L, % Py
ik = 3 h(gh - q) + 9,
o R, ,k(q.,k q,,,() (1) ProP
M 1763 ZK VMg —q )+ —2b iva
- ik k- Y . ' ProPro ivio

Ox & RyiH o 1—g i=1
N is the total number of components, x is the axial position, t is the time, d is the stoichiometric coefficient, rp,op,, is the reaction rate, py, is the bulk density, D, is

the axial dlsperswn coefficient, g* is the adsorbed molar concentration in equlllbrlurn with C (bulk phase molar concentration), q is the average adsorbed molar
concentration, u is the liquid interstitial velocity, Rp is the mean particle radius, &, is the bed porosity, K" is the external mass transfer coefficient, and V" is the

molar volume.

Initial and boundary conditions for each component i and column k:

t= 0] Vxe ]0 Lk[ N C, k(t x) - memal, qiil:ﬁal — (Cmmal
N ac(o, ),
x=L" Vt— u(0)C,— D, = u(0),C} i ko
dC(Ly, t),
k=L Vit 7( L )l’k =
Ox

L™ and L,°™ are the inlet and outlet positions in section k, respectively

Global and component balances in nodes:

esorbent node: eed node: extract node:
desorbent nod feed nod xtract nod
out out in out
ulyt + up = ", up + up = upp, i+ ux = ™,
out out in_in out out _ in _in _ out __
Gy + G gug = Gy Couun + G eue = Gy C; n=C1 =Cx

raffinate node:
in

in __ . out
ury + ug = up,

- in _

in _

Con = xI = tix

Kinetic and equilibrium equations:

isotherm model:
. QK

% =y TN K

Chemical reaction equation:

Cer1 =

intermediate nodes:

out
Ci,k )

out

e = Uy

Q™™ is the maximum adsorption capacity, K; is the adsorption constant

ProAc(y + POH(y & H,0 + ProPro(; ProAc is propanoic acid, POH is 1-propanol, H,O is water, and ProPro is n-propyl-propionate

Reaction rate model:

—4
Tpropro = 1.535 X 10 (aProAcaPOH -

Mass transfer coefficient correlations:

4H,0ProPro
37.09

), a is the activity coeflicient

L 0. 08
— Ki dP — /)udp xmu(y]mlx Z fD;}rI
Shy,; = Re, = —
' Di mix r]mix
’ i#i
2/3

n_. —8 3V, .

Sh,,; = 1.09(Re,Sc)™* Se = — v D, = 8.2 Xlig M

P mix ;1}.VM]‘ M,i

Shy, Rep, and Sc are the Sherwood, Reynolds, and Schmidt numbers, respectlvely, d, is the mean particle diameter, D, is the mixture diffusion

coeﬂiqent p is the fluid density, #7,,;, is the mixture viscosity, and D

Performance indicators:

is the mﬁmty dilution diffusion coefficient.

conversion: purity: productivity:
t+Ne® X R tHNEE R HNEE
[ (ux Cpronc + #rCroac)dt _ -/t‘ Coroprodt o Eplig / CProProdt mol

Conv=1-— (%) Puyy = —3m (%) Prod =

U ChroaNE® / (Chropro + Chroac + CH2o)dt (1 = &)L, Nt L day
desorbent consumption:

f f
Dec = (CPOH - uf(CPOH - CPIOAJ())Vmol.POH ( LPOH ]

R
Cproprotir molp, p,,

model is feasible for real-time usage, where the fully
mechanistic model, despite being run in gPROMs with a top
desktop processor, fails to achieve it. Moreover, the rigorous
model used is not easily parallelizable and would not benefit

significantly from a high-performance computing environment
as it is a stiff system of partial differential equations, which does
not have a steady state but a cyclic one.
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This work built the surrogate model from noise-free data,
that is, from rigorous numerical simulations of the real SMBR
model. In future works, one may consider introducing
computer-generated noise to simulated data and evaluating
its effects on the model and the process optimization.
However, the results obtained prove that the surrogate
model represents the system behavior with precision. This is
clearly seen by the optimality analysis. Finally, an optimal FOR
was obtained. The SMBR can be operated with high
conversion while providing high purity ProPro using the
obtained FOR.

B APPENDIX

The model equations and parameters are displayed in Tables
Al, A2, and A3.

Table A2. Langmuir Multicomponent Competitive Model
Parameters

component K/(L/mol) Q. (mol/L,g)
POH 11.66 9.13
ProAc 9.04 10.06
ProPro 5.08 5.11
H,0 2.35 43.07

Table A3. Parameters of Columns in TMBR

parameter value
& 4x 107"
P, 166
R,/(um) 122.75
o -
L/(dm) 4.6
A/ (dm?) 415 X 107
T/(K) 313
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