@ NTNU

Kunnskap for en bedre verden

DEPARTMENT OF MECHANICAL AND
INDUSTRIAL ENGINEERING

TPK4560 - ROBOTICS AND AUTOMATION,
SPECIALIZATION PROJECT

Sensor, Know Thyself

Author:
Kristoffer Susort Kvale

January, 2022

Contents

1 Introduction

2 The Simulator

2.1 Packageclass
2.2 Nodeclass e
2.3 Network functions
3 Results
3.1 Testing and problem discovery
3.2 Propervresults Lo
4 Discussion
4.1 Thesimulator
4.2 Theresults
5 Future work
5.1 Implementation oo
5.1.1 Pseudo-code.
5.1.2 Classes
5.1.3 Method User
5.1.4 Registry Mediator
5.2 Extensions. e

6 Conclusion

Acronyms

A Results 100 simulations with same parameters

B Simulator code

B.1
B.2
B.3
B4
B.5
B.6

Simulation.py
Package.py
USer.py . . . o v o e e
Node.py o o o
Network.py o
Datetime.py

30
30
31
31
32
34
35

36

37

38

List of Figures

=W N =

Results for the reference network with a varying number of users. 19
Results for the alternative network with varying number of users. 20
Results for the reference network with a varying number of routers. 21
Results for the alternative network with a varying number of

TOULETS. . . . v v v e 22
Results for the reference network with a varying number of de-
vices per Touter. e e 23
Results for the alternative network with a varying number of
devices per routers. e e 24
Results for the reference network with a varying number of alter-
native connections. Lo oL 25
Results for the alternative network with a varying number of
alternative connections. L 26
Illustration of closest physical node issue. 36

Listings

0 O U= Wi

Packageclass Lo oo 7
Header class 7
Payload class 8
Ping function oo 8
Task function Lo 8
Data function oL 8
Lookup method 9
Check received method 10
Process package method oo 10
Send package method L 0oL 11
One way function Lo 11
Indirect function Lo 11
Routers and nodes function 12
Routers and nodes alt function 13
Method Class/Template 31
Conversation Class/Template 31
Message Class/Template 31
Communication Technology Class/Template 32
Conversation starter pseudocode 32
Execute Method pseudocode 33
Decode Conversation Template pseudo code 33
Decode Message Template pseudo code 33
Check For Updates pseudocode 34
Get Method pseudo code 34
Verify Method pseudocode 35

Sammendrag - Jeg har ilgpet av dette master prosjektet laget en simula-
tor for nettverk, som ogsa har mulighet for a simulere arkitekturen jeg utviklet
og presenterte 1 min prosjekt rapport i hgst. Jeg viste pa hvilke mater simu-
latoren ikke stemmer med virkeligheten. Jeg sammenlignet ogsa resultater fra
simulatoren for et refferansenettverk sammenlignet med en forenklet versjon av
arkitekturen jeg presenterte i hgst. Bassert pa disse resultatene viste jeg at
arkitekturen gir gode resultater. Jeg inkluderte ogsa pseudo-kode og flere ideer
for forbedring og implementering av arkitekturen under videre arbeid.

Abstract - In this master thesis, I have created a simulator for networks,
with the possibility to simulate a new architecture I developed and presented
in my project report. I showed in what ways the simulator differs from a real-
world scenario. I also compared results from this simulator between a reference
network and a simple simulation of the architecture I suggested. Based on these
results I showed that the architecture I suggested is worth further research
and work. I also included pseudo-code and ideas related to improving and
implementing the architecture in the future.

1 Introduction

Interoperability and security are two of the important aspects to consider in
industrial Internet of Things (IoT). Security is important, for instance ensuring
access to data, i.e. the attack on Hydro Aluminium. It is also important that
business secrets are not leaked to competitors. Interoperability is a counter-
weight to supplier locking, where if you start to buy equipment from a supplier,
you are locked to buying from them later for the new equipment to work with
the old equipment.

My project report suggests a new architecture to increase interoperability
and efficiency in IoT. Interoperability is important to avoid supplier locking.
Efficiency is in this case referring to Local Area Network (LAN) load, where
this architecture uses the LAN to establish alternative communication channels
that can be used to send the data. The architecture is based on the idea that
the IoT devices know what communication technologies they can use.

At first, the plan was to implement a first version of the code for the devices
to test it with a virtual surrounding system. This approach resulted in sev-
eral problems, ultimately leading to implementing a simulation instead. After
quickly checking existing solutions for simulating networks I concluded to make
my own simulator. There are two result sets as part of this master project. The
first one is the simulator itself, the second is the results of the simulator.

The implementation attempt was based on creating and using a version
of an execute function. The execute function would be given the function to
run and execute it. The functions would have been defined as a part of the
method definition. The reason this approach failed is mainly the level of detail
required. There are still several parts of the architecture that is not sufficiently
defined for it to be implemented. There is no routing protocol for devices to
take advantage of the alternative connections in an efficient way. In the project
report, I presented several techniques and technologies that could be useful for
implementing a first version of the architecture, but most of them would require
a significant amount of work to use, and that was not feasible. After attempting
to implement the methods structure, I decided to change the direction of the
master project to a simulation.

Due to time constraints, I decided to create a simple simulator based on
discrete event simulation, instead of learning how to use an existing network
simulator. The main reason for this is that after looking into a couple of options
it was apparent that the new architecture would be difficult to simulate in the
options I found. I was also simply looking for a throughput result, and the
simulators I found were significantly more advanced than what I wanted.

The simulator I made was based on a discrete event simulator I made a
couple of years ago, and the first version used separate scripts for each device
in the network. Packages in the network were simulated using JSON files and
a directory structure representing the network structure. The first change was
turning the scripts for a device into a class. After that, I changed packages
from being JSON files into a class as well. Then I made a set of functions to
connect the nodes into a network. The functions are based on the nodes having

a lookup table as a dictionary and an IP address structure. The IP addresses 1
use in this simulation have two parts for devices and one part for routers. The
IP address of a device is the IP address of the router it is connected to followed
by an identifier for that device.

Problem definition Can a new system architecture for IoT network de-
vices utilizing fog-computing and self-awareness increase interoperability and
efficiency in the network? By self-awareness, I specifically mean that the device
has data about its own capabilities, as well as status and performance. In this
master thesis, I have created a simple simulator to check if the project is viable
for further work.

The rest of this thesis has the following parts; In section 2 I will introduce the
simulator I created as part of this project. In section 3 I will show results, both
those used to improve the simulator and those used to evaluate the alternative
architecture suggested in my project report. In section 4 I will discuss the
simulator and the results. In section 5 I describe potential future work on
the architecture. Finally, in section 6 I conclude based on the results and the
discussion section whether this project is worth further work and research.

2 The Simulator

In this section, I will present the simulation code used to simulate the reference
network and the alternative network. The first version of the code was designed
to run as several independent scripts, one for each node in the network. The first
version also used JSON files in a folder structure as packages sent between the
nodes. This was changed into a class and object structure with the simulation
class designed to have one object per network to simulate. I created a user
class for the simulated users. The user class is independent of the simulation
class such that the same user traffic could be sent to more than one simulated
network.

There are several things not included in the simulation. Nodes will not go
off synchronization, nodes will not disconnect from the network, and packages
will not time out, to mention a few. The alternative connections should also,
depending on the communication technology used, have a different capacity
compared to the LAN connections. On the other hand, I have not implemented
a routing functionality that allows alternative connections to be used other than
if the connection is specifically between the start node and the target node.

The simulation uses a variant similar to time division multiple access. In
short, the simulation loops first through all devices and allow them to check re-
ceived packages, process one package, and send one package if there is a package
outgoing. After the simulation has looped through the devices it loops through
routers in the same way.

The top level of the simulation is the simulation objects and user objects.
The simulation objects handle the nodes and how packages are sent through the

network. The user objects generate task packages that it sends to the simulation.
In addition to the simulation and user classes, there is a node class, a package
class, and a set of network functions. Node objects simulate one node in the
network, package objects represent packages that are sent through the network
and the network functions are used to connect the nodes into a network.

2.1 Package class

The package class is the core of the simulation and is shown in listing 1. It is
divided into a header and a payload. The header holds information about what
node sent it, what node it is going to, the time it was created, and how many
ticks of the simulation it has existed. The definition of the header class is shown
in listing 2. The payload includes if it is a task package, or a ping package, and
can also hold data. The definition of the payload class can be found in listing
3.

class package:

def __init__(self, header, payload):

self._header = header
self._payload = payload

def get_header (self):
return self._header

def get_payload(self):
return self._payload

def tick(self):
self._header.tick ()

Listing 1: Package class

class header:

def __init__(self, sender, target, time):
self._sender = sender
self._target = target
self._time = time

self._ticks_alive = 0

def get_time(self):
return self._time

def get_target (self):
return self._target

def get_sender (self):
return self._sender

def get_ticks(self):
return self._ticks_alive

def tick(self):
self._ticks_alive += 1

Listing 2: Header class

1 class payload:

2 def __init__(self, is_task, is_ping, data):
3 self._is_task = is_task
1 self._is_ping = is_ping

5 self._data = data

7 def get_is_task(self):
8 return self._is_task

10 def get_is_ping(self):
11 return self._is_ping

Listing 3: Payload class

In addition to the class definitions of package, header, and payload there is
a set of functions to create packages for different purposes. There is a function
to create a ping, task, and data package. Ping packages were implemented to
test the nodes, and are not used in the simulation. The function has sender
and receiver as input, and returns the created ping package, as seen in listing
4. Task packages are sent from users to a node to simulate a request for data,
the definition is seen in listing 5. The user selects random nodes as the sender
node and the target node each time. When a node receives a task package it
sends a data package back to the sender, the function to create a data package
is shown in listing 6.

1 def ping(sender_ip_address, target_ip_address):
2 t_header = header(

3 sender_ip_address,

4 target_ip_address,

5 get_now ())

6 t_payload = payload(False, True, {})

7 return package(t_header, t_payload)

Listing 4: Ping function

1 def task(sender_ip_address, target_ip_address):
2 t_header = header (
sender_ip_address,
I target_ip_address,
5 get_now ())
6 t_payload = payload(True, False, {})
7 return package(t_header, t_payload)

Listing 5: Task function

1 def data(sender_ip_address, target_ip_address, payload_data={}):
2 t_header = header(
sender_ip_address,
4 target_ip_address,
5 get_now ())
6 t_payload = payload(False, False, payload_data)
7 return package(t_header, t_payload)

Listing 6: Data function

2.2 Node class

Objects of the node class represent a device in the simulated network, either a
router or a user device. There are two important parts of the node class. The
first is the IP addresses and lookup table, and the second is package handling.
The lookup table is implemented as a python dictionary with IP addresses as
the keys and the values are references to the nodes that the packages should
be sent to. The lookup method takes advantage of the IP address structure.
If the specific IP address is not registered it will look for the IP address of its
router. Through the network functions, all router IP addresses are registered for
any node. The package handling is divided into three methods; check received,
process package, and send package.

The TP addresses in the simulation are in essence the last part of actual TP
addresses, used to identify a device in the network. The addresses have two
parts; router and device. The lookup method checks if the address is registered

in the lookup table, if not it attempts to look up the router IP, as seen in listing
7.

def lookup(self, ip_address):

if "." in ip_address:
try:
return self._lookup_table[ip_address]
except:
last_dot_index = ip_address.rfind(".")
return self.lookup(ip_address[:last_dot_index])
else:
try:
return self._lookup_table[ip_address]
except:

return -1

Listing 7: Lookup method

Packages are placed in a package queue list when it is sent to the node. The
first part of package handling is checking if any packages have been received,
this is done by the check received method shown in listing 8. After this, if a
package was found in the package queue, the current package is processed using
the process package method found in listing 9. The process package method
might put a package in the outgoing packages list, depending on the target of
the processed package, and what type it is. If the package is not for the node
it will be placed in outgoing packages directly. If the package is a data package
it is moved to the simulations list of completed packages. If the package is a
ping package a data package is created, and in the payload of the package the
time used for the package to get to this node is included. If the package is a
task package the node creates a set of data packages with the sender of the task
package as the target. The number of packages to send is selected randomly
between 1 and the maximum number of data packages, which is defined when
the node object is created. When the process package method is completed the
send package method is executed. The send package method selects one of the
outgoing packages and places it in the package queue of the node found using

16

7

18

19

the lookup method, this is shown in listing 10.

def check_received(self):

if len(self._package_queue) == 0:
self._idle_cycles += 1

else:
sort packages by time
self . _package_queue = sorted(self._package_queue,

key=lambda p: p.get_header().get_time())

self._current_package = self._package_queue.pop (0)

Listing 8: Check received method

def process_package (self):
if self._current_package is not None:
if self._current_package.get_header () .get_target () == self.
_ip_address:
package to me
self._parent_simulation.add_to_sink(self.
_current_package)
if self._current_package.get_payload().get_is_task():
generate data package as response
num_packages = randint(self._max_packages)
for i in range (num_packages):
package = data(self._ip_address,
self._current_package.get_header ().
get_sender ())
self . _outgoing_packages.append(package)
elif self._current_package.get_payload().get_is_ping():
ping, so send data package with time used to get
here
time_used = get_now() \
- self._current_package.get_header ().get_time ()

out_data = { "time_used": time_used }

self . _outgoing_packages.append(data(self.
_ip_address,
self._current_package.get_header ().
get_sender (),
payload_data=out_data))
else:
self._data_packages_received += 1
self.task_finished ()
package of data sent to this device

else:
pass
package not to this node, forwarding
set outgoing_package to current_package
self._outgoing_packages.append(self._current_package)
continue to send_package
self._current_package = None

Listing 9: Process package method

10

1

N

def send_package (self):
if len(self._outgoing_packages) > O:
outgoing_package = self._outgoing_packages.pop (0)

target_ip_address = outgoing_package.get_header ().
get_target ()
target_node = self.lookup(target_ip_address)

if target_node == -1:
print ("Node with ip: ", target_ip_address,
" not found in lookup table.")
else:
target_node.add_package (outgoing_package)
self . _packages_sent += 1

Listing 10: Send package method

2.3 Network functions

The network functions are used to connect nodes. The functions use the add
lookup entry and remove lookup entry methods in the node class. The most
basic functions are the; one way, indirect, and remove connection. One way
takes two nodes, a and b, and adds node b with its IP address as an entry in the
lookup table of node a. This represents a one-way connection from node a to
node b. The one way function is shown in listing 11. The indirect function has
node a, node b, and IP address as input. It adds an entry in the lookup table of
node a with the IP address as key and node b as value. In other words, if node
a tries to look up the given IP address, node b will be returned. The indirect
function is shown in listing 12. Finally, there is a remove connection function.
The remove connection function has a node and an IP address as input and
removes the entry in the lookup table of the node with the IP address as the
key. It is not used for the functions I use in the simulation but is added for
completeness.

def one_way(node_a, node_b):

if node_a.get_ip_address() == node_b.get_ip_address():

return
node_a.add_lookup_entry(node_b.get_ip_address (), node_b)

Listing 11: One way function

def indirect(node_a, node_b, ip_address):
if node_a.get_ip_address() == ip_address:
return
node_a.add_lookup_entry(ip_address, node_b)

Listing 12: Indirect function

Building on the basic functions I have made several functions for connecting
nodes; indirect list, both ways, one to all, one to all both ways, fully connected,
circle connected and line connected. Indirect list has node a, node b, and IP
addresses as input, it uses the indirect function to add a list of IP addresses to

11

the lookup table of node a, and all IP addresses in the list return node b. The
both ways function connects two nodes both ways directly using the one way
function. The one to all, and the one to all both ways functions have an origin
node and a list of nodes as input. It connects the origin node to all the nodes in
the list of nodes using the one way and both ways functions respectively. The
fully connected function connects all combinations of nodes in a list of nodes
both ways. The circle connected function connects a list of nodes in a circle one
way. Each node has entries for all the IP addresses of the other nodes pointing
to one other node in such a way that a package will travel in the same direction
through the circle. The line connect function connects a list of nodes in a line,
and all nodes have a lookup entry for the other nodes’ IP addresses.

The functions I use to build the networks for the simulation are the router
and nodes function and the routers and nodes alt function. These are built
on the other functions defined in the network file. In short, the router nodes
are connected in a line, the routers are connected to their device nodes and
the device node has a lookup entry for each router’s IP address pointing to its
router. The router and nodes alt function uses the router and nodes function,
and in addition, adds a number of both ways connection between device nodes
directly. Both functions are explained in more detail below.

def routers_and_nodes (routers, list_of_list_of_nodes):
assumes nodes connected to a router has ip’s as follows:

router ip i.e. "123"
nodes connected to that router has ip’s "123.XXX"
if not len(routers) == len(list_of_list_of_nodes):

raise ValueError (
"routers_and_nodes: length of routers list must be the same
as length of list of list of nodes.")

router_ips = [router.get_ip_address() for router in routers]
line_connect (routers)

for i in range(len(list_of_list_of_nodes)):
router = routers[i]

local_nodes = list_of_list_of_nodes[il].copy()
for node in local_nodes:
router connected to its nodes
one_way (router, node)
nodes map all router ips to its router
indirect_list (node, router, router_ips)

Listing 13: Routers and nodes function

The routers and nodes function has routers and list of list of nodes as in-
put. The function can be seen in listing 13. The list of list of nodes is a
two-dimensional matrix, and the top-level dimension must be the same size as
the length of the routers list. The content of the list of list of nodes is shown
in table 2.3. Although not clear from the table, it is not a requirement for all
routers to have the same number of device nodes.

The function starts by checking the dimension constraint described above.

12

1

Router 1 ‘ Router 2 ‘ ‘ Router n

Node 1.1 | Node 2.1 | ... | Node n.1
Node 1.2 | Node 2.2 | ... | Node n.2
Node 1.k | Node 2.k | ... | Node n.k

Table 1: Structure of the list of list of nodes two dimensional matrix

After that, it connects the routers using the line connect function. Then for

each node, it connects its router to the node. Finally, it uses the indirect list

function to add lookup entries in the node for all router IPs to the nodes router.

def routers_and_nodes_alt (routers, list_of_list_of_nodes,
other_connections):

routers_and_nodes (routers, list_of_list_of_nodes)
for i in range(other_connections):

random_router = randint(len(routers))

random_node = randint(len(list_of_list_of_nodes[
random_router]))

random_router2 = randint(len(routers))

while random_router == random_router2:

random_router2 = randint(len(routers))

random_node2 = randint(len(list_of_list_of_nodes][
random_router2]))

nodel = list_of_list_of_nodes[random_router][random_node]

node2 = list_of_list_of_nodes[random_router2][random_node2]

both_ways (nodel, node2)

Listing 14: Routers and nodes alt function

The routers and nodes alt function is shown in listing 14. In addition to the
input for the routers and nodes function, it also takes in the number of other
connections to create. First, it uses the routers and nodes functions to connect
the nodes. After that, it repeatedly chooses two random nodes and uses the both
ways function to connect them. The function ensures that the router is not the
same for the nodes, however, it does not ensure that the same pair of nodes are
chosen in a later iteration of the loop. This means that the number of alternative
connections is actually the maximum number of alternative connections.

Because the routers and nodes alt function use the both ways function to
create a connection between two device nodes it ensures that if a node has an
alternative connection to another node a package is sent directly. The alternative
connections are not used for routing as I have not made a routing protocol for
the architecture, this is further discussed in the discussion section.

In table 2 I show what parameters are available for the simulator. These are
used in the results section to describe the simulations.

13

Parameter Description
Cycles Number of cycles the simulation

loops through before terminating
Routers Number of router nodes in the

simulated network

Devices per router

Number of devices connected to
each router

Alternative connections

Number of alternative connections
created (The simulator does not
ensure that the same connection is
not created several times)

Users

Number of users created

Waiting multiplier

Number multiplied with the
exponentially distributed random
number generated by each user to

get number of cycles of the
simulation to wait before next task
is generated by that user

Task rate

Rate used by the users to generate
the exponentially distributed
random number for waiting time

Table 2: Simulator parameters

14

3 Results

I have looked at the number of packages processed as the result of a given
simulation. The packages that are considered processed are those that have
reached their target node and been processed with the process package method
of the target node. The first section of results consists of results used to find
and check for problems with the simulator. In the final section of results you
will find the results, as they are with the newest version of the simulator.

3.1 Testing and problem discovery

The first round of simulations (5000 cycles): baseline of 30 routers, 10 devices
per router, 10 percent of the total number of devices as the number of alternative
connections, 50 percent of the total number of devices as the number of users.
For each of the four variables, I also ran a simulation with one less to get an
indication of how important that variable is compared to the others.

In order to discover potential mistakes in the simulator, I wrote down a set
of assumptions. I was not sure of these, and could therefore not expect all of
them to be true. However I would expect most of these to be true, and big
deviations from these would indicate to me that I should check if a mistake had
been made.

My assumptions before seeing the initial results are as follows;

1. T assume that each of the four variables are either beneficial or not for the
alternative simulation. In other words, if it is beneficial for the alternative
simulation to increase a specific variable from one to two, it will also
be beneficial for the alternative simulation to increase the same variable
further indefinitely.

2. Reducing the number of routers results in a larger number of short-distance
transfers, and with that reduce the benefit of alternative connections be-
tween devices that are not close in the structured topology of these simu-
lations.

3. Reducing the number of devices per router results in a larger average
distance between devices, and that increases the benefit of alternative
connections.

4. Reducing the number of alternative connections will reduce the difference
between the reference simulation and the alternative simulation, the in-
teresting part is how much compared to other changes.

5. Reducing the number of users should reduce queuing in the router devices,
and therefore reduce the benefit of alternative connections.

15

The first set of results can be seen in table 3. It is important to note
that these are results as part of discovering mistakes in the simulator, and
several important mistakes were found after these results were generated by the
simulator.

Baseline | User | Router | Device per router | Alternative connection
Reference 13017 27367 | 13164 14161 42314
Alternative 13116 27564 | 13236 14111 13337

Table 3: First test results.

I realized that although reference and alternative simulations are compara-
ble for one simulation run, they are not necessarily comparable across several
simulations. Therefore as a reference, I added the total number of packages sent
by users as a result of the simulations and ran them again. An alternative solu-
tion to fix this would be to run all the simulations at the same time, however,
as it is only important that the comparison between reference and alternative
simulation is comparable for this experiment I decided to only add the number
of packages sent for now. The new results after adding packages sent can be
seen in table 4. Several errors in how the simulator works are still present.

Baseline | User | Router | Device per router | Alternative connection

Reference 12810 26998 | 13126 14117 40786
Alternative 12944 27246 | 13205 14311 13128
Packages sent 68250 42638 | 52952 56307 44027

Table 4: New results after adding packages sent to have a reference for the
different runs.

Using base results there were around 13000 packages that got through the
system of around 68000 packages sent. In contrast, the results when about 42500
packages were sent for the one less user test, there were around 27000 packages
that got through. This I assumed was due to queuing in the network for both.
To test if the number of packages sent was related to the results I tested using
a different number of users. Based on the previous results showing improved
throughput with reduced packages sent I decided to run tests with fewer users.
I ran tests with 30, 60, 90, 120, and 150 users to see how the number of users
affects throughput.

Number of Users | Reference | Alternative | Packages Sent
30 12223 12280 13168
60 25598 25944 24449
90 39183 39605 39860
120 52923 53345 53468
150 65976 66593 63432

Table 5: Testing results for different number of users

16

The results for testing a different number of users, seen in table 5, show that
both the reference and alternative network simulation was able to get about the
same number of packages through. Particularly for 150 users, the simulation
did significantly better than in the initial tests, however, this was later found
to be a mistake in the simulator, and still not real results. The same networks
were used for all the tests, and as alternative connections are randomly assigned
I next tested several simulations with the same parameters. I did a total of 100
simulations with the same parameters.

Reference | Alternative Both
Maximum 14870 15003 15003
Minimum 11404 11507 11404

Average 13967.44 14066.34 14016.89

Table 6: Maximum, minimum and average of the 100 simulations done with the
same parameters.

In table 6 you can see that the maximums, minimums, and averages are not
far from the base results. There are no outliers close to what was found for the
one less user tests, the reference results for one less alternative connection (table
3 and 4) or the tests when changing number of users (table 5). After checking
the scripts for the tests done it was clear that the outlier results happened for
simulations that were run several times, and after further investigation, it was
clear that the results were cumulative for all runs of the same instance of a
simulation. All of the 100 simulation run results can be found in appendix A.

After discovering and fixing the mistakes described above I am now confident
that the results presented in the next section are correct to the extent they are
described. The results will only be presented and described shortly in the next
section, and further discussed in the discussion section.

17

3.2 Proper results

In this section I show the results of the simulations. I started by running simu-
lations with the values shown in table 7. Additional simulations were then done
where number of users, routers devices per router, and alternative connections
were reduced by one. The results, as the number of packages reaching and being
processed by the target, are shown in table 8.

Parameter | Value
Cycles | 5000

Routers 30

Devices per Router 10
Alternative Connections 30
Users 150

User wait multiplier | 2000
User task rate 5

Table 7: Values for parameters for the initial test.

Reference | Alternative
Base 13109 13342
One less user 11270 11360
One less router 13419 13556
One less device per router 14386 14500
One less alternative connection 13189 13248

Table 8: Results for initial simulations.

In these results, table 8, the alternative solution does better than the ref-
erence network for all cases. In addition, I have done some simulations where
I have varied the number of users, routers, devices per router, and alternative
connections. The results of these tests are shown in the graphs below. For these
tests, the values of the parameters that are not changed during the simulations
can be seen in table 9. These values are chosen to lower values than for the
initial tests to reduce run-time.

Parameter | Value

Cycles | 5000

Routers

Devices per Router
Alternative Connections
Users

User wait multiplier
User task rate

= = Ot Ot Ot Ot

Table 9: Values for parameters when not varied during tests of varied values for
one parameter at a time.

18

The first round of simulations was done for a different number of users. I
chose 1, 5, 50, and 100 users as the values to test. Each of these users will on
average have a waiting time of one cycle between each task generated. I chose
these values to have a wide range of values while keeping the run-time of the
simulation reasonable. The results for the reference network is shown in figure
2, and for the alternative network in figure 2.

14000 4

12000 4

10000 +

8000

6000 1

Packages completed

4000 -

2000

1 5 50 100
Number of users

Figure 1: Results for the reference network with a varying number of users.

19

16000 -

14000 ~

12000 ~

10000 ~

8000 -

Packages completed

6000 -

4000 A

2000 +

1 5 50 100
Number of users

Figure 2: Results for the alternative network with varying number of users.

The second round of simulations had a varying number of routers. I chose 5,
50, and 500 as a broad variation in the number of routers. The results for the
reference network are shown in figure 3. The results for the alternative network
can be seen in figure 4.

20

14000 +

12000 +

10000 +

8000

6000

Packages completed

4000 A

2000 1

5 50 500
Number of routers

Figure 3: Results for the reference network with a varying number of routers.

21

14000 -

12000 A

10000 -

8000 +

6000 1

Packages completed

4000

2000 +

5 50 500
Number of routers

Figure 4: Results for the alternative network with a varying number of routers.

The third round of simulations included a variation in the number of devices
per router. Figure 5 show the results for the reference network, and figure 6
show the results for the alternative network. It is worth noting that in the figure
for the alternative network there is a blue line on top of the bar for 500 users.
This shows that in this case, the reference network got better results than the
alternative network.

22

10000 +

8000

6000

4000 A

Packages completed

2000 +

5 50 500
Number of devices per router

Figure 5: Results for the reference network with a varying number of devices
per router.

23

12000

10000 ~

8000 A

6000

Packages completed

4000 A

2000

5 50 500
Number of devices per router

Figure 6: Results for the alternative network with a varying number of devices
per routers.

The final round of simulations had a varying number of alternative connec-
tions. The reference network results can be used to compare with the results of
the alternative network in this case. The reference network results are shown in
figure 7. The results for the alternative network can be seen in figure 8.

24

10000 +

8000

6000

4000 A

Packages completed

2000 A

5 10 25
Number of alternative connections

Figure 7: Results for the reference network with a varying number of alternative
connections.

25

14000 A

12000 A

10000 A

8000

6000

Packages completed

4000 A

2000 1

5 10 25
Number of alternative connections

Figure 8: Results for the alternative network with a varying number of alterna-
tive connections.

26

4 Discussion

In this section I will discuss the functionality of the simulator I created, and
the results presented in the results section. The simulator discussion includes
how the functionality that is included compares to a real-world version and
functionality that is not included in the simulator. The result discussions focus
on the implications of the results, particularly whether the results are promising
for further work on the suggested architecture.

4.1 The simulator

The users in the simulator have a randomly generated waiting time in number
of cycles between generating tasks for the networks. In statistics, it is known
that a Poisson process can be used for random discrete events and that when
using a Poisson process the time between the events is exponentially distributed
[4]. This is the reason for using an exponential distribution for the waiting time
between tasks generated by the users.

The simulator cycles through all nodes of the network one by one, allow-
ing them to send one package for each cycle. This is similar to Time Division
Multiple Access (TDMA), where the devices of the network have an allocated
time to send data over the network. IEEE 802.11ax, colloquially known as wifi-
6, uses Carrier Sense Multiple Access with Collision Avoidance (CSMA/CS),
where a node ready for transmission starts a countdown until transmission, and
the counter stops while it detects traffic on the network. When the countdown
is completed transmission starts [2]. TDMA is used in 2G schemes like GSM [3].
This is one of the ways the simulator I created is not realistic. The consequences
of using TDMA on the results should be further investigated.

The routing scheme used in both the reference networks and the alternative
networks is based on a lookup table. The lookup tables are generated with the
two-level hierarchy of routers and devices as a basis, and the alternative con-
nections are added between two devices. This results in alternative connections
only being used if a package is sent between two devices that have an alternative
connection. The alternative connections are not used unless the connection is
specifically between the start and target nodes. This will clearly reduce the
benefit of the alternative connections on the total flow through the network.
However as the results are interpreted qualitatively in this thesis, and they sug-
gest that the alternative architecture has a beneficial effect on flow, this will
only have to be taken into account for quantitative tests in the future.

When the alternative connections are created in the simulator they are not
ensured to not already exist. This means that when a simulation has set the
number of alternative connections to i.e. 5, this is the maximum number of
actual alternative connections created. This should be fixed before results are
used quantitatively.

27

The simulator does not include timing out packages. It also does not in-
clude nodes getting disconnected. The effects of including this have not been
investigated. However, as suggested in the project report the use of alternative
connections in combination with routing could improve the network flow by cir-
cumventing disconnected nodes. The effects of adding timeouts could initially
be investigated by looking at how many cycles the packages are in the network.

The alternative connections can send the same packages as the core network
packages. There are however reasons to suggest that the alternative connections
should have a reduced capacity. For instance, the data rate of Bluetooth is 1
Mbps [7], and 802.11g has a data rate of 54 Mbps [8].

4.2 The results

The initial test results shown in table 8, show that the alternative network per-
form better in all those simulations. The parameter values are here arbitrarily
chosen. These simulations were done to get an indication of what happens to the
results when one of the four central parameters of the simulation was changed.
The most significant results in the initial test were that the results of both the
reference and the alternative network were reduced when the number of users
was reduced, and both networks did better when the number of devices per
router was reduced.

Following the initial simulations, I ran simulations with a varying number
of users, routers, devices per router, and alternative connections. The results
of these tests are shown in figures 2 - 8. For the number of users test, both the
reference network and the alternative network got better results for 50 users.
The alternative network got better results than the reference network for 5, 50,
and 500 users, and similar results for 1 user. These results also show that the
first assumption I made in section 3.1 is clearly wrong. There was an increase
in performance for both networks up to 50, and then a drop in results for 100
users. The assumption that reducing the number of users would also reduce the
benefit of alternative connections appears correct, the alternative network did
significantly better compared to the reference network when having more users.

The results for a different number of routers are very similar for 50 and 500
routers. The alternative network is significantly better in the simulation with
5 routers. These results are opposite to the assumption I made in section 3.1,
where I suggested that reducing the number of routers would reduce the ben-
efit of alternative connections. The results show that the alternative network
did better for a low number of routers, and very similarly for 50 and 500 routers.

The alternative network did significantly better with 5 devices per router,

and similarly for 50 and 500 devices per router. The results indicate that my as-
sumption for the number of devices per router was correct. The assumption was

28

that when the number of devices per router is low, the benefit of the alternative
network was higher. The results for the alternative network were significantly
better for 5 devices per router and similar for 50 and 500 devices per router.

The alternative network got significantly better results with 10 and 25 al-
ternative connections. The benefit per connection appears to be reduced as
connections are added, however, this can also be related to the simulator not
checking if the connection already exists.

With the exception of the simulation with 500 routers, seen in figure 4, the

alternative network perform as well or better than the reference network. This
indicates that the suggested architecture is worth further investigation.

29

5 Future work

In this section I describe potential future work on the architecture I suggested
in the project report and simulated as a part of this master thesis. The first
part is dedicated to potential implementations of the architecture as it is now.
The second part describes suggestions for extending the architecture.

5.1 Implementation

During my attempt to implement a part of the architecture I found that using ei-
ther the Arduino programming language, micropython or C are the most viable
choices for programming language. Arduino is based on C++, and designed for
use with microcontrollers [1]. Micropython is specifically designed to be used
for low-level programming [5]. C has been used for low-level programming for
many years. The choice of specific language is up to the developer but should
be informed by research on what language is used in the targeted IoT device.
The architecture describes methods that are externally savable and possible to
load during run-time. This suggests object files in the case of using C. These
can be chosen, loaded, and executed by the main program loop of the device.

Conversation templates is a quite complex structure with each message hav-
ing several possible answers. A solution to implement this in a low-level language
is to aggregate the conversation structure from message templates, and for each
of them define possible answers. The possible answers must as a minimum be
identifiable for the device, for instance using a regular expression or formatted
string solution.

Message templates should be a format string that can be filled with the
relevant data and have defined possible answers as pointers to other message
templates. This also requires an extract data function for the message. This
could either be done using a header and payload solution where the header
includes information about how to extract data from the payload, or other so-
lutions that allow extractions of data from a message.

In most cases, the use of different communication technologies will require
using libraries to extend the functionality of the base programming language.
The methods must either include this code as part of the method or have a
reference to the library to allow the required library to be loaded when needed.
The main program loop must also abstract the use of the specific methods in
a way that allow different communication technologies to be used. One solu-
tion to work around this is that all methods define a wide range of functions
i.e. scanning, connecting, starting transmission, and ending transmission. The
specific method would then either define the function or simply pass control on
to the next function in the list. There would have to be some form of error
handling to ensure that the errors reach the main program.

A decision that must be made during implementation is whether it should

30

replace an operating system or be dependent on an operating system. The
two choices both have advantages and disadvantages. The choice will likely be
dependent on the target devices.

5.1.1 Pseudo-code

Below I show some pseudo code written for the different roles in the architecture.
This suggests what functions should be included for the different roles, and how
they might work. First is a suggestion for class definitions of the classes; method
(listing 15), conversation (listing 16), Message (listing 17) and Communication
Technology (listing 18). These are here defined as classes, but could also be
templates or similar, depending on how they are implemented.

5.1.2 Classes
e method

e conversation templates/objects
e message templates/objects

e communication technology

1 class Method:
2 def __init__(self, communication_technology,
conversation_template):
self.id = auto_id()
4 self.communication_technology = communication_technology
5 self.conversation_template = conversation_template

7 def checksum(self):
Listing 15: Method Class/Template

1 #need some relational graph of conversation structure
2> class Conversation:

3 def __init__(self, messages):

!

self.id = auto_id ()
5 self .messages = messages

Listing 16: Conversation Class/Template

1 class Message:

2 def __init__(self, formated_string):

3 self.id = auto_id ()

4 self.formated_string = formated_string

6 def SendMessage (self, data_to_send):
7 return self.formated_string, with data_to_send filled in

Listing 17: Message Class/Template

31

1 class CommunicationTechnology:

2 def __init__(self, proper_id, human_identifier):
3 self.id = proper_id
self.human_identifier = human_identifier

Listing 18: Communication Technology Class/Template

5.1.3 Method User

The method users in the architecture will require a set of functions. They must
be able to start a conversation, initialize methods, and decode conversations
and messages. These four functions have pseudo code suggestions below, each
with further descriptions.

Following is pseudo-code for the conversation starter function 19. It needs
a list of methods available, a map between the target device and method used,
the target device, the type of data to send and the data to be sent. The function
will first check if there is a method that has been used to communicate with
the target device before, and send the same type of data. If that exists it will
try to use this method again. If a method was not found or the previously
used method failed it will send available methods to the target device using the
already established network. If a reply is received with a chosen method it will
attempt to send the data to the target device using this method.

1 #Conversation starter function

> def ConversationStarter (my_methods, methods_used, target_device,
data_type, data_to_send):
if exists methods_used[target_device, data_typel:

1 try:

5 ExecuteMethod (method_used[target_device, data_typel,
target_device, data_to_send)

6 except:

7 delete methods_used[target_device, data_typel

8 ConversationStarter (my_methods,

9 methods_used,

10 target_device,

11 data_type,

12 data_to_send)

14 send my_methods to target_device

15 wait for reply

16 if reply not none:

17 try:

18 ExecuteMethod (methods_used [target_devicel],
target_device, data_to_send)

9 except:

reply = none

if reply not none:
methods_used [target_device, data_typel] = reply

NN N e
w N e

Listing 19: Conversation starter pseudo code

The execute method is used to send data from a device to a target, shown
in listing 20. The function takes a method, the target, and the data to send as

32

N}

1
2

3

input. The function first extracts communication technology and conversation
template from the method. It then creates a conversation object using the
decode conversation template function on the conversation template. After this,
it will attempt to connect to the target using the communication technology and
use the conversation object to send the first message on the connection. If it
fails the connection will be broken and an error is thrown.
#Execute Method function
def ExecuteMethod(method, target, data_to_send):
communication_technology = extract communication_technology
from method
conversation_template = extract conversation_template from
method

conversation_object = DecodeConversationTemplate (
conversation_template)

try:

connection = connect to target with
communication_technology

execute conversation_object on connection (uses
DecodeMessageTemplate)
except:

end connection if open

throw error "connection failed"

Listing 20: Execute Method pseudo code

The decode conversation template function (listing 21) is used in the execute
method function. The function simply uses a conversation template to create
a conversation instance. The conversation instance can then be used to create
messages with data, and extract data from answers.

#Decode Conversation Template function

def DecodeConversationTemplate (conversation_template):
create conversation_object from conversation_template

Listing 21: Decode Conversation Template pseudo code

The decode message template function, seen in listing 22, is used to create
a message instance from a message template. It takes a message template and
data to send as input. The function creates a message that can be sent to
another device.
#Decode Message Template function

def DecodeMessageTemplate (message_template, data_to_send)
create message_object from message_template

Listing 22: Decode Message Template pseudo code

33

5.1.4 Registry Mediator

In addition to the functions described for the method user role, the registry me-
diators must have some additional functions. There are three main capabilities
the registry mediators must have; check for updates, get a method from the
registry and verify a method. Each of these is further described and has pseudo
code below.

The check for updates function, shown in listing 23, is used to check if the
registry has a new version of a method in a list of methods. The function takes
a list of methods as input. The registry mediator will try to connect to the
method registry and send the list of methods. If it gets a response this will be a
list of the methods that have updated versions available. The check for updates
function will then request these methods from the method registry.

#Check For Updates function
def CheckForUpdates (my_methods)
init list_methods_with_updates_available
try:
connect to Method Registry (or use POST or whatever
depending on technology)
send my_methods
wait for response = list_methods_with_updates_available
except:
log not working, try again later???
throw error?

for method_id in list_methods_with_updates_available:
GetMethod (method_id)

Listing 23: Check For Updates pseudo code

The get method function, shown in listing 24, is used in the check for updates
function. It takes a method id as input. The function will attempt to connect
to the method registry and request the method with the given id.

#Get Method function
def GetMethod (method_id):
try:
connect to Method Registry
get method with id = method_id
if 0K:
add new method to my_methods
delete o0ld method
except:
error

Listing 24: Get Method pseudo code

The verify method, shown in listing 25, is used to verify a method. The
use of this is for devices to ensure that another device has not had the method
changed. The function takes a method id and a checksum generated by the
device’s version of the method. This function will then send both to the method
registry, and the registry will answer whether the checksum is correct or not.

34

1

2

#Verify Method function
def VerifyMethod(method_id, check_sum)

try:
connect to Method Registry
send method_id and check_sum
if response OK:
return True
elif response NOT O0OK:
return False:
except:

return "-1"/error

Listing 25: Verify Method pseudo code

5.2 Extensions

In this section I describe some suggestions to extend the existing architecture.
In particular, I have looked at options for routing. I have two suggestions
for how routing can be done where alternative connections are utilized. The
new architecture does not include a routing scheme for utilizing alternative
connections. I have come up with two general suggestions for routing schemes
that could be used in the future. The first one is based on the A*-algorithm
used for finding the shortest path in a graph. The other is based on the devices
having knowledge of the topology of the core network. The two suggestions are
further described below.

The A*-algorithm uses a combination of the cost already made to get to a
node in the network, with a heuristic function to estimate the cost of getting
from the current node to the goal [6]. The costs would in this case be the
time used, and my suggestion is to use historical data saved in the devices
for different connections as the heuristic of cost from the node to the goal.
This approach would either require sending several copies of the initial packages
through different paths, until the shortest path is found, or the shortest paths
found during setup and/or low load times for the network. Other heuristic
functions could also be used and might improve this approach further.

If the devices have knowledge of their physical position, as well as the phys-
ical position of the other nodes in the network. In this case, the package could
be sent to the connected node that is closest to the goal node. There is however
an issue with this approach illustrated in figure 9. The larger shape illustrates
a building, the circles are nodes in the network and the red line is a wall dis-
rupting connections. In this scenario the node marked S is the start node, and
it is sending a package to the goal node marked G. Although if the start node
will not directly try to send the package to the goal node, when it sends the
package to the node marked N1 then that will send it back to the start node. A
way of attempting to solve this is finding the entire path, but that will be more
similar to the A*-algorithm suggestion using physical location as the heuristic
function.

35

Figure 9: Illustration of closest physical node issue.

These are only two suggestions for routing schemes that could be used to
utilize the alternative connections in the architecture. There could be several
other existing routing schemes that could also be used for the architecture. In
order to simulate the architecture more accurately, a routing scheme should be
used. This is further discussed in the discussion section.

6 Conclusion

In this section I will present conclusions based on the results and the discussion
sections. I will first present conclusions for some of the partial issues discussed.
Finally, I will make a conclusion on whether the project as a whole is worth
further research and work.

The most significant improvement in results for the alternative network com-
pared to the reference network was found for a higher number of users. Although
more testing should be done, this suggests that the alternative network is more
capable of handling high data loads. This is consistent with the benefit of
efficiency described in the project report.

The results for the alternative network compared to the reference network
was either better or similar in all the simulations done as part of this thesis.
This is a clear indication that there should be done further work and research
on the suggested architecture.

36

Acronyms

CSMA /CS Carrier Sense Multiple Access with Collision Avoidance 27

IoT Internet of Things 5, 6

LAN Local Area Network 5, 6

TDMA Time Division Multiple Access 27

References

[1]
2]

Y. A. Badamasi. The Working Principle Of An Arduino. 2014. 1SBN: 9781479941063.

DOI: 10.1109/ICECC0.2014.6997578

B. Bellalta. “IEEE 802.11ax: High-efficiency WLANS; IEEE 802.11ax: High-
efficiency WLANS”. In: IEEE Wireless Communications 23 (2016). DOI:
10.1109/MWC.2016.7422404.

G. Gu and G. Peng. The Survey of GSM Wireless Communication System.
2010. 1SBN: 9781424485987. DOI: 10.1109/ICCIA.2010.6141552.

M. Holicky. “Selected Models of Discrete Variables”. In: Introduction to
Probability and Statistics for Engineers. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 53-62. 1SBN: 978-3-642-38300-7. DOI: 10.1007/978-
3-642-38300-7{_}5. URL: https://doi.org/10.1007/978-3-642~
38300-7_5.

MicroPython - Python for microcontrollers. URL: https://micropython.
org/.

S. J. 1. Russell and P. 1. Norvig. Artificial intelligence a modern approach.
Third. Pearson, 2010. 1SBN: 978-1292153964.

S. Al-Sarawi et al. Internet of Things (IoT) Communication Protocols : Re-
view National Advanced IPv6 Centre (NAV6). 2017. 1sBN: 9781509063321.

D. Vassis et al. The IEEE 802.11g standard for high data rate WLANSs;
The IEEE 802.11g standard for high data rate WLANs. Tech. rep. 2005.
DOI: 10.1109/MNET.2005.1453395.

37

https://doi.org/10.1109/ICECCO.2014.6997578
https://doi.org/10.1109/MWC.2016.7422404
https://doi.org/10.1109/ICCIA.2010.6141552
https://doi.org/10.1007/978-3-642-38300-7{_}5
https://doi.org/10.1007/978-3-642-38300-7{_}5
https://doi.org/10.1007/978-3-642-38300-7_5
https://doi.org/10.1007/978-3-642-38300-7_5
https://micropython.org/
https://micropython.org/
https://doi.org/10.1109/MNET.2005.1453395

A Results 100 simulations with same parame-

ters
Simulation | Reference | Alternative | Packages Sent
1 13479 13567 63584
2 12425 12545 45283
3 13101 13072 56567
4 14072 14322 55503
5 13157 13246 44506
6 13912 14165 52089
7 14032 13962 49123
8 13922 13986 46092
9 13407 13547 50395
10 13742 13859 54074
11 13408 13368 47869
12 14038 14029 52508
13 14558 14671 48117
14 14257 14414 49751
15 14331 14425 53883
16 14338 14473 48071
17 13926 13986 45360
18 14228 14312 50246
19 14224 14369 48955
20 14114 14232 48536
21 13416 13422 65602
22 11404 11507 41715
23 13208 13249 58331
24 14030 13965 52846
25 12736 12859 50573
26 13969 14012 50223
27 14405 14554 59713
28 13727 13865 51276
29 13761 13915 50420
30 13771 13867 52838

38

Simulation
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

Reference
14142
14107
14456
13862
14076
13470
14528
13834
14407
14293
14144
14220
14417
13920
14141
13548
14053
14273
14053
13985
14022
13354
14429
14870
14136
14313
13594
13992
14395
14252
13801
13994
13822
13721
14149
14335
13875
14535
14120
14254

Alternative
14198
14273
14417
13918
14215
13532
14559
13907
14441
14342
14334
14240
14534
14215
14255
13798
14164
14309
14094
14022
14227
13425
14527
15003
14294
14493
13650
14030
14460
14294
13847
14061
13834
13847
14482
14337
13981
14663
14176
14370

39

Packages Sent
48881
52596
57728
53596
51500
47789
47013
49856
54694
51998
46969
52627
49641
45004
52137
48426
57220
53056
49163
48407
52409
51137
56385
53226
54327
54039
53820
50061
48613
50222
49366
53932
54491
52139
52909
50419
50651
51134
50980
46411

Simulation
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

Reference
13832
13626
13882
14334
14162
13905
14546
14082
14517
14427
14446
13933
13883
14549
13922
14318
14221
13580
14482
14211
14080
14195
13640
13712
13826
13758
13854
13685
13475
14671

Alternative
13992
13844
13981
14459
14254
14135
14836
14044
14682
14531
14630
14029
13946
14676
14033
14370
14294
13675
14494
14326
14005
14386
13726
13750
13993
13803
13954
13853
13595
14805

40

Packages Sent
51269
53849
52928
51629
49722
51618
54488
47356
54100
49553
51007
49779
52943
51536
44565
47691
49126
55954
56940
54749
48668
51094
59184
56138
50775
50409
50272
50549
49446
53479

B Simulator code

B.1 Simulation.py

from imports.node import node

from imports.user import user

from imports.network import routers_and_nodes, routers_and_nodes_alt
from imports.network import network_results

from imports.package import package_results

from imports.datetime import get_now

from numpy import sum

from numpy.random import randint

File imports/simulation.py

class simulation

options:

is_alt: boolean, wether alternative connections should be added.
alt_connections: int, number of alternative connections to make (if is_alt=true)
number_of_routers: int, number of router nodes to make
number_of_nodes_per_router: int, number of nodes to make per router
max_send_data_packages: int, maximum number of data packages generated per task

description:

The simulation class handles one simulation of a network of nodes. It has a set
of routers and devices. The network created has the routers connected in a line,
and the nodes are connected to all other nodes for the same router as well as
the router. For nodes not connected to the same router it will send it to its
router.

Methods:

Tick:

A1l nodes get a tick call

A1l routers get a tick call

A1l nodes call check_received, process_package and send_package
A1l routers call check_received, process_package and send_package

Function simulation_results:
Returns a string with results from the routers, nodes and packages that got to
the package_sink. The package sink is where data packages are placed when

recieved by the goal node.
nnn

class simulation:
def __init__(self, name="Simulation",

41

is_alt = False, alt_connections = O,

number_of_routers = 1, number_of_nodes_per_router = 1,
max_send_data_packages = 5):

self._name = name

self._number_of_routers = number_of_routers
self._number_of_nodes_per_router = number_of_nodes_per_router
self._max_send_data_packages = max_send_data_packages

self._routers = [node(str(i), self, pretty_name="Router " + str(i))
for i in range(number_of_routers)]

self._devices = [I[
node
node(str(i)+"."+str(j), self,
max_send_data_packages=max_send_data_packages,
pretty_name="Device " + str(i)+"."+str(j))
inner list of nodes (one list per router)
for j in range(number_of_nodes_per_router)]
outer list of list of nodes
for i in range(number_of_routers)]

if is_alt:

routers_and_nodes_alt(self._routers, self._devices, alt_connections)
else:

routers_and_nodes(self._routers, self._devices)

self._devices = [
node for list_of_nodes in self._devices for node in list_of_nodes]

self._package_sink = []

def __str__(self):

return self._name

def add_to_sink(self, package):
self._package_sink.append(package)

def get_sink_packages(self):
return self._package_sink

def tick(self):
for device in self._devices:

device.tick()

for router in self._routers:
router.tick()

42

for device in self._devices:
device.check_received()
device.process_package()
device.send_package()

for router in self._routers:
router.check_received()
router.process_package ()
router.send_package ()

def get_devices(self):
return self._devices

def get_routers(self):
return self._routers

def get_device_by_ip(self, ip):
for device in self._devices:

if device.get_ip_address() == ip:
return device
return -1

def run_sim(users, ref_simulation, alt_simulation, simulation_cycles):
simulations = [ref_simulation, alt_simulation]
end_of_simulation = False
packages_sent_before = sum([user.get_packages_sent() for user in users])
while not end_of_simulation:
for user in users:
if user.tick():
random_start_node = randint(len(simulations[0].get_devices()))
random_goal_node = randint(len(simulations[0].get_devices()))

start_node_siml = simulations[0].get_devices() [random_start_node]
goal_node_siml = simulations[0].get_devices() [random_goal_node]
user.create_package(start_node_siml, goal_node_siml)

for i in range(1, len(simulations)):
sim = simulations[i]
start_node = sim.get_device_by_ip(
start_node_siml.get_ip_address())
goal_node = sim.get_device_by_ip(
goal_node_siml.get_ip_address())
user.create_package (start_node, goal_node)

43

def

user.package_sent ()

user.set_new_task_time()

for sim in simulations:
sim.tick()

simulation_cycles -= 1
if simulation_cycles <= 0:
end_of_simulation = True

packages_sent_after = sum([user.get_packages_sent() for user in users])
packages_sent = packages_sent_after - packages_sent_before

return len(ref_simulation.get_sink_packages()),\
len(alt_simulation.get_sink_packages()), \
packages_sent

simulation_results(sim, sim_name):
result_string = "#####EEHEEHEEEEEEEEE R \n

result_string
result_string
result_string
result_string
result_string
result_string
result_string
result_string
return result_

+= "Results for simulation "

+= sim_name + "\n"

+= “HEEHHE R R R R R R
+= network_results(sim.get_routers())

+= network_results(sim.get_devices())

+= package_results(sim.get_sink_packages())

= M e "
4= nn

string

44

B.2 Package.py

from imports.datetime import get_now
from numpy import sum

class header:
def __init__(self, sender, target, time):
self._sender = sender
self._target = target
self._time = time
self._ticks_alive = 0

def get_time(self):
return self._time

def get_target(self):
return self._target

def get_sender(self):
return self._sender

def get_ticks(self):
return self._ticks_alive

def tick(self):
self._ticks_alive += 1

class payload:
def __init__(self, is_task, is_ping, data):
self._is_task = is_task
self._is_ping = is_ping
self._data = data

def get_is_task(self):
return self._is_task

def get_is_ping(self):
return self._is_ping

class package:
def __init__(self, header, payload):

self._header = header
self._payload = payload

45

def get_header(self):
return self._header

def get_payload(self):
return self._payload

def tick(self):
self._header.tick()

def ping(sender_ip_address, target_ip_address):
t_header = header(
sender_ip_address,
target_ip_address,
get_now())
t_payload = payload(False, True, {})
return package(t_header, t_payload)

def task(sender_ip_address, target_ip_address):
t_header = header(
sender_ip_address,
target_ip_address,
get_now())
t_payload = payload(True, False, {})
return package(t_header, t_payload)

def data(sender_ip_address, target_ip_address, payload_data={}):
t_header = header(
sender_ip_address,
target_ip_address,
get_now())
t_payload = payload(False, False, payload_data)
return package(t_header, t_payload)

def package_results(packages):
if len(packages) ==
return "No packages in list"
result_string = "### Package Results ###\n"
num_packages = len(packages)
result_string += "Number of packages = " + str(num_packages) + "\n"
package_ticks = [package.get_header().get_ticks()
for package in packages]
avg_ticks = sum(package_ticks) / num_packages
result_string += "Average ticks alive = " + str(avg_ticks) + "\n"
return result_string

46

B.3 User.py

from imports.datetime import get_now

from numpy.random import exponential

from math import floor

from imports.package import task, ping, data

class user:
def __init__(self, wait_multiplier=1, task_rate=1, pretty_name=""):

self._pretty_name = pretty_name
self._wait_multiplier = wait_multiplier
self._task_rate = task_rate
self._next_task = 0
self._packages_sent = 0
self._packages_recieved = 0

def __str__(self):
if self._pretty_name == "":
return "Unnamed User"
else:

return "User: " + self._pretty_name

def add_package(self, package):
self._packages_recieved += 1 # sink for packages

def set_new_task_time(self):
self._next_task = self._wait_multiplier *\
floor(exponential(1/self._task_rate))

def tick(self):
self._next_task =1
return self._next_task <= 0

def package_sent(self):
self._packages_sent += 1

def get_packages_sent(self):
return self._packages_sent

def create_package(self, start, target):
Setting sender ip address to start node, simulating that as the
device the user sends the request from
outgoing_package = task(start.get_ip_address(), target.get_ip_address())
start.task_started()
start.add_package (outgoing_package)

47

def write_results(self):
result_string = "### Results for " + str(self) + "###\n"

result_string = "Packages sent: " + str(self._packages_sent) + "\n"
return result_string
#print ("Packages recieved: ", self._packages_recieved)

def user_results(users):
result_string = "### User Results ###\n"
for user in users:
result_string += user.write_results()
return result_string

48

B.4 Node.py

from imports.datetime import get_now
from imports.package import data
from numpy.random import randint

class node:
def __init__(self, ip_address, parent_simulation,
max_send_data_packages=1, is_test=False, pretty_name=""):
self._pretty_name = pretty_name

self._parent_simulation = parent_simulation

self._ip_address = ip_address
self._max_packages = max_send_data_packages

self._lookup_table = {}
self._package_queue = []
self._current_package = None
self._outgoing_packages = []

self._idle_cycles = 0
self._packages_sent = 0
self._data_packages_received = 0

self._tasks_started = 0
self._tasks_finished = 0

if is_test:
pass
file = open(join(unique_string, "test.json"), "w")
test_package = ping(self, self)
file.write(create_json(test_package))
file.close(Q)

def task_started(self):
self._tasks_started += 1

def task_finished(self):
self._tasks_finished += 1

def __str__(self):
if self._pretty_name == "":
return "Unnamed Node"

else:

49

def

def

def

def

def

def

def

return "Node: " + self._pretty_name

get_ip_address(self):
return self._ip_address

add_package (self, package):
self._package_queue.append (package)

remove_lookup_entry(self, ip_address):
self._lookup_table.pop(ip_address)

add_lookup_entry(self, ip_address, node):
self._lookup_table[ip_address] = node

lookup(self, ip_address):
if "." in ip_address:
try:
return self._lookup_table[ip_address]
except:
last_dot_index = ip_address.rfind(".")
return self.lookup(ip_address[:last_dot_index])
else:
try:
return self._lookup_table[ip_address]
except:
return -1

tick(self):
for package in self._package_queue:
package.tick()

for package in self._outgoing_packages:
package.tick()

check_received(self):
if len(self._package_queue) ==
self._idle_cycles += 1
else:
sort packages by time
self._package_queue = sorted(self._package_queue,
key=lambda p: p.get_header().get_time())
self._current_package = self._package_queue.pop(0)

def process_package(self):

if self._current_package is not None:

50

if self._current_package.get_header().get_target() == self._ip_address:
package to me
self._parent_simulation.add_to_sink(self._current_package)
if self._current_package.get_payload().get_is_task():
generate data package as response
num_packages = randint(self._max_packages)
for i in range(num_packages):
package = data(self._ip_address,
self._current_package.get_header () .get_sender())
self._outgoing_packages.append(package)
elif self._current_package.get_payload().get_is_ping():
ping, so send data package with time used to get here
time_used = get_now() \
- self._current_package.get_header() .get_time()

out_data = { "time_used": time_used }

self._outgoing_packages.append(data(self._ip_address,
self._current_package.get_header () .get_sender(),
payload_data=out_data))
else:
self._data_packages_received += 1
self.task_finished()
package of data sent to this device

else:
pass
package not to this node, forwarding
set outgoing_package to current_package
self._outgoing_packages.append(self._current_package)
continue to send_package
self._current_package = None

def send_package(self):
if len(self._outgoing_packages) > O:
outgoing_package = self._outgoing_packages.pop(0)

target_ip_address = outgoing_package.get_header() .get_target()
target_node = self.lookup(target_ip_address)

if target_node == -1:
print("Node with ip: ", target_ip_address,
" not found in lookup table.")
else:
target_node.add_package (outgoing_package)

o1

self._packages_sent += 1

def write_results(self):
result_string = "### Results for " + str(self) + "###\n"

result_string
result_string

result_string
result_string

result_string
result_string

result_string
return result_

+= "Packages sent: " + str(self._packages_sent) + "\n"

+= "Packages received: " +\
str(self._data_packages_received) + "\n"

+= "Idle cycles: " + str(self._idle_cycles) + "\n"

+= "Length incoming queue: " +\
str(len(self._package_queue)) + "\n"

+= "Length outgoing queue: " +\
str(len(self._outgoing_packages)) + "\n"

+= "Tasks started: " + str(self._tasks_started) + "\n"

+= "Tasks finished: " + str(self._tasks_finished) + "\n"

string

92

B.5 Network.py

from numpy.random import randint

File imports/mnetwork.py
Top-level functions: routers_and_nodes, routers_and_nodes_alt
and network_results

Routers_and_nodes:
Uses the line_connect function to connect the routers in a line, fully connects

the

set of nodes for a router with themselves and their router, and forwards all

other ip addresses to their router. This esentially creates a network with

def

def

def

def

def

def

def

def

remove_connection(node, ip_address):
node.remove_lookup_entry(ip_address)

indirect(node_a, node_b, ip_address):

if node_a.get_ip_address() == ip_address:
return

node_a.add_lookup_entry(ip_address, node_b)

one_way (node_a, node_b):

if node_a.get_ip_address() == node_b.get_ip_address():
return

node_a.add_lookup_entry(node_b.get_ip_address(), node_b)

indirect_list(node_a, node_b, ip_addresses):
for ip_address in ip_addresses:
indirect(node_a, node_b, ip_address)

both_ways(node_a, node_b):
one_way(node_a, node_b)
one_way (node_b, node_a)

one_to_all(origin_node, node_list):
for node in node_list:
one_way (origin_node, node)

one_to_all_both_ways(origin_node, node_list):
for node in node_list:

both_ways(origin_node, node)
fully_connect(node_list):

for node in node_list:

93

copied_node_list = node_list.copy()
copied_node_list.remove(node)
one_to_all(node, copied_node_list)

def circle_connect(node_list):
for i in range(len(node_list)):
if i ==
one_way (node_list[-1], node_list[0])
else:
one_way (node_list[i-1], node_list[i])

def line_connect(node_list):
future_ips = [node.get_ip_address() for node in node_list]
past_ips = []
for i in range(len(node_list)):
future_ips.remove(node_list[i] .get_ip_address())
if len(past_ips) > O:
indirect_list(node_list[i], node_list[i-1], past_ips)
if len(future_ips) > 0:
indirect_list(node_list[i], node_list[i+1], future_ips)
past_ips.append(node_list[i].get_ip_address())

def routers_and_nodes(routers, list_of_list_of_nodes):

assumes nodes connected to a router has ip’s as follows:

router ip i.e. "123"

nodes connected to that router has ip’s "123.XXX"

if not len(routers) == len(list_of_list_of_nodes):
raise ValueError(
"routers_and_nodes: length of routers list must be the same as length)\
of list of list of nodes.")

router_ips = [router.get_ip_address() for router in routers]
line_connect(routers)
for i in range(len(list_of_list_of_nodes)):
router connected to all its nodes
one_to_all(routers([i], list_of_list_of_nodes[i])
a router is connected to one other router, and all router ips map to
that other router
#indirect_list(routers[i-1], routers[i], router_ips)

router = routers[i]

local_nodes = list_of_list_of_nodes[i].copy()

o4

for node in local_nodes:
router connected to its nodes
one_way (router, node)
nodes map all router ips to its router
indirect_list(node, router, router_ips)

def routers_and_nodes_alt(routers, list_of_list_of_nodes, other_connections):
routers_and_nodes(routers, list_of_list_of_nodes)
for i in range(other_connections):
random_router = randint(len(routers))
random_node = randint(len(list_of_list_of_nodes[random_router]))
random_router2 = randint (len(routers))
while random_router == random_router2:
random_router2 = randint(len(routers))
random_node2 = randint(len(list_of_list_of_nodes[random_router2]))
nodel = list_of_list_of_nodes[random_router] [random_node]
node2 = list_of_list_of_nodes[random_router2] [random_node2]
both_ways(nodel, node2)

def network_results(node_list):
function to print results after a simulation
result_string = "### Network Nodes Results ###\n"
for node in node_list:
result_string += node.write_results()

return result_string

99

B.6 Datetime.py

from datetime import datetime, timedelta
def datetime_to_int(datetime_obj):

diff = datetime_obj - datetime.min

return diff.days * 24 * 60 * 60 + diff.seconds
def int_to_datetime(int):

return datetime.min + timedelta(0, int)

def get_now():
return datetime_to_int(datetime.now())

96

	Introduction
	The Simulator
	Package class
	Node class
	Network functions

	Results
	Testing and problem discovery
	Proper results

	Discussion
	The simulator
	The results

	Future work
	Implementation
	Pseudo-code
	Classes
	Method User
	Registry Mediator

	Extensions

	Conclusion
	Acronyms
	Results 100 simulations with same parameters
	Simulator code
	Simulation.py
	Package.py
	User.py
	Node.py
	Network.py
	Datetime.py

