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Summary. –  A new procedure to the direct atmospheric gravity effect, in connection with Stokes's 

integral formula, was presented by Nahavandchi (2002). This formula was derived by combining 

the local contributions of the effect of atmospheric masses, computed from a detailed Digital 

Terrain Model (DTM) and a set of spherical harmonics to account for the global contributions. 

This formula is valid for a point on the geoid, which indicates this fact that the direct effect and the 

effect of analytical continuation of gravity anomalies to sea level (due to the atmospheric masses) 

are combined into the so-called direct atmospheric effect. These two terms are studied here and a 

new strategy for the effect of atmospheric masses in geoid computations is presented. This strategy 

has been investigated over a test area. 
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1. – INTRODUCTION 

 

Geoid determination by Stokes's well-known formula requires that there are no masses 

outside the geoid. Stokes's formula also requires that gravity anomalies Δg must refer to the geoid. 

Consequently, the effect of the atmospheric masses must be removed or reduced, which corresponds 

to the so-called direct effect on gravity anomaly. Stokes's formula applied to these corrected gravity 

anomalies results to the co-geoid. The restoration of the atmosphere corresponds to the indirect 

effect, i.e., the correction from the co-geoid to the geoid. Ecker and Mittermayer (1969) derived a 

formula for the direct atmospheric effect on the gravity, which later named the IAG approach. This 

method is described in Moritz (1980). Sjöberg (1993) emphasized that there could be additional 

significant direct and indirect atmospheric effects stemming from a more detailed treatment of 

Earth's topography than is made in the IAG approach.  Sjöberg (1999) and Sjöberg and Nahavandchi 

(2000) investigated the direct and indirect atmospheric gravity and geoid effects in the original and 

modified Stokes's formula. They derived a formula for the direct atmospheric gravity and geoid 

effects using a spherical harmonic representation of the topography. Later, Nahavandchi (2002) 

derived another formula for the direct atmospheric effect, combining a local contribution term with 

a set of spherical harmonics. This effect was derived at a point on the geoid. In this paper, we will 

improve this formula for a point on the topography (direct atmospheric effect on the topography), 

and then, the effect of downward continuation of gravity anomalies to the geoid (due to the 

atmospheric masses) will be investigated. This means that the direct atmospheric effect, computed 

at the geoid, will be split to two terms. These formulas will also be investigated numerically in a test 

area. 
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2. – DIRECT ATMOSPHERIC EFFECT COMPUTED AT A POINT ON THE GEOID 

Following the approach presented in Sjöberg and Nahavandchi (2000), the atmospheric 

potential at an arbitrary point P can be written:  

 

𝑉𝑎(𝑃) = ∬ ∫
𝜌𝑎𝑟2𝑑𝑟

ℓ𝑃

∞

𝑟𝑠𝜎
     (1) 

 

where 𝜌𝑎   is the density of the air scaled by the gravitational constant G,                                                     

ℓ𝑃 = √𝑟𝑃
2 + 𝑟2 − 2𝑟𝑃𝑟 cos 𝜓, 𝑟𝑃, r, 𝑟𝑠 are the geocentric radii of P, the running point under the 

integral and Earth's surface, respectively, 𝜓 is the geocentric angle and  is the unit sphere. Finally, 

the atmospheric potential to the first power of topographic height H can be written as (Sjöberg and 

Nahavandchi 2000): 

𝑉𝑎(𝑃) = 4𝜋𝜌0𝑅2 {
1

𝜐−2
− ∑

1

2𝑛+1
(

𝑟𝑃

𝑟
)

𝑛 𝐻𝑛(𝑃)

𝑅
∞
𝑛=0 }   (2) 

 

where 

 

𝐻𝑛(𝑃) = ∑ 𝐻𝑛𝑚𝑌𝑛𝑚(𝑃)𝑛
𝑚=−𝑛      (3) 

 

and 

 

𝐻𝑛𝑚 =
1

4𝜋
∬ 𝐻

𝜎
𝑌𝑛𝑚𝑑𝜎     (4) 

 

and  

 

𝐻𝑃 = ∑ 𝐻𝑛𝑚𝑌𝑛𝑚(𝑃) = ∑ 𝐻𝑛(𝑃)∞
𝑛=0𝑛,𝑚    (5) 

 

 

Here the harmonics 𝑌𝑛𝑚 obey 

 
1

4𝜋
∬ 𝑌𝑛𝑚𝜎

𝑌𝑛′𝑚′𝑑𝜎 = {
1           if n=n' and m=m'
0                          otherwise

  (6) 

 

Also, 𝜌0 is the density of the atmosphere at the radius of sea-level (𝜌0) multiplied by the 

gravitational constant (G), 𝜐 > 2 is a constant and R is the mean Earth radius. 

 

Thereafter, the atmospheric gravity and gravity anomaly can be derived as (Sjöberg and 

Nahavandchi 2000): 

 

𝑔𝑎(𝑃) = −
𝜕

𝜕𝑟𝑃
𝑉𝑎(𝑃) ≐ 2𝜋𝜌0𝐻(𝑃)    (7) 

 

 

and 

 

Δ𝑔𝑎(𝑃) = − (
𝜕

𝜕𝑟𝑃
+

2

𝑟𝑃
) 𝑉𝑎(𝑃) ≐ 4𝜋𝜌0 ∑

𝑛+2

2𝑛+1
𝐻𝑛(𝑃)∞

𝑛=0  (8) 
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Nahavandchi (2002) improved eq. (8) at a point on the geoid to the first power of elevation 

H as:  

 

Δ𝑔𝑎(𝑃) = 2𝜋𝜌0[𝐻𝑃 + 3�̅�𝑃]     (9) 

 

 

where 

 

�̅�𝑃 = ∑
1

2𝑛+1
𝐻𝑛(𝑃)∞

𝑛=0      (10) 

 

 

To derive the above equations 𝜐 = 3 and 𝑟𝑃 = 𝑅 are used. Equation (9) shows that there are 

both local and global contributions to the direct atmospheric gravity effect.  

 

3. – THE DIRECT ATMOSPHERIC EFFECT AT A POINT ON THE TOPOGRAPHY  

 

A more detailed treatment of the formula for the direct atmospheric effect may lead to 

additional significant effects. Equation (8) is derived based on the assumption that 𝑟𝑃 = 𝑅, i.e., 

neglecting the topographical height H. Rewriting this formula for a point P' at the topographical 

surface, one obtains: 

 

Δ𝑔𝑎(𝑃′) = 4𝜋𝜌0 ∑ (
𝑟

𝑝′

𝑅
)

𝑛−1 𝑛+2

2𝑛+1
𝐻𝑛(𝑃)∞

𝑛=0    (11) 

 

Equation (11) can also be written similar to eq. (9). It is 

 

 

Δ𝑔𝑎(𝑃′) = 2𝜋𝜌0[𝐻𝑃′ + 3𝐻′̅̅ ̅
𝑃′]    (12) 

 

 

where  

 

𝐻′̅̅ ̅
𝑃′ = ∑ (

𝑟
𝑝′

𝑅
)

𝑛−1 1

2𝑛+1
𝐻𝑛(𝑃′)∞

𝑛=0     (13) 

 

The difference between eq. (8) and eq. (11) can be regarded as the downward continuation 

effect of the atmospheric masses on the gravity anomalies and can be written as: 

 

δΔ𝑔𝑎(𝑃′) = 4𝜋𝜌0 ∑ [(
𝑟

𝑝′

𝑅
)

𝑛−1

− 1]
𝑛+2

2𝑛+1
𝐻𝑛(𝑃′)∞

𝑛=0   (14) 

  

This effect can be computed with a spherical approximation of 𝑟𝑃′ = 𝑅 + 𝐻𝑃′. A more 

detailed treatment of eq. (14) may lead to additional significant atmospheric effects. It is obvious 

that the spherical harmonics will only provide global information and some short-wavelength 

contributions will be missing (considering the degree and order of expansions in this study). A 
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strategy is, if possible, to include the local contributions in the formula. This may be achieved if one 

can split Eq. (14) to two different terms. To do this, we first rewrite eq. (14) as follows: 

 

δΔ𝑔𝑎(𝑃′) = 4𝜋𝜌0 ∑ [(
𝑟

𝑝′

𝑅
)

𝑛−1

− 1]
1

2
(

3

2𝑛+1
+ 1) 𝐻𝑛(𝑃′)∞

𝑛=0        (15) 

 

or 

 

δΔ𝑔𝑎(𝑃′) = 4𝜋𝜌0 {
−𝐻

𝑃′

2
+ ∑ [(

𝑟
𝑝′

𝑅
)

𝑛−1

− 1]
1

2
(

3

2𝑛+1
) 𝐻𝑛(𝑃′) +∞

𝑛=0
1

2
∑ (

𝑟
𝑝′

𝑅
)

𝑛−1

𝐻𝑛(𝑃′)∞
𝑛=0 }  

                    (16)                             

 

where eq. (5) is used.  

 

One finally obtains 

 

δΔ𝑔𝑎(𝑃′) = 2𝜋𝜌0 [−𝐻𝑃′ + 3𝐻′̅̅ ̅′𝑃′ + ∑ (
𝑟

𝑝′

𝑅
)

𝑛−1

𝐻𝑛(𝑃′)∞
𝑛=0 ]      (17) 

 

where 

 

𝐻′′̅̅ ̅̅
𝑃′ = ∑ [(

𝑟
𝑝′

𝑅
)

𝑛−1

− 1]
1

2𝑛+1
𝐻𝑛(𝑃′)∞

𝑛=0            (18) 

 

 

Equation (17) shows that there are both local and global contribution terms to the gravity 

anomalies from the downward continuation effect of the atmospheric masses. The derived formula 

is the difference between the direct atmospheric effect computed at the topography and at the geoid.  

It is believed this new strategy, i.e. combination of the direct atmospheric effect at the topography 

[eq. (12)] with the downward continuation correction of eq. (17) treats the atmospheric effects in a 

more precise way, as the local contribution terms are present in both formulas. Only using the 

correction terms of eqs. (12) and (17), for removing the effect of atmospheric masses, the corrected 

gravity anomalies are allowed to be used in Stokes's formula (other correction terms to the gravity 

anomaly, the most important one the topographical corrections, must also be accounted. They are 

not studied here.) 

 

The effect of atmospheric masses on the geoid can also be computed. The Stokes formula 

must be used. The effect on geoid becomes:  

 

𝑁dir
𝑎 (𝑃′) =

𝑅

4𝜋𝛾
∬ 𝑆(𝜓)

𝜎
Δ𝑔𝑎(𝑃′)𝑑𝜎            (19) 

 

or  

 

𝑁dow
𝑎 (𝑃′) =

𝑅

4𝜋𝛾
∬ 𝑆(𝜓)

𝜎
δΔ𝑔𝑎(𝑃′)𝑑𝜎        (20) 
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where 𝑆(𝜓) is the Stokes function and 𝛾 is the mean normal gravity at sea-level. 

 

 

4. – NUMERICAL INVESTIGATIONS 

 

The direct atmospheric effect at a point on the topography will be computed from eq. (12) in 

a test area in Iran. This formula includes two terms representing the local contributions and global 

information. To investigate the effect of downward continuation of the atmospheric masses on the 

gravity anomalies, the differences between the direct atmospheric effects at the geoid and topography 

[eq. (14)] as well the new expression for these differences [eq. (17)] are computed in a test area in 

Iran. The test area is limited by latitudes 51 N and 54 N and longitudes 33 E and 36 E. The 

topography in this test area, depicted in fig. 1, varies from 50 to 5671 m. The height coefficients 𝐻𝑛𝑚 

are determined from eqs. (4) and (5). For this, a 30'  30' DTM is generated using the Geophysical 

Exploration Technology (GETECH) 5' 5' DTM  (GETECH, 1995). This 30'  30' DTM is averaged 

using area weighting. Since the interest is in continental elevation coefficients and we are trying to 

evaluate the effect of the masses above the geoid, the heights below sea level are all set to zero. The 

spherical harmonic coefficients of topographic heights are computed to degree and order 360. 

Parameter definitions are as follows: 𝜌0 = 𝐺𝜌0, where 𝐺 = 6.673  10-11 m3kg-1s-2 and 𝜌0 =
1.23 𝑘𝑔 𝑚3⁄ , R=6371 km, and 𝛾 = 981 Gal. The effects are computed to degree and order 360 so 

that the corresponding cell size is 30' × 30'. To compute the local contributions in the new formulas, 

a 1 km by 1 km DTM over Iran is used. The computation points are the same as the location of 1 km 

by 1 km DTM. It means that the local contributions are computed using the heights of computation 

points (H) (coming from 1 km by 1 km DTM) and the global contributions are determined from the 

spherical harmonic representation of topographical heights (𝐻𝑛). 

 

 
 

In the first attempt, the direct atmospheric effects at the point on the topography are computed 

and depicted in fig. 2. It reaches to 0.358 mGal in the test area. This amount of direct atmospheric 

effect agrees with the results of Andersson et al. (1975) investigation. They noted that the real 

atmosphere is neither laterally homogeneous nor regular in shape. In particular, its lower boundary 

is very irregular and, indeed, takes on the shape of Earth's topography. Because of this, the 
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atmospheric gravity effect is not the same even for points of equal altitude. They came up with a 

second-order atmospheric effect to gravity and the geoid. The magnitude of this correction on the 

gravity reaches to a few hundreds micro gal on gravity and more than 40 cm on the geoid.  

 

 
 

Fig. 3 shows the differences on gravity between the direct atmospheric effect computed at 

the geoid and at the topography (e.g. downward continuation correction). Spherical harmonics [eq. 

(14)] are used to present the differences. It reaches to 0.015 mGal over Damavand Mountain in the 

test area with a maximum elevation of 5671. It is obvious that this effect is not significant and can 

be neglected in a precise geoid determination. This effect in its present form, however, is computed 

through a set of spherical harmonics, which only presents the long-wavelength contributions. The 

new formula, on the other hand, i.e. eq. (17), presents the same effect in a more precise way. It 

includes the local information. The downward continuation effects, computed with eq. (17), are 

depicted in Fig. 4. It reaches to 0.354 mGal. It is obvious that the local contributions are the reason 

for the differences between the two eqs. (14) and (17). The differences between these two approaches 

are numerically realized in Fig. 5. It reaches to 0.35 mGal. The differences between two methods 

seem to be large enough to be considered in precise geoid computations.  These amounts of 

differences were expected as eq. (14) only uses a spherical harmonic representation of the 

topography, but eq. (17) uses both spherical harmonics and a dense DTM in this study. It is obvious 

that denser DTM than the one used in this study (1 km by 1 km) will show better the local 

irregularities. 
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In order to obtain further insight into the differences between eqs. (14) and (17), the geoid 

atmospheric effect in downward continuation of gravity anomalies is computed using eq. (20). This 

means that the results of eqs. (14) and (17) on the gravity anomalies are transferred on the geoid 

using eq. (20). The same test area is chosen. The geoid atmospheric effect reaches to 0.81 cm for the 

results of eq. (14) while it reaches to 4.2 cm using eq. (17).  This means that the local contributions 

of the downward continuation effect to the geoid (due to the atmosphere) are significant and must 

be considered in a precise geoid computation.  

 

 
 

Preliminary results show that the use of this new procedure in a gravimetric geoidal height 

computation (i.e. the use of eqs. (12) and (17) for removing the effect of atmospheric masses on the 

gravity anomalies) yields better agreement with the Global Positioning System (GPS)-levelling 

derived geoidal heights, which are used to demonstrate such improvements, than the results of 

gravimetric geoidal heights at to the same GPS stations but using the old formula. 
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5. – CONCLUSIONS 

 

A strategy to compute the direct atmospheric effect presented by Nahavandchi (2002) used 

the geoid surface for the computation points. To treat this effect in a more precise way, the direct 

atmospheric effect computed on the geoid is split to two terms: i) a direct effect at a point on the 

topography and ii) a downward continuation correction term from the topography to the geoid. It is 

shown that both these terms include local contributions and long-wavelength information. This 

implies that the previous formula may have some numerical problems in representing of all 

significant contributions. This new strategy and the previous one are then realized in a test area with 

the maximum elevation of 5671 m. It is shown that the differences can be significant. A maximum 

difference of 0.35 mGal is achieved, which is significant and must be included in a precise geoid 

determination. On the geoid, the differences reach to more than 4 cm.  
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