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A B S T R A C T   

Background and aims: Low cardiorespiratory fitness is a strong and independent risk factor for cardiovascular 
disease (CVD). Serum profiling of healthy individuals with large differences in cardiorespiratory fitness may 
therefore reveal early biomarkers of CVD development. Thus, we aimed to identify circulating lipoprotein 
subfractions differentially expressed between groups of individuals with large differences in cardiorespiratory 
fitness, measured as maximal oxygen uptake (VO2max). 
Methods: Healthy subjects (40–59 years) were selected from the third wave of the Trøndelag health study 
(HUNT3) based on having an age-dependent high VO2max (47.1 ± 7.7 mL kg− 1⋅min− 1, n = 103) or low VO2max 
(31.4 ± 4.9 mL kg− 1⋅min− 1, n = 108). The individuals were matched on gender, age, physical activity level and 
fasting status. 
Results: 99 lipoprotein subfractions were quantified in serum samples using nuclear magnetic resonance (NMR) 
lipidomics. Standard clinical analyses showed similar levels of total cholesterol, low-density lipoprotein (LDL)- 
cholesterol and high-density lipoprotein (HDL)-cholesterol between the groups, and slightly higher levels of 
triglycerides in participants with low VO2max. Thirteen lipoprotein subfractions were increased in the low VO2max 
group compared to the high VO2max group (p < 0.005), including mainly large very low-density lipoprotein 
(VLDL) subfractions. In addition, triglyceride levels in small-sized HDL and LDL particles were increased in 
participants with low VO2max. Correlation analyses between VO2max and lipoproteins subfractions displayed a 
negative correlation between VO2max and the levels of cholesterol and phospholipids in the small HDL particles. 
The lipoprotein profile of individuals with low VO2max is similar to the profile of insulin resistant individuals. 
Conclusions: Low VO2max was associated with enrichment of large VLDL particles, as well as an increased tri-
glycerides content in the small and dense HDL and LDL particles. This unfavorable lipid profile is likely to be 
involved in the strong associations between VO2max and CVD.   

1. Introduction 

Cardiorespiratory fitness, measured as maximal oxygen uptake 
(VO2max), is a strong marker of cardiac health. Large-scale epidemio-
logical studies have shown that low VO2max is the single best predictor of 
future cardiovascular disease (CVD) mortality both in healthy in-
dividuals and in patients with CVD [1–6]. Furthermore, there is an in-
verse relationship between VO2max and the presence of metabolic risk 

factors for CVD, such as atherogenic lipoproteins and levels of inflam-
mation markers [7,8]. However, profiles of serum lipoprotein sub-
fractions associated with low VO2max are still undetermined [9]. 

Based on this, lipoproteinprofiles of healthy individuals with low 
VO2max may provide information on processes associated with the initial 
phases of CVD development, as well as new biomarkers of 
atherosclerosis. 

Limitation in the ability to predict CVD risk have led to increased 
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clinical interest in identifying novel risk markers and improving the 
measurement of traditional risk factors, such as low-density lipoprotein 
cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C). In 
the recent years, the possibility to identify and quantify subfractions of 
lipid carriers has been largely improved by advances in lipidomics 
technology [10]. One of the main methods for lipidomics analysis is 
based on nuclear magnetic resonance (NMR) spectroscopy. NMR lip-
idomics utilizes differences in lipoprotein composition, size, and density 
to extract information about lipoprotein subclasses. Increasing evidence 
suggests that quantification of lipoprotein subfractions may provide the 
additional information that is missing in today’s evaluation of CVD risk 
[11]. 

The aim of this study was to determine differences in lipoprotein 
subfractions between healthy individuals with high and low VO2max. 

2. Materials and methods 

2.1. Study design 

This is a descriptive study exploring the differences in circulating 
lipoprotein subfractions between two groups of healthy participants 
with large differences in cardiorespiratory fitness levels. Serum NMR 
spectra from these participants have been used in a previous publication 
that did not extract information on lipoprotein subfractions [12]. 

2.2. Study population 

The participants were recruited from the third wave of the Trøndelag 
Health Study (HUNT3) in Norway, which was carried out from 2006 to 
2008 [13]. Among the 50.821 participants in HUNT3, 4.631 healthy 
adults attended the Fitness Study, a sub-study designed to measure 
VO2max [14]. Participants in the Fitness Study reported no history of 
heart and lung disease. From the Fitness Study, 220 individuals between 
the age of 40 and 59 were selected pairwise with one having low and the 
other high VO2max (selected from top or bottom 15 subjects within each 
age-year), but otherwise matched for gender, age in years, physical ac-
tivity index score (within 15% difference) and equal time since last 
meal. Ranged according to VO2max (quantified as mL⋅kg− 1⋅min− 1) 
maximum five pairs of subjects were matched from each age-year. All of 
the selected subjects reached their true VO2max (according to criteria 
given in Section 2.4). Two of the 220 subjects did not provide a blood 
sample, one subject was removed as an outlier based on principal 
component analysis (Supplementary Fig S1 and 6) subjects were later 
removed due to diabetes diagnosis. The final study population therefore 
included a total of 211 subjects. 

2.3. Clinical measurements 

Weight and height were measured on a combined scale (Model DS- 
102, Arctic Heating AS, Nøtterøy, Norway), and BMI was calculated as 
weight divided by height squared (kg/m2). Blood pressure and resting 
heart rate were measured while sitting (Critikon Dinamap 845XT, GE 
Medical Systems, Little Chalfont, Buckinghamshire, United Kingdom) 
according to established guidelines [15]. 

2.4. Quantification of VO2max 

An individualized protocol was applied to measure VO2max by 
treadmill running to exhaustion [16]. The VO2max test was performed 
using a ramp protocol where the speed was constant, and the incline was 
increased with 2% every second minute until VO2max was reached. Ox-
ygen uptake kinetics was measured directly by a portable mixing 
chamber gas-analyzer (Cortex MetaMax II, Cortex, Leipzig, Germany) 

with the participants wearing a tight face mask (Hans Rudolph, Kansas 
City, USA) connected to the MetaMax II. The system had previously been 
found valid [17]. Heart rate was measured by radio telemetry (Polar 
S610i, Polar Electro Oy, Kempele, Finland). From the warm-up pace, the 
load was regularly increased when oxygen uptake kinetics flattened. 
Along with a respiratory quotient of 1.05 or higher, a maximal test was 
considered achieved when the oxygen uptake did not increase more than 
2 mL kg− 1⋅min− 1 despite increased workload. VO2max was measured as 
liters of oxygen per minute (L/min), and subsequently calculated as 
VO2max relative to body mass (mL⋅kg− 1⋅min− 1). 

2.5. Blood analysis 

All clinical-chemical analyses were performed on fresh venous non- 
fasting blood samples at Levanger Hospital, Norway. Nonfasting 
glucose (mmol/L) was analyzed with the Hexokinase/G-G-PDH meth-
odology (reagent kit 3L82-20/3L82-40 Glucose, Abbot, (Clinical 
Chemistry, USA). HDL-cholesterol (mmol/L) was analyzed with the 
Accelerator selective detergent methodology (reagent kit 3K33-20 Ultra 
HDL, Abbot, Clinical Chemistry, USA). Triglycerides (mmol/L) were 
analyzed with the Glycerol Phosphate Oxidase methodology. LDL- 
cholesterol values were calculated using the Friedewald formula. The 
triglyceride/HDL ratio was calculated to estimate insulin resistance. 

2.6. NMR lipidomics 

Sample preparation and NMR analyses were performed at the MR 
Core Facility, NTNU, as previously described [12]. Serum samples (150 
μl) were mixed with equal amounts of buffer solution (0.075 mM 
Na2HPO4, 5 mM NaN3, 5 mM TSP, pH 7.4), and transferred to 3 mm 
NMR tubes. The MR spectra were acquired using a Bruker Avance II 
(Bruker Biospin, Rheinstetten, Germany) with digital receiver unit 
(DRU) operating at 600 MHz for proton (1H). The probe was a TCI 
1H–13C/15 N/D with z-gradient and automated tuning and matching 
unit. All spectra were recorded in an automatic fashion using a BACS-60 
sample changer and the ICON-NMR software (Bruker Biospin). Proton 
spectra were obtained at a constant temperature of 310 K using a 
modified Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence with pre-
saturation during the relaxation delay (Bruker: cpmgpr1d) to achieve 
water suppression and to facilitate the detection of low molecular 
weight species by avoiding the large, overlapped signals derived from 
proteins and large molecules. The spectra were collected with 64 scans 
and 4 dummy scans. The acquisition time was set to 3.067 s, measuring 
the FID via collection of 36,864 complex data point resulting in a sweep 
width of 20.0363 ppm. A relaxation delay of 4 s was used, during which 
a presaturation of 25 Hz was applied. Effective echo time was 80 ms and 
data acquisition starts at maximum of last echo. An exponential apod-
ization of 1 Hz was applied prior to Fourier transform. Measurement and 
processing were done in full automation using Bruker standard auto-
mation programs controlled by ICON-NMR (along with TopSpin v2.1 
patch level 6). Lipoprotein sub-classification from the resulting spectra 
was performed in collaboration with Bruker BioSpin (Germany) using 
the Bruker IVDr Lipoprotein Subclass Analysis (B.I.LISA™) [18]. Con-
centrations of cholesterol, free cholesterol, triglyserides, phospholipids, 
and apolipoprotein-A1, A2 and B in serum, as well as the amount in each 
of the lipoproteins (VLDL, IDL, LDL and HDL), were estimated (see 
Fig. 1). Each lipoprotein was further subdivided into subfractions ac-
cording to their density; VLDL into VLDL1-6, LDL into LDL1-6, and HDL 
into HDL1-4, with increasing density, and their concentrations of tri-
glycerides, cholesterol, free cholesterol, phospholipids, 
apolipoprotein-A1, A2 og B were estimated, yielding 99 variables 
(Supplementary Table S1). 
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2.7. Statistical analyses 

Statistical analyses were performed using SPSS statistics version 26.0 
(IBM SPSS, New York, USA) and MatLab R2017a with PLS_Toolbox 8.2.1 
(Eigenvector Research, Inc.). Univariate and multivariate statistical 
analyses were used to determine whether participant’s fitness level was 
associated with specific lipoprotein subfractions. Multivariate analyses 
were performed using principal component analysis (PCA) in Matlab 
(Eigenvector Research, Manson, WA, USA). The Shapiro Wilk test of 
normality was used to check for normally distributed data. Neither the 
clinical variables nor the lipoprotein subfractions were normally 
distributed. Therefore, the non-parametric Mann Whitney U test was 
used to compare the concentration of lipoprotein subfractions between 
the high and low VO2max groups. Spearman correlation analyses were 
performed within each group and for the whole cohort to compare 
VO2max levels to the concentration of lipoprotein subfractions. A strin-
gent significance level p < 0.005 was used to avoid random errors due to 
assessment of 99 non-independent lipoprotein subfractions. 

2.8. Ethics 

The study was approved by the Regional Committee for Medical 
Research Ethics, the Norwegian Data Inspectorate, and by the National 
Directorate of Health with study ID 2019/612. The study is in confor-
mity with Norwegian laws and the Helsinki declaration, and all partic-
ipants signed a document of consent. 

3. Results 

3.1. Clinical characteristics of study population 

Clinical characteristics of the individuals in the two VO2max groups 
are shown in Table 1. Significant differences were seen between the 
groups in body mass index (BMI), smoking status, and serum tri-
glycerides. One outlier was identified in the high VO2max group based on 
unsupervised principal component analysis (PCA) (Supplementary 
Fig. S1). This was due to a technical error in this sample and the 
participant was removed. 

3.2. VO2max and lipoprotein subfractions 

Thirteen lipoprotein subfractions were significantly different be-
tween the groups of high and low VO2max (p < 0.005) (Table 2), and all 
of them were higher in the low VO2max group. The concentrations of 
Apo-B, free cholesterol, cholesterol, phospholipids, and triglycerides in 
the large VLDL particles (VLDL1-3) were significantly higher in the low 
VO2max group compared to the high VO2max group. The most pro-
nounced differences were seen in lipid concentrations in the largest 
VLDL-subfraction that were found to be 41–50% higher in the low 
VO2max group (Table 2). The associations between VO2max groups and all 
quantified lipoprotein subfractions are shown in Supplementary 
Table S2. 

In addition to comparing lipoprotein subfractions between the two 

Fig. 1. Overview of the lipoprotein subfractions quantified by NMR lipidomics. 
VLDL: very low-density lipoprotein, IDL: intermediate-density lipoprotein, LDL: low-density lipoprotein, HDL: high-density lipoprotein, TG: triglycerides, CH: 
cholesterol, FC: free cholesterol, PL: phospholipids, AB: apolipoprotein B100, A1: apolipoprotein A1, A2: apolipoprotein A2, NMR: nuclear magnetic resonance. 
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groups with high and low VO2max, correlation analyses were performed 
between lipoprotein subfractions and VO2max. Lipoprotein subfractions 
that correlated significantly with VO2max both within each group sepa-
rately and in all samples together are shown in Table 3. 

4. Discussion 

We performed lipidomic analyses using NMR spectroscopy to 
quantify the differences in circulating lipoprotein subfractions between 
individuals with high and low cardiorespiratory fitness level. To our 
knowledge, no previous study has performed association analysis be-
tween gold standard quantified VO2max and a large number of lipopro-
tein subfractions. We observed group differences, and inverse 
correlations between VO2max levels and lipoprotein subfractions. Stan-
dard clinical analyses showed similar levels of total cholesterol and HDL- 
cholesterol between the groups, and slightly higher levels of tri-
glycerides in participants with low VO2max. Anthropometric and 

physiological variables were relatively similar between the groups, and 
within normal ranges. A significant, but small difference in BMI was 
found between the groups. There were also more daily smokers in the 
low VO2max group. 

Thirteen lipoprotein subfractions were higher in the low VO2max 
group compared to the high VO2max group (p < 0.005). The largest 
differences were seen among subfractions of VLDLs. In addition, the 
triglyceride concentration in small-sized HDL and LDL subfractions were 
significantly higher in individuals with a low VO2max. Using correlation 
analyses, the concentration of phospholipids and cholesterol in small- 
sized HDL subfractions were found to be inversly associated with 
VO2max. Interestingly, the lipoprotein profile of healthy individuals with 
low VO2max seemed to match the lipoprotein profile seen in insulin 
resistant individuals with increases in large VLDL particles, as well as 
higher levels of small HDL and LDL subfractions [19]. Several studies 
have previously shown that VO2max is associated with insulin resistance 
in different populations [20,21]. In our previous biomarker study of the 

Table 2 
Overview of lipoprotein subfractions that differed in concentration between the high VO2max and the low VO2max group (p < 0.005).  

Lipoprotein subfractions Abbreviations Low VO2max group (mean ± SD) High VO2max group (mean ± SD) Percentage higher in low VO2maxgroup (%) p-value 

HDL-subfractions (mg/dL) 
Triglycerides in HDL3 H3TG 2.0 ± 0.8 1.7 ± 0.7 18% 0.002 
LDL-subfractions (mg/dL) 
Triglycerides in LDL5 L5TG 3.5 ± 1.4 3.2 ± 1.6 10% 0.004 
VLDL-subfractions (mg/dL) 
Apo-B in VLDL VLAB 7.9 ± 3.0 6.9 ± 3.1 15% 0.001 
Free cholesterol in VLDL VLFC 12.6 ± 5.7 10.6 ± 5.4 19% 0.004 
Phospholipids in VLDL VLPL 25.1 ± 11.7 20.6 ± 11.2 22% 0.002 
Triglycerides in VLDL VLTG 110.8 ± 58.0 88.9 ± 51.6 25% 0.001 
Cholesterol in VLDL1 V1CH 9.1 ± 8.2 6.3 ± 6.6 44% 0.004 
Free cholesterol in VLDL1 V1FC 3.0 ± 2.7 2.0 ± 2.4 50% 0.001 
Phospholipids in VLDL1 V1PL 7.3 ± 6.1 5.0 ± 5.4 46% 0.001 
Triglycerides in VLDL1 V1TG 52 ± 42 37 ± 35 41% 0.001 
Cholesterol in VLDL3 V3CH 4.9 ± 2.7 4.1 ± 3.0 20% 0.004 
Free cholesterol in VLDL3 V3FC 2.3 ± 1.4 1.8 ± 1.3 28% 0.003 
Phospholipids in VLDL3 V3PL 5.2 ± 2.3 4.4 ± 2.4 18% 0.003 

VO2max: maximal oxygen uptake, SD: standard deviation, HDL: high-density lipoprotein, LDL: low-density lipoprotein, VLDL: very-low density lipoprotein. 

Table 3 
Lipoprotein subfractions correlation with levels of VO2max.  

Lipoprotein subfraction Abbreviations Low VO2max group High VO2max group All 

r p-value r p -value r p -value 

Cholesterol in HDL3 H3CH − 0.33 <0.0005 − 0.27 0.004 − 0.19 0.004 
Phospholipids in HDL3 H3PL − 0.35 <0.0005 − 0.28 0.003 − 0.24 <0.0005 

VO2max: maximal oxygen uptake, r: correlation coefficient, HDL: high-density lipoprotein. 

Table 1 
Clinical characteristics of the final study population.  

General Low VO2max group (n = 103) High VO2max group (n = 108) p-value 

VO2max (mL⋅kg− 1⋅min− 1) 31.4 ± 4.9 47.1 ± 7.7* 0.001 
Age, years 49.5 ± 5.9 49.5 ± 5.9 0.95 
Gender (female/male) 61/42 62/46 0.95 
Systolic blood pressure (mmHg) 129 ± 6 125 ± 14 0.08 
Diastolic blood pressure (mmHg) 75 ± 10 72 ± 10 0.05 
Body mass index 27.5 ± 4,0 24.8 ± 2.6* 0.01 
Daily smoker (n = yes) 20 11* 0.02 
Physical activity index score 3.7 ± 1.9 3.7 ± 1.9 0.95 
Fasting status (hours) 2.0 ± 1.0 2.0 ± 1.0 0.99 
Non-fasting glucose (mmol/L) 5.5 ± 0.9 5.2 ± 0.8 0.09 
Total cholesterol (mmol/L) 5.6 ± 0.9 5.5 ± 0.9 0.36 
LDL-cholesterol (mmol/L) 3.4 ± 0.8 3.4 ± 0.8 0.99 
HDL-cholesterol (mmol/L) 1.4 ± 0.4 1.4 ± 0.3 0.10 
Triglycerides (mmol/L) 1.7 ± 0.9 1.3 ± 0.7* 0.01 
Triglycerides/HDL-ratio 1.4 ± 1.2 1.0 ± 0.7* 0.03 

Data are mean ± SD. VO2max: maximal oxygen uptake, LDL: low-density lipoprotein, HDL: high-density lipoprotein. *Variables significantly different between the low 
VO2max group and high VO2max group at p < 0.05. 
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same cohort, a pro-atherogenic profile was associated with the low 
VO2max group, indicated by higher levels of both choline and unsatu-
rated fatty acids. 

4.1. VLDL-subfractions 

Despite similar fasting status and relatively small differences in 
cardiometabolic risk factors between the groups with high and low 
VO2max, the participants with low VO2max had about 50% more lipid- 
content in their large VLDL particles. Previous studies have shown 
that triglyceride levels in the large VLDL-1 particles are closely corre-
lated with insulin resistance and VO2max level [19,22,23]. In the absence 
of direct measures of insulin resistance in our cohort (e.g., insulin levels, 
oral glucose test or HbA1C), the triglyceride/HDL-ratio was calculated 
to estimate insulin sensitivity [24,25]. The low VO2max group had an 
average triglyceride/HDL-ratio of 1.4 and the high VO2max group had a 
ratio of 1.0. Although no standard reference range is established for the 
triglyceride/HDL-ratio, there are indications that triglyceride/HDL has 
an incremental association with insulin resistance [26–28]. Hence, it is 
likely that the individuals in the low VO2max group are more insulin 
resistant than those in the high VO2max group. 

It has been recognized that elevation of the large-sized VLDL1 par-
ticles initiates a sequence of events that lead to dyslipidemia, including 
the formation of small dense LDL and HDL subfractions. This is sup-
ported by enrichment of small LDL5 and HDL3 subfractions among in-
dividuals with low VO2max. In addition, low VO2max was associated with 
increased levels of Apo-B in VLDL particles. As each VLDL particle 
contains one molecule of Apo-B, this means that individuals of the low 
VO2max group have 15% more circulating VLDL particles than the high 
VO2max group. Increased levels of VLDL particles have previously been 
associated with visceral adiposity and type-2 diabetes [29]. 

4.2. HDL-subfractions 

HDL is highly heterogeneous in its size and composition. This het-
erogeneity arises partly during reverse cholesterol transport, as there is a 
constant remodeling of lipoproteins [30]. Standard clinical measure-
ment of HDL-C fails to capture this heterogeneity in composition, size, 
and biological function. Recently, it has been suggested that the pro-
tective role of HDL against atherogenesis may be related to the 
composition of the particles rather than the concentration [31]. In the 
current study, clinically measured total HDL-C was slightly higher in 
participants in the high VO2max group (non-significant). However, when 
separating HDL into subfractions according to size, we found the 
opposite; that the levels of cholesterol in HDL3 (H3CH) particles were 
inversely associated with VO2max. This indicates a shift towards the 
small-sized HDL particles with decreasing VO2max. These results are in 
line with a previous study comparing twins with long-term differences in 
physical activity level that reported less VLDLs, and a shift towards 
large-sized HDL particles in long-term physically active participants 
[32]. Additionally, a recent study by Jones et al. reported increased 
concentration of cholesterol in the large VLDL subclasses and increased 
triglycerides in the small-sized HDL subfractions in children with low 
cardiorespiratory fitness [33]. 

Previous studies have shown that larger HDL particles seem to pro-
tect against atherogenesis, while the smaller subclasses are positively 
correlated with the risk of CVD [19,34–44]. When measuring HDL-C by 
traditional methods, the positive and negative associations of small and 
large HDL particles may counteract each other. Hence, important in-
formation may be lost, and interpretation of HDL-C alone may not reflect 
the true clinical status. Our results are in line with previous statements 
suggesting that HDL size affects the function and could be clinically 
valuable for cardiovascular risk prediction [30,41]. However, conflict-
ing data still exists on HDL-subfractions and CVD-risk [45,46]. 

It is proposed that high levels of large HDL-C are more protective 
than high levels of small and dense HDL-C [34,47]. An NMR study by 

Holmes et al. identified an inverse relationship between cholesterol 
concentration in medium and large HDL particles with risk of myocar-
dial infarction [46]. These data are somewhat in line with our study, as 
H3CH was found to be inversely associated with VO2max. In 2018, Sacks 
et al. proposed the hypothesis that mainly medium and large-sized HDL 
are responsible for reverse cholesterol transport as cholesterol enters 
and exits without changing the HDL size [39]. If their hypothesis is 
correct, the small and dense HDL particles are potentially not as athe-
roprotective as the larger HDL particles. Our results support previous 
statements that measurement of cholesterol in HDL subfractions may be 
more valuable than the traditional HDL-C [34,44,47]. 

Additionally, there was a negative correlation between VO2max and 
the phospholipid-load in HDL3 particles. To our knowledge, the con-
centration of phospholipid HDL-subfractions has not been investigated 
in association with cardiorespiratory fitness and CVD risk. Phospho-
lipids are believed to influence the anti-oxidative properties of HDL, but 
the mechanism is not known [48]. 

4.3. LDL-subfractions 

It is widely accepted that LDL has a role in initiation and progression 
of atherosclerosis, and increasing evidence suggests that small LDL 
particles are of special importance [49,50]. Increased levels of small LDL 
particles have previously been associated with the atherosclerotic risk 
independently of traditional risk factors such as LDL-C [11,51,52]. The 
small LDL particles can more easily penetrate the arterial wall, are more 
prone to atherogenic modifications and binding to the arterial wall [53]. 
In the present study, there was no association between total LDL-C and 
VO2max. However, triglyceride levels within the small and dense LDL5 
particles were increased in participants with low VO2max compared to 
high VO2max. A possible explanation for the higher concentration of 
triglycerides in LDL5 is the slightly higher BMI of the participants in the 
low VO2max group. Enrichment of triglycerides in LDL has previously 
been observed in visceral obesity [54]. Increased triglyceride levels in 
LDL5 may impair lipoprotein-lipase activity, thus reducing the effi-
ciency of VLDL conversion to LDL via hydrolysis of triglycerides. Such 
events are observed with insulin resistance and type 2 diabetes [55,56]. 

4.4. Limitations of the study 

Information on statin therapy was not available from the HUNT 
database. The main effect of statin therapy is lowering LDL-cholesterol 
and possibly also slightly increasing the amount of HDL cholesterol 
[57,58]. Participants in our study may have altered lipoprotein sub-
fractions as a result of their statin use, but it is quite unlikely due to their 
age and strict inclusion criteria (being healthy with no previous heart 
disease) [59]. 

As diet is likely to contribute to the levels of the quantified lipo-
protein subfractions, more information on long-term diet and a com-
parable diet at the day of blood samplings would be preferable. 
However, knowledge of the participants diet is spares from the HUNT 
study, so we were only able to control for the number of hours of fasting 
before blood sampling. 

Attention should also be given to the need of a standardized method 
to analyze lipoprotein subfractions. Different methods utilize different 
techniques for separation of subfractions, which makes it challenging to 
directly compare results [33,60,61]. Promising studies illustrating the 
relevance of lipoprotein subfractions for risk prediction of CVD make it 
even more important. If subfractions are to be included in the clinic, 
more investigation should be performed to find the most suitable 
method. 

4.5. Conclusion 

Low VO2max was associated with an atherogenic lipidomics profile in 
healthy individuals. Individuals with low VO2max had more VLDL 
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particles, as well as increased lipid content in large-sized VLDL, and 
small-sized HDL and LDL particles. The lipoprotein profile of individuals 
with low VO2max resembles the profile seen in patients with insulin 
resistance. The atherogenic lipoprotein profile in these otherwise 
healthy individuals may represent one of the links between low VO2max 
and CVD risk. Additional studies are needed to test whether some of 
these lipoprotein subfractions may represent early risk factors for CVD. 
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