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There is only one heroism in the world: to see the world as it is, and to love 

it. 
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2023 under the supervision of Professor Zhiliang Zhang, Professor Jianying He and 

Professor Haiyang Yu. The main simulation work was carried out at NTNU 

Nanomechanical Lab, Department of Structural Engineering (KT), Faculty of 

Engineering (IV), Norwegian University of Science and Technology (NTNU), 

Trondheim, Norway. 

The thesis was financially supported by the Research Council of Norway and three 

industrial partners, Aker Solutions, Equinor and voestalpine High Performance Metals 

Norway via the M-HEAT project (Multiscale Hydrogen Embrittlement Assessment for 

Subsea Conditions), Grant No. 294689. All the simulations were carried out on the Fram 

and Betzy high-performance computer clusters under Grant No. NN9110K, No. 

NN9391K. 
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Abstract 

Derived from the most abundant element in the universe, hydrogen is the smallest 

element and, at the same time, a clean, mobile, and efficient energy carrier. Nowadays, 

hydrogen is regarded as the fuel of future and could help the world transform into a zero-

emissions scenario. However, the popularity of hydrogen-based energy economy has also 

put the problems associated with hydrogen storage and transport to the forefront. 

Hydrogen embrittlement (HE), the phenomenon where dissolved hydrogen in metals 

causes dramatic degradation of mechanical properties leading to sudden and catastrophic 

failure, was first observed in 1875. However, even after one-century research, the 

fundamental mechanisms of HE are still in the dark forest mainly due to the lacking of 

effective methodology for tracking hydrogen experimentally. In this thesis, the HE 

phenomenon is studied in a substituted way, by using atomistic simulations, to get a 

comprehensive understanding of the nanoscale mechanism. 

Essentially, HE is all things about the interactions between hydrogen atoms and 

multiple types of microstructures in material, including vacancies, dislocations, grain 

boundaries (GBs) and crack tips. Of them, GB is the interface separating differently 

oriented crystallites and plays a central role in deformation and fracture mechanisms. In 

polycrystalline materials, the HE is often accompanied by a transition from transgranular 

to intergranular fracture. However, the nanoscale interactions between hydrogen and GB 

largely remain illusive. And there is a large knowledge gap in the connection between the 

microscale hydrogen-GB interactions and macroscale observed fracture transition. 

Starting from this, uniaxial straining is applied to bi-crystalline Ni with a Σ5(210)[001] 

GB and a transgranular to intergranular fracture transition facilitated by hydrogen is 

directly elucidated by atomistic modeling. Hydrogen is found to form a local atmosphere 

in the vicinity of GB, which induces a local stress concentration and inhibits the 

subsequent stress relaxation at the GB during deformation. It is this local stress 

concentration that promotes earlier dislocation emission and generation of additional 

vacancies that ultimately facilitate nanovoiding. The nucleation and growth of nanovoids 

finally lead to intergranular fracture at the GB, in contrast to the transgranular fracture of 

hydrogen-free sample. This hydrogen-controlled plasticity mechanism provides a 

rationale for macroscale fracture transition. 
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To further validate the universality of this mechanism under various conditions and 

quantify the hydrogen-induced fracture transition process, uniaxial straining is applied to 

Ni Σ5(210)[001] and Σ9(1-10)[22-1] GBs with various hydrogen concentrations and 

temperatures based on a large statistical repetition. Without hydrogen, vacancy generation 

at GB is limited and transgranular fracture mode dominates. When charged, hydrogen as 

a booster can enhance strain-induced vacancy generation by up to ten times. This leads to 

the superabundant vacancy stockpiling at the GB, which agglomerates and nucleates 

intergranular nanovoids. While hydrogen tends to persistently enhance vacancy 

concentration, temperature plays an intriguing dual role as either an enhancer or an 

inhibitor for vacancy stockpiling. These results show a good agreement with positron 

annihilation spectroscopy experiments. Importantly, an S-shaped quantitative correlation 

between the proportion of intergranular fracture and vacancy concentration was for the 

first time derived, highlighting the existence of a critical vacancy concentration, beyond 

which fracture mode will be completely intergranular. 

Besides GB fracture, hydrogen could also influence the migration behavior of GBs. 

The effect of solute hydrogen on shear-coupled GB migration is investigated with the 

dislocation-array type Σ25(430)[001] GB and a dual role of hydrogen on GB mobility is 

unraveled. In the low temperature and high loading rate regime, where hydrogen diffusion 

is substantially slower than GB motion, GB breaks away from the hydrogen atmosphere 

and transforms into a new stable phase with highly enhanced mobility. In the reverse 

regime, hydrogen atoms move along with GB, exerting a drag force on GB and decreasing 

its mobility. This helps to understand the coexistence of hydrogen hardening and 

softening in experiments. 

Finally, we make an attempt to extend the results in bicrystal to polycrystal model. 

The trapping and diffusion of hydrogen in polycrystal was analyzed by elucidating the 

hydrogen-GB segregation spectrum. The spectrum shows three peaks corresponding to 

GB core sites and hybrid GB surface-octahedron/ tetrahedron sites, respectively. The low 

migration energy inside GB core and high energy barrier between different types of sites 

indicate the coexistence of short-circuit diffusion and GB trapping. Various stress 

conditions are further applied to investigate their influence on the spectrum, where 

hydrostatic stress shows the predominating role in hydrogen trapping behavior. 

  



Acknowledgments 

V 

 

Acknowledgments 

Three years ago, I came to Norway and started my PhD journey. All the way here, I 

really appreciate all the living beings I met and all the cheerful and painful moments I 

experienced. It’s you that made parts of my life. 

First and foremost, I want to give my most sincere gratitude to my supervisor Prof. 

Zhiliang Zhang for giving me the opportunity to start my PhD study, for guiding me 

through a thorny road to be an independent researcher, for the freedom you gave me. The 

greatest ‘one piece’ I learned from you is your great passion and dedication toward your 

career. I still remember the frequent mail contacts for manuscript modification at 

midnight, you won’t turn a blind eye to any small mistakes or disharmony. It makes me 

in awe and builds the model for me. You are the mentor for work as well as for life. I was 

blessed to be with you on the PhD journey. 

I also would like to express my heartfelt gratitude to my co-supervisor Prof. Jianying 

He, not only for her thoughtful supervision but also for her kind support and assistance in 

daily life. My thanks are extended to Prof. Haiyang Yu for the fruitful discussion and 

detailed suggestions.  

Besides the advisors, I wish to acknowledge the help in both research and life from 

Prof. Senbo Xiao. Special thanks go to my colleague Dr. Meichao Lin for her constant 

encouragement. Thanks are also given to Prof. Kai Zhao, Prof. Michael Ortiz and Prof. 

Alexey Vinogradov for their valuable comments on the manuscript.  

Great thanks are also given to all the colleagues at NTNU especially at the 

Department of Structural Engineering: Prof. Kjell Magne Mathisen, Prof. Helge 

Kristiansen, Prof. Senbo Xiao, Prof. Xu Lu, Yang Li, Tong Li, Junchao Pan, Tianle Zhou, 

Zexin Chang, Susanne Sandell, Merete Falck, Øyvind Othar Aunet Persvik, Verner 

Håkonsen, Sigrid Rønneberg, Ingrid Snustad, Yizhi Zhuo, Feng Wang, Sandra Sæther, 

Li Sun, Yuequn Fu, Siqi Liu, Tengjiao Jiang, Mingjie Zhang, Thorstein Wang, Xu Wang, 

Meichao Lin, Yuanhao Chang, Rui Ma, Jing He, Paul Rübsamen-von Döhren, Håvard 

Mo Fagersand, Chandrahaasan Soundararajan, Xinshu Zou, Yifan Zhang, Yuyu Liu, 

Jinhuan Hu, Mengnan Yu, Martha Seim Gunstad and Erling Velten Rothmund. 



Acknowledgments 

VI 

 

Particularly, I would like to thank my dear friends Jing He, Wei Pan, Lan Zhang and Lu 

Yan and my cute roommates Wenyu Zhou, Sida Yu, Viktor Fiskum and Cristian Baeza. 

Your existence made my life in Norway full of color. 

Last but not least, I would like to express my gratitude to my parents for their 

unconditional understanding, support and love all those years.



List of Papers 

 

 

VII 

 

List of Papers 
 

The thesis is organized based on the following papers, which have all been published 

or under submission by the candidate: 

1. Yu Ding, Haiyang Yu, Kai Zhao, Meichao Lin, Senbo Xiao, Michael Ortiz, 

Jianying He, and Zhiliang Zhang. "Hydrogen-induced transgranular to 

intergranular fracture transition in bi-crystalline nickel." Scripta Materialia 204 

(2021): 114122. 

2. Yu Ding, Haiyang Yu, Meichao Lin, Kai Zhao, Senbo Xiao, Alexey 

Vinogradov, Lijie Qiao, Michael Ortiz, Jianying He, and Zhiliang Zhang. 

"Hydrogen-enhanced grain boundary vacancy stockpiling causes transgranular 

to intergranular fracture transition." Acta Materialia 239 (2022): 118279. 

3. Yu Ding, Kai Zhao, Meichao Lin, Haiyang Yu, Senbo Xiao, Jianying He, and 

Zhiliang Zhang. " The dual role of hydrogen in grain boundary mobility." 

Journal of Applied Physics, 133(4), 045103. 

4. Yu Ding, Kai Zhao, Meichao Lin, Haiyang Yu, Senbo Xiao, Jianying He, and 

Zhiliang Zhang. " Hydrogen trapping and diffusion in polycrystalline nickel: 

the spectrum of grain boundary segregation." To be submitted 

Besides the publication presented above, I have contributed to the following works related 

to hydrogen embrittlement: 

1. Meichao Lin, Haiyang Yu, Xu Wang, Ruijun Wang, Yu Ding, Antonio Alvaro, 

Vigdis Olden, Jianying He, and Zhiliang Zhang. "A microstructure informed and 

mixed-mode cohesive zone approach to simulating hydrogen embrittlement." 

International journal of hydrogen energy 47, no. 39 (2022): 17479-17493. 

2. Meichao Lin, Haiyang Yu, Yu Ding, Vigdis Olden, Antonio Alvaro, Jianying 

He, and Zhiliang Zhang. "Simulation of ductile-to-brittle transition combining 

complete Gurson model and CZM with application to hydrogen embrittlement." 

Engineering Fracture Mechanics 268 (2022): 108511. 



List of Papers 

 

 

VIII 

 

3. Meichao Lin, Haiyang Yu, Yu Ding, Gang Wang, Vigdis Olden, Antonio 

Alvaro, Jianying He, and Zhiliang Zhang. "A predictive model unifying 

hydrogen enhanced plasticity and decohesion." Scripta Materialia 215 (2022): 

114707.  

The PhD candidate has also held oral presentations and poster presentations in the 

following international conferences/seminars: 

1. Yu Ding, Jianying He and Zhiliang Zhang. “Atomic insights into hydrogen-

induced transgranular to intergranular fracture transition”. NSCM-33 2021, 

Sweden. Oral presentation  

2. Yu Ding, Haiyang Yu, Jianying He and Zhiliang Zhang. “Hydrogen-induced 

transgranular to intergranular fracture transition in bi-crystalline nickel”. 

ECCOMAS-8 2022, Norway. Oral presentation 

3. Yu Ding, Meichao Lin, Haiyang Yu, Jianying He and Zhiliang Zhang. 

“Hydrogen-induced transgranular to intergranular fracture transition in bi-

crystalline nickel”. ECF-23 2022, Portugal. Oral presentation  

4. Yu Ding, Jianying He and Zhiliang Zhang. “Hydrogen-induced transgranular to 

intergranular fracture transition in bi-crystalline nickel”. ICMH-4 2022, 

Belgium. Poster 

 

  



Contents 

IX 

 

 

Contents 

 

Preface .............................................................................................................................. I 

Abstract ......................................................................................................................... III 

Acknowledgments ........................................................................................................... V 

List of papers ..............................................................................................................  VII 

Contents ........................................................................................................................ IIX 

Chapter 1   Introduction ............................................................................................. 1 

1.1   Background and Motivation ............................................................................... 1 

1.2   Research objects .................................................................................................. 3 

1.3   Thesis outline ....................................................................................................... 4 

Chapter 2   Literature review ..................................................................................... 5 

2.1   Introduction ......................................................................................................... 5 

2.2   Hydrogen embrittlement and its mechanisms .................................................. 5 

2.2.1  Hydrogen-Enhanced Decohesion (HEDE) ....................................................... 7 

2.2.2  Hydrogen-Enhanced Localized Plasticity (HELP) ........................................ 11 

2.2.3  Hydrogen-Enhanced Strain-Induced Vacancy (HESIV) .............................. 16 

2.2.4  Adsorption-Induced Dislocation Emission (AIDE) ....................................... 19 

2.2.5  Defactants theory .............................................................................................. 20 

2.2.6  Hydride formation ............................................................................................ 21 

2.3   Atomistic modeling for hydrogen embrittlement ........................................... 22 

2.4   Hydrogen-grain boundary interaction ............................................................ 26 

Chapter 3   Main results ........................................................................................... 31 

Chapter 4   Perspectives ............................................................................................ 35 

Bibliography .................................................................................................................. 37 

Appendix A Appended Papers .................................................................................... 45 

A.1 Paper 1 .................................................................................................................... 45 

A.1 Paper 2 .................................................................................................................... 53 

A.1 Paper 3 .................................................................................................................... 67 



Contents 

X 

 

A.1 Paper 4 .................................................................................................................... 76 



Chapter 1   Introduction 

1 

 

 

 

 

Chapter 1   Introduction 

 

 

 

 

1.1 Background and Motivation 

Renewable and low-carbon fuel is crucial for meeting the Paris Agreement goals to 

decarbonize the hard-to-abate sectors. Hydrogen as a flexible and efficient energy carrier 

with zero greenhouse gas emissions can be a perfect alternative to fossil fuels. According 

to DNV’s forecast [1], hydrogen would need to meet around 15% of world energy demand 

by the mid-century. It means the usage of hydrogen energy will increase a hundredfold 

(Figure 1.1) and global spending on producing hydrogen for energy purposes till then 

will approach USD 6.8 trillion. The hydrogen economy as a sunrise industry will help the 

world transform into an environment-friendly community, as well as create more new 

jobs. However, developing a complete hydrogen economy is still facing many technical 

challenges during production, transportation, storage, and utilization. Of them, the most 

urgent task is the verification of the safety of large-scale hydrogen transportation systems 

[2], and the key to solving it lies in our understanding of the hydrogen embrittlement 

phenomenon.  

Hydrogen embrittlement (HE) refers to the phenomenon where dissolved hydrogen in 

metals causes dramatic degradation of mechanical properties, including strength, ductility, 

and fracture toughness. It usually results in a premature and catastrophic failure, which is 

far below the yield stress and uneasy to predict. Due to its widespread presence, HE also 

brings a great challenge to a large number of industries, e.g., oil and gas companies. Since 
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first observed in 1875 [3], continued efforts from both industry and academia have been 

dedicated to studying this topic [4]. As shown in Figure 1.2, HE has attracted surging 

attention in the recent ten years due to the perspective of hydrogen economy. Despite this 

long history of study on HE, there is still a lot of blurry space as to the mechanism by 

which hydrogen degrades the mechanical response. Contributing to this situation is a lack 

of detailed information at the microstructural and atomistic scales. Even worse, hydrogen 

is notoriously tricky to detect by certain experimental techniques [5] and no direct 

observation of hydrogen atoms has been reported till now.  

 

Figure 1.1. Global production of hydrogen and its derivatives for energy purposes by production route. 

The unit is million tonnes per year, CCS means carbon capture and storage, reprinted from Ref. [1]. 

 

Figure 1.2. Publications and citations associated with ‘Hydrogen embrittlement’ from 1946 to now. The  

data is collected by Web of Science. 
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  Conventionally, there are two strategies for solutions when HE is a concern. The first 

one is source control by designing HE-resisted material which has good resistance to HE 

or suppressing hydrogen uptake with surface coating. The second one is the development 

of predictive models based on physical mechanisms, facilitating the design and inspection 

during engineering applications. Over the years, data on the effect of hydrogen on 

mechanical properties of different metals and their alloys has been generated which 

makes the selection of relatively suitable materials possible. However, cost considerations 

will lead to more than 50% of hydrogen pipelines globally being repurposed from natural 

gas pipelines [1], and existing material may still fail prematurely when exposed to long-

term permeation or the uncertainty of the environment. In this scenario, accurate 

prediction for HE is of immediate concern but failure prediction based on data in hand 

can be only viable in a narrow region. All the current limitations are due to the lack of a 

fundamental and universal understanding of the HE mechanisms. 

   To begin to address this problem, atomistic simulation is a good alternative pathway. 

Since the 1970s, with the dramatic increase in computer capacity and resources, 

computational material science has become increasingly important in promoting our 

understanding of the relationship between material properties and their fundamental 

structures. Atomistic simulation or molecular dynamics (MD) simulation [6] has been 

proved to be a powerful tool to capture the mechanical response of materials at the 

nanoscale. Thus, mainly by using atomistic simulations, we will explore the nanoscale 

HE mechanism in the thesis. 

  

1.2 Research objectives 

This PhD thesis study is part of the M-HEAT project, which aims to develop a model 

framework that investigates the atomic-scale HE mechanism and links it to mechanism-

based hydrogen-induced failure criteria. Specifically, nickel will be the target material 

system with an emphasis on hydrogen-grain boundary interaction. These main objectives 

are described as following: 
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(1) To investigate the nanoscale hydrogen embrittlement mechanism by elucidating 

the microstructure evolution and effect of hydrogen during deformation in 

bicrystal. 

(2) To examine the distinct roles and interactions of the existing mechanisms during 

the fracture mode transition and establish a mechanism-based predictive model. 

(3) To extend the result from bicrystal to polycrystal. 

 

1.3 Thesis outline 

The thesis is composed of an introductory section and a collection of four peer-

reviewed journal papers. The introductory section can be decomposed into four chapters. 

In Chapter 1, the background and motivation, and research objectives are stated. In 

Chapter 2, a literature review is presented. In Chapter 3, the main scientific results 

produced in this thesis are summarized. In Chapter 4, some perspectives are discussed. 
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2.1 Introduction 

This Chapter will be unfolded in the same order as PhD learning process: In 2.2, the 

current understanding in the hydrogen embrittlement community will be elucidated, with 

emphasis on several significant mechanisms and their representative work. In 2.3, the 

current modeling methods for hydrogen embrittlement will be reviewed with a focus on 

atomistic simulations. In 2.4, the previous study specific to hydrogen-grain boundary 

interaction will be introduced as a warm-up for our work. 

2.2 Hydrogen embrittlement and its mechanisms 

  “After a few minutes’ immersion (half a minute will sometimes suffice) in strong 

hydrochloric or dilute sulfuric acid—a piece breaking after being bent once on itself, 

while before immersion it would bear bending on itself and back again two or three times 

before breaking.” This is the first demonstration of hydrogen-induced degradation in 1875 

by Johnson who launched the field of study of hydrogen embrittlement of metals [3]. 

Since then, people recognized that ductility can be markedly decreased upon the 

formation of interfacial chemical compounds of which hydrogen can be a by-product [7]. 

Hydrogen can then diffuse to the component bulk, producing a wealth of interactions at 

various scales with the microstructure including vacancies, dislocations, grain boundaries, 

phase boundaries, precipitates, and dislocation cells, which finally facilitate the formation 

and propagation of cracks [8, 9]. Hydrogen embrittlement has also been a significant 
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concern for industry associated with oil and gas facilities, aircraft engines, and marine  

exposed to long-time hydrogen permeation. Especially in light of the hydrogen economy, 

hydrogen embrittlement has become one of the burning technical concerns towards a 

complete hydrogen value chain (Figure 2.1). 

 

Figure 2.1. Forecasted hydrogen production and use in 2050, the thickness of the flow lines approximates 

the volume of each flow indicating major production routes and end uses. Reprinted from Ref. [1]. 

  The discovery of the underlying fundamental mechanisms of hydrogen embrittlement 

is a complex multi-faceted challenge that requires knowledge of hydrogen source, 

hydrogen surface chemical interaction, hydrogen diffusion and hydrogen trapping, and 

importantly, how hydrogen modify the mechanical properties causing the observed 

ductile, “quasi-cleavage,” and intergranular fracture modes [9]. With continuous efforts 

for nearly one and a half centuries [10, 11], several hydrogen embrittlement mechanisms 

are proposed, with the most commonly invoked being: hydrogen-enhanced decohesion 

(HEDE), hydrogen-enhanced localized plasticity (HELP), hydrogen-enhanced strain-

induced vacancy mechanism (HESIV), adsorption-induced dislocation emission (AIDE), 

defactants theory, and hydride formation et al. Each of these mechanisms claim support 

from both theoretical and experimental results, but the multi-faceted nature of hydrogen-

induced degradation, as well as the likelihood of mechanism synergy, complicates the 



Chapter 2   Literature Review 

7 

 

universal application of any one paradigm. However, a consistent theme amongst the 

proposed mechanisms is the assumption that hydrogen-induced degradation is principally 

driven by a localized hydrogen-microstructure interaction [12]. The myriad of possible 

hydrogen-microstructure interactions is illustrated in Figure 2.2, where atomic hydrogen 

(H+) ingress is followed by interactions with dislocations (⊥), promoting transgranular 

and intergranular cracks, leading to the formation of voids or twins, while interacting with 

phases such as austenite and precipitates. Of them, particular attention has been paid to 

hydrogen-induced intergranular fracture [13-16], eg. the hydrogen-GB interaction, which 

will also be the main results in this thesis. 

 

Figure 2.2. Multiscale depiction of HE. (Left) Accepted theories of HELP (hydrogen-enhanced localized 

plasticity), with strong interaction with dislocations at crack tips; HESIV (hydrogen-enhanced strain-

induced vacancy formation), forming clusters of vacancies (voids) at the tips; and HEDE (hydrogen-

enhanced decohesion), promoting decohesion. (Right) Hydrogen diffuses to crack tips, where its 

concentration increases, promoting dislocation cell formation, which, upon reaching a critical level, causes 

failure. Reprinted from Ref. [12]. 
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2.2.1 Hydrogen-Enhanced Decohesion (HEDE) 

The hydrogen-enhanced decohesion (HEDE) mechanism has the closest origin to 

“embrittlement”. The decohesion concept was first proposed in 1926 by Pfeil [17], who 

proposed that “ hydrogen decreased the cohesion across cubic cleavage planes ” (and 

GBs). Troiano [18] suggested that the entry of 1s electron of hydrogen atom into the 

unfilled d-band of transition metals would elevate the interatomic repulsive force, thus 

decreasing the lattice cohesion. However, the existence of HE in the aluminum alloys 

with filled d-band suggests that the transfer of 1s electron is not the only factor to decrease 

the atomic bonding [19, 20]. Then the HEDE mechanism describing that the atomic 

bonding is weakened due to the presence of hydrogen atoms in solid solution was 

quantitatively developed by Oriani [21] and others [22-24], illustrated in Figure 2.3.  

 

Figure 2.3. Schematic diagrams illustrating the HEDE mechanism involving tensile separation of atoms 

owing to weakening of interatomic bonds by (i) hydrogen in the lattice or segregated at grain boundaries 

ahead of crack tips, (ii) hydrogen adsorbed at crack tips, and (iii) hydrogen segregated at particle-matrix 

interfaces ahead of cracks. Crack growth could involve decohesion at one or more sites, and could occur in 

conjunction with other mechanisms. Reprinted from Ref. [10]. 

  Decohesion is usually envisaged as a simple, sequential tensile separation of atoms 

when a critical crack-tip-opening displacement (CTOD) is reached. However, the 

separation of atoms at crack tips is constrained by surrounding atoms and, hence, the 

separation process could be more complex and involve incipient shear movement of 
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atoms to enable a critical CTOD (around half lattice constant) to be achieved. Brittle 

fracture associated could occur with very high concentrations of hydrogen, commonly at 

(i) sharp crack tips (ii) several tens of nanometres ahead of cracks where dislocation-

shielding effects result in a tensile-stress maximum, (iii) positions of maximum 

hydrostatic stress and (iv) particle-matrix interfaces ahead of cracks. Decohesion could 

also happen at GB ahead of a crack given GB works as the preferred trapping site for 

hydrogen. To be noted, the simulation setups in the attached Paper1 and Paper2 mimic 

hydrogen-GB interaction in the high hydrostatic stress state region tens of nanometres 

ahead of crack tips. 

  Direct evidence of HEDE is difficult to obtain because there are no experimental 

techniques for directly observing hydrogen-crack interaction events on the atomic scale. 

But from the featureless fracture surface (without void or obvious dislocation trace) 

observed by scanning electron microscopy (SEM), researchers could still judge that 

decohesion has occurred [16, 25]. And recently, by using atom probe tomography (APT), 

Chen et al. [26] and Zhao et al. [20] have observed hydrogen accumulation at dislocations, 

GBs, and precipitates where the HEDE mechanism could work given the high density of 

local hydrogen clusters (Figure 2.4). Besides, numerous quantum mechanical 

calculations supported the decohesion concept where hydrogen-induced weakening of 

interatomic bonds leads to HEDE, especially in the case where common slip systems are 

not supported for crack propagation [27]. Previous calculations have covered many 

systems including Fe [28-30], Ni [31-33], and Al [19, 28, 31] and those could be utilized 

to quantitatively predict the hydrogen-caused fracture energy reduction. However, 

discrepancies also exist. When the fracture surface is examined at high-resolution SEM 

or transmission electron microscopy (TEM), the direct observation of nanoscale dimples 

on the surface [34] and dislocation cells underneath the surface [13] is beyond what 

HEDE could explain. Tehranchi et al. [35] studied the hydrogen-assisted intergranular 

fracture of Ni by atomistic simulations and concluded the presence of hydrogen creates 

no ductile-to-brittle transition for several types of GB cracks. Wang et. al [14] performed 

first-principle calculations for hydrogen-assisted intergranular fracture in Fe and found 

that decohesion alone could not account for the cohesive energy reduction and plasticity 

should play a role. 
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Figure 2.4. APT analyses of deuterium-charged martensitic steel samples containing GBs and dislocations. 

(A and B) Views at two different angles of a reconstructed atom map showing deuterium (red), iron (gray), 

and 2% carbon isosurfaces in blue. This sample contains a high density of linear, carbon-decorated 

dislocations. (C) Slice, 5 nm thick, from the center of the dataset shown in (B) (indicated with the black 

dashed rectangle) with carbon atoms (blue) and deuterium atoms (red) showing the spatial correlation 

between the two elements. (D) Collective proxigram analysis of the 70 dislocations and carbon isosurfaces 

contained in (A), showing that the dislocations have carbon and deuterium at their cores but little niobium. 

(E and F) Two views of a different dataset from the same sample. Again, features are highlighted by 2% 
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carbon isosurfaces, with one of these surfaces that encompasses a GB region highlighted by a transparent 

red isosurface. (G) z Axis, 5-nm-thick slices from the GB region, indicated in (F). (H) 1D composition 

profile with a 1-nm step size from a volume of 20 nm by 20 nm by 18 nm across the GB marked in (E). 

Reprinted from Ref. [26]. 

2.2.2 Hydrogen-Enhanced Localized Plasticity (HELP) 

  The concept of hydrogen-enhanced localized plasticity was first proposed by Beachem 

in 1972 [36], partly based on fractographic observations where hydrogen-assisted 

cracking is assumed to be a result of hydrogen facilitating the movement of dislocations. 

This idea was subsequently expanded by Birnbaum and coworkers [37-42] into a broad 

universe. The premise of the mechanism is that hydrogen assists the deformation 

processes, but only locally where hydrogen is present in sufficient concentrations, leading 

to fracture which is macroscopically brittle in appearance and behavior. 

  Hydrogen is strongly bound to dislocation, most likely trapped at the core [43, 44], as 

well as attracted by the elastic field surrounding the dislocation. Based on the observed 

hydrogen-related softening in FCC, BCC and HCP systems, including in pure metals, 

solid solutions and in precipitation hardened systems, Birnbaum and Sofronis proposed 

an analytical model for the hydrogen shielding effect on elastic stress field. As shown in 

Figure. 2.5, The net shear stress, 𝜏𝐻, induced by the hydrogen atmospheres is found by 

the integration of the stress contributions of each of the hydrogen dilatation lines over the 

entire area S occupied by the atmosphere. In polar coordinates, the shear stress on 

dislocation 2 due to the hydrogen atmospheres is given by the following equation: 

𝜏𝐻 = −
𝜇

2𝜋(1 − 𝑣)

𝑉𝐻

𝑁𝐴
∫ 𝐶(𝑟, 𝜙)

𝑠𝑖𝑛2𝜙

𝑟
𝑑𝑟𝑑𝜙

2𝜋

0

(2.1) 

where 𝜇 and 𝜈 are the shear modulus and Poisson’s ratio respectively, 𝑟 and 𝜙 are the 

polar coordinates as measured from the dislocation core and slip plane, and 𝐶 is the local 

hydrogen concentration per unit volume. Eq. (2.1) indicates that the stress field of a 

hydrogen dilatation line decays as 1/𝑟2 with distance 𝑟, and is associated with the 

volumetric strain produced by the introduction of hydrogen into the lattice (volumetric 

swelling), and the hydrogen-induced changes in the constitutive moduli (modulus effect). 

It is important to note that this shielding effect of hydrogen will result in several important 
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changes in dislocation behavior. The mobility of the dislocations is usually increased, 

with 2–10 fold increases having been recorded, depending upon the material [45, 46], and 

with the effect being more pronounced in solute-strengthened materials, which will 

accelerate the subsequent plastic deformation. Additionally, the dislocations will tend to 

pack closer together in pile-ups [41] and form stacking faults easily [47], but the cross-

slip will be suppressed [48]. 

 

Figure 2.5. Schematic showing the coordinates of the interacting dislocations and the hydrogen 

atmospheres. The shear stress, 𝑑𝜏𝐻 is the shear stress due to the hydrogen atmosphere in the area 𝑑𝑆 

located at position (𝑟, 𝜙). The extent of the outer radius of the hydrogen atmosphere, R, is determined by 

convergence of the full elastic solutions. Reprinted from Ref. [37]. 

  Besides the direct hydrogen-dislocation interactions, a bunch of recent work has been 

focusing on the role of HELP in hydrogen-induced intergranular fracture. One notable 

example is the mechanical evaluation of near-fracture surface microstructure in 

hydrogen-charged Fe and Ni using a combinatory transmission electron microscopy 

(TEM)/focused ion beam (FIB) technique [13, 49-51]. Martin et.al [52] found despite the 

different hydrogen and mechanical loading configurations, Fe and Ni both failed 

intergranularly due to the presence of hydrogen with little evidence of plasticity on the 

fracture surface (Ni shown in Figure 2.6a). The slip traces on the surface would suggest 

some plasticity, but being limited and of a planar character. However, in both cases, 

dislocation cells were found immediately beneath the fracture surface (Figure 2.6b) and 

the size of the dislocation cells was suggestive of a plastic strain nearly three times what 
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the sample actually experienced macroscopically. In fact, in the Ni case, this dislocation 

distribution was found to extend to over 3 mm from the fracture surface [57] (Figure 

2.6c), suggesting that the structures extend throughout the gage length and were formed 

prior to crack initiation. They further concluded that hydrogen-induced intergranular 

fracture ultimately proceeds via decohesion of GBs due to the attainment of a critical 

localized stress and hydrogen concentration combination (i.e. HEDE), which is primarily 

driven by the interaction between hydrogen and dislocations (i.e. HELP). 

 

Figure 2.6. Hydrogen-induced intergranular failure of nickel. Uniaxial tensile tests were conducted on pre-

charged tensile bars. a) SEM micrograph showing intergranular failure of fracture surface. b) TEM 

micrograph showing microstructure immediately underneath the fracture surface, comprising of dislocation 

cells. Arrows mark steps on the surface, usually labeled as slip traces. c) TEM micrograph showing 

microstructure 3–6 mm away from the fracture surface (i.e. bulk microstructure after loading). Note that 

cell structure still remains. Adapted from Refs. [13, 53]. 

 Nevertheless, many debates or mysteries about HELP mechanism still exist. First, the 

reason for hydrogen atmospheres accelerating dislocation motion unlike other Cottrell 

atmospheres that have a solute drag effect is unclear. By checking the dislocation gliding 
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behavior in α-Fe over a wide range of hydrogen concentrations using atomistic 

simulations, Song and Curtin [54] found that the Cottrell atmospheres follow the moving 

dislocations, leading to a resistance to dislocation motion which is consistent with solute 

drag theory and reduces the dislocation mobility (Figure 2.7). Furthermore, once motion 

stops and a pile-up is established, the hydrogen Cottrell atmospheres do not affect the 

equilibrium spacing of dislocations in the pile-up; thus, the hydrogen atmosphere 

provides no “shielding” of dislocation–dislocation interactions. Furthermore, Xie et.al 

pointed out that the experimental set-up [41, 42, 55] to prove the shielding effect may not 

guarantee that the applied ‘constant strain’ or ‘constant stress’ was truly constant when 

tens of torrs of hydrogen gas flooded the TEM chamber, as fresh dislocations were seen 

to be generated in the ‘constant strain’ stage. By quantitative mechanical tests in an 

environmental TEM, they even found mobile dislocations can lose mobility with 

activating stress more than doubled, after exposing Al to hydrogen. Second, how 

enhanced dislocation slip in an atomic bond-switching manner (HELP) can lead to 

fracture in a bond-breaking manner (HEDE) is not known [56, 57]. Even HELP 

supporters insisted that HELP mechanism only works at a very specific material-

dependent temperature and strain-rate range and establishes the necessary conditions for 

final HEDE, less is known for the quantitative contribution of mobile hydrogen-

deformation interaction in determining the conditions required for HEDE, or more 

specifically, intergranular fracture. By interrupting the results from tensile tests conducted 

at cryogenic temperatures (77 K), where mobile H-deformation interactions are 

effectively precluded, and at room temperature, where the HELP mechanism should work, 

Harris [16] concluded that mobile hydrogen-deformation interactions are not an intrinsic 

requirement for H-induced intergranular fracture (Figure 2.8). Moreover, an evaluation 

of the true strain for intergranular microcrack initiation for testing conducted at room 

temperature and 77 K suggests that hydrogen which is segregated to GBs prior to the 

onset of straining dominates the hydrogen-induced fracture process for the prescribed 

hydrogen concentration of 4000 appm. More critical and detailed discussions about HELP 

are summarised by Lynch [58]. These contradictory results reflect the complexity of the 

interactions between plasticity and hydrogen when examined at different spatial and 

temporal scales and a more comprehensive understanding of HELP should be developed. 
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Figure 2.7. (a) Projected atomistic view (along the Z direction) of the second and third dislocation cores 

surrounded by clouds of H atoms (H atoms, black; Fe atoms in dislocation core, cyan; other Fe atoms, red). 

(b) Close-up perspective atomistic view of a dislocation core surrounded by the cloud of H atoms that form 

naturally in the simulation, at c0 = 2% (H atoms, silver; Fe atoms colored via the pressure field p, with 

positive and negative values indicating tension and compression respectively). (c, d) Time evolution of the 

x-coordinate for the second and third dislocation cores within the first 1.2 ns after application of τ = 400 

MPa, for materials with three representative H concentrations c0 as indicated. The corresponding 

dislocation velocities vd (i.e. the slopes of curves) are also noted. Adapted from Ref. [54]. 
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Figure 2.8. Effect of testing condition on true strain for H-induced intergranular (IG) microcrack initiation. 

The Adapted from Ref. [16]. 

2.2.3 Hydrogen-Enhanced Strain-Induced Vacancy (HESIV) 

Dislocation is not the sole carrier of plasticity, vacancy could be generated by 

dislocation plasticity [59-61] and exert an influence through its interaction with hydrogen. 

Hydrogen has been experimentally found to facilitate the preservation of superabundant 

vacancies (SAVs) in a large variety of metals and alloys [62-65]. Based on these findings, 

Nagumo [66] first pointed out the predominant role of vacancies in premature fracture, 

which is referred to as hydrogen-enhanced strain-induced vacancies (HESIV) mechanism 

[67]. Takai et.al examined hydrogen-related failure in the Inconel 625 and iron by thermal 

desorption spectroscopy (TDS) and found annealing at 200 °C at the unloaded stage 

almost completely recovered the decrease in fracture strain. This result directly indicates 

the primary role of vacancies rather than hydrogen itself in hydrogen degradation. Similar 

charging-straining-annealing-TDS analysis processes were further applied to pure iron 

[68] with different annealing temperatures. Hydrogen absorbed in the weak trapping sites 

substantially increases with plastic strain, and continuous reduction in desorption in 

Figure 2.9 with elevated annealing temperature implies the presence of vacancy clusters 

of different sizes. Positron annihilation spectroscopy (PAS) that efficiently and 

specifically discriminates vacancies from other traps like dislocations is also utilized to 

investigate hydrogen-induced vacancy generation where the mean positron lifetime was 
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substantially increased by tensile straining with charged hydrogen [69]. Lawrence further 

pointed out the role of GB in vacancy generation by PAS [70]. Besides experimental 

evidence, numerous first-principle calculations show that vacancy could be stabilized by 

forming hydrogen-vacancy (Va-H) complexes [71-75] and those Va-H complexes could 

influence the subsequent plastic deformation [76, 77]. Hydrogen adatoms on vacancy or 

nanovoid surfaces could also cause blistering at the surface [78, 79].  

 

Figure 2.9. Low-temperature thermal desorption spectroscopy profiles of hydrogen introduced into iron 

specimens strained up to 25% with hydrogen precharging and successively annealed at various 

temperatures for 1 h at 303 K or 2 h at other annealing temperatures. The specimen thickness was 0.3 mm 

and tracer-hydrogen was introduced by cathodic electrolysis of a mild condition in 0.1 N NaOH + 5 g/l 

NH4SCN aq at 100 A/m2. Adapted from Ref. [68]. 

  These SAVs generated by strain and hydrogen will further interact with other defects 

in the material, and importantly, agglomerate and nucleate the nanovoid. The nanovoid 

will further grow up, coalesce and cause crack propagation. One notable piece of evidence 

is the observation of significant dislocation plasticity and nanovoid beneath the fracture 

surfaces [80-82]. By carefully zooming into fracture surfaces in ferritic steels with TEM 

and conjugate analysis, Neeraj [34, 83] found the quasi-brittle fracture surfaces were 

covered with nanoscale dimples 5–20 nm wide and 1–5 nm deep (Figure 2.10). Most of 

the nanodimples appear to be “valley-on-valley” type, rather than“mound-on-valley” type, 
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indicating nanovoid nucleation and growth in the plastically flowing medium prior to 

ultimate failure. Based on these observations, an alternative scenario of plasticity-

generated, hydrogen-stabilized vacancy damage accumulation and nanovoid coalescence 

mechanism is proposed as the failure pathway for HE (referred to as NVC mechanism in 

Figure 2.11). And this mechanism will be the inspiration for the attached Paper2.  

 

Figure 2.10. (a) Typical quasi-brittle fracture observed in X60 CT sample tested in 21 MPa hydrogen gas 

pressure. (b) Higher magnification view of a small region from (a). The fracture surface shows “mottled” 

contrast, indicating the presence of nanoscale dimples on hydrogen-embrittled quasi-brittle facets. This is 

similar to the observations in H pre-charged SENB samples. Adapted from Ref. [34]. 

 

Figure 2.11. Schematic of NVC mechanism compared to HELP mechanism by Martin [56]. Adapted from 

Ref. [34]. 
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2.2.4 Adsorption-Induced Dislocation Emission (AIDE) 

The Adsorption-induced dislocation emission (AIDE) mechanism was first proposed 

by Lynch [84, 85]. As shown in Figure 2.12, the term “dislocation emission” 

encompasses both nucleation and subsequent movement of dislocations away from the 

crack tip, and it is the only nucleation stage that is critical and facilitated by adsorption. 

Once nucleated, dislocations can readily move away from the crack tip under the applied 

stress. The nucleation stage involves the simultaneous formation of a dislocation core and 

surface step by cooperative shearing of atoms (breaking and reforming of interatomic 

bonds) over several atomic distances. Thus, the weakening of interatomic bonds over 

several atomic distances by “adsorbed” hydrogen can facilitate the process.  

 

Figure 2.12. Schematic diagram illustrating the AIDE/void-coalescence mechanism for HE for some 

systems, resulting in small, shallow dimples on cleavage-like or intergranular fracture surfaces, which are 

often inclined to the stress axis. Note that voids may be extremely small (on the nanoscale) so that dimples 

on fracture surfaces may not be obvious (or obscured by films). Dislocation emission from crack tips (owing 

to adsorption-induced weakening of interatomic bonds) promotes the coalescence of the crack with voids 

formed in the plastic zone. The inset illustrates emission on plane A, and then on plane B resulting in an 

increment of crack opening and crack advance, Δa. For transgranular cracking, there is a tendency for equal 

amounts of slip to occur on slip planes on either side of cracks since back stresses from emitted dislocations 

on a more active slip plane would then favor emission on the other slip plane. Intergranular cracking can 
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occur in some cases owing to preferential adsorption at crack-tip/grain-boundary intersections. The stresses 

required for AIDE are sufficient for dislocation activity and void formation ahead of cracks, and some crack 

growth and blunting occur by egress of dislocations around crack tips, as well as dislocation emission from 

crack tips. The degree of embrittlement and deviations of crack planes away from low-index planes depends 

on the relative extent of dislocation emission from crack tips vis-à-vis dislocation activity from near-crack-

tip sources adapted from Ref. [10]. 

In the AIDE model, crack growth occurs not only by dislocation emission from crack 

tips, nucleation and growth of microvoids (or nano-voids) ahead of crack tips also make 

a contribution, similar to the NVC model in Figure 2.11. Nucleation and growth of voids 

at second-phase particles, slip-band intersections, or other sites in the plastic zone ahead 

of cracks occurs because stresses required for dislocation emission are sufficiently high 

that some general dislocation activity occurs ahead of cracks. Void formation contributes 

to crack growth, and also serves to resharpen crack tips and result in small crack tip-

opening angles. In summary, AIDE is a fundamentally complex model combining HEDE, 

HELP and HESIV where HEDE weakens the bonding energy, HELP accelerates crack 

growth and HESIV facilitates void growth and coalescence. 

2.2.5 Defactants theory 

“DEFect ACTing AgeNTS” commonly referred to as Defactants theory is introduced 

by Kirchheim [86-88], in analogy to the concept that the surface energy of water can be 

reduced by solute molecules known as surfactants (SURFace ACTing AgeNTS). Solute 

atoms segregating at defects with an excess Γ are called defactants because they lower 

the defect formation energy of defects γ, with μ as the chemical potential of the defactant 

we have the following equation: 

𝑑γ =  −Γ𝑑𝜇 (2.2) 

Excess defactant, Γ, given by Eq. (2.2) is positive, and defactants therefore reduce the 

defect energy γ. In other words, attractive interaction between solute atoms and defects 

leads to excess solute at the defect and a free energy gain. For the HE scenario, the 

segregation of hydrogen into defects, such as vacancies, dislocations, and stacking faults, 

can reduce the defect formation energy and therefore enhance their generation rate.    

The defactants theory rationalizes reduced fracture energy in HEDE and enhanced 

dislocation and vacancy generation in HELP and HESIV at the same time. In addition, it 
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is most useful to comprehend recent nanoindentation experiments which reveal a 

reduction of the dislocation line energy in the presence of hydrogen [89-91]. 

2.2.6 Hydride formation  

  A mechanism based on the formation and fracture of hydrides at crack tips was first 

proposed by Westlake in 1969 [92]. The basic mechanism is thought to involve repeated 

sequences of (i) hydrogen diffusion to regions of high hydrostatic stress ahead of cracks, 

(ii) nucleation and growth of a hydride phase, (iii) cleavage of the hydride when it reaches 

a critical size, and (iv) crack-arrest at the hydride matrix interface (Figure 2.13). This 

mechanism is more generally accepted but only available in certain materials such as V, 

Zr, Nb, Ta, and Ti [45, 93] where there is a strong thermodynamic driving force for brittle 

hydride formation. 

 

Figure 2.13. Schematic diagram illustrating sub-critical crack growth involving hydride formation. 

Adapted from Ref. [10]. 

  In summary, the aforementioned mechanisms have captured certain characteristics in 

HE experiments but a universal mechanism still does not exist, due to the complex HE 

processes depending on various environmental conditions and local microstructures. 

However, those mechanisms are not necessarily mutually exclusive. For example, easier 

defect formation could be expected in HELP, HESIV and AIDE. A number of researchers 

have suggested the synergistic action of mixed mechanisms [94-96], where a crack forms 

under a single mechanism followed by propagation under an alternative one, or by a 

combination of both or several. Furthermore, the remaining puzzles about the mechanism 

for typical hydrogen-induced transgranular to intergranular fracture transition and the 

quantitative contributions of each mechanism to this process will be discussed in attached 

Paper1 and Paper2. 
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2.3 Atomistic modeling for hydrogen embrittlement 

  In the recent 50 years, with the advance of computational capacity, the emerging multi-

scale and multi-physics materials modeling methods help to bridge the wide range of time 

and length scales in a number of essential phenomena and processes in materials science 

and engineering. Typically, depending on the scale of systems, the methodology (Figure 

2.14) could be divided into ab initio methods based on many-body electronic structure 

theory, density functional theory (DFT), quantum chemistry, atomistic simulations 

widely used as molecular dynamics (MD) or kinetic Monte Carlo models, mesoscopic 

modelings such as discrete dislocation dynamics and continuum mechanism-based 

simulation which could be polycrystalline plasticity or Finite element method.  

 

Figure 2.14. Illustration of the multiscale modeling in varying scales. 

  Depending on the purpose, different methods could provide valuable information for 

HE at different scales but with a tradeoff between accuracy and complexity. For example, 

the finite element method could be a very useful engineering tool to predict failure strain 

and sample lifespan in hydrogen environment, but it requires constitutive relations and 

associated parameters which are almost always obtained empirically. Dislocation 

dynamics could well describe the mesoscopic collective interaction between dislocations 

during plasticity under the premise of a correct understanding of the role of hydrogen and 
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dislocations. Molecular dynamics are particularly suited to understand kinetically 

dominated mechanisms including hydrogen diffusion, trapping and interaction with metal 

atoms based on the accurate atomic potential. Ab initio calculations give a precise 

description of the bonds and elementary excitations from which all material properties 

derive from, however, its system is limited to thousands of atoms due to the exponentially 

increased calculation complexity. As our motivation is to investigate the fundamental 

mechanisms and try to establish mechanism-based quantitative criteria, molecular 

dynamics is chosen as the main methodology which could provide direct hydrogen-metal 

interaction in a range of varying temperatures and stress conditions. 

  Plenty of previous work [33, 97-102] has proved atomistic simulations as a powerful 

tool for understanding nanoscale HE mechanisms and provided information on the local 

and global mechanical behavior in the presence and absence of hydrogen. Those atomistic 

studies of HE could be divided into several sub-processes, i.e., vacancy formation [19, 

71, 74, 75, 103-106], dislocation dynamics [107-110], intergranular decohesion [111-

113], and crack propagation [44, 54, 114-119]. Hydrogen is trapped by vacancy and forms 

Va-H complex [120-122], and Hou et.al [75] explicitly demonstrated sequential 

adsorption of hydrogen adatoms on Wigner–Seitz squares of nanovoids with distinct 

energy levels and found a pairwise power-law repulsion using DFT. Using MD and 

cluster dynamics simulations, Li et.al [123] revealed that, unlike a lattice vacancy, a Va-

H complex is not absorbed by dislocations sweeping through the lattice (Figure 2.15). 

Additionally, this complex has lower lattice diffusivity; therefore, it has a lower 

probability of encountering and being absorbed by various lattice sinks. Hence, it can 

exist metastably for a rather long time and act as the embryo for the formation of proto 

nano-voids. Ping et.al [109] further pointed out that the main effect of hydrogen on 

dislocation is increasing the core radii and decreasing the core energies. Using DFT [110], 

Li et.al found at low hydrogen concentrations, dislocation maintains the intrinsic easy-

core structure, and hydrogen atoms are attached to the “periphery” of dislocation to 

enhance dislocation motion. While at high concentration, dislocation transforms into a 

hard-core, metal hydride-like structure, as hydrogen atoms become the “body” of 

dislocation to significantly reduce the dislocation mobility. Besides, systematic work has 

been done by Tehranchi et.al [35, 124] to investigate the intergranular decohesion with a 
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set of GBs. Finally, crack propagation behavior has been widely studied by atomistic 

simulations. Using mode II loading, Taketomi et al. [125] showed hydrogen-enhanced 

(112)<111> edge dislocation emission is proportional to the hydrogen content around the 

crack tip. In the contrast, Song and Curtin [98] propose an atomic mechanism where the 

suppression of dislocation emission at the crack tip due to aggregation of hydrogen 

permits brittle-cleavage failure followed by slow crack growth with mode I loading 

(Figure 2.16). 

 

Figure 2.15. Four independent events illustrating the high stability of hydrogen-vacancy complex when 

interacting with dislocations in α-Fe. Crystals are oriented along x-[111], y-[ -101], z-[1-21]. Spheres with 

blue, gold and black colors refer to iron atoms in dislocations, vacancies and hydrogen, respectively. The 

radius of vacancy and hydrogen are enlarged for clarity. (a) When a a/2<111>-type edge dislocation 

interacts with a vacancy in the slip plane, the dislocation absorbs the vacancy. (b) In contrast, the hydrogen-

vacancy complex is very stable when colliding with an edge dislocation. (c) The stability of hydrogen-

vacancy complex is further confirmed when lattice hydrogen grabs an absorbed vacancy from an edge 

dislocation and stabilizes it in the form of a hydrogen-vacancy complex. (d) The hydrogen-vacancy 

complex can even grow displacively by capturing more vacancies that were absorbed by edge dislocations. 

Adapted from Ref. [123]. 
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Figure 2.16. H atoms are colored white, and Fe atoms are colored red, except for those in a dislocation core 

colored cyan; shaded regions in b,c show areas of bcc→fcc phase transformation. a, For low amounts of H, 

H saturates the crack surfaces and the crack tip deforms through dislocation emission. b, For increased H, 

the H accumulates into a H-rich wedge-shaped region in the bulk near the crack tip, which evolves to induce 
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a bcc→fcc phase transformation that blocks dislocation emission, and leads to brittle cleavage. c, Increased 

H leads to further growth of the H-rich region, which intersects the crack front and leads to emission of a 

single full dislocation of Burgers vector [-1-1-1]/2 followed immediately by brittle cleavage. d, Loading 

beyond the onset of cleavage leads to slow crack growth, where the H-rich region moves with the crack tip 

through diffusion; with a fixed amount of H, the H-rich region shrinks as H atoms are depleted by surface 

segregation until eventually it becomes so small that dislocation emission resumes. Adapted from Ref. [98]. 

2.4 Hydrogen-grain boundary interaction 

  Grain boundaries (GBs) [126] are the interface between two grains or crystallites in a 

polycrystalline material. Most of them are preferred sites for solute segregation and onset 

of corrosion, including hydrogen embrittlement where the hydrogen-induced ductile to 

brittle transition is often accompanied by a transgranular to intergranular fracture 

transition. In metallic materials such as high-strength steels and nickel, etc., this 

embrittlement is manifested by a loss of cohesion primarily in the GBs (HEDE concept), 

leading to low-toughness intergranular fracture. Due to the energy-favorable trapping 

sites GBs, local accumulation of hydrogen is inevitable and it can result in intergranular 

fracture which is the most serious by inducing time-dependent subcritical cracking at low 

applied stresses and leading to unexpected catastrophic failures of structures. The 

associated hydrogen-GB interactions are thus extensively studied through previous 

experiments [25, 26, 40, 101, 127-133] or modelings [35, 101, 111, 124, 134-139], and 

multiple studies suggest the hydrogen diffusion, trapping and decohesion behavior 

depend highly on the GB types and local structures.  

  For instance, through permeation tests, Yao et al. [132, 140] discover that GB 

diffusivity of hydrogen is concentration-dependent. When the hydrogen concentration is 

extremely low, the grain boundary diffusion of hydrogen is virtually stopped. And the 

low-energy sites within GBs are postulated to be responsible for such retardation. Oudriss 

et al. [127, 129, 141] further illustrate the effects of random and special boundaries on the 

different defects and trapping sites stored in the GBs. The high-angle random boundaries 

are considered as disordered phase where the hydrogen diffusion is accelerated, while the 

special boundaries constitute a potential zone for hydrogen trapping due to the high 

density of trapping sites as dislocations and vacancies. Based on DFT calculations, Xiao 

et al. [137] found a transition between slow and fast hydrogen diffusion along the GB 
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with an abrupt change in hydrogen diffusivity. Low-angle GBs are shown to comprise 

isolated high-barrier regions to trap and inhibit H diffusion, while high-angle GBs are 

shown to provide interconnected low-barrier channels to facilitate H transport (Figure 

2.17). 

 

Figure 2.17. Contour mapping of the energy barrier Eb of H migration at representative GBs. (a) 

Σ3[110](111), (b) Σ11[110](113), (c) Σ5[100](210), (d) Σ5[100](310), (e) Σ25[100](430), (f) 

Σ41[100](540). Big gray spheres represent host Ni atoms. Adapted from Ref. [137]. 

  As for hydrogen trapping behavior, by TDS, Wada et al. [25] found that hydrogen was 

trapped along GBs with a binding energy of ≈20 kJ/mol in polycrystalline Ni, and 

further true fracture stress analysis and fracture surface morphology examination showed 

hydrogen-induced intergranular fracture of pure Ni is controlled by the concentration of 

the GB trapped hydrogen, and not by the concentration of lattice hydrogen (Figure 2.18). 

Besides, Bechtle et al. [128] conducted experiments on GB-engineered Ni samples with 
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and without hydrogen, and the results showed that the susceptibility of HE can be 

drastically reduced at special GBs that are characterized by low excess free volumes and 

a high degree of atomic matching. Using DFT calculations on two typical GBs of Σ3[-

110](111) with a close-packed interface structure and Σ5[001](210) with a less dense 

interface structure consisting of open structural units, Davide et al. [139] found these two 

GBs have a markedly different interaction behavior with atomic hydrogen that Σ3 GB 

neither traps hydrogen nor enhances its diffusion but Σ5 enhance the trapping and on-

plane diffusion behavior. Xiao et al. [136] demonstrated the chemomechanical origin of 

hydrogen trapping at GBs. The GB excess volume was found to linearly determine the 

hydrogen trapping energy in a variety of face-centered cubic metals of Ni, Cu, γ-Fe, and 

Pd. 

 

Figure 2.18. (a) Stress–stroke curves of H-free and H-charged pure Ni. (b) Peak 2 hydrogen content and 

true fracture stress as functions of hydrogen-gas fugacity. (c–e) Fracture surface morphologies of H-charged 

pure Ni in 0.7 MPa (c), 50 MPa (d) and 100 MPa (e) hydrogen gas. Adapted from Ref. [25]. 

  To quantitatively predict decohesion behavior and fracture energy reduction caused by 

hydrogen, many theoretical studies combined with atomistic calculations have been done. 

Ali [35] calculated the binding energy of hydrogen atoms to various atomic sites and to 
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various surfaces created by separating these GBs into two possible fracture surfaces and 

found no tendency for hydrogen to cause a ductile-to-brittle transformation for cracks 

along most GBs. The experimental observations of cleavage-like failure are thus 

attributed to mechanisms involving H diffusion or dynamic crack growth. Shuai et al. [14] 

further calculated the reduction of the reversible work of separation of Fe GBs and found 

the reduction is lower than the experimental observations even at a level near the hydride 

formation limit. They posited that hydrogen-enhanced plasticity and attendant effects 

establish the local conditions responsible for the transition in fracture mode from 

transgranular to intergranular. The conclusion is reached that intergranular failure occurs 

by a reduction of the cohesive energy (HEDE) but with contributions from structural as 

well as compositional changes in the GB that are driven by hydrogen-enhanced plasticity 

(HELP) processes. However, the microscale detailed HELP-mediated HEDE mechanism 

is still not clear. Using MD simulations, Li et al. [142] and Zhu [143] et al.further examine 

the dynamics behaviors of GBs in the hydrogen environment with uniaxial tension, the 

dislocation nucleation stress was found to be decreased by hydrogen but intergranular 

fracture always happens even without hydrogen. Using atomistic modeling to investigate 

the mechanical response of GBs in alpha-iron with various hydrogen concentrations, 

Liang et al. [101] found that dislocations impingement and emission on the GB can 

provoke it to locally transform into an activated state with a more disordered atomistic 

structure, and introduce a local stress concentration. The activation of the GB segregated 

with hydrogen atoms can greatly facilitate decohesion of the GB, with the proposed model 

in Figure 2.19. In all, previous simulations has shown the reduced fracture toughness at 

GB by inserting hydrogen, but no transgranular to intergranular fracture transition 

corresponding to experiments was observed, which is due to their low stress triaxiality 

state setting and will be further analysed in the attached Paper1 and Paper2. 
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Figure 2.19. Schematic illustration of H embrittlement controlled by dislocation-GB reaction in metals. (a) 

Polycrystalline sample with moderate concentration of hydrogen mechanically failed with a quasi-cleavage 

fracture surface on which the traces of the original GBs can hardly be identified. (b) Intergranular fracture 

of a polycrystalline sample with fairly high hydrogen concentration for which the traces of original GBs 

are largely preserved on the fracture surface. The yellow strips on the GBs represent sites at which the 

reaction of GB with dislocations results in a locally activated state of the GB. Adapted from Ref. [101]. 
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  Hydrogen embrittlement (HE) has been a long-standing issue for both academia and 

industry, however, the nanoscale HE mechanisms associated with a broad range of 

hydrogen-microstructure interactions are largely unknown. Of particular significance, the 

hydrogen-grain boundary (GB) interaction can make HE occur in its most severe form, 

i.e., intergranular fracture. Herein, aiming to understand the microscale mechanism of 

intergranular fracture and develop a mechanism-based predictive model, a set of atomistic 

simulations is designed and performed to obtain atomic insights into hydrogen-GB 

interactions. 

Previous work focused on the decohesion effect of hydrogen at GB, but the critical 

timing for transgranular to intergranular fracture transition has not been recorded in the 

literature. By applying uniaxial straining to mimic the high-stress triaxiality state in the 

vicinity of crack tips, we first show a nanoscale transgranular to intergranular fracture 

transition facilitated by hydrogen at Ni Σ5(210)[001] GB. Hydrogen is found to form a 

local atmosphere in the GB region, which induces a local stress concentration and inhibits 

the subsequent stress relaxation at the GB during deformation. It is this local stress 

concentration that promotes earlier dislocation emission, twinning evolution, and 

generation of more vacancies that facilitate nanovoiding. The nucleation and growth of 

nanovoids finally leads to intergranular fracture at the GB, in contrast to the transgranular 

fracture of hydrogen-free sample. These observations revealed a specific hydrogen-

induced plasticity-participated decohesion mechanism. 



Chapter 3   Main Results 

32 

 

  To universalize this mechanism to varying GBs and environmental conditions and 

develop a quantitative prediction, statistically reliable simulations on Ni Σ5(210)[001] 

and Σ9(1-10)[22-1] GBs with or without pre-charged hydrogen at various temperatures 

are carried out. Without hydrogen, vacancy generation at GB is limited and transgranular 

fracture mode dominates. When charged, hydrogen as a booster can enhance strain-

induced vacancy generation by up to ten times. This leads to the superabundant vacancy 

stockpiling at the GB, which agglomerates and nucleates intergranular nanovoids 

eventually causing the intergranular fracture. Compared to the enhancement of vacancies, 

changes in dislocation quantities and behavior are negligible and not sensitive to 

intergranular fracture. While hydrogen tends to persistently enhance vacancy 

concentration, temperature plays an intriguing dual role as either an enhancer or an 

inhibitor for vacancy stockpiling. These results directly indicate the critical role of 

vacancy in the fracture mode transition and good agreement with recent positron 

annihilation spectroscopy experiments. An S-shaped quantitative correlation (Fig. 3.1) 

between the proportion of intergranular fracture and vacancy concentration was for the 

first time derived, highlighting the existence of a critical vacancy concentration, beyond 

which fracture mode will be completely intergranular. The relationship provides a robust 

tool to quantitatively predict the transgranular to intergranular fracture transition. 

 

Figure 3.1. Left: Transgranular nanovoid formation in the absence of hydrogen and intergranular nanovoid 

formation in the presence of hydrogen. Right: Relationship between intergranular fracture fraction and 

vacancy concentration at GB. 

 



Chapter 3   Main Results 

33 

 

  Besides the decohesion effect on fracture behavior, hydrogen also influences the 

mobility of GB during the shear-coupled migration process. By inserting hydrogen as 

solute at the typical dislocation-array Σ25(430)[001] GB and applying shear deformation, 

the hydrogen-coupled GB migration is investigated and a dual role of hydrogen on GB 

mobility is unraveled. In the low temperature and high loading rate regime, where 

hydrogen diffusion is substantially slower than GB motion, GB breaks away from the 

hydrogen atmosphere and transforms into a new stable phase with highly enhanced 

mobility (Fig. 3.2). In the reverse regime, hydrogen atoms move along with GB, exerting 

a drag force on GB and decreasing its mobility. These findings provide rationale for the 

coexistence of hydrogen hardening and softening observed experimentally in 

polycrystalline materials. 

 

Figure 3.2. Left: GB core structure in the absence of hydrogen, in the presence of hydrogen before breaking 

away and in the presence of hydrogen after breaking away, respectively. Right: Stress-strain curve during 

GB migration. 

  Finally, to transfer the results from a certain special GB to a general GB, i.e, from 

bicrystal to polycrystal, we elucidate the hydrogen segregation energy spectrums at GBs 

of polycrystalline Ni by traversing all the geometrically favorable trapping sites. The 

spectrum is a statistical result from millions of local atomic motifs and it is found to be 

naturally captured by a three-peak Gaussian mixture distribution (Fig. 3.3). The first peak 

(-0.205eV) corresponds to GB core sites which account for the most favorable trapping 

sites and also contribute to the fast GB network diffusion with lower migration energy, 

while the second and third peaks correspond to hybrid GB surface-octahedron/ 
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tetrahedron sites acting as an on-plane diffusion barrier. A thermodynamic model is 

further derived to describe the equilibrium hydrogen concentration at GB. Through mean 

squared displacement analysis, these general GBs in polycrystal show a higher diffusion 

coefficient by three orders of magnitude at GB compared to the fcc lattice. 

 

Figure 3.3. Left: Hydrogen trapping spectrum in polycrystal. Right: Density distribution of segregation 

energy for varying trapping sites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4   Perspectives 

35 

 

 

 

 

Chapter 4   Perspectives 

 

 

 

 

  Hydrogen embrittlement has almost a history of 150 years, the remaining debates may 

originate from 1) hydrogen as the smallest element is still tricky to be detected, 2) the 

collective effect of small-scale interaction to macroscale is still unclear. To resolve these 

issues, new technology and interpretation are necessary. In this thesis, we could have a 

glance into the nanoscale HE with the help of atomistic modeling, however, limitation 

exists and potential further studies could be: 

1) Atomistic simulation has its own limitation due to the constrained time and space 

scale. The slow hydrogen diffusion in reality may take several years to get fully 

saturated and the macroscale mechanical may depend on long-range plastic 

behavior across the whole sample, which makes the simulation condition 

oversimplified to the real situation. This gap may be mitigated by the advance of 

experimental techniques (atom probe tomography and high-resolution 

transmission electron microscopy) into a smaller scale and the revolution in 

computer hashrate (quantum computing). The accuracy of atomistic simulation 

highly depends on the atomic potential, more material systems and varying 

potential can be verified in the future. For instance, hydrogen in bcc iron could be 

a future target system where the diffusion is faster than typical fcc Ni. The 
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emerging machine-learning potential can be a good candidate for simulating 

multiple systems. 

2) Nowadays, machine learning is coupled with powerful data processing and high 

prediction performance and is being widely used in multiple fields. Its previous 

success in pattern recognition, drug development, etc. can also be transferred to 

predict hydrogen embrittlement or design anti-hydrogen embrittlement materials 

based on a bunch of past data. For example, the component-properties relationship 

for high-entropy alloy could be derived by computer to design suitable material. 

3) Specifically in this thesis, we explore hydrogen interaction with a range of GBs, 

however, the effect of pre-existing dislocation, precipitate and phase boundary are 

still not considered. More attention could be focused on their collective interaction 

with an accelerated kinetic hydrogen diffusion modeling methodology. 
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