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Abstract

Millicharged particles are possible candidates in the search for dark matter, and
they can be produced in cosmic ray interactions via meson decays. From the
cosmic ray meson flux, we find the corresponding flux of millicharged particles
that can be detected in underground detectors. From these results we construct
an exclusion plot in the mass-charge plane of the millicharged particles, nar-
rowing their possible parameter space and thus moving one step further in the
search for millicharged dark matter. To improve these results we investigate the
energy loss experienced by millicharged particles of different charges, masses,
and incoming energies traversing the Earth toward an underground detector
from all angles. We focus on the 2 → 2 processes of millicharged particles
scattering off electrons and nuclei. As an additional result, we present initial
investigations of the 2 → 3 process of bremsstrahlung. We find that in the al-
ready excluded region, assuming only downward-moving millicharged particles
is reasonable. However, for the still open region the contribution from upward-
moving particles should also be considered.
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Sammendrag

Milliladede partikler er mulige kandidater i søket etter mørk materie, og de
kan produseres i kosmiske str̊aleinteraksjoner via forfall av mesoner. Fra den
kosmiske meson-fluksen finner vi den tilsvarende fluksen av milliladede partikler
som kan detekteres i underjordiske detektorer. Fra disse resultatene konstruerer
vi et ekslusjonsplot i masse-ladningsplanet til de milliladede partiklene, som
innsnevrer deres mulige parameter-rom og dermed tar oss ett steg videre i søket
etter milliladet mørk materie. For å forbedre disse resultatene undersøker vi
energitapet for milliladede partikler med ulike ladninger, masser og energier n̊ar
de traverserer jorden p̊a vei mot en underjordisk detektor fra ulike vinkler. Vi
fokuserer p̊a prosessene for milliladede partikler som spres av elektroner og atom-
kjerner. Som et tilleggsresultat begynner vi å utforske energitapet for̊arsaket
av bremsestr̊aling. Resultatene v̊are viser at i det allerede utelukkede omr̊adet
av de milliladede partiklenes parameter-rom er det rimelig å anta at milliladede
partikler kun n̊ar en underjordisk detektor ovenfra. For omr̊adet som fortsatt
er åpent burde man i tillegg ta oppadg̊aende milliladede partikler med i betrak-
tning.
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Chapter 1

Introduction

1.1 Motivation�

The search for dark matter (DM) remains one of the most important unsolved
problems in physics. Enormous efforts are being put into the search, both
theoretically and experimentally. The discovery of DM would be considered one
of the most important moments of scientific history. Even if the search does not
succeed, we would be forced to reassess our current understanding of nature [2].

The history of dark matter began in 1933, when Fritz Zwicky published his
article about the Coma cluster [3]. He found that the velocity dispersion of the
galaxies in the cluster was so high that the system could only be stable if more
matter was present than the observed visible matter [4]. He stated that this had
to be due to the presence of a type of unobserved matter, which he called ”dark
matter” [4]. Similar results were found by other physicists shortly after, noting
the discrepancy between the galaxy masses predicted by the velocity dispersions
and the amount of light they emitted [4].

More observations pointing toward the existence of dark matter were made
studying the rotation curves of galaxies. A rotation curve shows the orbital
velocities of galaxy components as a function of distance from the galactic center,
and from them, the mass of the galaxy can be determined [4]. In 1970, Rubin
and Ford noted in an article [5] how the rotation curve of the Andromeda nebula
remained approximately constant as a function of radius [4]. The rotation curve
is shown in Figure 1.1. In the early 1970s, more articles on rotation curves were

�Adapted from [1].
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2 CHAPTER 1. INTRODUCTION

published, and it was noted that the rotation curves of galaxies tend to be flat,
a feature which suggests that there is more mass present than the light of the
galaxies indicates [4]. The flatness of the rotation curves can thus be used as
an argument for the existence of DM [4].

Figure 1.1: Rotation curve made by Rubin and Ford, taken from their 1970
article [5]. The curve shows optically studied rotation of ionized hydrogen in
the Andromeda galaxy [4].

Initially, the presence of unobserved matter was seen as just one of many
possible explanations for these observations regarding the velocity dispersions
and rotation curves of galaxies [4]. It was only later that the problems of the
discrepancy between the mass predicted by the emitted light of galaxies and
their velocity dispersions or rotational curves were identified as two problems
with the same explanation: the existence of DM [4].

Initially, the term ”dark matter” was used to refer to dark astrophysical
objects such as dark stars, planets or cold gas. Today, it refers to the unknown
particles that make up the bulk of the matter density of the universe [6]. Due
to the discovery of atmospheric neutrino oscillations in the Super-Kamiokande
(SK) experiment, there is strong evidence for massive neutrinos as non-baryonic
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candidates for DM [7]. However, even if the neutrino mass is up to 5 eV, they
still could not account for all the DM in the universe [7], and neither can dif-
fuse baryons [2]. Thus, other candidates have to be investigated. Today most
physicists agree that DM has to consist of particles outside the standard model
(SM) [6]. There are several promising beyond SM candidates of DM, which
makes the DM search very intriguing.

The DM particles have to satisfy various criteria. Most importantly, they
have to interact weakly with the SM particles, otherwise they should already
have been detected. Research is progressively reducing the allowed regions of
the parameter spaces of possible DM particles. Because of this, lighter DM
particles in the sub-GeV range have recently attracted increasing attention. It
has recently been noted that cosmic rays can be a possible source of detectable
DM particles in this mass range [8].

1.1.1 MCPs as candidates for dark matter

From the known particles of the SM, it seems that all particles have an electric
charge that is a multiple of 1/3 e, where e is the electron charge. However, it
is theoretically possible that there exist particles with electric charge ϵe, where
ϵ can be any real number [9]. A particle with ϵ ≪ 1 is called a millicharged
particle (MCP), and it is a possible candidate for DM.

An MCP is a generic particle with a charge much smaller than the electron
charge. The small charge makes the MCP weakly coupled to the SM photon, and
due to this coupling, the Feynman rules of quantum electrodynamics (QED) can
be applied to MCPs as long as the photon coupling is scaled by the size of the
MCP charge. MCPs can be produced through the decay of cosmic ray mesons,
and by applying the Feynman rules for QED to the MCPs we can calculate the
MCP flux resulting from cosmic ray interactions, as done by Kachelrieß and
Tjemsland in [8]. By combining the estimated MCP flux with experimental
detector results, we can place restrictions on which MCPs stand as candidates
for DM.

Observations of MCPs would not only give us information about what DM
is made up of, but it would also prove that particles with charges not being a
multiple of 1/3 e can exist. Thus, investigating the parameter space of MCPs is
an important task in the intriguing search for new physics.
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1.2 Outline

The energy loss experienced by MCPs when traversing the Earth can affect the
expected MCP signal in an underground detector. This thesis is devoted to
investigating the Earth attenuation of a flux of MCPs produced in cosmic rays.

Firstly, we find the flux of MCPs from the cosmic ray meson flux. We then
use these results together with experimental data to construct an exclusion
plot in the MCP mass-charge plane, reproducing the results found in [8]. As a
manner of improving the exclusion plot, we investigate the energy loss of MCPs
traversing the Earth on their way toward an underground detector. Our main
goal is to investigate the attenuation of the MCP flux due to the 2→ 2 scattering
processes of MCPs scattering off electrons and nuclei. As an additional result,
initial investigations of the 2→ 3 process of MCP bremsstrahlung are presented.

The first few chapters present the theory needed for obtaining our results.
Chapter 2 summarizes the basics of particle kinematics. We then present some
general theory about MCPs in Chapter 3, including how they can be produced
in meson decays. Further, we summarize how MCPs can be detected in ex-
periments and explain how to make exclusion plots in their mass-charge plane.
Then the Feynman rules for QED are summarized in Chapter 4, and how they
can be applied to MCPs is explained. Finally, we look at the Earth attenuation
of MCPs along their path toward an underground detector in Chapter 5. This
is done separately for scattering off electrons and nuclei, and for the process of
bremsstrahlung.

Our results are presented in Chapter 6. Firstly, the results for the integrated
MCP flux and the resulting exclusion plot in the mass-charge plane of MCPs
are shown. Then we present the results related to the calculated energy loss of
MCPs traversing the Earth due to them scattering off electrons and nuclei. For
the case of bremsstrahlung, numerical problems were present, and we discuss
possible ways of approaching these issues.

In Chapter 7 we discuss the accuracy of our results and present suggestions
for further work. We also discuss the reasonableness of our assumptions and
approximations and present some upcoming experiments. Finally, we conclude
and reflect on the impact of our results in Chapter 8.
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1.3 Conventions and notation�

We define e as the negative electron charge. We use natural units, setting
h̄ = c = 1, where h̄ is Planck’s reduced constant and c is the speed of light. We
use the following convention for the metric tensor:

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (1.1)

Four-vectors are denoted by light italic type (p), while three-vectors are denoted
by bold type (p). The scalar product between two four-vectors p and q is defined
as

pµqµ = gµνp
µqν = p0q0 − piqi = p0q0 − p · q, (1.2)

where we use the Einstein summation convention, summing over repeated in-
dices. We use Greek letters for four-vectors and Latin letters for three-vectors.

In the Dirac representation, the 4× 4 gamma matrices γµ are defined by

γ0 =

(
1 0
0 −1

)
(1.3)

and

γi =

(
0 σi

−σi 0

)
, (1.4)

where 1 is the 2× 2 identity matrix and σi are the Pauli spin matrices defined
by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.5)

We use the Feynman slash notation where

/p = γµpµ. (1.6)

For a particle a, we denote its four-momentum by pa, its mass byma, and its
energy by Ea. To avoid confusion, we generally name incoming particles using
letters and outgoing particles using numbers.

�Adapted from [1].
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Chapter 2

Kinematics

This chapter gives a brief summary of important concepts and relations that we
will use in our calculations for MCPs later on.

2.1 Lorentz transformations�

The section is based on Section 43 in [10]. The momentum four-vector for a
particle is denoted by p = (E,p), where E is the energy of the particle and p is
its three-momentum. The square of the four-momentum is given by

p2 = pµpµ = E2 − |p|2 = m2, (2.1)

where m is the invariant mass of the particle. The velocity of the particle is
given by β = p/E, and the Lorentz factor γ is defined as

γ =
1√

1− β2
=
E

m
, (2.2)

which goes toward infinity as the particle’s velocity approaches the speed of
light. Lorentz transformations transform quantities from one inertial frame to
another. The energy and momentum of a particle p = (E,p) as seen from a
frame moving at a relative velocity of βf are given by(

E∗

p∗
∥

)
=

(
γf −γfβf
−γfβf γf

)(
E
p∥

)
(2.3)

�Adapted from [1].

7
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and

p∗
T = pT , (2.4)

where pT is the part of p perpendicular to βf , p∥ is the part of p parallel to
βf and γf is the Lorentz factor corresponding to βf . The square of the four-
momentum defined in Equation (2.1) is a Lorentz-invariant quantity, which
means it remains constant under Lorentz transformations. Other four-vectors
transform in the same way as the four-momentum in Equation (2.3).

We will do our calculations in either the center of momentum (CM) frame or
in the lab frame. The CM frame is the frame in which the total momentum of
the incoming particles is zero, and we will use the superscript * to denote CM
variables. The lab frame is defined as the frame in which the target particle is
at rest. Figure 2.1 shows an illustration of a collision in both frames.

Figure 2.1: Illustration of the lab frame and CM frame for two colliding par-
ticles a and b. pa is the three-momentum of particle a, while pb is the three-
momentum of particle b. The superscript * denotes variables in the CM frame.

2.2 Decay rates�

In this section, we present some useful formulas for particle decays, as presented
in Chapter 6 in [11]. The decay rate for a given particle decay gives the prob-
ability for the decay to happen within a given period of time. The decay rate
is given by the product of the absolute square of the amplitude, |M|2, and
the phase space. The phase space factor is kinematic, and it depends on the

�Adapted from [1].
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energies, masses, and momenta of the particles involved in the decay. The am-
plitude is dynamical, and it is calculated using the appropriate Feynman rules
for evaluating the Feynman diagrams of the decay. The Feynman rules for QED
will be given in Section 4.1. The decay rate Γ of a particle a into the particles
1, 2, ..., n is given by

Γ =
S

2ma

∫
|M|2(2π)4δ4(pa − p1 − p2 − ...− pn)

×
n∏

j=1

2πδ
(
p2j −m2

j

)
Θ
(
p0j
) d4pj
(2π)4

,
(2.5)

where mi is the mass and pi is the four-momentum of particle i, Θ is the
Heaviside step function, δ is the Dirac delta function, and S is the symmetry
factor. The symmetry factor corrects for double counting if there are identical
particles in the final state. The integral over the time components can easily be
done by utilizing the delta functions.

The branching ratio (BR) for a decay is the fraction of decaying particles
that decay by a given decay mode. The BR for a given decay mode Γi is defined
as

BRi =
Γi

Γtot
, (2.6)

where Γtot is the sum of the individual decay rates:

Γtot =

n∑
i=1

Γi. (2.7)

2.2.1 Two-body decays

For a two-particle decay, we use the delta functions to do the integral over the
time components so that we can rewrite Equation (2.5) as

Γ =
S

2ma

∫
|M|2(2π)4δ4(pa − p1 − p2)

× 1

2
√
p1

2 +m2
1

1

2
√
p2

2 +m2
2

d3p1

(2π)3
d3p2

(2π)3
,

(2.8)

which is a more useful format for doing calculations.
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2.2.2 Three-body decays

We will summarize some important relations for three-body decays given in
Section 43.4.3 in [10]. We consider a three-body decay where the incoming
particle a decays into three particles 1, 2, and 3. We define

pij =pi + pj ,

m2
ij =p

2
ij .

(2.9)

The differential decay rate for a three-body decay can be written as

dΓ =
1

(2π)5
1

16m2
a

|M|2 |p′
1| |p3|dm12dΩ

′

1dΩ3, (2.10)

where (|p′
1| ,Ω

′

1) is the momentum of particle 1 in the rest frame of particles
1 and 2, and Ω3 is the solid angle of particle 3 in the rest frame of the decay-
ing particle. The absolute values of the three-momenta |p′

1| and |p3| can be
expressed as

|p′
1| =

[
(m2

12 − (m1 +m2)
2)(m2

12 − (m1 −m2)
2)
]1/2

2m12
(2.11)

and

|p3| =
[
(m2

a − (m12 +m3)
2)(m2

a − (m12 −m3)
2)
]1/2

2ma
. (2.12)

A scatter plot of dΓ with axes m2
12 and m2

23 is called a Dalitz plot. Dalitz
plots are a useful tool for gaining information about the squared amplitude of a
decay. The higher the density of points in a region, the higher the probability for
the corresponding event to occur. A constant ¯|M|2 gives a constant probability
for each event inside the allowed region of the plot. A qualitative sketch of a
Dalitz plot is shown in Figure 2.2, with the kinematic limits indicated in the
figure. The allowed region is the area that corresponds to kinematically allowed
decays, marked in blue in Figure 2.2. The standard form of writing the partial
decay rate for the Dalitz plot is

dΓ =
1

(2π)3
1

32m3
a

¯|M|2dm2
12dm

2
23. (2.13)

For a given value of m12, the maximum and minimum values of m23 are

(m2
23)max =

(
E

′

2 + E
′

3

)2
−
(√

E
′2
2 −m2

2 −
√
E

′2
3 −m2

3

)2

(2.14)
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Figure 2.2: Sketch of a Dalitz plot illustrating the kinematical limits restricting
the allowed phase space region. The allowed region is marked in blue.

and

(m2
23)min =

(
E

′

2 + E
′

3

)2
−
(√

E
′2
2 −m2

2 +
√
E

′2
3 −m2

3

)2

, (2.15)

where E
′

2 and E
′

3 are the energies of particles 2 and 3 in the rest frame of
particles 1 and 2. These energies can be expressed as

E
′

2 =
1

2m12

(
m2

12 −m2
1 +m2

2

)
(2.16)

and

E
′

3 =
1

2m12

(
m2

a −m2
12 −m2

3

)
. (2.17)

2.3 Scattering cross sections

The cross section for particle scattering is the product of the absolute square
of the amplitude for the process, the flux factor and the phase space. For two
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particles a and b scattering with an n-body final state the differential cross
section is given by

dσ =
1

F
|M|2dΦn (pa + pb; p1, . . . , pn) , (2.18)

where F is the flux factor and dΦn describes the phase space [12]. In the lab
frame, the flux factor can be written as

4

√
(pa · pb)2 −m2

am
2
b(2π)

3n−4 = 4mb|pa|(2π)3n−4, (2.19)

where we have gathered all the factors of 2π [12].

2.3.1 Scattering of two particles into two particles

We define the variables for a two-body scattering process as shown in Figure 2.3.
The Mandelstam variables are defined by

s = (pa + pb)
2
= (p1 + p2)

2
,

t = (pa − p1)2 = (pb − p2)2 ,

u = (pa − p2)2 = (pb − p1)2 ,

(2.20)

and they represent useful Lorentz-invariant quantities for two-body scatter-
ing [12]. They satisfy

s+ t+ u =
∑

m2
i , (2.21)

which is often useful in calculations [12].

2.3.2 Scattering of two particles into three particles

This section is based on [13], and it gives all the formulas necessary to compute
the phase space integral for 2 → 3 scattering. The equations will be given
without derivation, more details are given in [13]. We will start by describing
the phase space using two invariants and two angles. Then we will show how
these two angles can be expressed using invariants. Lastly, limits will be given
for all integration variables.

We name our particles as shown in Figure 2.4, where the incoming particles
are referred to as a and b, and the outgoing particles as 1, 2, and 3. The standard
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Figure 2.3: 2 → 2 scattering. The incoming momenta are denoted by pa and
pb, while the outgoing momenta are denoted by p1 and p2.

set of five invariants for 2→ 3 scattering is

s = (pa + pb)
2 = (p1 + p2 + p3)

2,

s1 = (p1 + p2)
2 = (pa + pb − p3)2,

s2 = (p2 + p3)
2 = (pa + pb − p1)2,

t1 = (pa − p1)2 = (p2 + p3 − pb)2,
t2 = (pb − p3)2 = (p1 + p2 − pa)2,

(2.22)

where s is fixed, while s1, s2, t1, and t2 vary.
We can look at the 2 → 3 scattering process as two subsequent processes;

2 → 2 scattering followed by a 1 → 2 decay process. We choose p2 and p3 as
the intermediate system. Figure 2.5 shows an illustration of the factorization.
By applying Equation (2.21) to the 2→ 2 scattering a, b→ 1, s2, we can define
five more invariants as linear combinations of s1, s2, t1, and t2. These allow us
to rewrite expressions using only the five standard invariants. They are given
by

ta2 =(pa − p2)2 = t2 − t1 − s1 +m2
a +m2

1 +m2
2,

tb2 =(pb − p2)2 = t1 − t2 − s2 +m2
b +m2

2 +m2
3,

ta3 =(pa − p3)2 = s1 − s− t2 +m2
a +m2

b +m2
3,

tb1 =(pb − p1)2 = s2 − s− t1 +m2
a +m2

b +m2
1,

s13 =(p1 + p3)
2 = s− s1 − s2 +m2

1 +m2
2 +m2

3.

(2.23)

Using Equations (2.22) and (2.23) we can express the ten different scalar
products that can arise for general 2 → 3 scattering using the five standard
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Figure 2.4: Two particles scattering into three particles, where a and b are the
incoming particles, and 1, 2, and 3 are the outging particles. The five standard
invariants for 2→ 3 scattering are shown in between the particle lines.

invariants:
2(pa · pb) = s−m2

a −m2
b ,

2(pa · p1) = m2
a +m2

1 − t1,
2(pa · p2) = s1 + t1 − t2 −m2

1,

2(pa · p3) = s− s1 + t2 −m2
b ,

2(pb · p1) = s− s2 + t1 −m2
a,

2(pb · p2) = s2 + t2 − t1 −m2
3,

2(pb · p3) = m2
b +m2

3 − t2,
2(p1 · p2) = s1 −m2

1 −m2
2,

2(p1 · p3) = s− s1 − s2 +m2
2,

2(p2 · p3) = s2 −m2
2 −m2

3,

(2.24)

which is useful for rewriting the amplitude for the interaction in terms of invari-
ants only.

Factorizing the phase space integral into the 2 → 2 and 1 → 2 processes
shown in Figure 2.5, it can be written as

R3(s) =

∫
ds2R2→2

(
s,m2

1, s2
)
R2→1

(
s2,m

2
2,m

2
3

)
, (2.25)
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where R2→2 corresponds to the 2→ 2 scattering and R1→2 corresponds to the
1→ 2 process. We can express R2→2 as

R2→2(s) =
1

4
λ−1/2

(
s,m2

a,m
2
b

)
×
∫ 2π

0

∫
dϕdtΘ

(
1− cos2 θ∗a1

)
Θ(E∗

1 −m1) ,

(2.26)

where ϕ is the rotation angle around the beam axis, θ∗a1 is the CM scattering
angle, and E∗

1 is the energy of particle 1 in the CM frame. The function λ is
defined by

λ(x, y, z) = (x− y − z)2 − 4yz. (2.27)

Figure 2.5: Illustration of the factorization of a 2 → 3 scattering process into
2→ 2 scattering followed by a 1→ 2 decay.

We can express R1→2 as

R1→2(s) =
|p3|R23

4
√
s

∫
dΩR23

3 , (2.28)

where |p3|R23 is in the R23 frame and ΩR23
3 is the solid angle in the R23 frame.

The R23 frame is the frame in which p3+p2 = 0. In this frame, pa+pb−p1 = 0,
and the vectors pa, pb, and p1 form a plane.

Inserting Equations (2.26) and (2.28) into Equation (2.25) we get

R3 =
1

8
√
s|pa|∗

∫ 2π

0

dϕ

∫ ∫
dt1ds2

|p3|R23

4
√
s2

∫
dΩR23

3 , (2.29)
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where

|p3|R23 =
λ1/2(s2,m

2
2,m

2
3)

2
√
s2

. (2.30)

We choose to work in the Jackson frame, which is the frame where pb is
used as the polar axis to define the orientation of p3. In this frame the polar
angle is defined as

cos θR23
b3 =

pb · p3

|pb||p3|
, (2.31)

and it varies between 0 and π. The azimuthal angle is called the Treiman-Yang
angle, and it is defined by

cosϕb = −
(pb × p1) · (pb × p3)

|pb × p1||pb × p3|
. (2.32)

We have that
dΩR23

3 = dcos θR23
b3 dϕb, (2.33)

and we want to express these angles in terms of the five standard invariants in
Equation (2.22). Thus, we need to know the relation between cos θR23

b3 and t2,
and between ϕb and s1.

The relation between cos θR23
b3 and t2 is linear, and it is given by

t2 =m2
b +m2

3 −
1

2s2

(
s2 +m2

b − t1
) (
s2 +m2

3 −m2
2

)
+ cos θR23

b3

1

2s2
λ1/2

(
s2,m

2
b , t1

)
λ1/2

(
s2,m

2
3,m

2
2

)
.

(2.34)

We also have a linear relationship between the Treiman-Yang angle ϕb and s1:

cosϕb =− det

 2m2
b s2 − t1 +m2

b m2
b +m2

3 − t2
s2 − t1 +m2

b 2s2 s2 −m2
2 +m2

3

s−m2
a +m2

b s+ s2 −m2
1 s− s1 +m2

3


× 2

[
G(s, t1, s2,m

2
a,m

2
b ,m

2
1)G(s2, t2,m

2
3, t1,m

2
b ,m

2
2)
]1/2

,

(2.35)

where

G(x, y, z, u, v, w) = −1

2
det


0 1 1 1 1
1 0 v x z
1 v 0 u y
1 x u 0 w
1 z y w 0

. (2.36)
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Expressing the integral over ΩR23
3 in terms of invariants, the phase space

integral in Equation (2.29) becomes

R3(s) =
π

16λ1/2 (s,m2
a,m

2
b)

∫
dt1ds2dt2ds1
(−∆4)1/2

, (2.37)

where ∆4 is the 4× 4 symmetric Gram determinant. Using the standard set of
five invariants the Gram determinant can be written as

∆4 =
1

16
det


2s2 s2 − t1 +m2

b s+ s2 −m2
1 s2 −m2

2 +m2
3

s2 − t1 +m2
b 2m2

b s−m2
a +m2

b m2
b +m2

3 − t2
s+ s2 −m2

1 s−m2
a +m2

b 2s s− s1 +m2
3

s2 −m2
2 +m2

3 m2
b +m2

3 − t2 s− s1 +m2
3 2m2

3

.
(2.38)

The limits of the physical region can be found from the requirements that
E∗

1 ≥ m1,
√
s2 ≥ m2 +m3 and −1 ≤ cos θ∗1 ≤ 1. These requirements can be

expressed in the following useful relations:

s±2 =s+m2
1 −

1

2m2
a

[(
s+m2

a −m2
b

) (
m2

a +m2
1 − t1

)
∓ λ1/2

(
s,m2

a,m
2
b

)
λ1/2

(
t1,m

2
a,m

2
1

)] (2.39)

and

t±1 =m2
a +m2

1 −
1

2s

[(
s+m2

a −m2
b

) (
s− s2 +m2

1

)
∓ λ1/2

(
s,m2

a,m
2
b

)
λ1/2

(
s, s2,m

2
1

)]
.

(2.40)

These relations constrain the boundary of the physical region in the s2-
t1 plane. Equation (2.39) is useful for plotting s2 as a function of t1, and
the opposite for Equation (2.40). We have two more relations restricting the
boundary of the physical region, which are

s2 > (m2 +m3)
2

(2.41)

and

s2 <
(√
s−m1

)2
. (2.42)

Looking back at Figure 2.5, it is clear where these boundaries come from. We
must have that s2 > (m2 +m3)

2 holds because of energy conservation in the
process s2 → 2, 3. The other condition comes from energy conservation in the
process of a, b→ 1, s2.
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The physical region in the t1-s2 plane can be depicted by a Chew-Low plot.
A sketch of such a plot is shown in Figure 2.6. If we choose to plot s2 as
a function of t1, the upper boundary is given by s+2 . The lower boundary is
determined by s−2 , together with Equation (2.42). In some cases, the lower
boundary will be completely determined by the latter.

Figure 2.6: Chew-Low plot illustrating the allowed kinematical region in the t1-
s2 plane. The minimum and maximum values of s2 are indicated with dashed
lines. The border is defined by s+2 (t1) and s

−
2 (t1).

The limit for t2 can be found by inserting cos θR23
b3 = ±1 into Equation (2.34),

which gives

t±2 =m2
b +m2

3 −
1

2s2

(
s2 +m2

b − t1
) (
s2 +m2

3 −m2
2

)
± 1

2s2
λ1/2

(
s2,m

2
b , t1

)
λ1/2

(
s2,m

2
3,m

2
2

)
.

(2.43)

To find the limits for s1 we solve Equation (2.35) for s1 and insert cosϕb = ±1
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to get

s±1 =s+m2
3 −

1

λ (s2, t1,m2
b)

×

(
det

 2m2
b s2 − t1 +m2

b m2
b +m2

3 − t2
s2 − t1 +m2

b 2s2 s2 −m2
2 +m2

3

s−m2
a +m2

b s+ s2 −m2
1 0


∓2
[
G
(
s, t1, s2,m

2
a,m

2
b ,m

2
1

)
G
(
s2, t2,m

2
3, t1,m

2
b ,m

2
2

)]1/2)
,

(2.44)

where G was defined in Equation (2.36). We have now presented all the relations
needed for calculating the phase space integral for the 2 → 3 process of MCP
bremsstrahlung.
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Chapter 3

Millicharged particles�

MCPs are possible candidates in the search for DM. An MCP is a theoretical
particle with an electric charge ϵe, where ϵ ≪ 1. The coupling strength of a
particle with the SM photon is proportional to the charge of the particle. DM
candidates have to interact weakly with the SM, otherwise they should already
have been detected. An MCP will be weakly coupled to the SM photon with
its coupling strength ratio compared to the electron given by ϵ, which makes it
a promising candidate for DM.

A minimal MCP model is based on only two assumptions: that the MCP
couples to the SM photon with a strength Qχ = ϵe and that it is stable [14].
The MCP has to be stable if Qχ is the smallest non-zero charge in the dark
sector because it would have no legal decay modes. By only making these two
assumptions, the derived results are valid for any particle satisfying them, even
if the particle turns out not to be DM. However, if the particle is part of stable
DM, additional constraints apply, and it will probably make up only a small
fraction of the relic DM in the universe [15].

The search for MCPs is being carried out in multiple ways. In recent years
existing data from accelerator experiments have been reanalyzed due to the
ongoing search for MCPs, and new MCP searches using neutrino experiments
have been proposed [15]. Regions of the mass-charge space of possible MCPs
have already been ruled out by a variety of constraints. For example, new,
improved limits were recently set by the ArgoNeuT experiment at Fermilab,
which is the first neutrino experiment dedicated to the search for MCPs [16].

�Adapted from [1].
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The search for MCPs at SLAC has also ruled out regions of the mass-charge
space [17]. Additionally, astrophysical constraints can be obtained from stellar
evolution, or cosmological constraints from, e.g., the Big Bang nucleosynthesis
limits [9]. MCPs have yet to be detected, but regions of the mass-charge space
remain where the possibility of detection has not yet been ruled out [9].

From the lack of detection of particles with masses below the TeV scale, one
can conclude that such particles have to be weakly coupled to the SM. Combined
with the constraints on other DM candidates, the investigation of light DM
particles with masses in the sub-GeV range has gained increasing interest during
the last few years [8]. This is also because new research has demonstrated that
such light particles might be accessible to direct detection experiments, unlike
traditionally thought [8]. For example, a detectable energetic flux of DM can
result from the decay of mesons produced in inelastic cosmic ray collisions [18].
An MCP with a mass in the sub-GeV range is thus a promising candidate for
DM.

3.1 Cosmic ray production

This subsection is based on [8]. In parallel with the MCP detector searches,
the possibility of detecting MCPs from cosmic ray interactions is being ex-
plored. Cosmic ray interactions in the atmosphere are a promising source of
light DM. Mesons produced by the cosmic ray interactions might decay par-
tially into MCPs, and if this is the case then the resulting MCP flux can be
detected by underground detectors. One advantage of this method is that the
cosmic ray interactions in the atmosphere depend only on the cosmic ray flux,
which is known. Another advantage is that cosmic rays constitute a permanent
MCP production source [14].

From the cosmic ray flux of undecayed mesons, one can calculate the re-
sulting flux of exotic particles, as done by Kachelrieß and Tjemsland in [8]. In
their article, the energy spectra of the light, neutral mesons π0, η, ρ0, ω, ϕ and
J/ψ were evaluated. This was done using the quantum chromodynamics (QCD)
inspired event generators DPMjet [19], Sibyll [20], and Pythia [21]. DPMjet and
Sibyll were chosen to describe π0, η, ρ0, ω and ϕ, because they are widely used
in the field of cosmic ray physics. For J/ψ, DPMjet predicts a cross section that
is too low. Because of this, Pythia was used to describe the J/ψ mesons. From
the fluxes of undecayed mesons, the resulting flux of MCPs was calculated. The
MCP fluxes for each meson were found from the integrated meson fluxes, scaled
by the mesons BRs into MCPs. The BRs were found by rescaling the BRs of
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meson decay modes into charged leptons. All the mesons have contributions
from the direct decay into MCPs, whose BR was found by rescaling the dilep-
ton decay BR. The mesons η, π0, and ω have additional contributions from
three-body decay modes. The results for MCPs found in [8] are reproduced in
this thesis and can be found in Chapter 6.

3.2 MCP signal in experiments

The detection of MCPs in experiments such as the water Cherenkov detector SK
is dominated by soft scattering from electrons [14]. Thus, the MCPs are observed
as an excess of low-energy recoil electrons in the detector [22]. For the MCPs to
be detected, they have to be sufficiently boosted so that they can kick an electron
above the detection threshold [14]. The light signal from the electron-MCP
scattering can be used to constrain the MCP flux to an energy range Tmin <
T < Tmax, which gives a windowed cross section σ̃eχ for the interactions [8]. As
done in [14], this windowed cross section can be approximated as

σ̃eχ (γχ) =

∫ q2max

q2min

dσeχ
dq2

dq2 ≈ 2πα2ε2

2Tminme

(
1− Tmin

Tmax

)
Θ(γχ − γcut ) , (3.1)

where ϵ is the fractional charge of the MCP, me is the electron mass, α is the
fine structure constant, q is the momentum transfer and γχ is the Lorentz factor
of the MCP. We can find γcut from [14] as

γcut ≈ 0.6
√

2Tmin/me + 0.4
√

2Tmax/me. (3.2)

In the approximation used here, we assume a sharp limit between detected
and non-detected MCPs at γ = 6, enforced by the Heaviside step function in
Equation (3.1). The total number of electron-MCP scattering events Neχ is
then

Neχ = Net

∫ ∞

γcut

dγχσ̃eχ (γχ)
dΦχ

dγχ
(γχ)

≈ Net
πα2ϵ2

Tminme

(
1− Tmin

Tmax

)
Φcut (mχ) ,

(3.3)

where Ne is the number of electrons in the fiducial volume of the detector, t
is the data collection period, and Φχ is the total integrated MCP flux [14].
Here Φcut (mχ) is the integrated MCP flux for a Lorentz factor of γcut, which is



24 CHAPTER 3. MILLICHARGED PARTICLES

proportional to ϵ−2. We can rewrite Equation (3.3) to get the fractional charge
ϵ as a function of the MCP mass mχ:

ϵ =

(
NeχTminme

Netπα2(1− Tmin/Tmax)

(
Φ̃cut (mχ)

)−1
) 1

4

, (3.4)

where we defined Φ̃cut (mχ) = ϵ−2Φcut (mχ).

3.2.1 Super-Kamiokande

The SK detector is a water Cherenkov detector that searches for the light signal
emitted by relativistically charged particles [8]. It detects scattered electrons
from the Cherenkov radiation they emit in water [11]. The detector is located
under approximately 1 km of rock [23].

Supernovae emit most of their energy in the form of neutrinos [24]. They
happen rarely in our own galaxy, but there should still be a lot of neutrinos
in existence from the supernova explosions throughout the history of the uni-
verse [24]. The signal from these relic neutrinos is often referred to as the
supernova relic neutrino signal [24]. In [24], data from the SK detector was
used to search for the supernova relic neutrino signal, resulting in upper limits
for the neutrino flux.

The event shape of MCPs is similar to the event shape of the supernova
background [8]. Thus, from the results from SK in [24], we find that cosmic
ray MCPs can result in maximum 4 events per year with 90% CL [8]. This
means that all MCP candidates with a mass and a charge that predict more
than 4 detected events per year must be excluded. Knowing this, we can use
Equation (3.4) to make an exclusion plot for MCPs in the mass-charge plane.

Before any results from the SK detector are extracted, all cuts are tuned and
background signals are removed [24]. Optimization of the cuts has lowered the
energy threshold to 16MeV, and the upper limit is Tmax = 88MeV for the case
of comparison with the supernova relic neutrinos [24]. Inserting these values
into Equation (3.2) gives a Lorentz factor of γcut ≈ 6 [14]. This means that only
the MCPs with a Lorentz factor γ greater than 6 will have enough energy to be
detected by SK.

The fiducial volume of SK is 22.5 kt of water [24]. The number of electrons
in the detector Ne can be calculated using

Ne = 10
m

M
NA, (3.5)
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where m is the mass and M is the molar mass of water, and NA is Avogadro’s
number. The factor of 10 comes from the fact that each water molecule has
10 electrons. The atomic weight of water is 18.016 g/mol [25]. Inserting our
numbers into Equation (3.5) gives us a total number of Ne = 7.52·1033 electrons
in the detector.
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Chapter 4

Feynman rules for QED and
application to MCPs�

4.1 Feynman rules for QED

The Feynman rules allow us to directly translate a Feynman diagram into a
contribution to the amplitude M. The Feynman rules used here follow the
formulation in [26], which this section is based on. The QED Lagrangian reads

L = ψ̄(i/∂ −m)ψ − 1

4
(Fµν)

2 − eψ̄γµψAµ −
1

2
(∂µA

µ)
2

(4.1)

in the Lorentz-invariant Feynman gauge. From this Lagrangian we can obtain
the Feynman rules for QED. The free Lagrangian gives the propagators, while
the interaction terms determine the vertex factor and thus the coupling constant
which dictates the interaction strength.

The primitive QED vertex diagram is made up of two (anti)fermion lines
and one photon line, as shown in Figure 4.1. Generally, straight lines with
their arrow pointing in the direction of positive time represent fermions, while
straight lines with their arrow pointing backward in time represent antifermions.
Photons are denoted by wavy lines. All QED interactions consist of primitive
vertices connected by propagators and external lines.

We use here the Feynman rules as expressed in the Feynman gauge. The
Dirac propagator should be applied to all internal fermion lines, while the photon

�Adapted from [1].
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Figure 4.1: Feynman diagram of the primitive QED vertex. The photon γ is
denoted by a wavy line, while the (anti)fermion f is denoted by a straight line.

propagator corresponds to an internal photon line. Each vertex gives a factor
of iQeγµ, where for the electron Q = 1. All incoming or outgoing lines are
denoted as described in Table 4.1, which gives a summary of the Feynman rules
for QED.

Table 4.1: Feynman rules for QED.

Dirac propagator (internal fermion)
i(/p+m)

p2−m2+iϵ

Photon propagator (internal photon)
−igµν

p2+iϵ

Vertex iQeγµ

Initial, external fermion us(p)
Final, external fermion ūs(p)
Initial, external antifermion v̄s(p)
Final, external antifermion vs(p)
Initial, external photon ϵµ(p)
Final, external photon ϵ∗µ(p)
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4.1.1 Form factors

Form factors are functions that describe particle interactions without taking into
account all of the physics that is involved. They can, e.g., be used to describe
meson interactions, which in reality involve a complicated multitude of gluons
and quark interactions. The form factor can be said to describe the structure
of the meson, which is built up of one valence quark and one valence antiquark,
together with a quark sea. Using the form factor, one can treat the meson as a
point particle to simplify calculations.

4.1.2 Ward identity

This section gives a brief explanation of the Ward identity, based on Section
8.4 in [27]. We will need this identity for later calculations. A proof of the
Ward identity is beyond the scope of this thesis, but can be found in, e.g., [27].
The Ward identity must hold because of Lorentz invariance and the fact that
unitary representations for massless spin-1 particles, like the photon, have two
polarizations. When calculating matrix elements in QED we will get terms like

M = ϵµMµ, (4.2)

where Mµ transforms like a four-vector and ϵµ is the polarization vector. There
are Lorentz transforms under which

M→
(
a1ϵ

µ
1 + a2ϵ

µ
2 + a3p

µ′
)
M ′

µ, (4.3)

where a1, a2, a3 are constants. M can only be Lorentz invariant ifM = ϵµ
′
Mµ′ ,

where ϵµ
′
is a linear combination of ϵµ1 and ϵµ2 . Thus, M can only be Lorentz

invariant if
pµMµ = 0, (4.4)

which is known as the Ward identity.

4.1.3 Application to MCPs

The Feynman rules for QED can be applied to MCPs interacting with the SM
through photons, but their charge has to be accounted for. For an MCP with a
charge Qχ = ϵe, the value of Q in the vertex factor is ϵ. This gives the MCPs
a weaker coupling to the photon than the coupling for SM fermions. A weaker
coupling constant means a weaker interaction strength. The fact that MCPs
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would interact weakly with the SM photons means there is a possibility that
they exist despite them not having been detected yet.

The MCP χ has an antiparticle partner χ̄, and they play the roles corre-
sponding to fermions and antifermions in QED. Thus, we can apply to them
the Feynman rules in the same manner as we do for fermions. This allows for
comparison of the MCP production compared to the production of leptons in,
e.g., meson decays.

4.2 Meson branching ratios into MCPs

The BR of a meson decaying into MCPs can be found by rescaling its BR for
electromagnetic decay into charged leptons. The BR of a decay is defined in
Equation (2.6). The main contributions to the MCP production from meson
decays come from the direct decay m → χχ̄, the Dalitz decay P → γχχ̄, and
the three-body decay V → χχ̄P , where P is a pseudoscalar meson and V is a
vector meson [8].

Detailed calculations of the rescaled BRs can be found in Appendix A. Here
we will simply present the results. The rescaled BR for the direct decay is given
by

BR(m→ χ̄χ)

BR (m→ l+l−)
= ϵ2

√
1− 4m2

χ/m
2
m

1− 4m2
l /m

2
m

(
1 + 2m2

χ/m
2
m

1 + 2m2
l /m

2
m

)
, (4.5)

where l+ and l− are leptons, ml is the lepton mass, mχ is the MCP mass and
mm is the meson mass. The rescaled BR for the Dalitz decay is given by

BR(P → γχ̄χ)

BR(m→ γγ)
=
2αε2

3π

∫ m2
m

4m2
χ

dq2

√
1−

4m2
χ

q2

(
1 + 2

m2
χ

q2

)

× 1

q2

(
1− q2

m2
m

)3 ∣∣Fm

(
q2
)∣∣2 ,

(4.6)

where
∣∣Fm

(
q2
)∣∣ is the meson form factor and q is the momentum of the virtual

photon [8].

We use the parametrizations for the form factors as given in [8]. The form
factor used in Equation (4.6) can be approximated for π0 as

Fπ0

(
q2
)
≈ 1 + q2bπ0 , (4.7)
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with bπ0 = (5.5± 1.6)GeV−2. For η, the form factor can be approximated as

Fη

(
q2
)
≈
(
1− q2

Λ2
η

)−1

, (4.8)

with Λη = (0.716± 0.011)GeV.
With these expressions for the BRs of mesons decaying into MCPs, we can

find the MCP flux resulting from the decays of cosmic ray mesons.
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Chapter 5

Earth attenuation of MCPs

MCPs can approach the Earth from all directions, but due to the Earth’s den-
sity they might not be able to reach an underground detector from all angles.
Several articles, such as [8], assume that only downward-moving MCPs reach
the detector. It is, however, interesting to investigate if upward-moving MCPs
can also reach the detector with sufficient energy left to be detectable. Addi-
tionally, there is also a possibility that not all of the downward-moving MCPs
reach the detector.

The flux of MCPs that reach an underground detector, as well as their energy
spectrum, depends on the zenith angle of the incoming MCPs [28]. The more
ground the MCPs have to travel through to reach the detector, the more energy
they will lose. If the energy loss is substantial, their remaining energy might drop
below the detection threshold and thus they will no longer be detectable [22].

The attenuation of a charged particle flux propagating through matter strongly
depends on the charge-to-mass ratio of the particles, as can be seen from the
comparison of electrons and muons propagating through matter [22]. A big-
ger charge increases the interaction strength. The incoming energy and zenith
angle are also important parameters for investigating if an MCP is likely to be
detected. Energetic MCPs are more likely to still have enough remaining energy
when they reach the detector, while the zenith angle decides how much material
the MCP has to traverse on its path toward the detector and thus the number
of interactions.

To study the energy loss of MCPs traversing the Earth, we need to know
the average number of interactions along the path toward the detector as well
as the average energy loss per interaction. The average energy loss wil depend

33
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on the energy, mass, and charge of the MCP, as well as the mass and charge
of the other particle participating in the interaction. Since the MCP will lose
some of its energy for each interaction, the energy loss for each interaction will
vary along the path toward the detector.

A first approximation can be done by finding the average energy loss for the
incoming MCP energy and assuming the energy loss remains the same value for
all interactions. This means not taking into account the decreasing value of the
incoming energy for each interaction. Then the energy loss per distance can be
expressed as

dE

dx
= nσ⟨y⟩, (5.1)

where E is the energy of the incoming MCP, x is the position along the path to
the detector, n is the number density of the interacting particles, σ is the total
cross section for the interaction in question, and ⟨y⟩ is the average energy loss
per interaction. We can integrate over x to find the total energy lost along the
path.

MCPs traversing the Earth lose energy due to electron-MCP scattering, scat-
tering off nuclei, pair production, and bremsstrahlung [22]. We do not consider
radiation losses due to scattering off electrons, as this process is suppressed by
a factor of 1/Z2, where Z is the nuclear charge [22]. The processes of electron-
MCP scattering, scattering off nuclei and bremsstrahlung will be treated sepa-
rately in the following subsections.

5.1 Earth composition and density

To model the energy loss of MCPs traversing the Earth, we need some infor-
mation about the Earth’s composition and density. The inside of the Earth can
be divided into three sections: the core, the mantle, and the crust. The border
between the core and the mantle is at a radius of approximately 3473 km, while
for the border between the mantle and the crust, the radius is approximately
6338 km [29].

To model the energy loss of MCPs due to scattering off nuclei, we need to
know what nuclei the MCPs are interacting with. For this, we need data about
the chemical composition of the Earth. We use the data given in [30], of which
a summary is shown in Table 5.1. The continental crust makes up about 41% of
the total crust [31]. For simplicity, we use this information to find the average
density of the total crust from the data for the oceanic and the continental crust
given in [30]. To find the energy loss due to scattering off electrons, we need
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Table 5.1: Chemical composition of the layers of the Earth, given as percentages
of the total mass. Data taken from [30]. The values for the crust are taken as
the average values using the data for the oceanic and the continental crust.
Only the most common elements are included, and empty fields correspond to
approximately zero.

Element Core Mantle Crust
O 3.00 44.12 45.53
Si 7.00 20.89 24.94
Mg 25.09 3.84
Al 1.24 8.42
Ca 1.49 6.64
Fe 80.00 6.53 6.92
Ni 4.65 0.17 0.18
S 4.00 0.01

to know the average number of electrons a particle will pass by along its path
through the Earth to reach the detector. For simplicity we assume the Earth
to be a perfect sphere. We use the density profile for the Earth found in [32]:

ρ(r) =



13.0885− 8.8381x2, r < 1221.5

12.5815− 1.2638x− 3.6426x2 − 5.5281x3, 1221.5 < r < 3480

7.9565− 6.4761x+ 5.5283x2 − 3.0807x3, 3480 < r < 5701

5.3197− 1.4836x, 5701 < r < 5771

11.2494− 8.0298x, 5771 < r < 5971

7.1089− 3.8045x, 5971 < r < 6151

2.691 + 0.6924x, 6151 < r < 6346.6

2.9, 6346.6 < r < 6356

2.6, 6356 < r < 6368

1.02, r ≤ R⊕

,

(5.2)
where r is the distance from the center of the Earth. Here x is a scaled, ra-
dial variable defined by x ≡ r/R⊕, where R⊕ = 6371 km is the radius of the
Earth [32]. The density ρ is measured in g/cm3 and the distance r is measured
in km. Figure 5.1 shows a plot of Equation (5.2). The plot illustrates how the
density is higher closer to the core.

The geometry of our problem is sketched in Figure 5.2. To find the amount



36 CHAPTER 5. EARTH ATTENUATION OF MCPS

0 1000 2000 3000 4000 5000 6000
Radius [km]

2

4

6

8

10

12

De
ns

ity
 [g

/c
m

3 ]

Figure 5.1: Earth’s density plotted as a function of radius, using the density
profile in [32].

of material traversed on a particle’s path through the Earth toward the detector,
we need an expression for the distance from the center of the Earth along a path
with an incoming angle θ. From Figure 5.2 we see that this can be expressed as

r(x) =

√
(R⊕ − d)2 + x2 − 2 (R⊕ − d)x cos τ , (5.3)

where τ = π−θ and x is the coordinate of the particle along its path toward the
detector. An equivalent expression was found in [15]. The total path length for
a particle incoming at an angle θ with respect to the detector can be expressed
as

X =

√
(d−R⊕)

2
cos2 τ − d (d− 2R⊕) + (R⊕ − d) cos τ. (5.4)

To find the total mass traversed we integrate the density along the particle path
using Equation (5.2) for each incoming angle θ:

mtot =

∫ X

0

ρ(r(x))dx. (5.5)
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Figure 5.2: MCP path through Earth toward an underground detector at depth
d. The MCP’s total path length is denoted by X, and the radius of the Earth
is denoted by R⊕. The angle θ is the incoming angle at the detector.

To find the number of electrons this mtot corresponds to, we assume that the
Earth contains an equal number of neutrons and protons. The number of elec-
trons equals the number of protons. Thus, we can find the total number of
electrons from

Ne =
mtot

2mp
, (5.6)

where mp is the proton mass.

5.2 Electron-MCP scattering

For an MCP with an incoming energy Ei scattering off another particle we
define the variable

y =
Ei − Ef

Ei
(5.7)

describing the MCP’s fractional energy loss, where Ef is the MCP’s energy after
scattering. The average energy loss per interaction can be found from

⟨y⟩ = 1

σ

∫
dσ

dy
y dy, (5.8)
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where σ is the total scattering cross section for the interaction in question.
MCPs traversing the Earth will lose energy through interactions with elec-

trons. The Feynman diagram for electron-MCP scattering is shown in Fig-
ure 5.3. To be able to find the average energy loss per interaction, given by
Equation (5.8), we have to find

dσχe

dy . To do this we use that

dσχe
dy

=
dσχe
dθχ

dθχ
dy

, (5.9)

where
dσχe

dθχ
is the differential cross section for electron-MCP scattering in the

lab frame. We use the expression given in [22], where

dσχe
dθχ

=
2

π
sin θχ

ϵ2r2eme|p1|
E2|pa|

×
m2

e

(
E2

a + E2
1

)
+ 1

2

(
m2

e +m2
χ

) (
2m2

χ − 2 (pa · p1)
)(

2m2
χ − 2 (pa · p1)

)2 ,

(5.10)

with the symbols defined as shown in Figure 5.3, and where re is the classical
radius of the electron given by re = α/me [22].

Figure 5.3: Feynman diagram of MCP-electron scattering. The incoming and
outgoing MCPs are denoted by a and 1, respectively, while the incoming and
outgoing electrons are denoted by b and 2.

Figure 5.4 shows an illustration of MCP-electron scattering in the rest frame
of the electron. The subscripts a and 1 refer to the incoming and outgoing
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MCPs, respectively, while the subscripts b and 2 refer to the incoming and
outgoing electrons. By using the equation for the Mandelstam variable t as
given in Equation (2.20) in the lab frame, where pb is at rest, we can write

(pa − p1)2 =(pb − p2)2

2m2
χ − 2 (EaE1 − |pa||p1| cos θχ) =2m2

e − 2EbE2,
(5.11)

which we rewrite to find an expression for the lab-frame scattering angle θχ:

cos θχ =
m2

e −m2
χ + EaE1 − EbE2

|pa||p1|
. (5.12)

We would like to express everything in terms of y, Ea, me, and mχ. Since
the initial electron is at rest, we have that |pb| = 0, which gives that Eb =
me. Using our definition of y in Equation (5.7), the outgoing MCP energy
can be expressed as E1 = Ea(1 − y). From energy conservation, we have that
Ea+Eb = E1+E2, and thus we can express the energy of the outgoing electron
as E2 = me + Eay. The absolute value of the incoming MCP momentum is

given by |pa| =
√
E2

a −m2
χ. In the same way, using that E1 = Ea(1 − y),

we can express the absolute value of the outgoing MCP momentum as |p1| =√
E2

a(1− y)2 −m2
χ. Inserting these substitutions into Equation (5.12) we get

cos θχ =
E2(1− y)−m2

χ −meEy√
E2 −m2

χ

√
E2(1− y)2 −m2

χ

, (5.13)

where we have renamed Ea to E for simplicity.
By substituting in the same way for Equation (5.10), we end up with

dσχe
dθχ

=
ϵ2r2e sin θχ

2π

×

√
E2(1− y)2 −m2

χm
2
e

(
E2 + E2 (1− y)2

)
+ Eme

(
m2

χ +m2
e

)
y

2E3
√
E2 −m2

χmeπ(1− y)y2
,

(5.14)
where

sin θχ =

√
1−

(E2(1− y)−m2
χ −meEy)2

(E2 −m2
χ)(E

2(1− y)2 −m2
χ)
. (5.15)
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Figure 5.4: 2→ 2 scattering in the lab frame, where pb is zero. The deflection
angle is denoted by θχ. Arrow lengths and angles are not to scale.

We can find
dθχ
dy from solving Equation (5.13) for θχ and differentiating with

respect to y:

dθχ
dy

=
1

sin θχ

1√
E2 −m2

χ

√
E2(1− y)2 −m2

χ

×

[
−
(
E2 + Eme

)
+
E2(1− y)(E2(1− y)−m2

χ −meEy)

E2(1− y)2 −m2
χ

]
.

(5.16)

Now inserting Equations (5.14) and (5.16) into Equation (5.9) gives

dσχe
dy

=
ϵ2r2e

(
m2

χme + E2me(y − 1) + Em2
χy
)

2πE
(
E2 −m2

χ

) (
E2(y − 1)2 −m2

χ

)
(y − 1)y2

×
[(
m2

χ +m2
e

)
y + Eme

(
2− 2y + y2

)]
,

(5.17)

where the factors of sin θχ have canceled each other out.
For mχ < me the maximum value of y is given by

ymax =
E −mχ

E
, (5.18)

which corresponds to the MCP transferring all of its kinetic energy to the elec-
tron. An additional constraint on y comes from Equation (5.13), where we must
have that cos θχ ∈ [−1, 1].

For mχ > me, the lab frame scattering angle is limited by a maximum value
of θχ,max = arcsin (me/mχ) [33]. The corresponding upper limit for y can be
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found from inserting θχ,max into Equation (5.13) and solving for y, giving

ymax =

[
2
(
E
(
E2 −m2

χ

)
cos2 θmax − E3 − E2me + Em2

χ +mem
2
χ

)
+
(
E2 −m2

χ

)
cos θmax

√
2
(
2m2

e −m2
χ +m2

χ cos 2θmax

)]
×
[
2E
(
(E2 −m2

χ) cos
2 θmax − (E +me)

2
)]−1

.

(5.19)

The lower limit for y is ymin = α2

2 me, and it comes from the fact that the energy
of the initial electron is below its mass due to the binding energy −α2me/2 [22].

The total scattering cross section σχe can be found by integrating Equa-
tion (5.17) over y. To find the average energy loss per interaction we can then
use Equation (5.8) together with Equation (5.17) and the result for σχe. When
this is done we can use Equation (5.1) together with the total number of elec-
trons along an MCP’s path to find how much of its energy is left when it reaches
an underground detector.

5.3 Nucleus-MCP scattering

In the same way as for MCP-electron scattering, the MCPs can also lose energy
from interactions with nuclei on their path through the Earth. The Feynman
diagram for MCP-nucleus scattering is shown in Figure 5.5. We can use the
same method as was described for electron-MCP energy loss for the case of
nucleus-MCP scattering, just changing the differential cross section. We can
reuse the expression for

dθχ
dy in Equation (5.16). Since the MCP mass does not

exceed the nucleus mass, the maximum value of y is given by Equation (5.18),
with the additional constraint that cos θχ ∈ [−1, 1] in Equation (5.13).

The differential scattering cross section for an MCP scattering off a nucleus
is given by

dσZχ

dθχ
=
Z2ϵ2r2em

2
e

4E2
aβ

2
χ

1− β2
χ sin2

(
θχ
2

)
sin2

(
θχ
2

)
+ 1/ (2apa)

2
2π sin θχ, (5.20)

where Z is the nuclear charge, a ≃ 111Z−1/3/me is a screening parameter and
βχ is the velocity of the MCP [22]. We can rewrite this expression in terms of
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Figure 5.5: Feynman diagram of MCP-nucleus scattering. The incoming and
outgoing MCPs are denoted by a and 1, respectively, while the incoming and
outgoing nuclei are denoted by b and 2.

y, E, mχ, and me in the same manner as we did for Equation (5.9). Doing this
gives

dσZχ

dθχ
=
−ϵ2m2

eπr
2
eZ

2

2E2(1− m2
χ

E2 )
sin θχ

[
1−

(
1−

m2
χ

E2

)
R2

]

×
[

1

4a2(E2 −m2
χ) +R2

]−1

,

(5.21)

where we have defined

R =
1√
2

√√√√1−
E2(1− y)−m2

χ − Eyme√
E2 −m2

χ

√
E2(1− y)2 −m2

χ

. (5.22)

For the nucleus-photon interaction, we use the vertex factor given in [22]:

ieZF
(
−q2

)
γµ, (5.23)

where F
(
−q2

)
is a form factor. This form factor can be written as

F (t) =
a2t

(1 + a2t)

1

(1 + t/d)
, (5.24)

where t = −q2 and d = 0.164A−2/3 GeV2 with A as the atomic number [22].
The form factor allows us to treat the nucleus as a point particle, and it scales
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the charge of the nucleus according to the momentum transfer q. It acts as an
extra factor in the amplitude of the nucleus-MCP interaction, and thus it will
play the same role in the differential cross section. We take this into account
by multiplying the differential cross section

dσZχ

dy with the form factor squared
in our calculations.

Multiplying Equations (5.16) and (5.21) together with the form factor squared
gives our final expression for the differential cross section:

dσZχ

dy
=
a2ϵ2m2

eπr
2
eZ

2

E(E2 −m2
χ)
F 2(t)

[
m2

χmN + E2mN (y − 1) + Em2
χy
]

×
[
−m2

χ(m
2
χ +

√
E2 −m2

χ

√
E2(1− y)2 −m2

χ)

− E2(
√
E2 −m2

χ

√
E2(1− y)2 −m2

χ +m2
χ(y − 2))

+ E4(y − 1) + E3mNy − Em2
χmNy

]
×
[(
m2

χ − E2(y − 1)2
)2 (

1 + 4a2
(
E2 −m2

χ

)
R2
)]−1

.

(5.25)

Now that
dσZχ

dy is known, we can find the total energy loss due to scattering

off nuclei using Equation (5.1). The total cross section σZχ can be found from

numerical integration of
dσZχ

dy over y.

The density of nuclei in the Earth can be found using the density profile of
the Earth in Equation (5.2) together with the information about the Earth’s
composition in Table 5.1. We find the total number of protons along a path in
the same way as we did for electrons. Then we use the composition data to find
how many nuclei of a given element this corresponds to. We can then find how
much of an MCP’s energy is lost due to scattering off nuclei on its way toward
an underground detector by inserting into Equation (5.1).

5.4 Bremsstrahlung

In addition to scattering off electrons and nuclei, MCPs also lose energy due
to bremsstrahlung. The energy loss of MCPs due to bremsstrahlung scales
as ϵ4Ea/m

2
χ, meaning the energy loss is more effective for lighter MCPs [22].

The Feynman diagrams for these processes are illustrated in Figure 5.6. The



44 CHAPTER 5. EARTH ATTENUATION OF MCPS

energy loss calculations now become much more complicated due to the three-
particle final states. However, we can still use Equation (5.8) to find the average
energy loss per interaction. Now we do not have a given expression for the
differential cross section, so we have to start from the beginning by calculating
the amplitude for the process, and then performing the phase space integral
using Equation (2.37). We will name the particles as shown in Figure 5.6,
meaning a refers to the incoming MCP and 1 is the outgoing MCP.

Figure 5.6: Feynman diagrams for Bremsstrahlung. The incoming and outgoing
MCPs are denoted by a and 1, respectively, while the incoming and outgoing
nuclei are denoted by b and 2. The outgoing photon is denoted by 3, while q is
the momentum of the virtual photon.

We want to find the fractional energy loss using Equation (5.1), and thus we
need to find the average energy loss per interaction ⟨y⟩. To do this we first have
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to find dσbrems

dy . We will start from an expression for the total cross section σbrems,
and we factorize the 2→ 3 scattering process to a 2→ 2 scattering followed by
a 1→ 2 decay as shown in Figure 5.7 and explained in Section 2.3.2. Inserting
Equation (2.37) for the phase space factor into Equation (2.18) and including
the form factor for the nucleus-photon vertex, we get

σbrems =
1

64(2π)4λ
(
s,m2

χ,m
2
N

)
×
∫∫∫∫

|M|2F 2(tb2)

(−∆4)1/2
ds1dt2dt1ds2,

(5.26)

where F (tb2) is the form factor defined in Equation (5.24), tb2 is the invari-
ant defined in Equation (2.23), and we used Equation (2.19) to simplify the
denominator.

Figure 5.7: Illustration of the kinematic process of Bremsstrahlung factorized
into a 2 → 2 scattering followed by a 1 → 2 decay. The photon is denoted by
γ, the MCP is denoted by χ and N refers to a nucleus.

Because we want to find dσbrems

dy , we need to perform a change of variables
to incorporate the variable y. To do this, we start by rewriting the invariant
variable s2 defined in Equation (2.22). In the lab frame, we have that

s2 = 2m2
χ +m2

N + 2EaEb − 2EaE1 + 2|pa||p1| cos θa1 + 2EbE1, (5.27)

where θa1 is the angle between pa and p1, and where we have inserted |pb| = 0.
Rewriting this expression using the definition of the variable y in Equation (5.7)
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we get
s2 =2m2

χ +m2
N − 2E2(1− y) + 2EmNy

+ 2
√
E2 −m2

χ

√
E2(1− y)2 −m2

χ cos θa1,
(5.28)

where we have renamed Ea to E for simplicity. We now have an expression for
s2 as a function of y, but we introduced an additional variable θa1.

We can also rewrite the expression for t1 from Equation (2.22) in terms of y
and θa1. Again we start by writing out the expression in the lab frame, giving

t1 = 2m2
χ − 2 (EaE1 − |pa||p1| cos θa1) , (5.29)

which we can again rewrite using the definition of y. Doing this gives

t1 = 2m2
χ − 2E2(1− y) + 2

√
E2 −m2

χ

√
E2(1− y)2 −m2

χ cos θa1. (5.30)

Now we have two functions s2(y, θa1) and t1(y, θa1) which allow us to change
variables in the integral in Equation (5.26) from s1, t2, t1, and s2, to s1, t2, θa1,
and y. When performing the change of variables Equation (5.26) becomes

σ =
1

64(2π)4λ(s,m2
χ,m

2
N )

×
∫∫∫∫

J
|M|2F 2(tb2)

(−∆4)1/2
ds1dt2dθa1dy,

(5.31)

where J is the Jacobian and we insert Equations (5.28) and (5.30) for s2 and t1
in the integrand. The Jacobian is given by

J = det


1 0 0 0
0 1 0 0

0 0 ∂t1
∂θa1

∂t1
∂y

0 0 ∂s2
∂θa1

∂s2
∂y

. (5.32)

To find an explicit expression for the Jacobian, we find ∂t1
∂θa1

and ∂t1
∂y by

differentiating Equation (5.30) with respect to θa1 and y, which gives

∂t1
∂θa1

= −2
√
E2 −m2

χ

√
E2(1− y)2 −m2

χ sin θa1 (5.33)

and

∂t1
∂y

= 2E2 −
2E2

√
E2 −m2

χ(1− y) cos θa1√
E2(1− y)2 −m2

χ

. (5.34)
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In the same way we find ∂s2
∂θa1

and ∂s2
∂y from Equation (5.28), giving

∂s2
∂θa1

= −2
√
E2 −m2

χ

√
E2(1− y)2 −m2

χ sin θa1 (5.35)

and

∂s2
∂y

= 2E2 + 2EmN −
2E2

√
E2 −m2

χ(1− y) cos θa1√
E2(1− y)2 −m2

χ

. (5.36)

Now we can insert our results into Equation (5.32), and after some simplifi-
cation we get the following expression for the Jacobian:

J = 4EmN

√
E2 −m2

χ

√
E2(y − 1)2 −m2

χ sin θa1. (5.37)

Since we would like to find dσbrems

dy , we rewrite Equation (5.31) as

dσbrems

dy
=

1

64(2π)4λ
(
s,m2

χ,m
2
N

)
×
∫∫∫

J
|M|2F 2(tb2)

(−∆4)1/2
ds1dt2dθa1,

(5.38)

where we can use Equations (5.28) and (5.30) to insert for s2 and t1 in the
integrand. The invariant tb2 can be written in terms of our new variables as

tb2 = m2
χ+2m2

N − t2−2EmNy+
√
E2 −m2

χ

√
E2(1− y)2 −m2

χ cos θa1. (5.39)

We want to find the fractional energy loss due to bremsstrahlung for an MCP
passing through the Earth toward an underground detector. To do this we use
Equation (5.1) and the definition of ⟨y⟩ in Equation (5.8) to write

dE

dx
= nN

∫
y
dσbrems

dy
dy, (5.40)

which does not depend on the total cross section explicitly.
Figure 5.8 depicts the region of integration in the t1-s2 plane. The borders

are given by Equations (2.39) and (2.40) We can find the corresponding curve
in the θa1-y plane by inserting our expressions for s2(y, θa1) and t1(y, θa1) in
Equation (2.40). Solving for y gives an upper limit of ymax = (E −mχ)/E, as
expected. Solving for θa1 gives a lower limit of 0 and an upper limit of π, also as
expected since we do not have any additional limits to θa1 like we did in some
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Figure 5.8: Chew-low plot, depicting the allowed kinematical region in the t1-s2
plane. The allowed region is shaded blue, while the solid lines correspond to
the boundary. In this example we use the values mχ = 1GeV, Z = 8, and
Ea = 50mχ.

cases for the MCP electron interaction described in Section 5.2. The limits for
s1 and t2 are given by Equations (2.43) and (2.44), respectively.

We can now insert our expression for dσbrems

dy into Equation (5.40) to find
the average energy loss per distance. The number of nuclei encountered along a
path toward the detector NN can be calculated as described in Section 5.3. The
squared amplitude can be calculated using the CalcHEP package [34], which is
a package for calculating Feynman diagrams and cross sections. We should then
be able to calculate how much energy an MCP will lose due to bremsstrahlung
on its way toward an underground detector.



Chapter 6

Results

In this section we present our results. We start by reproducing some of the
results found by Kachelrieß and Tjemsland in [8], using their cosmic ray fluxes of
the π0, η, ρ0, ω, ϕ and J/ψ mesons to find the resulting integrated flux of MCPs.
We find both the total MCP flux, and the flux counting only the MCPs with
γ > 6. From the latter we construct an exclusion plot in the MCP mass-charge
plane using the results from SK presented in Section 3.2.1. We then investigate
the attenuation of MCPs traveling through the Earth to see if they will make it
to the detector without their energy dropping below the detection threshold. We
find the energy fraction that is left for MCPs of different charges and masses
as a function of their incoming angles at the detector. The attenuation due
to scattering off electrons and nuclei are treated separately, before looking at
the total attenuation from both processes added together. For the attenuation
by bremsstrahlung we encounter numerical problems, and we investigate the
possible causes of these issues.

6.1 Total MCP flux�

From the flux of different mesons as a function of their energies per mass, the re-
sulting integrated flux of MCPs is calculated. The mesons π0, η, ρ0, ω, ϕ, and J/ψ
are investigated. All of them have contributions from their direct decay into
MCPs. In addition, π0 and η also have contributions from the Dalitz decay.
The three-body decay ω → π0χ̄χ, which was included in [8], is not taken into

�Adapted from [1].
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account here. The BRs are calculated using Equations (4.5) and (4.6), for which
the known BRs for the dilepton and diphoton decays were found in [10]. For the
dilepton BR, muons are used for comparison for all mesons except π0, for which
the electron is used. The meson form factors were taken into account using the
parametrizations in Section 4.2.

The meson flux is integrated over E/mm, where mm is the meson mass. We
perform our integrations using the SciPy function for Simpson’s method**. The
integrated MCP flux resulting from a given decay of a given meson is calculated
by multiplying the integrated meson flux with the BR for the decay in question.
A factor of 2 is added to take into account the fact that one meson produces
two MCPs.

The total MCP flux resulting from the meson decays is plotted in Figure 6.1
separately for each meson and for each event generator. In [8], the meson flux
data for J/ψ is from Pythia only, while the other meson fluxes were calculated
using both DPMjet and Sibyll. The black lines show the total MCP fluxes from
all mesons added together, with separate linestyles for the three different event
generators. The step-like shape is due to the cutoffs at mχ = mm/2. Decays
with mχ larger than this are not possible due to energy conservation.

The integrated MCP flux resulting solely from the direct decays and only
using the meson flux from DPMjet is plotted together with the corresponding
results from [8] in Figure 6.2. From the figure we see that the integrated MCP
flux calculated here is slightly larger than the one found in [8]. This is because
[8] did not include the helium flux, which means the meson fluxes used in their
calculations were slightly different from the ones we used*.

The fluxes from π0 and η are larger in Figure 6.1 than in Figure 6.2, and
they also have a smoother shape. Both are due to their contribution from the
Dalitz decay.

6.2 MCP flux above γ = 6�

The cutoff at the Super-Kamiokande experiment in their search for relic super-
nova neutrinos corresponds to a cutoff at the Lorentz factor γχ = E/mχ = 6
[8], as described in Section 3.2. This means that only the MCPs with γ > 6
would be detected in the experiment. To find the integrated MCP flux above
γ = 6, the meson flux is for each energy multiplied with its average number of

**https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simpson.html
*Private correspondence with Jonas Tjemsland.
�Adapted from [1].
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Figure 6.1: Integrated MCP flux resulting from the decays of the π0, η, ρ0, ω, ϕ,
and J/ψ mesons. The solid lines use the meson fluxes calculated using DPMjet,
while the dashed lines use Sibyll and the dotted line uses Pythia. The black
lines show the total MCP flux from all mesons.

detectable MCPs produced. The MCPs are considered to be detected if they
have γ > 6 and they are moving toward the detector. Then the meson flux is
integrated, and the MCP flux is calculated in the same manner as described in
the previous section.

To calculate how many MCPs would have γ > 6, the phasespace package
[35] for Python was used. This package runs a Monte Carlo simulation using
the method described in [36]. The function for generating decays takes the
mass of the decaying particle and the masses of the decay products as inputs.
If not specified, the matrix element is assumed to be constant. We will use
this assumption in our calculations. The function returns the momentum four-
vectors of the decay products and their associated weights. The weights give
the probabilities for the different kinematical states to occur. A meson of higher
energy has more available kinematical states to decay into. This is taken into
account by scaling the importance of each event by its weight.

The phasespace package is used to calculate how many detectable MCPs of
a given mass are produced on average for a given meson of a given momentum.
5000 simulations are run, and the MCPs are counted only if they have γ > 6
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Figure 6.2: Integrated MCP flux from the direct meson decay into two MCPs
calculated from the DPMJET meson flux found in [8]. The dashed lines corre-
spond to the flux calculated here, while the solid lines correspond to the flux
found in [8].

and they are moving toward the detector. Each detected MCP is counted as
many times as its weight predicts. The results are plotted together with the
total MCP flux (corresponding to γ = 1) in Figure 6.3.

The results in Figure 6.3 are in reasonable agreement with Figure 5 in [8].
The most noticable difference between the two plots is that there is an additional
increase of flux for the smallest MCP masses in [8]. This is due to the different
methods used to calculate the flux, where the method used in [8] takes into
account the three-body decay of π0 to MCPs*. This decay was not taken into
account in the method used here. The extent to which this affects the results
will be discussed in Section 7.1.

To investigate if the assumption of constant matrix elements is reasonable
in the calculations of the MCP flux above γ = 6, we make Dalitz plots for
the Dalitz decays of η and π0 for different values of the MCP mass. These
results can be found in Appendix B, and they show that the variance of |M|2
is small. This indicates that the approximation of a constant matrix element is

*Private correspondence with Jonas Tjemsland.
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Figure 6.3: Total MCP flux resulting from the decays of π0, η, ρ0, ω, ϕ, and J/ψ
mesons added together. The solid lines use the meson fluxes from DPMjet,
while the dashed lines use Sibyll and the dotted line uses Pythia (J/ψ only).
The dark blue lines show the total MCP flux, while the light blue lines include
only produced MCPs with γ > 6 that are moving toward the detector. For J/ψ,
the lines are practically overlapping.

reasonable.

6.3 Exclusion plot�

From the MCP flux plotted in Figure 6.3, we use Equation (3.4) to find ϵ(mχ).
From Section 3.2.1 we know the values Ne = 7.52 · 1033, t = 22.5 kt yr and
Neχ = 4. We plot ϵ as a function of mχ, and show the result in Figure 6.4.
The black lines correspond to the limiting value of Neχ = 4, and the grey area
illustrates what parts of the mass-charge plane are excluded. As described in
Section 3.2.1, this section corresponds to MCPs that would result in a detection
of more than 4 events per year, which is not in accordance with the observations
at SK found in [24].

�Adapted from [1].
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Figure 6.4: Upper limit for MCPs in the mass-charge plane. The grey area
corresponds to more than 4 events detected per year and is therefore excluded.
The black lines correspond to the MCP flux above γ = 6. The solid line uses
data from DPMjet and the dashed line uses data from Sibyll. The dotted line
uses data from Pythia (J/ψ only).

Figure 6.4 excludes MCPs of certain masses and charges from being candi-
dates for DM, and thus helps narrowing the allowed parameter space of mil-
licharged DM. The white areas of the plot still remain as candidates for DM.

6.4 Attenuation by scattering off electrons

6.4.1 Number density of electrons

We use the method described in Section 5.1 to find the average number density
of electrons encountered by a particle passing through the Earth toward an
underground detector at a depth d. The angle at which the particle approaches
the detector from is denoted by θ. Figure 5.2 illustrates the geometry of the
problem. We set d = 1km, which is the depth of SK. The average number
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density of electrons as a function of the incoming angle at a detector with
d = 1km is plotted in Figure 6.5. We see that the number density of electrons
greatly increases once the MCP has to pass through the Earth’s core. This leads
to a sudden increase in electron density at around 180◦.
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Figure 6.5: Number of electrons ne per square cm encountered by a particle
passing through the Earth, plotted as a function of the particle’s incoming angle
θ with respect to the detector. The detector is placed underground at a depth
of 1 km.

6.4.2 Cross section and average energy loss

We will use the method described in Section 5.2 to calculate the fractional
energy that an MCP with a given mass mχ, charge eϵ and incoming energy E
will have left when reaching an underground detector at a depth d = 1km for
different incoming angles θ.

We start by calculating the differential scattering cross section dσ
dy using

Equation (5.17). The result is plotted for different values of mχ and E in
Figure 6.6, with the dependence on ϵ factored out. Note that for the cases with
larger mχ the maximum value of y decreases significantly. This is due to there
being a maximum value of the scattering angle when mχ > me, as described in
Section 5.2.
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Figure 6.6: Differential cross section plotted as a function of the fractional
energy loss y for different values of the MCP mass mχ and incoming energy E.
Each subplot represents a different value of mχ and each color corresponds to
a different value of E.

The total cross section is found by integrating the differential cross section
over y. This was done numerically using the SciPy function for Simpson’s
method**. The result is shown for different values of mχ in Figure 6.7, where
the total cross section is plotted as a function of the incoming kinetic energy of
the MCP. Again the charge-scaling factor ϵ has been factored out. As can be
seen from the plots, the total cross section increases with the kinetic energy of
the MCP. We also see that a larger MCP mass leads to a smaller total cross
section.

The average fractional energy loss per interaction was found by inserting the
results for the total cross section σ and the differential cross section dσ

dy in Equa-

**https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simpson.html
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Figure 6.7: Total cross section for electron-MCP scattering plotted as a function
of kinetic energy Ek. Each subplot corresponds to a different value of the MCP
mass mχ. Note that the charge scaling factor ϵ has been factored out from the
total cross section.

tion (5.8). The result is shown in Figure 6.8, with each subplot corresponding
to a different mχ. We see that the energy loss decreases for increased kinetic
energy. The energy loss also decreases for higher values of mχ.

6.4.3 Energy left when reaching detector

We find the total energy loss along an MCP’s path toward a detector due to
scattering off electrons by using Equation (5.1). As a first approximation, we
do the calculations treating the whole path as one single step. Due to this
approximation, in some cases the fractional energy loss wil become more than
1. To solve this problem, we simply set the fractional energy loss equal to 1 in
these cases.
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Figure 6.8: Average fractional energy loss due to scattering off electrons for
electron-MCP scattering plotted as a function of the kinetic energy of the in-
coming MCP. The charge scaling factor ϵ has been factored out. The four
subplots correspond to different values of the MCP mass mχ.

The fractional energy left when reaching the detector for an MCP scattering
off electrons is plotted as a function of the incoming angle θ in Figures 6.9 to 6.12.
Each figure corresponds to different values of ϵ, and the subplots correspond to
different values of mχ. For each value of ϵ and mχ, the energy fraction is plotted
for different values of the energy of the MCP when entering the Earth’s crust.

The effect of the Earth’s core is clearly visible at approximately 180◦, because
of the shape of the number density of electrons plotted in Figure 6.5. The
attenuation greatly increases once the MCPs have to pass through the core due
to its high density.

From Figures 6.9 to 6.12, we see that a lower value of ϵ means less energy
lost on the path to the detector. This is expected, as the interaction strength
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Figure 6.9: Fractional energy loss due to scattering off electrons for an MCP
with ϵ = 10−4 and an incoming energy E when entering the Earth. Each
subplot corresponds to different MCP masses mχ, and show the energy left
when reaching the detector for different values of the incoming energy.

between the MCPs and electrons is scaled by a factor of ϵ2. We also see that
a larger mass mχ leads to reduced energy loss. For the cases of ϵ = 10−4

and mχ > 0.1GeV or ϵ = 10−3 and mχ = 1GeV, virtually no energy is lost
before reaching the detector. Thus, MCPs with relatively large masses and
small charges will in general reach the detector without having lost much of
their energy.

For the still open region of the MCP mass-charge plane in Figure 6.4, the
contribution from upward-moving MCPs is considerable. This can be seen from,
e.g., the plots for ϵ = 10−4 andmχ ∈ [0.01, 0.1, 1]GeV in Figure 6.9, for ϵ = 10−3

and mχ ∈ [0.1, 1]GeV in Figure 6.10 and the plot for ϵ = 0.01 and mχ = 1GeV
in Figure 6.11. This means that the upward contribution has to be taken into
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Figure 6.10: Fractional energy loss due to scattering off electrons for an MCP
with ϵ = 10−3 and an incoming energy E when entering the Earth. Each
subplot corresponds to different MCP masses mχ, and show the energy left
when reaching the detector for different values of the incoming energy.

account when exploring this region of the parameter space. For the excluded re-
gion, most upward-moving MCPs will not reach the detector. This is illustrated
by Figure 6.12 and the plots for ϵ = 0.01 and mχ ∈ [0.001, 0.01, 0.1]GeV in Fig-
ure 6.11. Thus, one can argue that only taking into account downward-moving
MCPs is a reasonable assumption for cases in the excluded region.

From our results we see that in almost all cases the downward-moving MCPs
do reach the detector. Only for the cases of relatively large ϵ = 0.1 and small
mass mχ does the Earth attenuation affect the MCPs arriving at the detector
from above, as Figure 6.12 shows. Thus, in most cases we do not have to take
into account the attenuation for downward-moving MCPs.

Figure 6.13 shows the energy fraction left for four different points approxi-
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Figure 6.11: Fractional energy loss due to scattering off electrons for an MCP
with ϵ = 0.01 and an incoming energy E when entering the Earth. Each sub-
plot corresponds to different MCP masses mχ, and show the energy left when
reaching the detector for different values of the incoming energy.

mately along the border of the excluded region in Figure 6.4. From these plots
we see that only the MCPs with high incoming energies will have a significant
energy fraction left when reaching the detector. The lowest energy MCPs on
the other hand will have lost most of their energy when reaching the detector
from below. It seems like the border along the excluded region is approximately
where the assumption of MCPs only arriving from above starts to weaken.

To see if the one-step approximation described in the beginning of this sec-
tion holds, we calculate the energy loss using a more precise method to allow
for comparison. A first attempt was made choosing the step length so that the
probability of interaction Neσ never exceeds 1. However, this turned out to
be far too computationally time consuming for our purposes. Instead, we use
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Figure 6.12: Fractional energy loss due to scattering off electrons for an MCP
with ϵ = 0.1 and an incoming energy E when entering the Earth. Each sub-
plot corresponds to different MCP masses mχ, and show the energy left when
reaching the detector for different values of the incoming energy.

Equation (5.1) dividing the MCP path into smaller steps where the step length
is for each step chosen so that the electron density and the MCP’s energy both
change with maximum 5% for each step. Figure 6.13 compares some results
calculated using both methods. The difference between the results from the
two methods is small as long as virtually all or no energy is lost. However, in
the cases where a significant fraction of the energy is lost, the difference can
be significant. This is the case for, e.g., mχ = 1, ϵ = 0.05 and E = 50mχ in
Figure 6.13. Despite these differences the qualitative results can be argued to
be the same since the parameter space where all or no energy is lost is virtually
the same for both methods.
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Figure 6.13: Fractional energy loss due to scattering off electrons for an MCP
with incoming energy E when entering the Earth. The solid lines use the ap-
proximation of calculating the energy loss in just one step, while the dashed lines
use a dynamic step length. Each subplot corresponds to different MCP masses
mχ and charge scaling factors ϵ, and they show the energy left when reaching
the detector for different values of the incoming MCP energy. The points in the
MCP mass-charge parameter space plotted for here are placed along the border
of the excluded region.

6.5 Attenuation by scattering off nuclei

To find the average energy loss for MCPs scattering off nuclei, we use the same
method as we did for MCPs scattering off electrons. The main difference is that
we now have to include the form factor in Equation (5.24), reducing the total
cross section for the interactions. We integrate Equation (5.25) over y to find
the total cross section. We then insert into Equation (5.8) to find the average
energy loss per interaction, using the same one-step approximation as we did
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for scattering off electrons.
For the case of nuclei in Section 5.3, we have to take into account the chemical

composition of the Earth to find the total number of nuclei of a given type
encountered along a path of a given angle toward the detector. We do this using
the data from Table 5.1 together with the density profile of the Earth given by
Equation (5.2), as described in Section 5.3. The density as a function of the
Earth’s radius is found separately for each element. The energy loss calculations
are also done separately for each element, before all the contributions are added
together in the end.

The number of nuclei encountered is plotted as a function of the incoming
angle at the detector for the different elements in Table 5.1 separately in Fig-
ure 6.14. The black line corresponds to the total number of nuclei, adding the
contribution from all the elements together. Sulfur (S), which is practically not
present in the Earth’s crust, does not contribute to any energy loss of the MCPs
arriving at the detector from above. Note also that for the elements practically
not present in the core, e.g., for oxygen, the number of nuclei encountered de-
creases when the angle goes toward 180◦, which is when the MCP has to pass
through the core. The same effect can be seen for aluminum (Al) and calcium
(Ca) just past 90◦ due to the high content in the crust and low content in the
mantle.

6.5.1 Form factor

Figure 6.15 shows the form factor in Equation (5.24) plotted for the most com-
mon elements in the Earth. A form factor of 1 means that there is no reduction
in the interaction strength. The form factor obtains values of order 10−3, and
thus it is important to consider.

From Figure 6.15 we see that the elements with higher atomic numbers and
thus higher charges have a larger reduction of the interaction strength due to
their form factor. Oxygen, having an atomic number of 8, has the largest form
factor. The heaviest element, Nickel, has the smallest form factor, meaning
a more prominent reduction of the total cross section. We also see that the
reduction of the cross section is stronger for higher momentum transfers, with
a rapid increase for small t.

6.5.2 Energy left when reaching detector

In general the energy loss of MCPs due to scattering off nuclei shows the same
tendencies as the case for electrons, in that the energy loss is greater for bigger
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Figure 6.14: Number of nuclei encountered along an MCP’s path toward an
underground detector plotted as a function of the incoming angle at the detector.
The different colored lines correspond to different elements. The black line shows
the total number of nuclei for all elements added together.

charges and smaller masses. For masses of 1GeV, the energy loss for MCPs
with E > 5mχ is negligible even for relatively large charges ϵe with ϵ = 0.1. In
the same case for low energy MCPs, the energy loss is negligible if ϵ < 10−3. For
cases with a small ϵ = 10−4, only low-energy MCPs lose a significant amount of
energy, even when the mass is as small as mχ = 10−3 GeV.

Figure 6.16 shows the energy fraction that is left when reaching a detector
placed 1 km underground for MCPs of different charges, masses, energies and
incoming angles at the detector. The values were chosen to show the interesting
cases where only a fraction of the energy is lost. Note that the energy factors here
are smaller than in the corresponding plots for MCPs scattering off electrons.

6.6 Attenuation by bremsstrahlung

As already mentioned in Section 5.4, for the case of MCP energy loss due to
bremsstrahlung the differential scattering cross section is not given. Because of
this we have to carry out the calculations from the beginning, starting with the
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Figure 6.15: Form factor for the NNγ-vertex for an MCP scattering off a nucleus,
plotted for different elements. The form factor F is plotted as a function of
t = −q2, where q is the momentum transfer of the interaction.

squared amplitude. We can then follow the method described in Section 5.4 to
find the average energy loss per interaction. From this we can find the total
energy loss of MCPs traversing the Earth due to bremsstrahlung.

We start by finding a symbolic expression for the squared amplitude for the
Feynman diagrams shown in Figure 5.6 using the CalcHEP package [34]. Our
CalcHEP model consists of the SM plus the added MCP which couples to the
photon with a strength scaled by the small factor ϵ. A nucleus was also added
as a new particle to include the nucleus mass and charge in our calculations.
To add the MCP to the model, we edit the CalcHEP SM model files, which are
described in the documentation [34]. We add the MCP mass and the charge
factor ϵ as variables to the varsN.mdl file. To the prtclsN.mdl file we add
the MCP as a new particle with spin 1/2 and an antiparticle partner. We then
add a photon-MCP vertex scaled by the ϵ factor to the lgrngN.mdl file. The
nucleus was added to the model in the same way, by introducing its mass as a
variable, adding it to the particle list and including a photon-nucleus vertex.

We use Mathematica* to further carry out our calculations, utilizing CalcHEPs

*https://www.wolfram.com/mathematica/
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Figure 6.16: Fractional energy left for MCPs traversing the Earth while losing
energy due to scattering off nuclei, plotted as a function of the incoming angle
at the detector. Each plot corresponds to different values of the MCP mass
mχ and the charge scaling factor ϵ. The different colors correspond to different
MCP energies.

option of getting the squared amplitude as output for Mathematica. A first at-
tempt was made to find an analytic expression for dσbrems

dy . However, no expres-
sion was found, either because the computation was far too time-consuming,
or because the expression was not analytically solvable. Because of this, we
decide to use the NIntegrate function in Mathematica to try to evaluate the
integral numerically. We run into several problems trying to do this, among
them problems with convergence, the estimated error being of the same order of
magnitude as the output and the output having imaginary parts. These issues
prevailed regardless of the chosen integration strategy.

To investigate where these problems arise, we decide to look more closely at
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each of the factors making up the integrand in Equation (5.38). We do not find
any problems regarding the form factor or the Jacobian. The squared amplitude
is positive for all of our parameter space, but we notice some inaccuracies when
the energy loss y becomes very small in the form of slighty negative numbers
very close to zero. This is probably due to numerical inaccuracies.

We run into trouble regarding the factor of the integrand stemming from
the phase space integral, 1/

√
(−∆4). We evaluate the phase space factor for

different combinations of y, θ, t2, and s1 and note that when two or more
parameters are close to their minimum or maximum value simultaneously, the
factor evaluates to complex numbers. We find that this is caused by −∆4

evaluating to a small, negative number, possibly due to numerical inaccuracy.
This produces an imaginary number when taking the square root. Since we
divide by

√
(−∆4), this small, imaginary factor becomes large. It seems like

increasing mχ allows us to come closer to the integration boundary before this
problem arises. This issue could be solved by only taking the real part of the
integral.

We construct plots for the phase space factor in the s1-t2 plane for given
values of y and θ. One such plot is shown in Figure 6.17. As can be seen from
the figure the integration region is relatively smooth, but the boundary of the
integration region is covered by sharp peaks. These peaks arise when

√
(−∆4)

becomes close to zero, and they will cause convergence problems when we try
to integrate numerically. Suggestions on how to approach this issue will be
presented in Chapter 7.

Changing our parameters affects the size of the integration region in the s1-t2
plane and the relative height of the peaks. Increasing the MCP mass makes the
integration region larger and gives relatively smaller peaks. The same goes for
increasing the incoming energy of the MCP. Larger atom numbers also decrease
the relative height of the peaks. Decreasing θ or y makes the integration region
smaller. This means that extra care has to be taken especially for small values
of mχ, mN , and the incoming energy E.

6.7 Total attenuation

Figure 6.18 shows the energy loss for MCPs due to scattering off electrons and
scattering off nuclei added together. From the plot, it is clear that the energy loss
due to electrons dominates. This is because of the screening parameter and the
form factor in Equation (5.24), both leading to a reduction of the cross section
of the MCP-nucleus interaction. The cross section for MCP-nucleus scattering
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Figure 6.17: The phase space factor 1/
√
(−∆4), plotted for y = 0.45 and θ =

0.5π in the s1-t2 plane. The other parameters were set to mχ = 0.1GeV,
E = 25mχ and Z = 16.

is scaled by a factor of Z2, but this does not increase the total energy loss
because the total number of protons equals the number of electrons. Figure 6.18
shows that the results including electrons only in most cases are fairly similar
to the total result. Thus, considering electrons only could be used as a useful
approximation. However, MCP-nucleus scattering still plays an important role
in the attenuation of the MCP flux, and thus should also be considered for more
accurate results.

To briefly summarize our results for the Earth attenuation of MCPs, it seems
that for the excluded area the assumption of only counting downward-moving
MCPs is reasonable. However, for the still remaining area MCPs arriving from
below the detector should also be taken into consideration. The border between
these two areas shows cases of only energetic MCPs reaching the detector from
below.
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Figure 6.18: Energy fraction left for MCPs reaching an underground detector
at a depth of 1 km from an incoming angle θ. The dashed lines show the contri-
bution from scattering off electrons only, the dotted lines show the contribution
from scattering off nuclei only, while the solid lines show the results for both
the mentioned processes added together. Each plot corresponds to different val-
ues of the MCP mass mχ and the charge scaling factor ϵ. The different colors
correspond to different MCP energies.



Chapter 7

Discussion

In this section we discuss the accuracy and applicability of our results and the
validity of our assumptions. We also present some suggestions for further work.
The last section presents new experimental results that can be used to improve
our exclusion plot in the MCP mass-charge plane.

7.1 MCP flux and exclusion plot�

Our results for the MCP fluxes and the exclusion plot are in relatively good
agreement with [8], [14]. However, there are ways in which the accuracy of the
results can be improved.

Since our results are calculated using the cosmic ray meson fluxes, improved
estimations of them will lead to improved approximations of the MCP fluxes.
The exclusion plot, which is arguably the most important result, is calculated
using the integrated MCP flux above γ = 6. Thus, more accurate calculations
of the MCP flux above γ = 6 will give a more accurate exclusion plot.

In our calculations of the MCP flux above γ = 6, we assumed the matrix ele-
ments to be constant. We notice some slight differences between our results and
the corresponding results found in [8], [14], and the reason behind this could be
our constant matrix element approximation. The Dalitz plots presented in Ap-
pendix B show that the matrix elements have relatively small variances, which
means approximating them as constant is reasonable. To further investigate the
accuracy of this approximation, one could include the actual matrix elements

�Adapted from [1].

71
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and compare the results directly with the results obtained with the constant ma-
trix element approximation. Including the matrix elements could also improve
the accuracy of the exclusion plot.

Another suggestion for improvement is including the contribution from the
ω → π0χχ̄ decay. This was done in [8], but not in [14]. The BR for ω → π0ℓ+ℓ−

is about ten times larger than the direct lepton decay of ω, but the decay
is only valid for MCP masses below 325MeV, while the direct decay is valid
for MCP masses up to 390MeV [14]. This means that the three-body decay
of ω will only contribute for MCP masses below 32MeV. In the region of
275MeV > mγ > 325MeV, neglecting the three-body decay will lead to the
MCP flux being underestimated by a small factor [14]. In conclusion, including
the three-body decay will give slightly more accurate results, but not taking it
into account is a reasonable approximation.

7.2 Earth attenuation

Comparing the energy loss for MCPs due to scattering off nuclei with the energy
loss due to scattering off electrons, it is clear that the energy loss due to electron-
MCP scattering dominates. This is because of the screening effect, which was
taken into account by the screening parameter a. The form factor also reduces
the interaction strength, especially for higher momentum transfers. Since the
energy loss from scattering off electrons dominates, a useful approximation is
to only consider this process when looking at the attenuation due to the 2→ 2
processes. This is why the electron results were investigated more thoroughly
in Chapter 6. Most of the observations made regarding the MCPs scattering off
electrons also apply to the case of MCPs scattering off nuclei.

We encountered numerical problems when trying to evaluate the integral for
finding the average energy loss per interaction for the case of bremsstrahlung.
As Figure 6.17 shows, the region of integration for the phase space factor diplays
sharp peaks along the boundary of the integration region causing convergence
problems when we try to evaluate the integral numerically. Because of the high
dimensionality it was not possible to solve this problem by simply increasing the
minimum limits and decreasing the maximum limits slightly. To eliminate the
problematic areas completely we would have to increase or decrease the limits
by a significant percentage to avoid the cases where we get sharp peaks due
to all four variables being close to their extreme values simultaneously. This
would alter the final evaluation of the integral too much due to the integrand
increasing toward the boundaries in some cases.
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One way to approach this problem is by evaluating the integral using a Monte
Carlo method with a low number of sampling points. Few sampling points gives
a small probability of hitting one of the peaks along the boundary. When the
number of sampling points is increased, the error estimate will suddenly become
larger once there is enough sampling points for the probability of hitting one
of the peaks to be considerable. This strategy would also help us deal with
the inaccuracies very close to the lower limit of y for the squared amplitude.
One could also try to avoid

√
−∆4 becoming imaginary by adding a very small

number inside the square root. Due to the time limit there was not enough time
to explore these strategies.

Because of the problems we encountered when trying to solve the integral in
Mathematica, it might be better to try some other software that can handle our
complicated integrand in a more sophisticated way. Once the average energy
loss per interaction is found, the method used for finding the total energy loss
from scattering off electrons and nuclei can easily be applied to the case of
bremsstrahlung.

The total scattering cross section for the bremsstrahlung process can be
calculated using CalcHEP. For a future check of the validity of our results,
dσbrems/dy can be integrated numerically over y to compare with the total
scattering cross section computed by CalcHEP.

It would be interesting to investigate some limiting cases, for example for
small mχ. Approximating mχ as small could help us simplify the integrand for
the case of bremsstrahlung, allowing us to investigate the bremstrahlung energy
loss for low mass MCPs. It would also be interesting to see how changing the
depth of the detector affects the energy loss for downward-moving MCPs.

We did not include the attenuation from e+e− pair production, but this
process should be included in further analyses. The four particle final states
complicates the calculations severely, both for finding the amplitude and for
the phase space integral. It should be possible to find the average energy loss
per interaction for this process using the same method as we described for
bremsstrahlung. However, due to the increased complications numerical diffi-
culties should be expected.

The fact that in some cases also upward-moving MCPs can reach the detector
means that the expected number of events in the detector will increase in some
cases. In general, larger mχ, smaller ϵ and higher incoming energy will have
contributions from upward-moving MCPs giving a larger expected number of
detector signals than anticipated with previous analyses. This will impose a
stricter limit in the exclusion plot, because more of the MCP parameter space
will lead to a number of events that is larger than the one observed. On the other
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hand, our results also demontrated that in some cases when mχ is small while
ϵ is large, low energy MCPs will experience a significant attenuation also when
arriving at the detector from above. For this region of the MCP parameter space,
the number of events would be lower than expected, thus perhaps reopening
some regions of the MCP parameter space.

From the results from [22], we find that for low energy MCPs in our studied
mass range of approximately 10−3 GeV to 1GeV the energy loss due to ioniza-
tion dominates. However, for MCPs with E > 10GeV, the energy loss due to
e+e− pair production dominates [22]. This process was not included here, which
means our results are most accurate for lower energy MCPs. For an accurate
analysis of the higher energy MCPs the pair production prosesses need to be
considered. The energy loss due to bremsstrahlung is larger for more energetic
MCPs and smaller masses [22], which means the effects of not taking it into
account are more prominent for these cases.

The energetic MCPs will experience more attenuation than what our analysis
shows due to the dominating contribution from e+e− pair production, and due
to bremsstrahlung. However, our results are highly applicable to lower energy
MCPs, for which ionization is the main cause of energy loss. We also note that
in the cases where energetic MCPs do not reach the detector due to scattering
off electrons and nuclei, including the energy loss from pair production would
not affect the results. It is for the cases where all or some energetic MCPs reach
the detector that our results are not necessarily valid.

Some of the MCPs that reach the detector might have lost so much of their
energy that they drop below the threshold for them to be observable [22]. As
mentioned in Section 3.2, only MCPs with a Lorentz factor γ > 6 will have
enough energy to be detected by SK. Thus, when using our results for the energy
fraction left for MCPs reaching the detector, one should keep this threshold in
mind when deciding if a given MCP will produce a signal.

Including analyses for the energy loss of MCPs due to pair-production and
bremsstrahlung is arguably what will have the most impact on the accuracy of
the exclusion plot. Once the average energy loss per interaction is found for
these cases, we can apply the same method as we did for scattering off nuclei
and electrons to find the total energy loss.

7.2.1 Assumptions

Several assumptions were made about the Earth. First of all, the Earth was
assumed to be perfectly spherical. In reality, the oblate spheroid shape of the
Earth gives the MCP a slightly shorter path if it is travelling from south to a
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detector placed at the northern hemisphere, than if it is travelling along the
equator. However, the ratio between the semiminor and semimajor axis of the
Earth is approximately 0.9966 [37], and thus this should not affect the results
noticeably. With our simplified model, mountains are not taken into account
and we take the density of the crust as the average of oceanic and continental
crust. If the detector is placed under a large mountain, this would lead to less
MCPs reaching it from above than anticipated with our model. However, we
are mostly interested in the attenuation of upward-moving MCPs, for which this
would not affect our results. As can be seen in Figure 5.1, the density is much
higher at the core than in the crust, and so the passing through the core leads
to significantly more energy loss than passing through the crust. Using a more
detailed model of the Earth’s shape and composition would improve the results
slightly, especially for downward-moving MCPs. However, there are other ways
to increase the accuracy which should be considered first, such as including all
attenuation processes.

When calculating the energy loss of the MCPs traversing the Earth, the
deflection angles due to the interactions with electrons and nuclei were not taken
into account. In other words the MCP paths were treated as being straight. This
assumption is reasonable because the MCPs that reach the detector will mostly
lose a small amount of their kinetic energy in each interaction, which corresponds
to a small deflection angle. A large deflection angle means a greater loss of
kinetic energy, which reduces the chances of the MCP reaching the detector.
Thus, in general the MCPs reaching the detector will not have experienced any
large angle deflections. In addition, several smaller angle deflections would to
some degree cancel each other out.

7.2.2 Calculation of fractional energy loss

The approximation that was used when calculating the energy loss along the
MCP’s path toward the detector works well for the cases where virtually all or
none of the energy is lost. This is because when the energy loss is very small,
the number of interactions and the change in energy is also small and thus the
two methods will give almost the same results. When the fractional energy loss
is close to 1, the MCPs lose their energy quickly and thus the approximation
of only one step is reasonable. However, as already mentioned, the results are
not as accurate when the fractional energy loss is not close to 0 or 1. This is
because in these cases the reduction of the energy loss per interaction due to
decreasing energy becomes significant.

To check our one step approximation, We investigated a method with a
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dynamic step length chosen so that the change in energy and density remain
small. As long as both these parameters remain fairly constant, a larger step
length will give accurate results. We compared the results obtained with this
method with the one-step simplification in Figure 6.13, and the results were
qualitatively very similar. Because of this we continued to use the simpler
method, as this was less time consuming. However, further analyses should
preferably be done using the dynamic step length method. The highest accepted
change for each step could also be set to a smaller number than the 5% limit
we used here.

7.3 Outlook�

New, experimental results can further constrain the possible regions for MCPs
in the mass-charge plane. Some examples are given below. The method for
finding the upper limit for MCPs in the mass-charge plane that was described
in Section 3.2 can be applied to the new data from these upcoming experiments.

To increase the sensitivity of the SK, 13 tons of gadolinium was added to the
water of the detector in 2020 [38]. In July 2022, the gadolinium concentration
was increased from 0.011% to 0.033%, increasing the neutron capture percentage
from 50% to 75% [39]. The new measurements for SK with gadolinium loaded
water can be used to better estimate the background contamination in the search
for solar neutrinos [39], thus improving the accuracy of the results in [24] that
we used to construct our exclusion plot. Future measurements are expected to
be even more efficient [39].

The upcoming Hyper-Kamiokande (HK) is a next generation large water
Cherenkov detector based on the SK detector [40]. It will exceed the perfor-
mance of SK, with far-reaching sensitivities and it has a great potential for
exploring low energy physics [40]. Thus, HK can give new results aiding the
search for MCPs in the sub-GeV mass range.

Borexino is a large volume liquid scintillator detector with a main goal of
measuring low energy solar neutrinos [41]. The detection mechanism used in the
Borexino detector has several advantages over the water Cherenkov detectors,
such as SK, allowing for effective detection of sub-MeV solar neutrinos [41].
The first measurements of directionality of sub-MeV solar neutrinos scattering
elastically off electrons in a liquid scintillator target was recently published by
the Borexino Collaboration [42]. This information on directionality can be used
to improve background suppression and to distinguish different signals from each

�Adapted from [1].
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other [42]. Combined with our information about the directional attenuation of
MCPs, the directionality information about the solar neutrinos could be used
to distinguish the two signals from each other.

New data from these experiments can help us move forward in the search for
DM by placing even stricter limits on the possible masses and charges for MCPs.
This means that we can create even more stringent exclusion plots, helping us
move further in the search for millicharged DM.



78 CHAPTER 7. DISCUSSION



Chapter 8

Conclusion

From the cosmic ray meson fluxes found by Kachelrieß and Tjemsland in [8], we
found the resulting flux of MCPs with enough energy to produce a signal in the
SK detector. From these results we constructed an exclusion plot in the MCP
mass-charge plane, ruling out parts of the MCP parameter space as candidates
for DM. Our results are in agreement with [8], [14].

As a manner of improving these results, we chose to focus on analyzing the
attenuation of the incoming MCP flux due to the Earth’s density. We found
that the attenuation of the MCP flux is important to take into account when
using the results of underground detectors such as SK to construct exclusion
plots in the MCP mass-charge plane. Future improved exclusion plots should
thus be constructed with this or similar analyses in mind.

We found that in the excluded region of the MCP mass-charge plane, most
upward-moving MCPs will not reach the detector. Thus, it is a reasonable
assumption to only count downward-moving MCPs for cases in the excluded
region. However, for the still open region the contribution from upward-moving
MCPs is significant and should be considered. We also found that the attenu-
ation of downward-moving MCPs only needs to be considered for large ϵ and
small mχ, with small incoming energies.

Most of the MCPs’ energy loss was due to scattering off electrons, but scat-
tering off nuclei should also be counted in, although the effects are less promi-
nent. We also note that for a complete analysis, the calculation of the energy
loss from bremsstrahlung should be completed. The energy loss due to pair-
production should also be considered, especially for energetic MCPs for which
this is the dominant energy loss mechanism.
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With our analysis of the Earth attenuation of MCPs, we can improve the
estimations of the number of MCP signals in an underground detector. The
information about the MCP directionality can be combined with the new re-
sults on the directionality of solar neutrinos from the Borexino collaboration to
distinguish the signals from each other. This new information will allow us to
create even more stringent exclusion plots, moving us one step further in the
search for millicharged DM.



Appendix A

Calculation of meson
branching ratios into
MCPs�

In this section, we will show how to calculate the rescaled BRs presented in
Section 4.2. We start by calculating the rescaled BR for the direct decay of a
meson into two MCPs. We will then perform the calculations for the Dalitz
decay P → γχχ̄.

A.1 Direct decay

The Feynman diagram for the direct decay of a meson into two charged leptons
is shown in Figure A.1, where the grey circle represents the mechanism described
by the form factor of the meson. From Equation (2.6) we have that the BR of
the direct decay of a meson into two leptons is given by

BR(m→ l+l−) =
Γm→l+l−

Γtot
, (A.1)

where Γm→l+l− is the decay rate of the direct lepton decay. From Equa-
tion (A.1), we get that the ratio between the BRs for the direct decay of a

�Adapted from [1].
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Figure A.1: Feynman diagram of the direct decay of a meson m with four-
momentum pm into two leptons l− and l+ with four-momenta pl− and pl+ .

meson into leptons versus MCPs is given by

BR(m→ χ̄χ)

BR(m→ l+l−)
=

Γm→l+l−

Γm→χ̄χ
, (A.2)

where Γm→χ̄χ is the decay rate of the direct decay into two MCPs. We start by
calculating Γm→l+l− by using Equation (2.8), which states that

Γm→l+l− =
S

2mm

∫
|M|2(2π)4δ4(pm − pl+ − pl−)

× 1

2
√
pl+

2 +m2
l

1

2
√
pl−

2 +m2
l

d3pl+

(2π)3
d3pl−

(2π)3
,

(A.3)

where mm is the meson mass, ml is the lepton mass, pl− and pl+ are the four-
momenta of the leptons, and pm is the meson four-momentum. In the meson
rest frame we can rewrite the delta function as

δ4(pm − pl+ − pl−) = δ3 (pl+ + pl−)

× δ
(
mm −

√
pl+

2 +m2
l −

√
pl−

2 +m2
l

)
.

(A.4)

We use the first delta function when doing the integral over pl− , which gives
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Γm→l+l− =
S

32π2mm

×
∫
|M|2

δ
(
mm −

√
pl+

2 +m2
l −

√
pl−

2 +m2
l

)
pl+

2 −m2
l

d3pl+ .

(A.5)

Now only the integral over pl+ remains, and to evaluate it we switch to spher-
ical coordinates with d3pl+ = |pl+ |2 sin θd|pl+ |dθdϕ. Since there is no angular
dependence, the angular integrals evaluate to 4π and we are left with

Γm→l+l− =
S

8πmm

∫
|M|2

δ
(
mm − 2

√
|pl+ |2 +m2

l

)
|pl+ |2 −m2

l

|pl+ |2d|pl+ |. (A.6)

We now do another change of variables to El+ = |pl+ |2 + m2
l , and we use

the delta function when doing the integral. This leaves us with the following
expression for the decay rate:

Γm→l+l− =
S|M|2

8πm2
m

√
1−

4m2
l

m2
m

. (A.7)

The calculation is similar for the decay m → χχ̄, with the MCPs in place of
the leptons. The only difference is that the squared amplitude is scaled by a
factor of ϵ2 compared to the squared amplitude for the leptons. This is due to
the difference in the interaction strength. The ratio between the BRs (or decay
rates) is thus

BR(m→ χ̄χ)

BR(m→ l+l−)
=

Γm→l+l−

Γm→χ̄χ
∝ ϵ2

√
1− 4m2

χ/m
2
m√

1− 4m2
l /m

2
m

, (A.8)

where the last factor comes solely from the phase space calculations. To get a
more accurate expression one could also take into account the matrix element,
giving an additional factor determined by the phase space integral of the squared
amplitude for the process of γ∗ → l+l−, where γ∗ is a virtual photon. This was
done in [43] by using the optical theorem. The derivation is outside of the
scope of this thesis, and we quote the result which is an additional factor of
(1 + 2m2

l /m
2
m). An equivalent factor of (1 + 2m2

χ/m
2
m) is also added for the

MCP decay, and thus we will insert an additional factor of
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(
1 + 2m2

χ/m
2
m

1 + 2m2
l /m

2
m

)
(A.9)

into Equation (A.8). The same factor is found in [44]. Doing this we end up
with

BR(m→ χ̄χ)

BR (m→ l+l−)
= ϵ2

√
1− 4m2

χ/m
2
m

1− 4m2
l /m

2
m

(
1 + 2m2

χ/m
2
m

1 + 2m2
l /m

2
m

)
, (A.10)

which is the same expression as found in [8].

A.2 Dalitz decay

The calculations in this section follow the method used in [45], but with more
details and with MCPs in place of the charged leptons. The BR will be found
from comparison with the decay of the meson into two photons, m→ γγ. The
Feyman diagram of this process is shown in Figure A.2. We start by calculating
the decay rate for the diphoton decay. For the massless photons Equation (A.7)
reads

Γ =
S|p||M|2

8πm2
m

, (A.11)

where |p| is the absolute value of the momentum of the outgoing particles. In
the meson rest frame, it can be written as |pγ | = Eγ = Em = mm/2, where Eγ

is the energy of the photons and Em is the energy of the meson. The symmetry
factor is S = 1/2 because of the two interchangeable photons. Inserting all of
this into Equation (A.11) yields

Γγγ =
|M|2

32πmm
. (A.12)

|M|2 is found by applying the Feynman rules in Table 4.1 to Figure A.2 and
squaring the expression, which gives

|M|2 = |Fm|2ϵµνρσϵµ′ν′ρ′σ′ϵµ1p
νϵρ2k

σϵµ
′

1 p
ν′
ϵρ

′

2 k
σ′
, (A.13)

where p and k are the momenta of the photons, ϵ1 and ϵ2 are their polarizations,
and ϵµνρσ is the antisymmetric Levi Civita tensor. Here the form factor |Fm|2
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Figure A.2: Feynman diagram of the direct decay of a meson m with four-
momentum pm into two photons with four-momenta k and p.

is constant as both decay products are on-shell. We can simplify the expression
by summing over the photon polarization states using Equation (A.26) in [26]:∑

polarizations

ϵµϵµ′ → −gµµ′ . (A.14)

Performing this replacement and renaming ν ←→ ρ and ν′ ←→ ρ′ gives

|M|2 =|Fm|2ϵµνρσϵµ′ν′ρ′σ′gµµ
′
gρρ

′
pνkσpν

′
kσ

′

=|Fm|2ϵµνρσϵµ
′ν′

ρ′σ′pνkσpν
′
kσ

′
.

(A.15)

We can simplify further by using Equation (A.30) from [26]:

ϵµνρ
′σ′
ϵµνρσ = −2

(
δρ

′

ρ δ
σ′

σ − δρ
′

σ δ
σ′

ρ

)
, (A.16)

which leaves us with

|M|2 = −2|Fm|2 (pρpρkσkσ − pσpρkρkσ) = −2|Fm|2
(
p2k2 − (p · k)2

)
. (A.17)

Now we can rewrite (p · k) = 1
2 (p+ k)2 and use that m2

m = (p+ k)2 to get the
final expression for the absolute value of the squared amplitude, which reads

|M|2 =
|Fm|2

2
m4

m. (A.18)

Inserting Equation (A.18) into Equation (A.12) yields the final expression for
the diphoton decay rate;

Γγγ =
|Fm|2

64π
m3

m. (A.19)
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Now it remains to find an expression for the three-body decay rate Γγχ̄χ for
the decay P → γχ̄χ. For this purpose we use Equation (2.10), which in this
case is written as

dΓ =
1

(2π)5
1

16M2
|M|2

∣∣pχ

∣∣ |q|dqdΩχdΩk, (A.20)

where (|pχ|,Ωχ) is in the rest frame of χ and χ̄, Ωk is the solid angle of the
photon in the rest frame of the decaying meson, M is the mass of the meson
and q is the momentum of the virtual photon. We start by calculating |M|2.
Using the Feynman rules in Table 4.1, the amplitude M for the Dalitz decay
shown in Figure A.3 can be expressed as

Figure A.3: Feynman diagram of the Dalitz decay of a meson m with 4-
momentum pm into two MCPs χ and χ̄ with 4-momenta pχ and pχ̄ and a
photon γ with four-momentum k. γ∗ denotes a virtual photon.

M = |F (q2)|Qχϵµνρσ
1

q2
[ūs(p−)γ

µvs(p+)] q
νϵρkσ, (A.21)

where |F (q2)| is the meson form factor, [ūs(p−)γ
µvs(p+)] is the lepton current

and ϵ and k are the polarization and momentum of the outgoing photon. Note
that now the form factor is no longer constant but depends on q2 because the
decay contains an off-shell photon. The expression for the squared amplitude is
then

|M|2 =
Q2

χ

q4
|F (q2)|2ϵµνρσϵµ′ν′ρ′σ′ [ūs(p−)γ

µvs(p+)]

×
[
v̄s(p+)γ

µ′
us(p−)

]
qνϵρkσqν

′
ϵρ

′
kσ

′
.

(A.22)
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We start evalutaing this expression by summing over the spins using the com-
pleteness relations given in Equation (A.22) in [26]:∑

s

us(p)ūs(p) = /p+m∑
s

vs(p)v̄s(p) = /p−m
(A.23)

to find that ∑
s,s′

[ūsa(p−)γ
µ
abv

s
b(p+)]

[
v̄sc(p+)γ

µ′

cdu
s
d(p−)

]
= ( /p+ −m)daγ

µ
ab( /p− +m)bcγ

µ
cd

= Tr
[
( /p+ −m)γµ( /p− +m)γµ

]
.

(A.24)

Evaluating this expression using the formulas for the gamma matrices found in
the appendix of [26] and reformulating the expression gives

4
[
pµ−p

µ′

+ + pµ
′

− p
µ
+ − gµµ

′ (
(p+ · p−) +m2

)]
= 2q2

[
−gµµ

′
+
pµpµ

′

q2
− (p+ − p−)µ(p+ − p−)µ

′

q2

]
,

(A.25)

where the mass squared term was dropped due to the small value of the MCP
mass, and the relation q = p+ + p− was used. The term (pµpµ

′
)/q2 can be

dropped because of the Ward identity, which was described in Section 4.1.2.
Inserting into Equation (A.22) we have

|M|2 =
Q2

χ

q4
|F (q2)|2ϵµνρσϵµ′ν′ρ′σ′2q2

[
−gµµ

′
− (p+ − p−)µ(p+ − p−)µ

′

q2

]
× qνϵρkσqν

′
ϵρ

′
kσ

′
.

(A.26)
Now we use Equation (A.14) in the same manner as earlier together with sub-
stituting k = pm − q and p− = q − p+. This leaves us with

|M|2 =
Q2

χ

q4
|F (q2)|2ϵµνρσϵµ′ν′ρ′σ′gνν

′
2q2

×

[
−gµµ

′
− (2p+ − q)µ(2p+ − q)µ

′

q2

]
× (qρpσm − qρqσ)(qρ

′
pσ

′

m − qρ
′
qσ

′
).

(A.27)
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The terms with more than one q with indices from the same metric tensor have
to be zero because of the antisymmetry of the metric tensor. Thus, multiplying
out we get

|M|2 =
2e2|F (q2)|2

q2

(
εµνρσε

µν
ρ′σ′q

ρPσqρ
′
Pσ′

+
4

q2
εµνρσε

µ
ν′ρ′σ′p

ν
+p

ν′

+ q
ρqρ

′
pσmp

σ′

m

)
.

(A.28)

In the rest frame of the meson we have that pσm = mmδ
σ0. Switching to this

frame thus lets us simplify the expression to

|M|2 =
2e2|F (q2)|2

q2
m2

p

(
εµνρε

µν
ρ′q

ρqρ
′
− 4

q2
εµνρε

µ
ν′ρ′p

ν
+p

ν′

+ q
ρqρ

′
)
. (A.29)

Finally, we use the tensor properties εµνρε
µν

ρ′ = 2δρρ′ and εµνρε
µ
ν′ρ′ = δνν′δρρ′−

δνρ′δρν′ to get the final expression for the squared amplitude, which reads

|M|2 =
2e2ϵ2|F (q2)|2m2

m

q2

(
2|q|2 − 4

q2
|q|2|pχ|2 sin2 θ

)
, (A.30)

where θ is the angle between pχ and q. Now it remains to calculate the partial
decay rate. Inserting Equation (A.30) into Equation (A.20) gives

dΓ =
1

(2π)5
2e2ϵ2|F (q2)|2

16q2

(
2|q|2 − 4

q2
|q|2|pχ|2 sin2 θ

)
× |pχ||q|dΩχdΩkdq.

(A.31)

Using Equations (2.11) and (2.12) we can write

|q| = m2
m − q2

2mm
(A.32)

and

|pχ| =
qX

2
; X =

√
1−

4m2
χ

q2
, (A.33)

which we insert to get

dΓ =
e2ϵ2|F (q2)|2

(2π)58q

(
m2

m − q2

2mm

)3
X

2

(
2− sin2 θX2

)
dΩχdΩkdq. (A.34)
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Integration over dΩk gives a factor of 4π. Performing the integration over Ωk

and using the relation qdq = dq2/2 gives

dΓ =
e2ϵ2|F (q2)|2X
(2π)416q2

(
m2

m − q2

2mm

)3 (
2− sin2 θX2

)
dΩχdq

2. (A.35)

Now we perform the integral over dΩχ = sin θdθdϕ and get

dΓ =
e2ϵ2|F (q2)|2

(2π)34q2

(
m2

m − q2

2mm

)3

X

(
1− X2

3

)
dq2. (A.36)

We factor out |Fm|2 from |F (q)|2, which means changing |F (q)|2 in our equa-
tion with |Fm|2|Fm(q2)|2. Inserting e2 = 4πα and the expression for X in
Equation (A.33), together with simplifying our expression, we end up with

Γ =
m3

m|Fm|2

64π

2αϵ2

3π

∫
1

q2

(
1− q2

m2
m

)3
(
1−

4m2
χ

q2

)1/2

×

(
1 +

2m2
χ

q2

)
|Fm(q2)|2dq2.

(A.37)

Noting that the first term is equal to the expression for Γγγ in Equation (A.19)
allows us to write

Γ

Γγγ
=

∫
2αϵ2

3πq2

(
1− q2

m2
m

)3
(
1−

4m2
χ

q2

)1/2(
1 +

2m2
χ

q2

)
|Fm(q2)|2dq2,

(A.38)
which is equivalent to the expression found in [8], [46]:

BR(P → γχ̄χ)

BR(m→ γγ)
=
2αε2

3π

∫ m2
m

4m2
χ

dq2

√
1−

4m2
χ

q2

(
1 + 2

m2
χ

q2

)

× 1

q2

(
1− q2

m2
m

)3 ∣∣Fm

(
q2
)∣∣2 .

(A.39)
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Appendix B

Dalitz plots�

It is interesting to investigate whether assuming constant matrix elements in the
calculations of the MCP flux above γ = 6 is a reasonable approximation or not.
To do this we make Dalitz plots for the Dalitz decays of η and π0 for different
values of the MCP mass. We use the phasespace package [35] to get an array of
valid decays containing the momenta of the decay products. 100 000 simulations
were run, producing the same amount of data points for the plots. For each
decay, we easily find the values of m12 and m23 as defined by Equation (2.9).
The corresponding value of |M|2 is calculated using Equation (A.30).

The Dalitz plots for η are shown in Figure B.1, and the Dalitz plots for π0

are shown in Figure B.2. The values of |M|2 have been rescaled so that the
maximum value is 1. Note that the x- and y-axes are different for each of the
subplots, as the allowed phase space area decreases with increased MCP mass.

The only parameters that change our Dalitz plots are the values of the meson
mass and the MCP mass. The limits of the allowed kinematic region are defined
as illustrated in Figure 2.2. Thus, the shape and the values of the Dalitz plots
for η and π0 are the same for equal ratios of the meson mass versus MCP mass.

As can be seen from the Dalitz plots in Figure B.1 and Figure B.2, |M|2
is not constant, but has regions of higher values. These regions are smaller for
smaller values of mχ. For values of mχ close to the limit of the maximum value
possible, corresponding to the lower right Dalitz plots, the region of the higher
values of |M|2 is larger. It can be argued that as long as the region of higher
values of |M|2 stays small, it will not affect the results significantly.

�Adapted from [1].
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Figure B.1: Dalitz plot for the decay of η mesons into two MCPs and a photon.
The subplots correspond to different values of the MCP mass. The colour map
shows the normalized values of the squared amplitude.

In order to further investigate the impact of assuming a constant matrix
element, we calculate the variance for |M|2 for each of the plots in Figure B.1
and Figure B.2. The results are shown in Table B.1. The calculated variances
for the MCP masses chosen for the plots in Figure B.1 and Figure B.2 were
between 0.063 and 0.097. The variance was larger for smaller values of mχ,
for which there is a sharper increase of |M|2 towards the left of the allowed
kinematical region in the Dalitz plot.
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Figure B.2: Dalitz plot for the decay of π0 mesons into two MCPs and a photon.
The subplots correspond to different values of the MCP mass. The colour map
shows the normalized values of the squared amplitude.

Table B.1: Variances σ2 of |M|2 in the Dalitz plots for the Dalitz decays of the
η and π0 mesons into MCPs. The variance is calculated for different values of
the MCP mass mχ.

Table B.2: η
mχ [GeV] σ2

0.025 0.097
0.075 0.087
0.100 0.078
0.250 0.063

Table B.3: π0

mχ [GeV] σ2

0.010 0.095
0.075 0.080
0.100 0.071
0.250 0.065
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