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Abstract

In order to reduce greenhouse gas emissions (GHG) from ships at sea, various
measures have been considered, such as alternative fuels with low carbon intens-
ity, innovative ship technology, and new policies. To successfully achieve GHG
reduction in global shipping, it is critical to properly evaluate and understand the
impact of the combination of operational scenarios and various mitigation meas-
ures, which requires a system that can accurately predict the required power for
the global fleet under the actual operating profile and weather conditions.

Global emissions assessments in the maritime sector have relied on relatively sim-
plified calculations and empirical methods to estimate power consumption due to
limitations such as a lack of accurate information about ships, uncertainty in the
collected data, and computational complexity. This study aims to implement an
improved model that can improve the accuracy of power predictions by identify-
ing suitable methods for fleet-wide power estimation or modifying and updating
existing methods. Based on the developed model, the application and effectiveness
of energy saving measures are also considered.

An overall data processing method for performance analysis of individual ships
and entire fleet segments, including a method for processing missing values of
ship principal parameters, is presented. In addition, methods for estimating ship
resistance components and total propulsive efficiency are reviewed. Here, a new
method for estimating added wave resistance of a ship is developed. Moreover, air
lubrication technology is combined with the developed power prediction model as
a case study for energy saving measures, and its impact on energy savings in global
shipping is evaluated.

Based on the comparison results with the full-scale measurements and 2018 EU-
MRV (European Union-The Monitoring, Reporting and Verification) data, the de-
veloped model seems to well describe the characteristics of the power perform-
ance according to the ship’s various operational profiles. It can be used to evaluate
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fuel consumption, emissions, and energy efficiency for fleet segments, and can be
combined with various energy reduction scenarios to be useful in finding suitable
pathways to reduce GHG emissions.
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CHAPTER 1
Introduction

This chapter presents the motivation of the study along with the
background. Further, the structure of this thesis is outlined.

1.1 Background & Motivation
Global warming has recently emerged as a serious problem due to greenhouse gas
(GHG) emissions, and in response, the International Maritime Organization (IMO)
announced a strategy to reduce GHG emissions by at least 50% by 2050, compared
to the 2008 level (IMO 2018). A number of strategies are being considered by
stakeholders in the maritime sector, including the use of low-carbon alternative
fuels, the development of energy-efficient ship technologies, and the promotion
of new regulations to cut GHG emissions (Bouman et al. 2017). It is important
to have a thorough understanding of the combination of the actual climate impact
of various mitigation measures and the various measures for the transition of the
global fleet. In addition, the estimation of GHG emissions at sea and assessing its
impact on the environment and climate will greatly help to establish international
rules, identify the most favorable emission mitigation measures, and make future
decisions for emissions reduction.

Assessment of GHG emissions from global shipping can be carried out using a top-
down or bottom-up approach. The former collects data on total fuel consumption
based on bunker sales and models the resulting emissions, while the latter assesses
the energy used by individual ships and the resulting emissions. In contrast to
the top-down approach, the bottom-up approach has the advantage of enabling a
relatively accurate evaluation of emissions based on the ship’s automatic identific-
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2 Introduction

ation system (AIS) data. Another advantage of the bottom-up approach is that the
same model can be used to assess the effectiveness of different emission mitigation
measures for the global fleet. This approach derives fuel consumption and emis-
sions using the AIS data, which requires a system that can predict required power
in a simplified manner with sufficient accuracy according to the actual operational
profiles and weather conditions for the global fleet.

Several studies have used AIS data along with ship-specific information to apply
a spatial distribution bottom-up approach to the emissions from the marine sector,
but they have only used very simple methods to predict the global fleet’s power or
energy consumption (Jalkanen et al. 2009; Smith et al. 2013, 2014; Rakke 2016;
Olmer et al. 2017). For example, the cubic rule1 or admiralty formula2 was used
to estimate the ship’s power in calm water conditions, and a specific percentage of
sea margin was applied for weather effect correction. In addition, the increase in
resistance due to the biofouling of the ship was considered by applying the same
fouling penalty to all ships. For the entire fleet and its subsegments, obtaining
more useful estimates requires a relatively simple power prediction approach while
accurately capturing trends with respect to various operating profiles. Although
more complex methods have recently been used in some studies, it is necessary to
develop a comprehensive powering prediction method that could compensate for
the shortcomings identified in previous studies and utilize them for the bottom-
up approach. For this reason, Bouman et al. (2016) and Muri et al. (2019a,b)
presented a Maritime Transport Environmental Assessment Model (MariTEAM),
which adopted a resistance-based approach to calculate the instantaneous power
demand of a ship.

In Climate change mitigation in the maritime sector (CLIMMS), as an interdis-
ciplinary research project associated with Senter for Forskningsdrevet Innovasjon
(SFI) Smart Maritime, life cycle assessment, marine engineering, and climate sci-
ence approaches are used to improve comprehension of the effects of various GHG
mitigation measures and scenarios in the maritime industry. In order to further
close the gap with real cases, work package 2 of the project, which the current
work has been a central part of, aims to examine the methods used for complete
power prediction and develop an improved MariTEAM model. The established
power prediction model will be put to use to assess fuel usage, emissions, and en-
ergy efficiency for different fleet segments, as well as in combination with other
scenarios to determine appropriate GHG reduction strategies.

In order to increase the reliability and accuracy of the MariTEAM model and to

1P∝V 3 (P : ship’s power, V : ship’s speed)
2C = ∇2/3V 3

P
(C: admiralty coefficient, P : ship’s power, V : ship’s speed, ∇: displacement)
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show results at the global fleet level based on it, the scientific research conducted
here covered several related topics as follows.

The first is the development of appropriate ship data processing methods. In the
bottom-up approach for the global fleet, fuel consumption and emissions of ships
are obtained through various calculation steps from simple input data. However,
proper data preprocessing is essential since inherent errors in raw data may in-
crease the error and uncertainty of the final result. For example, some values in
the ship’s main parameters are missing in the Sea-web database, which is used
in the IMO GHG study. Although methods like median/mean imputation and re-
gression equation were employed to overcome this issue, there is still room for
improvement in terms of applicable constraints and result accuracy. As part of this
work, an algorithm for handling missing values of the ship’s main parameters is
proposed.

Secondly, due to the lack of detailed ship information, uncertainties in collected
data, and limitations in computational costs, it is necessary to identify applicable
methods for predicting the power consumption of the global fleet. For example,
there have been various approaches such as numerical methods, experiments, and
semi-empirical methods to predict added resistance in waves of a ship, but meth-
ods suitable for a such purpose need to be identified. Thus, in this study, the
performance of semi-empirical and machine learning methods is reviewed based
on experimental data of various ship types and operating environments.

Finally, the application result of an energy-saving measure is demonstrated through
the established fleet-wide powering prediction method. Here, among energy-saving
measures, the air lubrication system, which has recently received much attention
from the stakeholders in the maritime industry, is discussed as a case study. In
order to assume the application of technology to the fleet segments in the world, a
model that can be easily plugged into the developed model and simulates the basic
mechanism of air lubrication under various ship types and operating environments
is proposed.

1.2 Literature Review
In relation to the modeling and application of the fleet-wide power performance
prediction model, this Section investigates previous studies on major research
items of the thesis, such as the estimation of various ship resistance components
and energy-saving measures, and explains the overall background.



4 Introduction

1.2.1 Power prediction method for the global fleet

A large amount of research has already established power prediction methods to
evaluate the fuel consumption, emissions, and energy efficiency operating indic-
ator (EEOI) of ships, and different strategies have been adopted depending on
the available data and the objectives of the research. The methods used to evalu-
ate ship power performance range from simple empirical methods to conventional
model tests and sophisticated numerical analyses like computational fluid dynam-
ics (CFD). However, the analysis of fleet segments relied on relatively simple
computations and empirical methodologies due to a lack of precise information
about ships, uncertainty in the gathered data, and limitations with respect to time-
consuming computations.

Table 1.1 summarizes the details of previous studies of the complete power pre-
diction method. Jalkanen et al. (2009) first presented the Ship Traffic Emission
Assessment Model (STEAM) to assess the ship’s GHG emissions at sea using
AIS data. Here, the ship’s power was estimated using a cubic rule, a very rough
estimate of the ship’s power, and a speed penalty based on the Beaufort scale.
Based on the AIS data, the IMO GHG study (Smith et al. 2014; Faber et al. 2020)
and the International Council on Clean Transportation (ICCT) study (Olmer et al.
2017) examined worldwide shipping emissions, and in their analyses, ship power
was determined using the admiralty formula and a sea margin. However, expo-
nent three of the velocity and two-thirds of the displacement commonly used in
the admiralty coefficients do not fit well with modern ships, and the gap is lar-
ger, especially at higher speeds (Gupta et al. 2021). On the other hand, more and
more studies have recently used an approach to estimate ship resistance in calm
water using well-established empirical methods based on ship model tank data-
bases (Holtrop and Mennen 1982; Hollenbach 1998; Guldhammer and Harvald
1974; Kristensen and Lützen 2012). Tillig et al. (2017) introduced ShipCLEAN, a
generic ship energy system model that combines the outputs of numerous existing
empirical equations for resistance estimations to compute ship power performance
and predict fuel consumption under operating conditions with little input. The
VERDE model, developed by Tvete et al. (2020) and Guo et al. (2022), can as-
sess the fuel consumption of ships mainly based on Holtrop and Mennen (1982).
In their study, a machine learning algorithm was applied to speed up calculations
and obtain added resistance due to the weather effect. However, it is necessary
to carefully consider the empirical methods for calm water resistance because the
coverage range and input requirements are different, and the accuracy may vary
depending on the ship profiles. In addition, the weather effect correction needs
to be divided into added resistance due to wind and waves (Blendermann 1996;
Fujiwara 2006; ITTC 2017a; Liu and Papanikolaou 2016, 2020) rather than sea
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margin (or Beaufort scale-based speed penalty) for more detailed and accurate
consideration. The MariTEAM model of CLIMMS project, which enables the cal-
culation of global fleet emissions using empirical methods, was initially developed
by Bouman et al. (2016) and Muri et al. (2019a,b). This study covers the powering
prediction method that can be used in the bottom-up approach of the global fleet,
including the improvements in conjunction with subsequent studies such as Dale
(2020) and Kramel et al. (2021) by complementing the shortcomings identified in
previous studies.

Calm water resistance and biofouling

The calm water resistance can be simply calculated through empirical equations
such as systematic series and regression-based methods that comprehensively deals
with the ship’s hydrodynamics. However, methods such as Ayre (Schneekluth and
Bertram 1998), Taylor-Gertler (Gertler 1954), Series-60 (Todd 1957), and Lap-
keller (Lap 1954; Auf’m Keller 1973), developed quite a long time ago, are in-
effective at predicting resistance for modern hull form and are outdated (Bertram
2011). Meanwhile, compared to the aforementioned methods, there were other
methods such as Holtrop and Mennen (1982), Hollenbach (1998), and Guldham-
mer and Harvald (1974) that have been developed relatively recently, which have
been found to be applicable to various current ships. In some of the later studies,
these equations were modified and updated. For example, Kristensen and Lützen
(2012) included bulb correction into Guldhammer and Harvald (1974) for applic-
ation to modern ships, and Helmore (2008) updated the coefficients for precise
calculation of Oortmerssen (1971) method applied to small ships. Although many
methods have been proposed, their scope of applicability varies according to the
ship models used to develop the regression equations, and some of them require
more specific input parameters than are typically available at the global fleet level.

The hull roughness of the ship is increased by the degree of biofouling and aging
of the hull surface, which can lead to an increase in frictional resistance. Townsin
et al. (1986) presented an increase in average hull roughness (AHR) according
to ship age based on 86 sample surveys conducted in 1984-1985, and Stenson
(2015) analyzed the hull roughness change of 845 ships in dry dock during 2003-
2014. Meanwhile, Uzun et al. (2019) proposed a formula for estimating the fouling
growth according to water temperature and static time based on extensive field test
data, and Oliveira et al. (2022) analyzed the trend of fouling growth according to
salinity through experiments on coated panels in the Baltic sea.

Several practical approaches have been proposed to approximate the effect of in-
crease in the resistance resulting from this hull roughness change. Moreover, there
are equations from Bowden and Davison (1974) and Townsin and Mosaad (1985)
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adopted by International Towing Tank Conference (ITTC), which are used for
power correction by hull roughness. Additionally, Marintek’s formula (Steen and
Aarsnes 2014), which assumes only an increase in the frictional resistance due to
the effects of hull roughness, is also proposed. Granville’s similarity scaling pro-
cedure (Granville 1958, 1987), which shifts the friction line based on the roughness
function to predict the effect of a given roughness on the frictional drag of a plate
of arbitrary length, has been adopted in some studies.

According to Olmer et al. (2017), biofouling on the hull surface may result in an
average increase in the total resistance of 2-11% on global fleet segments. Despite
these effects, many preceding studies of the bottom-up approach just applied the
typical hull roughness of a newly built ship or applied the same percentage of
fouling penalty for all the ships.

Added resistance due to wind and waves

To simply take into account the power loss caused by the weather effect, studies
analyzing emissions from global shipping have applied around 10-15% sea margin
(Smith et al. 2013, 2014; Faber et al. 2020; Rakke 2016; Olmer et al. 2017). How-
ever, this approach cannot properly capture the weather effects according to the
geographical and seasonal changes of the region that the ship is operating. There
was another approach applying the correction for speed loss in accordance with the
Beaufort scale (Jalkanen et al. 2009, 2012; Johansson et al. 2017). This method
can be more thorough than applying the same sea margin to all ships, but it was
pointed out that it cannot differentiate the increase in resistance due to wind and
waves and may be somewhat less accurate than the method from recent studies
(Lang and Mao 2021).

According to ITTC (2017b), the increase in resistance due to wind load can be cal-
culated using the wind tunnel model test or CFD results of the ship, and if that is
not possible, it can be estimated using a regression equation based on the wind tun-
nel model test data (Fujiwara 2006) or the wind tunnel coefficient data (Boom et al.
2013; Kaiser 2016). The ITTC (2018) also took the results of the Blendermann
(1996)’s wind tunnel tests into account when calculating ship speed loss. While
these databases offer wind resistance coefficient curves based on apparent wind
angle for a particular ship type, in a regression equation, superstructure-related
parameters can be employed as inputs. Information about the dimensions of the
superstructure can be estimated using either the detailed hull form of the vessel or
the regression formula given in Kitamura et al. (2017).

To estimate the added wave resistance, numerous semi-empirical approaches based
on theory and experimental data have been suggested. There have been straight-
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forward formulas, such as Kreitner’s method (ITTC 2005) and Shopera’s method
(Papanikolaou et al. 2015), which can be used to calculate the added resistance
in irregular waves directly. STAWAVE-1 and STAWAVE-2, which were adopted
in ITTC (2014), were presented in Boom et al. (2013) as two simple methods
of calculating the added resistance in waves for the purpose of correcting ship
speed-power trials. The STAWAVE-2 method took into account both reflection
and radiation contributions when estimating transfer functions for added wave
resistance, while the STAWAVE-1 method was developed on the assumption that
wave reflection contributions dominate added wave resistance. However, the ap-
plication of these methods was only restricted to waves within 45 degrees off the
bow, implicitly assuming the added resistance to be zero for other wave headings.
The SHOPERA-NTUA-NTU-MARIC (SNNM) method was proposed by Liu and
Papanikolaou (2020), and it was validated by Wang et al. (2021). Liu and Papan-
ikolaou (2020) introduced a wave heading based trigonometric function into a stat-
istical method, combining Faltinsen (1980) and Jinkine and Ferdinande (1974),
and they extended the applicability range to arbitrary wave headings through re-
gression analysis based on extensive model test data. In another study, Lang and
Mao (2020) proposed a method to estimate the added wave resistance for a ship
in head sea conditions only. This method was based on the approach suggested by
Tsujimoto et al. (2008) and Jinkine and Ferdinande (1974), and it was also influ-
enced by the method developed by Liu and Papanikolaou (2016). The suggested
approach was further improved by including encountered wave frequency correc-
tion parameters, which enabled the estimation of peak amplitude positions in all
wave headings (Lang and Mao 2021).

Total propulsive efficiency

The main engine brake power can be estimated from the ship’s total resistance
estimate after taking into account the total propulsive efficiency of the ship. In
most cases, the total propulsive efficiency is estimated approximately by applying
a straightforward empirical formula, or by calculating each efficiency coefficient
that makes up the total propulsive efficiency, such as open water efficiency, hull
efficiency, relative rotative efficiency, etc., separately. Since it is not easy to gather
detailed information about ship propellers generally, relatively simple methodolo-
gies have been used in research on the fleet level. In the former case, there exist
approaches like Emerson’s formula (Watson 1998), the method of Danckwardt
(1969), and the method of Auf’m Keller (1973). The Emerson’s formula covers
contemporary propeller designs but only applies to low propeller RPM (Revolu-
tions Per Minute), and Danckwardt (1969) and Auf’m Keller (1973) are only rel-
evant to specific ship types (Birk 2019). In the latter case, it may be possible to
estimate the total propulsive efficiency for a ship by estimating the sub-components
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related to the hull and propeller, and engine & shaft connections, and then, mul-
tiplying them together.

There are approaches, such as Gawn (1957), Newton (1961), and Oosterveld (1970)
to estimate open water efficiency, but they may not be suitable for current propeller
designs and have a limited range of ships for which they are applicable. In general,
the Wageningen B series, which covers a broad range of conventional open, fixed-
pitch propellers, is widely used for the calculation of open water efficiency. In
addition, Kristensen and Lützen (2012) extended its scope to a higher thrust load-
ing based on an approximation curve proposed by Breslin and Andersen (1996).
The thrust deduction factor and wake fraction, which are estimated by some calm
water resistance methods Holtrop and Mennen (1982), Hollenbach (1998), and
Guldhammer and Harvald (1974), can be used to determine the hull efficiency.
Alte and Baur (1986) suggested an average value of 1.0 for single screw ships for
relative rotative efficiency, which often ranges from 0.95 to 1.05.

1.2.2 Energy saving measures for ships

According to Psaraftis and Kontovas (2009), there are primarily two sorts of emis-
sion reduction strategies for shipping: technical and operational measures. The
goal of technical measures is to lower the CO2 emissions from ships in comparison
to conventional ships by utilizing modern technology, while operational measures
refer to reducing emissions through operational strategy at the level of the ship or
fleet, such as speed optimization, voyage planning, fleet management, and onboard
energy management. In Bouman et al. (2017)’s study, the technical measures are
further subdivided into four categories: hull design, power and propulsion, altern-
ative fuels, and alternative energy sources. Bouman et al. (2017) also presented the
potential reduction of CO2 emissions collected from a number of previous studies
in each category, shown in Figure 1.1.

Improvements to the current ship design, including optimization of hull design,
installation of air lubrication systems (ALS) and appropriate hull coatings, can
reduce ship resistance. As a different approach, expanding the size of the ship in-
creases the amount of cargo that can be transported per unit distance, which can
significantly reduce overall emissions per transport work. Meanwhile, switching
from conventional fossil fuels to alternative fuels will result in the greatest emis-
sion reduction, and biofuels have the potential to cut CO2 emissions by up to
80% according to Figure 1.1. Additionally, alternative energy sources like solar
power, fuel cells, and wind-assisted propulsion can be taken into account for en-
ergy saving measures. Despite the fact that power and propulsion systems have
the capacity to cut CO2 by about 5-20%, the median reduction in value is quite
small when compared to other classifications, as shown in Figure 1.1. Despite
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these various measures, potential energy savings may vary depending on the type
of ship, operational profile, environment, etc., and some technologies require spe-
cial conditions for installation or operation. This fact illustrates the necessity for
transparent modeling and evaluation of these technologies’ potential for GHG re-
duction, applicability, and operating cost.

Air lubrication system
In this work, the air lubrication techniques are discussed as an example case study
among the energy saving measures in order to assess the impact on global fleet
segments. According to the surveys (ABS 2019; Gebraad et al. 2021), as of 2021,
there are about 50 ships with an air lubrication system, and interest in technology
is continuously increasing considering the recent orders. There are three different
types of air lubrication technology: injecting micro air bubbles into the lower part
of the hull to reduce drag (bubble drag reduction); covering the bottom of the hull
with a continuous air layer by increasing airflow (air layer drag reduction); and
filling a cavity in the bottom of the hull with air (partial cavity drag reduction)
(Foeth et al. 2009).

Numerous earlier studies used model tests, sea trials, or CFD to examine the per-
formance and usability of air lubricating systems. The first commercial ALS was
installed on a ship by Mitsubishi Heavy Industries, and the module carrier’s sea
trial demonstrated a net energy savings of up to 12% (Mizokami et al. 2010). In
additional research, CFD was used to evaluate the distribution of bubbles on the
hull surface and their effect on propeller performance (Kawabuchi et al. 2011).
Silberschmidt et al. (2016) has developed a commercially available air carpet tech-
nology in which fine bubbles cover the entire bottom of the ship, achieving a net
energy savings of about 4% in the actual operation of a 40k DWT tanker. Lee
et al. (2017) observed the results of model tests, sea trials, and full-scale meas-
urement data from two operating ships equipped with Samsung Heavy Industries’
SAVER system. Meanwhile, Damen Group developed an air chamber energy sav-
ing (ACES) system that prevents water from contacting the lower surface of the
hull by designing a cavity on the bottom of the hull and injecting air in order to
establish an air cushion in the cavity (Pavlov et al. 2020).

1.3 Thesis Structure
Chapter 2 lists the objectives defined for this study.

Chapter 3 presents research strategies that were used to achieve the objectives, and
includes the scope and limitations of research.

Chapter 4 provides an overview of the research papers and how they contributed
to fulfilling the objectives.
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Chapter 5 describes the original contributions of the research papers, conclusions
of this study, and ideas for future research.
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Figure 1.1: CO2 emission reduction potential from individual measures (Bouman et al.
2017).



CHAPTER 2
Research Objectives

This chapter lists the objectives formulated to guide this research.

The purpose of this study is to develop and implement an efficient power predic-
tion model for the global fleet based on fleet composition and trading patterns.
Moreover, it is to enable scenario studies of energy-saving and emission-reduction
measures using the established model. In order to reach the overall objective as
described above, the following sub-objectives are formulated:

1. Development of appropriate data processing methods for different ship data
sources

2. Identification and implementation of appropriate methods for estimating ship
resistance components

3. Establishment of an improved power prediction method

4. Demonstration of the fleet-wide powering prediction method with applica-
tion to an energy saving measure

The developed model should be applicable on a variety of ships only with lim-
ited ship information and require little computation time, while at the same time
still being sufficiently accurate for the purpose of assessment of emissions from
global shipping. To achieve this, appropriate data processing methods for ship data
sources, which can primarily be used for bottom-up analysis, must first be identi-
fied and applied. In addition, a suitable approach should be determined through an

13
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examination of possible methods for estimating each ship’s resistance component
and propulsion efficiency, which are used to predict the ship’s necessary power at
sea. To showcase how the developed powering prediction model can be applied in
practical work, an example of such a study should also be provided.



CHAPTER 3
Research Design

This chapter presents the research strategy. The scope of the
work and limitations are also included here.

3.1 Overview
Since it is a paper-based doctoral thesis, it includes five main papers written during
the Ph.D. program. Figure 3.1 depicts a collection of studies to achieve the defined
research objective, as well as how they are arranged and connected. It also shows
co-authored papers as a reference.

An algorithm for handling missing values of ship technical information is presen-
ted in Article 1 and the overall data processing work adopted in this thesis is
covered in Article 4. Although mentioned in Article 4, some algorithms are re-
ferred to in Co-author Article 1.

Methods for estimating ship resistance components and total propulsive efficiency
are reviewed in Article 4, and an improved complete power prediction method
is developed based on the previous version of the MariTEAM model Co-author
Article 3. In this process, methods of estimating the added resistance in waves
of a ship are discussed in detail in Article 2 and Article 3. In Article 2, vari-
ous semi-empirical methods are compared using model test data and a new semi-
empirical method is proposed to increase the accuracy of the added wave resistance
estimations, and in Article 3 the data-driven models applying machine learning al-
gorithms is demonstrated using the same dataset.

In Article 5, the established model is demonstrated in combination with an energy-

15
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saving measure, where the impact on the global fleet segment of various air lub-
rication systems is analyzed.

Figure 3.1: An overview of the thesis and the link between the research papers.

3.2 Research Strategy

3.2.1 Data Acquisition

In the bottom-up type of calculation performed in the CLIMMS project, it is ne-
cessary to have information about each ship, both the ship itself and its operation
and weather profiles. The CLIMMS project obtains the ship’s technical informa-
tion from the sea-web database of Information Handling Services (IHS) Markit. It
consists of the ship design-related parameters such as main dimensions, and engine
specifications, of a total of 76,937 ships, including 14 different types with a total
tonnage of 100 tons or more. Ship trajectory information such as position, velocity,
and ship heading for the global fleet is obtained from a collection of ground-based
AIS messages combined with data collected by two satellites (NorSat-1, NorSat-
2) from 2017 to 2020. In this project, port call data is collected from the IHS
Markit, including data on the date and time of arrival and departure of each ves-
sel. From project-related industrial partners, high frequency in-service data of a
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few ships is also provided. Global ocean weather data is obtained from the ERA-
Interim (ECMWF reanalysis) dataset provided by the ECMWF (European Center
for Mid-Range Weather Forecasting). It contains weather parameters including
major environmental loads, i.e., wind, waves, and ocean currents. Apart from the
previously mentioned data, in order to compare and evaluate the several semi-
empirical methods for added resistance in waves, the measured values for added
wave resistance coefficients of model ships were collected from publicly available
sources. The data set consists of a total of 2559 samples of approximately 49 ships
and 255 different experimental cases.

3.2.2 Method & Approach

Data Processing

In this study, various types of datasets are used, such as AIS data, Sea-web data,
ECMWF data, data from previous model tests, and in-service data. Before the raw
data is used for ship resistance and power estimation, various errors in the data
should be properly handled and the data converted into the input form required by
each module.

The ship’s technical information is very important because it is to be used as a basic
input for further calculations. However, for some ships some parameter values in
the data might be missing. Therefore, an imputation method is developed based
on a statistical approach to fill in the missing values as a part of this research
(Article 1). The main process of the method consists of initial calculation (curve
fitting), final imputation (multiple regression analysis + variable selection), and
minor adjustment (domain knowledge). It will be further described in Section
4.1.1.

There are often missing trajectories in AIS data due to heavy traffic or irregular
reception of AIS data. Also, since AIS data is acquired in different ways (satel-
lite, shore-based reception) the AIS data for a single voyage of a single ship might
be found in different sources. Some missing trajectories in AIS data are restored
using the combined A* algorithm and Dijkstra’s algorithm with reference to the
port call data. In addition, draught data in AIS records often contain abnormal val-
ues because they are not automatically updated but are entered manually onboard.
Therefore, if the acquired draught data of the ship is outside the range between the
minimum allowable draught defined by the ship’s classification rule and the design
draught, it is considered an abnormal value and corrected. The AIS data does not
contain information on weather conditions in the ship’s navigational area. Thus,
weather information corresponding to the time and location of the ship’s voyage
is interpolated based on the weather information gathered from the hindcast data
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repositories (Article 4).

The high frequency in-service data is used for the validation of the empirical meth-
ods developed for the global fleet segments (Article 2, Article 4). For a more
accurate comparison between the predicted value from the model and the ship’s
in-service data, the steady-state detection algorithm presented in Co-author Art-
icle 1, which can be used to filter out the parts of the time series in which the
ship’s propulsion state changes, is applied here. It may be erroneous to use data
in unsteady conditions for analysis because the speed may change somewhat later
than the ship’s power when the propulsion state of the ship changes, such as during
acceleration, deceleration, and maneuvering.

Complete power prediction method

In a bottom-up assessment of energy consumption and emissions of the global
fleet (or segments of it), the powering prediction method must work with very
limited information about each ship, and it must be computationally very fast. Both
requirements indicate that traditional high-fidelity powering prediction methods
using model testing or first-principles-based numerical methods like CFD cannot
be applied. Therefore, the research initially screened the literature for existing
empirical methods, as well as simple numerical methods.

A variety of methods are analyzed, ranging from proven empirical techniques to
relatively simple computational techniques. Some of these techniques may not be
appropriate for all ship types and require many input parameters. In addition, tradi-
tional empirical methods were developed quite a long time ago and may not be ap-
propriate for contemporary hull forms. Therefore, in this study, these approaches
are examined thoroughly, and research strategies are adopted either to identify rel-
evant empirical methods and how to estimate specific input parameters (Article 4)
or to revise and further improve existing methods (Article 2, Article 3). For ex-
ample, various semi-empirical methods for added wave resistance are compared
based on the model test data according to wave heading, ship type, wavelength,
and Froude number. Based on the comparison results, a new method is developed
by combining two already existing methods to improve the accuracy of the added
wave resistance estimates. The newly developed method is further explained in
Section 4.1.2.

A thorough ship-to-ship and voyage-to-voyage validation of the power prediction
against the global fleet is hardly possible. In this work, appropriate methodologies
are identified and reviewed for each ship resistance module as part of the process
of developing a complete power prediction model. The predicted values are then
compared with full-scale measurements from several ships for which high fre-
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quency in-service data is available in order to assess the accuracy of the suggested
model. Finally, the improved MariTEAM model’s overall accuracy is evaluated by
comparing the annual fuel consumption reported by the EU-MRV3 data for 2018
with that predicted by the model using the AIS data for the corresponding global
fleet segment.

Energy saving measures

As depicted in Figure 1.1, various energy saving measures can potentially help
reduce the emissions from global shipping. Among them, switching to alternative
fuels like LNG and biofuel instead of conventional fossil fuels appears to have one
of the largest potential reductions. The MariTEAM model can, of course, be used
to analyze these results, but as the focus of this thesis is mainly on ship technology,
such as ship resistance and power prediction, it is not addressed here. In this study,
air lubrication technology, one of the measures related to hull design, is explored
as a case study for energy saving measures for the global fleet (Article 5). The use
of air lubricating technology on actual ships is becoming more common, and it has
recently gained greater attention. Since it can be easily installed on ships that are
already in service, with the exception of the air cavity type, and has a substantial
potential to cut emissions, it is particularly useful for analysis of energy reduction
impacts in global shipping.

3.3 Scope and Limitations
The study aims to develop and implement an efficient power prediction model for
the global fleet, taking into account fleet composition and trading patterns. To
make this improvement, several sub-modules, covering the ship’s hydrodynamic
performance, speed-power analysis, and hull-propeller performance, were imple-
mented as part of this work. Since the power prediction method is developed for
application to the global fleet, a simple empirical method that can be applied to
various ship types while having low computational time, and can have moderately
good accuracy is mainly considered. Data-driven methods (semi-empirical meth-
ods and machine learning algorithms) based on the gathered model test data are
also employed in this work concerning the prediction of added wave resistance of
ships. CFD is not taken into account in the current study since it requires detailed
hull form and information about the ship and takes a lot of time for the calculation.
The influence of steering and maneuvering on power consumption is neglected.
Similarly, as for resistance, propulsive efficiency is only considered using simple

3EU-MRV (European Union-The Monitoring, Reporting and Verification). The MRV Regula-
tion provides requirements for the monitoring, reporting, and verification of carbon dioxide (ht-
tps://mrv.emsa.europa.eu). The guidance is applicable to all ships over 5,000GT that transport pas-
sengers or cargo to, from, or within EU/EEA ports, regardless of Flag (European Union 2015).



20 Research Design

empirical methods.

The project primarily collects AIS data, technical information, and weather hind-
cast data for the global fleet, and they are used in a variety of ways, from model in-
put to the creation of a new approach. The high-frequency onboard measurements
of a few operating ships that can be obtained from the project are considered for
verification of the developed model.

Regarding the analysis of energy saving measures for the global fleet, with con-
sideration of the duration of the Ph.D. program, this study considers only air lub-
rication technologies according to various types as case studies. Although the
CLIMMS project analyzes a variety of scenarios, including switching from current
fossil fuels to alternative fuels like LNG and biofuels, these are not covered in this
thesis because the thesis primarily focuses on ship technology linked to resistance
and power prediction. The developed powering prediction method is suitable for
studying other energy saving measures as well, such as wind-assisted propulsion
or more slender ship designs, but time did not allow for going into these.



CHAPTER 4
Research Summary

The summary of publications contributing to this thesis is
presented here.

4.1 Summary of Publications

4.1.1 Article 1: Missing Data Imputation for Ship Principal Parameters

In order to analyze the powering performance of the global fleet, ships’ technical
information like main dimensions, engine specifications, etc., is required. The
CLIMMS project obtains information including a total of 76,937 principal para-
meters from the IHS Sea-web database. For some ships in the database, values of
some variables are missing or clearly erroneous.

Deleting all the ship cases with missing parameters would make 46.6% of the
data set unavailable, reducing the number of ship cases for analysis, degrading the
statistical power of the model, and negatively affecting our ability to perform a
comprehensive and reliable bottom-up analysis of the global fleet. Meanwhile, a
method of simply replacing a missing value with an average or intermediate value
of samples may lead to very low accuracy. Many studies have proposed curve-
fitting equations or regression equations related to the main parameters of the ship,
ensuring fairly high accuracy. However, it is not suitable for all ship cases because
it can not be applied if the essential parameters used in the formula are missing. On
the other hand, in other research fields, machine learning methods such as random
forest have been adopted to replace missing values, but the applicability of such
methods to the ship data set is uncertain and it is not easy to interpret the results

21
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from the machine learning model.

Accordingly, a model-based calculation method using regression analysis that es-
timates the missing value of the ship’s main data is developed here as shown in
Figure 4.1. It consists of initial calculation, final imputation, and minor adjust-
ment steps. The algorithm replaces missing values with appropriate values through
curve fitting, updates the curve-fitted values again through nonlinear regression
analysis, and finally corrects them based on domain knowledge.

As shown in Table 4.1, the accuracy of the model has been compared with that of
several regression equations proposed in previous studies (Piko 1980; Takahashi
et al. 2006; Charchalis and Krefft 2009; Kristensen 2013; Papanikolaou 2014;
Charchalis 2014; Radfar et al. 2017; Abramowski et al. 2018; Cepowski 2019),
which shows significant improvements by up to 15.6% of the R-squared value
over the other methods. It is also compared with the random forest based machine
learning model and showed no significant difference in performance. For ships
having specific dimensional limitations due to the passage of the Suez Canal or
Panama Canal, this model still shows good applicability (ref to Figure 4.2).

The methodology proposed in this paper can be applied not only to the estimation
of the principal parameters of the ship but also to the handling of missing values
of data sets with similar characteristics and has the advantage of being able to in-
terpret the results. In conclusion, the completed data set from this method is used
as the basic data for further work.

Table 4.1: Comparison of prediction performance for the container ship’s principal data
between previous studies and this study.

Ship principal
parameters

This study
Best result from
previous studies

Random forest model

MAE RMSE MSE Adj −R2 MAE RMSE MSE Adj −R2 MAE RMSE MSE Adj −R2

AEP 341 453 2.05E+5 0.8508 - - - - 181 352 1.24E+5 0.9093
B 0.83 1.07 1.16 0.9875 1.49 1.90 3.61 0.9613 0.11 0.35 0.12 0.9987
T 0.32 0.43 0.19 0.9788 0.40 0.54 0.29 0.9672 0.07 0.18 0.03 0.9963
DWT 1,877 3,141 9.87E+6 0.9946 2,906 4,447 1.98E+7 0.9892 355 858 7.36E+5 0.9995
GT 1,616 2,998 8.99E+6 0.9950 2,347 3,762 1.42E+7 0.9921 208 852 3.38E+5 0.9995
LDT 750 2,072 4.29E+6 0.9701 1,259 2,436 5.93E+6 0.9591 1,051 2,855 8.15E+6 0.9430
LOA 1.55 2.08 4.36 0.9993 1.63 2.24 5.00 0.9992 0.47 1.66 2.76 0.9995
LBP 1.49 1.98 3.92 0.9993 8.91 12.21 149 0.9742 0.74 2.96 8.76 0.9984
MEC 0.74 1.04 1.10 0.7062 - - - - 0.12 0.39 0.15 0.9594
MEP 2,760 4,009 1.61E+7 0.9620 4,760 7,056 4.98E+7 0.8824 378 872 7.61E+5 0.9981
MER 17.8 44.7 1,995 0.9227 - - - - 6.53 30.1 903 0.9649
MES 0.01 0.14 0.02 0.9609 - - - - 0.01 0.10 0.01 0.9823
V 0.72 1.09 1.20 0.8989 1.16 1.70 2.87 0.7578 0.30 0.73 0.53 0.9551
TEU 2,211 332 1.10E+5 0.9931 265 456 2.08E+5 0.9872 41.0 152 2.31E+4 0.9985
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Figure 4.1: Flowchart of estimating ship principal data considering missing values as
proposed in the study.

Figure 4.2: The relation between ship length and breadth regarding dimensional con-
straints (A: Panama Canal, B: New Panama Canal, C: Suez Canal).
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4.1.2 Article 2: Estimation of Added Wave Resistance I
(Semi-Empirical method)

To minimize the prediction error of the added resistance in waves and examine the
applicability to the fleet segments, various semi-empirical methods are compared
using extensive experimental samples under different ship types and operating con-
ditions. The joint-industry project STA-JIP developed the STAWAVE-1 (STA1)
and STAWAVE-2 (STA2) methods to correct the added resistance due to the waves
for sea trial conditions, and it can provide good results with only a limited num-
ber of input variables (Boom et al. 2013). However, STA1 only considered the
conditions where the contribution of wave reflection dominates the added resist-
ance, and both STA1 and STA2 methods are limited to the added resistance in head
waves within 45 degrees from the bow, implicitly assuming that the added resist-
ance can be neglected in other headings. On the other hand, studies from Lang
and Mao (2021) (CTH method) and Liu and Papanikolaou (2020) (L&P method)
have broadened the application area to arbitrary waves by employing regression
analysis based on substantial experimental data and introducing methods to calcu-
late the added wave resistance including the contribution from both ship reflection
and radiation.

As shown in Figures 4.3-4.4, the L&P method shows the smallest error overall
among the listed methods, but there seems to be no absolutely perfect method
because CTH may perform better depending on experimental conditions such as
wavelength, Froude number, wave heading, and ship type. For the purpose of fleet
segment application, this study requires a method to estimate added resistance of
a ship with overall good accuracy for various ship characteristics and operating
profiles.

Therefore, based on the findings, a new method (further referred to as Combined
method), that combines two methods used to calculate added resistance in arbitrary
waves is suggested. According to the wavelength and wave heading, the results of
the two approaches (CTH and L&P) are combined, as in Equations (4.1)-(4.2),
where the weighting factor is tuned to minimize the mean squared error between
the model test data and the predicted results from the equations. The tangent hyper-
bolic function is used to determine the weighting factor, which has the advantage
of smoothly connecting the two results by just tuning several coefficients (Refer to
Equations (4.3)-(4.4)).

Caw =

{
[1− f(α)]Chead + f(α)Cbeam, for 90 ≤ α ≤ 180

[1− f(α)]Cbeam + f(α)Cfollowing, for 0 ≤ α < 90
(4.1)

Chead(Cbeam or Cfollowing) = [1− g(λ/L)]CCTH + g(λ/L)CL&P (4.2)
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Figure 4.3: Comparison of several semi-empirical methods for added wave resistance
according to wave headings, Froude numbers, and wavelengths. The upper row of the bar
graph depicts head waves, the middle, beam waves, and the below, following waves. MSE
refers to the mean squared error.

where Chead, Cbeam, and Cfollowing represent the added wave resistance coeffi-
cients in head waves, beam waves, and following waves, respectively. CCTH and
CL&P represent added wave resistance coefficients estimated from CTH and L&P.
f(α) and g(λ/L) are functions that enable combining the various added wave
resistance according to the wave headings and wavelengths, respectively. By mul-
tiplying 1−g(λ/L) and g(λ/L), which are outputs of tangent hyperbolic function,
by CCTH and CL&P , respectively, the two results according to λ/L are smoothly
connected. The same applies to 1− f(α) and f(α).

f(α) =
1

2
[1 + tanh(c(d− α))] (4.3)

g(λ/L) =
1

2
[1 + tanh(a(b− λ/L))] (4.4)

where a and c are coefficients to determine the slope of the weighting function,
and b and d are coefficients to adjust the center position of the function. All of the
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Figure 4.4: Comparison of several semi-empirical methods for added wave resistance
according to ship type.

coefficients (a, b, c, d) are tuned to reduce the discrepancy between the estimated
value from Equation (4.1) and the model test data.

The Combined method, as seen in Figure 4.5, obtained improved outcomes for ex-
perimental data while minimizing total error without considerably departing from
the original methods’ prediction range. As a result of validating the Combined
method using the high frequency in-service data from two ships (a general cargo
and a container ship), it performed the best among the other methods (ref to Figure
4.6). The relative RMSEs of Kreitner, Shopera, and STA2 were quite substantial,
ranging from 14% to 45%, and CTH and L&P provided errors ranging from 1% to
9%. It also performed well when estimating added wave resistance under different
conditions of wave heights, wave headings, and ship speeds.

The robustness and applicability for various ship types and operating conditions
are the main strengths of the new method. It can be widely applied to early design
stages where detailed hull design is not decided and advanced tools are not avail-
able, speed correction at sea trials, and overall performance evaluation of the fleet
segment.
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Figure 4.5: Examples of added wave resistance coefficient predicted by the Combined
method: (a) DTC (Fn=0.139), (b) HSVA (Fn=0.232), (c) S60 (Fn=0.283). The figure
corresponds to the case of head waves (α=180).

Figure 4.6: A comparison of errors in different methods against full-scale measurements
of two ships. Figure (a) shows RMSE and Figure (b) shows relative RMSE against the
Combined method. RMSE refers to the root mean squared error.
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4.1.3 Article 3: Estimation of Added Wave Resistance II
(Machine learning method)

In contrast to the semi-empirical approach shown in Article 2, this study aimed to
investigate the applicability of machine learning algorithms, a purely data-driven
approach, to predict added resistance in arbitrary waves. According to literat-
ure surveys, there have not been many studies that applied machine learning al-
gorithms to predict added wave resistance. Based on the model test results of 14
ships, Cepowski (2020) used an artificial neural network (ANN) to predict added
resistance in head waves, and in Martić et al. (2021), results from the 3D panel
method of a container ship were used to train an ANN model. However, there is
room for improvement as their application was limited to head waves and only the
ANN was used as a machine learning algorithm.

In order to develop models that predict added wave resistance coefficients (Caw)
in this study, various algorithms are taken into consideration. Dimensionless para-
meters related to hull dimensions and operating conditions are employed as inputs
to the model and the same model test dataset as in Article 2 is used. The input
variables are indicated in Equation (4.5).

Caw = f(L/B,B/Tm, Tm/Td, θ, Cb, Fn, α, λ/L) (4.5)

where f(x) represents machine learning algorithms such as extreme gradient boost-
ing (XGB), random forest (RF), k-nearest neighbors (KNN), artificial neural net-
work (ANN), gaussian process regression (GPR), and support vector regression
(SVR). L is length between perpendiculars, B is breadth, Tm is mean draught, Td

is design draught, θ is trim angle, Cb is block coefficient, Fn is Froude number, α
is wave heading, and λ is wave length. The input variables in Equation (4.5) are
selected to cover what is believed to be important for added resistance, and being
available information in the MariTEAM model.

Here, nested cross-validation (CV) is employed to maximize data usage by eval-
uating machine learning algorithms and simultaneously tuning hyperparameters
when using limited amounts of data samples. The test results of nested cross-
validation as well as the response surface of the predicted values are shown in
Figures 4.7-4.8. Overall, SVR has demonstrated good predictive performance for
all metrics employed, is robust to outliers due to its smoothly connected response
surface and equally dispersed sample colors, and seems to adequately represent
the ship’s added resistance in arbitrary waves.

Assuming that the ship encounters waves in all directions randomly, and calculat-
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Figure 4.7: Performance evaluation between machine learning models with test data from
nested cross-validation.

ing the added wave resistance in irregular waves, the relative deviations between
the SVR model and other methods are shown in Figure 4.9. Here, a 280m-bulk
carrier is used for a case study, and a modified Pierson-Moskowitz wave spectrum
is applied. While STA2 and Cepowski (2020) show a difference of 50–80% for
sea states (SS) varying from 3 to 7, CTH and SNNM show a difference of less
than 10% on average. These differences in results highlight the need for meth-
ods in arbitrary waves, given the realistic environment experienced by ships at
sea. Moreover, the relative deviation of the SVR model with SNNM and CTH,
which provides the most accurate prediction in regular as well as irregular waves
(as shown in Article 2), is not significant, showing the reliability of the SVR model
in irregular waves.

This study has proven the applicability of a data-driven machine learning model
with only using a few input parameters, in order to predict the added wave res-
istance for various ships. However, the results of the current study have not ob-
served better performance of the machine learning models than the existing semi-
empirical methods. Therefore, based on the results of Article 2 and Article 3, the
Combined method is adhered to as an added wave resistance estimation method of
the MariTEAM model.

Nevertheless, there is ample room for improvement in accuracy and coverage if
more data is available for the training of machine learning models. In this case, po-
tential benefits may be expected because retraining the currently proposed machine
learning methods would be relatively easier than, for example, SNNM methods or
other semi-empirical methods.
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Figure 4.8: Prediction surface of added wave resistance coefficients of machine learning
algorithms (S175 container, Fn=0.25).

Figure 4.9: The relative deviation to the sum of the added resistance in irregular arbitrary
waves between the machine learning model (SVR model) and other semi-empirical meth-
ods according to the sea state. The number on the bar indicates the added resistance in
irregular waves of a ship.
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4.1.4 Article 4: Ship Resistance & Power Prediction for the Global fleet

Due to the lack of detailed ship information, the uncertainty of the collected data,
and the limitations in computational cost, the power prediction of the fleet seg-
ment mostly relied on relatively simple calculations and empirical methodologies.
In this study, an approach is taken to identify the most suitable method or combin-
ation of methods among the methods used in previous studies or to modify and im-
prove existing methods. The suggested method, which is based on the MariTEAM
model, uses AIS data, the ship’s technical information, and meteorological data
to estimate the amount of power that an operational ship needs at any given time
in the operation, taking into account the effects of ship loading condition, wind,
waves, current and hull fouling. The overall flowcharts of the MariTEAM model
and the power prediction method are shown in Figures 4.10 and 4.11.

Figure 4.10: Schematic diagram of the complete power prediction module for the fleet
segment in the MariTEAM model.
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Figure 4.11: MariTEAM modeling framework for global well-to-wake emission. The
blue-shaded part is the ship power prediction module outlined in Figure 4.10.

Here, HM (Holtrop and Mennen 1982), HB (Hollenbach 1998), GH (Guldhammer
and Harvald 1974; Kristensen and Lützen 2012), and OM (Oortmerssen 1971;
Helmore 2008) methods are taken into consideration as candidate approaches to
estimate the ship’s calm water resistance in order to broaden the application to
different ships. According to the determination algorithm, a suitable method is se-
lected among the candidate methods for each ship case, and when multiple meth-
ods are selected, the average of their prediction is calculated. The determination
algorithm is based on two main criteria for selecting a suitable method: one for
determining whether the power prediction under the ship’s design conditions falls
within the 80-95% range of the MCR and the other for determining whether the
ship falls within the applicable range of the different methods. Additionally, using
data on hull roughness obtained from the dry dock provided by Stenson (2015),
this study extends it to the global fleet and calculates the average hull roughness
change in accordance with ship age and average coating performance. In order to
determine the added resistance caused by the hull roughness, Marintek’s equation
(Minsaas 1982; Steen and Aarsnes 2014) is used.
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For weather effect correction, added resistance due to wind and waves is estimated
according to the surrounding weather conditions and characteristics of the ship.
It is necessary to consider as many wind tunnel test results as possible to more
accurately estimate the added resistance due to wind of the global fleet, which
includes various ship types and a wide range of sizes. Therefore, in this study,
the wind tunnel test results of ITTC (2017b) and Blendermann (1996) and the
regression equation of Fujiwara (2006) are mainly used. If there is a wind tunnel
test result of the ship type and size consistent with the target ship, the average
value between the wind tunnel tests and the estimated value by Fujiwara (2006)
is used, otherwise, only Fujiwara (2006) is used. The parameters related to the
superstructure of the ship used as the input of the regression equation are estimated
using Kitamura et al. (2017). To calculate a ship’s added resistance in arbitrary
waves, the Combined method introduced in Article 2 is used.

The main engine brake power is estimated from the ship’s total resistance estim-
ate after taking into account the total propulsive efficiency of the ship. Here,
Kristensen and Lützen (2012) is applied to estimate the total propulsive efficiency,
which contains methods for simply calculating each efficiency term with limited
information. In their study, open water efficiency is estimated from the approxim-
ation of Wageningen B-series (Oosterveld and van Oossanen 1975), hull efficiency
is determined from wake fraction and thrust deduction factor (HM/HB/GH), and
relative rotational efficiency and shaft efficiency are replaced by approximate val-
ues.

As shown in Figure 4.12, the developed model is validated using in-service data
from three ships; LNG carrier, general cargo, and container, each consisting of
different data collection periods and sampling intervals. It demonstrates that the
prediction of changes in power in different operational profiles is consistent. In
addition, the performance of the developed model for the actual fleet segments
is compared by benchmarking the EU-MRV (European Union-The Monitoring,
Reporting and Verification) data for 2018 (Figure 4.13). The EU-MRV data con-
tains information on the annual fuel consumption and emissions of approximately
12,000 ships with European origin or destination. The annual fuel consumption of
individual vessels is estimated using AIS data matching with EU-MRV data, and
it is compared with the reported information. At the aggregation level, the dis-
tribution of fuel consumption across all segments appears to be fairly accurately
reproduced by the model, complementing the validation of the in-service data in
a good manner. Since EU-MRV data is a type of top-down approach, it is partic-
ularly reassuring to observe that our bottom-up calculation is in such good agree-
ment. Figure 4.14 shows the geographical distribution of energy consumption of
the global fleet, calculated by MariTEAM.
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Figure 4.12: Comparison of in-service data and model predictions on main engine power
of three ships: (a) Ship A, (b) Ship B, and (c) Ship C.
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Figure 4.13: Comparison of annual fuel consumption of the fleet segments in 2018
between EU-MRV data and predicted values by the MariTEAM model.

Figure 4.14: Geospatial distribution of CO2 emissions from the global shipping in 2018.
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4.1.5 Article 5: Energy Saving Device: Air Lubrication System

Based on the power prediction model developed in Article 4, the effect of en-
ergy saving measures on global fleet segments can be evaluated. Here, the air
lubrication system (ALS) is modeled as an example of the potential energy sav-
ing measures. The theoretical background, estimation methods, and assumptions
supporting the model are addressed.

For most commercial cargo ships, frictional resistance is the largest component of
resistance, often more than 50% of the total. Therefore, a reduction of frictional
resistance is relevant for energy efficiency improvement. Keeping the hull smooth
and clean is of course important, but additional savings might be obtained by air
lubrication. Net savings can be obtained by considering the power consumed in the
blower to discharge bubbles to the bottom of the hull and the energy saving from
the propulsion system with the help of ALS. Taking into consideration the above
underlying ideas and the designed assumptions, a simplified empirical model is
proposed as in Equations (4.6)-(4.8), which can evaluate the performance of three
air lubrication techniques: bubble drag reduction (BDR), air layer drag reduction
(ALDR), and partial cavity drag reduction (PCDR). Experimental results, reports,
empirical formulas, and so on that are used to estimate information such as system
setup, air flux rate, achievable drag reduction, blower specifications, etc., of which
are necessary for modeling air lubrication systems are listed in Table 4.2.

PN [%] =
Psave − Pcons

PB
× 100 =

Pnet

PB
× 100 (4.6)

Psave = PFDR
Aa

Aw
(4.7)

Pcons =
Pcomp

ηe
=

ṁg

ηcρ1
P1

n

n− 1

([
P2

P1

]n−1
n

− 1

)
(4.8)

where PN is net-percentage power saving, Psave is power saved by air lubrication
system, Pcons is power consumed by air compressor, Pnet is net power saving by
air lubrication system, PB is total brake power, PF is the power required to over-
come the frictional drag, DR is frictional drag reduction due to air lubrication, Aa

is air-covered area at the bottom surface, Aw is wetted surface area, ηe is the ef-
ficiency of electrical motor, ηc is efficiency of an air compressor, ṁg is the mass
flow rate of air necessary to maintain the given volume flow rate of air on the bot-
tom surface, ρ1 is the initial density of the air where it is compressed, P1 is the
atmospheric pressure, P2 is the air delivery pressure from the compressor, and n is
the polytropic index.
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Table 4.2: The input parameters of ALS model and their estimation methods.

Parameter Estimation method

PB [kW] Estimated by power prediction method (Kim et al. 2022)
PF [kW] Estimated by power prediction method (Kim et al. 2022)
DR [-] Assumed 0.20, 0.80, 0.95 for BDR, ALDR, PCDR (Elbing et al. 2008; Lay et al. 2010)
Aa/Aw [-] Ab/Aw: Estimated by the regression equation (Kim and Steen 2022)

Aa/Ab: Assumed 0.84 (Wu and Ou 2019)
ṁg [kg/s] Q: Estimated based on the model test results (Mäkiharju et al. 2012)

Ploss: Conservatively assumed 1.5 bar (Ceccio and Mäkiharju 2012; Jang et al. 2014)
n [-] Assumed 1.4 (Nag 2013)
ηc [-] Conservatively assumed 0.6 (Mäkiharju et al. 2012; Jang et al. 2014)
ηe [-] Assumed 0.9 (Mäkiharju et al. 2012)

Based on the developed ALS model, parametric analysis on the energy savings
of air lubrication technology is carried out for a 50,000 DWT general cargo ship
according to variations in ship speed, ratio of air-covered area to the bottom surface
area, loading condition, and block coefficient, as illustrated in Figure 4.15. Due
to the dominance of frictional resistance at low speeds, it is desirable for ships to
operate at low service speeds. Nevertheless, the speed conditions that can produce
the greatest savings may slightly vary due to different air flux requirements of
blowers depending on the ALS types. It is obvious that the system configuration
such as the arrangement of the air release unit, which affects how much air can
cover the bottom area, can have a considerable impact on performance in addition
to the ship’s flat bottom area. Furthermore, as the draught rises, the hydrodynamic
drag also rises, increasing the required power.

Assuming that the corresponding vessel navigates between Rotterdam (NLRTM)
and New York (USNYC) for one year, a simulation of the energy saving of the
ALS is performed. As a result of ALDR for laden voyages, Figure 4.16 (a) shows
seasonal changes, and Figure 4.16 (b) shows three different scenarios: calm sea
conditions, actual sea conditions, and actual sea conditions with weather adjust-
ment factors. In comparison to the calm water condition, the overall energy saving
impact is decreased by around 15% to 35% when taking into account the actual
weather condition and the weather correction factor.

The potential net percentage power savings for BDR, ALDR, and PCDR, respect-
ively, would be 2–5, 8–14, and 16–22 %, according to a case study that is con-
ducted under the assumption that the global fleet (see Figure 4.15) is outfitted with
ALS and operates in calm sea conditions. From Figure 4.17, as compared to con-
tainer ships with slender hulls and high service speeds, bulk carriers and tankers
with blunt hulls and moderate operating speeds can achieve higher energy savings
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from the air lubrication system. The amounts of savings revealed in the fleet-wide
analysis match fairly well with numerous studies on individual ships that can be
found in the literature.

The methodology used in this study can be used to assess the expected effects on
a worldwide fleet with a variety of operating profiles, including variations in ship
locations and seasons. From the analysis results of the global fleet and keeping in
mind that it can be easily installed on ships already in service except in the case
of the air cavity type ALS, it is judged that air lubrication technology has consid-
erable potential to reduce emissions from global shipping. As is also discussed
in Article 5, partial cavity drag reduction (PCDR) is immature technology, with
known challenges related to stability, loss of air in high waves, and additional drag
due to keels and other air cavity-related appendages.
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Figure 4.15: Results of the parametric analysis for the air lubrication systems: (a) ship
speed, (b) ratio of the air-covered area to the bottom surface area, (c) draught, and (d)
block coefficient.
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Figure 4.16: Annual net power savings of an ALDR-equipped ship during a laden voyage
(NLRTM-USNYC): (a) seasonal variations, (b) weather factors.

Figure 4.17: Comparison of the possible net power savings of the global fleet segment by
air lubrication type.



CHAPTER 5
Conclusion

This chapter presents the original contribution of this research
to the corresponding field, the conclusion of this research, and
ideas for future work.

5.1 Original Contributions
The papers summarized earlier are related to the prediction of power consumption
in global shipping and contribute directly or indirectly towards narrowing the gap
between the reality and the estimate. It is also helping to find solutions to reduce
emissions in various ways. The main contributions in detail for each research item
are as follows:

• Different issues that could occur when using data like AIS data, ship’s tech-
nical information, and weather hindcast data for estimating the power per-
formance of a global fleet segment are described. As part of this work, an
algorithm for handling missing values like ship’s principal parameters has
been developed. Due to the nature of the fleet-level analysis, detailed ship in-
formation such as hull form cannot be obtained, so the method of parameter
estimation is discussed based on reasonable assumptions. Additionally, data
correction and processing methods are presented.

• Numerous semi-empirical approaches and machine learning algorithms for
estimating the added wave resistances have been compared and reviewed
using extensive experimental data under various conditions. As a result, a
meta-model has been developed by combining two existing methods to in-

41
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crease the accuracy of added wave resistance estimates, and a data-driven
model based on support vector regression (SVR) also has been presented
to predict the added wave resistance coefficients for ships. While the data-
driven model provides almost the same level of accuracy as the meta-model,
the meta-model is still selected for use in the MariTEAM model in this pro-
ject. When more model test results become available, the data-driven model
might be easily updated and might become the preferred model in the future.

• The applicability and accuracy of methods for estimating resistance com-
ponents and total propulsive efficiency are reviewed through previous stud-
ies presented with the complete power prediction method. As a result, an
improved method for powering prediction of ships, suitable for bottom-up
analysis of the global fleet, has been developed for implementation in the
MariTEAM model.

• A straightforward model developed based on published results of previous
studies has been presented to evaluate the potential energy savings according
to the operational profiles of various ships and configurations of air lubric-
ation systems (ALS). Based on this model, parametric analysis and sensit-
ivity analysis have been performed, and the achievable energy saving trend
assuming the ALS installation for the global fleet has been evaluated.

5.2 Conclusion
This thesis develops a model that can evaluate power consumption in fleet seg-
ments based on ship operational data, and deals with applications of energy saving
techniques and scenario simulations. An improved powering prediction method,
suitable for bottom-up studies of the global fleet (or large fleet segments), has been
successfully developed and implemented, and successfully validated against full-
scale measurements and EU-MRV fuel consumption data together with the entire
MariTeam model. In this regard, five papers have been written, and findings ob-
tained from the research are presented as follows:

• It is necessary to thoroughly check and verify raw data, and proper data
handling process is essential. Ship-related datasets such as AIS data, ship’s
technical information, weather data, and in-service data inevitably may in-
clude errors and missing values, which could cause errors and increased
uncertainty in the results. In particular, data processing is important when
results can be obtained through various processes, from basic parameters
to appropriate forms of inputs, resistance components, required power, fuel
consumption, and emission, as in this study.
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• The approach capable of estimating the added wave resistance in all wave
headings can greatly reduce the error compared to that of only taking into
account head waves when estimating the increase in resistance of a ship
due to waves in actual seaways. As a result of comparing the Combined
method with the semi-empirical methods only available for head waves us-
ing onboard measurement data from two ships, the Combined method re-
duces NRMSE (RMSE in power prediction normalized by MCR) by about
2.4–3.3% on Ship A and about 0.9–1.2% on Ship B.

• The Combined method presented in Section 4.1.2 developed in the study
demonstrates good overall performance in estimating added wave resistance
for different wave heights, arbitrary wave headings, and ship speeds. It is
relatively robust compared to other semi-empirical methods in estimating
the added wave resistance of the global fleet including various operating
conditions and ship types.

• It is possible to use machine learning methods to predict the added wave res-
istance coefficients for different ship types. The support vector regression
(SVR) method is found to be most effective here due to its smooth predic-
tion surface and good accuracy across all evaluation metrics. The results
from machine learning models indicate that relative wavelength is the most
important parameter for predicting the added wave resistance coefficients,
followed by wave heading and Froude number.

• Thorough ship-to-ship and voyage-to-voyage validation of power prediction
for the global fleet is practically difficult. A comparison of estimated value
with three ships’ in-service data demonstrates that the model can consist-
ently predict the power changes in different operational profiles and weather
conditions. Moreover, validation with the 2018 EU-MRV data also shows
that the model is capable of predicting the annual fuel consumption in fleet
segments reasonably.

• The benefits of using an air lubrication system (ALS) are substantially de-
pendent on the ship type and operating conditions. It is best suited for blunt
hull forms operating at moderate speeds, as in the case of bulk carriers and
oil tankers. Moreover, the net power-saving from ALS can be reduced by
up to 15-35% in realistic environmental conditions as compared to the calm-
water condition.

• Given the analysis results, and simple installation on ships in service the
bubble drag reduction (BDR) and air layer drag reduction (ALDR) types of
air lubrication technology have considerable potential to reduce emissions in
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global shipping. The net power-saving from air lubrication systems (ALS)
is highly dependent on the type of ALS system adopted for a ship. Accord-
ing to a case study conducted under the assumption that an air lubrication
system is equipped across the entire global fleet, the possible net percent-
age power savings would be bubble drag reduction (BDR) 2-5%, air layer
drag reduction (ALDR) 8-14%, and partial cavity drag reduction (PCDR)
16-22%.

Although the results of these studies are applicable for various purposes, it should
be noticed that they were mainly developed for the purpose of power calculation
for the evaluation of the emissions from the global fleet.

5.3 Future Work
This study has been conducted during the three-year Ph.D. program, and the re-
search objectives pursued are considered to have been achieved within the avail-
able time, support, and resources. Due to the scope of the study and practical
issues of the project, there is still room for development and improvement of cur-
rent research. In addition, new research items related to this study have been found
in the process of conducting this study. The following topics should be considered
as future research directions.

• In Article 2, an approach was developed to combine existing methods, focus-
ing on estimating added resistance in arbitrary waves of various ships. Al-
though many model test results were used to develop the Combined method,
uncertainty still exists for some experimental conditions. In addition, there
was a possibility that the results could still be affected if there were weak-
nesses in the fundamental methods used for the Combined method. In future
studies, it is necessary to identify a methodology that can further improve
the Combined method beyond these limitations. If improved versions of the
two approaches that we combined become available in which some of the
shortcomings are complemented, our method should be updated.

• The machine learning model developed in Article 3 is a purely data-driven
approach, which has shown almost a similar level of accuracy as the well-
established semi-empirical methods for the arbitrary waves. However, there
is still room for further improvement in the accuracy and coverage if more
experimental data are available for the model training. Furthermore, it is
expected that further advanced models can be implemented by applying
physics-guided neural networks that combine the scientific knowledge of
physics-based models with machine learning structures in future studies. In
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contrast, it is also worth considering using the ship’s in-service data as train-
ing data for machine learning models for the purpose of predicting the added
wave resistance of a specific ship.

• In Article 4, the average hull roughness of ships according to age was es-
timated based on the data of ships in the dry dock obtained from Stenson
(2015). It is worth considering a more specific model that analyzes the de-
gree of contribution to the actual fouling growth and resistance increase ac-
cording to the coating type, cleaning interval, seawater condition, and ship
idle time.

• Due to the nature of the fleet study, parameters related to the propeller could
not be obtained, and for convenience of calculation, the open water propeller
efficiency was calculated by the simplified Wageningen B series (Article 4).
These results are susceptible to errors due to the estimated propeller dia-
meter. If detailed data is available in future work, further investigation and
improvement in these areas are believed to enable a significantly improved
accuracy.

• Based on the developed complete power prediction model, follow-up re-
search will be conducted on emissions assessment and strategy derivation
according to various trade routes and operating patterns.

• In this thesis, the air lubrication system was modeled and analyzed as an
example case study of energy saving measures applicable to the ship (Art-
icle 5). Future research should take into account the effects of other energy
saving measures on global shipping, including wind-assisted propulsion sys-
tems and hull shape modification, in conjunction with the developed com-
prehensive power prediction approach. The combination of different energy
saving measures for an individual ship can also be studied. Moreover, it may
be possible to assess the effectiveness of different measures according to the
type of ship, its route, cargo, etc. so that the best measures can be adopted
for each individual ship.

In addition to the aforementioned research items, the lack of detailed information,
inaccuracy of data, and computational cost served as fundamental problems in the
fleet-level analysis (Article 1, Article 4). If sea-trial and in-service data of ships
with various operating profiles are obtained, a close verification of the developed
model will be possible. Also, if significant amounts of in-service data are available,
using such data to improve (tune or correct) the powering prediction method could
be of interest. Future advancements in data collection and processing technology
are anticipated to help with these issues.
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A B S T R A C T

Missing values in the fleet data set acquired in the marine sector reduce the data available for analysis,
which can decrease the statistical power of the model and negatively affects the energy-efficient operation and
decision-making. This article presents a method to estimate ship principal data. A model-based computation
method using regression analysis was used to handle missing values, and a case study was conducted on
principal data from 6,278 container ships in the IHS Sea-Web database. To implement a model for predicting
missing values, the entire data set was randomly divided into 80% to 20%, which were used as a training data
set and test data set. The prediction performance of models was compared with several regression equations
proposed in prior studies, which shows that there is a significant improvement with our method. The goodness
of fit of the current method has increased by up to 15.6% over the previous methods. It also showed good
applicability for ships with restrictions on certain dimensions, such as the standards for Suez and Panama
Canal. The findings presented here may be helpful from the estimation for key parameters of the ship to the
computation of missing values in the marine sector.

1. Introduction

Data sets acquired from industry are often incomplete, which may
be due to various reasons, including sensor failures, measurements
outside the range of sensors, malfunctions in data collection systems,
power cuts, interruption of transmission lines, and errors in data record-
ing (Imtiaz and Shah, 2008; Khatibisepehr et al., 2013). For instance,
in the maritime industry, there may be missing values of 4.4% to
26.0% of the data collected from the machinery system due to various
circumstances (Tsitsilonis and Theotokatos, 2018; Lazakis et al., 2019).
AIS (Automatic Identification System) mounted on a ship may cause
loss of signals registered by the satellite if the time slot is overlapped
due to interference with other ships when the ship navigates in con-
gested waters, and in bad weather, such as lightning, the transmission
may be lost due to shut off of the receiver (Lloyd’s list intelligence,
2017). In addition, entire fleet data, which is widely used for ship
operational efficiency, emission prediction from maritime transport,
and hull design, is comprehensively collected from various organiza-
tions such as ships, owners, shipbuilders, and port authorities (Wang
et al., 2016; IHS, 2019). Due to the nature of such data, missing values
inevitably exist. If a large fraction of the data is missing, it may lead
to inaccurate analysis and prediction, which can negatively affect the

∗ Corresponding author.
E-mail address: youngrong.kim@ntnu.no (Y. Kim).

energy-efficient operation and decision-making of the fleet (Gutierrez-
Torre et al., 2020). Therefore, it is important to process and complete
the missing values appropriately before analyzing the acquired data.

Despite the increasing utilization of big data and the use of such
in machine learning in the maritime industry, combined with the
growing importance of appropriately handling missing values, there
are few published studies on missing data. Most of them were to
recover missing route information or identify ship behavior patterns
through incomplete AIS data analysis (Liu and Chen, 2013; Mao et al.,
2018; Dobrkovic et al., 2018; Gutierrez-Torre et al., 2020). There have
also been attempts to handle missing data obtained from the machin-
ery system of an operating ship. In Cheliotis et al. (2019)’s study, a
hybrid imputation method combining K-nearest neighbor (KNN) and
multiple imputation by chained equations algorithms (MICE) has been
developed for efficient operation and performance improvement of the
main engine systems of ships in operation. Imputation is defined as a
method of filling in values of missing data (Little and Rubin, 2019).
This method was applied to time-series data collected from a total
of eight sensors combined with the main engine. In the process of
developing a decision support framework for optimal ship routes based
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on weather and fuel consumption, Gkerekos and Lazakis (2020) used
MICE algorithm applied in Cheliotis et al. (2019) to impute the missing
points of weather forecast data. Velasco-Gallego and Lazakis (2020)
conducted a comparative study investigating a total of 20 machine
learning and time-series prediction algorithms to support a real-time
decision-making strategy. In their subsequent study (Velasco-Gallego
and Lazakis, 2021), they proposed a new framework by implementing
the first-order Markov chain with some multiple imputation methods.
In addition to the maritime field, various methods based on machine
learning such as multiple regression, random forest, KNN, and support
vector regression have been tested and applied to process missing data
across the industry (Kim et al., 2017; Andiojaya and Demirhan, 2019;
Afrifa-Yamoah et al., 2020; Lin and Tsai, 2020; Jung et al., 2020; Wang
et al., 2021). It appears that most research related to missing data
handling in the maritime industry is limited to continuous time-series
data on a specific ship data, such as the state of the machinery system
or the location of the ship. Studies related to stationary data such as
ship principal data are rare.

Many studies have been conducted to predict the principal di-
mensions and particulars. Most of these were intended to be used in
the initial design or to optimize design variables for specific vessels,
and proposed regression formulas using statistical data of ships. Piko
(1980) performed a regression analysis on deadweight tonnage and
service speed using the length, breadth, draught, gross tonnage, and
power based on Lloyd’s shipping database, which became a corner-
stone for many subsequent studies. Charchalis and Krefft (2009), Char-
chalis (2014) attempted to design equations for estimating efficient
and optimal main parameters during the initial ship design stage.
Parameters were predicted using container capacity and deadweight
tonnage, but the range and number of ships used in the research was
limited. Kristensen (2012, 2013, 2016) performed extensive statistical
analysis on bulk carriers, container ships, and tankers and proposed
regression equations for a number of parameters. In particular, they
were established by dividing groups according to the size of the ves-
sel, which enabled considering the detailed characteristics of each
range. Abramowski et al. (2018) presented regression formulas to
estimate key characteristics of container ship based on various combi-
nations of deadweight tonnage, container capacity, in addition to some
other variables and proved to be a practical application at the pre-
liminary design stage. Such studies using regression formulas showed
generally good accuracy based on several key input variables selected
in combination with using domain-knowledge. Conversely, recent work
has suggested models based on ANN, which showed better prediction
performance than previous ones. Abramowski (2013) applied ANN
techniques to optimize the design parameters of cargo ships. In this
study, seven parameters were used to implement a model for effective
power determination. Moreover, optimization for a single objective of
the minimum thrust and multi-objective of the minimum propulsion
power and maximum deadweight was performed, while implementing
the model. Gurgen et al. (2018) presented a design tool for estimat-
ing key details of chemical tankers during the preliminary design
phase. In that study, an ANN was used for model implementation and
key dimensions such as overall length, length between perpendicular,
breadth, draught, and freeboard were predicted using the dead weight
and service speed of the vessel as the default input. However, there
were concerns about the complexity of the model and the possibility
of overfitting to the data set when applying ANN. In this regard,
the preceding models implemented based on specific vessel data set
were somewhat less applicable in other studies. In addition, all such
work including regression analysis and ANN to predict the principal
components of vessels always assumed a complete data set and did not
address the processing of missing values within the data set. In fact,
if some data are missing in the data set, or the composition of the
data set is different from the previous studies, the estimation methods
mentioned above are difficult to apply.

In fleet-wide studies, such as analysis of ship operational energy
efficiency and global greenhouse gas emissions at sea, the principal
details of ships are used as important basic data along with time-series
data such as AIS and in-service data. Sea-Web is used as the source for
ship principle data, and it is found that some parameters are missing for
a number of ships. If sufficient amounts of data are obtained or there
are few missing values, the problem may be solved by simply removing
the missing values, otherwise, it can result in an inappropriate analysis
result. Although prior studies using machine learning-based missing
data imputation methods (Cheliotis et al., 2019; Velasco-Gallego and
Lazakis, 2020) have shown high accuracy, they basically focused on
time-series data from specific ships. Furthermore, the interpretation
of machine learning-based models itself was difficult, and it was not
straightforward to obtain ship principal parameters by applying the
same settings to other studies.

In this study, we propose a new method that is designed for esti-
mating missing values in ship principal data. To deal with such values,
a model-based computation method using regression analysis is used
in this study, which is widely applicable to various data compositions
and characteristics. Through the method, the relationship between
ship principal data is first identified using correlation analysis and
regressional curve fitting functions. Then the missing data is replaced
based on regression analysis accompanied by variable selection. This
approach complements previous research for estimating ship principal
data with respect to handling the missing data. The estimated models
and results can be interpreted and, regression expressions for each
ship parameter are provided at last, making it easier to apply in other
studies. It is believed that the method can be applied also under other
circumstances when it is needed to replace erroneous values.

In Section 2, the new method to estimate the missing values for
ship principal data is described, and Section 3 shows the results of the
model through a case study of container ships. Section 4 compares the
performance of the developed model to the regression models of the
previous studies and the random forest model. It also verifies the ability
of the method to respect particular dimensional restrictions, such as
being able to pass through the Suez Canal and Panama Canal. Finally,
in Section 5, the conclusions drawn.

2. A new method to estimate missing values for ship main partic-
ulars

2.1. Missing data types

Missing data can cause problems since robust statistical analysis
requires values for each variable. Therefore, in situations where missing
values are expected, one needs to decide how to handle them. The miss-
ing data can be divided into three different types: missing completely at
random (MCAR), missing at random (MAR), and missing not at random
(MNAR) by the cause of missing (Rubin, 1976). MCAR means that the
values are lost randomly throughout the data range, regardless of the
type and value of the variables. Whilst MAR refers to a case in which
the loss of the data is not random across all observations, but only
within a subset of the data. If the characteristics of MCAR or MAR are
not satisfied, data belongs to the MNAR. MNAR refers to a case in which
the values of the missing variables and the reasons for the missing are
related.

Missing values can be handled in mainly two ways, either by elim-
ination or imputation of them. Deleting the parameter or variable set
that includes missing values from the entire data sets is the easiest and
simplest way to handle them. However, it can substantially lower the
sample size, leading to a severe lack of statistical power. In particular,
it is possible when there are many variables associated in the analysis,
and each variable has missing data for several cases, which can lead to
biased results, depending on the cause of data missing (Little and Rubin,
2019). If only missing values are removed by applying a pair-wise dele-
tion, the change of subset may lead to distort the analysis results and
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make it difficult to interpret. In contrast, imputation can preserve all
cases by estimating missing data based on other available information,
enabling subsequent statistical analysis of the entire data (Hair et al.,
2018).

According to Hair et al. (2018), the method of handling missing
values varies depends on the ratio of missing in the data set and its
characteristics. If the missing values are less than 10%, they can be
removed from the data set or any of the completion methods can
be applied. If the missing ratio is between 10 and 20%, hot deck
replacement and regression analysis methods are appropriate for MCAR
data, and the model-based method is recommended for MAR data. In
the case of more than 20%, a regression method is recommended to use
for MCAR data, and a model-based method for MAR data.

2.2. Missing data handling process

As mentioned in the previous section, there are various methods
of processing the missing data depending on the characteristics of
the data or the types of missing, and the corresponding results will
vary. We propose a model-based computation method using regression
analysis that is widely applicable against the ratio and characteristics
of missing data, which is able to handle it properly. The main challenge
of model-based computation is to establish a model for predicting each
target variable that contains missing values in the data set. In fact,
many studies have applied regression analysis of statistical data to
estimate ship principal parameters and they assumed a complete data
set. However, this study aims to complement previous methods from
the perspective of missing data handling. In other words, the method
proposed in this study is applicable even when the input parameters
used in the equations proposed in the previous studies are not in
the data set. However, since this algorithm includes several statistical
analysis methods, it should be noted that it may not work properly if
the size of the data set for filling the missing values is too small. Fig. 1
illustrates the method for completing the ship principal data proposed
in this study, and the main steps are composed of the following three
steps:

(i) Initial computation: The objective of the first step is to obtain a
complete data set by filling in the empty values with plausible
values. Multiple regression analysis used in this study requires
a complete matrix of variables. However, with the incomplete
data set, since the values of some variables are empty, multiple
regression analysis cannot be performed directly. Therefore, this
step provides a platform for performing a multiple regression
analysis in the next step. First, curve fitting is performed be-
tween each ship design parameter using a variety of function
forms, including linear, quadratic, cube, power, and logarithmic
based on the least-squares method. At this point, the overall data
sets of each variable are used. Afterward, a single variable and
function type that provides the highest 𝑅2 value (Coefficient of
determination) with the variable to be fitted is identified (Refer
to Algorithm 1). Finally, missing values in each ship’s case are
filled by the curve fitting of the other variable with the highest
𝑅2 value (Refer to Algorithm 2). If the corresponding variable is
missing in a specific ship case, the next best variable is selected.
That is, among the variables that exist in the ship case, the curve
fitted value of the variable with the next higher 𝑅2 value is used
to fill in the missing value. This process repeats until all missing
values within the entire data set are filled.

Let the ship data set (𝑋) has 𝑁 × 𝑀 matrix containing some
missing values:

𝑿 = (𝑿𝟏, 𝑿𝟐,⋯ , 𝑿𝑴 ) =

⎡
⎢⎢⎢⎢⎣

𝑥11 𝑥12 … 𝑥1𝑗
𝑥21 𝑥22 … 𝑥2𝑗
⋮ ⋮ ⋱ ⋮
𝑥𝑖1 𝑥𝑖2 … 𝑥𝑖𝑗
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑀

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭

𝑁

where 𝑥𝑖𝑗 is 𝑗th parameter in 𝑖th ship case, 𝑁 is the number of
ship cases, and 𝑀 is the number of ship principal parameters.

Algorithm 1: Identify the fitted function for each parameter
using curve fitting
for 𝑗 ∈ [1, 2,⋯ ,𝑀] do

for 𝑓 ∈ [𝐶𝑢𝑟𝑣𝑒 𝑓𝑖𝑡𝑡𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠] do
Calculate 𝑅2 value between 𝑿𝒋 and 𝑓 (𝑿−𝒋) using the
non-missing values.

end
Save function 𝑓 (⋅) and input parameter 𝑿∗ among 𝑿−𝒋 that
fit best with 𝑿𝒋 as 𝑓𝐶𝑉 (𝑿∗).

end

where 𝑓 (⋅) is curve fitting function (Refer to Eqs. (1)–(5)), 𝑋𝑗
is the 𝑗th parameter vector in all ship cases, 𝑋−𝑗 is parameter
vector except 𝑗th parameter in all ship cases, 𝑋∗ is the selected
parameter vector among 𝑋−𝑗 in all ship cases, and 𝑓𝐶𝑉 (𝑿∗) is
the fitted function that has 𝑋∗ as an input vector, which shows
the highest 𝑅2 value between the target parameter vector 𝑋𝑗 .

Algorithm 2: Make an initial guess for all missing values using
fitted function
for 𝑖 ∈ [1, 2,⋯ , 𝑁] do

for 𝑗 ∈ [1, 2,⋯ ,𝑀] do
Estimate �̂�𝑖𝑗 using the fitted function 𝑓𝐶𝑉 (⋅) and
parameter 𝑥𝑖∗, i.e., �̂�𝑖𝑗 = 𝑓𝐶𝑉 (𝑥𝑖∗).

end
Fill in 𝑥𝑖𝑗 using the estimated value �̂�𝑖𝑗 if 𝑥𝑖𝑗 is missing,
i.e., 𝑥𝑖𝑗 = �̂�𝑖𝑗 .

end

where 𝑥𝑖∗ is the selected parameter that shows the highest 𝑅2

value with the target parameter 𝑥𝑗 in 𝑖th ship case, and �̂�𝑖𝑗 is
the estimated value of the 𝑗th parameter in 𝑖th ship case from
Algorithm 1 and 2.

(ii) Final imputation: This step is to update the originally missing
values with predicted values by performing regression analysis
based on the completed data sets obtained from step 1. Before
implementing a predictive model for each variable, remain-
ing variables except for a target variable, are converted into
the function type with the highest 𝑅2 to the target variable,
which is to consider the non-linear physical relations between
each variable. That is, the curve-fitted values are entered in
the terms of the independent variables in subsequent multiple
linear regression expressions. The main process in this step
is performing multiple regression analysis with the backward
elimination method to make a predictive model for each vari-
able. The 𝑝-value for each variable that makes up the model
and the 𝐵𝐼𝐶 (Bayesian Information Criterion) of the model are
evaluated. It starts with all candidate variables and sequentially
removes one of which is the least statistically significant for
the model, i.e. the variable with the maximum 𝑝-value. When
all models are evaluated according to the number of input
variables, the model with the minimum 𝐵𝐼𝐶 is selected as a final
model (Refer to Algorithm 3). Once the predictive model of each
variable is set up, the values filled in the previous step are re-
placed with the newly predicted values from the model (Refer to
Algorithm 4).
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Algorithm 3: Perform multiple regression analysis with back-
ward elimination to make a prediction model for each
parameter
for 𝑗 ∈ [1, 2,⋯ ,𝑀] do

Convert parameters 𝑿−𝒋 to the curve fitted form 𝑿−𝒋
𝐶𝑉 ,

i.e., 𝑿−𝒋
𝐶𝑉 = 𝑓𝐶𝑉 (𝑿−𝒋).

repeat
Fit a multiple regression model 𝑓𝑀𝑅(𝑿−𝒋

𝐶𝑉 ) for the
target parameter 𝑿𝒋 .
Calculate 𝐵𝐼𝐶 of the model and 𝑝-value of each input
parameter.
Remove the input parameter that has the highest
𝑝-value.

until All input parameters in the model have been removed.
Save the multiple regression model that shows the
minimum 𝐵𝐼𝐶 as 𝑓𝑀𝑅(𝑿𝐶𝑉 ∗).

end

where 𝑿−𝒋
𝐶𝑉 are converted parameters using the curve fitted

form 𝑓𝐶𝑉 (⋅) that have 𝑋−𝑗 as inputs, 𝑿𝐶𝑉 ∗ are the selected
parameters, and 𝑓𝑀𝑅(⋅) is the multiple regression model that has
𝑿𝐶𝑉 ∗ as inputs, which shows the minimum 𝐵𝐼𝐶.

Algorithm 4: Update the originally missing values using
multiple regression model
for 𝑖 ∈ [1, 2,⋯ , 𝑁] do

for 𝑗 ∈ [1, 2,⋯ ,𝑀] do
Estimate �̂�𝑖𝑗 using the multiple regression model
𝑓𝑀𝑅(𝑿𝒊

𝑪𝑽 ∗ ), i.e., �̂�𝑖𝑗 = 𝑓𝑀𝑅(𝑿𝒊
𝑪𝑽 ∗ ).

end
Replace 𝑥𝑖𝑗 using the estimated value �̂�𝑖𝑗 if 𝑥𝑖𝑗 has been
filled in Algorithm 2, i.e., 𝑥𝑖𝑗 = �̂�𝑖𝑗 .

end

where 𝑓𝑀𝑅(𝑿𝒊
𝑪𝑽 ∗ ) is the multiple regression model that has

𝑿𝒊
𝑪𝑽 ∗ as inputs in 𝑖th ship case, and �̂�𝑖𝑗 is the estimated value

of the 𝑗th parameter in 𝑖th ship case from Algorithm 3 and 4.
(iii) Minor adjustment: This step is the process of identifying and cor-

recting implausible values, taking into account the normal range
of imputed values. Additional information, known as domain
or background knowledge, can be integrated into the model-
ing process from data processing to model development (Rudin
and Wagstaff, 2014; Niknafs and Berry, 2017). If one has do-
main knowledge about a specific variable, one can consider the
practical scope of the obtained data. Some values identified as
invalid can be newly estimated based on domain knowledge or
replaced with the values estimated from previous steps (Refer to
Algorithm 5).

Algorithm 5: Correct the originally missing values using
domain-knowledge
for 𝑖 ∈ [1, 2,⋯ , 𝑁] do

for 𝑗 ∈ [1, 2,⋯ ,𝑀] do
Estimate �̂�𝑖𝑗 using the domain-knowledge 𝑓𝐷𝑀 (⋅), i.e.,
�̂�𝑖𝑗 = 𝑓𝐷𝑀 (𝑥𝑖𝑗 ).

end
Replace 𝑥𝑖𝑗 using the estimated value �̂�𝑖𝑗 if necessary, i.e.,
𝑥𝑖𝑗 = �̂�𝑖𝑗 .

end

where 𝑓𝐷𝑀 (⋅) is the estimated function based on
domain-knowledge, and �̂�𝑖𝑗 is the estimated value of the 𝑗th
parameter in 𝑖th ship case from Algorithm 5.

2.3. Regressional curve fitting functions

To perform a curve fitting between each parameter, linear,
quadratic, cube, power, and logarithmic functions, which are com-
monly used for data smoothing, have been applied, and they are fitted
on the observed data based on the least-squares method. The intercept
term of the expression is excluded from those functions so that the
predicted value can start at (0, 0) (Eqs. (1)–(5)). Among the curve
fitting functions, the most suitable function for the measured values
was applied, which was determined based on the 𝑅2 value.

𝐿𝑖𝑛𝑒𝑎𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ∶ 𝑦 = 𝑎 ⋅ 𝑥 (1)

𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ∶ 𝑦 = 𝑎 ⋅ 𝑥2 (2)

𝐶𝑢𝑏𝑖𝑐𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ∶ 𝑦 = 𝑎 ⋅ 𝑥3 (3)

𝑃𝑜𝑤𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ∶ 𝑦 = 𝑎 ⋅ 𝑥𝑏 (4)

𝐿𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ∶ 𝑦 = 𝑎 ⋅ log 𝑥 (5)

where 𝑎, 𝑏 are curvilinear coefficients to be estimated for the model. 𝑦
is the design parameter, and 𝑥 is the independent variable.

2.4. Multiple regression using backward elimination

According to the number of independent variables, using one in-
dependent variable is classified as simple regression analysis, and two
or more variables are classified as multiple regression analysis. The
basic model of multiple linear regression analysis with 𝑀 independent
variables can be expressed as Eq. (6). The method of minimizing
residuals by regression formula is to find a regression coefficient that
minimizes the sum of the least-squares errors of the data points, such
as Eq. (7). The significance of the estimated regression coefficients in
a multiple regression model can be analyzed by performing a 𝑡-test,
which determines whether to reject the null hypothesis that each inde-
pendent variable has nothing to do with the dependent variable (Mark
and Goldberg, 2001).

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2+,… ,+𝛽𝑗𝑥𝑖𝑗 + 𝜖𝑖 (6)

𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽
𝑁∑
𝑖=1

(
𝑦𝑖 − 𝛽0 −

𝐿∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗

)2

(7)

where 𝑦𝑖 denotes 𝑖th observed value of dependent variable, 𝛽𝑗 signifies
regression coefficient, 𝛽0 is intercept term, 𝜖𝑖 is error term, 𝑥𝑖𝑗 is 𝑖th
observed value of 𝑗th independent variable, 𝑁 is the sample size (ship
cases), and 𝐿 is the total number of independent variables in the
regression model.

The multiple regression model has the advantage of being able
to include all the candidate variables that can affect the dependent
variable. However, if the number of independent variables increases
in the model, the complexity of the model increases, which may cause
more computational cost and errors. If a statistical model fits too close
to a particular data set by including more parameters than can be
justified by the data, it may fail to predict additional observations
reliably (Anderson and Burnham, 2004). To exclude the redundant
explanatory variables, algorithms that add or delete variables based on
selected criteria can be introduced (Pituch and Stevens, 2015). They
are called variable selection methods, and among them the backward
elimination method refers to the process of starting with all candi-
date variables, sequentially removing a variable of which the most
statistically insignificant for the model fit. The criterion for determin-
ing the significance of each variable is based on a 𝑝-value and the
variable selection process is repeated until all remaining independent
variables satisfy a certain threshold such as 𝐴𝐼𝐶 (Akaike’s Information
Criterion), 𝐵𝐼𝐶, or maximum 𝑝-value (Konishi and Kitagawa, 2008;
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Fig. 1. Flowchart of estimating ship principal data considering missing values as proposed in the study.

Montgomery and Runger, 2014). The backward elimination method is
most complicated for the initial phase because it contains all candidate
variables, but it has the advantage of testing information for all vari-
ables. Since the study uses a given data set, backward elimination was
applied to be able to test all candidates sequentially as described in the
final imputation step.

2.5. Experimental evaluation of prediction accuracy

To verify the performance of models for ship principal data, we used
error indices such as mean square error (𝑀𝑆𝐸), mean absolute error
(𝑀𝐴𝐸), root mean square error (𝑅𝑀𝑆𝐸), coefficient of determination
(𝑅2), adjusted coefficient of determination (𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2), Akaike’s In-
formation Criterion (𝐴𝐼𝐶), and Bayesian Information Criterion (𝐵𝐼𝐶)
as follows:

𝑀𝑆𝐸 = 1
𝑁

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (8)

𝑀𝐴𝐸 = 1
𝑁

𝑁∑
𝑖=1

|𝑦𝑖 − 𝑦𝑖| (9)

𝑅𝑀𝑆𝐸 =

√√√√ 1
𝑁

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (10)

𝑅2 = 1 −
∑𝑁
𝑖=1

(
𝑦𝑖 − 𝑦𝑖

)2
∑𝑁
𝑖=1

(
𝑦𝑖 − �̄�

)2 (11)

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 − (1 − 𝑅2) ⋅ (𝑁 − 1)
𝑁 − 𝐿 − 1

(12)

𝐴𝐼𝐶 = 𝑁 ⋅ log(𝑅𝑆𝑆∕𝑁) + 2𝐿 (13)

𝐵𝐼𝐶 = 𝑁 ⋅ log(𝑅𝑆𝑆∕𝑁) + 𝐿 ⋅ log(𝑁) (14)

where 𝑦𝑖 denotes 𝑖th observed value of dependent variable, �̂�𝑖 represents
𝑖th predicted value of dependent variable, �̄� signifies the mean of the
observed data, and 𝑅𝑆𝑆 is the residual sum of squares.

𝑀𝑆𝐸 and 𝑀𝐴𝐸 measure the variance and the average of the resid-
uals, respectively. 𝑅𝑀𝑆𝐸 is the standard deviation of the prediction
errors, which shows a measure of how spread out the residuals are, and
the 𝑅2 value is based on the proportion of total variation of outcomes
explained by the model. In the regression model, as the number of
independent variables increases, the 𝑅2 value will increase, and as a
result, there is a concern that it will be considered the best model (Hair
et al., 2018). To compensate for this shortcoming, the 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 value
is designed to impose penalties as the number of independent variables
increases. Similarly, 𝐴𝐼𝐶 and 𝐵𝐼𝐶 serve to select a parsimonious and
explainable model by using penalty term for the number of variables
and the fitness term of the model. In this study, the 𝑅2 value is used as
the error index for the curve fitting, and 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 value is used to
compare the prediction performance of models in which two or more
variables are used. Both 𝐴𝐼𝐶 and 𝐵𝐼𝐶 are compared in Section 3.4 for
selecting the number of variables when fitting the model.

3. Case study

3.1. Ship database

IHS Sea-Web database, which contains the following 14 design
parameters: auxiliary engine power (AEP), breadth (B), draught (T),
deadweight tonnage (DWT), gross tonnage (GT), light displacement
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Table 1
Descriptive statistics for the principal data of 6,278 container ships from the Sea-Web database.

Ship principal parameters Valid data Missing data Mean Median Std.Dev Minimum Maximum Skewness

Auxiliary engine power, AEP [kW] 3892 2386 1929.6 1720.0 1177.8 50.0 5829.0 0.66
Breadth, B [m] 6277 1 31.6 30.2 9.8 9.5 61.5 0.63
Draught, T [m] 6268 10 11.2 11.5 3.0 1.1 16.5 −0.34
Deadweight tonnage, DWT [t] 6278 0 49299.3 34577.5 44030.0 500.0 228149.0 1.40
Gross tonnage, GT [t] 6278 0 43895.2 27779.0 43506.6 355.0 232618.0 1.68
Light displacement tonnage, LDT [t] 4559 1719 15957.6 11926.0 12202.4 358.0 66939.0 1.30
Length over all, LOA [m] 6277 1 221.9 208.9 80.1 48.9 400.0 0.31
Length between perpendiculars, LBP [m] 6229 49 210.8 196.6 77.0 47.5 388.1 0.34
Main engine cylinder, MEC [-] 6247 31 8.1 8.0 2.0 3.0 16.0 0.85
Main engine power, MEP [kW] 6273 5 27620.0 21560.0 20994.5 352.0 80905.0 0.68
Main engine RPM, MER [-] 6120 158 167.9 104.0 158.0 65.0 1200.0 2.42
Main engine stroke, MES [-] 6254 24 2.3 2.0 0.7 2.0 4.0 1.88
Service speed, V [knot] 6203 75 20.7 21.0 3.5 7.5 29.2 −0.60
TEU capacity, TEU [-] 6254 24 4073.0 2553.5 4131.1 24.0 23756.0 1.84

Fig. 2. Missing pattern of principal data of container ships collected from the Sea-Web
database.

tonnage (LDT), length over all (LOA), length between perpendicular
(LBP), main engine cylinder (MEC), main engine power (MEP), main
engine RPM (MER), main engine stroke (MES), service speed (V),
and container capacity (TEU), was used in this study (IHS, 2019).
Here, data analysis and missing data imputation algorithm were mainly
performed based on Python programming language. For the case study,
the container ship data sets were extracted, consisting of 6,278 vessels
from 24 to 23,756 TEU capacity, up until the build year of 2019. The
other ship types are not covered in the text, but the results are included
in Appendices B and C. Table 1 presents the descriptive statistics of each
design parameter, and Fig. 2 visualizes the overall status of missing
data. The row of the figure stands for each ship case and the column
denotes each parameter. The white cell represents the missing value
and the black cell is a non-empty value. The ship data sets are displayed
in random order. Among all ship parameters, 38.0%, 27.4%, and 2.5%
of the data are missing for the AEP, LDT, and MER. There are also
missing data for other parameters, as can be seen from Fig. 2. It should
be noted that even if one’s data set is different from the data set used
in the case study, missing data imputation in ship principal data can be
performed according to Algorithms 1–5.

Little’s MCAR test is a common method for determining MCAR
patterns for missing data in a data set and tests for significant differ-
ences between the observed and estimated means for each missing data
pattern (Garson, 2015). If the 𝑝-value of the null hypothesis that the
missing data is MCAR is not significant, then the data may be assumed
to be MCAR (Little, 1988). Table 2 displays the result of Little’s MCAR

Table 2
Little’s MCAR test for the ship principal data used in the study. Test statistic follows 𝜒2

distribution asymptotically with degrees of freedom (𝑑𝑓 =
∑𝐾
𝑘=1𝑀𝑘−𝑀) under the null

hypothesis that there are no differences between the means of different missing-value
patterns. 𝐾 is the number of missing value patterns among all ship cases, 𝑀𝑘 is the
number of observed components in pattern 𝑘, 𝑀 is the number of ship parameter. 𝑝-
value means the probability that statistics equal to or more extreme than those actually
observed in the sample under the assumption that the null hypothesis is correct.

𝜒2-value 𝑑𝑓 𝑝-value

Sea-Web database
(Container ship)

4127.053 373 0.00

* Significant at level 𝑝 < 0.05.

Fig. 3. Correlation matrix of missing values.

test against current data sets. It showed that the 𝑝-value of the null
hypothesis is less than 0.05, which means that our data is not missing
at random and there may be some sort of a systematic bias included.

To achieve additional information about missing characteristics, a
correlation analysis between missing and non-missing values for ship
variables is performed as depicted in Fig. 3. The notable correlations
of missing data are highly correlated variables, such as LOA, B, MES,
and MEC. This trend seems to be because the number of missing
values is so small that just a few missing values can exaggerate the
correlation between the two variables. AEP, LDT, V, and MER, which
include relatively higher rate of missing values than other variables,
have correlation coefficients in the range of 0.1 to 0.2 with most
other variables, indicating that there is almost no correlation between
missing values.
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Fig. 4. (a)Histogram of the collected ship data by length, (b)Histogram of the cumulative missing values of variables distributed over length.

Fig. 4(a) shows the histogram of container ships by LOA, and
Fig. 4(b) reveals the cumulative missing values of variables. Both
histograms have similar distributions, which show the shape of the
normal distribution centered on 160 meters and 280 m. Fig. 5 denotes
the average ratio of missing values against observed data by LOA. While
the average missing rates for the most ranges are almost constant at less
than 10%, the missing rates for ranges of less than 100 meters are rela-
tively high at 14%–33%. It seems likely that these results are due to the
nature of the maritime data, which is generally collected and integrated
from various organizations such as ship, owners, shipbuilders, and port
authorities.

If a list-wise deletion method that removes missing values in any
of the data sets is applied in this case, 46.6% of the total data should
be removed, resulting in the inability to use such information and a
decrease in statistical power, and one can estimate the biased regression
slope. Judging by the nature of the ship principal data, it is inappro-
priate to apply list-wise deletion or single imputation for the missing
values, since the data are not missing completely at random. A model-
based computation method using regression analysis intended to be
applied in this study does not eliminate missing values but replaces
them with plausible values. It also has the advantage of being relatively
easy to apply to the ratios and characteristics of various missing data.
As discussed above, for ships with length less than 100 meters have a
relatively high rate of missing data, the performance of imputation will
be checked in a later section.

3.2. Correlation between ship principal data

The ship main dimensions and related particulars are determined
by various factors such as the cargo volume and weight, and the
operational routes required by the ship owner or operator, the strength
and stability specified by the rules and regulations of the Classification
society, the minimum resistance and friction forces for economic pur-
poses (Papanikolaou, 2014). Moreover, the ship principal parameters
such as length, breadth, draught, and height, as well as various other
characteristics, are correlated with each other. For instance, for con-
tainer ships, breadth depends on the row numbers on the deck, thus
it is directly related to the number of container capacity on board.
An increase in breadth is linked to an increase in cargo capacity and
hull resistance, which requires more propulsion power for a ship (Char-
chalis, 2013). Furthermore, it is important to maintain an appropriate
relation between hull length, breadth, draught, and freeboard in terms
of securing the ship’s stability and integrity (Charchalis and Krefft,
2009). Considering the hull resistance, the wave-making resistance

Fig. 5. Average missing rate of each variable according to the length over all.

Fig. 6. Correlation matrix of non-missing principal particulars of the container ships
of the case study.

of the vessel is closely related to the sailing speed and waterline
length (Gertler, 1954; Graff, 1964; Tuck, 1987).

67



Ocean Engineering 251 (2022) 110979

8

Y. Kim et al.

Prior to following the procedure of handling the missing data,
we have conducted a Pearson correlation analysis between ship main
dimensions and related particulars as defined in Eq. (15), and detailed it
on the correlation matrix in Fig. 6. The correlation coefficient has been
calculated using all data except missing values. As mentioned above,
significant correlations are identified between each variable. It can be
seen that there is a strong correlation of 0.7 or higher between the
volume, weight, cargo quantity, which are composed of L, B, T, and its
combination. Variables related to the engine property of the ship such
as MEP, MEC, MER, MES, and AEP also have correlation coefficients of
0.3–0.7. Some correlations between other ship principal variables exist.

𝜌𝑋,𝑌 =
𝐸[(𝑋 − 𝜇𝑋 )(𝑌 − 𝜇𝑌 )]

𝜎𝑋𝜎𝑌
(15)

where 𝜌𝑋,𝑌 is correlation coefficient between two variables 𝑋 and 𝑌 , 𝐸
is the expected value operator, and 𝜎𝑋 and 𝜎𝑌 are standard deviations.

3.3. Initial computation

A curve fitting between each variable is performed at the initial
computation stage, which is intended to fill in the missing values of
the ship data sets and make it possible to implement multiple regression
models for variables later. To be specific, it is to take a single variable
and function form with the highest goodness of fit for each variable
and estimate the missing value using it. Here, it is necessary to define
a function that returns the result values of the form shown in Eqs. (1)–
(5) for input data and find appropriate unknown coefficients such as
‘a’ and ‘b’ for the established function. That is, in order to perform
curve fitting on a given data set, optimize.curve_fit of scipy, an open-
source Python library, was used in this study (Virtanen et al., 2020).
In Fig. 7, the most fitted function among the curve fittings is marked
and the degree of fitness (𝑅2 value) is expressed as a heat map. Among
the results in Fig. 7, the highest-fitting relationship was extracted for
each variable and the final curve fitting results of this step is plotted
in Figs. 8(a)–8(n). As can be seen in Fig. 7, the relationship between
most parameters is best fitted when applying the power function. This
is because the defined power function provides more flexibility than
that of the relatively simple functions such as linear, quadratic, cubic,
and logarithmic so that the non-linear curves between features can
be fitted well. In the given data sets, the relationships of DWT-AEP,
GT-B, DWT-T, GT-DWT, TEU-GT, GT-LDT, LBP-LOA, LOA-LBP, MEP-
MEC, LOA-MEP, MES-MER, MER-MES, MEP-V, and GT-TEU showed the
highest curve fitting results for each other. For GT-DWT, GT-LDT, TEU-
GT, and LOA-LBP, the power function was used as the fitted function
form, and the exponents of power function were between 0.8 and 1.2,
which implies an almost linear relationship.

Regarding the engine factors, it was possible to identify some phys-
ical relationships of variables from Figs. 8(a), 8(i), 8(k), 8(l). As the
output of the main engine increased, the number of cylinders increased,
and as the strokes become from two to four, the rotational speed
increased. According to MAN B&W (B&W, 2019), large vessels put a
priority on power over speed, so they tend to mount two-stroke engines
that have low-speed but good thermal efficiency, low fuel consumption,
and high durability. Conversely, the four-stroke engines are mainly
installed as a propulsion system for small and medium-sized ships with
less than 5,000 kW, or as an auxiliary engine for large ships. It is
common to set the rotational speed high to obtain enough power from
the auxiliary engine, since the engine is compact and the stroke length
can be shortened.

In Fig. 8(m), as the power of the main engine installed on the ship
increased, the service speed generally increased logarithmically. In gen-
eral, main engine power is directly related to maximum speed rather
than service speed, but even in the case of the service speed used in this
study, it can be seen that 𝑅2 value has a prediction accuracy of 0.8387
when it is fitted with a power function. It is noteworthy that some

Fig. 7. Heat map for curve fitting results of ship principal particulars (L: Linear, Q:
Quadratic, C: Cubic, P: Power, G: Logarithmic).

ships with a power of more than 50,000 kW had service speed ranges
from 18 to 22 knots, significantly lower than the general trend, and
these were found for the case of recently built mega-container ships.
Due to rising oil prices in the early 2010s and the adoption of EEDI
to new ships to reduce emissions, many shipping companies adopted
a slower and more economical voyage speed than previously for their
container fleets (Wiesmann, 2010; Meyer et al., 2012). Subsequently,
some of the newly built mega container ships were equipped with
smaller engines than previous ships of similar size to design slower
service speeds (Congress, 2016).

Through this curve fitting process, missing values in the data sets
were filled in initially. As explained earlier, the 𝑅2 values of most
curve fittings were high, but some relationships, such as the main
engine cylinder and main engine power showed lower correlations.
In addition, there have been instances where the average prediction
accuracy of the entire data was good, such as the relationship between
the main engine power and service speed, but includes data groups that
are out of the general trend. If the 𝑅2 value of the resultant model is
low or many predicted values deviate from the regression line, it means
that a curve-fitted form of a specific single variable is not sufficient to
explain the proportion of variance in the dependent variable (Warner,
2020). Therefore, the next section will address the multivariate analysis
for explaining more variance.

3.4. Final imputation

In this step, multiple regression analysis with backward elimination
was performed on the complete data sets obtained from the previous
step. According to Mark and Goldberg (2001), the method for testing
errors in models produced by stepwise regression is to evaluate the
model for data set that are not used to create the model. This method is
particularly useful for the case that collects data from different settings
or generalizes the model with preventing overfitting. As such, stepwise
regression through evaluation criteria such as AIC, BIC, and 𝑝-value was
implemented through statsmodels, a statistical package (Seabold and
Perktold, 2010). Therefore, in the entire process of initial computation,
final imputation, and minor adjustment, only 80% of the total data set
which are randomly selected were used for model implementation and
the remaining 20% were only used for the performance evaluation of
the final model.

An independent variable with the maximum 𝑝-value (i.e., the most
insignificant variable) was sequentially removed from the model in the
backward elimination process, and Fig. 9 shows the maximum 𝑝-value
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Fig. 8. Results of curve fitting for ship main particulars: (a) Auxiliary engine power, (b) Breadth, (c) Draught, (d) Deadweight tonnage, (e) Gross tonnage, (f) Light displacement
tonnage, (g) Length over all, (h) Length between perpendicular, (i) Main engine cylinder, (j) Main engine power, (k) Main engine RPM, (l) Main engine stroke, (m) Service speed,
(n) TEU capacity.

of independent variables, 𝐴𝐼𝐶 value, and 𝐵𝐼𝐶 value of the model
according to the number of variables. The minimum values for 𝐴𝐼𝐶
and 𝐵𝐼𝐶 are represented by the black edges of the markers. The 𝐴𝐼𝐶
and 𝐵𝐼𝐶 include penalty terms for the number of parameters to avoid
the possible overfitting problem of the model. Since the 𝐵𝐼𝐶 puts more
penalties for the number of parameters than the 𝐴𝐼𝐶, fewer variables
are selected in the 𝐵𝐼𝐶 based on the minimum values of 𝐴𝐼𝐶 and
𝐵𝐼𝐶, as shown in the figure. Comparing the maximum 𝑝-values at the
minimum points of 𝐴𝐼𝐶 and 𝐵𝐼𝐶, some 𝑝-values for 𝐴𝐼𝐶 are greater
than 0.05, but all 𝑝-values for 𝐵𝐼𝐶 are less than 0.05. In general, the
significance of independent variables to the dependent variable is based

on a 𝑝-value of 0.05 (Montgomery and Runger, 2014). Thus, the final
model was chosen based on a minimum 𝐵𝐼𝐶 value considering such
criterion.

The following Table 3 outlines the results of multiple regression
analysis using the backward elimination procedure. Before perform-
ing the variable selection process, there is a total of 13 independent
variables, and the maximum 𝑝-value in each regression model is more
than 0.05. Through the variable selection process, the 𝑝-values of all
independent variables in the regression model decreased to less than
0.05 by removing the relatively less statistically significant variables.
Finally, 7–13 independent variables were selected. The significance of
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Fig. 8. (continued).

the final models was evaluated statistically through the 𝑓 -test, and it
can be seen that all models were significant at a confidence level of 0.05
as shown in Table 3. Comparing the 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 values of the model
for the training data, the 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 was almost maintained even if
some variables were removed. This means that the effect of the re-
moved independent variable on the dependent variable is insignificant.
Moreover, in the case of independent variables having a similar effect
on the dependent variable, unnecessary variables were removed during
the backward elimination process, or redundant effects were reduced
by adjusting the regression coefficient. For instance, most of the final
formulas that require length factor, include only one of LOA or LBP
since LOA and LBP have a strong correlation. However, when both LOA
and LBP are included in the equations, such as DWT, TEU, V, and T, the

redundant effect caused by adding two-length variables at the once is
reduced by adjusting the sign and size of the regression coefficients.
Another example is LDT, DWT, TEU, and GT related to the overall
volume and weight of the ship. The final regression equation of each
variable obtained through this process can be found in Appendix C.

3.5. Minor adjustment

If one has any prior knowledge of a given variables, we can con-
sider the realistic values based on it. This step corrects the predicted
values that are considered inappropriate based on expert judgment. For
instance, the main engine stroke is classified into two or four strokes,
and the main engine cylinder has to be a positive integer. However,
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Fig. 8. (continued).

Table 3
The results of multiple regression analysis with backward elimination for training data set of ship principal data. Max 𝑝-value in the table represents the maximum 𝑝-value of all
independent variables used in the model, and 𝑓 -statistic (𝑝-value) means the 𝑓 -test results of the selected model and its 𝑝-value.

Ship principal parameters Full model Selected model

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑
𝑅2

Max.
𝑝-value

No. of
inputs

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑
𝑅2

Max
𝑝-value

No. of
inputs

𝑓 -statistic (𝑝-value)

Auxiliary engine power, AEP [kW] 0.901 0.471

13

0.901 0.000 9 5064.7 (<0.001)
Breadth, B [m] 0.988 0.106 0.988 0.002 11 37,255.1 (<0.001)
Draught, T [m] 0.977 0.054 0.977 0.000 11 18,972.8 (<0.001)
Deadweight tonnage, DWT [t] 0.995 0.755 0.995 0.000 12 82,946.5 (<0.001)
Gross tonnage, GT [t] 0.996 0.236 0.996 0.000 10 153,187.9 (<0.001)
Light displacement tonnage, LDT [t] 0.993 0.132 0.993 0.000 10 72,405.7 (<0.001)
Length over all, LOA [m] 0.999 0.552 0.999 0.001 7 963,254.6 (<0.001)
Length between perpendiculars, LBP [m] 0.999 0.836 0.999 0.000 8 901,284.3 (<0.001)
Main engine cylinder, MEC [-] 0.718 0.911 0.718 0.000 10 1,280.3 (<0.001)
Main engine power, MEP [kW] 0.966 0.767 0.966 0.000 11 13,099.8 (<0.001)
Main engine RPM, MER [-] 0.921 0.728 0.921 0.001 11 5,339.1 (<0.001)
Main engine stroke, MES [-] 0.938 0.646 0.938 0.000 11 6,933.3 (<0.001)
Service speed, V [knot] 0.916 0.800 0.916 0.002 11 4,984.0 (<0.001)
TEU capacity, TEU [-] 0.993 0.001 0.993 0.001 13 63,352.4 (<0.001)

due to the nature of the regression model, predicted values rarely exist
as an integer. Therefore, predicted values of the main engine stroke are
adjusted to either 2 or 4 depending on what is closer, and those of the
main engine cylinder are rounded off to the nearest positive integer
(see Figs. 10(a), 10(b)). In another case, some predicted values may be
less than zero due to the intercept term in the predictive model even
though the model has outstanding performance generally. Such values
are replaced with the curve-fitted value of the initial computation step.
The formulas listed in Appendix C are the final imputation results of
each variable, and it should be noted that if domain knowledge is
applicable (e.g., MEC and MES), the minor adjustment step should be
processed for the corresponding result values.

4. Results and discussion

4.1. Comparison with previous studies

Here, we compare the model proposed in this study with the model
developed in the earlier studies and also with the random forest model,
which is widely used in the imputation of missing data in machine
learning methods. Table 4 summarizes previous studies that established
regression equations of main dimensions and related particulars for a
container ship. 20% of the total data not used to implement the model
was defined as a test data set and the prediction performance of the
models listed in Table 3 was evaluated using it. Table 5 shows the
results of comparing the prediction performance of the model in this
study, the model with the best result among previous studies, and the

random forest model against test data set. As an error metrics, 𝑀𝐴𝐸,
𝑅𝑀𝑆𝐸, 𝑀𝑆𝐸, and 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 values defined in Eqs. (8)–(12) were
used.

Random forest is an ensemble method that trains a number of
decision trees, outperforming in a variety of fields, such as classification
and regression of high-dimensional data (Breiman, 2001). Regarding
hyperparameters for the random forest model, this study used Grid-
searchCV of Scikit-Learn library (Kramer, 2016; Bisong, 2019) on the
following ranges and took the best subset model among them. (The
number of trees = [16-512]; the number of variables in attach split =
[3-5]; the other parameters = default of Scikit-Learn library. According
to Oshiro et al. (2012), the number of trees at a range between 64 and
128 has shown balanced performance between accuracy, processing
time, and memory. In James et al. (2013), the number of variables in
each split has been recommended as 1/3 of the number of features.
Thus, parameter optimizations have been performed for the range that
such values can be included.)

Engine factors such as AEP, MEC, MER, and MES were not covered
in the comparison studies. In the case of MEP and V, the 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2

has been increased largely from 0.8824 and 0.7578 to 0.9620 and
0.8989, respectively, while 𝑅𝑀𝑆𝐸 decreased from 7055.58 and 1.70 to
4008.59 and 1.09, respectively. Additionally, since all the 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2

and 𝑅𝑀𝑆𝐸 of other variables have also improved over the previous
models, the models proposed in this study are considered to have higher
prediction accuracy overall. Since the Sea-Web database used in this
study contains a wider range and the number of ships compared to
the data sets used in other studies as can be seen from Table 4, the
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Fig. 9. 𝐴𝐼𝐶, 𝐵𝐼𝐶, and max. 𝑝-value according to the decreasing number of independent variables for the model: (a) Auxiliary engine power, (b) Breadth, (c) Draught, (d)
Deadweight tonnage, (e) Gross tonnage, (f) Light displacement tonnage, (g) Length over all, (h) Length between perpendicular, (i) Main engine cylinder, (j) Main engine power,
(k) Main engine RPM, (l) Main engine stroke, (m) Service speed, (n) TEU capacity.

Table 4
Summary of previous studies estimating the main particulars of the container ship using regression analysis.

Study Range (TEU) Build year No. of ships

Piko (1980) Abt. 100–3,000 −1977 289
Takahashi et al. (2006) Abt. 48–8,468 1979–2005 2,358
Charchalis and Krefft (2009) Abt. 50–11,000 – –
Charchalis (2014) Abt. 1,174–1,388 – 17
Kristensen (2016) Abt. 50–19,500 1988–2016 2,397
Radfar et al. (2017) – 1999–2016 985
Abramowski et al. (2018) Abt. 20–20,000 2005–2015 –
Cepowski (2019) Abt. 90–19,224 2000–2018 442
This study Abt. 24–23,756 1957–2019 6,278
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Fig. 9. (continued).

Fig. 10. Corrected values through minor adjustment step: (a)Main engine stroke, (b)Main engine cylinder.

scalability of the estimated regression formula is expected to be higher.
Some ships in data sets were built before the 1990s, but the influence on
the final model is not much because they account for less than 5 percent
of the total number of ships. Referring to some examples of the book

‘‘Ship design: methodologies of preliminary design’’ (Papanikolaou,
2014), the predicted results of the proposed algorithm are compared
with the method showing the highest accuracy in Table 4 and the
simple regression equation from the book in Appendix A. The final
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Fig. 11. Distribution of residuals for the predicted values between previous studies, random forest model, and this study: (a) Auxiliary engine power, (b) Breadth, (c) Draught, (d)
Deadweight tonnage, (e) Gross tonnage, (f) Light displacement tonnage, (g) Length over all, (h) Length between perpendicular, (i) Main engine cylinder, (j) Main engine power,
(k) Main engine RPM, (l) Main engine stroke, (m) Service speed, (n) TEU capacity.

equations for different types of ships and their performance are detailed
in Appendix C, showing that the model does not only perform well for
container ships.

To examine whether the assumptions about the regression model
are satisfied, residual analyses were performed (Hair et al., 2018). As

can be seen from Figs. 11(a)–11(j), residuals for predicted values are
plotted across the range of the variable, and a histogram of residuals is
expressed on the right axis. Analyzing the histograms of the current
model, they represent a shape close to normal distribution, with no
bias to any side around zero, but rather spreading evenly on both sides.
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Fig. 11. (continued).

Moreover, the residuals in the figures do not show a particular pattern
and are randomly distributed evenly over the entire range of variables.
In particular, the residuals in the range of the ship’s length less than 100
m, where the missing points of the collected data was relatively high in
this study, are similar to those of other studies. These results provide
support for the assumption that the regression models satisfy normality,
linearity, and equal variance. Since models of the preceding studies and
this study satisfy these assumptions overall and show good accuracy for
the test data set, it is expected they will be useful in estimating ship
principal data. However, for LBP, B, and V predicted from the previous
studies, there are relatively large residuals in some ranges, which one
should taken care if using in any analysis.

In the case of LBP, there was a slight discrepancy in the range of 250
to 300 m, according to the residual plot. This is considered to be due to
the implementation of the regression equation by dividing the Panamax
and Post-Panamax groups by the breadth of 32.2 m. The largest ship
that can pass through the Panama Canal is called a Panamax, and
is usually designed with 32.2 meters in breadth and 12 meters in
loaded draught. However, the maximum width of the old Panama Canal
was 32.31 m, and there were some ships having breadth between
32.2 meters and 32.31 meters wide, and 445 vessels were in that
range in the current study. Therefore, the ships in the corresponding

range were recognized as a Post-Panamax, causing larger residuals. The
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 value of B was 0.9613, with good predictability for the
most, while there were relatively large errors at around 32 meters in
breadth. This is because the size of the ship was not classified in the
previous study and the characteristics of the dimensional constraints
were not sufficiently addressed. Moreover, in the range between 10 and
15 knots of service speed, large residuals were observed. This is mainly
judged to be a lack of data fitting on feeders of less than 1,000 TEU.

Comparing the random forest model with the developed model from
this study, the random forest model shows slightly higher prediction
accuracy for most parameters than the current model, as can be seen
from Table 5. The random forest model creates as many trees on the
subset of the data and combines the output of all the trees, which
makes it possible to handle high dimensional data. From these results,
a random forest model is also a good method to handle missing data.
However, according to the residual distribution of AEP, LDT, LBP,
MER, V, and TEU (Figs. 11(a), 11(f), 11(h), 11(k), 11(m), 11(n)), there
are some values that have been deviated from the constant residual
trends, while the variance of residual distribution is small overall.
In this regard, tuning of hyperparameters plays an important role in
the performance of random forest models, and sometimes there is a
possibility that such problems might occur. Furthermore, the model
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Fig. 12. The relation between ship length and breadth regarding dimensional
constraints (A: Panama Canal, B: New Panama Canal, C: Suez Canal).

Fig. 13. Box plots for descriptive statistics of original data (white boxes) and final
data (gray boxes): (a) Auxiliary engine power, (b) Light displacement tonnage, (c)
Main engine RPM, (d) Service speed.

training process can be complex and require significant memory stor-
age, as many independent trees are created and different settings of
hyperparameters are tuned depending on the characteristics of the
data. On the other hand, the model from this study showed consistent
residuals across the entire range of data while showing more improved
predictive performance over the regression models of previous studies.
In addition, the resulting model is intuitive, interpretable, and can
be applied easily in other studies. In particular, we believe that this
method has sufficient advantages, such as fleet-wide research covered
in this paper, that require not only high accuracy of the model but also
an overall performance across data ranges.

4.2. Validation against dimensional constraints due to operation

Apart from the physical characteristics between ship variables, there
are some dimensional restrictions that should be satisfied by the ship
not only for navigating certain water areas safely, but entering the
terminal and using port facilities (Park and Suh, 2019; Garrido et al.,
2020). Table 6 represents the representative dimensions of a container
ship for navigating Panama Canal and Suez Canal, which also act as

constraints for determining the main dimensions of a ship. If one has
domain knowledge for the data set and it is possible to subdivide the
samples by clear criteria (e.g., Panamax, Post Panamax vessel) from the
initial stage, the implemented model using such a data set may predict
the characteristics of corresponding ships more accurately. However,
it should be noted that the subdivision of the data set reduces the
training sample, which may lead to implementing a model vulnerable
to overfitting and outliers.

To confirm the performance of the model against the dimensional
constraints for the ship, the breadth and length of container ships are
displayed in Fig. 12. According to the ’zoomed in’ clusters in boxes
A, B, and C in Fig. 12, some clusters are formed around B=32 m,
L=366 m, and L=400 m respectively. These clusters seem to rep-
resent previous Panamax ships, new Panamax ships, and Suezmax
ships. The enlarged plots show that the predicted values of the model
satisfy not only the general physical characteristics well, but also
the dimensional limitations of canals. Some studies (Takahashi et al.,
2006; Kristensen, 2016; Cepowski, 2019) presented in the previous
section considered the dimensional constraints by dividing the groups
according to the ship size when implementing their models, and it
showed higher accuracy than other studies. While this grouping of
ships based on domain-knowledge helps improve model accuracy, the
detailed grouping reduces the number of data available to implement
the model and increases the possibility of overfitting, which may again
partly lead to poor performance and low efficiency. In particular, from a
missing data processing perspective, the sample size plays an important
role in the performance of the resulting model (Heckmann et al., 2014;
Hair et al., 2018). Therefore, the estimation method for ship principal
data suggested in this study seems to have a novelty in that it shows
considerable accuracy without performing grouping and has the benefit
of being based on a larger data set than previous studies.

4.3. Validation of statistics for the final data

The performance of the missing data imputation was diagnosed by
the statistical characteristics of the values superseded. The most missing
variables in the database, such as AEP, LDT, MER, and V are shown in
Fig. 13 as a box plot. It outlines descriptive statistics of original data
and final data to show the statistical characteristics of values filled by
this method. In the case of AEP and LDT, the lower quantile (25%) and
upper quantile (75%) values vary slightly, but the variation is not large
and the mean value is almost maintained. It can be seen that overall
statistical values have not changed significantly, even though 38.0%
and 27.4% of the data has been replaced. For MER and V, which had
relatively fewer missing values than AEP and LDT, the min, max, mean,
lower quantile, and upper quantile values are almost maintained.

Fig. 14 compares their imputed values with original values and
shows a relationship with the variable having had the highest 𝑅2 in
the curve fitting to ease the identification of initially missing data.
The predicted data are aligned with the trend of the original data
in general but it does not exactly lie on the curve fitting line of the
initial computation step (Figs. 8(g), 8(k), 8(m), 8(n)). Such variance
of replaced values can be interpreted as the effect of the several
independent variables affecting the dependent variable is reflected in
the model. From these results, it can be seen that the imputed values
represent the physical relationship without significantly deviating from
the statistical characteristics of the original data.

5. Conclusions

This study presented a method of estimating missing values in ship
principal data. Data sets of 6,278 container ships from the Sea-Web
database were used in a case study, and models for estimating missing
values of 14 variables were implemented, including main dimensions
such as vessel length, breadth, and draught. In this process, the models
were created through curve fitting and variable selection. The selected
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Table 5
Comparison of prediction performance for the container ship’s principal data between previous studies and this study.

Ship principal
parameters

This study Best result from previous studies Random forest model

𝑀𝐴𝐸 𝑅𝑀𝑆𝐸 𝑀𝑆𝐸 𝐴𝑑𝑗 − 𝑅2 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸 𝑀𝑆𝐸 𝐴𝑑𝑗 − 𝑅2 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸 𝑀𝑆𝐸 𝐴𝑑𝑗 − 𝑅2

AEP 341 453 2.05E+5 0.8508 – – – – 181 352 1.24E+5 0.9093
B 0.83 1.07 1.16 0.9875 1.49 1.90 3.61 0.9613 0.11 0.35 0.12 0.9987
T 0.32 0.43 0.19 0.9788 0.40 0.54 0.29 0.9672 0.07 0.18 0.03 0.9963
DWT 1,877 3,141 9.87E+6 0.9946 2,906 4,447 1.98E+7 0.9892 355 858 7.36E+5 0.9995
GT 1,616 2,998 8.99E+6 0.9950 2,347 3,762 1.42E+7 0.9921 208 852 3.38E+5 0.9995
LDT 750 2,072 4.29E+6 0.9701 1,259 2,436 5.93E+6 0.9591 1,051 2,855 8.15E+6 0.9430
LOA 1.55 2.08 4.36 0.9993 1.63 2.24 5.00 0.9992 0.47 1.66 2.76 0.9995
LBP 1.49 1.98 3.92 0.9993 8.91 12.21 149 0.9742 0.74 2.96 8.76 0.9984
MEC 0.74 1.04 1.10 0.7062 – – – – 0.12 0.39 0.15 0.9594
MEP 2,760 4,009 1.61E+7 0.9620 4,760 7,056 4.98E+7 0.8824 378 872 7.61E+5 0.9981
MER 17.8 44.7 1,995 0.9227 – – – – 6.53 30.1 903 0.9649
MES 0.01 0.14 0.02 0.9609 – – – – 0.01 0.10 0.01 0.9823
V 0.72 1.09 1.20 0.8989 1.16 1.70 2.87 0.7578 0.30 0.73 0.53 0.9551
TEU 2,211 332 1.10E+5 0.9931 265 456 2.08E+5 0.9872 41.0 152 2.31E+4 0.9985

Fig. 14. Scatter plots of original data and predicted data: (a)Deadweight tonnage and Auxiliary engine power, (b)Gross tonnage and Light displacement tonnage, (c)Main engine
stroke and Main engine RPM, (d)Main engine power and Service speed.

Table 6
Dimensional constraints of Panama Canal and Suez Canal for the container ship.

Region B [m] L [m] T [m] DWT [t] TEU

A Panama Canal 32.31 294.13 12.04 52,500 5,000
B Panama Canal (New) 51.25 366.00 15.2 120,000 13,000
C Suez Canal 50.00 400.00 20.1

77.50 400.00 12.2

variables and the final model were proved to be statistically significant
at level 0.05 through 𝑓 -test and 𝑡-test, respectively. The prediction
performance of each model was compared with several regression
equations proposed in prior research, and the applicability to the canal

passage criteria is verified. Finally, the statistics of complete data were
investigated to show consistency with the original data. The main
findings of the research are as follows:

• Through correlation analysis and curve fitting, it was found that
there are close correlations between many ship principal dimen-
sions and related particulars. Among the fitted results of the vari-
ables, pairwise relationships of deadweight tonnage-auxiliary en-
gine power, gross tonnage-breadth, deadweight tonnage-draught,
gross tonnage-deadweight tonnage, and cargo quantity-gross ton-
nage, showed the highest correlations and predictive power with
each other.
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• As a result of verifying the performance of the model with the
test data set, 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 values of the regression equations from
earlier works are in the range of 0.7578–0.9992, whilst the ones
of this study are 0.8989–0.9993, which shows that there is a
significant improvement in the goodness of fit by up to 15.6%.
Compared to an ordinary regression model, the presented model
illustrates smaller residuals with a constant trend, proving better
generality and practicality for estimating ship principal data.

• Comparison of this model with a random forest model, one of
the machine learning techniques that is commonly applied for
missing data imputation, has been performed. Comparison of this
model with a random forest model, one of the machine learning
techniques that is commonly applied for missing data imputation,
has been performed. The models developed in this study showed
slightly lower accuracy than the random forest model but had the
advantage of being interpretable, intuitive, and easily applied in
other studies.

• Some clusters of ship data were formed around 32 meters in
breadth, 366 meters in length, and 400 meters in length, which
are the maximum allowable standards of passage through the
Suez Canal and Panama Canal. The prediction shows good per-
formance for such dimensional constraints of the ship, even if a
detailed classification of data sets is not performed through the
model implementation process.

• The statistics for the final values of the auxiliary engine power,
light displacement tonnage, main engine RPM, and service speed,
which had the most missing values, were identified. The descrip-
tive statistics of completed data sets in this process are almost
identical to those of the original data sets and predicted values
are aligned with the trend of original values.

Although it is assumed that the proposed algorithm works in differ-
ent data configurations, in order for this algorithm to function properly,
it should be noted that the minimum number of samples is required for
statistical analysis methods used in this paper. If there are not enough
samples, using the regression equations of previous studies listed in
Table 4 or the results of the curve fitting presented in Fig. 8 will
probably provide better predictions.

Using the proposed procedure, we were able to properly replace
missing values within the ship data sets. The derived regression for-

mulas not only had good predictive power, but reflected physical
characteristics and dimensional limitations of ship variables. Therefore,
we believe that the methodology suggested in this paper would be
applicable from the estimation for the key variables of the ship to the
imputation of missing values for data with similar characteristics. In
addition, the same principle can be used to replace the erroneous values
in the data set with plausible values.

Future research will be to examine the effectiveness of applying
data sets of key variables of ships processed in such a manner to
the actual marine industry, and it is expected to be able to further
improve our current approach. In terms of the accuracy of the model,
it is judged that there is still a possibility of improvement as seen
through comparison with the random forest model. It will be neces-
sary to further consider advanced machine learning models includ-
ing the explainable artificial intelligence method from this point of
view.
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Appendix A. Comparison results of the proposed algorithm and previous studies.

See Fig. A.1.

Fig. A.1. Comparison plots of the predicted values from the proposed algorithm and previous studies: (a) Breadth, (b) Draught, (c) Deadweight tonnage, (d) Gross tonnage, (e)
Light displacement tonnage, (f) Length between perpendicular, (g) Service speed, (h) TEU capacity.
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Appendix B. Prediction of principal data for ship types other than container ships

See Tables B.1–B.3.

Table B.1
Sea-Web database used in this study to estimate the principal parameters according to ship type.

Study Range Build year No. of ships

Bulk carrier 500–403,880 (DWT) 1952–2019 12,649
Oil tanker 80–441,585 (DWT) 1952–2019 9,069
Liquefied gas carrier 140–155,159 (DWT) 1961–2019 2,279
General cargo ship 20–73,296 (DWT) 1881–2019 16,551

Table B.2
Comparison of prediction performance for ship principal data of bulk carrier and oil tanker.

Independent variables Bulk carrier Oil tanker

𝑀𝐴𝐸 𝑅𝑀𝑆𝐸 𝑀𝑆𝐸 𝐴𝑑𝑗 − 𝑅2 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸 𝑀𝑆𝐸 𝐴𝑑𝑗 − 𝑅2

Auxiliary engine power, AEP [kW] 80.2 113 1.27E+4 0.6154 165 263 6.90E+4 0.6755
Breadth, B [m] 0.63 0.96 0.92 0.9844 0.83 1.15 1.31 0.9954
Draught, T [m] 0.17 0.29 0.08 0.9909 0.32 0.44 0.19 0.9948
Deadweight tonnage, DWT [t] 1266 2057 4.2E+6 0.9986 1301 2266 5.13E+6 0.9994
Gross tonnage, GT [t] 604 1002 1.0E+6 0.9987 814 1407 1.98E+6 0.9991
Light displacement tonnage, LDT [t] 704 1047 1.1E+6 0.9764 750 1143 1.31E+6 0.9929
Length over all, LOA [m] 1.59 2.07 4.28 0.9980 1.31 1.87 3.49 0.9996
Length between perpendiculars, LBP [m] 1.24 1.71 2.91 0.9986 1.25 1.80 3.26 0.9996
Main engine cylinder, MEC [-] 0.25 0.54 0.29 0.2375 0.64 1.15 1.33 0.1633
Main engine power, MEP [kW] 672 994 9.89E+5 0.9436 686 1075 1.15E+6 0.9832
Main engine RPM, MER [-] 10.9 18.4 339 0.9111 162 271 7.32E+4 0.6997
Main engine stroke, MES [-] 0 0.06 0 0.9766 0.07 0.36 0.13 0.8684
Service speed, V [knot] 0.31 0.46 0.22 0.3896 0.62 0.87 0.76 0.8388

Table B.3
Comparison of prediction performance for ship principal data liquefied gas carrier and general cargo ship.

Independent variables Liquefied gas carrier General cargo ship

𝑀𝐴𝐸 𝑅𝑀𝑆𝐸 𝑀𝑆𝐸 𝐴𝑑𝑗 − 𝑅2 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸 𝑀𝑆𝐸 𝐴𝑑𝑗 − 𝑅2

Auxiliary engine power, AEP [kW] 361 496 2.46E+5 0.8207 94.6 156 2.43E+4 0.7335
Breadth, B [m] 0.67 0.88 0.78 0.9954 0.89 1.24 1.54 0.9426
Draught, T [m] 0.31 0.42 0.17 0.9840 0.33 0.47 0.22 0.9560
Deadweight tonnage, DWT [t] 1640 2485 6.17E+6 0.9949 462 738 5.44E+5 0.9892
Gross tonnage, GT [t] 1683 2950 8.70E+6 0.9955 261 451 2.03E+5 0.9917
Light displacement tonnage, LDT [t] 647 1171 1.37E+6 0.9920 314 555 3.08E+5 0.9641
Length over all, LOA [m] 1.50 2.05 4.18 0.9994 1.25 1.78 3.18 0.9976
Length between perpendiculars, LBP [m] 1.46 1.99 3.97 0.9994 1.24 1.77 3.14 0.9973
Main engine cylinder, MEC [-] 0.64 1.03 1.06 0.6026 0.79 1.26 1.60 0.1723
Main engine power, MEP [kW] 1902 2814 7.92E+6 0.9466 341 532 2.83E+5 0.9387
Main engine RPM, MER [-] 83.3 150 2.25E+4 0.6694 202 292 8.51E+4 0.4715
Main engine stroke, MES [-] 0.07 0.37 0.14 0.8550 0.11 0.47 0.22 0.6054
Service speed, V [knot] 0.76 1.09 1.19 0.8337 0.81 1.09 1.18 0.7356

Appendix C. Estimated regression formulas for ship principal parameters

See Tables C.1–C.5

Table C.1
Regression coefficients and function forms for ship principal parameters of container ship.

Type Input Intercept

AEP B T DWT GT LDT LOA LBP MEC MEP MER MES V TEU

AEP Form P P P P P P P P P 7.89E+1
a 8.32E−1 1.76E+0 −1.57E+0 9.59E−1 −7.00E−2 −5.69E+0 5.11E−1 2.38E+6 −6.84E+2
b 1.77E+0 6.30E−1 5.65E−1 6.98E−1 1.62E+0 1.52E+0 6.81E−1 −2.02E+0 −1.69E+0

B Form P P P P P P P P P P P 2.73E+0
a −4.79E−1 4.43E−1 1.48E+0 1.15E−1 −4.11E−1 2.56E−1 1.31E−1 6.86E+1 −9.88E+0 −1.34E−2 1.04E+0
b 1.16E+0 3.24E−1 3.01E−1 3.58E−1 7.99E−1 8.03E−1 3.19E−1 −5.23E−1 −7.43E−1 1.30E+0 2.98E−1

T Form P P P P P P P P P P P −7.34E−2
a −4.10E−1 9.81E−1 3.76E−1 8.49E−2 2.18E−1 −4.68E−1 1.38E−1 2.04E+1 −3.39E+0 2.95E−2 −2.05E−1
b 7.80E−1 2.66E−1 2.44E−1 2.83E−1 6.89E−1 6.71E−1 2.83E−1 −4.38E−1 −7.63E−1 1.33E+0 2.41E−1

DWT Form P P P P P P P P P P P P 6.89E+2
a 6.20E−2 8.78E−1 7.98E−2 1.43E+0 −2.33E−1 −4.36E−3 1.24E−2 −1.65E+1 −7.48E+8 7.13E+3 −3.23E−2 1.10E+1
b 1.30E+0 2.62E+0 4.61E+0 8.83E−1 1.09E+0 2.73E+0 2.68E+0 2.16E+0 −2.91E+0 −2.63E+0 3.66E+0 8.53E−1

(continued on next page)
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Table C.1 (continued).
Type Input Intercept

AEP B T DWT GT LDT LOA LBP MEC MEP MER MES V TEU

GT Form P P P P P P P P P P −1.01E+3
a −6.03E−3 2.81E−1 5.20E−2 7.53E−2 1.53E−4 6.59E+0 −7.06E−3 −1.17E+9 5.26E+3 2.60E+0
b 1.45E+0 2.91E+0 1.13E+0 1.23E+0 3.16E+0 2.36E+0 1.18E+0 −3.18E+0 −2.76E+0 9.58E−1

LDT Form P P P P P P P P P P −1.05E+2
a 3.18E−2 5.15E−1 2.46E−2 −2.78E−1 2.17E+0 9.11E−3 5.21E−2 4.21E+7 −1.54E−2 2.86E+0
b 1.16E+0 2.39E+0 4.04E+0 8.93E−1 8.03E−1 2.39E+0 9.72E−1 −2.69E+0 4.03E+0 7.87E−1

LOA Form P P P P P P P 1.53E−1
a −2.14E−2 1.33E−1 −2.49E−1 3.45E−1 1.16E+0 7.07E−2 −5.15E−3
b 4.73E−1 1.41E+0 3.75E−1 3.45E−1 9.78E−1 4.04E−1 1.84E+0

LBP Form P P P P P P P P 1.19E+0
a −2.81E−1 −2.40E−1 4.48E−1 1.32E−1 7.80E−1 4.06E+1 −5.26E+0 6.18E−3
b 1.09E+0 1.45E+0 3.83E−1 4.29E−1 1.02E+0 −6.62E−1 −9.32E−1 1.89E+0

MEC Form P P P P P P P P P P −4.80E+0
a −3.74E−1 1.53E+0 −1.06E+0 −1.84E+0 1.50E+0 7.00E−1 1.53E+0 −7.54E+1 5.83E+1 −2.00E+0
b 1.97E−1 5.00E−1 5.23E−1 1.61E−1 1.56E−1 4.53E−1 1.95E−1 −6.59E−2 −5.64E−2 1.53E−1

MEP Form P P P P P P P P P P P −9.27E+3
a 1.18E+0 1.42E+1 3.08E+0 −1.52E+1 5.40E+0 2.64E−1 3.99E+1 −1.88E+7 4.21E+4 4.53E−3 −2.81E+1
b 9.13E−1 1.85E+0 3.12E+0 6.25E−1 7.89E−1 1.94E+0 2.20E+0 −1.61E+0 −2.30E+0 4.78E+0 6.03E−1

MER Form P P P P P P P P P P P 8.80E+1
a 1.44E+4 5.18E+2 −5.12E+3 −7.24E+3 4.72E+3 1.21E+5 −6.62E+4 −2.48E+2 1.79E+1 1.65E+4 5.93E+2
b −1.89E+0 −1.26E+0 −5.58E−1 −4.79E−1 −7.95E−1 −1.69E+0 −1.65E+0 −2.53E−1 2.31E+0 −2.27E+0 −5.28E−1

MES Form P P P P P P P P P P P −2.15E+0
a −1.13E+1 −1.90E+0 1.02E+1 1.11E+1 −3.81E+0 −1.59E+1 3.12E+0 2.89E+0 3.67E−1 −3.44E+0 −3.44E+0
b −6.25E−1 −5.46E−1 −1.91E−1 −1.74E−1 −2.24E−1 −4.92E−1 −4.84E−2 −1.88E−1 4.02E−1 −8.10E−1 −1.70E−1

V Form P P P P P P P P P P G 4.21E+0
a −1.44E+0 3.03E+0 −5.45E+0 −1.54E+0 −1.88E+0 −2.94E+0 4.27E+0 5.59E+0 1.36E+1 −5.02E+0 2.71E+0
b 3.91E−1 5.15E−1 1.36E−1 1.26E−1 1.50E−1 3.74E−1 3.65E−1 1.69E−1 −1.96E−1 −3.80E−1

TEU Form P P P P P P P P P P P P P 2.40E+2
a −2.02E−4 1.92E−2 7.69E−5 2.89E−3 1.76E−2 1.50E−3 −6.55E−6 2.36E−5 −1.30E+0 −1.38E−3 −1.07E+8 −7.32E+2 1.01E−3
b 1.49E+0 3.02E+0 5.64E+0 1.17E+0 1.04E+0 1.27E+0 3.31E+0 3.25E+0 2.32E+0 1.18E+0 −3.31E+0 −2.69E+0 3.73E+0

* Form: Functional form of each independent variable (L: Linear, Q: Quadratic, C: Cubic, P: Power, G: Logarithmic).
a: Regression coefficient of each independent variable.
b: Exponent number of each independent variable.
Intercept: Intercept term of multiple regression model.

Table C.2
Regression coefficients and function forms for ship principal parameters of bulk carrier.

Type Input Intercept

AEP B T DWT GT LDT LOA LBP MEC MEP MER MES V

AEP Form P P P P P P P P P P P −9.96E+1
a 2.69E+1 5.93E+1 −1.29E+2 3.83E+1 2.03E+1 −1.51E+1 2.19E+1 2.54E+2 3.13E+0 1.18E+3 −2.31E+2
b 8.18E−1 7.77E−1 2.59E−1 2.90E−1 3.65E−1 8.45E−1 8.28E−1 −1.39E−1 4.36E−1 −5.86E−1 −7.50E−1

B Form P P P P P P P P P P P P −1.61E+3
a 5.41E−3 −3.06E+0 1.40E+0 1.01E+0 3.55E−2 1.46E−1 −3.17E−1 1.61E+3 1.09E−2 4.06E+1 −2.19E+0 −2.01E−3
b 8.52E−1 9.44E−1 3.17E−1 3.51E−1 4.22E−1 1.02E+0 9.90E−1 9.91E−4 5.18E−1 −7.20E−1 −8.52E−1 2.22E+0

T Form P P P P P P P P P P P P 1.09E+1
a 1.48E−3 −3.23E−1 7.33E−1 3.60E−2 2.87E−2 −7.13E−2 −1.04E+1 7.52E−3 1.43E+1 −6.25E−1 −4.04E−4
b 8.05E−1 9.15E−1 3.18E−1 3.46E−1 4.13E−1 1.02E+0 9.97E−1 −3.46E−2 5.16E−1 −7.46E−1 −8.77E−1 2.38E+0

DWT Form P P P P P P P G P P P 1.96E+3
a −8.92E−4 4.07E−1 4.34E+0 5.39E−1 −4.29E−2 −2.51E−4 9.49E−4 −2.98E+3 −1.36E+8 −3.64E+3 2.27E−4
b 2.23E+0 2.66E+0 3.14E+0 1.07E+0 1.27E+0 3.23E+0 3.19E+0 −2.71E+0 −2.38E+0 5.65E+0

GT Form P P P P P P P P −3.31E+2
a 7.54E−1 8.54E−1 1.02E−1 3.33E−4 −4.70E−4 2.93E−4 4.92E+7 −2.21E−4
b 2.51E+0 9.29E−1 1.19E+0 2.99E+0 2.95E+0 1.47E+0 −2.54E+0 5.28E+0

LDT Form P P P P P P P P P P P 4.71E+3
a 4.73E−3 −6.23E−1 1.96E+0 −3.43E+0 4.12E+0 −8.42E−3 1.66E−2 −3.15E+3 8.94E−3 −4.69E+6 −1.43E+3
b 1.85E+0 2.11E+0 2.37E+0 7.61E−1 8.26E−1 2.45E+0 2.41E+0 1.94E−1 1.23E+0 −2.08E+0 −1.94E+0

LOA Form P P P P P P P P P P P 1.90E−2
a −2.54E−2 1.31E+0 2.44E+0 −2.18E+0 −3.83E−1 −2.47E−1 1.36E+0 8.15E−2 −9.85E+1 3.87E+0 −7.81E−3
b 7.83E−1 8.87E−1 9.17E−1 3.02E−1 3.30E−1 3.97E−1 9.74E−1 4.91E−1 −7.02E−1 −8.06E−1 2.18E+0

LBP Form P P P P P P P P P P P 2.74E+0
a 1.76E−2 −1.44E+0 −3.15E+0 2.69E+0 4.20E−1 2.53E−1 6.69E−1 −3.12E−2 1.25E+2 −6.25E+0 2.56E−3
b 8.07E−1 9.08E−1 9.44E−1 3.10E−1 3.39E−1 4.08E−1 1.02E+0 5.03E−1 −7.38E−1 −8.44E−1 2.26E+0

MEC Form P P P P P P P P P 4.08E+1
a 3.54E+0 −4.83E+1 −5.37E+1 4.73E+1 3.98E+1 1.87E+1 −5.85E+1 5.83E+0 −6.89E+0
b −8.01E−2 −5.55E−2 −4.88E−2 −1.84E−2 −2.20E−2 −2.99E−2 −5.58E−2 1.34E−1 −5.44E−1

MEP Form P P P P P P P P P P P −2.72E+2
a 5.01E−2 4.18E+0 2.97E+1 2.32E+0 1.70E+0 3.47E−1 −2.73E−1 −1.56E+3 −1.84E+6 8.43E+3 2.34E−2
b 1.45E+0 1.64E+0 1.79E+0 6.27E−1 7.51E−1 1.86E+0 1.82E+0 1.99E−1 −1.33E+0 −1.73E+0 4.19E+0

MER Form P P P P P P P P P P −3.32E+1
a 1.49E+4 9.21E+3 1.07E+3 −8.08E+3 −2.72E+5 3.35E+5 2.46E−2 −1.76E+4 1.88E+1 9.92E+7
b −1.25E+0 −1.65E+0 −1.28E+0 −5.09E−1 −1.56E+0 −1.52E+0 3.58E+0 −6.63E−1 2.22E+0 −6.33E+0

MES Form P P P P P P P P P P 1.06E+0
a −1.84E+0 −6.69E+0 −4.98E+0 1.30E+1 2.96E+1 −5.25E+1 −2.17E−2 1.65E+1 3.73E−1 7.41E+1
b −3.96E−1 −4.55E−1 −3.97E−1 −1.53E−1 −4.46E−1 −4.32E−1 8.42E−1 −2.40E−1 3.89E−1 −2.33E+0

V Form P P P P P P P P P P P 4.71E+0
a −1.02E+0 −7.76E+0 −9.98E+0 1.79E+1 −3.55E+0 −2.78E+1 1.90E+1 −4.35E+0 1.28E+1 1.10E+1 5.74E+0
b 8.33E−2 9.42E−2 9.29E−2 3.07E−2 4.07E−2 9.76E−2 9.56E−2 −7.77E−2 5.55E−2 −7.94E−2 −2.18E−1

* Form: Functional form of each independent variable (L: Linear, Q: Quadratic, C: Cubic, P: Power, G: Logarithmic).
a: Regression coefficient of each independent variable.
b: Exponent number of each independent variable.
Intercept: Intercept term of multiple regression model.
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Table C.3
Regression coefficients and function forms for ship principal parameters of oil tanker.

Type Input Intercept

AEP B T DWT GT LDT LOA LBP MEC MEP MER MES V

AEP Form P P P P P P P P 1.60E+1
a 1.47E+1 −3.83E+1 2.73E+1 −3.81E+0 4.35E+0 7.04E+0 4.15E+3 −4.74E−3
b 9.59E−1 3.04E−1 3.86E−1 1.03E+0 1.01E+0 5.01E−1 −7.44E−1 3.71E+0

B Form P P P P P P P P P P 2.63E+1
a −1.57E+0 1.54E+0 5.68E−1 7.50E−2 −8.47E−2 −2.66E+1 2.66E−2 9.93E+1 −8.19E+0 −3.38E−5
b 1.00E+0 3.21E−1 3.37E−1 4.01E−1 1.06E+0 −2.85E−2 5.14E−1 −7.90E−1 −1.70E+0 3.81E+0

T Form P P P P P P P P P 3.02E−1
a −2.51E−1 7.43E−1 1.06E−1 1.92E−2 −6.34E−2 1.48E−2 4.82E+1 −3.29E+0 3.37E−6
b 9.74E−1 3.16E−1 3.96E−1 1.07E+0 1.04E+0 5.10E−1 −7.69E−1 −1.71E+0 3.84E+0

DWT Form P P P P P P P G 7.56E+2
a −8.46E−2 4.37E−1 1.51E+1 2.57E−1 −7.81E−2 4.28E−5 1.40E−4 −1.55E+3
b 1.36E+0 2.99E+0 2.82E+0 1.06E+0 1.22E+0 3.49E+0 3.41E+0

GT Form P P P P P P G P P −1.32E+3
a 2.60E−1 2.99E+0 4.71E−1 1.07E−1 2.41E−4 −6.35E−5 1.27E+3 −6.40E+7 1.92E+4
b 2.80E+0 2.66E+0 9.37E−1 1.15E+0 3.27E+0 3.20E+0 −2.56E+0 −4.91E+0

LDT Form P P P P P P P P P P −1.97E+2
a 8.08E−2 6.87E−1 1.35E+1 −1.88E+0 1.40E+0 2.38E−3 2.52E−2 9.05E+6 −4.43E+3 −3.03E−7
b 1.29E+0 2.37E+0 2.32E+0 7.96E−1 8.52E−1 2.72E+0 1.19E+0 −2.25E+0 −4.13E+0 7.68E+0

LOA Form P P P P P P P P −2.80E−1
a −4.36E−3 6.46E−1 −6.01E−1 3.78E−1 1.15E+0 4.07E−2 −3.79E+1 1.03E−4
b 7.66E−1 9.28E−1 2.96E−1 3.09E−1 9.78E−1 4.76E−1 −7.14E−1 3.59E+0

LBP Form P P P P P P P P P P 5.31E−1
a 3.53E−3 −3.10E−1 −1.40E+0 1.26E+0 1.20E−1 7.90E−1 −2.04E−2 8.14E+1 −3.77E+0 −8.11E−5
b 7.78E−1 9.34E−1 9.47E−1 3.02E−1 3.77E−1 1.02E+0 4.86E−1 −7.35E−1 −1.66E+0 3.66E+0

MEC Form P P P P P P 7.57E+1
a −8.59E+1 −1.46E+2 1.56E+2 −2.25E+1 1.42E+1 5.92E+0
b −1.24E−2 −1.78E−2 −1.73E−2 −8.31E−3 4.43E−2 9.10E−2

MEP Form P P P P P P P P P P 2.96E+3
a 2.77E−1 2.94E+0 2.59E+1 −3.65E+0 4.09E+0 1.25E−1 −1.28E−1 −2.78E+3 −5.13E+6 1.06E−5
b 1.18E+0 1.82E+0 1.83E+0 6.08E−1 7.72E−1 2.12E+0 2.06E+0 9.64E−2 −1.61E+0 7.01E+0

MER Form P P P P P P P P P −3.23E+2
a 9.42E+3 −4.63E+3 2.88E+3 −8.56E+3 7.87E+4 6.76E+0 −4.34E+3 6.84E+0 1.91E+4
b −6.57E−1 −1.06E+0 −1.14E+0 −3.27E−1 −1.05E+0 1.85E+0 −4.80E−1 2.79E+0 −2.06E+0

MES Form P P P P P P P P P −1.21E+0
a 5.24E+0 −2.97E+0 7.29E+0 1.05E+1 −2.64E+0 −2.40E+1 4.46E−1 4.98E−1 3.78E+0
b −4.03E−1 −3.73E−1 −1.23E−1 −1.22E−1 −1.43E−1 −3.63E−1 3.89E−1 2.40E−1 −1.04E+0

V Form P P P P P G G P P −2.35E−1
a −3.35E−1 6.30E+0 −1.09E+1 3.88E+0 −3.56E+0 2.96E+0 4.16E+0 5.13E+0 3.41E+0
b 2.10E−1 2.30E−1 7.17E−2 7.33E−2 8.71E−2 −1.54E−1 −4.26E−1

* Form: Functional form of each independent variable (L: Linear, Q: Quadratic, C: Cubic, P: Power, G: Logarithmic).
a: Regression coefficient of each independent variable.
b: Exponent number of each independent variable.
Intercept: Intercept term of multiple regression model.
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Table C.4
Regression coefficients and function forms for ship principal parameters of liquefied gas carrier.

Type Input Intercept

AEP B T DWT GT LDT LOA LBP MEC MEP MER MES V

AEP Form P P P P P P P P P P P P 7.83E+1
a −7.44E−1 −4.68E−1 2.23E+0 9.73E−1 2.12E+5 −8.80E+2
b 1.99E+0 3.05E+0 7.72E−1 6.36E−1 8.38E−1 2.00E+0 1.98E+0 1.26E+0 7.02E−1 −1.17E+0 −7.80E−1 4.23E+0

B Form P P P P P P P P P P P P 1.14E+0
a −6.87E−2 −3.91E−1 4.93E−1 1.10E+0 1.01E−1 −6.15E−2 −1.72E−2 1.41E+1 −2.14E+0
b 4.50E−1 1.34E+0 3.43E−1 3.10E−1 4.10E−1 9.71E−1 9.49E−1 8.10E−1 4.08E−1 −4.27E−1 −5.55E−1 2.47E+0

T Form P P P P P P P P P P P P 3.59E−1
a −9.49E−1 1.93E+0 2.61E−1 3.71E−1 −3.89E−1 4.45E+0 −8.43E−1 3.99E−3
b 3.17E−1 6.79E−1 2.38E−1 2.11E−1 2.81E−1 6.64E−1 6.49E−1 5.27E−1 2.88E−1 −3.58E−1 −5.82E−1 1.76E+0

DWT Form P P P P P P P P P P P P −3.16E+2
a 3.36E+0 1.07E−1 −5.84E+0 1.16E−1 1.21E+0 6.23E+5 −4.61E+3 −2.06E−3
b 9.48E−1 2.34E+0 4.79E+0 7.49E−1 1.00E+0 2.41E+0 2.38E+0 1.55E+0 8.14E−1 −1.29E+0 −8.24E−1 4.88E+0

GT Form P P P P P P P P P P P P 1.76E+3
a 4.20E−1 4.76E−1 4.03E−3 −1.51E−2 2.69E−2 −3.90E−4 2.05E−3 1.41E−1 −6.39E+3 1.46E−4
b 1.11E+0 3.05E+0 5.29E+0 1.24E+0 1.27E+0 3.11E+0 3.07E+0 1.75E+0 9.27E−1 −1.39E+0 −6.37E−1 5.73E+0

LDT Form P P P P P P P P P P P P 7.33E+2
a 1.23E+0 4.57E−2 2.84E+0 1.39E−2 −4.39E+1 1.38E+0 −9.71E+2 −8.93E−4
b 9.16E−1 2.31E+0 4.17E+0 9.31E−1 7.37E−1 2.32E+0 2.29E+0 1.52E+0 8.00E−1 −1.03E+0 −7.15E−1 4.77E+0

LOA Form P P P P P P P P P P P P 4.73E−1
a −7.16E−2 3.27E−1 1.12E+0 6.00E−2 −1.86E+0 1.94E−3
b 4.61E−1 1.02E+0 1.39E+0 3.53E−1 3.17E−1 4.20E−1 9.76E−1 8.50E−1 4.19E−1 −4.34E−1 −5.56E−1 2.55E+0

LBP Form P P P P P P P P P P P P 3.80E−1
a −1.90E−1 −2.39E−1 5.37E−1 2.95E−1 8.26E−2 7.51E−1 −4.20E−2 7.99E+0 −1.18E−3
b 4.71E−1 1.04E+0 1.43E+0 3.63E−1 3.25E−1 4.30E−1 1.02E+0 8.57E−1 4.27E−1 −4.51E−1 −5.72E−1 2.59E+0

MEC Form P P P P P P P P P P P P −1.56E+1
a −4.80E+0 6.54E+0 5.61E+0 2.21E+0 5.36E−1
b 7.69E−2 1.67E−1 1.66E−1 5.00E−2 5.19E−2 6.68E−2 1.64E−1 1.58E−1 9.57E−2 1.13E−1 2.52E−1 5.87E−1

MEP Form P P P P P P P P P P P P −4.91E+3
a 2.26E+0 −9.89E−1 9.56E−2 2.94E−1 1.30E−2 −2.25E−2 5.84E+1 −8.51E+4 1.09E+4 6.18E−4
b 9.37E−1 2.42E+0 4.57E+0 1.04E+0 7.92E−1 1.09E+0 2.54E+0 2.49E+0 2.07E+0 −5.02E−1 −3.03E−1 5.23E+0

MER Form P P P P P P P P P P P P −1.13E+2
a 9.01E+3 1.97E+3 −3.78E+3 −8.50E+3 1.54E+4 1.65E+1 2.22E+3 2.22E+1
b −3.33E−1 −8.08E−1 −9.00E−1 −2.38E−1 −2.18E−1 −2.99E−1 −7.35E−1 −7.15E−1 1.18E+0 −3.57E−1 2.04E+0 −1.76E+0

MES Form P P P P P P P P P P P P −1.24E+0
a −1.16E+1 −2.69E+0 1.59E+1 2.61E+1 −8.53E+0 −2.93E+1 4.19E−1 −5.13E+0 3.48E−1
b −1.67E−1 −3.58E−1 −4.13E−1 −1.15E−1 −1.06E−1 −1.40E−1 −3.31E−1 −3.24E−1 5.27E−1 −1.44E−1 3.53E−1 −8.24E−1

V Form P P P P P P P P P P P P −5.25E+0
a 2.96E+0 −5.64E+0 5.72E+0 −2.85E+0 7.39E+0 −7.06E+0 1.59E+0 3.97E+0 6.33E+0
b 1.43E−1 3.02E−1 3.66E−1 9.79E−2 9.29E−2 1.22E−1 2.93E−1 2.85E−1 3.55E−1 1.38E−1 −1.12E−1 −1.89E−1

* Form: Functional form of each independent variable (L: Linear, Q: Quadratic, C: Cubic, P: Power, G: Logarithmic).
a: Regression coefficient of each independent variable.
b: Exponent number of each independent variable.
Intercept: Intercept term of multiple regression model.
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Table C.5
Regression coefficients and function forms for ship principal parameters of general cargo ship.

Type Input Intercept

AEP B T DWT GT LDT LOA LBP MEC MEP MER MES V

AEP Form P P P P P P P P −1.02E+1
a 2.27E−1 1.18E+0 −6.09E−1 3.96E−1 −6.10E−3 1.91E−2 2.46E−1 2.11E+3
b 1.94E+0 1.82E+0 6.05E−1 7.05E−1 1.96E+0 1.89E+0 8.28E−1 −9.32E−1

B Form P P P P P P P P −3.79E−1
a 1.78E−1 −2.08E+0 1.54E+0 5.32E−1 −1.31E−1 2.61E−1 1.79E+1 −1.19E−2
b 4.02E−1 7.81E−1 2.88E−1 3.07E−1 8.33E−1 3.47E−1 −3.49E−1 1.43E+0

T Form P P P P P P P P P P −6.37E−2
a 1.34E−2 −1.38E−1 5.18E−1 −4.81E−2 1.33E−1 3.83E−2 −1.13E−1 4.71E−2 9.20E+0 8.35E−3
b 4.57E−1 1.04E+0 3.31E−1 3.15E−1 3.51E−1 9.40E−1 9.08E−1 4.05E−1 −4.26E−1 1.76E+0

DWT Form P P P P P P P P P P P 7.17E+2
a −3.48E−1 2.11E−1 6.61E+0 6.62E−1 −2.57E−1 −1.29E−4 7.50E−4 −1.62E+3 −3.75E−2 −6.95E+2 −1.69E−2
b 1.22E+0 3.09E+0 3.04E+0 1.04E+0 1.12E+0 3.27E+0 3.16E+0 −7.31E−1 1.17E+0 −2.31E+0 3.72E+0

GT Form P P P P P P P P P −2.01E+2
a 9.92E−2 2.94E−2 −1.17E+0 6.15E−1 3.86E−1 4.45E−4 −7.04E−4 1.38E+3 −1.97E−3
b 1.23E+0 2.95E+0 2.89E+0 9.45E−1 1.10E+0 3.14E+0 3.02E+0 −2.32E+0 3.91E+0

LDT Form P P P P P P P P −4.25E+1
a 1.34E−1 1.30E−1 2.97E+0 −6.96E−1 1.42E+0 1.02E−3 3.54E−2 −2.60E+2
b 1.16E+0 2.65E+0 2.58E+0 8.41E−1 8.84E−1 2.69E+0 1.11E+0 −2.09E+0

LOA Form P P P P P P P P P P 2.99E+1
a −5.44E−2 7.05E−1 −2.83E−1 1.72E−1 1.36E−1 1.15E+0 −3.32E+1 8.90E−2 1.10E+1 3.04E−2
b 4.35E−1 8.31E−1 3.11E−1 3.01E−1 3.34E−1 9.75E−1 −1.28E−2 3.74E−1 −3.63E−1 1.58E+0

LBP Form P P P P P P P P P −2.00E+1
a 1.03E−1 −9.74E−2 −1.57E+0 6.94E−1 8.24E−1 2.28E+1 −5.71E−2 −1.93E+0 −2.05E−2
b 4.42E−1 1.03E+0 8.44E−1 3.17E−1 1.02E+0 −1.56E−2 3.80E−1 −7.16E−1 1.59E+0

MEC Form P P P P P P P −1.26E+2
a 1.07E+2 −6.24E+1 1.87E+1 3.51E+1 4.80E+0 1.27E+0 1.97E+1
b 3.93E−3 4.35E−3 8.10E−3 1.05E−2 1.13E−1 1.52E−1 2.57E−2

MEP Form P P P P P P P P P P P 1.28E+3
a 2.70E+0 1.16E+0 1.56E+1 −1.98E+0 −9.56E−1 1.99E+0 7.76E−2 −1.14E−1 −1.87E+3 −3.26E+4 4.03E−2
b 1.01E+0 2.15E+0 2.07E+0 6.75E−1 7.06E−1 7.99E−1 2.22E+0 2.13E+0 −6.44E−2 −1.08E+0 3.86E+0

MER Form P P P P P P P P P P P −3.45E+2
a 1.06E+3 1.70E+3 −3.86E+3 −4.34E+3 2.15E+3 1.82E+4 −5.04E+3 5.51E+1 −1.24E+3 3.97E+1 1.49E+4
b −2.96E−1 −6.40E−1 −1.74E−1 −1.46E−1 −1.75E−1 −5.77E−1 −5.52E−1 1.12E+0 −2.55E−1 1.60E+0 −1.65E+0

MES Form P P P P G −2.09E+0
a 2.73E+0 8.46E+0 −1.23E+1 3.98E−1 1.46E+0
b −2.82E−1 −7.29E−2 −2.04E−1 2.28E−1

V Form P P P P P P P P P P −8.94E+0
a −6.29E−1 3.86E+0 −5.14E+0 −1.38E+0 1.34E+0 3.44E+0 −2.44E+0 8.64E+0 3.88E+0 3.24E+0
b 3.64E−1 3.27E−1 1.06E−1 1.00E−1 1.16E−1 3.17E−1 3.05E−1 2.84E−2 1.58E−1 −1.46E−1

* Form: Functional form of each independent variable (L: Linear, Q: Quadratic, C: Cubic, P: Power, G: Logarithmic).
a: Regression coefficient of each independent variable.
b: Exponent number of each independent variable.
Intercept: Intercept term of multiple regression model.
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A B S T R A C T

In this paper, we perform a comprehensive study of various semi-empirical methods using publicly accessible
experimental data on added resistance in waves with different ship types and conditions. Based on the analysis
results, a new method (So-called ‘‘Combined method’’) is proposed, combining two existing methods, which
are available in arbitrary wave headings. The results from the two methods are combined smoothly using a
tangent hyperbolic function according to wavelengths and wave headings. The coefficients constituting the
function are tuned to minimize mean squared error between predictions and model experiments. Finally,
the new Combined method is verified by full-scale measurements of a general cargo ship and a container
ship, and it seems to give good agreement with measurements in all analysis areas, compared to existing
semi-empirical methods. Especially, it showed better performance in estimating added wave resistance at high
waves, resonance frequencies, arbitrary waves, and low speeds.

1. Introduction

An operating ship experiences additional resistance due to the sur-
rounding weather conditions, resulting in speed reduction and in-
creased fuel consumption, which can be directly related to greenhouse
gas emissions. Traditionally, this fact has been of great interest to
ship designers and operators from the perspective of speed/power
performance. Moreover, with the increasing interest in atmospheric
environmental issues recently, IMO has set the EEDI to limit greenhouse
gas emissions. In this regard, it is even more necessary to estimate the
added resistance of a ship in an accurate and efficient way for the initial
design and the management of operations of a ship.

Many theoretical methods have been developed for calculating the
added resistance of ships. Havelock (1942) proposed a method of
calculating added resistance by integrating longitudinal pressure on
the wetted surface of a ship, and Boese (1970) developed a near-field
direct pressure integration method using strip theory. Maruo (1957)
first introduced the far-field method based on momentum conservation,
and it was expanded in later studies (Joosen, 1966; Maruo, 1960,
1963). Radiated energy approach based on Maruo’s far-field method
was introduced by Gerritsma and Beukelman (1972), and Salvesen
(1978) achieved satisfactory results by applying it to the motion of
the ship obtained from the strip theory. Faltinsen (1980) presented an
asymptotic formula, assuming the added resistance of wall-sided hull
forms in short waves.

Panel methods based on potential theory for computing added wave
resistance has been extensively studied by many authors (Joncquez,

∗ Corresponding author.
E-mail address: youngrong.kim@ntnu.no (Y. Kim).

2009; Kim and Kim, 2011; Seo et al., 2013; Söding et al., 2014;
Lee et al., 2021). However, since most approaches were limited to
linear theory, it was generally difficult to accurately calculate the non-
linear effect. There were also non-linear panel methods, but they had
problems with stability and robustness, and long computational time.
Meanwhile, along with the improvement of computational power, Com-
putational Fluid Dynamics (CFD) method based on Reynolds-Averaged
Navier–Stokes (RANS) has been widely applied (Orihara and Miyata,
2003; Guo et al., 2012; Sadat-Hosseini et al., 2013; Simonsen et al.,
2014; Sigmund and El Moctar, 2018; Lee et al., 2021; T. Kim et al.,
2021). It had the advantage of being able to consider nonlinear effects
and showed good results overall. However, the output results from the
3D panel method and the RANS equations solver vary depending on
the calculation grid and large computational time is required, which
leads to a struggle in terms of practicability (Shigunov et al., 2018).
Another problem is that they require detailed hull shapes to predict
added resistance, which in some cases could serve as an important
constraint.

Alternatively, simplified methods based on theory and experimen-
tal results have been developed, which could easily estimate added
resistance with only a few ship parameters compared to the methods
covered earlier. The semi-empirical formula for the added resistance
due to wave reflection was first proposed by Fujii (1975), and later
further tuned based on more experimental data by Takahashi (1988)
and Tsujimoto et al. (2008). In parallel with these studies, for the
ship motion-induced added resistance, Jinkine and Ferdinande (1974)

https://doi.org/10.1016/j.oceaneng.2022.112749
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Nomenclature

Abbreviations

CFD Computational Fluid Dynamics
COG Course Over Ground
ECMWF European Centre for Medium-Range

Weather Forecasts
EEDI Energy Efficiency Design Index
GPS Global Positioning System
IMO International Maritime Organization
ITTC International Towing Tank Conference
M/E Main engine
MAE Mean Absolute Error
MSE Mean Squared Error
RANS Reynolds-Averaged Navier–Stokes
RMSE Root Mean Squared Error
STA-JIP Sea Trial Analysis Joint Industry Project

Nomenclature

𝛼 Wave heading. The wave angle relative
to the ship’s heading (180 degrees: head
waves)

𝛥𝐶𝐹 Roughness allowance
𝜂𝑇 Overall efficiency
𝛤 Gamma function
�̂�𝑎𝑤 Estimated non-dimensional added wave re-

sistance coefficient
𝜆 Wave length
𝜔 Circular wave frequency
𝜌 Water density
𝜃 Primary wave direction
𝜁𝑎 Wave amplitude
𝑎 Slope adjustment Coefficient of a tangent

hyperbolic function (Wave frequency)
𝑎2 Speed correction factor used in wave

motion-induced added resistance
𝐵 Breadth
𝑏 Center position adjustment Coefficient of

a tangent hyperbolic function (Wave fre-
quency)

𝑐 Slope adjustment Coefficient of a tangent
hyperbolic function (Wave heading)

𝐶𝐵 Block coefficient
𝐶𝑎𝑤 Non-dimensional added wave resistance

coefficient
𝐶𝐻𝑠

Wave height correction factor
𝐶𝑇 ,𝐷𝑎𝑡𝑎 Total resistance coefficient in calm condi-

tion obtained from in-service data
𝐶𝑇 ,𝐸𝑚𝑝 Total resistance coefficient in calm condi-

tion estimated from empirical methods
𝐶𝑇 Total resistance coefficient
𝑑 Center position adjustment Coefficient of

a tangent hyperbolic function (Wave head-
ing)

𝐸 Directional wave spectrum

developed a formula that simplifies the resistance in long waves based
on the experimental data of fast cargo ships. Two simple methods
have been developed by STA-JIP to correct the added resistance in

𝐹𝑛 Froude’s number
𝐺 Angular distribution function
𝑔 Gravity acceleration
𝐻𝑠 Significant wave height
𝑘𝑦𝑦 Pitch gyration
𝐿 Length between perpendiculars
𝐿𝐸 Length of entrance
𝐿𝑅 Length of run
𝑃𝐵 Engine brake power
𝑃𝐸𝑆𝑇 Ship propulsion power estimated from the

empirical method
𝑃𝑀𝐸𝐴𝑆 Ship propulsion power measured on-board
𝑅 Pearson’s correlation coefficient
𝑅𝑎𝑤 Added resistance in regular waves
𝑅𝑏𝑒𝑎𝑚 Added wave resistance in beam waves
𝑅𝑐𝑎𝑙𝑚 Calm water resistance
𝑅𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 Added wave resistance in following waves
𝑅ℎ𝑒𝑎𝑑 Added wave resistance in head waves
𝑅𝑡𝑜𝑡𝑎𝑙 Total resistance
𝑅𝑤𝑎𝑣𝑒 Mean wave resistance increase in irregular

waves
𝑅𝑤𝑖𝑛𝑑 Added resistance due to wind
𝑆 Standard wave frequency spectrum
𝑆𝑤 Wetted surface area
𝑇 Mean draft
𝑇𝑚 Mean wave period
𝑉 Ship’s speed
𝑉𝑑 Ship’s design speed

waves for sea trial conditions (Boom et al., 2013). The STAWAVE-
1 method assumes that the wave reflection contribution dominates
the added resistance. From this approach, a practical equation that
simplifies the reflection-induced added resistance in irregular waves
by approximating the waterline geometry on the bow section and the
beam of the ship was presented. Contrary to this, STAWAVE-2 method
considers both reflection and radiation contribution in estimating the
transfer function for the added wave resistance. Liu and Papanikolaou
(2016) originally proposed a statistical method of combining Faltinsen
(1980) and Jinkine and Ferdinande (1974). In subsequent studies (Liu
and Papanikolaou, 2019, 2020), they introduced wave heading-based
trigonometric functions to their previous equation and expanded it
to enable calculation for small draft, ballast conditions, and arbi-
trary waves by regression analysis based on extensive experimental
data. Lang and Mao (2020) proposed an added wave resistance model
for head seas based on Tsujimoto et al. (2008) and Jinkine and Fer-
dinande (1974). It was influenced by the formulas presented in Liu
and Papanikolaou’s paper (Liu and Papanikolaou, 2016; IMO, 2016),
and some of its calculations were modified using their experimen-
tal datasets. The proposed method was further updated to allow the
calculation of the peak position in arbitrary waves by introducing
an encountered frequency correction factor (Lang and Mao, 2021).
There are also some simple equations that can directly calculate the
added resistance in irregular waves such as Kreitner’s method (Kreitner,
1939; ITTC, 2005) and Shopera (Papanikolaou et al., 2015). Most
simplified methods have been developed to estimate the resistance of
a ship operating in head seas. Although studies for added resistance in
arbitrary wave headings have been continuously conducted in recent
years, comparative analysis and insight into these methods are still
insufficient.

To this regard, we perform a comprehensive study of various
semi-empirical methods using publicly accessible experimental data on
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Fig. 1. The composition of the experimental database according to various ship
parameters.

added resistance in waves with different ship types and conditions,
which is presented in Section 2. Thereafter, in Section 3, a new
method is proposed combining two methods available in arbitrary
wave headings from the studies of Lang and Mao (2021) and Liu and
Papanikolaou (2020), which has been elaborately verified in previous
research. The results from these two methods are smoothly connected
to wave conditions and wave heading through a combining function.
This method is developed for the calculation of added resistance for
large fleets of ships, so that robustness, computational efficiency, and
applicability to a range of different ship types are priorities. The
coefficients of this function are tuned using extensive model test data,
and their values are presented according to the ship type. Section 4
verifies the performance of the corresponding method using full-scale
measurements of two different ships. Conclusions of the study are
addressed in Section 5.

2. Comparison of semi-empirical methods with experimental data

2.1. Description of the experimental data

The results of various publicly accessible experimental data were ob-
tained to consider the general applicability of added resistance in waves
to the fleet level, and the performances of the existing semi-empirical
models were compared and analyzed. Fig. 1 shows the distribution
of main dimensionless parameters of the ships and experimental con-
ditions used in the study. The whisker in the figure indicates the
maximum and the minimum range. The box plot shows 25% and 75%
quantiles and the circular marker in it represents the median. The
data set consists of a total of 2559 samples of approximately 49 ships
and 255 different experimental cases. Most of the experiments were
conducted at design loading conditions, without trim. More detailed
information on the data set is shown in Tables A.1–A.6 in Appendix A.

2.2. Parameter estimation for 𝐿𝐸 and 𝐿𝑅

Liu and Papanikolaou (2016) introduced the length of entrance
(𝐿𝐸) parameter in Faltinsen’s asymptotic approach to reflect the hull
form influence on the component of added resistance due to diffraction
effect. Thereafter, corresponding parameters were used in Liu and
Papanikolaou (2019, 2020), and Lang and Mao (2020, 2021). 𝐿𝐸 is
defined as the horizontal distance from the point where the length of
the waterline surface reaches 99% of the breadth to Forepeak (Con-
versely, Length of run (𝐿𝑅) is the horizontal distance from the point
where the length of the waterline surface reaches 99% of the breadth to
the endpoint of the waterline), as shown in Fig. 2. These are necessary
factors for calculating the entrance angle used in the wave reflection

Fig. 2. Definition of length of entrance and run.

contribution to the added resistance. However, 𝐿𝐸 and 𝐿𝑅 cannot be
accurately estimated without detailed hull shape information of the
ship. Some authors (Liu et al., 2016; Lang and Mao, 2020, 2021) also
listed such values of several ships in their papers.

Fig. 3 shows 𝐿𝐸 and 𝐿𝑅 according to the length (𝐿𝑝𝑝) of the ships
under the design loading conditions we have secured. Overall, 𝐿𝐸 and
𝐿𝑅 increase in proportion to 𝐿𝑝𝑝. 𝐿𝐸 decreases as block coefficient
(𝐶𝐵) increases, but in the case of 𝐿𝑅, the trend according to the 𝐶𝐵
is not clear. In Fig. 4, dimensionless 𝐿𝐸 (𝐿𝐸∕𝐿𝑝𝑝) and dimensionless
𝐿𝑅 (𝐿𝑅∕𝐿𝑝𝑝) are plotted as a functions of Block coefficient (𝐶𝐵), and a
linear regression line for each ship type is also plotted. As 𝐶𝐵 increases,
the dimensionless 𝐿𝐸 decreases, and there was a slight difference in the
slope and intercept values of the regression line depending on the ship
type. On the other hand, the dimensionless 𝐿𝑅 according to 𝐶𝐵 shows
a clear difference in trend according to ship type. The dimensionless
𝐿𝑅 values of the tanker, liquefied gas carrier, bulk carrier, and general
cargo ship, with relatively high values of 𝐶𝐵 , tend to decrease as 𝐶𝐵
increases, whereas for relatively slender hull types such as ro-ro/ferry
and container ship dimensionless 𝐿𝑅 values rather increase. This inter-
pretation is roughly in accordance with what could be expected from
knowledge of ship design principles.

Tables 1–2 show the regression equations of dimensionless 𝐿𝐸 and
𝐿𝑅 for each ship type estimated from Fig. 4. If the detailed hull shape
or the 𝐿𝐸 and 𝐿𝑅 values of the ship were obtainable from the public
source, they were used. Otherwise, 𝐿𝐸 and 𝐿𝑅 values were estimated
using the proposed regression equations. It is important to note that
one should be careful using regression equations as an alternative to
estimating 𝐿𝐸 and 𝐿𝑅 of the ship, in case the input parameters are
outside the range listed in Tables 1–2 or if the ship has a specific hull
shape such as a bulbous bow or transom stern. In such cases, there may
be gaps between the actual value and the estimated value.

2.3. Comparison of semi-empirical methods in regular waves

In this section, a comparative analysis of several semi-empirical
methods for added resistance in regular waves is presented, where
the methods from Boom et al. (2013), Lang and Mao (2021), and Liu
and Papanikolaou (2020) are denoted as ‘‘STA2’’, ‘‘CTH’’, and ‘‘L&P’’,
respectively. STA2 is also compared as a representation of the method
that uses only simple ship dimensions although it is applicable only to
head waves. Practically, the greater added wave resistance experienced
by ships is of main interest. However, when evaluating the degree of
error of the model as a residual, the greater the added resistance of
the ship, the greater the residual between the predicted value and the
experimental value. Therefore, mean squared error (𝑀𝑆𝐸) as defined
in Eq. (1), which can give more weight to a larger error by squaring
the residual, is used as an evaluation metric. Here, the measurements
from model experiments and estimations for the added wave resistance
coefficient are compared. As can be found from the figures in the
appendices (Fig. B2(a), Fig. B3(c)), there are differences among exper-
imental results for the same ship in the same wave condition, which
may be due to the experiment being carried out in different water tank
environments. However, the influence of some experimental samples
with relative deviations was mitigated by using as many samples as
possible.
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Fig. 3. Scatter plots of (a) length of entrance and (b) length of run against ship length with the color bar showing the block coefficient. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Scatter plots of dimensionless (a) length of entrance and (b) length of entrance against block coefficient according to the ship type.

Table 1
Regression equations for the dimensionless 𝐿𝐸 according to the ship type. 𝑥 and 𝑦 in equation represent 𝐶𝐵
and 𝐿𝐸∕𝐿𝑝𝑝.

Ship type Range (𝐶𝐵) Linear regression equation
(𝑦 = 𝑎𝑥 + 𝑏)

Correlation
coefficient (𝑟)

Tanker 0.772–0.847 𝑦 = −0.7833𝑥 + 0.8158 −0.918
Liquefied gas 0.6973–0.7688 𝑦 = −0.4258𝑥 + 0.5828 −0.658
Bulk carrier 0.8–0.8455 𝑦 = −0.4904𝑥 + 0.5814 −0.384
General cargo 0.559–0.801 𝑦 = −1.061𝑥 + 1.049 −0.983
Container 0.572–0.7296 𝑦 = −0.7414𝑥 + 0.787 −0.814
Ro-Ro/Ferry 0.53–0.656 𝑦 = −0.655𝑥 + 0.7583 −0.787

Table 2
Regression equations for the dimensionless 𝐿𝑅 according to the ship type. 𝑥 and 𝑦 in equation represent 𝐶𝐵
and 𝐿𝑅∕𝐿𝑝𝑝.

Ship type Range (𝐶𝐵) Linear regression equation
(𝑦 = 𝑎𝑥 + 𝑏)

Correlation
coefficient (𝑟)

Tanker 0.81–0.847 𝑦 = −0.6875𝑥 + 0.7821 −0.587
Liquefied gas 0.6973–0.7688 𝑦 = −0.8447𝑥 + 0.8244 −0.627
Bulk carrier 0.82–0.8665 𝑦 = −1.04𝑥 + 1.081 −0.855
General cargo 0.559–0.801 𝑦 = −0.6722𝑥 + 0.6952 −0.988
Container 0.6393–0.7296 𝑦 = 1.247𝑥 − 0.6726 0.991
Ro-Ro/Ferry 0.53–0.5595 𝑦 = 2.731𝑥 − 1.28 0.353

The mean resistance increase of a ship in waves is influenced by
many factors related to hull shape, ship operating conditions, wave
characteristics, etc. In relation to the nondimensional transfer function
of mean resistance increase in regular waves, it is mainly dependent on
wave frequency, wave direction, and ship speed, as shown in Eq. (17).
Therefore, as shown in Figs. 5–6, the errors of each method were
analyzed by classifying them into Froude number (𝐹𝑛), wavelengths

(𝜆∕𝐿), and ship types according to the wave heading (𝛼). For the
convenience of analysis, the entire wave heading area in this study
is classified into three groups: head seas (180–135 degrees), beam
seas (135–45 degrees), and following seas (45–0 degrees). For the
detailed formula and application of each method, refer to the original
documents (Boom et al., 2013; Lang and Mao, 2020, 2021; Liu and

92



Ocean Engineering 266 (2022) 112749

5

Y. Kim et al.

Fig. 5. Comparison of 𝑀𝑆𝐸 results for added wave resistance methods for all ship types, Froude numbers, and wavelengths. The bar graph in the upper row shows head waves,
the middle represents beam waves, and the lower is following waves.

Fig. 6. Comparison of 𝑀𝑆𝐸 results for added wave resistance methods according to the ship type.

Papanikolaou, 2020)

𝑀𝑆𝐸 = 1
𝑛

𝑛∑
𝑖=1

(𝐶𝑎𝑤𝑖 − �̂�𝑎𝑤𝑖 )
2 (1)

𝐶𝑎𝑤 =
𝑅𝑎𝑤

𝜌𝑔𝜁2𝑎𝐵2∕𝐿
(2)

where 𝐶𝑎𝑤 represents the nondimensional transfer function of added
wave resistance in regular waves from model test, �̂�𝑎𝑤 is the estimated
value from the semi-empirical method such as STA2, CTH, L&P, and 𝑛 is
the number of samples for the model test belonging to the correspond-
ing classification. 𝑅𝑎𝑤 is the transfer function of added wave resistance,
𝜌 is the density of water, and 𝑔 is the gravity acceleration, 𝜁𝑎 is wave
amplitude, 𝐵 is breadth of the ship, and 𝐿 is the ship length.

Comparing the overall 𝑀𝑆𝐸 for each method in head waves, L&P
method had the smallest error. However, CTH was noticeably well
estimated in the high-speed region of Froude number more than 0.25

and the short waves of less than 0.3 relative wavelengths. In particular,
outstanding performance at short waves appears to be the influence
of wavelength correction coefficients used in CTH method, which has
been adjusted to capture an increase in resistance in the short wave
region. The overall 𝑀𝑆𝐸 of STA2 is about 3.5, which is a relatively
larger error than the other two methods, and 𝑀𝑆𝐸 comparisons as
functions of 𝐹𝑛 and 𝜆∕𝐿 also show no better performance than them.
This is because, in contrast to the other two approaches, STA2 mainly
assumes a general sea trial and does not employ information pertaining
to the detailed hull shape when estimating added wave resistance.

In beam seas, overall, L&P had lower 𝑀𝑆𝐸 than CTH, but similarly
to the tendency in head waves, CTH had advantages in high Froude
number and short wavelength ranges. In following waves, the absolute
peak of added resistance was smaller than that of beam or head sea,
and accordingly, the 𝑀𝑆𝐸 was relatively small. Likewise, L&P showed
better performance than CTH in most classifications, but CTH was
better in high-speed region.
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In terms of error comparison by ship type, the errors of L&P in
tanker, liquefied gas, bulk, and container ships were relatively small,
while CTH method prevailed in general cargo, ro-ro/ferry ships under
head sea conditions. In beam and following wave conditions, except
for some cases, L&P had a slightly smaller error than CTH. The dif-
ference in error between these two methods is fundamentally due to
the introduction of different factors to implement the shape of added
wave resistance of a ship. While CTH method modifies the peak position
using an encountered frequency correction factor, and the maximum
value is derived by using the amplitude adjustment factor, L&P method
uses a wave heading-based trigonometric function to estimate the
location of resonance frequency and maximum resistance in arbitrary
waves. For a more detailed analysis, added resistance according to the
wavelength of several cases are plotted in Figs. B1–B3 in Appendix B.

When the prediction results of STA2 against the experimental data
in head waves are used as a benchmark, CTH and L&P methods provide
significantly smaller 𝑀𝑆𝐸s. In addition, since the estimations from the
two methods agree fairly well with the experimental data in beam seas
and following seas, both are considered to be applicable for estimation
of added resistance in the environment of arbitrary waves experienced
by ships at sea.

Although L&P method showed a slightly smaller 𝑀𝑆𝐸 overall
compared to CTH, it was not clearly a better method because they
showed different performances depending on experimental conditions
such as wavelength, wave heading, and ship type. In addition, it is
clear that there is still much research that has to be done in this field
as the experiments in beam and following sea have relatively greater
uncertainty and the amount of data is limited compared to that of head
sea.

Therefore, through the analysis of these existing methods, this study
sought to develop a model that can ensure good overall performance at
arbitrary waves without deviating significantly from model experiment
data depending on ship type and various conditions. Here, we intend
to apply a method that can reduce errors by properly combining the
results of CTH and L&P, which is explained in detail in the next section.

3. Meta model for added resistance in arbitrary waves

3.1. Procedure for developing a combined method

As seen in the previous results, CTH and L&P methods performed
relatively better in almost all comparison cases than STA2, and above
all, they had the advantage of estimating results for arbitrary wave
headings. Comparing CTH and L&P, the difference in performance
according to ship type, wavelength, and wave heading was significant.
Therefore, this study attempted to develop a new model capable of
improving overall performance based on the CTH and L&P methods.
Here, a meta-modeling technique was used, which is to create a new
model by combining existing models (It will be denoted as a ‘‘Combined
method’’ from here). The combined method basically combines the
nondimensional added wave resistance coefficients estimated from CTH
and L&P to minimize errors with the experimental data. Due to the lack
of available model experiment data under irregular wave conditions,
it was difficult to develop the model in accordance with various ship
conditions.

As a method of blending the two results, a concept similar to R-
function used in several previous papers was introduced. Fujii (1975)
proposed a method of estimating added resistance due to wave reflec-
tion by applying the reflection coefficient (R-function) derived by Ursell
(1947) to Havelock’s formula, where the R-function was initially de-
signed to extend the effect of wave reflection to relatively long waves.
Later, this coefficient was further developed and modified by many
other researchers to elaborately address the drift force due to the
diffraction effect (Kuroda et al., 2008; Liu, 2020; Mourkogiannis and
Liu, 2021). On the other hand, Guo and Steen (2011) adopted a method
of multiplying R and 1-R by wave reflection term and ship motion term

for the entire wavelength, respectively, to gain the advantage that their
contribution to the added wave resistance is smoothly transited from
short waves to long waves. Recently, Yang et al. (2018) adopted a more
simple and practical tangent hyperbolic function as a blending function
instead of a R-function composed of Bessel functions.

In this study, R-function is introduced to combine different theoreti-
cal calculations as in Guo and Steen (2011) and Yang et al. (2018), and
the tangent hyperbolic function is used because of its simplicity which
can smoothly connect the results of the two formulas by adjusting a
few coefficients. The transition range of the R-function is extended not
only to the wave frequency but also to the wave direction to enable
the estimation of added resistance in arbitrary waves. Consequently,
the added resistance in arbitrary wave headings can be estimated as
described in Eq. (3). The output of the tangent hyperbolic function is
between 0 and 1, which is used as the weight of the two methods for the
final result. In addition, added wave resistance estimation is performed
by classifying it for each ship type to reflect different characteristics
caused by the hull shape.

𝑅𝑤𝑎𝑣𝑒 =

{
[1 − 𝑓 (𝛼)]𝑅ℎ𝑒𝑎𝑑 + 𝑓 (𝛼)𝑅𝑏𝑒𝑎𝑚, 𝑓𝑜𝑟 90 ≤ 𝛼 ≤ 180
[1 − 𝑓 (𝛼)]𝑅𝑏𝑒𝑎𝑚 + 𝑓 (𝛼)𝑅𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 , 𝑓𝑜𝑟 0 ≤ 𝛼 < 90

(3)

where 𝑅ℎ𝑒𝑎𝑑 , 𝑅𝑏𝑒𝑎𝑚, and 𝑅𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 represent the added wave resistance
in head waves, beam waves, and following waves, respectively. 𝑓 (𝛼) is
a function that enables combining the various added wave resistance
according to the wave headings as follows:

𝑓 (𝛼) = 1
2
[1 + 𝑡𝑎𝑛ℎ(𝑐(𝑑 − 𝛼))] (4)

𝑅ℎ𝑒𝑎𝑑 (𝑅𝑏𝑒𝑎𝑚 𝑜𝑟 𝑅𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔) = [1 − 𝑔(𝜆∕𝐿)]𝑅𝐶𝑇𝐻 + 𝑔(𝜆∕𝐿)𝑅𝐿&𝑃 (5)

Here, the coefficient 𝑐 adjusts the slope of the tangent hyperbolic
function and it is divided into 𝑐1 and 𝑐2 according to 𝛼 as shown in
Eq. (6). The coefficient 𝑑 sets the intermediate position for combining
the two results and is divided into 135, 45 degrees according to 𝛼
value, as seen in Eq. (7). 𝑅𝐶𝑇𝐻 and 𝑅𝐿&𝑃 represent added resistance
coefficients estimated from CTH and L&P. By multiplying 1-𝑔 and 𝑔,
which are outputs of tangent hyperbolic function, by 𝑅𝐶𝑇𝐻 and 𝑅𝐿&𝑃 ,
respectively, the two results according to 𝜆∕𝐿 are smoothly connected.

𝑐 =

{
𝑐1, 𝑓𝑜𝑟 90 ≤ 𝛼 ≤ 180
𝑐2, 𝑓𝑜𝑟 0 ≤ 𝛼 < 90

(6)

𝑑 =

{
135, 𝑓𝑜𝑟 90 ≤ 𝛼 ≤ 180
45, 𝑓𝑜𝑟 0 ≤ 𝛼 < 90

(7)

The values 𝑅𝐶𝑇𝐻 and 𝑅𝐿&𝑃 are combined through the function
𝑔(𝜆∕𝐿) given in Eq. (8), from which 𝑅ℎ𝑒𝑎𝑑 (𝑅𝑏𝑒𝑎𝑚 or 𝑅𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔) can be
estimated.

𝑔(𝜆∕𝐿) = 1
2
[1 + 𝑡𝑎𝑛ℎ(𝑎(𝑏 − 𝜆∕𝐿))] (8)

Here, 𝑎 is a slope coefficient such as 𝑐, which is divided into 𝑎1,
𝑎2, and 𝑎3 as shown in Eq. (9). In other words, 𝑎 serves to determine
the slope of the function when combining the results according to 𝜆∕𝐿
using the combining function, and 𝑐 is used to combine the results
according to 𝛼. Coefficient 𝑏 represents the center position such as 𝑑,
which is divided into 𝑏1, 𝑏2, and 𝑏3 in Eq. (10).

𝑎 =
⎧
⎪⎨⎪⎩

𝑎1, 𝑓𝑜𝑟 𝑅ℎ𝑒𝑎𝑑
𝑎2, 𝑓𝑜𝑟 𝑅𝑏𝑒𝑎𝑚
𝑎3, 𝑓𝑜𝑟 𝑅𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔

(9)

𝑏 =
⎧
⎪⎨⎪⎩

𝑏1, 𝑓𝑜𝑟 𝑅ℎ𝑒𝑎𝑑
𝑏2, 𝑓𝑜𝑟 𝑅𝑏𝑒𝑎𝑚
𝑏3, 𝑓𝑜𝑟 𝑅𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔

(10)

Fig. 7 displays the combining function and its coefficients in this
study as examples. Fig. 7(a) presents the combining function value 𝑓 (𝛼)
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Fig. 7. Coefficients and combining function values according to (a) wave headings, (b) wavelengths proposed in the study.

Fig. 8. The results of 𝑔(𝜆∕𝐿) according to the (a) slope coefficient and (b) center position coefficient. Coefficient 𝑐 also has the same trend as the results shown in Fig. 8(a) as it
is a slope coefficient.

Table 3
The coefficients of combining function according to the ship type. The values in parentheses represent the interquartile ranges of 1,000 bootstrap samples for the coefficients.

Ship type 𝑎1 𝑏1 𝑎2 𝑏2 𝑎3 𝑏3 𝑐1 𝑐2
Tanker −10.00 (1.33) 0.52 (0.13) 7.55 (1.83) 1.08 (0.14) 0.17 (0.34) 1.08 (0.21) 0.04 (0.00) 1.41 (0.53)
Liquefied gas −9.99 (0.36) 0.26 (0.01) 10.00 (0.01) 2.00 (0.00) 8.16 (1.43) 1.05 (0.10) −1.2 (0.65) 1.60 (0.54)
Bulk carrier −1.79 (0.82) 0.59 (0.04) −0.23 (1.66) 1.84 (0.16) 0.34 (0.10) 1.92 (0.11) 0.00 (0.00) 0.01 (0.02)
General cargo 1.95 (1.01) 0.11 (0.09) 0.92 (0.21) 0.98 (0.07) 0.31 (1.13) 0.74 (0.24) 0.21 (0.39) 0.36 (0.56)
Container −9.21 (0.77) 0.55 (0.02) 4.52 (1.53) 0.88 (0.13) 2.00 (0.24) 0.95 (0.03) 0.04 (0.00) −0.08 (0.34)
Ro-Ro/Ferry −9.35 (0.88) 1.01 (0.03) −7.91 (1.30) 0.71 (0.15) 6.54 (1.45) 0.84 (0.13) 1.49 (0.50) 0.05 (0.20)

of 𝑅ℎ𝑒𝑎𝑑 , 𝑅𝑏𝑒𝑎𝑚, and 𝑅𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 according to wave heading, and Fig. 7(b)
shows the combining function value 𝑔(𝜆∕𝐿) of 𝑅𝑎 and 𝑅𝑏 according
to wavelength. As illustrated in Fig. 8, coefficients 𝑎 and 𝑐 affect the
slope of the combining function value, and coefficient 𝑏 adjusts where
the combining weight is half. As the absolute value of 𝑎 coefficient
increases, the slope of the combining function increases (𝑐 has the same
trend as 𝑎), and as the value of 𝑏 increases, the center point moves in
the direction where 𝜆∕𝐿 increases.

All the coefficients in Eqs. (6), (9), and (10) were tuned to minimize
the error between the model test data and the estimated value from
Eq. (3), and in the process, 10 cross-validations with 1000 bootstrap
samplings were performed. As a result, the coefficients that provided
the smallest errors were obtained through 10 cross-validations per boot-
strapping, and 1000 sets of coefficients were finally obtained through
1000 bootstrap sampling. To avoid the influence of some coefficient
estimations that deviate extremely from other values, the median value
for 1000 bootstrap samples was adopted as the final value of the
coefficient in the equation. Table 3 lists the finally obtained coefficient
values for each ship type.

3.2. Results of a combined method

In this section, we show how the results of the new method calcu-
lated by substituting the coefficients of Table 3 into Eq. (3) are actually
applied and how they differ from the CTH and L&P methods. Figs. 9–
11 represents the 𝑀𝑆𝐸 trend of the added wave resistance predictions
in head waves, beam waves, and following waves by each method
according to the wavelength. As can be seen from the figures, since
the coefficients of the combining function are adjusted to minimize
the 𝑀𝑆𝐸 with model experimental data, the results of the Combined
method generally tended to follow the method that provided lower
𝑀𝑆𝐸 for each interval section.

In Figs. 12–13, the results of the Combined method have been
added to the previously covered ship cases. According to Fig. 12(a)
and Fig. 12(b), the Combined method followed CTH in short waves
and L&P method in long waves, and these results were well matched
with the actual experimental results, and it was opposite in Fig. 12(c).
The reason why different blending trends are shown here is that the
coefficients of the combined function are applied differently for each
ship type. Moreover, since the Combined method was tuned based on
two semi-empirical methods, it had the advantage of being smoothly
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Fig. 9. Comparison of 𝑀𝑆𝐸 according to wavelengths in head waves. (a) Tanker, (b) Liquefied gas, (c) Bulk carrier, (d) General cargo, (e) Container, (f) Ro-Ro/Ferry. The circle
marker stands for the mean of the 𝑀𝑆𝐸s of the samples in the corresponding wavelength interval, and the error bar represents the standard error of 𝑀𝑆𝐸.

Fig. 10. Comparison of 𝑀𝑆𝐸 according to wavelengths in beam waves. (a) Tanker, (b) Liquefied gas, (c) Bulk carrier, (d) General cargo, (e) Container, (f) Ro-Ro/Ferry.

connected without deviating significantly from the predicted values of
the two methods.

3.3. Analysis of the combined method by experimental data in regular
waves

In addition to 𝑀𝑆𝐸, several error metrics with correlation coef-
ficient are used to analyze the quality of the predicted value of the
Combined method. The Pearson’s correlation coefficient (𝑅), Mean
Absolute Error (𝑀𝐴𝐸), and Root Mean Squared Error (𝑅𝑀𝑆𝐸) are
defined as in Eqs. (11)–(13).

𝑅𝐲,�̂� =
𝑐𝑜𝑣(𝐲, �̂�)
𝜎𝐲𝜎�̂�

=
𝐸(𝐲�̂�) − 𝐸(𝐲)𝐸(�̂�)

𝜎𝐲𝜎�̂�
(11)

𝑀𝐴𝐸 = 1
𝑛

𝑛∑
𝑖=1

|𝑦𝑖 − �̂�𝑖| (12)

𝑅𝑀𝑆𝐸 =
√
𝑀𝑆𝐸 (13)

where 𝑦𝑖 is the true value obtained from the experiment, �̂� is the
predicted value from the semi-empirical method.

Fig. 14 shows the addition of the results of the Combined method
to the 𝑀𝑆𝐸 comparison bar charts in Section 2.3. It can be seen that
the Combined method shows a significantly smaller error compared
to STA2 in head waves, and overall 𝑀𝑆𝐸 is reduced compared to
CTH and L&P for all wave headings. It is confirmed that the error of
the Combined method is reduced compared to other methods in each
section divided according to the Froude number, wavelength, and ship
type.

The scatter plots between all experimental data of added resistance
in regular waves and the predicted values of STA2, CTH, L&P, and
Combined methods are shown in Fig. 16. The best match line of the
predictions and experimental values and 30% deviation line from it
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Fig. 11. Comparison of 𝑀𝑆𝐸 according to wavelengths in following waves. (a) Tanker, (b) Liquefied gas, (c) Bulk carrier, (d) General cargo, (e) Container, (f) Ro-Ro/Ferry.

Fig. 12. Examples of Combined method according to the wavelength of (a) DTC, 𝐹𝑛 = 0.139, 𝛼 = 180, (b) HSVA, 𝐹𝑛 = 0.232, (c) S60, 𝐹𝑛 = 0.283. The figure corresponds to the
results of head waves.

Fig. 13. Examples of Combined method according to the wave heading. 170 k BC, 𝐹𝑛 = 0.128 (a) 𝛼 = 180, (b) 𝛼 = 150, (c) 𝛼 = 120, (d) 𝛼 = 90, (e) 𝛼 = 30, (f) 𝛼 = 0.
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Fig. 14. 𝑀𝑆𝐸 results of Combined method for added wave resistance according to all cases, Froude numbers, and wavelengths. The bar graph in the upper row shows head
waves, the middle represents beam waves, and the lower is following waves.

Fig. 15. 𝑀𝑆𝐸 results of Combined method for added wave resistance according to the ship type.

Table 4
Summary of the components of the correlation coefficients and statistical values for
the predicted results in Fig. 16.

Range Method 𝑅 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸

All area CTH 0.83 1.18 1.63
L&P 0.87 1.02 1.43
Combined 0.90 0.89 1.25

Head seas STA2 0.71 1.44 1.95
CTH 0.82 1.21 1.66
L&P 0.84 1.11 1.51
Combined 0.88 0.96 1.31

Beam seas CTH 0.68 1.21 1.72
L&P 0.75 0.94 1.36
Combined 0.79 0.88 1.27

Following seas CTH 0.33 0.89 1.23
L&P 0.59 0.67 0.96
Combined 0.62 0.53 0.80

are displayed together in the figure. In addition, various error metrics
such as 𝑀𝐴𝐸, 𝑅𝑀𝑆𝐸 with 𝑅 obtained from the corresponding cases
are presented in Table 4. For the comparison using scatterplots and the
table, refer to those presented by Wang et al. (2021) in a benchmark
study organized by ITTC.

As mentioned earlier, STA2 is less accurate in head waves than CTH,
L&P, and Combined methods. In particular, as many of the predicted
values from STA2 for experimental measurements are located in the
lower right side of the figure beyond the 30% deviation line, it is likely
to underestimate when added resistance is large. This trend is also in
line with the large error of STA2 at high speed and resonance positions
in Fig. 14.

On the other hand, the predicted values of CTH and L&P are evenly
distributed on both sides of the best match line, and the correlation
coefficients are 0.82, 0.84 at head seas, and 0.68, 0.75 at beam seas,
showing good correlation for both methods. In following waves, the
correlation coefficients are relatively lower at 0.33, 0.59, and many
predicted values are observed far outside of the 30% deviation line.
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Fig. 16. The scatter plots of the predicted 𝐶𝑎𝑤 from (a) STA2, (b) CTH, (c) L&P, (d) Combined method against experimental data. The solid line represents the best match line,
and dashed line is 30% deviation line from the best match line.

This might be due to the fact that the experimental data in following
sea is limited, highly uncertain, and that many values are close to
zero. Most of the predicted samples from the Combined method are
evenly distributed around the best match line and remain within the
30% deviation line. Compared to the predictions of CTH and L&P,
the correlation coefficients of Combined method in all wave directions
are higher by 0.62–0.88, and the MAEs are smaller by 0.53–0.96 (see
Fig. 15).

4. Observations from comparison of the combined method with
full-scale measurements in irregular waves

4.1. Details of full-scale measurements and weather data

In this section, a comparison between the in-service data collected
from the two ships and the wave resistance estimated from the Com-
bined method under the corresponding conditions is performed. To this
end, not only waves but also the ship resistance factors in calm water,
wind, and fouling and roughness conditions, which mainly account for
the total resistance of the ship, are obtained through the empirical
methods presented in Sections 4.3–4.5. Moreover, the errors between
the estimated values of the added wave resistance and the extracted
values from the in-service data are compared in Section 4.6.

Table 5 lists the main characteristics of Ship A and Ship B used
in the study, and Fig. 17 shows the trajectories of the two ships for
the data recording duration. The data of Ship A and Ship B were
recorded continuously for 26 months and 2 months from the various
fitted sensors and data acquisition systems, and the average values were
stored every 15 min and every 1 min, respectively. The collected in-
service data of Ship A includes 26 variables and Ship B includes 392
variables. The composition of the data from the two ships is slightly
different, but the following variables were commonly used to estimate
the resistance components of the ship. Navigation (GPS position, gyro
heading, COG heading); Propulsion system (shaft Power, shaft rpm,

shaft torque, M/E load); Operating condition (draft, trim, GPS speed,
Log speed), etc. The information about the measurement methods of the
ship parameters used in this study is shown in Table 6. Additionally, it
was possible to extract the data of ships in sea passage operation not at
berth or maneuvering by obtaining information on the voyage schedule
or navigation state.

In order to calculate the added resistance in wind and waves, in-
formation on the surrounding environment the ship experiences during
its voyage is required. In this study, weather information such as u and
v-components of wind speed, mean wave direction, wave period, and
significant wave height was obtained from the re-analysis dataset ERA5
of European Centre for Medium-Range Weather Forecasts (ECMWF),
which is a global prediction model and is widely known as one of
the most reliable models simulating actual sea weather conditions,
instead of onboard measurement (Haiden et al., 2018). There were
wind speed and direction data obtained from anemometers installed
on ships, but as a result of comparison with wind data from ECMWF,
it was found that some parts of the longitudinal wind speed measured
from the corresponding ship are changing signs or directions without
any probable cause. In addition, there was no data related to waves
that could be obtained from the ship.

The horizontal resolution of the dataset is provided based on a
grid of 0.25◦ × 0.25◦ for atmosphere and 0.5◦ × 0.5◦ for ocean waves,
respectively, and the temporal resolution of it is hourly. The weather
data at the closest position and time grid can be obtained by matching
each data sample of the ship with data from the ECMWF. Through the
sequential interpolations on weather data according to the location and
timestamp of the ship, the actual environment encountered by the ship
can be extracted. It is used as an input value for calculating added
resistance, and Figs. 18–19 display distributions of wind speed and
significant wave height during the data collection periods.
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Fig. 17. Operational routes of Ship A and B for the data recording duration.

Fig. 18. The distribution plots of (a) wind, (b) waves encountered by Ship A. Figure (a) shows the degree of wind occurrence according to the true wind direction in %. The
color sector shows the true wind speed in m/s. Figure (b) represents the degree of waves occurrence according to the wave direction in %. The color sector shows the significant
wave height in meters. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 19. The distribution plots of (a) wind, (b) waves encountered by Ship B. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

4.2. Data pre-processing

Raw measurement data includes all types of navigation status,
such as accelerating, decelerating, maneuvering, and even in port. To
perform accurate speed-power performance analysis, it is necessary to
extract the data sections in which the ship operates steadily. In this
study, the steady-state detection algorithm proposed by Dalheim and
Steen (2020) was applied. This algorithm identifies a change point
among the samples by using a sliding window and its corresponding
𝑡-value of the local slope. The slope of the fitted regression line from
the regression analysis is used to check the unsteady state. In addition,
sections with propeller speed below a certain limit were considered
to be in the state of maneuvering. The voyage classification of data

samples to which steady-state detection and filtering are applied is
shown as an example in Fig. 20. As a result, Figs. 21–22 show the
histograms of speed through water, propeller speed, mean draft, and
engine power for the pre-processed data of Ship A and Ship B.

4.3. Estimation of ship resistance factor by empirical approaches

In general, the resistance components that account for most of
the total resistance of a ship are calm water resistance, added re-
sistance due to wind, and added resistance in waves. The effects of
drifting and rudder on added resistance are neglected in this study.
To extract the contribution of the added wave resistance to the power
demand from in-service data, the resistance in calm water conditions
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Table 5
Main dimensions and information of ships used in the study.

Ship A Ship B

Ship type General cargo Container
Length [m] 194 350
Breadth [m] 32 48
Block coefficient [-] 0.79 0.66
Radius of pitch gyration [-] 0.25 0.25
Deadweight tonnage [ton] 12.6 14.5
Maximum continuous rating [kW] 10780 65640
Design draft [m] 12.6 14.5
Service speed [knots] 15.5 24.7

Fig. 20. Classification of voyage status according to propeller speed. It shows an
example of one short voyage data.

and added resistance due to wind, were considered as expressed in
Eqs. (14)–(15).

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑐𝑎𝑙𝑚 + 𝑅𝑤𝑖𝑛𝑑 + 𝑅𝑤𝑎𝑣𝑒 (14)

𝑃𝐵 =
𝑅𝑡𝑜𝑡𝑎𝑙 ⋅ 𝑉

𝜂𝑇
(15)

where 𝑅𝑡𝑜𝑡𝑎𝑙 is the total resistance of a ship, 𝑅𝑐𝑎𝑙𝑚 is calm water
resistance, 𝑅𝑤𝑖𝑛𝑑 is the added resistance due to wind, 𝜂𝑇 is the overall
efficiency, and 𝑃𝐵 is engine brake power.

Here, the frictional coefficient was obtained from ITTC-1957 cor-
relation line, and the residual resistance coefficient was calculated
using Hollenbach’s method (1998) since it was found that Hollenbach’s
method fits relatively well for the given ship. It was developed based
on regression analysis of 433 relatively modern ship models, requiring
basic ship design parameters such as length, breadth, draft, displace-
ment, wetted surface area, block coefficient, and propeller diameter for
the calculation. According to the original paper, Hollenbach’s method
had a relatively lower standard deviation of the error in resistance
against its validation test cases compared to Holtrop–Mennen (1984),
Guldhammer (1974), Lap-Keller (1973), and Series-60 (1972).

Due to changes in hull roughness caused by marine fouling, dif-
ferences in powering performance may occur during the operational
period, and such differences should be additionally corrected as a
roughness allowance. The roughness allowance (𝛥𝐶𝐹 ) can be calculated
as the difference between the total resistance coefficient of in-service
data (𝐶𝑇 ,𝐷𝑎𝑡𝑎) filtered by wind speeds less than 5.5 m/s, where calm
water resistance dominates, and the total resistance coefficient in the
same conditions obtained from empirical methods (𝐶𝑇 ,𝐸𝑚𝑝) as shown
in Eq. (16) (Gupta et al., 2021). 𝐶𝑇 ,𝐷𝑎𝑡𝑎 represents the total resistance
coefficient due to calm water resistance as well as the added resistance
due to the wind and waves and fouling, while 𝐶𝑇 ,𝐸𝑚𝑝 denotes the total
resistance coefficient due to calm water resistance, added resistances
due to wind and waves without taking fouling into account. Therefore,
it is assumed that only fouling contribution is left after the subtrac-
tion. Furthermore, trends of roughness allowance were observed over

cumulative static time between specific hull cleaning events, and a
fitted trend line is used as a corrected roughness allowance (𝛥𝐶𝐹 ),
as shown in Fig. 23(c). The overall operating speed range of the two
ships used in this study was about Froude number 0.09 to 0.18, the
impact of the speed of the wave-making resistance coefficient or viscous
resistance coefficient within this range is not that significant, thus
the corresponding resistance coefficients, which are less than Froude
number 0.2 is assumed to be constant.

𝛥𝐶𝐹 = 𝐶𝑇 ,𝐷𝑎𝑡𝑎 − 𝐶𝑇 ,𝐸𝑚𝑝 (16)

There were a total of four propeller and hull cleaning events of Ship
A in 2.5 years, and the roughness allowance was estimated considering
this. In case of the Ship B, there was no specific data related to fouling
and roughness such as cleaning event history. Since the berthing time
of the container ship was relatively short, and data of one voyage
(approximately 2 months) was used, it was assumed that there would
have been no significant change in the hull roughness during the
period. As a result, the typical average hull roughness of an operating
ship, 150 μm, was applied for the estimation of the roughness allowance
according to MARINTEK’s formula (Minsaas, 1982; Steen and Aarsnes,
2014).

The wind resistance coefficient was estimated from the regression
formula developed by Fujiwara (2006), and the resistance increase due
to relative wind was calculated according to the method recommended
by ISO 15016 (2015). Wind affected areas of the hull were calculated
based on the depth and draft of Ship A and B. Since the wind-affected
area above the water surface of Ship A is mainly an accommodation
area, the upper structure according to the draft of the ship was esti-
mated using a detailed hull shape. Meanwhile, the container ship has
not only accommodation areas but also cargoes on the deck, and since
there was no detailed information on cargo volume and arrangement,
the parameter estimation method from Kitamura et al. (2017) was used
for the above-water structure area for Ship B.

Finally, the relevant resistance components of each ship obtained
through the previous estimation process are shown in Figs. 23–24. In
the case of Ship B, the figure related to the roughness allowance is
not included as it was assumed to be constant. The detailed process
to estimate added wave resistance is covered in the next section.

4.4. Wave spectrum and response amplitude operator in regular waves

The mean resistance increase in short-crested irregular waves
(𝑅𝑤𝑎𝑣𝑒) can be calculated as a linear superposition of the transfer
function of added resistance in regular waves (𝑅𝑎𝑤) and directional
wave spectrum (𝐸), as expressed in Eq. (17). The transfer functions
of added resistance in regular waves according to different speeds for
the subject ships estimated from the Combined method are shown in
the following Figs. 25–26.

𝑅𝑤𝑎𝑣𝑒 = 2∫
𝜋
2

0 ∫
∞

0

𝑅𝑎𝑤(𝜔, 𝛼;𝑉 )𝐸(𝜔, 𝛼)
𝜁2𝑎

𝑑𝜔𝑑𝛼 (17)

The directional spectrum is not measured in this study, standard
frequency spectrum (𝑆) with the angular distribution function (𝐺) is
considered as in Eq. (18).

𝐸(𝜔, 𝛼) = 𝑆(𝜔) ⋅ 𝐺(𝛼) (18)

There are various wave spectra representing different characteristics
depending on the location and environment of the ocean. In this
study, the modified Pierson–Moscowitz spectrum of ITTC 1978 (2017),
commonly used for the open ocean, is applied through the process as
shown in Eqs. (19)–(21).

𝑆(𝜔) = 𝐴
𝜔5 exp

(
− 𝐵
𝜔4

)
(19)

𝐴 = 173
𝐻2
𝑠

𝑇 4
𝑚

(20)
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Table 6
Measurement methods of the ship parameters used in the study.

Parameter Measurement device Unit

Position DGPS latitude, longitude
Heading Gyro compass degree
Course over ground DGPS degree
Speed over ground DGPS knots
Speed through water Doppler speed log knots
Shaft power Shaft horsepower meter kW
Shaft revolutions Ship revs counter rev/min
Draft Draft gauges meter
Weather information ECMWF ERA5 reanalysis Temporal resolution: hourly

Horizontal resolution: 0.25◦ × 0.25◦ (atmosphere)
Horizontal resolution: 0.5◦ × 0.5◦ (Ocean waves)

Fig. 21. Histograms of (a) speed, (b) main engine rpm, (c) mean draft, and the (d) engine power of Ship A for the data recording duration.

Fig. 22. Histograms of (a) speed, (b) main engine rpm, (c) mean draft, and the (d) engine power of Ship B for the data recording duration.

Fig. 23. Ship resistance components for Ship A: (a) calm water resistance, (b) wind resistance coefficient, (c) roughness allowance. The resistance factors in Figures (a) and (b)
are calculated based on the design loading condition. The blue shaded part in (c) is propeller cleaning event, and the solid line shows the trend line of mean roughness allowance
according to the ship static time. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

𝐵 = 691
𝑇 4
𝑚

(21)

where 𝜔 is the circular wave frequency, 𝐻𝑠 is the significant wave
height, and 𝑇𝑚 is the mean wave period.

For the angular distribution function for the wind waves, the cosine-
power type is applied such as in Eq. (22), and the spreading parameter

is set to 1 (ITTC, 2017)

𝐺(𝛼) =

{ 22𝑠
𝜋

𝛤 2(𝑠+1)
𝛤 (2𝑠+1) 𝑐𝑜𝑠

2(𝜃 − 𝛼), − 𝜋
2 ≤ 𝜃 − 𝛼 ≤ 𝜋

2
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(22)

where 𝜃 is the primary wave direction, 𝑠 is a directional spreading
parameter, and 𝛤 is a Gamma function.
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Fig. 24. Ship resistance components for Ship B: (a) calm water resistance, (b) wind resistance coefficient.

Fig. 25. Comparison of added resistance coefficient in regular waves of Ship A at
(a) 𝑉 = 𝑉𝑑 , (b) 𝑉 = 0.75𝑉𝑑 , (c) 𝑉 = 0.5𝑉𝑑 computed using Combined method. 𝑉𝑑
represents the design speed, and the results of the figures are based on the design
loading condition of the ship.

Fig. 26. Comparison of added resistance coefficient in regular waves of Ship B at (a)
𝑉 = 𝑉𝑑 , (b) 𝑉 = 0.75𝑉𝑑 , (c) 𝑉 = 0.5𝑉𝑑 computed using Combined method.

4.5. Comparison of semi-empirical methods in irregular waves

Theoretical estimations for added resistance in irregular waves of
Ship A and Ship B by various methods are plotted in Fig. 28 and Fig. 29,
respectively, in which sensitivity analysis according to significant wave
height (𝐻𝑠), mean wave period (𝑇𝑚), wave heading (𝛼), and ship speed
(𝑉 ) is performed. The reference conditions for the comparative case of
Ship A are 𝐻𝑠 = 1 m, 𝑇𝑚 = 10 s, 𝛼 = 180, and 𝑉 = 15.5 knots, and Ship
B are 𝐻𝑠 = 1 m, 𝑇𝑚 = 12 s, 𝛼 = 180, and 𝑉 = 24.7 knots. It is assumed
that the remaining conditions are constant while analyzing variation
for each parameter. Basically, the added resistance in irregular waves
is calculated through the process of Section 4.4, and the RAOs of the
two ships under the reference conditions are shown in Fig. 27. For
the comparison in irregular waves, not only STA2, CTH, and L&P but
also Shopera and Kreitner’s methods that can directly calculate the
added resistance in irregular waves are added. The CTH, L&P, and
Combined methods take into account the angular distribution function
in estimating added resistance in irregular waves as shown in Eq. (17),
while for Shopera and Kreitner the angular distribution function is not
applied, since these methods work directly with irregular waves, so a

normal directional spreading is presumably included in the methods.
Since STA2 is applicable to the mean resistance increase in long crested
irregular head waves according to the original intention, the angular
distribution function in Eq. (18) was not used.

According to the study of Lang and Mao (2021), it was found
that the added resistance rose more drastically as the significant wave
height increased compared to the linear superposition. In their work, a
wave height correction factor (𝐶𝐻𝑠

= 3.5
√
𝐻𝑠) was established that can

be used to account for the effects of higher resistance brought on by a
large vessel’s motion as well as decreased propulsion efficiency in rough
seas. This correction is reflected by multiplying the added resistance
due to waves (𝑅𝑤𝑎𝑣𝑒) by the wave height correction factor (𝐶𝐻𝑠

), and
Its effectiveness in minimizing errors between full-scale measurements
and estimated values from the semi-empirical method has been shown.
In this study, since the Combined method basically implemented the
CTH method in its original form, the wave height correction factor
was applied to the CTH method also when it was used as part of the
Combined method.

Wave resistance over the significant wave height
As the significant wave height increased, added resistance due to

waves tended to increase very steeply. In particular, the difference in
results between methods at a height of 2 m or more was noticeable.
For the considered ships A and B, the results of the Combined, CTH
methods, and STA2 were the largest. In both cases, the Shopera and
L&P methods provided similar results, while the Kreitner provided
smaller values compared to the other methods.

Wave resistance over the mean wave period
STA2, CTH, L&P, and Combined method formed a peak at around 8–

9 s for Ship A and 11–12 s for Ship B, and considering the actual length
of the ships, it seemed to match with the resonance frequency positions
properly. In addition, weak local crests were formed at around 4–6 s
and 5–7 s, respectively, which was interpreted as reflecting the increase
in added resistance at a short wavelength. The Combined method
seemed to properly reflect the characteristics of CTH and L&P methods
according to the mean wave period. Shopera and Kreitner methods
showed constant results over the mean wave period, as expected. Since
they focus on estimating maximum added wave resistance and do
not include the mean wave period in the formula, Shopera provided
similar results as the maximum values seen from CTH, L&P, Combined
methods, and STA2, while Kreitner had values less than that.

Wave resistance over the wave heading
Since Shopera, Kreitner, and STA2 only consider added wave resis-

tance in head waves, it was assumed that STA2 and Kreitner provided
the same values at wave headings from 135 to 180 degrees, and from
150 degrees to 180 degrees for Shopera. Moreover, their results in beam
and following waves were set to zero. According to the estimated results
from CTH, L&P, and Combined method, the maximum added resistance
occurred in head waves, and the magnitude became smaller as it went
to the stern direction. It can be seen that the added resistance in the
range between 180 degrees and 135 degrees decreased slightly, then
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Fig. 27. Added resistance coefficient in regular waves of (a) Ship A (𝛼 = 180, 𝑉 = 15.5 knots), (b) Ship B (𝛼 = 180, 𝑉 = 24.7 knots).

Fig. 28. Added resistance of Ship A in irregular waves against (a) significant wave height, (b) mean wave period, (c) wave heading, (d) vessel speed according to various estimation
methods. The 𝑦 axis represents added resistance in irregular waves, and the section indicated by the hatched line is the range beyond the restriction of the corresponding method
(Reference conditions: 𝐻𝑠 = 1 m, 𝑇𝑚 = 10 s, 𝛼 = 180, 𝑉 = 15.5 knots).

Fig. 29. Added resistance of Ship B in irregular waves against (a) significant wave height, (b) mean wave period, (c) wave heading, (d) vessel speed according to various estimation
methods (Reference conditions: 𝐻𝑠 = 1 m, 𝑇𝑚 = 12 s, 𝛼 = 180, 𝑉 = 24.7 knots).

Fig. 30. Speed correction factor (𝑎2) according to Froude no. at (a) 𝐶𝐵 = 0.85, 𝑘𝑦𝑦 = 0.24, (b) 𝐶𝐵 = 0.7, 𝑘𝑦𝑦 = 0.24.
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in the range between 135 degrees and 0 degrees dropped sharply. The
Combined method seemed to follow the results of the two methods,
which were properly weighted for the wave headings. In head waves,
STA2, Shopera provided similar resistances to CTH, L&P, and Combined
method, and Kreitner tended to underestimate significantly compared
to other methods.

Wave resistance over the speed of the ship
Most methods showed a trend of almost linearly increasing added

resistance in proportion to speed. CTH showed a drop in resistance at
a certain speed, which was found to be due to the influence of the 𝑎2
coefficient used in wave motion-induced added resistance. Since the
calculation of 𝑎2 in the CTH method is different for Froude number
smaller and larger than 0.12, where block coefficient (𝐶𝐵) and pitch
gyration (𝑘𝑦𝑦) were introduced in the 𝑎2 equation only at 𝐹𝑛 = 0.12
or higher, it turned out that some combinations of 𝐶𝐵 and 𝑘𝑦𝑦 result
in a discontinuous 𝑎2 as function of 𝐹𝑛. This trend can be seen from
the comparison results of the speed correction factor between the
two methods according to Froude number in Fig. 30. Meanwhile, the
Kreitner method estimated a constant value according to the ship speed,
which was larger or smaller than the other methods depending on
the speed. The Combined method mainly followed the CTH method
in the case of the general cargo ship and the L&P method for the
container ship. As the Combined method integrates the results of the
two methods, the discontinuity of added resistance as a function of 𝐹𝑛
occurring in the CTH method may be visible in some cases.

4.6. Observations from comparison of the combined method with full-scale
measurements

In this section, the results of the combined method were compared
with using full-scale measurement data of ships A and B. As shown in
Eq. (15), the brake power of the ship is estimated by considering the
ship resistance factors, propulsive efficiency, and speed. It is compared
with the main engine power measured from the shaft horsepower meter
on-board.

Figs. 32 and 33 show the percentage of absolute error between the
measured power (𝑃𝑀𝐸𝐴𝑆 ) and the estimated power (𝑃𝐸𝑆𝑇 ) for each
parameter (𝐻𝑠, 𝑇𝑚, 𝛼, 𝑉 ), and it is calculated according to Eq. (23).
Fig. 31 shows an example of the confidence interval, mean line, and
histogram for the error of the data samples. The shadowed range in
the figure is the confidence interval of 95% mean for the samples,
which represents the range of values that there is a 95% probability
that the mean value of the samples falls within. The collected data
of each parameter were divided at regular intervals to obtain the
error defined in Eq. (23) for the samples for each section. In addition,
the confidence interval and mean line representing each section were
estimated, and they were connected. Here, ‘‘no correction’’ means that
added resistance due to waves is not included in the total estimated
power.

𝐸𝑟𝑟𝑜𝑟 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 [%] =
||𝑃𝑀𝐸𝐴𝑆 − 𝑃𝐸𝑆𝑇 ||

𝑃𝑀𝐸𝐴𝑆
× 100 (23)

Error trend over the significant wave height
From Fig. 32(a) and Fig. 33(a), it can be seen that for a significant

wave height of 1 m or less, there is little difference in error between
the methods, including the ‘‘no correction’’. This is as expected since
the added resistance is a small fraction of the total for small waves.
At a significant wave height of 1 m or more, the difference between
‘‘no correction’’ and the other correction methods is clearly visible.
Since there were not many data samples in the range between 3 m
to 4 m, uncertainty was included in the error trend, but the relative
performance difference of each method can be distinguished. It can be
seen that the Combined method gives the smallest error compared to
the other methods over the entire 𝐻𝑠 range, with values in the range
7%–20%, while CTH and L&P show an error of about 10%–25%. The

Fig. 31. An example showing the power prediction errors of collected samples with
the histogram and confidence interval. It corresponds to the case of the ‘‘no correction’’
according to wave headings of Ship A (Refer to Fig. 32(c)). The solid line indicates
the mean line of the power prediction error, shadowed area represents its confidence
interval of 95% mean, and marker is the collected data.

errors of Kreitner, Shopera, and STA2 methods show much larger errors
than these.

Error trend over the mean wave period
The error plotted as a function of the mean wave period in Fig. 32(b)

and Fig. 33(b) ranges from 8 to 26% over the entire range, which is
somewhat smaller than for the other parameters. Compared with ‘‘no
correction’’, the effect of wave correction can be identified for periods
larger than 5 s for Ship A and 7 s for Ship B. It can also be seen that the
errors of CTH, L&P, and Combined methods are significantly smaller in
the vicinity of the peak compared to other methods.

Error trend over the wave heading
Since Shopera, Kreitner, and STA2 are applicable only to head

waves, they have the same error as ‘‘no correction’’ in following and
beam waves. The errors of CTH, L&P, and Combined methods differ
significantly in the range between 60 to 135 degrees compared to other
methods. The Combined method gives the smallest error over most of
the heading range. However, the increase of propulsion power due to
waves of Ship A and Ship B in the range of 0–30 degrees and 0–45
degrees, respectively, seems to be almost insignificant.

Error trend over the speed of the ship
Looking at the error trends over the speed in Fig. 32(d) and

Fig. 33(d), the relative effect of wave correction on the propulsion
power generally decreases as the speed of the ship increases, which
indicates that added resistance increase less rapidly with speed than
the calm water resistance. The Combined method shows a similar error
trend as CTH for the general cargo ship and as L&P for the container
ship and provides generally good performance for all speeds.

Fig. 34(a) shows 𝑅𝑀𝑆𝐸 of power prediction by each method for the
entire in-service data, and Fig. 34(b) represents the relative 𝑅𝑀𝑆𝐸,
of which all the 𝑅𝑀𝑆𝐸 results are normalized based on the 𝑅𝑀𝑆𝐸
of Combined method to identify the relative error degree of each
method. The error metrics used in Fig. 34 are defined in Eqs. (24)–(25).
Since Fig. 28 and Fig. 29 show theoretical results of added resistances
assuming specific conditions, and Figs. 32 and 33 represent the error of
the predicted value for the actual data in all operating conditions, the
results of those figures might give slightly different levels of agreement

105



Ocean Engineering 266 (2022) 112749

18

Y. Kim et al.

Fig. 32. Power prediction error of Ship A against (a) significant wave height, (b) mean wave period, (c) wave heading, (d) vessel speed according to various estimation methods.
The 𝑦 axis represents the absolute errors between the measurements and the estimation as a percentage.

Fig. 33. Power prediction error of Ship B against (a) significant wave height, (b) mean wave period, (c) wave heading, (d) vessel speed according to various estimation methods.

Fig. 34. Error analysis against full-scale measurements for Ship A. Figure (a) and Figure
(b) show 𝑅𝑀𝑆𝐸 and relative 𝑅𝑀𝑆𝐸.

between the different methods.

𝑅𝑀𝑆𝐸 𝑜𝑓 𝑝𝑜𝑤𝑒𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =

√√√√ 1
𝑛

𝑛∑
𝑖=1

(
𝑃𝑀𝐸𝐴𝑆, 𝑖 − 𝑃𝐸𝑆𝑇 , 𝑖

)2 (24)

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙
𝑅𝑀𝑆𝐸𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑

(25)

where 𝑅𝑀𝑆𝐸𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 is the 𝑅𝑀𝑆𝐸 of the selected empirical method,
and 𝑅𝑀𝑆𝐸𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 is the 𝑅𝑀𝑆𝐸 of the Combined method.

It is confirmed that the correction of the propulsion power due to
waves is large and strongly varying as function of 𝑉 , 𝐻𝑠, 𝛼, and 𝑇𝑚
within the range of the collected data used in the study. Referring

to Fig. 34, Relative 𝑅𝑀𝑆𝐸s on the two ships show a similar trend
depending on the overall method, although there is a difference in
the value. Compared to the 𝑅𝑀𝑆𝐸 of the Combined method, Ship
A showed about 30%–45% larger errors for Kreitner, Shopera, and
STA2 and about 8%–9% for CTH and L&P, while Ship B had 14%–19%
and 1%–5% larger errors. Although we did not list the results here,
applying the wave height correction factor also to the L&P method was
effective in reducing errors against in-service data that we collected.
However, we decided not to include the wave height correction to
the L&P method, since it is not part of that method as it is originally
published. One should take caution when it is intended to be used in
general as it is still a preliminary concept.

In the process of obtaining the added wave resistance of the ship
from the in-service data, many uncertainties may be included, such
as errors included in the data and estimation of various resistance
components. It should be noted that while the Combined method
does not include any contribution from steering and yawing to the
added resistance, such effects must be expected to be present, to some
extent, in the in-service data. However, the following interpretation
was obtained in common through the observations of Figs. 32–34. The
methods only valid for head waves such as Shopera, Kreitner, and
STA2 has the effect of reducing errors in the estimation of the added
resistance compared to the case of ‘‘no correction’’. More complicated
methods such as CTH and L&P, which reflect hull shape information
and can be used in any wave headings, can significantly reduce errors.
The Combined method generally has smaller errors than other semi-
empirical methods described here and shows noticeable performance
in estimating added wave resistance at high wave height, resonance
frequency, arbitrary wave headings, and relatively low ship speeds.

5. Conclusions

Estimating the added resistance in arbitrary waves of ships in a
proper way has always been a challenging task. In this study, several
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Table A.1
Experimental study of added resistance in arbitrary waves for tanker.

Model 𝐿𝑝𝑝
[m]

B
[m]

𝐹𝑛
[–]

Wave heading
[deg].

Reference

VLCC 325 53 0.046/0.073/0.091 180 Lee (2015)
VLCC2 323.6 60 0.058 180 Diao et al. (2019)
S-VLCC 323 60 0.137 0/30/60/90/ Park et al. (2019a)

120/150/180
SR221C 320 58 0.15 180 Kashiwagi et al. (2004)
KVLCC2 320 58 0/0.05/0.055/0.09/ 0/30/60/90/ Kashiwagi (1992), Guo and Steen (2011);

0.11/0.142/0.18 120/150/180 Sadat-Hosseini et al. (2013); Park et al. (2016);
Sprenger et al. (2017); Seo et al. (2021)

Tanker2 310 47.2 0 180 Pinkster (1980)
Aframax 245 44 0.0525 180 Diao et al. (2019)
115k Aframax 239 44 0.156 180 Oh et al. (2015)
ULYSSES 187.3 32.3 0.06/0.12/0.168 120/150/180 Papageorgiou and Ptolemaios (2014);

Martinsen (2016)
Handy tanker 176 32.2 0.159/0.171/0.183 180 Chen et al. (2019)
16k Product 145.4 23.4 0.177 180 Li et al. (2016)

Table A.2
Experimental study of added resistance in arbitrary waves for bulk carrier.

Model 𝐿𝑝𝑝
[m]

B
[m]

𝐹𝑛
[–]

Wave heading
[deg].

Reference

JASNAOE-BC 320 58 0.037/0.074/0.124 30/90/150/180 Wicaksono and Kashiwagi (2018);
Wicaksono (2019)

Suezmax BC 285 50 0/0.05/0.1/0.15 0/45/90/135/180 Kadomatsu (1988)
JBC 279 45 0.142 180 Kobayashi et al. (2021)
170k BC 279 45 0.128 0/30/60/90/ Matsumoto (2000)

120/150/180
82k BC 223.5 32.6 0.017 135 Kunpeng et al. (2021)
Panamax BC1 231 38 0.05 180 Diao et al. (2019)
Panamax BC2 216.7 32.3 0.166/0.188 100/120/140/180 Ichinose (2010); Sogihara et al. (2011)
Handymax BC 192 36 0.17 180 Yu et al. (2017)
K-Supramax 192 36 0.172 120/150/180 Lee et al. (2019); Lee et al. (2020)
S-Cb84 178 32.4 0/0.049/0.099/0.166 30/90/150/180 Yasukawa et al. (2019)
S-Cb87 178 32.4 0.142/0.147 180 Yasukawa and Masaru (2020)
Handysize BC 160.4 27.2 0.15 180 Ichinose et al. (2012)
RIOS 2.4 0.4 0.18 180 Iwashita and Kashiwagi (2018)

Table A.3
Experimental study of added resistance in arbitrary waves for liquefied gas carrier.

Model 𝐿𝑝𝑝
[m]

B
[m]

𝐹𝑛
[–]

Wave heading
[deg].

Reference

S-LNGC 290 45 0.13/0.17/0.188 0/30/60/120/150/180 T. Kim et al. (2019), Y. Kim et al. (2019), B.S. Kim et al. (2021)
125k LNG1 273.9 42.3 0.14/0.17/0.2 180 Wichers (1988)
125k LNG2 273 42 0.14/0.17/0.2 90/135/180 Bunnik (1999)
CSSRC LNG 160 26.6 0.036 180 Zheng et al. (2021)

semi-empirical methods were compared using abundant public experi-
mental data with various types, and a new meta-model was proposed
combining existing semi-empirical methods. This method is developed
for the calculation of added resistance for large fleets of ships, so that
robustness, computational efficiency, and applicability to a range of
different ship types are priorities.

From the thorough investigation against experimental data, CTH
and L&P methods were chosen as a basis for the new model due to
high accuracy and the availability against arbitrary wave headings. The
two methods have been combined smoothly using a tangent hyperbolic
function according to wavelengths and wave headings. The coefficients
constituting the combining function were tuned in the direction of
minimizing 𝑀𝑆𝐸 between model experiments and provided for each
ship type. The Combined method showed improved results without
significantly deviating from the prediction range of existing methods. It
has been compared with full-scale measurements of a general cargo and
a container ship. For the two vessels, the errors of Kreitner, Shopera,
and STA2 were larger with about 14%–45%, and CTH and L&P with
1%–9%, compared to the 𝑅𝑀𝑆𝐸 of the Combined method. In partic-
ular, it was found that the estimation of added resistance in arbitrary
waves was more effective in simulating the environment experienced
by ships at sea than the methods considering only head seas. It also

showed good performance in estimating added wave resistance in
the range of high wave height, resonance frequency, arbitrary wave
headings, and low ship speed. As can be seen from the comparison
of models using experimental test data and full-scale measurements,
the Combined method showed good overall performance in various
environments. The findings suggest that the new method can be widely
applied for any purposes requiring the speed-power performance under
the influence of waves such as reference at the initial design stage,
speed corrections in sea trials, or overall performance evaluation of a
fleet, where detailed hull shape information and advanced tools are not
available.

Some of the tank tests in regular waves showed that the interval
between wave frequencies was too sparse, that the experiment was not
sufficiently conducted in some conditions such as short waves, or that
collected samples were scattered even within similar frequency ranges.
Due to these problems, it was difficult to estimate added resistance
in irregular waves using them. If more experimental data in irregular
waves are obtained, detailed comparisons between various estimation
methods will be possible, and with more experimental data for various
conditions, we expect that the reliability of the model can be improved.
Furthermore, since the Combined method is combining two existing
methods, it is likely that the Combined method has some of the same
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Table A.4
Experimental study of added resistance in arbitrary waves for general cargo ship.

Model 𝐿𝑝𝑝
[m]

B
[m]

𝐹𝑛
[–]

Wave heading
[deg].

Reference

S.A. Van Der Stel 152.5 22.8 0.15/0.2/0.25/0.3 180 Gerritsma and Beukelman (1972); Journee (1976)
VWS 2388 (0/2/3) 146.3 24.4 0.2/0.25 180 Kracht (1984); Lee et al. (2018)
Series 60 (4210) 122.0 16.3 0.2/0.266/0.283 180 Sibul (1971); Ström-Tejsen (1973)
Series 60 (4211) 122.0 16.8 0.237/0.254 180 Ström-Tejsen (1973)
Series 60 (4212) 122.0 17.4 0.1/0.15/0.2/ 10/50/90/ Ström-Tejsen (1973); Baree et al. (2006)

0.207/0.222/0.25 130/170/180
Series 60 (4213) 122.0 18.1 0.177/0.195 180 Ström-Tejsen (1973)
Series 60 (4214) 122.0 18.8 0.147/0.165 180 Ström-Tejsen (1973)

Table A.5
Experimental study of added resistance in arbitrary waves for container ship.

Model 𝐿𝑝𝑝
[m]

B
[m]

𝐹𝑛
[–]

Wave heading
[deg].

Reference

DTC 355 51 0/0.052/0.139 0/30/60/90/ Moctar et al. (2012); Yokota et al. (2020);
120/150/180 Sprenger et al. (2016, 2017)

WILS II 321 48.4 0.183 180 Söding et al. (2014)
HCNTR 315 48.2 0.204 180 Park et al. (2019b)
CON 300 40 0.2/0.247 0/45/90/ Tsujimoto et al. (2009, 2012)

140/160/180
Panamax con 270 32.2 0.245 180 Bunnik et al. (2010)
KCS 230 32.2 0.054/0.1/0.16/ 0/45/90/135/180 Simonsen et al. (2013); Sadat-Hosseini et al. (2015);

0.26/0.33/0.4 Stocker (2016); Yasukawa et al. (2019);
Shivachev et al. (2020)

Feeder 191.1 32.3 0.22 90/120/180 Wada (1991)
S175 175 25.4 0.15/0.2/0.25/ 0/30/60/90/ Fujii (1975); Nakamura and Naito (1977);

0.275/0.3 120/150/180 Yamamoto (1986); Yasukawa (2006);
Adnan and Yasukawa (2008)

shortcomings as them, as shown in the analysis of speed effect on
wave resistance. If improved versions of the two methods we combined
become available, where some of the shortcomings are alleviated, our
method should be updated.
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Appendix A. Experimental dataset

See Tables A.1–A.6

Appendix B. Detailed comparison of semi-empirical methods

Comparison according to the wave heading
As can be seen from the model test results, a peak of head waves

was formed near the position where the wavelength and the ship length
matched, that is, the radiation force was the largest. As the wave
direction went from the head of the ship to the beam, the 𝜆∕𝐿 of
the resonance tended to shorten and the resistance amplitude at the
corresponding position tended to decrease.

In Fig. B1(a), the peak position of the STA2 is formed at a shorter
𝜆∕𝐿 than that of the model test, and this trend also can be seen in
other model test cases with a relatively low Froude number on head
waves. Since STA2 was mainly developed for the purpose of correction
of sea trial results, the evaluation for the low-speed range was perhaps
not much considered. According to Holt and Nielsen (2021), a lower
Froude number tended to shift the peak value of the transfer function
towards 𝜆∕𝐿 less than 1, which was not in line with the theory. Liu and
Papanikolaou (2019) also pointed out that the peak position of STA2
was smaller than the actual value when Froude number was less than
0.15. Moreover, since STA2 was assuming the same response amplitude
for 45 degrees off-bow, it did not adequately reflect changes in the
resonance frequency position and amplitude of the added resistance
according to changes in the encountering angle in head waves (Figs. B1
(a)–(f)).

CTH method adjusts the peak position in arbitrary waves by using
an encountered frequency correction factor, and the maximum added
resistance is calculated by applying the amplitude adjustment factor
and compensation factor for the roll motion. As can be seen from
the figure, the peak position and the maximum value of the transfer
function gradually decreased as the wave direction moved from bow
to stern. On the other hand, the L&P method uses wave heading-
based trigonometric functions to approximate the location of resonance
frequency and maximum added resistance in various headings. As a
result, the peak wavelength position was around 𝜆∕𝐿 = 1 at 180
degrees, and as the heading angle decreased, the peak wavelength
gradually decreased, and then the peak position was the shortest at 90
degrees. In following waves, the peak position was symmetrically set
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Table A.6
Experimental study of added resistance in arbitrary waves for ro-ro/ferry.

Model 𝐿𝑝𝑝
[m]

B
[m]

𝐹𝑛
[–]

Wave heading
[deg].

Reference

Maric cruise 240 32 0.24 180 Liu et al. (2019)
HSVA cruise 220.3 32.2 0.166/0.232 0/30/60/90/ Ley et al. (2014); Valanto et al. (2015)

120/150/18
PCC 190 32.3 0.249 140/180 Tsujimoto et al. (2009)
RoPax 90 17.8 0/0.087/0.2424 0/180 Sprenger et al. (2015); Liu and Papanikolaou (2020)

Fig. B1. Added resistance of 170k bulk carrier at 𝐹𝑛 = 0.128. (a) 𝛼 = 180, (b) 𝛼 = 150, (c) 𝛼 = 120, (d) 𝛼 = 90, (e) 𝛼 = 30, (f) 𝛼 = 0.

Fig. B2. Added resistance in short waves of (a) SR221C, 𝐹𝑛 = 0.15, (b) DTC, 𝐹𝑛 = 0.139, (c) HSVA, 𝐹𝑛 = 0.232. The figure corresponds to the results of head waves.

based on 90 degrees. In both methods, the maximum added resistance
decreased as the wave heading decreased, but as explained earlier, the
peak position tended to be somewhat different.

Comparison in short waves
For added resistance in short waves, wave diffraction due to bow

reflection dominates, while the effect by wave radiation is almost
insignificant. As can be seen from Fig. B2, STA2 has little curvature
in the short waves of wavelength less than 0.3. As Yang et al. (2018)
pointed out in their paper, since the reflection coefficient of STA2
becomes unity in the short wave region resulting in constant resistance
coefficient, STA2 did not properly estimate an increase of added re-
sistance in the corresponding wavelength range in our case studies.
On the other hand, L&P and CTH seems to reasonably estimate the
tail shape for short waves., The CTH method was most consistent with
experimental results in short waves.

Comparison at high Froude number
As illustrated in Fig. B3, STA2 was less accurate in estimating the

added wave resistance of a high Froude number than other meth-
ods because the maximum resistance at the resonance frequency was
underestimated or the positions of the resonance frequency did not
match. Meanwhile, in accordance with the bar chart (Fig. 5), the added
resistance value estimated from L&P had greater 𝑀𝑆𝐸 under high-
speed operating conditions than that of CTH. As a result of a closer look
at the model experiments conducted at Froude number more than 0.25,
it generally consisted of datasets of ships that operate in high-speed,
such as container ship, general cargo, and Ro-Ro/Ferry. In the case of
a container ship at a high Froude number, the two methods provided
almost similar results, and even though not described here, there was
also no significant difference in the case of other container ships. From
such findings, it was determined that this error was not caused by the
high Froude number but rather by certain ship types such as general
cargo and ro-ro/ferry.
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Fig. B3. Added resistance in high Froude number of (a) KCS, 𝐹𝑛 = 0.4, (b) S175, 𝐹𝑛 = 0.3, (c) S60, 𝐹𝑛 = 0.283. The figure corresponds to the results of head waves.
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ABSTRACT
Vessels experience additional resistance by waves during

navigation, which becomes a factor that increases energy con-
sumption and exhaust gas emissions. Proper estimation and un-
derstanding of this additional resistance is an important task
in the marine industry. In this study, we propose a machine-
learning model that predicts added resistance in arbitrary wave
headings using basic ship parameters. First, extensive model ex-
perimental data on added resistance for different ship types and
sizes of ships were acquired. To build a proper machine learn-
ing model, algorithms such as extreme gradient boosting (XGB),
random forest (RF), artificial neural network (ANN), k-nearest
neighbor (ANN), gaussian process regression (GPR), and sup-
port vector regression (SVR) were considered. Through nested
cross-validation, the evaluation and hyperparameter tuning of
algorithms were performed together. As a result, SVR was se-
lected among the candidate models due to high accuracy with
robustness to the outliers. In the validation with test data of head
waves and all wave headings, the R2 scores of the selected model
were 0.6738-0.7584 and 0.6744-0.7449, respectively, which was
better than estimation methods for added resistance in head
waves such as STAWAVE-2 and Cepowski (2020), and similar
accuracy to those applicable in arbitrary wave headings. Even
estimation of added resistance in irregular waves of sea states,
the relative deviation with the semi-empirical methods for arbi-
trary waves was not large, on average 10%.

∗Corresponding author: youngrong.kim@ntnu.no

Keywords: Wave added resistance; machine learning; ship
hydrodynamics; model test

NOMENCLATURE
α Wave heading
B Breadth
L Length between perpendiculars
Tm Mean draft
Td Design draft
Cb Block coefficient
θ Trim angle
Fn Froude number
λ Wave length
Caw Non-dimensional added wave resistance coefficient
Raw Added resistance in regular waves
RAW Mean wave resistance increase in irregular waves
ρ Water density
g Gravity acceleration
ω Circular wave frequency
S Modified Pierson-Moskowitz spectrum of ITTC 1978
Hs Significant wave height
T1 Average wave period
ζa Wave amplitude

1. INTRODUCTION
During the voyage, the ship is subject to added resistance

due to its surrounding wave conditions, which may directly affect
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the speed-power performance. For such reason, the estimation
of added resistance in waves has been of great interest to many
researchers. There are various ways to estimate the added wave
resistance of a ship, but especially for purposes such as the initial
design stage in which the detailed geometry is not determined,
or performance analysis of global fleets for which it is difficult
to obtain detailed hull shape, one often relies on semi-empirical
methods.

STAWAVE-2 (Boom, 2013) [1], perhaps the most widely
known semi-empirical method, uses the ship main dimensions
to approximate the transfer function of the mean resistance in-
crease in head waves. It has mainly been applied as a correc-
tion method for the sea trial. Liu and Papanicolau (2016) [2]
proposed a method of combining Faltinsen (1980) [3] and Jink-
ine and Ferdinande (1974) [4], and in subsequent studies [5–7],
the method was extended to various wave headings by regres-
sion analysis based on extensive experimental data. Lang and
Mao (2020, 2021) [8, 9] also proposed an estimation method
for added resistance in arbitrary waves based on Tsujimoto et
al. (2008) [10], and Jinkine and Ferdinande (1974) [4]. How-
ever, such semi-empirical methods for arbitrary wave headings
required more detailed information related to the hull shape such
as length of entrance and length of run. Meanwhile, there have
been attempts to apply a machine learning algorithm. Cepowski
(2020) [11] proposed a method of predicting added resistance by
applying ANN to model experimental data in head waves, which
showed very good agreement with the test data set. Martic et al.
(2021) [12] presented an ANN model for evaluating added resis-
tance in head waves for a container ship in their study, and the
3D panel method was used to implement the model. Even though
the ANN-based methods showed good performance for the pre-
diction of added wave resistance, they were limited to head wave
regions, and the consideration of various machine learning algo-
rithms was insufficient.

Based on the results of these preceding studies, this study
proposes the application of machine learning models that pre-
dict added resistance not only in head waves but also in arbitrary
waves using model experimental data including basic informa-
tion on ships. The following Section 2 introduces the overall
procedure for implementing the machine learning model, and de-
scriptions regarding the dataset, input parameters, and candidate
machine learning algorithms. Section 3 selects an appropriate
model through nested cross-validation and analyzes the model
using explainable AI methods. Thereafter, verification of test
data with other semi-empirical methods including the selected
model in the study is performed, and comparison is also per-
formed on irregular waves. Section 4 includes conclusions.

2. MATERIALS AND METHODS
2.1 Research procedure

In this study, in order to compare and evaluate the predic-
tion methods for added resistance in waves, the measured values
for added wave resistance coefficients of model ships performed
in various towing tanks and seakeeping basins were used. The
dataset is composed of data from published literature, and con-
sists of a total of 47 ships and 2519 samples, including various
wave directions and experimental conditions. Figure 1 shows the
added resistance coefficient according to wavelength in various
wave headings from the data samples used in the study. As can
be seen from the figure, plotted samples show certain trends, and
large scatterings of samples are observed, especially in the short
wavelength and resonance frequency regions. There may be var-
ious causes for such scattering, but factors such as different water
tank environments and difficulties in implementing some experi-
mental conditions are believed to have played a major role. This
study tried to reduce the effect of some samples with large devi-
ations from the overall trend by using as many samples as pos-
sible to implement the model. Moreover, to implement a model
predicting added wave resistance coefficient (Caw) that may have
variability according to different hull shapes and experimental
conditions, we introduced a machine learning algorithm repre-
sented by f (x) of Equation 1 such as XGB, RF, KNN, ANN,
GPR, and SVR in this study. For generalization and improved
performance of the model, the dimensionless parameters L/B,
B/Tm, Tm/Td , θ , Cb, Fn, α , and λ/L related to the hull dimen-
sion and operating conditions of the ship were used as the inputs
to the model. Here, we selected inputs that can be easily obtained
without knowing the detailed hull shape among the parameters
used in several previous studies [1,7,9,11]. The results of corre-
lation analysis on the input parameters of the model are shown in
Figure 2, and the values in the figure represent the Pearson corre-
lation coefficients between parameters. Here, α and Fn show the
greatest linear correlation with Caw, which is in line with the fact
that the added wave resistance of the ship increases at high speed
and head waves. On the other hand, there seems to be a weak
or almost no linear correlation with the added wave resistance as
other parameters have a correlation coefficient of less than 0.2.

FIGURE 1. SCATTER PLOTS OF ADDED WAVE RESISTANCE
COEFFICIENT ACCORDING TO THE WAVE HEADINGS.
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Caw = f (L/B,B/Tm,Tm/Td ,θ ,Cb,Fn,α,λ/L) (1)

where f (x) represents machine learning algorithms such as
XGB, RF, KNN, ANN, GPR, and SVR.

FIGURE 2. CORRELATION ANALYSIS PLOT OF INPUT PA-
RAMETERS FOR THE ADDED WAVE RESISTANCE MODEL.

The entire procedure for implementing the added wave re-
sistance model in which the machine learning algorithms are ap-
plied is as follows:

(1) Data preparation: The model experiment data on added
wave resistance of ships were collected from various pub-
lished sources. The dataset consists of a total of 47 ships
and 2519 samples, including various wave heading and ex-
perimental conditions (See Table 1 and Figure 3).

(2) Model selection: Through the nested cross-validation, per-
formance evaluation and hyperparameter tuning of several
candidate machine learning algorithms are performed. As a
result, the most stable and accurate model is selected.

(3) Model training: The selected model is trained on the training
data set using the hyperparameter settings obtained in the
previous model selection process.

(4) Model validation: The validation of the selected model was
performed for the experiment data not used for training.
Here, the predictive performance is compared between other
existing semi-empirical models and the machine learning
model selected in this study. In addition, the relative de-
viation of the added resistance in the irregular waves is con-

firmed by applying the wave spectrum to the predicted addi-
tional wave resistance coefficient.

TABLE 1. RANGE OF INPUT PARAMETERS OF THE EXPERI-
MENTAL DATASET USED IN THE STUDY.

Parameter Range
L/B 5.05 ∼ 8.39

B/Tm 2.25 ∼ 6.26
Tm/Td 0.37 ∼ 1.00

θ -1.40 ∼ 1.00
Cb 0.50 ∼ 0.88
Fn 0.00 ∼ 0.40
α 0 ∼ 180

λ/L 0.1 ∼ 2.0

FIGURE 3. RATIO OF MODEL EXPERIMENTAL DATA CATE-
GORIZED BY SHIP TYPE.

2.2 Machine learning algorithms
In this study, Scikit-learn [13], which is an open-source li-

brary for Python language, is used to implement various machine
learning algorithms. In addition, hyperparameter tuning of the
model is performed using GridSearchCV, which can evaluate all
hyperparameter combinations within a defined range. A brief
theoretical background for the machine learning algorithms used
in this study is summarized as follows and refer to the cited pa-
pers for more details about the algorithm.

Extreme gradient boosting (XGB) The XGBoost al-
gorithm is one of the gradient tree boosting algorithms [14, 15],
which combines all the predictions of a set of weak learners for
making a stronger learner. The first learner is fitted to the entire
space of the input data, and the subsequent model is fitted to the
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previous residual to reinforce the weak learner. This process is
repeated continuously until the defined criteria are met, and the
prediction results for this sample are expressed as in Equation
2. Since XGB aims to prevent overfitting and optimize compu-
tational resources, the objective function includes a loss function
and a regularization term, as shown in Equation 3.

ŷi =
K

∑
k=1

fk(xi) (2)

Ob j =
n

∑
i=1

l(yi, ŷi)+
K

∑
k=1

Ω( fk) (3)

where K represents the number of decision trees in the en-
semble model, fk is the k-th decision tree in the model, l is the
loss function, and Ω is a penalization term for the complexity of
the model.

Random forest (RF) Random forest is an ensemble
learning method, which grows multiple decision trees as base
learners and averages their predictions to obtain better predic-
tions [16, 17]. Bagging repeatedly selects randomly replaced
samples from the training set and fits the regression tree to these
samples. In the training process, the predictor variable that pro-
vides the best split is used for a binary split on the corresponding
node in a tree. Here, the objective function is to minimize im-
purity criteria such as GINI or entropy. After training, the final
prediction can be obtained by averaging the predictions of all in-
dividual regression trees for the unseen sample xi as in Equation
4.

ŷi =
1
B

B

∑
b=1

fb(xi) (4)

where fb is a regression tree, and B is the number of boot-
strapping.

K-nearest neighbor regression (KNN) The k-nearest
neighbor algorithm is a non-parametric method that finds the
nearest k neighbors to the new sample in the training data [18].
Briefly, the algorithm calculates the distance d(u,x) between the
target sample and the given sample as in Equation 5 (Euclidean
distance is used in this study), and the average value of k-nearest
neighbors are used as its predicted value, as shown in Equation
6.

d(u,x) =

√√√√
p

∑
j=1

(u j − x j)2 (5)

ŷi =
1
K

K

∑
k=1

yik (6)

where u is the unseen sample, d(u,x) is the Euclidean dis-
tance between the unseen sample and a given sample, p is the
dimension of the input vector, K is the defined number of nearest
neighbors, and yk is the output of the nearest neighbor.

Artificial Neural Network (ANN) The artificial neural
network (ANN) has been one of the most popular machine learn-
ing algorithms, and a multilayer perceptron algorithm is used to
train a neural network by backpropagation. It consists of an in-
put layer, hidden layer, and output layer, and can be expressed as
in Equation 7. In this study, Rectified Linear Unit (ReLU) func-
tion [19] is used for the transfer function for the hidden layer (g),
and the squared error with a L2 regularization is used for the ob-
jective function as in Equation 8 [20]. In addition, a multilayer
perceptron algorithm updates the weight of the neural network
through backpropagation.

ŷi = g

(
ωi0 +

p

∑
j=1

xi jω j

)
(7)

Ob j =
1
2

n

∑
i=1

(yi − ŷi)
2 +

λ
2

p

∑
j=1

||ω j||2 (8)

where g is relu function, w0 is bias, x is input to neuron, ω
represents weights, p is the number of inputs from the previous
layer, and λ is weight penalty parameter.

Gaussian Process Regression (GPR) A Gaussian
process is a nonparametric, Bayesian approach to a regression
problem, which calculates the probability distribution over all
possible functions that fit the data [21]. In GPR, prior knowl-
edge of the function space can be specified as a Gaussian process
prior using the mean function m(x) and the covariance function
k(x,x′), known as the kernel function. After that, it uses the train-
ing data to calculate the posterior distribution and the predicted
posterior distribution for the invisible sample. It can be described
as follows:

m(x) = E[ f (x)] (9)

k(x,x′) = E[( f (x)−m(x))( f (x′)−m(x′))] (10)

f (x)∼ GP(m(x),k(x,x′)) (11)

Copyright © 2022 by ASMEV05BT06A026-4

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/O

M
AE/proceedings-pdf/O

M
AE2022/85901/V05BT06A026/6929198/v05bt06a026-om

ae2022-78433.pdf by N
TN

U
 U

niversitets Biblioteket user on 19 O
ctober 2022

118



Support Vector Regression (SVR) Support vector
machine (SVM) uses kernel functions for mapping nonlinear
problems in input space to linear problems in new feature space
with higher dimensions, and they are created so that the decision
boundary has a maximum margin [22, 23]. In addition, the num-
ber of hyperparameters to be adjusted is not as many as other ma-
chine learning algorithms, so it has the advantage of being able
to identify factors that affect learning relatively simply. The Sup-
port Vector Regression (SVR) uses the same principles as SVM,
of which the approximated function and the objective function
can be expressed as in Equations 12-13. To solve the complex
nonlinear regression problems through kernels, radial basis func-
tion (RBF) is considered in this study as in Equation 14.

ŷi = ωT φ(xi)+b (12)

Ob j =
1
2
||ω||2 +C

n

∑
i=1

|ξi|

sub ject to |ŷi − yi| ≤ ε + |ξi|
(13)

k(xi,x j) = exp
(
−||xi −x j||2

2σ2

)
(14)

where φ(x) is the higher dimension space converted from
the input vector, and ω is weight vector, and b represents a
threshold. C is the regularization parameter, ε is the margin of
error, and ξ is the deviation from the margin, and σ is the length
scale of the kernel.

2.3 Evaluation metrics
In this paper, the coefficient of determination (R2), root

mean squared error (RMSE), and mean absolute error (MAE) are
used as a metric for evaluating the accuracy of models, and the
formulas are as shown in Equations 15-17.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳi)2 (15)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (16)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (17)

3. RESULTS
3.1 Model selection

Ideally, if there is a lot of data, it is best to divide the en-
tire dataset into a training set, validation set, and test set inde-
pendently. However, due to the nature of ship model experi-
ments, it is time-consuming and expensive, and the number of

publicly available data is limited. In addition, since this study
aims to compare the performance of various machine learning al-
gorithms, nested cross-validation, which is suitable for efficient
use of dataset even in relatively small amounts of data sets is
introduced in the study. Unlike model selection using typical
cross-validation, nested cross-validation can prevent leakage of
information and overfitting of data because the dataset is divided
into multiple folds, and model evaluation and hyperparameter
tuning are performed simultaneously [24].

As shown in Figure 4, the inner fold is used for selecting
the best model within the range of hyperparameters, while the
outer fold is used for evaluating the trained model from the inner
loop with the test set. In this study, 10 outer cross-validations
and 5 inner cross-validations were applied and the 6 candidate
models XGB, RF, KNN, ANN, GPR, and SVR were compared.
As listed in Table 2, grid search was performed on the range of
hyperparameters for each algorithm, and hyperparameters of the
model with the best performance were finally used for model
training.

FIGURE 4. DIAGRAM SHOWING THE NESTED CROSS-
VALIDATION WITH FIVE OUTER AND FIVE INNER LOOPS.

Figure 5 shows the verification results of the candidate
models for the test data of the outer loop in the nested cross-
validation. The average R2 values of XGB, SVR, and RF were
0.8939, 0.8792, and 0.8748, respectively, which were remark-
ably higher among candidate algorithms, while SVR, GPR, and
ANN showed the lowest errors in RMSE and MAE metrics at
0.34, 0.36, and 0.39. Overall, SVR showed excellent general-
ization capability with high prediction accuracy for all metrics
used.

Figure 6 shows one of the ship cases used for training (S175
Container, Fn=0.25) as an example to visualize the prediction
trends of each method. The blue dot represents a case where
the observed value is larger than the predicted value, and the red
dot represents a case where the observed value is smaller than the
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TABLE 2. THE RANGES AND SELECTED VALUES OF HYPER-
PARAMETERS FOR THE MACHINE LEARNING ALGORITHMS.

ML
algorithm Parameter name Search range

Optimal
value

XGB n estimators [500, 2000] 2000
learning rate [0.01, 0.1] 0.01
max depth [4, 8] 8
min child weight [1, 5] 3
subsample [0.5, 0.9] 0.5
colsample bytree [0.5, 0.9] 0.9
alpha [0.001, 0.1] 0.01
gamma [0.2, 0.4] 0.2

RF n estimators [500, 2000] 500
max depth [10, 50] 50
max features [auto,sqrt,log2] log2
min samples leaf [3, 11] 3
min samples split [3, 11] 3
bootstrap [True, False] False

KNN n neighbors [1, 20] 3
leaf size [5, 30] 10
p [1, 5] 2

ANN hidden neurons [4, 14] 14
hidden layers [1, 2] 2
batch size [8, 64] 16
epochs [10, 1000] 1000
learning rate [0.0001, 0.1] 0.01

optimizer
[SGD, RMSprop,
Adagrad, Adam] Adam

dropout rate [0, 0.8] 0
weight constraint [1, 5] 3

GPR n restarts optimizer [0, 64] 0
alpha [0.0001, 1] 0.01

SVR kernel [rbf, sigmoid] rbf
c [0.1, 100] 10
gamma [0.01, 10] 1

predicted value. In other words, it can be said that a model with
a small distance between the predicted surface and the observed
sample and has evenly distributed blue and red samples across all
prediction ranges, is well-trained without bias. XGB showed the
highest R2 as a powerful algorithm that repeatedly combines the
predictions of multiple weak learners, but the predicted surface
for the additional wave resistance coefficient due to wavelength
and wave was not smooth. Such a trend of decision tree-based
models can also be seen in RF. On the other hand, SVR has a
smooth surface and evenly distributed sample colors, so it can be
seen that it is robust to outliers and seems to better simulate the
added resistance of ships by waves.

Since the data collected in the study may include uncertainty
from experiments in different water tank environments and short-
wavelength regions, it was judged that a model robust to outliers

and noise would be best for the aim of the study. Therefore,
SVR was selected as the final model among candidate algorithms
based on the model evaluation results by nested cross-validation
and the analysis of the predictive surface.

FIGURE 5. EVALUATION OF MACHINE LEARNING MODELS
THROUGH NESTED CROSS-VALIDATION.

3.2 Interpretation of model using SHAP method
Recently, there have been studies dealing with how to inter-

pret predictions obtained from machine learning models [25–27].
Here, SHapley Additive exPlanations (SHAP) method [28] based
on cooperative game theory was introduced to analyze the global
and local relationship between input parameters and added wave
resistance coefficient. The Shapley value means the average
expected marginal contribution of one feature after all possible
combinations have been considered, which can be expressed as
in Equation 18.

φi = ∑
S⊆M\{i}

|S|!(M−|S|−1)!
M!

(v(S∪{i})− v(S)), i = 1, ...,M.

(18)
where φi is Shapley value of the ith input parameter,

S ⊆ M = {1, ...,M} is a subset consisting of M parameters, and
v(x) is the contribution of S calculated based on the marginal
contribution of the input values.

The left side of Figure 7 represents the global importance
of parameters used in SVR model. Since the parameters with
high importance are indicated from top to bottom, λ/L (0.37), α
(0.33), and Fn (0.25) have the highest average impact on model
output among the input parameters, while the influence of Tm/Td
(0.03) and θ (0.02) was relatively small compared to other input
parameters. The results of Shapley value had the advantage of
being able to grasp the importance of variables with non-linear
relationships, such as λ/L, slightly different from the results of
the correlation analysis in Figure 2.
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FIGURE 6. AN EXAMPLE OF THE ADDED WAVE RESISTANCE
COEFFICIENT PREDICTION (S175 CONTAINER, FN=0.25).

The right side of Figure 7 shows the SHAP’s summary plot
describing the relation between the input and Shapley values.
The x-axis is determined by the Shapley value, and each sample
point is a Shapley value for the corresponding feature with the
y-axis showing the distribution of the feature values. The color
denotes the value of the parameter, where the red-colored point
means the higher values, and the blue one represents the lower
values. That is, if the Shapley value increases as the value of the
parameter increases, the corresponding parameter has a positive
impact on the added wave resistance, and vice versa. Similarly,
the SHAP dependency plot (Figure 8) shows the Shapley value
in more detail according to the change in the input value. As can
be seen in the Shap summary plot and the dependence plot, the
Fn and α have a clearly positive correlation relationship with the
Shapley value, which is consistent with generally known results.
L/B also seems to have a positive correlation with added wave
resistance overall but tends to have the most negative impact at
L/B = 6. λ/L has a clear negative effect on the high value, but

has a relatively high Shapley value near the region of the res-
onance frequency (λ/L ≈1). This showed that the wavelength
and added wave resistance are in a complicated and nonlinear
relationship, as can be seen in the dependence plot. There is
no obvious pattern observed in Shapley values of Tm/Td and θ ,
which may be due to the influence of lacking the collected dataset
according to changes in Tm/Td and θ .

FIGURE 7. SHAP FEATURE IMPORTANCE AND SUMMARY
PLOTS OF ADDED WAVE RESISTANCE COEFFICIENT.

3.3 Validation by test data set
Validation of the SVR model and other previous methods

(STAWAVE-2 [1], Cepowski (2020) [11], Lang&Mao (2021) [9],
SNNM [7]) is performed on the ship experiment cases that are
not used for the model training. Details of a container ship [29,
30], bulk carrier [31], and an oil tanker ship [32] used for the test
data are shown in Table 3. The predicted values of each method
for the experimental cases of ships A, B, and C and their accuracy
are shown in Figures 9-10 and Tables 4 and 5. Considering the
scope of application of each method, the prediction results are
divided into head waves and all directions of waves, respectively.
Since the STAWAVE-2 and Cepowski (2020) models can only
predict in head waves, the identical values of the added resistance
according to the wavelength were applied from 135 degrees to
180 degrees. For the rest of the wave heading regions (0 degrees
to 135 degrees), the prediction values are set to 0, which also can
be identified in Figure 10.

Overall, SNNM predicted the added resistance at all ships’
head waves well with R2 between 0.7704 and 0.7871, and RMSE
and MAE were also relatively low. In addition, SVR showed
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FIGURE 8. SHAP FEATURE DEPENDENCE PLOTS FOR THE
MAIN PARAMETERS.

fairly good performance with R2 between 0.5738 and 0.7584 al-
though its accuracy was slightly lower than SNNM. Since Ce-
powski’s ANN model was trained only with 180 degrees exper-
imental data of 14 ships, which was a smaller dataset than the
other methods, it tended to be less accurate in some vessels. The
prediction accuracy of STAWAVE-2 and Lang&Mao (2021) was
also good enough, but in a specific case (Ship C) among the ships
compared in this study, the prediction power was significantly
reduced (In Tables 3-4, R2 denoted by ’**’ means a negative
value and corresponds to a case where using the regression line
is worse than using the average of the samples [33]).

Meanwhile, looking at the accuracy in all wave directions,
the predictive power in arbitrary waves was excellent for SNNM,
SVR, and Lang&Mao (2021). There was a large error gap be-
tween the method only for head waves and the method for arbi-
trary waves. This is because the added resistance in the beam and
following waves corresponding to 135 degrees to 0 degrees was
not considered.

3.4 Comparison of added resistance in irregular waves
To compare the added resistance of the ship in irregular

waves by Caw predictions from different methods, RAW was cal-
culated by assuming the wave spectrum at specific sea states.
A modified Pierson-Moskowitz wave spectrum, which is widely
used in well-developed seas, was applied to the Caw as shown in
Equations 19-21, and RAW was estimated as shown in Equations
22-23. Here, wave spectrums corresponding to sea state 3 to 7
(See Figure 12) were applied to the comparison cases. In addi-
tion, prediction results of the added wave resistance coefficient

TABLE 3. MAIN PARTICULARS AND EXPERIMENTAL CON-
DITIONS FOR SUBJECT SHIPS.

Particulars Ship A Ship B Ship C
Ship type Container Bulk carrier Oil tanker

Length, L [m] 300 279 323
Breadth, B [m] 40 45 60

Mean draft, Tm [m] 14 16.5 21
Block coefficient, Cb [-] 0.65 0.86 0.81

Froude no., Fn [-] 0.2 0.128 0.137

FIGURE 9. PLOTS OF THE TRUE VERSUS PREDICTED VAL-
UES OF ADDED RESISTANCE COEFFICIENTS IN HEAD WAVES.

of Ship B (See Figure 11, in which the overall prediction error
for all methods was smallest in the previous section, were used.

S(ω) =
A

ω5 e−B/ω4
(19)
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FIGURE 10. PLOTS OF THE TRUE VERSUS PREDICTED VAL-
UES OF ADDED RESISTANCE COEFFICIENTS IN ALL WAVE
HEADINGS.

A = 173
H2

s

T 4
1

(20)

B =
691
T 4

1
(21)

Raw(ω) = ρgζ 2
a B2/LCaw (22)

RAW = 2
∫ ∞

0

Raw(ω)S(ω)

ζ 2
a

dω (23)

In the current study, since sea trial or in-service data was not
used for the validation, it was not possible to accurately evaluate
the prediction error of the models in irregular waves. However,
the relative deviation between each method was calculated based

TABLE 4. VALIDATION RESULTS BY TEST DATA SET IN
HEAD WAVES.

Test case Model R2 RMSE MAE
Ship A STAWAVE-2 0.4085 2.40 1.82

Cepowski (2020) 0.3641 2.49 1.87
Lang&Mao (2021) 0.6885 1.74 1.39
SNNM 0.7704 1.50 1.23
SVR 0.6382 1.88 1.53

Ship B STAWAVE-2 0.7438 1.10 0.95
Cepowski (2020) 0.8149 0.94 0.77
Lang&Mao (2021) 0.9040 0.67 0.56
SNNM 0.7871 1.00 0.83
SVR 0.7584 1.07 0.89

Ship C STAWAVE-2 0.0514 1.40 1.06
Cepowski (2020) 0.4300 1.09 0.85
Lang&Mao (2021) ** 2.18 1.71
SNNM 0.7720 0.69 0.52
SVR 0.5738 0.94 0.77

TABLE 5. VALIDATION RESULTS BY TEST DATA SET IN ALL
WAVE HEADINGS.

Test case Model R2 RMSE MAE
Ship A STAWAVE-2 0.5177 2.23 1.70

Cepowski (2020) 0.4962 2.28 1.73
Lang&Mao (2021) 0.7272 1.68 1.33
SNNM 0.8378 1.29 1.01
SVR 0.6744 1.83 1.47

Ship B STAWAVE-2 0.4560 1.69 1.14
Cepowski (2020) 0.4743 1.66 1.09
Lang&Mao (2021) 0.7782 1.08 0.74
SNNM 0.8597 0.86 0.68
SVR 0.7449 1.15 0.99

Ship C STAWAVE-2 0.3297 1.42 1.02
Cepowski (2020) 0.4768 1.25 0.90
Lang&Mao (2021) ** 1.80 1.28
SNNM 0.7880 0.80 0.57
SVR 0.7261 0.91 0.73

on the predicted value of the SVR model as shown in Equation
24, and through this, the prediction trends of resistance in irreg-
ular waves could be compared. That is, if the relative deviation
is 0%, it means that the prediction value of the compared model
accurately matches the predicted value of the SVR. Figure 13
shows the results of summing all the added wave resistance in
head waves (within ± 45 degrees off the bow), and Figure 14
shows the results in all wave directions (0-360 degrees). The
value shown above the bar chart of each sea state is the predicted
added resistance in irregular waves by the SVR method.
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FIGURE 11. THE RESULTS OF THE ADDED WAVE RESIS-
TANCE COEFFICIENT PREDICTION FOR SHIP B.

Relative deviation[%] =
|RAW ,MODEL − RAW ,SV R |

RAW ,SV R
×100 (24)

As shown in Figure 13, as a result of comparing the relative
deviations for sea states 3 to 7 in head waves, the relative dif-
ference with SNNM was the smallest at about 2-20%, and other
methods differed by an average of 20% and up to 38%. How-
ever, in the case of all wave directions in Figure 14, Lang&Mao
(2021) and SNNM, which are applicable to arbitrary waves, dif-
fered by less than about 10% and up to 20% on average, while
STAWAVE-2 and Cepowski (2020) differed by 50-80%. The re-
liability of the SVR model in irregular waves could be verified
to some extent because the relative deviation of SNNM, which
showed the most accurate prediction for Caw, was not large.

Indeed, the added resistance of head waves is considerably
greater than that of the beam or following waves. However, as-

FIGURE 12. ITTC WAVE SPECTRUM ACCORDING TO THE
SEA STATES.

suming that the ship encounters random waves in all directions,
the prediction results of additional wave resistance in irregular
waves showed a significant difference between methods for arbi-
trary waves and head waves as can be seen in Figure 14. In other
words, considering the realistic environment that ships experi-
ence at sea, this fact supports the need for resistance prediction
methods at arbitrary waves.

FIGURE 13. THE SUM OF ADDED RESISTANCE IN IRREGU-
LAR HEAD WAVES.

4. CONCLUSIONS & FUTURE WORK
In this study, we proposed a method of predicting added

wave resistance in arbitrary waves by applying machine learn-
ing algorithms to basic ship parameter data. Various machine
learning algorithms were considered, and SVR, which showed
the most stable and best performance, was selected as the final
model through nested cross-validation. In addition, the predic-
tive effect of each parameter on the output of the model was
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FIGURE 14. THE SUM OF ADDED RESISTANCE IN IRREGU-
LAR ARBITRARY WAVES.

further interpreted through Shapley value, which had a global
influence on the prediction of added wave resistance in the or-
der of λ/L, α , and Fn. Validation of the selected model was
performed on 3 model ship cases not used in the training pro-
cess, and SVR showed excellent overall predictive performance
with R2 0.6744-0.7449, RMSE 0.91-1.83, and MAE 0.73-1.47 in
various wave headings compared to other existing methods. As
a result of estimating the added resistance in irregular arbitrary
waves according to sea state 3 to 7, the relative deviation of SVR
with semi-empirical methods for arbitrary waves was approxi-
mately 10% on average.

Therefore, the model proposed in this study had the ad-
vantage of being able to estimate added resistance in all wave
headings fairly accurately using simple ship information with-
out advanced tools. It is thought that this can be applied practi-
cally throughout the marine industry, including initial ship design
without detailed hull information and speed-power performance
evaluation in sea trials. If more experimental data can be used
for the training of the machine learning model, it will be possi-
ble to further improve the accuracy and coverage of the model.
Even in this case, retraining the currently proposed method is rel-
atively easier than, for example, SNNM method. In addition, it is
expected that there is room for the application of methods such
as physics-guided neural networks [34], which combine scien-
tific knowledge of physics-based models with machine learning
structures as well as semi-empirical methods and data-driven ma-
chine learning algorithms covered in this study, to predict added
wave resistance.
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A B S T R A C T
A system that can reliably estimate power consumption based on operational profiles and
weather conditions is needed to evaluate global shipping emissions and alternative reduction
scenarios. Due to a lack of detailed ship information, uncertainties in collected data, and
computing complexity, many prior bottom-up investigations used simplified calculations and
empirical equations. Some methodologies offered only approximate estimates that were not
enough to capture power consumption trends based on the global fleet’s geographical, seasonal,
and operational features. This work intends to develop and implement a power prediction
method that can be applied in a bottom-up approach based on fleet composition and trading
patterns. We present a comprehensive approach for powering prediction, encompassing data
pre-processing, ship resistance estimation, and propulsion efficiency, based on the Maritime
Transport Environmental Assessment Model. As a result of comparison with the full-scale
measurements of three operating ships and 2018 EU-MRV data from the fleet segments, the
predictions from the model are shown to be fairly well-matched. Thus, the proposed model can
be used to simulate the power performance and energy consumption of worldwide shipping.

1. Introduction
The maritime industry is facing the challenge of reducing its emission to achieve carbon neutrality. The Interna-

tional Maritime Organization (IMO) has announced an initial strategy to phase out greenhouse gas emissions (GHG)
by at least 50% by 2050 as of 2018, and strategies to mitigate emissions such as NOx, SOx, and black carbon are also
being adopted (IMO, 2018, 2021). Many measures are being considered to reduce GHG emissions, such as the use
of alternative fuels with low carbon intensity, the development of ship technology to increase energy efficiency, and
the promotion of new policies (Bouman et al., 2017; Balcombe et al., 2019). It is crucial to have a clear grasp of the
actual climate impact of the current global fleet operations along with assessment of different mitigation strategies.
Furthermore, estimating GHG emissions at sea and evaluating their effects on the climate will be helpful in developing
international regulations, identifying the most effective emission mitigation strategies, and making future decisions for
emissions reduction.

The emission evaluation models used in the maritime industry can be divided into two types: a top-down approach
and a bottom-up approach, where the former collects total fuel consumption based on bunker sales data and models
emissions from it, while the latter is modeled to evaluate energy consumed by individual ship and the resulting
emissions (Corbett and Koehler, 2003; Psaraftis and Kontovas, 2009). The bottom-up method has recently become
more widely used due to the advantage that it can produce more accurate results along with the use of ship automatic
identification system (AIS) data and can be combined with various scenarios (Johansson et al., 2017).

There have been several studies using AIS data along with ship-specific information to apply a spatial distribution
bottom-up approach to the emissions from the marine sector (Smith et al., 2013, 2014; Olmer et al., 2017; Jalkanen
et al., 2009, 2012; Johansson et al., 2017; Faber et al., 2020). The developed models enabled predictions of emissions
in marine transport, helping to provide insights into technical and operational energy efficiency to achieve IMO goals.
However, due to constraints of fleet-level analysis including a lack of detailed information about ships, the uncertainty
of the collected data, and the calculation complexity, their methods for predicting power or energy consumption relied
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on very simple calculations or empirical methods. For instance, the ship’s power in calm water was calculated using
the cubic rule or admiralty formula, and the weather effect was corrected using a particular percentage of sea margin.
Additionally, the identical fouling penalty was applied to all ships, taking into account the increase in resistance due
to hull roughness changes. These methods are only somewhat rough estimates, and obtaining more accurate estimates
of the entire fleet and its subsegments requires an approach that can accurately capture power consumption trends
according to various operating profiles. Although more complex methods have recently been used in some studies, it
is necessary to develop a comprehensive powering prediction method that can be used for a bottom-up approach by
supplementing existing studies.

Therefore, this work aims to provide an improved power performance prediction model suitable for the bottom-up
approach of analyzing energy consumption and emissions from global shipping. This model mainly uses AIS data,
ship technical information, and weather hindcast data, which are commonly available in fleet-level analysis, and it
is developed based on the ship resistance and power prediction module of the Maritime Transport Environmental
Assessment Model (MariTEAM) presented in Bouman et al. (2016), Muri et al. (2019a,b), and Kramel et al. (2021).
The established power prediction model can be used to evaluate fuel consumption, emission, and energy efficiency for
the different fleet segments, as well as to find appropriate solutions for reducing GHG emissions in combination with
different fuels, energy-saving devices, and ship segment scenarios.

Section 2 explains the background of the analysis of the global fleet level and introduces previous studies on
the complete powering prediction methods. Section 3 describes the data pre-processing method for the ship dataset
and the estimation of each ship resistance component and propulsive efficiency for the power prediction. Section 4
verifies the established power prediction model using the full-scale measurements of several ships, and shows the
comparison results of the fuel consumption between the 2018 EU-MRV (European Union-The Monitoring, Reporting,
and Verification) data and the predicted results. Section 5 covers the conclusion.
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Abbreviations
AHR Average Hull Roughness
AIS Automatic Identification System
DWT DeadWeight Tonnage
ECMWF European Centre for Medium-Range Weather

Forecasts
EEOI Energy Efficiency Operational Indicator
EU-MRV European Union-The Monitoring, Reporting,

and Verification
ICCT International Council on Clean Transportation
IMO International Maritime Organization
ITTC International Towing Tank Conference
LDT LightDisplacement Tonnage
MariTEAM Maritime Transport Environmental Assess-

ment Model
MCR Maximum Continuous Rating
NRMSE Normalized Root-Mean-Squared Error
SFOC Specific Fuel Oil Consumption
SLCF Short-Lived Climate Forcer
STA-JIP Sea Trial Analysis Joint Industry Project

Nomenclature
𝛽 Wave heading. The wave angle relative to the

ship’s heading (180 degrees: head waves)
Δ𝐶𝐹 Roughness allowance
𝜂𝐻 Hull efficiency
𝜂𝑂 Open water efficiency
𝜂𝑅 Relative rotative efficiency
𝜂𝑆 Shaft efficiency
𝜂𝑇 Total propulsive efficiency
∇ Volume displacement
∇𝑇𝑑 Volume displacement at design draught
𝜔 Circular frequency of regular waves
𝜓 Heading of the ship
𝜓𝑊𝑅𝑟𝑒𝑓 Relative wind direction at reference height (0

degrees: head wind)
𝜓𝑊 𝑇 True wind direction
𝜌𝑎 Air density
𝜌𝑤 Sea water density
𝜁𝑎 Wave amplitude
𝐴𝑋𝑉 Area of maximum transverse section exposed to

the wind
𝐵 Breadth
𝐶𝐴 Correlation allowance coefficient
𝐶𝐵 Block coefficient
𝐶𝑀 Midship section coefficient
𝐶𝑃 Prismatic coefficient
𝐶𝑅 Residual resistance coefficient
𝐶𝑋 Wind resistance coefficient
𝐶𝐴𝐴 Air resistance coefficient

𝐶𝑎𝑤 Non-dimensional added wave resistance coeffi-
cient

𝐶𝑐𝑎𝑙𝑚 Calm water resistance coefficient
𝐶𝐹 Frictional resistance coefficient
𝐶𝑇ℎ Thrust loading coefficient
𝐶𝑊𝑃 Waterplane coefficient
𝐷𝑝 Propeller diameter
𝐸 Directional wave spectrum
𝐸𝐿 Engine load for MCR in design condition
𝐹𝑛 Froude’s number
𝐻𝑠 Significant wave height
𝐼𝐴𝐻𝑅 Annual change in AHR over the dry dock cycle
𝑘 Form factor
𝑘𝑦𝑦 Pitch gyration
𝐿𝑏𝑤𝑙 Length of the bow on the waterline to 95% of

maximum beam
𝐿𝑑 Displacement length
𝐿𝐸 Length of entrance
𝐿𝑓𝑛 Computational Froude length
𝐿𝐹 Engine load adjustment factor
𝐿𝑜𝑠 Length overall submerged
𝐿𝑝𝑝 Length between perpendiculars
𝐿𝑅 Length of run
𝐿𝑤𝑙 Length on waterline
𝑁 Ship age
𝑃𝐵 Engine brake power
𝑟 Pearson correlation coefficient
𝑅2 Coefficient of determination
𝑅𝐴𝐻𝑅 Hull roughness reduction in drydocking
𝑅𝑎𝑤𝑙 Mean resistance in long crested irregular waves
𝑅𝑎𝑤 Added resistance in regular waves
𝑅𝑐𝑎𝑙𝑚 Calm water resistance
𝑅𝑇 Total resistance
𝑅𝑤𝑎𝑣𝑒 Added resistance due to waves
𝑅𝑤𝑖𝑛𝑑 Added resistance due to wind
𝑆 Wetted surface area
𝑆𝐴𝐻𝑅 Initial AHR
𝑆𝑇 𝑐 Wetted surface area at current draught
𝑆𝑇𝑑 Wetted surface area at design draught
𝑇 Mean draught
𝑡 Thrust deduction factor
𝑇𝐴 After draught
𝑇𝑐 Current draught
𝑇𝑑 Design draught
𝑇𝑠𝑐 Scantling draught
𝑉𝑆 Ship’s speed
𝑉𝑊𝑅𝑟𝑒𝑓 Relative wind speed at reference height
𝑉𝑊 𝑇𝑟𝑒𝑓 True wind speed at the reference height
𝑤 Wake fraction
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2. Background
For the evaluation of ship fuel consumption and emissions, the calculation of the energy efficiency operation index

(EEOI), and the optimization of navigation, numerous studies have proposed complete power prediction methods, and
various approaches are being used depending on the available data and the objective of the research. Table 1 contains
a list of previous papers that utilized the comprehensive power prediction approach, as well as the calculation methods
of each ship resistance component and propulsive efficiency used to estimate power.

Jalkanen et al. (2009) proposed the Ship Traffic Emission Assessment Model (STEAM) for estimating GHG
emissions and short-lived climate forcers (SLCFs) using AIS data, where a cubic rule for the required power at calm
water conditions and speed penalties due to weather effects was used, and this model applied to evaluate the emissions
in Baltic Sea. Jalkanen et al. (2012) and Johansson et al. (2017) further improved the early STEAM model and expanded
its application range from the Baltic Sea and Danish Straits to the worldwide oceans. The IMO GHG (Smith et al.,
2014; Faber et al., 2020) study and International Council on Clean Transportation (ICCT) study (Olmer et al., 2017),
which are representative of bottom-up approaches, analyzed global shipping emissions based on AIS data, and in
their studies, a very simplified calculation method such as the admiralty formula and constant sea margin was adopted
to calculate ship power. However, this does not represent current ships particularly well, with exponent three of the
velocity and two-thirds of the displacement, which is typically employed in admiralty coefficients, and the discrepancy
is even greater at higher speeds. Moreover, the sea margin cannot properly capture the weather effects of geographical
and seasonal changes in the areas where the ship operates.

Meanwhile, there have been some studies using more complex methods recently. On the basis of the ship basin
database, well-established empirical methods such as Holtrop and Mennen (1982), Hollenbach (1998), Guldhammer
and Harvald (1974), and Kristensen and Lützen (2012) were used to estimate calm water resistance. In order to improve
accuracy, the weather effect is subdivided into wind and waves, and methods for estimating added resistance due to
wind such as Blendermann (1996), ITTC (2017b), and Fujiwara (2006), and waves such as ITTC (2017b), Liu and
Papanikolaou (2016), and Liu et al. (2016) were employed. Tillig et al. (2017) introduced ShipCLEAN, a generic ship
energy system model that combines the outputs of numerous existing empirical equations for resistance estimations
to compute ship power performance and predict fuel consumption under operating conditions with little input. The
VERDE model, developed by Tvete et al. (2020) and Guo et al. (2022), can assess the fuel consumption of ships
mainly based on Holtrop and Mennen (1982). In their study, a machine learning algorithm was applied to speed up
calculations and obtain added resistance due to the weather.

Although various methods have been used in many of these studies, it was necessary to develop a comprehensive
powering prediction method that can be used for a bottom-up approach by supplementing the shortcomings identified
in previous studies and finding appropriate methods. For this reason, Bouman et al. (2016) and Muri et al. (2019a,b)
presented a Maritime Transport Environmental Assessment Model (MariTEAM), which adopted a resistance-based
approach to calculate the instantaneous power demand of a ship. This study covers the powering prediction method that
can be used in the bottom-up approach of the global fleet, including the improvements in conjunction with subsequent
studies of the MariTEAM, such as Dale (2020) and Kramel et al. (2021).
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Table1:Themethodsemployedinearlierstudiestocalculatetheshipresistancecomponentsandpropellerefficiency.Forsubsequentstudiesconductedinthe
sameresearchgroup,onlythemethodsusedinthemostrecentstudyareshowninthetable.

Relatedwork
Calm

waterresistance
Weathereffectcorrection

Totalpropulsiveefficiency
&

Foulingpenalty
STEAM

1,2,3;
HBmethod

Townsin-Kwon
Emerson’sformula

Jalkanenetal.(2009,2012),
Johanssonetal.(2017)
Smithetal.(2013)

PowerscalingbasedonHM
method

Seamargin10-15%
-

3
𝑟𝑑/4

𝑡ℎIMOGHGstudy;
Admiraltyformula

Seamargin10-15%
-

Smithetal.(2014),Faberetal.(2020)
+9%

foulingpenalty
Luetal.(2015)

HM
method

Kwon
Sea-trialreport

Rakke(2016)
HM

method
Seamargin15%

Valuesfrom
similarships

ICCT;
Admiraltyformula

Seamargin10-15%
-

Olmeretal.(2017)
+Foulingfactoraccordingtoshipage

ShipCLEAN;
HM

method,GHmethod
W

ind:Blendermann;
OpenProp,HM

method
Tilligetal.(2017),

W
aves:STA2,NTUA-SDL,

TilligandRingsberg(2019),
NTUA-SDL2

Tilligetal.(2020)
Kim

etal.(2020)
HM

method
W

ind:Blendermann;
Barnitsas,HM

method
W

aves:STA1,STA2
VERDE;

HM
method

W
ind:Blendermann,Fujiwara;

KristensenandLutzen,
Tveteetal.(2020),Guoetal.(2022)

+10%
foulingpenalty

W
aves:SNNM

HM
method

MariTEAM;
HM

method,HBmethod,
W

ind:Fujiwara,
KristensenandLutzen,

Boumanetal.(2016),
GH

1method,OM
1method

Datasets(STA-JIP,Blendermann);
HM/HB/GHmethod

Murietal.(2019a,b),
+Foulingfactoraccordingtoshipage

W
aves:Combinedmethod

Dale(2020),Krameletal.(2021)
*HB:Hollenbach(1998),HM:HoltropandMennen(1982),GH:GuldhammerandHarvald(1974),OM:Oortmerssen(1971),

GH
1:KristensenandLützen(2012),OM

1:Helmore(2008),Townsin-Kwon:TownsinandKwon(1993),Kwon:Kwon(2008),
Blendermann:Blendermann(1996),STA-JIP:ITTC(2017b),Fujiwara:Fujiwara(2006),STA1/STA2:Boom

etal.(2013),
NTUA-SDL:LiuandPapanikolaou(2016),NTUA-SDL2:Liuetal.(2016),SNNM:LiuandPapanikolaou(2020),Combined:Kim

etal.(2022a)
Emerson:Watson(1998),Barnitsas:Barnitsasetal.(1981)
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3. Materials & Methods
3.1. Data pre-processing
3.1.1. Data sources

This section provides an overview of the databases available for the global fleet, for power prediction, as well as
the pre-processing of the data and estimation of the required parameters. For the power prediction of the operating
ship, ship dynamic data, technical information, and environmental data are generally required. Ship dynamic data, or
operational profile, refers to information on a ship that may change as the ship operates, such as the location, speed,
heading, and draught of the ship, and is usually obtained from AIS data in the bottom-up approach. Ship technical
data consists of main dimensions and engine specifications, and in this study, the IHS Sea-web database is used to
obtain data on 76,937 ships, with a total tonnage of 100 tons or more (IHS, 2019). Weather-related data includes wind
and wave conditions at the time and location the ship is sailing, and it is obtained from the ERA-Interim (ECMWF
reanalysis) dataset provided by the European Center for Mid-Range Weather Forecasting (ECMWF) (Hersbach et al.,
2020).

Before the raw data is used for ship resistance and power estimation, it is necessary to quality check the data. As
incorrect information can lead to erroneous results and analysis, data should be prepared in an appropriate manner
(Gupta et al., 2022). Additionally, the collected data should be transformed into the input format required by each
module to conduct the calculation. Therefore, in this study, the collected data is handled with several typical procedures
as outlined below.
3.1.2. Voyage trajectory completion

Data are often missing in AIS ship trajectory data due to heavy traffic or irregular reception of AIS data (Liu
et al., 2019). Also, since AIS data is acquired in different ways (satellite, shore-based reception), the AIS data for a
single voyage of a single ship might be found in different sources. This lack of ship tracks may impede the precise
evaluation of the ship’s fuel consumption and emissions, as it tends to underestimate the ship’s power consumption
during operation. To complete the trajectory in an area where AIS data is missing, Kramel et al. (2021) proposed a
method to restore the ship’s trajectory at 0.1° latitude-longitude resolution intervals using a combined A* algorithm
(Hart et al., 1968) and Dijkstra algorithm (Dijkstra, 2022) with reference to information on port callings by each ship.
In this study, this approach is used to complete the missing trajectory of the vessel, which accounts for around 37% of
the total AIS messages.
3.1.3. Ship draught correction

Among the parameters obtainable from AIS data, ship location, heading, and speed are relatively accurate because
they are automatically received from the onboard system. However, because draught in AIS data is entered manually
by the ship operator, it is frequently not updated in a timely manner or is entered incorrectly (Jia et al., 2019; Zhou et al.,
2019). Due to these characteristics, it is almost impossible to grasp the immediate change in draught according to the
actual operation of the ship from the draught data collected from the AIS data. Instead, this study checks whether the
collected draught data is placed within a reasonable range, and if necessary, correction for the draught is performed.
If the collected draught is less than the minimum allowable draught defined by the ship’s classification rule or greater
than the scantling or design draught of a ship, it is considered an abnormal value (refer to Table A1) and replaced with
the average operating draught of the corresponding ship type (refer to Table A2). Since only design draught could be
acquired in this study, design draught was used instead of scantling draught.
3.1.4. Missing data handling

The ship’s technical information is very important because it is to be used as a basic input of empirical methods
for further calculations. However, for some ships, some parameter values in the data might be missing. If there are
a few missing values, deleting some ship cases may not have a significant impact on the results. However, if such
proportions are not small, the number of ship cases for analysis will reduce, the statistical performance of the model
will decrease, and the ability to perform a comprehensive and reliable bottom-up analysis of the global fleet will have
a negative impact. Many studies have proposed curve-fitting equations or regression equations related to the main
parameters of the ship, which ensures fairly high accuracy. However, it is not suitable for all ship cases because it is not
applicable if the required parameters used in the formula are missing. In this work, the missing data handling algorithm
for ship principal data proposed by Kim et al. (2022b) is used here. The algorithm consists of three processes: initial
computation, final imputation, and minor adjustment, and missing values for various ship cases can be estimated based
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on multiple nonlinear regression analysis, regardless of missing parameters. In this study, this method is applied to
replace the missing values of the parameters included in about 46.6% of all 76,937 ships.
3.1.5. Weather hindcast data correction

To estimate the added resistance that the ship experiences due to the external environment, weather information
in the surrounding sea area where the ship is sailing is required. Although weather-related information is sometimes
measured on board with equipment such as anemometers and wave radars, open sources such as weather hindcast
data provided by ECMWF are typically used for fleet-level analyses. It is possible to estimate the wind and wave
conditions, such as wind speed, wind direction, significant wave height, mean wave period, and mean wave direction,
that corresponds to the specific time stamp and coordinates of each ship by performing interpolation over a time and
space grid using the hindcast data (Gupta et al., 2022). However, the hindcast data related to waves is often zero or
masked in some regions and times, mainly on the coast adjacent to the land. The resolution of the land-sea mask may
cause us some trouble with the values needed along the coast. In this case, it is recommended to replace the value by
referring to the average wave characteristics of the sea state proportional to the wind speed at the corresponding time
and location.
3.1.6. Ship hydrostatic parameter estimation

The AIS data and technical information used in this study do not include detailed information on the hull shape of
the ship, and in general, such information is impractical to be obtained from the data sources available in the bottom-up
study of the global fleet. In order to calculate the ship resistance components and propulsive efficiency, parameters such
as propeller diameter, wetted surface, and displacement, which are used as input values for empirical equations, are
essential. Thus, in this section, we list well-known empirical formulas and regression equations that can be used to
estimate relevant parameters that are useful for these purposes as shown in Tables B1-B4. If one can obtain accurate
information about the ship, this parameter estimation step can be omitted.
3.2. Estimation of ship resistance components

According to ITTC (2018), the total resistance of a ship operating at sea can be generally calculated as the sum of
the resistance components such as calm water resistance and the added resistance due to wind and waves as in Eq. (1).
Here, the influence of steering and maneuvering on power consumption is neglected for the sake of simplicity. The
method of estimating each resistance component is introduced in the following section.

𝑅𝑇 = 𝑅𝑐𝑎𝑙𝑚 + 𝑅𝑤𝑖𝑛𝑑 + 𝑅𝑤𝑎𝑣𝑒 (1)
where 𝑅𝑇 is the ship’s total resistance, 𝑅𝑐𝑎𝑙𝑚 is the resistance in calm water condition, 𝑅𝑤𝑖𝑛𝑑 is added resistance

due to wind, and 𝑅𝑤𝑎𝑣𝑒 is added resistance in waves.

3.2.1. Calm water resistance
Several bottom-up studies for the fleet segment used the cubic rule (Jalkanen et al., 2009) and the admiralty formula

(Smith et al., 2014; Olmer et al., 2017; Faber et al., 2020) to estimate the calm water resistance due to their simple and
easy calculations. However, these approaches are a very approximation that does not fit well with modern ships and
may produce significantly higher power consumption than other modern empirical formulas (Brown and Aldridge,
2019; Gupta et al., 2021). In contrast, there were also empirical methods for estimating calm water resistance such
as the systematic series and the regression-based method, which comprehensively covers more hydrodynamic details
of ships. However, methods such as Ayre (Schneekluth and Bertram, 1998), Taylor-Gertler (Gertler, 1954), Series-60
(Todd, 1957), and Lap-keller (Lap, 1954; Auf’m Keller, 1973), are nor suitable for modern hull forms and are outdated
(Bertram, 2011). There were other methods, Holtrop and Mennen (1982), Hollenbach (1998), and Guldhammer and
Harvald (1974), which were established based on relatively recent hull-shaped model test results and found to be
applicable to a variety of ships. However, since the coverage range and input requirements are different, and the
accuracy may vary depending on the ship profiles, it is necessary to carefully consider the estimation methods for
calm water resistance.

According to Dale (2020), the estimation of calm water resistance based on the HM, HB, and GH methods of 7
ships was analyzed against model tests, sea tests, and full measurement data. Due to the relatively limited number of
ships, it was difficult to conclude the superiority among the methods, but it is noteworthy that considering various
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methods for the ship’s calm water resistance would broaden the applicable range of the ship and lower the deviation
of the prediction error.

This study focuses on establishing a model with good prediction accuracy while being applicable to a wide range
of ships with only limited input values. Consequently, HM (Holtrop and Mennen, 1982), HB (Hollenbach, 1998), and
GH (Guldhammer and Harvald, 1974; Kristensen and Lützen, 2012) methods, which are known to provide adequate
accuracy for estimating the calm water resistance of modern ships while being applicable to a variety of ship types,
are considered candidate methods. Here, an updated version of Oortmerson’s method (OM method) is also added to
cover relatively small vessels (Oortmerssen, 1971; Helmore, 2008). For each ship case, an appropriate method from
these available options is selected by a determination algorithm. The determination algorithm will be described in the
later sections. A brief introduction to the empirical methods of estimating the calm water resistance of the ship used
in this study is given in Table 2.

Table 2
Comparison of the estimation methods for ship calm water resistance.

HM method HB method GH method OM method

Applicable Universal, wide range Universal, modern ship, Universal, tankers, Small ship
area single/twin screw vessel single/twin screw vessel
Range 0.55 < 𝐶𝑃 < 0.85 0.49 < 𝐶𝐵 < 0.83 0.55 < 𝐶𝐵 < 0.85 0.5 < 𝐶𝑃 < 0.725

3.9 < 𝐿𝑝𝑝∕𝐵 < 9.5 4.71 < 𝐿𝑝𝑝∕𝐵 < 7.11 5 < 𝐿𝑝𝑝∕𝐵 < 8 0.73 < 𝐶𝑀 < 0.97
𝐹𝑛 < 0.45 1.99 < 𝐵∕𝑇 < 4.00 4 < 𝐿∕ 3

√
∇ < 6 3 < 𝐿𝑝𝑝∕𝐵 < 6.2

0.43 < 𝐷𝑝∕𝑇𝐴 < 0.84 𝐹𝑛 < 0.33 1.9 < 𝐵∕𝑇 < 4.0
4.49 < 𝐿𝑝𝑝∕

3
√
∇ < 6.01 𝐹𝑛 < 0.5

16 < 𝐿𝑝𝑝 < 72
Reference Holtrop and Mennen (1982) Hollenbach (1998) Guldhammer and Harvald (1974) Oortmerssen (1971)

Kristensen and Lützen (2012) Helmore (2008)

Under the main assumption that the resistance of the ship can be largely divided into viscous resistance and residual
resistance, this study takes the empirical form of resistance composition proposed by MARINTEK (Minsaas, 1982;
Steen and Aarsnes, 2014) as shown in Eqs. (2)-(3). It applies a modified form of the ITTC’78 procedure (ITTC, 2017a),
including the roughness correction in the viscous resistance term. The calculation of each resistance coefficient term
that makes up the calm water resistance coefficient is applied slightly differently for each empirical method. Here,
since the detailed hull design characteristic such as the transom and appendage of the ship are not specified, added
resistance due to them is not considered separately.

𝑅𝑐𝑎𝑙𝑚 = 1
2
𝜌𝑤𝑆𝑉

2
𝑆𝐶𝑐𝑎𝑙𝑚 (2)

𝐶𝑐𝑎𝑙𝑚 = (1 + 𝑘)(𝐶𝐹 + Δ𝐶𝐹 ) + 𝐶𝑅 + 𝐶𝐴 + 𝐶𝐴𝐴 (3)
where 𝜌𝑤 is water density,𝑆 is wetted surface area, 𝑉𝑆 is the ship’s speed,𝐶𝑐𝑎𝑙𝑚 is calm water resistance coefficient,

𝐶𝐹 is frictional resistance coefficient, which is obtained from ITTC friction line (ITTC, 2017b). Δ𝐶𝐹 is the roughness
allowance, which is obtained from Marintek (2022) (refer to section 3.2.2). 𝑘 is the form factor, which can be obtained
from HM and Marintek. 𝐶𝑅, and 𝐶𝐴 are residual resistance and correlation allowance, which are estimated from each
empirical method. 𝐶𝐴𝐴 is air resistance coefficient.

3.2.2. Added resistance due to hull roughness & fouling
The hull roughness of the ship is increased by the degree of biofouling and aging of the hull surface, which can

lead to an increase in frictional resistance. Biofouling on the hull surface may result in an average increase in the total
resistance of 2-11% on global fleet segments (Olmer et al., 2017). Despite these effects, many preceding studies of the
bottom-up approach just applied the typical hull roughness of a newly built ship or applied 9-10% of the same fouling
penalty for all the ships (Faber et al., 2020; Guo et al., 2022). As such hull fouling causes a significant difference in
the energy consumption of ships, it is necessary to properly consider it in fleet-level analysis. The following Table 3
shows the typical average hull roughness (𝐴𝐻𝑅) according to the age of the ship as indicated in several studies.
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Table 3
Average hull roughness according to the ship age.

Age of ship Bowden and Davison (1974) Townsin (2003a,b); Stenson (2015) Approximation method
(year) Willsher (2007) of Stenson (2015)

0-5 120-240 120-150 Varies according 120-160
6-10 120-240 200 to coating and 135-175
11-15 120-240 300 blasting type 150-190
16-20 120-240 400 (refer to Figs. 1-2) 165-205
20≤ 120-240 500 180-

Townsin et al. (1986) presented an increase in average hull roughness according to ship age based on 86 sample
surveys conducted in 1984-1985. Based on these findings, Olmer et al. (2017)’s GHG study estimated the average
hull roughness according to the age of the ship by assuming dry docking at 5-year intervals, and the resulting added
resistance was determined. However, according to Stenson (2015), 845 ship samples collected from 2003 to 2014 in
drydock showed that the average hull roughness increased by 10𝜇𝑚 on average annually after drydock, and even if the
age is more than 25 years, hull roughness can be maintained at a relatively low level of 200𝜇𝑚 or less (refer to Fig.
1 (a)). Although the deviation of the collected samples is observed somewhat large even on the same year basis, this
may be due to differences in hull condition management, such as anti-fouling coating type, blasting type, and cleaning
interval for each ship. The difference in trends in the two studies seems to be quite significant, which might be explained
by the fact that the development of hull coating technology, environmental changes and regulations, and ship design
and operational trends have changed considerably (Yeginbayeva and Atlar, 2018).

Figure 1: (a) 𝐴𝐻𝑅 change over time out of dry dock, (b) 𝐴𝐻𝑅 change according to ship age. It is based on 845 ships’
data collected in drydock from 2003 to 2014. The figures are adapted from Stenson (2015) with minor modifications.

As shown in Fig. 2, the trend of𝐴𝐻𝑅 increase after drydock over time is different according to coating technology
and substrate preparation at dry dock, and Stenson (2015) proposed an 𝐴𝐻𝑅 estimation equation considering these
parameters in his study. Since it is not possible to specify coating type, cleaning type, and drying docking period
in a fleet-level analysis, this study replaced detailed values with averaged values from Figs 1-3 and simplified the
formula by assuming a dry-docking interval of 5 years as shown in Eq. (4). In addition, the resistance increase due
to hull roughness is calculated from Marintek’s equation, which is a correction of the frictional resistance coefficient
due to average hull roughness (refer to Eq. (5)). Fig. 3 shows the typical 𝐴𝐻𝑅 change according to the age of the
ship estimated by this simplified equation. It should be noted that various factors were assumed approximately in this
approach to estimate 𝐴𝐻𝑅 for the global fleet application, but exact information on hull cleaning and coating type is
required when examining a specific ship case.

𝐴𝐻𝑅 = 𝑆𝐴𝐻𝑅 + 𝐼𝐴𝐻𝑅 ⋅𝑁 − 𝑅𝐴𝐻𝑅⌊𝑛5⌋ (4)
Δ𝐶𝐹 = [110 ⋅ (𝐴𝐻𝑅 ⋅ 𝑉𝑆 )0.21 − 403] ⋅ 𝐶2

𝐹 (5)
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Figure 2: 𝐴𝐻𝑅 change over time out of dry dock according to anti-fouling coating type. FR is foul release, SPC is
self-polishing co-polymer, CDP is controlled depletion polymer, and Hybrid is a mixture of SPC and CDP. The ’Average’
shown in the figure is the average 𝐴𝐻𝑅 increase of the ships collected in Fig. 1 (b). The figure is adapted from Stenson
(2015) with minor modifications.

where,𝐴𝐻𝑅 is current hull roughness in 𝜇𝑚,𝑆𝐴𝐻𝑅 is initial𝐴𝐻𝑅; 120𝜇𝑚 (Bowden and Davison, 1974; Townsin,
2003a), 𝐼𝐴𝐻𝑅 is the annual change in 𝐴𝐻𝑅 over the dry dock cycle; 10𝜇𝑚 (refer to Fig. 1), 𝑅𝐴𝐻𝑅 is hull roughness
reduction in drydocking; 35𝜇𝑚 (refer to Fig. 1), 𝑁 is ship age, and Δ𝐶𝐹 is roughness allowance.

Figure 3: Estimated 𝐴𝐻𝑅 according to the age of the vessel considering hull cleaning and re-coating in dry docking. It
assumes a regular drydocking interval of five-year. The trends shown in the figure are approximations based on the data
in Figs. 1 and 2.

3.2.3. Added resistance due to wind
According to ITTC (2017b), if there is no available wind tunnel test result of the target ship during the speed/power

trial, wind resistance coefficients data sets (Boom et al., 2013; Kaiser, 2016) or regression equations (Fujiwara, 2006)
can be used for calculating resistance increase due to wind. ITTC (2018) also included the wind tunnel test results of
Blendermann (1996) to consider the speed reduction by the wind. Table 4 shows the ship types and loading conditions
applicable to each estimation method of the wind resistance coefficient, and the details and wind resistance coefficients
of the corresponding vessels are shown in Appendix C. Depending on the method, the ship type, loading type, and
dimensions of the wind resistance coefficient that can be estimated are different. It is necessary to consider as many
wind tunnel test results as possible to more accurately estimate the added resistance due to wind of the global fleet,
which includes various ship types and a wide range of sizes.

Therefore, in this study, the wind tunnel test results of ITTC (2017b) and Blendermann (1996) and the regression
equation of Fujiwara (2006) are mainly used to expand the applicable range and increase accuracy. If there is a wind
Y. Kim et al.: Preprint submitted to Elsevier Page 10 of 28
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Table 4
Applicable ship type of wind resistance coefficient estimation methods.
’O’ contains both the laden and ballast voyages, and ’O (avg.)’ represents
only average voyage.

Ship type Blendermann (1996) ITTC (2017b) Fujiwara (2006)

Container O O O
Oil tanker O O O
Bulk carrier X O O
Liquefied gas O O (Avg.) O
General cargo O O X
Ro-Ro O O (Avg.) X
Passenger O (Avg.) O (Avg.) O
Offshore O (Avg.) X X

tunnel test result of the ship type and size consistent with the target ship, the average value between the wind tunnel
tests and the estimated value by Fujiwara (2006) is used, otherwise, only Fujiwara (2006) is used. The parameters
related to the superstructure of the ship used as the input of the regression equation are estimated using Kitamura et al.
(2017). As a result, added resistance due to wind is calculated by substituting the estimated wind resistance coefficient
of the ship into the following equations.

𝑅𝑤𝑖𝑛𝑑 = 1
2
𝜌𝑎𝐶𝑋(0)𝐴𝑋𝑉 𝑉 2

𝑆 − 1
2
𝜌𝑎𝐶𝑋(𝜓𝑊𝑅𝑒𝑓 )𝐴𝑋𝑉 𝑉 2

𝑊𝑅𝑟𝑒𝑓 (6)

𝑉𝑊𝑅𝑟𝑒𝑓 =
√
𝑉 2
𝑊 𝑇𝑟𝑒𝑓 + 𝑉 2

𝑆 + 2𝑉𝑊 𝑇𝑟𝑒𝑓𝑉𝑆𝑐𝑜𝑠(𝜓𝑊 𝑇 − 𝜓) (7)
where 𝐶𝑋 is wind resistance coefficient, which can be obtained from Blendermann (1996), ITTC (2017b), and

Fujiwara (2006). 𝐴𝑋𝑉 is area of maximum transverse section exposed to the wind estimated from Kitamura et al.
(2017), 𝑉𝑆 is ship’s speed over ground, 𝑉𝑊𝑅𝑟𝑒𝑓 is relative wind speed at reference height, 𝜌𝑎 is mass density of air,
𝜓𝑊𝑅𝑒𝑓 is relative wind direction at reference height; 0 means heading wind.

3.2.4. Added resistance in waves
Added wave resistance of a ship can be estimated through various methods as shown in Table 5, and each method

differs in the scope of application, input parameters, and features. Among the estimation methods for the added
wave resistance of ITTC (2017b), STAwave-1 (STA1) and STAwave-2 (STA2) methods have been applied in several
complete power prediction methods because they can provide good results with only a few inputs (Tillig et al., 2020;
Kim et al., 2020; Kramel et al., 2021). However, they are limited to the added resistance at head waves from the bow
to 45 degrees, implicitly assuming zero added wave resistance in other headings. Meanwhile, recently, methods such
as Lang and Mao (2021), Liu and Papanikolaou (2020), and Kim et al. (2022a) have been proposed that can predict
added wave resistance in all wave headings.

As the added resistance in head waves is much more dominant than in beam and following waves, some previous
studies have considered only the added resistance in head waves. However, since the ship experiences waves in all
directions while actually operating at sea, the approach capable of estimating the added wave resistance in all wave
headings can greatly reduce the error compared to that of only taking into account head waves (Kim and Steen, 2022).
Therefore, this study uses a Combined method, presented in Kim et al. (2022a), tuned for model test data of various
ship types while being able to calculate added resistance in all wave directions. According to Eq. (8), the directional
wave spectrum and the transfer function of the mean resistance increase in regular waves are superimposed linearly
to estimate the resistance increase in short-crested irregular waves. Here, the added wave resistance coefficient is
estimated from the combined method, and an example of the added wave resistance coefficients in arbitrary waves
according to the speed of the ship is shown in Fig. 4.

𝑅𝑤𝑎𝑣𝑒 = 2∫
2𝜋

0 ∫
∞

0

𝑅𝑎𝑤(𝜔, 𝛽;𝑉𝑆 )
𝜁2𝑎

𝐸(𝜔, 𝛽)𝑑𝜔𝑑𝛽 (8)
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Table 5
Comparison of semi-empirical methods for the ship added wave resistance.

STA1 STA2 CTH SNNM Combined

Range Head waves Head waves Arbitrary waves Arbitrary waves Arbitrary waves
(180-135) (180-135) (180-0) (180-0) (180-0)

Input 𝐿𝑏𝑤𝑙, 𝐵, 𝐻𝑠 𝐿𝑝𝑝, 𝐵, 𝑇 , 𝑉𝑆 , 𝐿𝑝𝑝, 𝐵, 𝑇 , 𝑉𝑆 , 𝐿𝑝𝑝, 𝐵, 𝑇 , 𝑉𝑆 , 𝐿𝑝𝑝, 𝐵, 𝑇 , 𝑉𝑆 ,
𝑉𝑆 , 𝐶𝐵, 𝑘𝑦𝑦 𝐿𝑒, 𝐶𝐵, 𝑘𝑦𝑦, 𝛽 𝐿𝑒, 𝐿𝑟, 𝐶𝐵, 𝑘𝑦𝑦, 𝛽 𝐶𝐵, 𝑘𝑦𝑦, 𝛽

(𝐿𝑒, 𝐿𝑟 estimated)
Output 𝑅𝑎𝑤𝑙 𝑅𝑎𝑤 𝑅𝑎𝑤 𝑅𝑎𝑤 𝑅𝑎𝑤
Feature Radiation effect Applicable to Applicable to Developed based Tuned according to

is neglected; long crested short crested on 1477 cases various ship types;
Heave and pitchirregular waves; irregular waves Applicable with
are assumed to Low Fn. test cases limited inputs
be small are not included

ReferenceITTC (2017b) ITTC (2017b) Lang and Mao (2021)Liu and Papanikolaou (2020)Kim et al. (2022a)

𝐶𝑎𝑤 =
𝑅𝑎𝑤

𝜌𝑤𝑔𝜁2𝑎𝐵2∕𝐿𝑝𝑝
(9)

where 𝑅𝑎𝑤 is the transfer function of mean resistance increase in regular waves, 𝐶𝑎𝑤 is the added resistance
coefficient in regular waves, which can be obtained from Kim et al. (2022a), 𝐸 is directional spectrum, which can be
obtained from ITTC (2017b), 𝜁𝑎 is wave amplitude.

Figure 4: An example case of the added resistance coefficients in regular waves estimated from the Combined method.
173k LNG carrier at (a) 20knots, (b) 15knots, (c) 10knots.

3.3. Estimation of total propulsive efficiency
The total propulsive efficiency can be estimated approximately by applying a straightforward empirical formula, or

by calculating each efficiency coefficient that makes up the total propulsive efficiency, such as open water efficiency,
hull efficiency, relative rotational efficiency, etc., separately. In the former case, there exist approaches like Emerson’s
formula (Watson, 1998), the method of Danckwardt (1969), and the method of Auf’m Keller (1973). Emerson’s
formula covers contemporary propeller designs but applies only to low propeller RPMs, and Danckwardt (1969) and
Auf’m Keller (1973) are only relevant to specific ship types (Birk, 2019). In this study, we, therefore, chose to estimate
the total propulsive efficiency for a ship by estimating the sub-components related to the hull and propeller, and engine
and shaft connections, and then, multiplying them together as shown in Eq. (10).

𝜂𝑇 = 𝜂𝑂𝜂𝐻𝜂𝑅𝜂𝑆 (10)
where 𝜂𝑇 is total propulsive efficiency, 𝜂𝑂 is open water efficiency, 𝜂𝐻 is hull efficiency, 𝜂𝑅 is relative rotative

efficiency, and 𝜂𝑆 is shaft efficiency.
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There are simple approaches to estimate open water efficiency, such as Gawn (1957), Newton (1961), and
Oosterveld (1970), but they may not be suitable for modern propeller designs and have a limited range of ships for
which they are applicable. For the estimation of open water efficiency, the Wageningen B series, a wide range of open
water diagrams according to various propeller design combinations of blade count, expansion area ratio, and pitch ratio
is widely used. However, without a detailed propeller design, they require many assumptions and estimations for the
propeller specs. In this study, the approximation of the Wageningen B-series (Breslin and Andersen, 1996; Kristensen
and Lützen, 2012), which enables the calculation of open water efficiency with only limited input such as propeller
diameter, is applied as following Eqs. (11)-(13).

𝜂𝑂 = 2
1 +

√
𝐶𝑇ℎ + 1

𝑓 (𝐶𝑇ℎ) (11)

𝑓 (𝐶𝑇ℎ) = 0.81 − 0.014𝐶𝑇ℎ (12)

𝐶𝑇ℎ = 8
𝜋

𝑅𝑇
𝜌𝑤(1 − 𝑡)((1 −𝑤)𝑉𝑆𝐷𝑝)2

(13)

where 𝐶𝑇ℎ is thrust loading coefficient, 𝑓 (𝐶𝑇ℎ) should not be lower than 0.69, 𝑡 is thrust deduction factor and 𝑤
is the wake fraction, and 𝐷𝑝 is the propeller diameter.

Hull efficiency can be calculated as in Eq. (14), where thrust deduction (𝑡) and wake fraction (𝑤) are determined
by empirical methods provided as parts of the empirical methods for prediction of calm water resistance. Moreover,
Alte and Baur (1986) suggested an average value of 1.0 for a single screw for relative rotational efficiency, which often
ranges from 0.95 to 1.05. Here, constant values of 𝜂𝑅 = 1.0 and 𝜂𝑆 = 0.98 are assumed respectively (Kristensen and
Lützen, 2012).

𝜂𝐻 = 1 − 𝑡
1 −𝑤

(14)

3.4. Estimation of engine power
After taking into consideration the ship’s total propulsive efficiency, an estimate of the main engine’s brake power

can be derived by combining it with the ship’s total resistance as shown in Eq. (15).

𝑃𝐵 =
𝑅𝑇𝑉𝑆
𝜂𝑇

(15)

Kramel et al. (2021) presented a load adjustment factor based on the fact that the ship’s power at the design condition
is generally within about 80 to 95% of the installed engine maximum continuous rating (MCR). If the engine power
estimated from the empirical methods at the design condition is out of the range, it is considered an irrational value,
and a load adjustment factor that scales it within the range is applied. Assuming that ships operate most frequently
close to design conditions, this method is considered to be plausible if there is no other information for the validation.

Meanwhile, according to 4𝑡ℎ IMO GHG study (Faber et al., 2020), power consumption was calculated based on the
service speed of ships registered in IHS data set, but it was observed that fuel consumption was greatly overestimated
than the real case in some passenger ships and large container ships. This is due to the fact that some large ships
are outfitted with engines larger than those required for service speed, allowing them to have enough performance to
operate at a significantly higher speed than the stated service speed. In particular, since cruise ships tend to be equipped
with advanced propulsion systems such as diesel-electric, the power predictions are also often overestimated.

Therefore, based on these findings, this study proposes an algorithm that can determine an appropriate empirical
method to estimate calm water resistance for each ship case, and calculate the final brake power of the ship as shown in
Fig. 5. When the initial brake power at design condition is within 80–95% of the MCR, i.e. the estimated value is within
the normal range, it is then determined whether the ship profile is within the applicable range of the empirical method.
If there is a method that satisfies both, the brake power under the given condition of the ship is finally calculated using
the corresponding method. If multiple methods are selected, the average of the predicted values is used.
Y. Kim et al.: Preprint submitted to Elsevier Page 13 of 28
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This algorithm is further subdivided into cases where the engine load is less than 80% and more than 95% than
previously proposed methods in Kramel et al. (2021). If the engine load at design condition is less than 80%, an engine
load of less than 80% could be obtained regardless of the accuracy of the candidate methods due to the various reasons
mentioned above. In this case, since it is difficult to identify a clear cause only with limited information, the average
of brake powers predicted from the candidate methods is used for the final brake power. On the other hand, since it is
clear that the engine load under the design conditions cannot exceed 95% of the installed engines, the estimated engine
power is scaled down by applying the load adjustment factor, which is obtained based on the design condition. This
determination algorithm applies only to the contribution of calm water resistance to brake power. The validity of the
algorithm needs to be thoroughly investigated for detailed ship cases through more data in the future.

Figure 5: Determination algorithm for the estimation methods of ship resistance in calm water. This algorithm checks
whether the corresponding ship case is within the applicable range of the candidate method and whether the estimated
power at the ship’s design condition is within the permissible range.

3.5. Power prediction model for the global fleet: The MariTEAM model
As previously described in section 3.1-3.4, Fig. 6 shows a flowchart for estimating the propulsion power of the ship

in the MariTEAM model, and Fig. 7 shows an overview of the MariTEAM model, a bottom-up approach for evaluating
fuel consumption and emissions in global shipping. Here, ship technical information from the Sea-web database, ship
dynamic information from the AIS data, and weather hindcast data from ECMWF are used as initial inputs for the
model, and they undergo the data correction and parameter estimation process outlined above. The processed data is
entered into the resistance component modules of calm water, roughness, wind, and waves, respectively, from which
the total resistance of the ship is calculated. The total resistance and total propulsive efficiency of the ship are used to
compute its initial brake power. Through a determination algorithm presented in Section 3.4, the initial brake power is
converted into the final brake power for a given ship.

Several simplifications and assumptions have been made in the power prediction module of the MariTEAM model
to reasonably estimate the power consumption of the worldwide fleet in the absence of exact information on hull shape,
propeller, and specific operating conditions.
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In relation to the propeller efficiency of the ship, relative rotative efficiency and shaft efficiency are roughly
applied with a constant value, and the approximation of the Wageningen B-series, which relies heavily on the propeller
diameters of the ship, is used for open water efficiency. Also, any effect of waves on the thrust deduction and wake
fraction is disregarded. Since the real-time status of the ship’s draught and trim changes is not available from AIS
data, their instantaneous impact is not expected to be captured. It is assumed that every five years, the ship is regularly
cleaned and re-coated in a dry dock when determining the average hull roughness based on the age of the vessel. For
simplicity, there is no submerged transom and appendages of the vessel, and the effect of steering and maneuvering on
power consumption is ignored. Therefore, it may include uncertainty due to these factors for a specific ship case.

Figure 6: Schematic diagram of ship power prediction module of the MariTEAM model.
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Figure 7: MariTEAM modeling framework for global well-to-wake emissions. The blue-shaded part is the ship power
prediction module outlined in Fig. 6. The figure is adapted from Kramel et al. (2021) with minor modifications.
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4. Results & Discussion
This section verifies the performance of the developed power prediction method in the MariTEAM model using

full-scale measurements and MRV data and presents a case study of the application of the model to the evaluation of
the resistance components and 𝐶𝑂2 emissions from the global fleet. Additionally, the analysis results using the model
are provided together.
4.1. Comparison with the full-scale measurements

The full-scale measurement acquired from the ships for a certain period of time is used to evaluate the performance
of the power prediction suggested in this study. Here, as shown in Table 6, three ships; a LNG, general cargo, and
container are used, each consisting of different data collection periods and sampling intervals. Only the ship’s position,
speed, and draft information from the in-service data are used as inputs for the model, and other parameter estimation
and power prediction followed by the method described in section 3. Fig. 8 shows the main engine power obtained
from the in-service data of ships according to the time series and the predicted values obtained from the model. Fig.
9 shows the scatter plot of the actual value and the predicted value. Here, error metrics such as 𝑟, 𝑅2, and 𝑁𝑅𝑀𝑆𝐸
are presented together, which represent the Pearson correlation coefficient, the coefficient of determination, and the
normalized root-mean-squared error, respectively, as shown in Eqs. (16)-(18).

𝑟 =
∑𝑛
𝑖=1

(
𝑥𝑖 − �̄�

) (
𝑦𝑖 − �̄�

)
√∑𝑛

𝑖=1
(
𝑥𝑖 − �̄�

)2√∑𝑛
𝑖=1

(
𝑦𝑖 − �̄�

)2 (16)

𝑅2 = 1 −
∑𝑛
𝑖=1(𝑥𝑖 − 𝑦𝑖)

2

∑𝑛
𝑖=1(𝑥𝑖 − �̄�𝑖)2

(17)

𝑁𝑅𝑀𝑆𝐸 =

√
1
𝑛
∑𝑛
𝑖=1(𝑥𝑖 − 𝑦𝑖)2

𝑀𝐶𝑅
(18)

where 𝑥𝑖 is the true value measured from the ship, �̄� is the mean of 𝑥 samples, 𝑦𝑖 is the predicted value from the
model, �̄� is the mean of 𝑦 samples, 𝑛 is the number of samples, and 𝑀𝐶𝑅 is the maximum continuous rating of main
engine.

For a more accurate comparison between the predicted values in the model and the in-service data, the steady-state
detection algorithm presented in Gupta et al. (2022), which can be used to filter out the parts of the time series in
which the ship’s propulsion state changes, is applied here. It may be erroneous to use data in this condition for analysis
because the speed may suddenly descend or recover having time gaps with the ship’s power when the propulsion state
of the ship changes, such as during acceleration, deceleration, and maneuvering.

Table 6
Details of main characteristics and full-scale measurement data.

Description Ship A Ship B Ship C

Ship type LNG carrier General cargo Container
Length [m] 283 194 350
Breadth [m] 46 32 48
Design draught [m] 12.5 12.6 14.5
Block coefficient [-] 0.78 0.80 0.66
Deadweight tonnage [ton] 95800 50700 141000
Maximum continuous rating [kW] 21500 10780 68600
Sailing area Europe-Africa Worldwide East Asia-Europe
Data collection period 2 month 2.9 years 1.2 years
Data sampling interval 4 seconds 15 minutes 1minute
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As shown in Fig. 8, it is observed that Ships A and C tend to underestimate the engine power of the actual ship,
and Ship B tends to overestimate compared to the full-scale measurements. However, it seems that the predictions are
generally within an acceptable range, and appear to consistently predict power changes in different operational profiles.

Referring to the error metrics between the predicted and actual values in Fig. 9, the 𝑅2 values of Ships A and B
are 0.77, 0.68, making a good prediction for the actual power consumption of the ship, while the 𝑅2 value of Ship C
shows a relatively low accuracy of 0.34.𝑁𝑅𝑀𝑆𝐸 ranges from about 8.7 to 12.2%. These errors may be caused by the
uncertainty of the collected data, the process of estimating ship-specific parameters and applying empirical methods.
Nevertheless, it is noteworthy that there is a strong positive correlation between the actual value and the predicted value
of all three ships, with a correlation coefficient of 0.88 to 0.95. As a result, the estimated results of the MariTEAM
model can result in some errors in comparison with specific ship cases due to various constraints, but it is expected to
simulate the overall power performance trends of various ships well.

Figure 8: Comparison of the onboard measurement and predicted values of (a) Ship A, (b) Ship B, and (c) Ship C.

4.2. Comparison with EU-MRV data
In the previous section, the model has been validated in individual ship cases, and here, how the model’s prediction

performs at a wider fleet across different segments is presented. Thus, the performance of the developed model is
evaluated by benchmarking the fuel consumption reported in the EU-MRV data for 2018 (EMSA, 2018). The EU-MRV
data contains information on annual fuel consumption and emissions for approximately 12,000 ships with European
origin or destination. To compare the results of the model and MRV, the AIS data of the vessel matching the MRV data
is identified, and the annual energy consumption of the corresponding vessel is tracked based on it. In this analysis,
we compare 10,425 vessels that are found in both MRV and AIS data. Here, the AIS messages from the global fleet
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Figure 9: The goodness of fit plots showing onboard measured versus predicted engine powers for (a) Ship A, (b) Ship B,
and (c) Ship C. A solid line represents an ideal line where 𝑥 and 𝑦 match, a dotted line represents a linear line of the best
fit between 𝑥 and 𝑦, and a color bar on the right shows the density of the samples.

obtained from NorSat-satellites of the Norwegian Space Center cooperation with Kystverket of Norwegian Coastal
Administration are used (Eriksen et al., 2020).

The fuel consumption of a ship is calculated based on the instantaneous power and the specific fuel oil consumption
(SFOC) according to the load conditions of the engine. Here, the main engine power is estimated by the developed
model from the previous section. Since information on the auxiliary engine is often unavailable from ship databases,
different auxiliary engine models are developed in accordance with the IMO guidelines for the estimation of installed
power in auxiliary engines (IMO, 2014). Auxiliary power demanded is calculated as 2.5% of the main engine MCR +
250 kW if MCR is higher than 10 MW, or as 5% of MCR if not, regardless of operational conditions. SFOC depends
on the type of fuel oil and the type of engine, and its value is calculated assuming a low calorific value of 40.2 MJ/kg
for HFO and 42.7 MJ/kg for MGO-fueled engines, with a thermal engine efficiency of 50% in both cases.

Fig. 10 displays as box plots MRV data and model estimates for the annual average fuel consumption per transport
work (𝑔∕𝑑𝑤𝑡−𝑛𝑚) for the various fleet segments. Both ends of the box are in the 25-75% interquartile range, the solid
line in the middle represents the median value, both ends of the whisker mean the minimum and maximum values, and
the outliers are shown in transparent. The distribution of fuel consumption across all ship segments at the aggregation
level appears to be quite accurately reproduced by the MariTEAM model, from the fact that the 25-75% and median
values of the box plot are almost identical and the whiskers of the two datasets are also very similar.

Fig. 11 shows the detailed comparison results for the sub-segments based on the size of each ship type following
the same distribution used in the 4𝑡ℎ IMO GHG study. The left side of each subplot shows the aggregated density
distribution for the fuel consumption of the corresponding ship type, and the right side shows boxplots based on the
sub-segment.

The fuel consumption distributions of bulk carriers, container ships, general cargo ships, and oil tankers, seem to
be well-matched overall. In the case of chemical ships, the fuel consumption distribution is generally similar to the
predicted distribution, but the predicted results are slightly shifted toward higher fuel consumption. The MariTEAM
model can also similarly catch the shape of the distribution, such as hump and hollow curved shown in the distribution
of container ships and general cargo ships.

Looking at the box plot on the right side, some sub-segments of small bin sizes, such as bulk carriers, chemical
ships, general cargo ships, and oil tankers, tend to show a relatively large difference between model predictions and
MRV reported values. However, since the number of ship samples included in these sub-segments is very small,
the accuracy of the reporting results may be questionable. Additionally, differences in the distribution of MRV and
the developed model may stem from assumptions on auxiliary engines and boilers. Overall, the model shows good
performance for most of the sub-segments compared to the 25% and 75% quartile ranges and 1.5*IQR. Based on the
comparison results of Sections 4.1 and 4.2, the MariTEAM model can simulate the overall trends of the estimation of
energy consumption and emissions from global shipping adequately.
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Figure 10: Box plot comparing annual average fuel consumption per transport work (𝑔∕𝑑𝑤𝑡 − 𝑛𝑚) of fleet segments in
2018 between EU-MRV data and the MariTEAM model.

Figure 11: Comparison of annual average fuel consumption per transport work (𝑔∕𝑑𝑤𝑡 − 𝑛𝑚) by sub-segment of (a) bulk
carriers, (b) chemical tankers, (c) container ships, (d) general cargo ships, and (e) oil tankers. The left side of each subfigure
represents the density distribution for the fuel consumption of the corresponding ship type, and the right side represents
the box plot of the fuel consumption for each bin size. The number above the x-axis to the right subfigure indicates the
sample size of each bin category.
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4.3. Global assessment of ship resistance components and 𝐶𝑂2 emissions
In this section, the power prediction and energy consumption of the worldwide fleet based on the proposed model

are analyzed, and the findings are shown according to the ship’s resistance components. The 2018 AIS data for 45,891
vessels in the Sea-web database are examined. The upper part of Fig. 12 shows the average annual power increase due
to the added wind resistance of the entire fleet, and the lower part shows the case of added wave resistance estimated
from the MariTEAM model.

Figure 12: Geographical distribution of power increase due to added resistance in (a) wind and (b) waves. Here, the power
increase is calculated by power increased by added resistance due to wind and waves compared to the required power in
calm water resistance of a ship.

In high-latitude waters over 45 degrees with strong winds and waves, particularly in the North Sea, the North
Atlantic, South Africa, and the southern coast of Australia, it can be observed that ships experience noticeably more
resistance due to the weather. On the other hand, in coastal and inland seas, the power increase due to added resistance
due to wind and waves is relatively insignificant. Depending on the global wind pattern at the oceans and the actual
operational profile of ships, the average power consumption trends vary mostly between -5 and 10%, with an average
of 2 to 3%. In the case of wind, a negative value for the power increase can be indicated when a ship is experiencing
a tailwind or a direction that is advantageous for the ship’s operation. The increase in power due to the added wave
resistance of the ship can reach 0 to 30% depending on the sea area, and 8 to 9% on average globally.

Examining the distribution of the added wind resistance reveals that the power increase on the ship’s main path is
noteworthy due to the influence of global wind patterns. For example, in the case of a route between the Cape of Good
Hope in Africa and North America or a route across the Indian Ocean, it is evident that ships sail this route because it
is the shortest distance, even though the ship encounters a considerable amount of added resistance due to trade winds.
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The estimation results from this model illustrate the energy consumption trends of ships worldwide according to
the global climate distribution. Through this analysis, it is found that the weather effect can significantly increase the
ship’s power consumption to an average of about 10-12%, which is almost similar to the sea margins applied in many
bottom-up studies. However, if the same sea margin is applied to the entire sea and fleet, added resistance due to
wind and waves in some areas may differ from reality on an annual average of about -30 to +20%, which can lead to
significant inaccuracies in fuel consumption and emissions predictions.

Fig. 13 shows the percentage of each resistance component to the total resistance according to the ship type. Among
the resistance components, the calm water resistance accounts for the largest proportion of total resistance, which on
average is about 83% of the total resistance on average. Referring to the share of the added resistance due to hull
fouling, the power increase ranges from 7 to 12% depending on the ship type. On average, it can increase ship required
power by about 10%, which is slightly larger than the fouling coefficients of 7 and 9%, applied in IMO (Faber et al.,
2020) and ICCT GHG studies (Olmer et al., 2017). These results can vary depending on various factors such as the
characteristics, operation profiles, and main trading routes of the corresponding fleet. For instance, in Fig. 13, ship
types with more surface area above the waterline (such as containers and general cargo ships) have a bigger share of
added resistance due to wind. Similarly, segments operating at higher speeds (i.e. container ships between 12 and 17
knots) have a higher calm water resistance if compared to segments at lower speeds (i.e. bulk carriers between 9 and
12 knots) thus having a lower share of added resistance due to waves.

Figure 13: Share of ship resistance components to the total resistance according to ship segments.

Fig. 14 depicts the geographical distribution of annual 𝐶𝑂2 emissions (𝑘𝑔 ⋅𝑘𝑚−2) derived from AIS data for global
ships in 2018. 𝐶𝑂2 emissions are determined geographically based on the location of the global ship’s trajectory,
and the yearly accumulated emissions for each square meter are used. 𝐶𝑂2 emissions per square meter are depicted
according to color, highlighting the regions with the highest emissions: the Mediterranean, the Red Sea, the European
coast, Southeast Asia, and the East and South China Seas. These locations are generally identified as the most dense
trade routes in the world. The global sum of 𝐶𝑂2 emissions from the ships was 961 million tons.

As a result, it is found that the power prediction model presented in this study, which is capable of predicting the
resistance components of ships under varied ship characteristics, operational profiles, and weather conditions, can be
useful for evaluating emissions from global shipping.
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Figure 14: Geographical distribution of annual 𝐶𝑂2 emissions (𝑘𝑔 ⋅ 𝑘𝑚−2) from global shipping.

5. Conclusions
To successfully achieve GHG reduction in global shipping, it is critical to properly evaluate and understand the

impact of the combination of operational scenarios and various mitigation measures, which requires a system that can
accurately predict the required power for the global fleet under the actual operating profile and the weather condition.

Thus, in this study, we proposed an improved method for power prediction of ships, suitable for bottom-up analysis
of the global fleet based on the MariTEAM model. To achieve this, a strategy is taken in this study to either find
the method or combination of methods among those used in prior studies that are most appropriate or to modify and
improve them. A comprehensive calculation procedure for the powering performance of the global fleet, encompassing
data pre-processing, ship resistance estimation, and propulsive efficiency, is presented throughout the paper.

Through the comparison results with the three ships’ full-scale measurements and 2018 EU-MRV data, it is
demonstrated that the developed model provides fairly accurate power prediction according to the various operational
profiles and captures the trend of energy consumption well of the global fleet. Based on the developed complete power
prediction model, follow-up research will be conducted on fuel consumption and emissions assessment and strategy
derivation according to various trade patterns. It can also be combined with various energy reduction scenarios to
identify suitable pathways to reduce GHG emissions. Future advancements in data collection and pre-processing
technology for the fleet level are expected to further help improve the accuracy and reliability of these results.
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Appendix A Draught correction

Table A1
Minimum design ballast draught (DNVGL, 2018). 𝑇𝑠𝑐 in the table
refers to the scantling draught of a ship.

Ship type Minimum design ballast draught

Cargo 0.35𝑇𝑠𝑐
Oil 2+0.02𝐿𝑝𝑝(𝐿𝑝𝑝 ≥ 150)
Passenger 0.75𝑇𝑠𝑐
Ro-Ro 0.5𝑇𝑠𝑐

Table A2
Average annual draught ratio in 2015 (Olmer et al., 2017). Draught
ratio (𝑇𝑐∕𝑇𝑑) refers to the ratio between current draught (𝑇𝑐) and
design draught (𝑇𝑑).

Ship type Ballast Laden Average

Bulk dry 0.57 0.91 0.80
Chemical 0.65 0.89 0.85
General cargo 0.65 0.89 0.84
Liquefied gas 0.67 0.88 0.87
Oil 0.60 0.89 0.82
Container - - 0.87
Passenger - - 0.93
Ro-Ro - - 0.91

Appendix B Parameter estimation
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Table B1
Estimation of length parameters.

Estimation equation Applied to Reference

𝐿𝑤𝑙 = 1.01𝐿𝑝𝑝 Container, Ro-Ro Kristensen and Lützen (2012)
𝐿𝑤𝑙 = 1.02𝐿𝑝𝑝 Other
𝐿𝑜𝑠 = 1.04𝐿𝑤𝑙 Hollenbach (1998)
𝐿𝑓𝑛 = 𝐿𝑜𝑠 𝐿𝑜𝑠∕𝐿𝑝𝑝 < 1 Hollenbach (1998)
𝐿𝑓𝑛 = 𝐿𝑝𝑝 + 2∕3(𝐿𝑜𝑠 − 𝐿𝑝𝑝) 1 ≤ 𝐿𝑜𝑠∕𝐿𝑝𝑝 < 1.1
𝐿𝑓𝑛 = 1.0667𝐿𝑝𝑝 1.1 ≤ 𝐿𝑜𝑠∕𝐿𝑝𝑝
𝐿𝑑 = (𝐿𝑤𝑙 + 𝐿𝑝𝑝)∕2 Oortmerssen (1971)

Table B2
Estimation of propeller diameter.

Estimation equation Applied to Reference

𝐷𝑝 = 0.395𝑇𝑑 + 1.3 Bulk carrier (5 ≤ 𝑇𝑑 ≤ 25) Kristensen and Lützen (2012)
𝐷𝑝 = 0.623𝑇𝑑 − 0.16 Container (4 ≤ 𝑇𝑑 ≤ 16)
𝐷𝑝 = 0.713𝑇𝑑 − 0.08 Ro-Ro (1 ≤ 𝑇𝑑 ≤ 11)
𝐷𝑝 = 0.46𝑇𝑑 Bulk carrier Jalkanen et al. (2012)
𝐷𝑝 = 0.5𝑇𝑑 Chemical
𝐷𝑝 = 0.48𝑇𝑑 Oil
𝐷𝑝 = 0.53𝑇𝑑 Liquefied gas
𝐷𝑝 = 0.62𝑇𝑑 Container
𝐷𝑝 = 0.52𝑇𝑑 General
𝐷𝑝 = 0.65𝑇𝑑 Passenger
𝐷𝑝 = 0.63𝑇𝑑 Other

Table B3
Estimation of volume displacement and wetted surface area.

Estimation equation Applied to Reference

∇𝑇𝑑 = (𝐿𝐷𝑇 +𝐷𝑊 𝑇 ) ⋅ 103∕𝜌𝑤 General
𝑆𝑇𝑑 = 0.995(∇𝑇𝑑∕𝑇𝑑 + 1.9𝐿𝑤𝑙𝑇𝑑 Container Kristensen and Lützen (2012)
𝑆𝑇𝑐 = 𝑆𝑇𝑑 − 2.4(𝑇𝑑 − 𝑇𝑐)
𝑆𝑇𝑑 = 0.99(∇𝑇𝑑∕𝑇𝑑 + 1.9𝐿𝑤𝑙𝑇𝑑 Bulk, Tanker
𝑆𝑇𝑐 = 𝑆𝑇𝑑 − 2(𝑇𝑑 − 𝑇𝑐)
𝑆𝑇𝑑 = 0.87(∇𝑇𝑑∕𝑇𝑑 + 2.7𝐿𝑤𝑙𝑇𝑑 Ro-Ro
𝑆𝑇𝑐 = 𝑆𝑇𝑑 − 3(𝑇𝑑 − 𝑇𝑐)
𝑆𝑇𝑑 = 1.11(∇𝑇𝑑∕𝑇𝑑 + 1.7𝐿𝑤𝑙𝑇𝑑 Passenger
𝑆𝑇𝑐 = 𝑆𝑇𝑑 − 2.4(𝑇𝑑 − 𝑇𝑐)

Table B4
Estimation of ship hydrodynamic coefficients.

Estimation equation Applied to Reference

𝐶𝐵 = ∇𝑇𝑐∕(𝐿𝑝𝑝 ⋅ 𝐵 ⋅ 𝑇𝑐)
𝐶𝑀 = 0.93 + 0.08𝐶𝐵 Schneekluth and Bertram (1998)
𝐶𝑃 = 𝐶𝐵∕𝐶𝑀
𝐶𝑊𝑃 = 0.763(𝐶𝑃 + 0.34) Tanker, Bulk, Cargo ship Bertram and Wobig (1999)
𝐶𝑊𝑃 = 3.226(𝐶𝑃 − 0.36) Container Bertram and Wobig (1999)
𝐶𝑊𝑃 = (1 + 2𝐶𝐵)∕3 Other (general) Papanikolaou (2014)
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Appendix C Wind resistance coefficient

Figure C1: Wind resistance coefficients.

Table C1
Information of ships listed in Tables.

ITTC (2017b) Blendermann (1996)
Ship A container ship container ship

(laden, 6800TEU) (laden, 2500TEU)
Ship B container ship container ship

(ballast, 6800TEU) (ballast, 2500TEU)
Ship C oil tanker oil tanker

(laden, 280kDWT) (laden, 300kDWT)
Ship D oil tanker oil tanker

(ballast, 280kDWT) (ballast, 300kDWT)
Ship E dry bulk liquefied gas

(laden, 280kDWT) (laden, moss)
Ship F dry bulk liquefied gas

(ballast, 280kDWT) (ballast, moss)
Ship G dry bulk ro-ro

(ballast, 50kDWT) (laden)
Ship H liquefied gas ro-ro

(average, 125km3) (ballast)
Ship I ro-ro ro-ro

(average) (average)
Ship J passenger passenger

(average) (average)
Ship K general cargo general cargo

(average) (laden)
Ship L general cargo general cargo

(ballast, 19000DWT) (ballast)
Ship M general cargo other offshore

(laden, 19000DWT) (average)
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Table C2
Wind resistance coefficient according to angle of attack from ITTC (2017b).

Angle of Ship Ship Ship Ship Ship Ship Ship Ship Ship Ship Ship Ship Ship
attack A B C D E F G H I J K L M
0 -0.68 -0.97 -0.98 -0.87 -0.98 -0.87 -0.59 -1.01 -0.53 -0.7 -0.6 -0.81 -0.84
10 -0.73 -0.99 -0.93 -0.77 -0.93 -0.77 -0.63 -0.99 -0.56 -0.72 -0.89 -0.78 -0.9
20 -0.74 -1.04 -0.86 -0.63 -0.86 -0.63 -0.56 -0.92 -0.47 -0.73 -1 -0.74 -0.94
30 -0.68 -0.91 -0.74 -0.46 -0.74 -0.46 -0.55 -0.81 -0.42 -0.7 -1 -0.71 -0.96
40 -0.49 -0.83 -0.61 -0.34 -0.61 -0.34 -0.5 -0.67 -0.28 -0.48 -0.89 -0.63 -0.83
50 -0.32 -0.75 -0.5 -0.21 -0.5 -0.21 -0.36 -0.49 -0.17 -0.24 -0.84 -0.55 -0.68
60 -0.26 -0.66 -0.34 -0.14 -0.34 -0.14 -0.21 -0.3 -0.07 -0.26 -0.65 -0.47 -0.52
70 -0.21 -0.53 -0.19 -0.07 -0.19 -0.07 -0.06 -0.15 -0.06 -0.1 -0.43 -0.3 -0.39
80 -0.22 -0.4 -0.09 -0.06 -0.09 -0.06 0.01 -0.04 0 0.09 -0.28 -0.13 -0.27
90 -0.27 -0.25 -0.03 0 -0.03 0 0 0.03 0.12 0.05 -0.1 0.04 -0.14
100 -0.14 0 0.12 0.06 0.12 0.06 0.02 0.1 -0.14 -0.05 0.09 0.3 0.11
110 0.1 0.25 0.2 0.17 0.2 0.17 0.04 0.22 -0.14 0.09 0.49 0.57 0.37
120 0.36 0.49 0.28 0.28 0.28 0.28 0.09 0.42 0.16 0.22 0.83 0.83 0.64
130 0.6 0.76 0.39 0.36 0.39 0.36 0.28 0.65 0.5 0.38 1.11 0.89 0.75
140 0.77 0.95 0.51 0.45 0.51 0.45 0.44 0.78 0.74 0.57 1.39 0.95 0.86
150 0.89 1.04 0.64 0.55 0.64 0.55 0.56 0.88 0.87 0.72 1.49 1 0.97
160 0.89 1.07 0.72 0.59 0.72 0.59 0.61 0.95 0.87 0.8 1.33 0.96 0.86
170 0.8 1.03 0.77 0.64 0.77 0.64 0.64 0.96 0.83 0.71 0.91 0.92 0.75
180 0.66 0.93 0.75 0.62 0.75 0.62 0.64 0.94 0.76 0.66 0.81 0.89 0.62

Table C3
Wind resistance coefficient according to angle of attack from Blendermann (1996).

Angle of Ship Ship Ship Ship Ship Ship Ship Ship Ship Ship Ship Ship Ship
attack A B C D E F G H I J K L M
0 -0.47 -0.73 -0.9 -0.73 -0.58 -0.58 -0.7 -0.73 -0.49 -0.4 -0.65 -0.66 -0.94
10 -0.47 -0.63 -0.87 -0.64 -0.68 -0.64 -0.72 -0.72 -0.66 -0.37 -0.67 -0.59 -1.11
20 -0.47 -0.74 -0.95 -0.58 -0.78 -0.71 -0.83 -0.85 -0.66 -0.35 -0.77 -0.72 -1.27
30 -0.53 -0.79 -0.95 -0.5 -0.69 -0.67 -0.81 -0.88 -0.58 -0.27 -0.77 -0.74 -1.27
40 -0.51 -0.68 -0.85 -0.42 -0.63 -0.63 -0.7 -0.79 -0.38 -0.08 -0.7 -0.59 -1.15
50 -0.44 -0.53 -0.72 -0.26 -0.5 -0.5 -0.54 -0.65 -0.13 0.09 -0.52 -0.43 -0.94
60 -0.34 -0.36 -0.51 -0.06 -0.3 -0.3 -0.34 -0.47 0.17 0.04 -0.37 -0.32 -0.68
70 -0.26 -0.16 -0.29 0 -0.16 -0.21 -0.18 -0.24 0.16 0 -0.21 -0.23 -0.43
80 -0.1 -0.08 -0.03 0.02 -0.11 -0.17 -0.05 -0.03 0.03 -0.01 -0.05 -0.12 -0.27
90 -0.03 -0.1 0.1 0.1 -0.1 -0.09 -0.01 -0.09 -0.21 -0.03 0.15 -0.1 -0.09
100 0.09 -0.16 0.26 0.2 0.03 -0.01 0.05 -0.09 -0.3 -0.08 0.22 -0.05 0
110 0.23 -0.11 0.32 0.2 0.25 0.2 0.19 0 -0.27 -0.08 0.29 0.06 0.25
120 0.46 0.14 0.42 0.3 0.55 0.47 0.17 0.12 -0.11 -0.16 0.29 0.19 0.66
130 0.59 0.36 0.51 0.41 0.75 0.7 0.38 0.32 0.22 -0.18 0.37 0.25 0.95
140 0.61 0.54 0.57 0.45 0.78 0.81 0.67 0.59 0.49 -0.06 0.47 0.38 1.17
150 0.64 0.68 0.62 0.49 0.91 0.89 0.87 0.78 0.7 0.21 0.57 0.54 1.31
160 0.58 0.67 0.61 0.51 0.9 0.83 0.9 0.77 0.81 0.33 0.65 0.63 1.27
170 0.55 0.61 0.6 0.54 0.79 0.76 0.81 0.73 0.74 0.38 0.59 0.6 1.17
180 0.38 0.56 0.55 0.53 0.62 0.59 0.69 0.68 0.59 0.37 0.6 0.57 1.11
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A B S T R A C T
As the reduction of greenhouse gas emissions has become an important issue, measures and
devices to reduce energy consumption are in increasing demand. In this study, the potential
energy saving due to the application of air lubrication technology in merchant ships is analyzed.
We propose a simplified empirical model, covering three different air lubrication technologies,
based on the experimental results and assumptions taken in the existing studies. The bottom
surface area covered with air is important for the efficiency of the air lubrication system,
according to the sensitivity analysis. From the global fleet analysis, net-percentage power saving
varies according to the operational profile as well as the technology. Net-percentage power
savings of 2-5% from air bubble, 8-14% from air layer, and 16-22% from air cavity technology
were obtained assuming calm-water conditions. The methodology can be adopted in early design
stage and fleet-wide analyses of various energy-saving measures.

1. Introduction
Along with the acceleration of global warming, the international community is paying keen attention to greenhouse

gas emissions. The International Maritime Organization (IMO) released an initial strategy, which aims to reduce
greenhouse gas emissions by at least 50% in shipping by 2050 compared to 2008 levels and reduces emissions in stages
as soon as possible, at Marine Environment Protection Committee (MEPC 72) in 2018 (IMO, 2018). In addition, IMO
adopted EEXI (Energy Efficiency eXisting Ship Index) and CII (Carbon Intensity Indicator) as direct and short-term
measures for this (IMO, 2021). In response to this international trend, various types of energy-saving devices and
measures have been studied and applied to ships (Bouman et al., 2017; Zhang et al., 2021).

The total resistance encountered by a ship moving in water is largely composed of frictional resistance, viscous
pressure resistance, and wave resistance. Of these, frictional resistance generally accounts for the largest proportion
of the total resistance, especially on slow-moving ships, which can account for more than 80% of the total. Frictional
resistance is determined by properties such as wetted surface area, operating speed, and viscosity of the fluid, and
the wetted surface area can be effectively reduced through air lubrication of the bottom of the hull. Therefore, air
lubrication system (ALS) is anticipated that one of the promising energy-saving technologies that can successfully
lower fuel consumption and greenhouse gas emissions from ships.

Mitsubishi Heavy Industry first installed its air lubrication system (MALS) on a newly built ship and showed up
to 12% net energy savings in a sea trial of a module carrier (Mizokami et al., 2010). As the thickness of the air layer
that forms on the bottom of the hull increases, it has also been confirmed that net energy savings increase as well. In
a subsequent study, Kawabuchi et al. (2011) analyzed the distribution of air bubbles on the hull surface and its effect
on propeller performance using CFD. Silverstream developed an air carpet technology that covers the entire bottom of
the ship by injecting micro bubbles from air release units, and it was confirmed that a net energy reduction of about
4% could be achieved from actual operations of 40k DWT tanker (Silberschmidt et al., 2016). In Lee et al. (2017),
they observed results from model tests, sea trials, and in-service data from two ships fitted with air-lubrication systems
(SAVER) made by Samsung Heavy Industry (SHI). As a result, in the case of a heavy cargo carrier, power savings of
8.8% were estimated in the sea trial results, and on the basis of long-term trip data, power savings of roughly 4-5% were
recorded for a LNG carrier. In the meantime, Damen group unveiled the Air Chamber Energy Saving (ACES) system,
which uses a chamber-shaped design on the bottom of the hull to create a cavity where air is supplied to prevent water
from coming into contact with the lower hull surface (Pavlov et al., 2020). According to several investigations (ABS,
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2019; Gebraad et al., 2021), there have been about 50 ships with air lubrication systems installed by 2021, including
some test cases, and interest in the technology continues to increase considering recent orders.

Many previous studies have looked at the applicability and performance of air-lubrication systems for certain ship
cases based on model tests, sea trials, or CFD. On the other hand, some studies have suggested a simplified method
for estimating energy savings in the air lubrication system. Mäkiharju and Ceccio (2011), and Mäkiharju et al. (2012)
established a method of calculating the energy economy of the air lubrication system using experimental data and
presented the energy-saving results based on the assumption of various situations for the U.S. Great Lakes vessel.
Comer et al. (2019) applied a similar method to perform an analysis on route-based fuel and emission reduction of the
three ships installed with ALS.

In this study, a simplified model, capable of applying different types of ALS considering various ship types and
profiles, is presented. Through the suggested model, this study aims to assess the impact of ALS on different ship
types and obtain knowledge to help reduce maritime emissions. The suggested model is intended for early-design
estimations, fleet-wide studies, and similar applications where quick calculations requiring limited input are desired.
The underlying idea for the simplified method is that the layer of air produced by the air lubrication system reduces
frictional resistance by covering a portion of the hull’s surface area with air, or air bubbles. In order to enable the
evaluation of the effectiveness of air lubrication technology for ships with different design characteristics and operating
profiles, the aforementioned simplified empirical approach is adopted. The model has been established based on
previously published experimental results and various information found in open literature, and throughout this paper,
the calculation process and basic assumptions are explained. It includes three types of air lubrication: air bubble, air
layer, and air cavity.

In Chapter 2, the general concepts and different types of air lubrication systems are presented, and relevant
studies used to develop the simplified method are also introduced. In the following chapter, the background of the
various formulas employed in the model to calculate the potential savings of an air lubricating system is discussed.
Additionally, by comparing the results of the model with those of other studies, the overall properties and performance
are demonstrated. Chapter 4 presents the research outcomes based on the model that has been established. Here,
parametric studies are performed on the main factors of an air lubrication system, and potential power savings for the
global fleet in calm water and a specific vessel in the real sea are evaluated. The last chapter presents the conclusions
obtained from the study and proposes future works.

2. Background
Frictional resistance often predominates among the resistance components that a ship encounters when moving

through water, and it is heavily influenced by the wetted surface area, operating speed, and viscosity of the fluid.
Basically, the main principle of air lubrication technology is to reduce frictional resistance by reducing direct contact
with water, that is to reduce the wetted surface area by releasing air bubbles and covering some part of the bottom
surface area of the hull. Air lubrication can be classified into three different techniques; the air bubble concept that
injects micro air bubbles at the bottom of the hull, the air film concept covers the bottom surface with a continuous
air layer through increased air flux, and the air cavity concept fills the recessed area beneath the hull with air (Foeth
et al., 2009; ABS, 2019). In the rest of the text, air bubble concept will be referred to as BDR (Bubble drag redction),
air film as ALDR (Air layer drag reduction), and air cavity as PCDR (Partial cavity drag reduction).

BDR reduces the local density by injecting numerous microbubbles into the boundary layer, thereby reducing
the Reynolds stress. At the same time, the effective viscosity is reduced due to an increase in void fraction, which
consequently serves to suppress the turbulence of the flow and reduce skin friction (Park and Lee, 2018; ABS, 2019).
As the injected air flux increases from this state, a transition occurs in which the air bubbles and the air layer coalesce
with each other in the gas-liquid mixture. When sufficient air is injected into the near wall region of the turbulent
boundary layer, the air is aggregated with each other to form a continuous air layer separating the hull surface from the
water flow. It was found that such a developed air layer, so-called ALDR can significantly reduce frictional resistance
compared to bubbly flow (Ceccio, 2010; Elbing et al., 2013). PCDR reduces frictional resistance by injecting air into
a recess or cavity at the bottom of the hull to separate the lower part of the hull from water (Lay et al., 2010). A typical
hull design for PCDR consists of a slightly downward sloping closure downstream from the starting wall of the cavity
into which air is injected, which forms a partial cavity to trap the air. This drag reduction effect by the cavity air layer
is associated with the design of the bottom cavity and the continuous injection of air to maintain a stable air layer (Wu
and Ou, 2019).
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To analyze the impact of an air lubrication system on the speed-power performance of a ship and to get insight into
the optimal hull design and arrangement of the air lubrication system, several methods such as a model test, full-scale
measurements, and CFD computation are typically used. Fig. 1 presents the net-percentage power savings of each air
lubrication system collected from these studies as a horizontal box plot, along with a scatter plot of the collected data.
Several studies have used various metrics such as fuel consumption, gas emission, drag reduction, and power saving,
but since net-percentage power savings defined in Eq. (1) will be used as a performance metric of ALS throughout this
study, only the results that can estimate such value are presented here, and the detailed sources are presented in Table
A.1 in appendix A. Although each experiment was classified and listed by ALS type, some experiments may correspond
to a transitional region depending on the injected airflow. According to the 25%-75% quartile ranges corresponding
to both ends of the box, BDR indicates a net-percentage power saving of about 3 to 6%, ALDR of 4 to 12%, and
PCDR of 16 to 22%. It is clear that there are scatters in any type of air lubrication because the effectiveness of power
savings is highly dependent on the operational profiles of the ship, the details of the air lubrication arrangement, and
the experimental setup.

Figure 1: Potential net-percentage power savings achieved from previous studies.

3. Methodology
3.1. Modelling of air lubrication technology

The purpose of the method developed in this study is to evaluate the potential energy saving of air lubrication
systems on merchant ships and to obtain practical knowledge through the obtained results. It is anticipated that the
applicability of air lubrication technology will vary because ships operating globally have diverse design characteristics
and operating profiles. Since it is an analysis of a wide variety of general-purpose levels, it is necessary to develop a
model that can simulate the overall trend in energy savings using the fundamental ship information. Therefore, the
energy economic calculation approach used in Mäkiharju et al. (2012) was adopted in this study as the performance
evaluation method of ALS, and required volumetric fluxes of gas for the air-lubrication were estimated based on
experimental data obtained from large cavitation tunnel in Elbing et al. (2008) and Makiharju et al. (2010). In addition, a
number of assumptions and simplifications were made regarding the application and composition of the air lubrication
system based on the findings of earlier studies that were published.
3.1.1. Energy saving by air lubrication system

The energy savings by the air lubrication system are determined by the reduction of the power required to overcome
the frictional drag on the lubricated surface and the power consumed to inject gas into the bottom surface. Here, the
performance index of the air lubrication system uses the percentage of net power saving to total brake power, that is,
net-percentage power saving, as stated in Eq. (1).

𝑃𝑁 [%] =
𝑃𝑠𝑎𝑣𝑒 − 𝑃𝑐𝑜𝑛𝑠

𝑃𝐵
× 100 =

𝑃𝑛𝑒𝑡
𝑃𝐵

× 100 (1)
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where 𝑃𝑁 is net-percentage power saving, 𝑃𝑠𝑎𝑣𝑒 is power saved by air lubrication system; it can be replaced by
𝑃𝑠𝑎𝑣𝑒,𝑤𝑐 if there is an influence of weather, 𝑃𝑐𝑜𝑛𝑠 is power consumed by air compressor, 𝑃𝑛𝑒𝑡 is net power saving by air
lubrication system, and 𝑃𝐵 is total brake power.

It is possible to estimate each of the resistance components that make up the ship’s total resistance using established
empirical methods, and the methods used in this study are listed in Table 1. The total resistance and overall efficiency
can be used to estimate the total brake power, as shown in Eq. (2). Here, the total resistance in real sea conditions
can be simply expressed as Eq. (3), and it is considered as the sum of the calm water resistance and the additional
resistance caused by wind and waves. For the estimation of the calm water resistance of a ship, it can be estimated
from various methods listed in Table 1 to suit the dimensions and operating range of each ship. To use wind resistance
coefficients taking into account different ship types and windage area above the waterline, wind tunnel test results from
Blendermann (1996), Fujiwara (2006), and ISO (2015) were gathered. Moreover, the Combined Method, by Kim et al.
(2022b) is used in the model to compute the added resistance in arbitrary wave headings using a few basic inputs.
In order to obtain the propulsive efficiency for various ships, this study uses the simplified method (Kristensen and
Lützen, 2012), which can obtain a quick estimate from Wageningen B-series (Oosterveld and van Oossanen, 1975)
using a limited input value, and the methods found in Birk (2019). In Nagamatsu et al. (2002)’s full-scale experiment,
a bubble injector was dedicatedly designed to prevent the decrease in propeller efficiency due to the inflow of air
bubbles into the propeller. However, according to later studies (Kawakita et al., 2011; Kawabuchi et al., 2011; Jang
et al., 2014), the loss of propulsive efficiency before and after starting the air lubrication system was less than about 1%,
demonstrating that air bubbles may not have much of an impact on a propeller. Based on this fact and for the simplicity
of the model, this study neglect to include any change in propulsive efficiency caused by air bubbles.

In Section 5, the resistance of different commercial ships in the global fleet is estimated. The resistance is calculated
using the well-established empirical methods listed in Table 1. A method for selection of the best empirical methods
for each ship has been established (Kramel et al., 2021). In the fleetwide calculation in this work, an updated version is
applied, where some additional empirical methods are included, as listed in Table 1. The main feature of this resistance
calculation method is that it requires few input parameters. If more detailed information is available, more advanced
resistance prediction methods can be applied.

𝑃𝐵 =
𝑅𝑇 × 𝑉
𝜂𝑇

(2)

𝑅𝑇 = 𝑅𝐶𝑎𝑙𝑚 + 𝑅𝑊 𝑖𝑛𝑑 + 𝑅𝑊 𝑎𝑣𝑒 (3)
where 𝑅𝑇 is total resistance in real sea conditions, 𝑅𝐶𝑎𝑙𝑚 is total resistance in calm water conditions, 𝑅𝑊 𝑖𝑛𝑑 is

added resistance due to wind, 𝑅𝑊 𝑎𝑣𝑒 is added resistance in waves, 𝜂𝑇 is overall efficiency, and 𝑉 is ship speed.

Table 1
Estimation of resistance components using empirical methods used in the study.

ComponentMethod

𝑅𝐶𝑎𝑙𝑚 Holtrop-Mennen (Holtrop and Mennen, 1982), Hollenbach (Hollenbach, 1998), Guldhammer (Guldhammer and Harvald, 1974; Kristensen and Lützen, 2012), Oortmerssen (Oortmerssen, 1971; Helmore, 2008)
𝑅𝑤𝑖𝑛𝑑 Blendermann (Blendermann, 1996), Fujiwara (Fujiwara, 2006), STAJIP (ISO, 2015)
𝑅𝑤𝑎𝑣𝑒 Combined Method (Kim et al., 2022b)
𝜂𝑇 Kristensen (Oosterveld and van Oossanen, 1975; Kristensen and Lützen, 2012), Birk (Birk, 2019)

3.1.2. Power saving by the air lubrication
The air lubricating device serves to reduce the resistance of the area covered with air on the bottom surface among

the frictional resistance generated from the fluid surrounding the hull during ship operation. Therefore, the power that
can be saved from the air lubrication can be calculated by simply taking into account the power due to the frictional
resistance generated by the wetted surface area, the proportion of the air covered area to the total wetted surface, and
the drag reduction achieved by the air covered area, as shown in Eq. (4).
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𝑃𝑠𝑎𝑣𝑒 = 𝑃𝐹𝐷𝑅
𝐴𝑎
𝐴𝑤

(4)

where 𝑃𝐹 is the power required to overcome the frictional drag, 𝐷𝑅 is frictional drag reduction fraction due to air
lubrication, 𝐴𝑎 is air covered area at the bottom surface, and 𝐴𝑤 is wetted surface area.

As in Eq. (5), the power needed to overcome the frictional drag can be obtained by multiplying the total brake
power by the proportion of frictional drag to total drag. Here, the frictional drag coefficient of the flat plate can be
calculated using the ITTC 1957 friction line (ITTC, 1978) from Eq. (7), and accordingly, the frictional resistance is
obtained from Eq. (6). As indicated in Eq. (3), the total resistance can be determined from empirical methods.

𝑃𝐹 = 𝑃𝐵 ×
𝑅𝐹
𝑅𝑇

(5)

𝑅𝐹 = 1
2
𝜌𝑤𝐴𝑤𝐶𝐹𝑉

2 (6)

𝐶𝐹 = 0.075
(log10𝑅𝑛 − 2)2

(7)

where 𝜌𝑤 is water density, 𝑅𝐹 is frictional resistance, 𝐶𝐹 is frictional coefficient, and 𝑅𝑛 is Reynolds number
According to Silberschmidt et al. (2016), the estimated appendage drag of the air release units attached to the bottom

surface of LNG carriers or cruise ships was less than 0.5% of the total. In this study, the influence of appendages for
all ALS types is ignored for simplicity, and in the case of PCDR, it is assumed that there is a newly built ship with
proper design alterations for the cavity form. By ignoring appendage drag for the ALS, it is in fact assumed that great
care has been taken to design the ALS in a careful way.

Among the wetted surface areas under the waterline of a ship, the air covered area, which can be expected to reduce
frictional resistance by the air lubrication system, is expressed in the form of 𝐴𝑎∕𝐴𝑤 as shown in the following Eq.
(8) to facilitate calculation in this study. Here, wetted surface area, bottom area, and air covered area are defined as
shown in Fig. 2. The area that can be covered with air bubbles or layers increases as the flat bottom surface of the hull
increases. This implies that the potential energy saving from the air lubrication grows.

The bottom area of a ship can be estimated from the particular hull shape of the ship, but as it is nearly impossible
to get comprehensive hull shape data for ships at the fleet level, this study proposed regression equations to estimate
the bottom area of a ship (refer to Eq. (9)). They have been developed based on 22 ships with various hull shapes (refer
to Table A.2 in appendix A), and presented the ratio of bottom surface area to wetted surface area (𝐴𝑏∕𝐴𝑤) according
to draught ratio (𝑇 ∕𝑇𝑑) and block coefficient (𝐶𝑏) as illustrated in Fig. 3. Here, 𝐶𝑏 is based on the design draught of
the ship. It is obvious that the 𝐴𝑏∕𝐴𝑤 rises as 𝐶𝑏 increases, and the 𝐴𝑏∕𝐴𝑤 of the ballast condition is higher than that
of the laden condition. For bulk carrier and tankers with normally blunt hull shapes, the flat bottom area tends to be
bigger, whereas, for container ships and ferries with typically slender hull shapes, it tends to be smaller.

Figure 2: Bottom-up view showing air covered area, bottom area, and wetted surface area of a ship.

𝐴𝑎
𝐴𝑤

=
𝐴𝑏
𝐴𝑤

𝐴𝑎
𝐴𝑏

(8)
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Figure 3: The ratio of bottom area to wetted surface area according to 𝐶𝑏 of a ship at various draught.

𝐴𝑏
𝐴𝑤

=

⎧⎪⎪⎨⎪⎪⎩

0.8227𝐶𝑏 − 0.201 𝑇 ∕𝑇𝑑 = 1.0
0.8449𝐶𝑏 − 0.1927 𝑇 ∕𝑇𝑑 = 0.9
0.871𝐶𝑏 − 0.1834 𝑇 ∕𝑇𝑑 = 0.8
0.8942𝐶𝑏 − 0.1698 𝑇 ∕𝑇𝑑 = 0.7

(9)

where 𝐴𝑏 is bottom surface area of a ship, 𝐶𝑏 is block coefficient, 𝑇 is sailing draught, and 𝑇𝑑 is design draught.
Meanwhile, the arrangement of the air release device and the hull bottom design of the specific ship may affect

the air covered area. Kim et al. (2021) found that the reduction rate of frictional resistance gradually increased as
the air injection holes were placed wider in the width direction, and Park and Lee (2018) reported that it was more
effective to inject air distributedly in multiple locations than in a single injection location. In this regard, it is important
to appropriately arrange the injectors to increase the covering area of air at the bottom of the hull as much as possible.
Based on the result in Wu and Ou (2019), 0.84 was used as a ratio of air covered area to the bottom area (𝐴𝑎∕𝐴𝑏) in
this study. However, this value can be changed as needed depending on each ship’s ALS configurations.

Figure 4: Drag reduction of three regions according to the gas injection rate measured from the model tests on the
flat-plate. I, II, and III represent BDR region, transition region between BDR and ALDR, and ALDR region, respectively.
The figure is adapted from Elbing et al. (2008) with minor modifications.
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Fig. 4 depicts the boundaries for three drag reduction regions based on flow rate in the air bubble injection
experiment on the flat plate as given in Elbing et al. (2008). According to the flow rate, I represents the BDR region,
II the transitional region between the BDR and ALDR, and III the ALDR region. The transitional gas injection rate
for BDR (𝑞𝑡𝑟𝑎𝑛𝑠) and the critical gas injection rate for ALDR (𝑞𝑐𝑟𝑖𝑡) are indicated by the vertical lines in the figure.
In region I, when air is injected into the bottom surface of the hull, the flow of air-liquid mixture predominates at the
turbulent boundary. As the air flux gradually increases, some air bubbles are combined to form a partial air layer, and a
transition in which the mixed flow and the air layer coexist occurs (𝑞𝑡𝑟𝑎𝑛𝑠). Here, in region II, as the air flux increases,
the frictional drag reduction starts to rapidly increase from 20% to 80%. When the air flux exceeds the critical value
(𝑞𝑐𝑟𝑖𝑡), a continuous air layer is completely developed, and the drag reduction is 80% or more.

The drag reduction values shown in Fig. 4 were measured at a location of 6.05 m in the streamwise direction from
the air injector at the bottom of the plate, which is approximately half the length of the entire plate. In fact, as the
bubbles move toward the downstream direction, the sizes of the bubbles change due to the coalescences and splits or
the bubbles escape from the near wall boundary layer, thereby reducing the drag reduction effect (Kodama et al., 2005;
Elbing et al., 2008; Verschoof et al., 2016). In some studies, endplates were installed along the entire length to trap the
air bubble in the bottom to achieve an effect (Kawashima et al., 2007; Hoang et al., 2009). As such, it is very important
to maintain the continuity of air bubbles at the bottom of the hull. It is assumed that the generated air layer persists
along the bottom of the hull with the bubbles evenly distributed and maintaining the level of drag reduction at the
certain air flux measured in the experiment. These experimental results were used as a criterion for designing the ALS
model in this study, and thus a drag reduction of 20% in the transition region of BDR and 80% in the critical region
of ALDR were assumed. Since the cavity closure has a drag reduction of more than 95% once it has been completed,
as per Lay et al. (2010)’s analysis, a conservative 95% is used for the PCDR here. In other words, the relevant fixed
drag reduction value and the air flux necessary under specified circumstances for each type of ALS are employed as
indicated in Fig. 4. However, in model tests or real ships injected with different air flow rates, it is anticipated that a
slightly varying drag reduction may be attained.
3.1.3. Power consumption by air compressor

An air compressor or blower must be used to send air to the outlet nozzles at the bottom of the hull in order to
form and maintain an air bubble layer beneath the ship’s surface. The power used by the compressor varies according
to the pressure and volume of air transferred, which has a significant impact on the real gain of an air lubrication
system. According to Buckingham and Pearson (2019), using compressor manufacturer data may be more accurate in
estimating compressor power consumption, but in this paper, keeping simplicity and versatility prioritized, the power
needed to compress the gas at a specified mass flow rate is determined using the polytropic process (Mäkiharju et al.,
2012), as shown in Eqs. (10)-(11). The expansion or compression process including heat transfer is approximately
described by the polytropic process equation (Nag, 2013).

𝑃𝑐𝑜𝑛𝑠 =
𝑃𝑐𝑜𝑚𝑝
𝜂𝑒

(10)

𝑃𝑐𝑜𝑚𝑝 =
�̇�𝑔
𝜂𝑐𝜌1

𝑃1
𝑛

𝑛 − 1

⎛⎜⎜⎝

[
𝑃2
𝑃1

] 𝑛−1
𝑛

− 1
⎞⎟⎟⎠

(11)

where 𝑃𝑐𝑜𝑚𝑝 is the power needed to compress a specified quantity of gas, 𝜂𝑒 is the efficiency of electrical motor
(𝜂𝑒=0.9), 𝜂𝑐 is efficiency of an air compressor (𝜂𝑐=0.6), �̇�𝑔 is the mass flow rate of air necessary to maintain the given
volume flow rate of air on the bottom surface, 𝜌1 is the initial density of the air where it is compressed, 𝑃1 is the
atmospheric pressure, 𝑃2 is the air delivery pressure from the compressor, and 𝑛 is the polytropic index, chosen as the
value valid for adiabatic processes (𝑛=1.4).

The pressure (𝑃2) required by the compressor to deliver air to the bottom of the hull to achieve air lubrication,
consisting of static pressure and dynamic pressure of the bottom air inlet of the hull, and pressure loss due to the piping
as shown in Eqs. (13)-(14). In general, since the hull is deeply submerged in water, the influence of static pressure
contributes the most to the compressor power. The amount of pressure loss caused by piping losses varies on a number
of factors, including the piping length, roughness, and the relevant design of the air lubrication system. Some of the
Y. Kim et al.: Preprint submitted to Elsevier Page 7 of 24

167



Potential energy savings of air lubrication technology on merchant ships

existing articles calculated frictional pressure loss and minor loss from a moody chart assuming a certain pipe surface
roughness (Mäkiharju et al., 2012; Comer et al., 2019), while others (Ceccio and Mäkiharju, 2012; Jang et al., 2014;
Gallardo Martínez et al., 2016) used a range of 1-1.5 atm for the pressure drop due to piping losses. As a cautious
estimate for the pressure drop caused by pipe, 1.5 atm was used in this study.

�̇�𝑔 = 𝑞𝑤
𝜌1𝑃3
𝑃1

(12)

𝑃2 = 𝑃3 + Δ𝑃𝑙𝑜𝑠𝑠 (13)

𝑃3 = 𝜌𝑤𝑔𝑇 + 1
2
𝜌𝑤𝑉

2 (14)

where 𝑞 is the volumetric gas flux per unit span, 𝑤 is the width of air covered area, 𝑃3 is the pressure under the
hull, Δ𝑃𝑙𝑜𝑠𝑠 is pressure drop due to piping losses, and 𝑔 is gravitational acceleration.

For the estimation of the volume flux of gas required to achieve a given air lubrication type beneath the hull, the
experimental data of Elbing et al. (2008) and Makiharju et al. (2010) conducted in the large cavitation tank was used.
Fig. 5 shows volumetric air flux per span (𝑞) for each air lubrication type according to the flow rate measured from
the experiments. In Elbing et al. (2008), air flux was converted to an air layer thickness, and drag reduction according
to thickness was used in their studies. In this model, as shown in Fig. 5 gas flux according to flow speed was used as
reference data for calculating compressor power for each ALS type. In addition, the gas fluxes of the air lubrication
system estimated from the sea trials of the bulk carrier and module carrier are also displayed (Hoang et al., 2009;
Mizokami et al., 2010). According to Mäkiharju et al. (2012), these investigations hypothesize that an air layer or
transitional region formed on the hull’s bottom because the reduction in friction drag was lowered by 20 to 40%, which
is partly compatible with the outcomes of Elbing et al. (2008), and Makiharju et al. (2010).

The air flux required to achieve the air layer or air cavity grows proportionally as the flow rate rises. In this study,
BDR used 𝑞𝑡𝑟𝑎𝑛𝑠 in the transition region between BDR and ALDR with 20% drag reduction as in Fig. 4. The required
air flux in the corresponding state is much less than the air flux for maintaining the ALDR at the smooth and rough
plates. In the case of ALDR, the result was obtained in a state in which the 𝑞𝑐𝑟𝑖𝑡, that is, the continuous air layer is
fully developed. It can be confirmed that the rough surface requires additional gas flux to achieve the same extent of
frictional drag reduction as on the smooth surface. In the case of partial cavity drag reduction, it is separated into the
gas flow necessary to establish or maintain the cavity, and the required airflow of them is significantly different. Since
the gas flux needed to maintain the cavity is less than half that needed to generate it and is almost identical to the gas
flux needed for the BDR, hence the power used by the compressor for the PCDR is actually very little.

According to Makiharju et al. (2010), in the flat plate experiment, the air cavity did not easily reach the beach
(end of the closure) at a lower flow speed, and the flow in the cavitation tunnel fluctuated with overshooting the beach
at a higher speed. Therefore, the corresponding study used a range of flow speeds showing a stable flow rate change
while the closure area can be completely filled with air, and this limited range is also applied in this study as shown in
Fig. 5. Similar experimental results can be found in other studies. More power was required to maintain the air cavity
than not lubricating in some low-speed conditions, and if the flow is too low, the water might re-attach too close to
the cavity step (Pavlov et al., 2020). In addition, according to Butterworth et al. (2015), the efficiency of the air cavity
decreases as the speed increases. If it is too high, the bubbles may escape from the side of the cavity, resulting in
negative net savings. However, the effect of reducing drag on the air layer and the leakage of air from the bottom hull
is greatly influenced by the design characteristics of the bottom cavity (Slyozkin et al., 2014; Butterworth et al., 2015).
In fact, many studies have been conducted for the air cavity in high-speed planning ships, and if the air flow rate is
optimized and the hull is properly designed for the ship’s operating characteristics, it might be utilized several speed
ranges (Pavlov et al., 2020). From the review of previous work summarized in the preceeding discussion, it might be
concluded that air cavity is an immature type of ALS, requiring further research. However, we still chose to include it
in this study.

To determine the amount of air required for each ALS, the model uses regression equations based on experimental
data on the flat plate as shown in Eqs. (15)-(17). At sufficiently high Reynolds numbers, the dependence of gas flux
on Reynolds number can be weakened (Lay et al., 2010), and in experiments with different size scales of comparable
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Figure 5: The volumetric air flux per unit span required for different air lubrication techniques according to the flow speed.
The figure is adapted from Mäkiharju et al. (2012) with minor modifications.

shape, the normalized gas flux for air lubrication may be in the same range (Makiharju et al., 2010; Mäkiharju et al.,
2012). Thus, this study used the results of these model scales to estimate the actual gas flow rate on a full-scale ship. A
curve fitting equation was developed based on the experimental results at the transition gas injection rate of BDR, and
the gas flux necessary to accomplish ALDR and PCDR was then applied as demonstrated in the study of Mäkiharju
et al. (2012). Here, the gas flux of ALDR was selected using the regression equation of the rough plate assuming that
the surface of the hull would be somewhat rough rather than completely smooth. Instead of using the establishment gas
flux of PCDR, maintenance was employed since it was assumed that keeping a cavity using an air lubricating system
during the voyage would be more common. In this model, it is assumed that the air lubrication system is automatically
controlled, such as the volume gas flux according to the flow speed shown in Fig. 5, and that the system automatically
shuts off if the compressor consumes more power than the saving power or if it is outside the operating speed range.

The curve fits for volumetric air flux per unit span (𝑞) for BDR at the transitional gas injection rate are as follows:

𝑞𝐵𝐷𝑅 = 0.008𝑉 − 0.0405 5.5 < 𝑉 < 12.5 (15)
The curve fits for volumetric air flux per unit span for ALDR on a rough surface, and the curve fits for maintaining

PCDR are expressed:

𝑞𝐴𝐿𝐷𝑅 = 0.00126𝑉 2 − 0.00755𝑉 + 0.0391 5.5 < 𝑉 < 12.5 (16)

𝑞𝑃𝐶𝐷𝑅 = 0.00701𝑉 2 − 0.0866𝑉 + 0.277 5.5 < 𝑉 < 7.5 (17)
Table 2 shows the specifications and power of the compressor used for air lubrication systems reported in several

studies. Here, main dimensions without accurate information from the references are obtained through a similar ship or
simple estimation method (Kim et al., 2022a). By substituting the given information into Eqs. (10)-(13), the compressor
powers of the various ships listed in the table are estimated, and they are compared in Fig. 6. As the operating conditions
and information of the vessel and ALS compressor shown in the table do not exactly match the setting used in this
model, it may be a rather rough estimate. However, as shown in the figure, estimates are quite well correlated with the
reported data.
3.1.4. Weather correction for the efficiency of air lubrication system

Depending on the environment the vessel is operating in, the ALS performance may change. According to the
sea-trial results for a cruise ship from Foreship (Pavlov et al., 2020), a relatively small tendency of net power saving
due to air bubbles according to ALS on-off was seen for Beaufort scale 6 and above compared to less than Beaufort
scale 4. According to the model test of a tanker by Borusevich et al. (2017), as the sea-state (ss) increased, cavity
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Table 2
Compressor specifications for air lubrication of ships from reported data. The asterisk symbol in the table represents the
estimated value.

Ship type L [m] × B [m] × T [m]Speed [knots]Air flow [m3/min]Compressor power [kW]References

Bulk carrier 230 × 43 × 6.6-12.8 14 150-250 500-840 (Mizokami et al., 2013)
Module carrier 153 × 38 × 4.5 13.25 40.5-94.5 72-211 (Mizokami et al., 2010)
Tanker 168 × 32 × 10.6 11-14 - 150-230 (Silberschmidt et al., 2016)
Container 350 × 51* × 15.5* 24 200-550 680-1900 (Mizokami et al., 2013)
Container 321* × 45.6 × 14.75 19 133 600 (Borusevich et al., 2017)
Ferry 105 × 17.9 × 6.3 14 26-110 13-60 (Nagamatsu et al., 2002)
Passenger ship240 × 32.2* × 7.8* 17 100-200 230-460 (Mizokami et al., 2013)

Figure 6: Comparison of estimated compressor power from the model and the reported compressor power in Table 2.

instability due to waves occurred in PCDR. As a result, the power saving efficiency of the air cavity system dropped
by 20% in ss5, 40% in ss6, and 90% in ss7, and was hardly functional above. The extreme pitch motion of the ship in
the rough sea is found to have the potential to seriously disturb the air layer on the bottom of the hull. As a result, the
drag reduction from the air layer system is reduced, and more air is needed to keep the air lubrication at its calm water
level.

It has been challenging to evaluate the effect of waves on the air lubrication system because the majority of ALS
research has used model experiments in towing tanks or sea trials in relatively calm water conditions. As a result,
this study used the findings of Borusevich et al. (2016) to roughly represent the effects of weather in the model. As
indicated in Eq. (18), in order to estimate the power saving reflecting the weather effect, the power savings estimated by
Eq. (4) is multiplied by the correction factor as shown in Table 3. Although it is cautiously expected that the air cavity
system will have a greater loss due to ship motion than air bubble or air layer on the bottom surface, the coefficient is
identically given to all ALS kinds and ship types. Nevertheless, further tests and full-scale observations are required
to fully understand how weather affects ALS performance in relation to the sea state and ship design. A comparison
of ALS performance according to the application of actual sea conditions and weather correction factors is further
discussed in Section 4.4.

𝑃𝑠𝑎𝑣𝑒,𝑤𝑐 = 𝑃𝑠𝑎𝑣𝑒 × 𝐶𝑤𝑐 (18)
where 𝑃𝑠𝑎𝑣𝑒,𝑤𝑐 is saved power by air lubrication system after weather effect correction, 𝐶𝑤𝑐 is weather correction

factor.
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Table 3
Weather correction factor for the efficiency of air lubrication
system according to the sea-state.

Sea-state Max sig.wave height [m] Correction factor [-]

1 0.1 1
2 0.5 1
3 1.25 1
4 2.5 1
5 4 0.8
6 6 0.6
7 9 0.1
8 - 0

3.2. Comparison with previous studies
This section examines the validity of the model by comparing the results obtained from several experiments such

as model tests, CFD, and full-scale measurements with the estimates of the model proposed in Section 3.1. Fig. 7 (a)
shows the results of CFD analysis for the 320m cruise ship from Foreship (Pavlov et al., 2020). Here, the ship’s speed
changed from 14 knots to 22 knots, and net-percentage power savings for four different air flow rates were shown.
According to CFD calculations, the power saved by air bubbles tends to drop constantly as ship speed increases at
relatively low flow rates of 2.3 to 7.3 kg/s, however, at 10 kg/s, the saving rises until 19 knots and then declines. BDR
estimations from the proposed model reflect a trend where savings gradually decrease as speed increases, while the
ALDR estimates gradually grow with speed and then gradually fall beyond 18 knots. Although the figures do not
exactly match, it seems to capture the saving trend of ALS according to the speed and flow rate of the ship. Compared
to the CFD results, the volatility of net-percentage power saving with speed seems small, but comparing the model
tests and full-scale measurements in Fig. 7 (b), it can be seen that the volatility may not be so large.

The net-percentage power savings achieved by the air lubrication system during the laden voyage of a LNG ship are
shown in Fig. 7 (b). In the Model test, about 5-6% saving is attainable, and the optimal performance can be achieved
near the ship’s service speed, which is similar to the trend of ALDR predictions from the proposed model. In this
experiment, two rows of air injectors in the forward and one in the aft were arranged at the bottom of the ship model, and
the thickness of the air layer was formed 2, 3, and 5 mm, respectively, which is presumed to correspond to transitional
air layer drag reduction. The results show net-percentage power savings of roughly 4-5% from the ship’s real operations,
and they tend to decline slightly as speed increases, which is similar to the BDR predictions made by our model.

Fig. 7 (c) shows the results of PCDR analysis of two container ships. As shown in the figure, it was not possible
to collect the power consumption of the compressor according to speed from the relevant research (Borusevich et al.,
2017; Pavlov et al., 2020), they were compared in terms of power saving by ALS, without correcting for compressor
power. Looking at the predicted results, it can be seen that it is in quite good agreement with the results of two ships
within the computable area.

The BDR estimates in this model tended to be somewhat smaller than the results of other studies, apparently
because the BDR was calculated based on the transitional gas injection rate. Some of the studies related to the air
bubble system may have progressed beyond the area where only air bubbles exist to the transitional region where air
bubbles and air layers coexist through the adjustment of air flux. Overall, the ALDR has a tendency to overestimate,
which is probably because this model assumes that a completely continuous air layer has been formed. In the case
of PCDR, it tends to be almost similar to the experimental results within the application range. Fig. 7 shows that the
prediction method presented in Section 3.1 gives fairly good estimates, seen in the light of the simplicity of the model
and the complexity of the physics it attempts to represent. The comparison in Fig. 7 is also a reminder that our model
is not intended to be an accurate representation and not a replacement for model tests or detailed numerical studies.

Due to the various assumptions and the settings of ALS in the model, these comparison results were not accurately
matched. This model assumes that the air lubrication system is automatically controlled to maintain the drag reduction
level at a specific air flow rate measured in the experiment. Moreover, an air layer is generated and maintained along
the bottom of the hull without loss of bubbles, and the reduction in propulsive efficiency due to bubbles is ignored. In
particular, during the actual operation of the ship, the drag reduction effect of the air layer may have been influenced by
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several uncertain factors such as the ship’s motion, environments, and ship-specific conditions. As a result, it is difficult
to replicate the precise conditions of tests undertaken in prior studies, hence this can only provide an approximation
of the model’s validity.

Figure 7: Comparison of estimates of the proposed model with previous experimental results (a) Cruise ship (Pavlov et al.,
2020), (b) LNG carrier (Lee et al., 2017), (c) Container ship A (Borusevich et al., 2017) and Container ship B (Pavlov
et al., 2020). The figures are adapted from the referenced papers with minor modifications.

4. Results
4.1. Parametric study

The energy saving trend of the air lubrication technology was investigated using a parametric study on changes in
ship speed, air covered area, loading condition, and block coefficients in accordance with various ship operating and
design conditions. Here, a supramax-class general cargo ship was selected for the case study and had the dimensions
shown in Table 4. The settings for each simulation case were specified as shown in Table 5, and the findings thereof
are depicted in Fig. 8; the upper graph displays the net-percentage power saving, while the lower graph displays the
net power saving. To investigate the influence of block coefficient in Case 4, it is assumed that the hull shape design
has been modified, i.e., that the air lubrication system has been installed on different ships (85-100% 𝐶𝑏).

Table 4
Ship basic information.

General cargo

Length [m] 194
Breadth [m] 32
Design draught [m] 12.6
Block coefficient [-] 0.79
Wetted surface area at design draught [m2] 9370
Deadweight tonnage [ton] 50700
Maximum continuous rating [kW] 10780
Service speed [knots] 15.5

In Fig. 8 (a), the net power saving increases for all ALS types as ship speed rises. While, the net-percentage power
saving gradually declines in BDR, and for ALDR and PCDR, it is gradually increased to a certain speed and then
decreased. In principle, it is advantageous for ships to operate at a low service speed because the frictional resistance is
predominant at low speeds, while at high speeds, the wave-making resistance contributes more to the total resistance.
However, since the air flux required by the compressor varies for each ALS type as illustrated in Fig. 5, the speed
conditions at which the maximum saving could be achieved from the ALS could be slightly different.
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Table 5
Parametric study of the air lubrication systems for the target ship. Sea-states are assumed to be
calm water condition.

Case 𝑉𝑠 [knots] 𝑇 [m] 𝐶𝑏 [-] 𝐴𝑎/𝐴𝑏 [-]

1 10.5-15.5 (0.7-1.0𝑉𝑠) 12.6 0.79 0.84
2 10.5-15.5 (0.7-1.0𝑉𝑠) 12.6 0.79 0.6-1.0
3 15.5 8.8-12.6 (0.7-1.0𝑇𝑑) 0.79 0.84
4 15.5 12.6 0.68-0.79 (0.85-1.0𝐶𝑏) 0.84

The lower and upper limits of the net-percentage power saving are depicted in Fig. 8 (b), which only changes the
ratio of the air covered area from 60% to 100% under the same conditions as in Case 1. Due to the hull structure and
arrangement of air release units, it is practically impossible to completely cover the bottom region with air; nonetheless,
the range is assumed to be 60-100% to examine the effect of the air covered area. Depending on the ALS type, this
difference in the air covered area may lead to a significant difference in savings of 3 to 10%. In other words, it is clear
that the configurations of the ALS installation, which decide how much air can cover the bottom region, can have a
significant impact on performance in addition to the ship’s flat bottom area.

Case 3 demonstrates that the net saving of the air lubrication decreases as the draught increases. This is because
the energy consumed by the compressor to supply air to the bottom of the ship is increasing with increasing draught.
Additionally, the underwater area increases along with the draught, increasing the hydrodynamic drag forces, which
has the effect of increasing the overall required power.

Fig. 8 (d) shows the parametric study results of the block coefficients. The bottom area of the ship generally tends
to widen as the block coefficient increases, thus even if it is assumed that the same percentage of air is covering the hull
bottom, it can be seen that the amount of frictional resistance can be decreased. That is, the efficiency of air lubrication
system is high at a high block coefficient as can be observed from the figure.
4.2. Global sensitivity analysis

The Sobol method, a global sensitivity analysis method, was used to determine how each parameter affected the
model’s output. The Sobol sensitivity index can be used to quantify each parameter’s contribution to the variance of
the model output. A low Sobol index indicates that the variation of the output caused by a change in the corresponding
parameter is relatively small (Homma and Saltelli, 1996; Saltelli and Annoni, 2010). The first-order index is measuring
the direct effect of each parameter on the variance of the model. It can be expressed as Eq. (19), and it means an expected
decrease in the variance of the model when 𝑋𝑖 is fixed. The total index, which includes both the first-order index, as
well as the sensitivity due to the interaction between that parameter and all other parameters, can be expressed as Eq.
(20). The larger the difference between the first and total index, the greater the effect of sensitivity on variance due to
the interaction.

𝑆𝑖 =
𝑉 𝑎𝑟[𝐸(𝑌 |𝑋𝑖)]

𝑉 𝑎𝑟(𝑌 )
(19)

𝑆𝑇𝑖 =
𝑉 𝑎𝑟[𝐸(𝑌 |𝑋−𝑖)]

𝑉 𝑎𝑟(𝑌 )
(20)

where, 𝐸(𝑌 |𝑋𝑖) stands for the predicted output value when 𝑋𝑖 is fixed, and 𝑋−𝑖 denotes all uncertain parameters
except 𝑋𝑖.

Here, as shown in Fig. 9, global sensitivity was examined within the range (𝑉𝑠: 10.5-15.5, 𝑇 : 8.9-12.6, 𝐴𝑎∕𝐴𝑏:0.6-1.0) that was taken into account in the previous section. Within this range, it was assumed that the parameters were
distributed uniformly. For each sensitivity analysis group, different block coefficients were used of 0.68, 0.74, and 0.79
to support the assumption that the air lubrication system was installed on the different ships, respectively. As a result of
the preliminary analysis, the interaction between speed, draught, and the ratio of air covered area to the bottom surface
area was not significant, there was little difference between the total index and the first index. Thus, only the first-order
Sobol indices are displayed in the figure. Within the parameter range defined in this research, the ratio of air covered
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Figure 8: Results of parametric study for the air lubrication systems: (a) speed, (b) ratio of air covered area to the bottom
surface area

, (c) draught, (d) block coefficient.

area to the bottom surface area is the most influential as it accounts for about 46 to 85% of the total variance. In BDR,
speed is a relatively more important parameter than ALDR and PCDR, which is about 35-42% of the total. The change
in the Sobol index of various parameters according to block coefficient is not significant, but the influence of draught
is relatively greater in ships with a large block coefficient.
4.3. Case study of global fleet in calm water condition

On about 48,710 global fleet registered in the Seaweb database, performance analysis in calm sea conditions
according to the installation of the air lubrication system was carried out. Here, five ship categories of bulk carrier,

Y. Kim et al.: Preprint submitted to Elsevier Page 14 of 24

174



Potential energy savings of air lubrication technology on merchant ships

Figure 9: Sensitivity analysis with Sobol’s indices for each parameter according to different block coefficient. The bars in
the figure represent the first order Sobol index using 10,000 random samples from the Monte Carlo method.

chemical tanker, general cargo, container ship, and oil tanker were examined, and ship type and size were categorized
in accordance with the IMO’s fourth greenhouse gas study (IMO, 2020), as indicated in Table 6. The draught ratio
for each ship type was used as given in Table 7 in order to assume the laden and ballast voyage of the ship operation
(Olmer et al., 2017). Here, ballast-only voyages are uncommon for container ships unlike other ship types, thus the
average draught ratio is applied for all voyage types. According to the study’s specified bin size, Fig. 10 depicts the
composition of each type of ship, and the distributions of ship parameters employed in this case study are shown in
Fig. 11.

Figure 10: Percentage of vessels by bin size obtained from the sea-web database.

Fig. 12 displays the comparison of the global fleet’s potential net-percentage power savings by type of air
lubrication. The blue and red boxes represent the case study assuming that there is no environmental force when
navigating at service speed under ballast and laden conditions.

The saving of the air lubrication system during a ballast voyage is higher than that of a laden voyage, as can be
demonstrated in this plot. Container ships deliver the same results because their draught is assumed to be the same.
Inspecting the overall results for each ship type, bulk carriers and tankers with flat bottom shapes that can hold more
air bubbles in the hull bottom, i.e., generally associated with high block coefficients, are advantageous. Referring to
Fig. 11, it can be seen that a ship with a relatively low operating speed compared to the size of the ship, that is, the
Froude number, rather than the operating speed, has a more direct effect on power saving. The potential net-percentage
power savings of BDR, ALDR, and PCDR are 2 to 5%, 8 to 14%, and 16 to 22%, respectively, when the results of the
entire fleet of 25 to 75% quantile in ballast and laden voyages are taken into account.

A more detailed comparison according to the bin size for each ship type is displayed in the following Fig. 13. The
PCDR results of some container ships are not provided here, which were not calculated because the service speeds
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Table 6
Vessel type and categories.

Ship type Bin size Capacity Unit

Bulk carrier

1 0-9,999

DWT

2 10,000-34,999
3 35,000-59,999
4 60,000-99,999
5 100,000-199,999
6 200,000-

Chemical tanker

1 0-4,999

DWT
2 5,000-9,999
3 10,000-19,999
4 20,000-39,999
5 40,000-

Container ship

1 0-999

TEU

2 1,000-1,999
3 2,000-2,999
4 3,000-4,999
5 5,000-7,999
6 8,000-11,999
7 12,000-14,999
8 14,500-19,999
9 20,000-

General cargo

1 0-4,999

DWT2 5,000-9,999
3 10,000-19,999
4 20,000-30,000

Oil tanker

1 0-4,999

DWT

2 5,000-9,999
3 10,000-19,999
4 20,000-59,999
5 60,000-79,999
6 80,000-119,999
7 120,000-199,999
8 200,000-

Table 7
Average draught ratio according to the voyage type of different ship types. Draught
ratio is defined as the ratio of actual draught to design draught.

Ship type Ballast voyage Laden voyage

Bulk carrier 0.58 0.91
Chemical tanker 0.66 0.88
General cargo 0.65 0.89
Oil tanker 0.60 0.89
Container ship 0.82

of the vessels belonging to the corresponding bin sizes were outside the operating range of the PCDR. It is clear
that even within the same ship type, performance can vary significantly depending on the operation profile and hull
characteristics. Additionally, it can be shown that overall savings tend to rise as bin size grows. This is thought to be
the case since the proportion of frictional resistance in total resistance increases with ship size. On the other hand, the
net-percentage power savings tend to no longer increase but rather slightly decrease in the case of a large tanker such
as bins 7 and 8 because the air compressor’s power consumption rises due to the hull design with deep draught. Based
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Figure 11: Distribution of ship parameters relevant to ALS according to the ship type used in the study.

on these results, coastal barges with flat bottom hull shapes that typically operate at low draught and low speeds are
believed to be an ideal ship type, although not investigated in this study.

The results shown here are obtained under the assumption of calm water conditions and can be somewhat optimistic
due to the various assumptions and simplifications. In order to obtain the corresponding amount of drag reduction on
an actual ship, an appropriate design must follow. However, the estimated results in Fig. 12 are fairly consistent and
are distributed in a similar range to the previous research as in Fig. 1, despite the fact that a ship-to-ship comparison
between them cannot be done due to different experimental setups, such as ship speed, loading conditions, and air
lubrication system.

Considering the actual use of air lubrication technology, the following characteristics can be considered from the
above analysis results. For ships that are already in operation, the retrofit is comparatively easy with BDR and ALDR
and a certain degree of drag reduction can be expected. Furthermore, it is investigated that the impact on the ship’s
maneuvering and sea-keeping capabilities is not significant (Thill et al., 2005; Foeth et al., 2009; Gallardo Martínez
et al., 2016). However, according to the hull shape and operating profile, it is required to assess the actual gain between
savings by air lubrication and consumption by the air compressor. Meanwhile, PCDR is expected to be effective when
the ship maintains an air lubrication system throughout actual operations due to the relatively small air flux required
to keep the air cavity. However, the system can be functional in a limited range, and there is still some ambiguity
regarding air cavity loss caused by ship motion. Additionally, it is appropriate mostly for newly constructed ships
because it necessitates a hull design that is specifically devoted to PCDR, which can lead to an increase in initial
capital expenses. As a result, it would be most suited for ships with sailing tactics that take place in environments
where maintaining the air cavity is relatively easy and the speed profile falls within the PCDR’s operational range.
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Figure 12: Comparison of potential net power saving of global fleet by air lubrication type.

4.4. Case study of a target ship in real sea condition
In the previous section, due to a large amount of calculation of the global fleets, results were obtained by assuming

calm water conditions, i.e., external environmental factors are ignored, but in this section, the performance of ALS
according to the weather effect is analyzed. For ease of calculation, it is assumed that a ship operates a fixed trade
pattern at service speed annually, and three different scenarios are compared: a calm sea condition, a real sea condition,
and the real sea condition where weather adjustment factors are applied.

The general cargo ship in Table 4 was used, and a scenario was assumed in which the ship sailed the route between
Rotterdam, Netherlands (NLRTM), and New York, USA (USNYC), at a constant service speed of 15.5 knots, as
indicated in Fig. 14. NLRTM-USNYC is assumed as a laden voyage and in the opposite direction is ballast voyage, and
50 waypoints were uniformly defined throughout the route. The histograms of the apparent wind speed, apparent wind
angle, significant wave height, and relative wave angle that the ship may experience while operating are presented in
Fig. 15, which was created using meteorological data from the appropriate route from the ECMWF reanalysis weather
hindcast data for 2020 (In the figure, 0 degrees represents headwind and head wave). On average, the ship encounters
more headwinds from NLRTM to USNYC and following winds from USNYC to NLRTM during the voyage.

Fig. 16 represents an example of ALDR in the ship’s laden voyage among the results of annual energy-saving
simulations, and Fig. 16 (a) and Fig. 16 (b) show seasonal changes and three different scenarios, respectively. The ship
typically experiences headwinds at the start of the voyage outside the Strait of Gibraltar, and in the North Atlantic
Ocean, net-percentage power savings tend to decline dramatically as a result of rather strong external environments,
since the total resistance increases significantly, while the frictional resistance reduction by ALS is not influenced.
In addition, seasonal variations show that from June to August, there is an average saving of about 8%, while from
December to February, the average saving in some areas drops to less than 4%. It is evident that there is a significant
variation in the performance efficiency of air lubrication depending on the region and season. In Fig. 16 (b), the
difference in net-percentage power saving according to the actual weather conditions at sea can be confirmed. In calm
sea conditions, the savings of the ship is constant annually at all waypoints, but when considering the weather profiles
of the real sea, the net-percentage power saving changes geographically and seasonally, and there is a difference of
about 30% on average. When the weather adjustment factor proposed in this study is additionally applied, it tends to
decrease by about 5% more than that. Thus, the weather correction factor itself is of minor importance compared to
the increase of resistance and related power consumption due to wind and waves. Fig. 17 shows the results of three
scenarios for all ALS types and voyage types at once. It can be seen that the overall energy-saving effect decreases
by roughly 15 to 35% compared to the calm water conditions, taking into account the actual weather environment and
weather correction effect. The difference in efficiency between the ballast voyage and the laden voyage is also shown
in Fig. 17, which is expected to be largely due to the meteorological characteristics of such a specified route, where the
annual weather condition is much more severe in the laden voyage, as shown Fig. 15.
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Figure 13: Comparison of potential net power saving of global fleet in bin categories according to ship type: (a) bulk dry,
(b): chemical, (c): container, (d): general cargo, (e) oil.

Figure 14: (a) Yearly mean wind speed (b) Yearly mean significant wave height at North Atlantic Ocean 2020. Arrows in
the figures represent the mean direction of the wind and waves. Orange circle is route from NLRTM to USNYC and red
diamond is from USNYC to NLRTM.
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Figure 15: Histograms of the actual weather conditions that ship encounters: (a) apparent wind speed, (b) apparent wind
angle, (c) significant wave height, (d) relative wave angle.

Figure 16: Net power savings of a ship using ALDR at laden voyage (NLRTM-USNYC): (a) seasonal changes, (b) weather
influences.

Figure 17: Comparison of average annual net power saving of ALS according to the application of weather effects.
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5. Conclusions
Most of the existing studies related to ALS have introduced ship-specific approaches such as model tests, CFD, and

full-scale measurements, and few simplified models can be applied to various vessels with different operating profiles
and evaluate energy-saving trends. This study presents an easy-to-use tool that can be applied at the global fleet level
in order to assess the energy saving potential of air lubrication systems of different configurations. The tool might also
be useful for early-design considerations of installation of air lubrication systems. The overall theoretical background
underpinning the modeling, the estimation methods of several factors, and the assumptions were addressed. On the
basis of the established model, parametric and sensitivity analyses were carried out, and insights on the variables
influencing ALS performance were provided. Additionally, potential energy reduction trends for each ship type were
examined, and changes in performance according to the location and seasonal effects were discovered for specific
waters.

Through the parametric study, despite air lubrication systems being more efficient for ships operating at low speeds,
the parametric study indicates that the ideal operating conditions may vary slightly depending on the type of air
lubrication. The efficiency of ALS increases as the block coefficient rises because high block usually comes with large
flat bottom area. Not only this, but it is also important how much air can cover the bottom area of the ship in relation to
the configuration of ALS. The ratio of air covered area to the bottom surface area could explain 46 to 85% of the total
variation of net-percentage power savings within the given parameter range in this study, according to a sensitivity
analysis utilizing the Sobol index. As higher draught increases the energy needed to overcome hydrodynamic drag
forces and increases the energy of the compressor used to supply air, the savings are larger in ballast than in laden
conditions.

According to the case study conducted under the assumption that the entire global fleet would be equipped with
ALS, the possible net-percentage power savings would be BDRs of 2-5%, ALDRs of 8-14%, and PCDRs of 16-22%.
The level of savings identified in the fleet-wide study agrees fairly well with the level of savings of the various studies
of individual ships found in the literature. Overall, bulk carriers and tanker with blunt hulls and moderate running
speeds showed larger savings than container ships with slender hulls and high operating speeds. The operation profile
and hull features, however, can significantly affect performance even within the same ship class. Considering the actual
weather environment and weather correction effect, it can be observed that the effect decreases by about 15 to 35%
compared to the calm water conditions.

The approach taken in this study can be applied to provide preliminary performance estimates when considering
the installation of an air lubricating system during the ship’s initial design phase, and an evaluation of the anticipated
performance of the global fleet can also be taken into consideration. In the area of international shipping, this will help
to emphasize the potential of air lubrication technology to reduce emissions. Nonetheless, it should be noted that some
of the assumptions and simplifications of the model might lead to somewhat optimistic results. In fact, careful hull
and system design suited to those systems will be needed to achieve the same level of power reduction as the results
achieved from this work. The model would benefit from an improved model of the effect of waves and ship motions
on the ALS, as well as the effect of ALS on the propulsive efficiency. Further study of airflow at large scales and
high Reynolds numbers, as well as closer examination using full-scale measurements from ALS-equipped ships, are
necessary in order to close the gap between model-scale and full-scale results and to more accurately capture the impact
of the air layer below the hull. In a future study, it is planned to analyze the energy saving and related emission reduction
potential from use of air lubrication, taking into account the real operational pattern and environment, including the
wave correction on the air lubrication effectiveness.
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Appendix A

Table A.1
Relevant studies on the energy saving of air lubrication systems used in Fig. 1.

Type of ALS Method References

BDR Model test Kodama et al. (2005); Lee et al. (2017)
Sea-trial Latorre et al. (2002);Nagamatsu et al. (2002);Hoang et al. (2009);

Kumagai et al. (2015);Silberschmidt et al. (2016);Lee et al. (2017);
Mizokami and Kuroiwa (2019);Pavlov et al. (2020);Silverstream (2022)

CFD Pavlov et al. (2020)
ALDR Model test Jang et al. (2014);Lee et al. (2017);Sindagi et al. (2022)

Sea-trial Kodama et al. (2008);Hoang et al. (2009);Mizokami et al. (2010);
Lee et al. (2017);Pavlov et al. (2020)

CFD Fotopoulos and Margaris (2020)
PCDR Model test Butterworth et al. (2015);Borusevich et al. (2016);

Borusevich et al. (2017);Pavlov et al. (2020)
Sea-trial Aronietis et al. (2011);Borusevich et al. (2016);Pavlov et al. (2020)
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Table A.2
Dimension of ships used for the regression equations in Eq. (9)

Ship type 𝐿𝑝𝑝 [m] B [m] 𝑇𝑑 [m] 𝐶𝑏 [-] References

Tanker 161-323 28-60 9-21 0.72-0.85 Pinkster (1980);Bunnik (1999);Larsson et al. (2013);
Park et al. (2019a);Hinostroza et al. (2019);Kim et al. (2019)

General cargo 60-194 15-32 3.2-12.6 0.56-0.80 Gupta et al. (2019);Gerritsma and Beukelman (1972);
Kracht (1984);Alamsyah et al. (2018)

Bulk carrier 192 36 11.2 0.85 Lee et al. (2019)
Container 119-355 19-51 6-14.5 0.58-0.76 Moctar et al. (2012);Van (1997);Simonsen et al. (2013);

Park et al. (2019b);Reguram et al. (2016);Liu et al. (2015)
Ro-Ro/Ferry 158-178 21-32 6.1-8.2 0.54-0.56 Tsujimoto et al. (2009); Surendran et al. (2005)
Total 60-355 15-60 3.2-21 0.55-0.85
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