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INTRODUCTION

Representation theory of finite dimensional algebras constitutes an overall
framework for this PhD-thesis. A fundamental idea in representation theory is
to investigate abstract patterns that allow us to provide structure to compli-
cated mathematical systems. An important approach towards understanding
the mathematical objects known as algebras, is to investigate how an algebra
acts on the universe it is part of. More precisely, we study categories one can
associate to an algebra in a natural way, for instance module categories and
derived categories.

As the categories in question usually are of a complex nature, it is often not
feasible to explore them on a global level. An underlying idea in this thesis is
to instead solve problems locally, before changing perspective to deduce what
the local answers reveal about the global situation. This involves studying
smaller pieces, or more precisely subcategories, of our original categories. These
subcategories or “building blocks” are often more tractable than the ambient
category itself.

The thesis consists of the following six papers:

[H1] J. Haugland, The Grothendieck group of an n-exangulated category,
Appl. Categ. Structures 29 (2021), no. 3, 431-446.

[H2] J. Haugland, Auslander–Reiten triangles and Grothendieck groups of
triangulated categories, Algebr. Represent. Theory 25 (2022), 1379-
1387.

[H3] J. Haugland, K. M. Jacobsen and S. Schroll, The role of gentle algebras
in higher homological algebra, Forum Math. 34 (2022), no. 5, 1255-
1275.

[H4] J. Haugland and M. H. Sandøy, Higher Koszul duality and connections
with n-hereditary algebras.

[H5] R. Bennett-Tennenhaus, J. Haugland, M. H. Sandøy and A. Shah, The
category of extensions and a characterisation of n-exangulated functors.

[H6] J. August, J. Haugland, K. M. Jacobsen, S. Kvamme, Y. Palu and
H. Treffinger, A characterisation of higher torsion classes.

The notion of Grothendieck groups plays a key role in the first two papers
of the thesis, while all except the second paper are within the area of higher
homological algebra. Both higher homological algebra and Grothendieck groups
are closely connected to the study of subcategory structures, although from
different perspectives. In this introduction, we give an overview of relevant
background material and highlight how the topics of this thesis revolve around
increasing the understanding of subcategories.

i



ii INTRODUCTION

Higher homological algebra. The research field of higher homological alge-
bra was initiated by Iyama [12, 13] and concerns higher-dimensional generali-
sations of categories that are central in representation theory. Given a positive
integer n, important classes of examples include n-abelian (or more generally
n-exact) and (n+2)-angulated categories as defined in [17, Definition 3.1] and
[8, Section 1], respectively. A fundamental role in these higher structures is
played by distinguished sequences with n+ 2 objects. For n = 1, one recovers
the short exact sequences and distinguished triangles of abelian and triangu-
lated categories, and the theory obtained corresponds to classical homological
algebra.

Categories exhibiting a higher homological structure primarily arise as cer-
tain subcategories, known as n-cluster tilting subcategories, of abelian and
triangulated categories. The definition of such subcategories, which is given
below, plays a crucial role in this thesis. Recall that a subcategory U of a cat-
egory C is called functorially finite if every object in C admits both a left and a
right U -approximation. Moreover, in the case where C is abelian, the subcate-
gory U is called generating (resp. cogenerating) if for each object X in C there
exists an epimorphism U ↠ X (resp. monomorphism X ↣ U) with U in U .
The subcategory U is called generating-cogenerating if it is both generating and
cogenerating. In the definition below, we write ExtiC(X, Y ) = HomC(X,ΣiY )
in the case where the ambient category C is triangulated with suspension func-
tor Σ.

Definition (See [14,19,21]). A functorially finite subcategory U of an abelian
or triangulated category C is n-cluster tilting if it is generating-cogenerating
(in the abelian case) and

U = {X ∈ C | ExtiC(U , X) = 0 for 1 ≤ i ≤ n− 1}
{X ∈ C | ExtiC(X,U) = 0 for 1 ≤ i ≤ n− 1}.

For some basic examples of n-cluster tilting subcategories, see for instance
[H3, Example 2.2]. The theorem below plays a fundamental role in higher
homological algebra, and demonstrates the importance of n-cluster tilting sub-
categories. The first part of the result is due to Jasso [17], while the second is
shown by Geiss, Keller and Oppermann [8].

Theorem (See [17, Theorem 1] and [8, Theorem 1]). Let U be an n-cluster
tilting subcategory of an abelian or triangulated category C. The following
statements hold:

(1) If C is abelian, then U is n-abelian.
(2) If C is triangulated and U is closed under Σ

n, then U carries the struc-
ture of an (n+ 2)-angulated category.

The minor difference in the formulation of the conclusions in (1) and (2)
above is due to the fact that being n-abelian is a property of a category, while
in order to state that U is (n+2)-angulated, one needs to specify the suspension
functor and a class of distinguished (n+ 2)-angles, see [8, Section 1].

A converse to part (1) of the theorem above has recently been shown, es-
tablishing that any n-abelian category is equivalent to an n-cluster tilting sub-
category of an ambient abelian category [6, 22]. The research field of higher
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homological algebra can hence be interpreted as the study of important sub-
categories that relate to higher homological phenomena. As demonstrated in
both the third and fourth paper of this thesis as well as in work by other au-
thors, the existence of a subcategory allowing a higher homological structure
is intimately related to global homological properties of the ambient category
[H3,H4,2,3, 15,17,26,28,29].

Herschend, Liu and Nakaoka introduced n-exangulated categories in [10],
giving a higher analogue of extriangulated categories as defined by Nakaoko
and Palu [23]. The notion of n-exangulated categories unifies and extends
the definitions of n-exact and (n + 2)-angulated categories. In the first and
fifth paper of this thesis, we work in the general framework of n-exangulated
categories.

The importance of the study of higher structures has become increasingly ev-
ident as connections to various branches of mathematics have been developed.
Higher homological phenomena are strongly related to higher Auslander–Reiten
theory and representation theory of finite dimensional algebras [12–14]. The
research field has connections to commutative algebra, algebraic K-theory,
commutative and non-commutative algebraic geometry, symplectic geometry,
combinatorics and conformal field theory [1,4,5,7,9,16,20,25,30]. Within the
area of algebraic geometry, higher homological algebra recently provided an
important ingredient allowing the proof of the Donovan–Wemyss conjecture in
the context of the minimal model program [18].

Grothendieck groups. Let T be an essentially small triangulated category
with suspension functor denoted by Σ. We start this section by giving the def-
inition of the Grothendieck group of T . This notion is a triangulated analogue
of the classical definition of the Grothendieck group of an algebra, or more
generally of an essentially small abelian category, which plays an important
role in many branches of representation theory. We moreover present a result
of Thomason relating the subgroup structure of the Grothendieck group to the
subcategory structure of the triangulated category [27].

As T is essentially small, the collection of isomorphism classes ⟨X⟩ of objects
X in T forms a set. We use the notation F(T ) for the free abelian group
generated by such isomorphism classes.
Definition. The Grothendieck group of T is the quotient K0(T ) = F(T )/R(T ),
where R(T ) is the subgroup of F(T ) generated by the subset
{⟨X⟩ − ⟨Y ⟩+ ⟨Z⟩ | X → Y → Z → ΣX is a distinguished triangle in T }.

The equivalence class ⟨X⟩+R(T ) represented by an object X in T is denoted
by [X].

The definition above is used directly in the second paper of this thesis,
while it is used as a background for defining an analogous notion in the setup
of n-exangulated categories in the first paper. This more general definition,
see [H1, Definition 4.1], covers both the triangulated and the abelian case, as
well as higher-dimensional generalisations.

A triangulated subcategory S of T is called dense if each object in T is a
direct summand of an object in S. It should be noted that each triangulated
subcategory of T is dense in a uniquely determined thick subcategory. When-
ever a classification of thick subcategories is known, for instance if T is the
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bounded derived category of a commutative ring [11, 24], the theorem below
hence yields a full classification of all triangulated subcategories.

Theorem (See [27, Theorem 2.1]). There is a one-to-one correspondence{
subgroups of K0(T )

} f

⇄
g

{
dense subcategories of T

}
,

where f(H) for H ⊆ K0(T ) is the full subcategory

f(H) = {X ∈ T | [X] ∈ H}
and g(S) for S ⊆ T is the subgroup

g(S) = ⟨[X] ∈ K0(T ) | X ∈ S⟩.

The classification theorem above is generalised to the context of n-exangulated
categories in the first paper of this thesis, see [H1, Theorem 5.1], establishing
that even though n-exangulated categories constitute a significantly bigger
class of categories, their subcategory structures are still intimately related to
the associated Grothendieck groups.

Notes for the reader. Below is a reference list which is used for this intro-
duction, where the papers that are part of the thesis are separated out. Note
that there is also included a reference list as part of each paper. In cases where
the papers are published, this is indicated on the title page. At the very end
of the thesis, you can find an appendix containing a list of Norwegian trans-
lations of some central mathematical terms. Norwegian readers are strongly
encouraged to look up translations for terms they are not yet familiar with.

Papers in thesis

[H1] J. Haugland, The Grothendieck group of an n-exangulated category, Appl. Categ. Struc-
tures 29 (2021), no. 3, 431–446.

[H2] , Auslander–Reiten Triangles and Grothendieck groups of Triangulated Cate-
gories, Algebr. Represent. Theory 25 (2022), 1379-1387.

[H3] J. Haugland, K. M. Jacobsen, and S. Schroll, The role of gentle algebras in higher
homological algebra, Forum Math. 34 (2022), no. 5, 1255-1275.

[H4] J. Haugland and M. H. Sandøy, Higher Koszul duality and connections with
n-hereditary algebras, arXiv:2101.12743 (2021).
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THE GROTHENDIECK GROUP OF AN n-EXANGULATED CATEGORY

JOHANNE HAUGLAND

Abstract. We define the Grothendieck group of an n-exangulated category. For n
odd, we show that this group shares many properties with the Grothendieck group of an
exact or a triangulated category. In particular, we classify dense complete subcategories
of an n-exangulated category with an n-(co)generator in terms of subgroups of the
Grothendieck group. This unifies and extends results of Thomason, Bergh–Thaule,
Matsui and Zhu–Zhuang for triangulated, (n+ 2)-angulated, exact and extriangulated
categories, respectively. We also introduce the notion of an n-exangulated subcategory
and prove that the subcategories in our classification theorem carry this structure.

1. Introduction

The Grothendieck group of an exact category is the free abelian group generated by
isomorphism classes of objects modulo the Euler relations coming from short exact
sequences. Similarly, one obtains the Grothendieck group of a triangulated category
by factoring out the relations corresponding to distinguished triangles. It turns out that
subcategories of certain categories relate to subgroups of the associated Grothendieck
groups in an interesting way. More precisely, Thomason proved that there is a one-
to-one correspondence between subgroups of the Grothendieck group of a triangulated
category and dense triangulated subcategories [16, Theorem 2.1]. This was generalized
to (n + 2)-angulated categories with n odd by Bergh–Thaule [3, Theorem 4.6]. Later,
Matsui gave an analogous result for exact categories with a (co)generator [12, Theorem
2.7].

The notion of extriangulated categories was introduced by Nakaoka–Palu as a si-
multaneous generalization of exact categories and triangulated categories [13]. Many
concepts and results concerning exact and triangulated categories have been unified and
extended using this framework, see for instance [7] for a generalization of Auslander–
Reiten theory in exact and triangulated categories to this context.

In both higher dimensional Auslander–Reiten theory and higher homological algebra,
n-cluster tilting subcategories of exact and triangulated categories play a fundamental
role [6, 8]. This was a starting point for developing the theory of (n + 2)-angulated
categories and n-exact categories in the sense of Geiss–Keller–Oppermann [4] and
Jasso [9]. Recently, Herschend–Liu–Nakaoka defined n-exangulated categories as a
higher dimensional analogue of extriangulated categories [5]. Many categories studied

2010 Mathematics Subject Classification. 18E10, 18E30, 18F30.
Key words and phrases. Grothendieck group, n-exangulated category, (n + 2)-angulated category,

n-exact category, n-exangulated subcategory, extriangulated subcategory.
1



2 JOHANNE HAUGLAND

in representation theory turn out to be n-exangulated. In particular, n-exangulated
categories simultaneously generalize (n + 2)-angulated and n-exact categories. In
[5, Section 6] several explicit examples of n-exangulated categories are given. See also
[11, Section 4] for a construction which yields more n-exangulated categories that are
neither n-exact nor (n+ 2)-angulated.

Inspired by the classification results for triangulated, (n+ 2)-angulated and exact
categories mentioned above, a natural question to ask is whether there is a similar
connection between subcategories and subgroups of the Grothendieck group for n-
exangulated categories. Independently of our work, Zhu–Zhuang recently gave a partial
answer to this question in the casen = 1 [17, Theorem5.7]. In this paperwe prove amore
general classification result for n-exangulated categories with n odd. In our main result,
Theorem 5.1, we classify dense complete subcategories of an n-exangulated category
with an n-(co)generator G in terms of subgroups of the Grothendieck group containing
the image ofG. This recovers both the result of Zhu–Zhuang for extriangulated categories
and the result of Bergh–Thaule for (n+ 2)-angulated categories, as well as Thomason’s
and Matsui’s results for triangulated and exact categories, see Corollary 5.5 for details.
Our main theorem also yields new classification results for n-exact categories, as well
as for n-exangulated categories which are neither (n+ 2)-angulated nor n-exact.

The paper is organized as follows. In Section 2 we recall the definition of an n-
exangulated category and review some results. In Section 3 we explain terminology
which is needed in our main result, such as the notion of an n-(co)generator, complete
subcategories and dense subcategories. We also introduce n-exangulated subcategories
and prove that the subcategories which will appear in our classification theorem carry
this structure. In Section 4 we define the Grothendieck group of an n-exangulated
category and discuss some basic results. In Section 5 we state and prove our main
theorem and explain how this unifies and extends already known results.

2. Preliminaries on n-exangulated categories

Throughout this paper, let n be a positive integer and C an additive category. In this
section we briefly recall the definition of an n-exangulated category and related notions,
as well as some known results which will be used later. All of this is taken from [5], and
we recommend to consult this paper for more detailed explanations.

Recall from [13] that an extriangulated category (C,E, s) consists of an additive
category C, a biadditive functor E : Cop × C → Ab and an additive realization s of E
satisfying certain axioms. The functor E is modelled after Ext1. Given two objects A
and C in C, the realization s associates to each element δ ∈ E(C,A) an equivalence
class s(δ) of 3-term sequences in C starting inA and ending inC. Exact and triangulated
categories are examples of extriangulated categories, where short exact sequences and
distinguished triangles play the roles of these 3-term sequences. Analogously, an n-
exangulated category also consists of a triplet (C,E, s), where the main difference is
that we consider (n + 2)-term sequences instead of 3-term sequences. In order to give
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the precise definition, we need to be able to talk about extensions and morphisms of
extensions.

Definition 2.1. Let E : Cop ×C → Ab be a biadditive functor. Given two objects A and
C in C, an element δ ∈ E(C,A) is called an E-extension or simply an extension. We
can write such an extension δ as AδC whenever we wish to specify the objects A and C.

Given an extension δ ∈ E(C,A) and two morphisms a ∈ C(A,A′) and c ∈ C(C ′, C),
we denote the extensions

E(C, a)(δ) ∈ E(C,A′) and E(c, A)(δ) ∈ E(C ′, A)

by a∗δ and c∗δ. Notice that E(c, a)(δ) = c∗a∗δ = a∗c
∗δ in E(C ′, A′) as E is a bifunctor.

For any pair of objects A and C, the zero element A0C in E(C,A) is called the split
extension.

Definition 2.2. Given extensions AδC and BρD, a morphism of extensions (a, c) : δ → ρ
is a pair of morphisms a ∈ C(A,B) and c ∈ C(C,D) such that a∗δ = c∗ρ in E(C,B).

We want to associate each extension AδC to an equivalence class of (n + 2)-term
sequences in C starting in A and ending in C. Our next aim is hence to discuss some
terminology which will enable us to describe the appropriate equivalence relation on
the class of such (n+ 2)-term sequences.

Definition 2.3. Let CC denote the category of complexes in C. We define Cn+2
C to be

the full subcategory of CC consisting of complexes whose components are zero in all
degrees outside of {0, 1, . . . , n + 1}. In other words, an object in Cn+2

C is a complex
X• = {Xi, di} of the form

X0
d0−→ X1 → · · · → Xn

dn−→ Xn+1.

Morphisms in Cn+2
C are written f• = (f0, f1, . . . , fn+1), where we only indicate the

terms of degree 0, 1, . . . , n+ 1.

Our next two definitions should remind the reader about the long exact Hom-Ext-
sequence associated to a short exact sequence and the long exact Hom-sequence asso-
ciated to a distinguished triangle.

Definition 2.4. By the Yoneda lemma, an extension δ ∈ E(C,A) induces natural
transformations

δ] : C(−, C)→ E(−, A) and δ] : C(A,−)→ E(C,−).

For an object X in C, the morphisms (δ])X and δ]X are given by
(1) (δ])X : C(X,C)→ E(X,A), f 7→ f ∗δ;
(2) δ]X : C(A,X)→ E(C,X), g 7→ g∗δ.

Consider a pair 〈X•, δ〉 with X• in Cn+2
C and δ ∈ E(Xn+1, X0). Using our natural

transformations from above, we can associate to 〈X•, δ〉 the following two sequences of
functors:
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(1) C(−, X0)
C(−,d0)−−−−→ · · · C(−,dn)−−−−→ C(−, Xn+1)

δ]−−−−→ E(−, X0);
(2) C(Xn+1,−)

C(dn,−)−−−−→ · · · C(d0,−)−−−−→ C(X0,−)
δ]−−−−→ E(Xn+1,−).

We are particularly interested in pairs 〈X•, δ〉 for which these sequences are exact.

Definition 2.5. When the two sequences of functors from above are exact, we say
that the pair 〈X•, δ〉 is an n-exangle. Given two n-exangles 〈X•, δ〉 and 〈Y•, ρ〉, a
morphism of n-exangles f• : 〈X•, δ〉 → 〈Y•, ρ〉 is a chain map f• ∈ Cn+2

C (X•, Y•) for
which (f0, fn+1) : δ → ρ is also a morphism of extensions.

In order to define our equivalence classes of (n+2)-term sequences, we need a notion
of homotopy. Two morphisms inCn+2

C are said to be homotopic if they are homotopic as
morphisms of CC in the usual way. We let the homotopy category Kn+2

C be the quotient
of Cn+2

C by the ideal of null-homotopic morphisms.
Instead ofworkingwithCn+2

C andKn+2
C , wewant to fix the end-terms of our sequences.

Definition 2.6. LetA andC be objects in C. We defineCn+2
(C;A,C) to be the subcategory of

Cn+2
C consisting of complexesX• withX0 = A andXn+1 = C. Morphisms in Cn+2

(C;A,C)

are given by chain maps f• for which f0 = 1A and fn+1 = 1C .

Whenever the category C is clear from the context, we abbreviately denoteCn+2
(C;A,C) by

Cn+2
(A,C). Notice that C

n+2
(A,C) is no longer an additive category. However, we can still take

the quotient of Cn+2
(A,C) by the same homotopy relation as in Cn+2

C . This yields Kn+2
(A,C),

which is a subcategory of Kn+2
C .

We are now ready to describe an equivalence relation on the class of (n + 2)-term
sequences starting in A and ending in C.

Definition 2.7. A morphism f• ∈ Cn+2
(A,C)(X•, Y•) is called a homotopy equivalence

if it induces an isomorphism in Kn+2
(A,C). Two objects X• and Y• in Cn+2

(A,C) are called
homotopy equivalent if there is some homotopy equivalence between them. We denote
the homotopy equivalence class of X• by [X•].

It should be noted that homotopy equivalence classes taken in Cn+2
(A,C) and in Cn+2

C
may be different. We will only use the notation [X•] for equivalence classes taken in
Cn+2

(A,C).
We are now ready to explain our desired connection between extensions AδC and

equivalence classes [X•] in Cn+2
(A,C).

Definition 2.8. Let s be a correspondence which associates a homotopy equivalence
class s(δ) = [X•] in Cn+2

(A,C) to each extension δ ∈ E(C,A). We call s a realization of E
if it satisfies the following condition for any s(δ) = [X•] and s(ρ) = [Y•]:
(R0) Given any morphism of extensions (a, c) : δ → ρ, there exists a morphism

f• ∈ Cn+2
C (X•, Y•) of the form f• = (a, f1, . . . , fn, c). Such an f• is called a lift

of (a, c).



THE GROTHENDIECK GROUP OF AN n-EXANGULATED CATEGORY 5

Whenever s(δ) = [X•], we say that X• realizes δ. A realization s is called exact if in
addition the following conditions hold:
(R1) Given any s(δ) = [X•], the pair 〈X•, δ〉 is an n-exangle.
(R2) Given any object A in C, we have

s(A00) = [A
1A−→ A→ 0→ · · · → 0],

and dually

s(00A) = [0→ · · · → 0→ A
1A−→ A].

It is not immediately clear that the condition (R1) does not depend on our choice of
representative of the class [X•]. For this fact, see [5, Proposition 2.16].

Based on the definition above, we can introduce some useful terminology.

Definition 2.9. Let s be an exact realization of E.
(1) An n-exangle 〈X•, δ〉 will be called a distinguished n-exangle if s(δ) = [X•].
(2) An object X• ∈ Cn+2

C will be called a conflation if it realizes some extension
δ ∈ E(Xn+1, X0).

(3) A morphism f in C will be called an inflation if there exists some conflation
X• = {Xi, di} satisfying d0 = f .

(4) A morphism g in C will be called a deflation if there exists some conflation
X• = {Xi, di} satisfying dn = g.

Recall that for triangulated categories, the octahedral axiom can be replaced by a
mapping cone axiom [14, 15]. This should be thought of as a background for the
definition of an n-exangulated category. Before we can give the definition, we need the
notion of a mapping cone in our context.

Definition 2.10. Let f• ∈ Cn+2
C (X•, Y•) be a morphism with f0 = 1A for some object

A = X0 = Y0 in C. The mapping cone of f• is the complexM f
• ∈ Cn+2

C given by

X1
d0−→ X2 ⊕ Y1

d1−→ X3 ⊕ Y2
d2−→ · · · dn−1−−−→ Xn+1 ⊕ Yn

dn−→ Yn+1,

where

di =



[
−dX1
f1

]
if i = 0[

−dXi+1 0

fi+1 dYi

]
if i = 1, 2, . . . , n− 1[

fn+1 dYn

]
if i = n.

The mapping cocone of a morphism g• where gn+1 is the identity on some object, is
defined dually.
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Definition 2.11. An n-exangulated category is a triplet (C,E, s) of an additive category
C, a biadditive functor E : Cop × C → Ab and an exact realization s of E, satisfying the
following axioms:

(EA1) The class of inflations in C is closed under composition. Dually, the class of
deflations in C is closed under composition.

(EA2) For an extension δ ∈ E(D,A) and a morphism c ∈ C(C,D), let 〈X•, c∗δ〉
and 〈Y•, δ〉 be distinguished n-exangles. Then there exists a good lift f• of
(1A, c), meaning that the mapping cone of f• gives a distinguished n-exangle
〈M f
• , (d

X
0 )∗δ〉.

(EA2)op Dual of (EA2).

The condition (EA2) is actually independent of choice of representatives of the
equivalence classes [X•] and [Y•], see [5, Corollary 2.31]. Note that we will often not
mention E and s explicitly when we talk about an n-exangulated category C.

Not too surprisingly, a 1-exangulated category is the same as an extriangulated cat-
egory [5, Proposition 4.3]. It should also be noted that n-exact and (n + 2)-angulated
categories are n-exangulated [5, Proposition 4.34 and 4.5]. For a discussion of exam-
ples of n-exangulated categories which are neither n-exact nor (n + 2)-angulated, see
[5, Section 6.3] and [11, Section 4].

In our study of subcategories of n-exangulated categories in Section 3 and Section 5,
the notion of extension-closed subcategories will be relevant.

Definition 2.12. Let (C,E, s) be an n-exangulated category. A full additive subcategory
S ⊆ C which is closed under isomorphisms is called extension-closed if for any pair of
objects A and C in S and any extension δ ∈ E(C,A), there is a distinguished n-exangle
〈X•, δ〉 with Xi in S for i = 1, . . . , n.

Extension-closed subcategories inherit structure from the ambient category in a nat-
ural way. The following result is [5, Proposition 2.35].

Proposition 2.13. Let (C,E, s) be an n-exangulated category andS an extension-closed
subcategory of C. Given objectsA andC in S and an extension δ ∈ E(C,A), let 〈X•, δ〉
be a distinguished n-exangle with Xi in S for i = 1, . . . , n. Define t(δ) = [X•], where
the equivalence class is taken in Cn+2

(S;A,C). The following statements hold:

(1) The correspondence t is an exact realization of the restricted functor E|Sop×S ,
and (S,E|Sop×S , t) satisfies (EA2) and (EA2)op.

(2) If (S,E|Sop×S , t) satisfies (EA1), then it is an n-exangulated category.

We end this section by reviewing two results which will be needed throughout the
rest of this paper. The following proposition should be well-known, but we include a
proof as we lack an explicit reference. The conflations described in Proposition 2.14 are
called trivial.
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Proposition 2.14. Let C be an n-exangulated category and A an object in C. Then the
(n+ 2)-term sequence

0→ · · · → 0→ A
1A−→ A→ 0→ · · · → 0

which has A in position i and i+ 1 for some i ∈ {0, 1, . . . , n} is a conflation.

Proof. By (R2), the statement is true if i = 0 or i = n. We can hence assume that both
our end-terms are zero. Now, our sequence is homotopy equivalent in Cn+2

(0,0) to

0→ 0→ · · · → 0→ 0.

As this sequence is a conflation, again by (R2), also the sequence we started with has to
be a conflation. �

As one might expect, the coproduct of two conflations is again a conflation. For a
proof of this result, see [5, Proposition 3.2].

Proposition 2.15. Let C be an n-exangulated category andX• and Y• conflations in C.
Then also X• ⊕ Y• is a conflation.

3. Subcategories and n-(co)generators

In this section we introduce the terminology which is needed in our main result, such
as the notion of an n-(co)generator, complete subcategories and dense subcategories.
We also define n-exangulated subcategories, and show that the subcategories which will
appear in our classification theorem carry this structure.

Definition 3.1. Let C be an n-exangulated category. A full additive subcategory G of C
is called an n-generator (resp. n-cogenerator) of C if for each objectA in C, there exists
a conflation

A′ → G1 → · · · → Gn → A

(Resp. A→ G1 → · · · → Gn → A′)

in C with Gi in G for i = 1, . . . , n.

A 1-(co)generator is often just called a (co)generator. Our notion of a (co)generator
essentially coincides with what is used in [12] and [17]. There, however, it is not
assumed that the subcategory G is additive. Note that it would be possible to prove
our results also without this extra assumption, but we have chosen this convention to
simplify the statement in Proposition 4.3.

We get a trivial example of an n-(co)generator by choosing G to be the entire category
C. Another natural example arises if our category has enough projectives or injectives.
Let us first recall what this means from [11, Definition 3.2].

Definition 3.2. Let C be an n-exangulated category.
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(1) An object P in C is called projective if for any conflation

X0
d0−→ X1 → · · · → Xn

dn−→ Xn+1

in C and any morphism f : P → Xn+1, there exists a morphism g : P → Xn

such that dn ◦ g = f .
(2) The category C has enough projectives if for each object A in C, there exists a

conflation
A′ → P1 → · · · → Pn → A

in C with Pi projective for i = 1, . . . , n.
(3) We define injective objects and the notion of having enough injectives dually.

The notion of having enough projectives or injectives relates well to our definition of
an n-(co)generator, as demonstrated in the example below.

Example 3.3. Let C be an n-exangulated category. If C has enough projectives, then
the full subcategory P ⊆ C of projective objects is an n-generator of C. Dually, if C has
enough injectives, the full subcategory I ⊆ C of injective objects is an n-cogenerator
of C. In the case where C is a Frobenius n-exangulated category, as defined in [11], the
subcategory P = I is both an n-generator and an n-cogenerator of C.

We will classify subcategories of an n-exangulated category which are dense and
complete.

Definition 3.4. Let C be an n-exangulated category and S a full subcategory of C.
(1) The subcategory S is dense in C if each object in C is a summand of an object

in S.
(2) The subcategory S is complete if given any conflation in C with n + 1 of its

objects in S, also the last object has to be in S.

Even though it is not a part of the definition, it turns out that given reasonable
conditions, complete subcategories are always additive and closed under isomorphisms.

Lemma 3.5. Let C be an n-exangulated category. Every complete subcategory S of C
which contains 0 is additive and closed under isomorphisms.

Proof. Let A and B be objects in S. By taking the coproduct of two trivial conflations,
we get the conflation

A→ A⊕B → B → 0→ · · · → 0.

As 0 is in S, all objects in this sequence except the second one is in S. By completeness,
this means that also A⊕B is in S , which shows additivity.

Given an isomorphism A
'−→ B in C, the (n+ 2)-term sequence

A
'−→ B → 0→ · · · → 0

is a conflation in C, as it is equivalent to a trivial conflation. Consequently, if A is in S,
then also B has to be there, so S is closed under isomorphisms. �
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Notice that when a subcategory S of an n-exangulated category is dense, it is au-
tomatically non-empty. Whenever n is odd and S is both dense and complete, our
subcategory necessarily contains 0. This can be seen by taking an object A in S and
using completeness with respect to the conflation

A
1A−→ A

0−→ A
1A−→ · · · 0−→ A

1A−→ A→ 0,

which is a sum of trivial conflations, and in which the last object is the only one not
equal to A. Consequently, dense and complete subcategories are always additive and
isomorphism-closed when n is odd, which will often be the case in our further work.
We will show that a stronger statement is true, namely that every such subcategory is
actually an n-exangulated subcategory of the ambient category. The key requirement
of an n-exangulated subcategory is that the inclusion is an n-exangulated functor, as
introduced in [1, Definition 2.31].

Definition 3.6. Let (C1,E1, s1) and (C2,E2, s2) ben-exangulated categories. An additive
functor F : C1 −→ C2 is an n-exangulated functor if there is a natural transformation
η : E1 −→ E2(F

op−, F−) such that if s1(δ) = [X•] for some δ ∈ E1(C,A), then
s2(AηC(δ)) = [FX•].

Notice that the notation AηC is used for the group homomorphism

AηC : E1(C,A) −→ E2(FC, FA) = E2(F
opC,FA)

given by the natural transformation η. We call η an inclusion if AηC is an inclusion of
abelian groups for every pair of objects A and C.

We are now ready to give the definition of an n-exangulated subcategory.

Definition 3.7. Let (C,E, s) be an n-exangulated category. An n-exangulated subcat-
egory of C is a full isomorphism-closed subcategory S which carries an n-exangulated
structure (S,E′, s′) for which the inclusion functor is n-exangulated and the associated
natural transformation is an inclusion.

Our definition emphasizes that an n-exangulated subcategory inherits the structure of
the ambient category. In particular, the biadditive functor E′ is an additive subfunctor of
the restricted functor E|Sop×S in the sense of [5, Definition 3.6]. The exact realizations
s and s′ agree, meaning that if s′(δ) = [X•] for some δ ∈ E′(C,A) ⊆ E(C,A), then
s(δ) = [X•]. Notice that the first equivalence class is taken inCn+2

(S;A,C), while the second
is taken in Cn+2

(C;A,C). In the case n = 1, the subcategories defined above should be called
extriangulated subcategories.

For our applications in Section 5, the most important class of examples of n-
exangulated subcategories will arise from extension-closed subcategories. In this case
we have E′ = E|Sop×S . We also give a basic example where E′ is a proper subfunctor.

Example 3.8. (1) Let S be an extension-closed subcategory of an n-exangulated cate-
gory (C,E, s) and define t as explained in Proposition 2.13. If the triplet (S,E|Sop×S , t)
satisfies (EA1), then S is an n-exangulated subcategory of C. Notice that the natural
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transformation η associated to the inclusion functor is given by AηC = 1E(C,A) for objects
A and C in S .

(2) Let C = Ab be the category of abelian groups. This is an extriangulated category
with biadditive functor E = Ext1C . Let S ⊆ C denote the subcategory of semisimple
objects. Using that S is closed under kernels and cokernels, one can check that S is
an abelian subcategory of C. Consequently, one obtains that S is an extriangulated
subcategory with biadditive functor E′ = Ext1S . As S is not extension-closed in C, we
can see that E′ is a proper subfunctor of E|Sop×S .

Let us finish this section by showing that if n is odd, every dense and complete
subcategory of an n-exangulated category is an n-exangulated subcategory.

Proposition 3.9. Let (C,E, s) be an n-exangulated category with n odd and S a dense
and complete subcategory of C. The following statements hold:

(1) The subcategory S is extension-closed.
(2) The triplet (S,E|Sop×S , t), with t as defined in Proposition 2.13, is an n-

exangulated subcategory of C.

Proof. As n is odd, it follows from Lemma 3.5 that the subcategory S is additive and
isomorphism-closed.

Let A and C be objects in S and consider an extension δ ∈ E(C,A). As C is
n-exangulated, there is a distinguished n-exangle 〈X•, δ〉 in C with X• given by

A→ X1 → · · · → Xn → C.

The objects Xi are not necessarily contained in S, but we will show that we can pick
another representative of the equivalence class [X•] for which this is satisfied.

For i = 1, . . . , n − 1, use that S is dense and let X ′i be an object such that Xi ⊕X ′i
is in S. By adding trivial conflations involving the objects Xi and X ′i to the conflation
above, we get a new conflation

A→ X1 ⊕X ′1 → · · · →
n−1⊕
i=1

(Xi ⊕X ′i)→ X → C,

whereX = X1⊕X ′2⊕X3⊕· · ·⊕X ′n−1⊕Xn. Notice that each of the trivial conflations
we have added are equivalent to the zero conflation, i.e. the conflation given by the
(n+ 2)-term sequence where every object is zero. Hence, our new conflation represents
the same equivalence class as the one we started with.

It remains to observe that every object in our new conflation except possibly X is
contained in S . As S is complete, this means that also X is in S, which proves (1).
For (2), notice that by Proposition 2.13 and Example 3.8 it is enough to verify that

(EA1) is satisfied. Let f and g be two composable inflations in S. By the definition of
t, inflations in S are also inflations in C. As C satisfies (EA1), there is a conflation

X0
f◦g−−→ X1 → · · · → Xn → Xn+1
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in C. By assumption, we know that X0 and X1 are in S, but the same is not necessarily
true for the last n objects. However, we apply a similar technique as above to get a
conflation where all the objects are in S. For i = 2, . . . , n, letX ′i be an object such that
Xi ⊕X ′i is in S. Adding trivial conflations to the conflation above yields the conflation

X0
f◦g−−→ X1 → X2 ⊕X ′2 → · · · →

n⊕
i=2

(Xi ⊕X ′i)→ X,

whereX now denotes the objectX2 ⊕X ′3 ⊕X4 ⊕ · · · ⊕X ′n ⊕Xn+1. As the first n+ 1
objects in this conflation are in S, so isX . Consequently, this is a conflation in S, which
shows that f ◦ g is an inflation in S. A dual argument shows that the class of deflations
in S is closed under composition. �

4. The Grothendieck group of an n-exangulated category

Throughout the rest of this paper, we let C be an essentially small category. Hence,
the collection of isomorphism classes 〈A〉 of objects A in C forms a set, and we can
consider the free abelian group F(C) generated by such isomorphism classes. We will
define the Grothendieck group of an n-exangulated category C to be a certain quotient
of this free abelian group. More precisely, we want to factor out the Euler relations
coming from conflations. Given a conflation

X• : X0 → X1 → · · · → Xn → Xn+1

in C, the corresponding Euler relation is the alternating sum of isomorphism classes

χ(X•) = 〈X0〉 − 〈X1〉+ · · ·+ (−1)n+1〈Xn+1〉.

Definition 4.1. Let C be an n-exangulated category. TheGrothendieck group of C is the
quotient K0(C) = F(C)/R(C), whereR(C) is the subgroup generated by the subset

{χ(X•) | X• is a conflation in C} if n is odd and
{〈0〉}∪{χ(X•) | X• is a conflation in C} if n is even.

We denote the equivalence class 〈A〉+R(C) represented by an object A in C by [A].

It is immediate from the definition that the Grothendieck groupK0(C) has a universal
property. Namely, any homomorphism of abelian groups from F(C) satisfying the
Euler relations factors uniquely through K0(C). More precisely, given any abelian
group T and a homomorphism t : F(C) → T with t(R(C)) = 0, there exists a unique
homomorphism t′ such that the following diagram commutes

F(C) K0(C)

T,

π

t
t′

where π is the natural projection.
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Let us prove some basic properties of the Grothendieck group of an n-exangulated
category. These properties are well-known in the cases where our category is triangu-
lated or exact. Note that 〈0〉 was defined to be in R(C) whenever n is even in order for
the following proposition to hold.

Proposition 4.2. Let C be an n-exangulated category.
(1) The zero element inK0(C) is given by [0], where 0 is the zero object in C.
(2) For objects A and B in C, we have [A⊕B] = [A] + [B] in K0(C).

Proof. If n is even, the definition of R(C) immediately implies that [0] is the zero
element in K0(C).

Recall that the (n+ 2)-term sequence
0→ 0→ · · · → 0→ 0

is a conflation in C by (R2). Consequently, the sum
∑n+1

i=0 (−1)i〈0〉 is in R(C). If n is
odd, this sum is equal to 〈0〉, and hence [0] is the zero element inK0(C) also in this case.
This shows (1).

For (2), consider the sequence
A→ A⊕B → B → 0→ · · · → 0

with n + 2 terms. This sequence is a conflation in C as it is a sum of two trivial
conflations. Using (1), this implies that

〈A〉 − 〈A⊕B〉+ 〈B〉 ∈ R(C),
which yields [A⊕B] = [A] + [B] in K0(C). �

Notice that any element inK0(C) can be written as [A]− [B] for some objects A and
B in C, as we can collect positive and negative terms and then use the second part of the
proposition above. In the case where n is odd and our category has an n-(co)generator,
we get an even nicer description.

Proposition 4.3. Let C be an n-exangulated category with n odd. Let G be an n-
(co)generator of C. Then every element in K0(C) can be written as [A]− [G] for some
objects A in C and G in G.
Proof. Given an element inK0(C), we know that it can be written as [X]− [B] for some
objects X and B in C. When G is an n-generator, there exists a conflation

B′ → G1 → · · · → Gn → B

in C with Gi in G for i = 1, . . . , n. Consequently, using that n is odd, we get
(∗) [B] = −[B′] + [G1]− [G2] + · · · − [Gn−1] + [Gn]

inK0(C). Substituting this expression for [B], the element we started with can be written
as

[X]− [B] = [X] + [B′]− [G1] + [G2]− · · ·+ [Gn−1]− [Gn]

= [X ⊕B′ ⊕G2 ⊕G4 ⊕ · · · ⊕Gn−1]− [G1 ⊕G3 ⊕ · · · ⊕Gn],
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where we have collected positive and negative terms from the alternating sum and used
Proposition 4.2. Defining A and G to be the objects in the first and second bracket
respectively, we get that our element can be written as [A] − [G]. Note that as G is
additive, the object G is contained in G.

The proof in the case where G is an n-cogenerator is dual. �

Note that it was important in the argument above that n was assumed to be odd. If n
was even, there would be no negative sign in front of the term [B′] in the expression (∗).
Hence, the signs of [X] and [B′] in our final equation would be different, and we would
not reach our conclusion.

The description of elements in the Grothendieck group which is provided in Proposi-
tion 4.3 will be important in our further work. In the following, we will thus often need
to assume that n is odd.

Remark 4.4. Proposition 4.3 is an n-exangulated analogue of a result from [12] con-
cerning exact categories, which can be found in the proof of Lemma 2.8. As an
(n+ 2)-angulated category has G = {0} as an n-(co)generator, Proposition 4.3 can also
be thought of as a generalization of part (3) of [3, Proposition 2.2].

5. Classification of subcategories

Recall that C is assumed to be essentially small. In this section we state and prove our
main result. For n odd we classify dense complete subcategories of an n-exangulated
category with an n-(co)generator G in terms of subgroups of the Grothendieck group.
The subgroups which appear in the bijection, depend on the n-(co)generator. More
precisely, the subgroups have to contain

HG = 〈[G] ∈ K0(C) | G ∈ G〉 ≤ K0(C),
i.e. the subgroup of K0(C) generated by elements represented by objects in G. When a
subgroup of K0(C) contains HG , we say that it contains the image of G.

Theorem 5.1. Let C be an n-exangulated category with n odd. Let G be an n-
(co)generator of C. There is then a one-to-one correspondence{

subgroups of K0(C)
containing HG

}
f−−→←−−
g

{
dense complete subcategories
of C containing G

}
,

where f(H) is the full subcategory

f(H) = {A ∈ C | [A] ∈ H} ⊆ C,
and g(S) is the subgroup

g(S) = 〈[A] ∈ K0(C) | A ∈ S〉 ≤ K0(C).

Remark 5.2. The subcategories in our bijection above are n-exangulated subcategories
of C, where the n-exangulated structure is inherited from that of C as described in
Proposition 3.9.
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Proof of Theorem 5.1. We prove the theorem in the case where G is an n-generator. The
proof when G is an n-cogenerator is dual.

Throughout the rest of the proof, letS be a dense complete subcategory of C containing
G and H a subgroup of K0(C) containing HG . Let us first verify that the maps f and g
actually end up where we claim.

Note that g(S) is a subgroup of K0(C) by definition. As S contains G, the subgroup
HG is contained in g(S). Similarly, it is clear that G ⊆ f(H). To see that f(H) is a
dense subcategory, let A be an object in C. As G is an n-generator, there is a conflation

A′ → G1 → · · · → Gn → A

in C with Gi in G for i = 1, . . . , n. Using that n is odd, which implies that the signs in
front of [A] and [A′] in the corresponding Euler relation agree, we get

[A⊕ A′] = [G1]− [G2] + · · · − [Gn−1] + [Gn] ∈ H.
This means that A ⊕ A′ is in f(H), so the subcategory is dense in C. To show
completeness, consider a conflation

X0 → X1 → · · · → Xn → Xn+1

in C, where n+ 1 of the n+ 2 objects are in f(H). Since

[X0]− [X1] + · · ·+ (−1)n+1[Xn+1] = 0 ∈ H,
and n + 1 of the terms in this sum are in H , also the last term has to be there. This
means that also the last object of our conflation above is in f(H), so f(H) is complete.

Our next step is to show that f and g are inverse bijections. The inclusion gf(H) ⊆ H
is immediate. For the reverse inclusion, choose an element inH . By Proposition 4.3, our
element can bewritten as [A]−[G] for someA inC andG inG. As [A] = ([A]−[G])+[G],
and both [A]− [G] and [G] are inH , so is [A]. Hence, our element is contained in gf(H),
and we can conclude that H = gf(H).

It remains to show that S = fg(S). Again, one of the inclusions is clear from the
definitions, namely S ⊆ fg(S). For the reverse inclusion, choose an objectA in fg(S).
This means that [A] is in g(S). By Lemma 5.4 below, our object A is consequently in
S, which completes our proof. �

We will prove Lemma 5.4 by showing that the quotientK0(C)/g(S) is isomorphic to
another group GS consisting of equivalence classes.

Given an n-exangulated category C with n odd and a dense complete subcategory S
of C, define a relation∼ on the set of isomorphism classes of objects in C by 〈A〉 ∼ 〈B〉
if and only if there exist objects SA and SB in S such that A ⊕ SA ' B ⊕ SB. One
can check that this is an equivalence relation. Denote by GS the quotient of the set of
isomorphism classes of objects in C by the relation ∼. Elements in GS are denoted by
{A}.

Lemma 5.3. Let C be an n-exangulated category with n odd and S a dense complete
subcategory of C. An object A in C is contained in S if and only if {A} = {0} in GS .
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Proof. If A is in S, then clearly {A} = {0}. Conversely, assume {A} = {0}. This
means that there are objects SA and S0 in S such that A⊕ SA ' S0. Consequently, the
n+ 1 last objects in the (n+ 2)-term sequence

A→ A⊕ SA → SA → 0→ · · · → 0

are in S . This is a conflation as it is the coproduct of two trivial conflations. Hence, as
S is complete, our object A is also in S. �

Lemma 5.4. Let C be an n-exangulated category with n odd. Let G be an n-
(co)generator of C and S a dense complete subcategory of C which contains G. The
following statements hold:

(1) GS is an abelian group with binary operation {A} + {B} := {A ⊕ B} and
identity element {0}.

(2) The map

K0(C)/g(S)
'−−−→ GS

[A] + g(S) 7−→ {A}

is a well-defined isomorphism of groups. In particular, an object A in C is
contained in S if and only if [A] is in g(S).

Proof. In order to show (1), notice first that our binary operation is well-defined, com-
mutative, associative and has {0} as identity element. For any objectA in C, there exists
an object A′ such that A⊕A′ is in S, by denseness of S. Using Lemma 5.3, this means
that

{A}+ {A′} = {A⊕ A′} = {0}.

Hence, the element {A′} is the inverse of {A}, and GS is an abelian group.
For (2), let us first show that the map

φ : K0(C) −→ GS

[A] 7−→ {A}

is well-defined. It suffices to show that the Euler relations are sent to zero. Consider a
conflation

X0 → X1 → · · · → Xn → Xn+1

in C. For i = 1, . . . , n+ 1, let X ′i be an object such that Xi ⊕X ′i belongs to S. We can
get a new conflation by adding trivial conflations involving the objectsXi andX ′i to the
conflation above, namely

X →
n+1⊕
i=1

(Xi ⊕X ′i)→ · · · →
n+1⊕
i=n

(Xi ⊕X ′i)→ Xn+1 ⊕X ′n+1,
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whereX = X0⊕X ′1⊕X2⊕· · ·⊕X ′n⊕Xn+1. As the n+1 last objects in this conflation
are in S, so is X . Consequently, using Lemma 5.3, we have

{0} = {X} = {X0}+ {X ′1}+ {X2}+ · · ·+ {X ′n}+ {Xn+1}
= {X0} − {X1}+ {X2}+ · · · − {Xn}+ {Xn+1}

in GS , so φ is well-defined. It is now easy to check that φ is a surjective group
homomorphism.

Our last step is to show that Ker(φ) = g(S). Note that the inclusion g(S) ⊆ Ker(φ)
follows immediately by Lemma 5.3. Using Proposition 4.3, any element in Ker(φ) can
be written as [A]− [G] for some objects A in C and G in G. This means that

{0} = φ([A]− [G]) = {A} − {G} = {A},

where the third equality follows from Lemma 5.3 and the assumption that S contains
G. Consequently, again using Lemma 5.3, the object A is in S. This yields our reverse
inclusion. Combining the isomorphismK0(C)/g(S) ' GS and Lemma 5.3, we see that
an object A is in S if and only if [A] is in g(S). �

Our main theorem, Theorem 5.1, extends and unifies results by Thomason, Bergh–
Thaule,Matsui and Zhu–Zhuang. We also get a classification of subcategories ofn-exact
categories.

Corollary 5.5. (1) [16, Theorem 2.1] Let C be a triangulated category. Then there
is a one-to-one correspondence between the dense triangulated subcategories
of C and the subgroups of K0(C).

(2) [3, Theorem 4.6] Let C be an (n+2)-angulated category with n odd. Then there
is a one-to-one correspondence between the dense complete (n + 2)-angulated
subcategories of C and the subgroups of K0(C).

(3) [12, Theorem 2.7] Let C be an exact category with a (co)generator G. Then there
is a one-to-one correspondence between the denseG-(co)resolving subcategories
of C and the subgroups of K0(C) containing the image of G.

(4) [17, Theorem 5.7] Let C be an extriangulated category with a (co)generator G.
Then there is a one-to-one correspondence between the dense G-(co)resolving
subcategories of C and the subgroups of K0(C) containing the image of G.

(5) Let C be an n-exact category with n odd. Let G be an n-(co)generator of C. Then
there is a one-to-one correspondence between the dense complete subcategories
of C containing G and the subgroups of K0(C) containing the image of G.

Proof. Part (5) follows immediately from Theorem 5.1 as n-exact categories are n-
exangulated.

As (2) implies (1) and (4) implies (3), it suffices to prove (2) and (4). To show (4),
notice that in the case n = 1, a dense subcategory containing G is complete if and only if
it is G-(co)resolving as defined in [17, Definition 5.3]. It is thus clear that Theorem 5.1
implies (4).
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In order to prove that (2) follows from our main result, we will use the definition of
an (n+ 2)-angulated category, see [2, 4].

Let (C,Σ) be an (n + 2)-angulated category. Then C has enough projectives, with 0
as the only projective object. The same is true for injectives, and hence G = {0} is both
an n-generator and an n-cogenerator of C. As a subgroup necessarily contains the zero
element, all subgroups of K0(C) will contain the image of G.

It remains to show that every complete and dense subcategory S of C has a natural
structure as an (n + 2)-angulated subcategory, by declaring the distinguished (n + 2)-
angles in C with all objects in S to be the distinguished (n+ 2)-angles in S. Recall that
a full isomorphism-closed subcategory S of our (n+ 2)-angulated category (C,Σ) is an
(n+ 2)-angulated subcategory if (S,Σ) itself is (n+ 2)-angulated and the inclusion is
an (n+ 2)-angulated functor.

Recall from Section 3 that as n is odd, the subcategory S contains 0, which again
implies that it is additive and isomorphism-closed. To show that (S,Σ) is (n + 2)-
angulated, the crucial parts are to check that S is closed under Σ and that morphisms
can be completed to distinguished (n+ 2)-angles.

When we think of C as an n-exangulated category, the distinguished (n + 2)-angles
yield conflations when we remove the last object. To see that S is closed under Σ, let A
be an object in S. As

A→ 0→ · · · → 0→ ΣA
1ΣA−−→ ΣA

is a distinguished (n + 2)-angle in which the n + 1 first objects are in S , also ΣA is in
S. A dual argument shows that Σ−1A is in S.

Let f : X0 → X1 be a morphism in S. We need to show that f can be completed to
a distinguished (n + 2)-angle in S. As C is (n + 2)-angulated, there is a distinguished
(n+ 2)-angle

X0
f−→ X1 → X2 → · · · → Xn+1 → ΣX0

in C. For i = 2, . . . , n, use that S is dense and letX ′i be an object such thatXi⊕X ′i is in
S. By adding trivial (n+ 2)-angles involving the objectsXi andX ′i to the (n+ 2)-angle
above, we get a new distinguished (n+ 2)-angle

X0
f−→ X1 → X2 ⊕X ′2 → · · · →

n⊕
i=2

(Xi ⊕X ′i)→ X → ΣX0,

whereX = X2⊕X ′3⊕X4⊕· · ·⊕X ′n⊕Xn+1. As the n+1 first objects in this sequence
are contained in S, so is X . Consequently, this is a distinguished (n + 2)-angle in S
which completes the morphism f .

The remaining axioms of an (n + 2)-angulated category are immediately verified
using the fact that S is full. As the distinguished (n+2)-angles in S are chosen in such a
way that the inclusion functor is (n+2)-angulated, we can conclude that S is an (n+2)-
angulated subcategory of C. Consequently, also (2) follows from Theorem 5.1. �
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Abstract. We prove that if the Auslander–Reiten triangles generate the
relations for theGrothendieck group of aHom-finiteKrull–Schmidt trian-
gulated category with a (co)generator, then the category has only finitely
many isomorphism classes of indecomposable objects up to translation.
This gives a triangulated converse to a theorem of Butler and Auslander–
Reiten on the relations for Grothendieck groups. Our approach has
applications in the context of Frobenius categories.

1. Introduction

The notion of almost split sequences was introduced by Auslander and
Reiten in [4], and has played a fundamental role in the representation theory
of finite dimensional algebras ever since [5]. The theory of almost split
sequences, later called Auslander–Reiten sequences or just AR-sequences,
has also greatly influenced other areas, such as algebraic geometry and
algebraic topology [2, 14].
Happel defined Auslander–Reiten triangles in triangulated categories

[11]. These play a similar role in the triangulated setting as AR-sequences do
for abelian or exact categories. While it is known that AR-sequences always
exist in the category of finitely generated modules over a finite dimensional
algebra, the situation in the triangulated case turns out to be more compli-
cated, and the associated bounded derived category will not necessarily have
AR-triangles. In fact, Happel proved that this category has AR-triangles if
and only if the algebra is of finite global dimension [10,11]. Reiten and van
den Bergh showed that a Hom-finite Krull–Schmidt triangulated category
has AR-triangles if and only if it admits a Serre functor [18]. More recently,
Diveris, Purin and Webb proved that if a category as above is connected and
has a stable component of the Auslander–Reiten quiver of Dynkin tree class,
then this implies existence of AR-triangles [8].
In the abelian setting, there is a well-studied relationship between AR-

sequences, representation-finiteness and relations for theGrothendieck group.
From Butler [7], Auslander–Reiten [3, Proposition 2.2] and Yoshino [21,
Theorem 13.7], we know that if a complete Cohen–Macaulay local ring is of

2010 Mathematics Subject Classification. 18E30, 18F30 (primary); 18E10, 16G70
(secondary).

Key words and phrases. Auslander–Reiten triangle, Grothendieck group, triangulated
category, Frobenius category.
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finite representation type, then the Auslander–Reiten sequences generate the
relations for the Grothendieck group of the category of Cohen–Macaulay
modules. Here we say that our ring is of finite representation type if the
category of Cohen–Macaulay modules has only finitely many isomorphism
classes of indecomposable objects. A converse to this theorem is given by
Auslander for artin algebras [1] and by Hiramatsu in the case of a Goren-
stein ring with an isolated singularity [13, Theorem 1.2], where the latter
is extended by Kobayashi [15, Theorem 1.2]. Results of the type described
above were recently generalized to the setup of exact categories by Enomoto
[9] and to certain extriangulated categories by Padrol, Palu, Pilaud and
Plamondon [16].
A natural question to ask is whether there is a similar connection between

AR-triangles, representation-finiteness and the relations for theGrothendieck
group in the triangulated case. Xiao and Zhu give a partial answer to this
question. Namely, they show that if our triangulated category is locally fi-
nite, then the AR-triangles generate the relations for the Grothendieck group
[20, Theorem 2.1]. Beligiannis generalizes and gives a converse to this
result for compactly generated triangulated categories [6, Theorem 12.1].
In this paper we consider the reverse direction of Xiao and Zhu from

a different point of view. We prove that if the Auslander–Reiten triangles
generate the relations for the Grothendieck group of a Hom-finite Krull–
Schmidt triangulated category with a (co)generator, then the category has
only finitely many isomorphism classes of indecomposable objects up to
translation. We conclude by an application in the context of Frobenius
categories. As an example, we see that our approach recovers results of
Hiramatsu and Kobayashi for Gorenstein rings.

2. Auslander–Reiten triangles and Grothendieck groups

LetR be a commutative ring. AnR-linear category T is calledHom-finite
provided that HomT (X, Y ) is of finite R-length for every pair of objects
X, Y in T . An additive category is called a Krull–Schmidt category if every
object can be written as a finite direct sum of indecomposable objects having
local endomorphism rings. In a Krull–Schmidt category, it is well known
that every object decomposes essentially uniquely in this way.
Throughout the rest of this paper, we let T be an essentially small R-

linear triangulated category. We also assume that T is a Krull–Schmidt
category which is Hom-finite over R. We let ind(T ) consist of the in-
decomposable objects of T , while the translation functor of T is denoted
by Σ. For simplicity, we use the notation (A,B) = HomT (A,B) and
[A,B] = lengthR(HomT (A,B)).
We say that T has finitely many isomorphism classes of indecomposable

objects up to translation if there is a finite subset of ind(T ) such that for any
U ∈ ind(T ), there is an integer n such that ΣnU is isomorphic to an object
in our finite subset.
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Recall from [12] that a distinguished triangle A→ B
g−→ C

h−→ ΣA in T
is an Auslander–Reiten triangle if the following conditions are satisfied:

(1) A,C ∈ ind(T );
(2) h 6= 0;
(3) given any morphism t : W → C which is not a split-epimorphism,

there is a morphism t′ : W → B such that g ◦ t′ = t.
Let F(T ) denote the free abelian group generated by all isomorphism

classes [A] of objects A in T , while K0(T , 0) is the quotient of F(T ) by
the subgroup generated by the set {[A ⊕ B] − [A] − [B] | A,B ∈ T }. By
abuse of notation, objects in K0(T , 0) are also denoted by [A]. As T is
a Krull–Schmidt category, the quotient K0(T , 0) is isomorphic to the free
abelian group generated by isomorphism classes of objects in ind(T ).
Let Ex(T ) be the subgroup of K0(T , 0) generated by the subset{

[X]− [Y ] + [Z]

∣∣∣∣ there exists a distinguished triangleX → Y → Z → ΣX in T

}
.

Similarly, we let AR(T ) denote the subgroup of K0(T , 0) generated by{
[X]− [Y ] + [Z]

∣∣∣∣ there exists an AR-triangleX → Y → Z → ΣX in T

}
.

Recall from for instance [12] that the Grothendieck group of T is defined as
K0(T ) = K0(T , 0)/Ex(T ).
In the proof of our main results, Theorem 2.4 and Theorem 2.5, we use

the well-known fact that an equality in K0(T , 0) can yield an equality in
Z. We need this in the case of [U,−] and [−, U ] for an object U in T , but
note that the following lemma could be phrased more generally in terms of
additive functors.

Lemma 2.1. Suppose that a1[X1] + · · · + ar[Xr] = 0 in K0(T , 0) for
integers ai and objectsXi in T . Then a1[U,X1] + · · ·+ ar[U,Xr] = 0 and
a1[X1, U ] + · · ·+ ar[Xr, U ] = 0 in Z for any object U in T .

Proof. Let a1[X1] + · · · + ar[Xr] = 0 in K0(T , 0). If ai ≥ 0 for every
i = 1, 2, . . . , r, we use the defining relations for K0(T , 0) to obtain

a1[X1] + · · ·+ ar[Xr] = [a1X1 ⊕ · · · ⊕ arXr] = 0,

where aiXi denotes the coproduct of the object Xi with itself ai times.
Consequently, the object a1X1⊕ · · · ⊕ arXr is zero in T . Applying [U,−]
or [−, U ] and using additivity hence yields our desired equations.
If some of the coefficients ai are negative, we start by moving all negative

terms to the right-hand side of our equality and proceed similarly. �

The lemmas below, which yield a triangulated analogue of [15, Propo-
sition 2.8], provide an important step in the proofs of Theorem 2.4 and
Theorem 2.5. Note that parts of our proof of Lemma 2.2 is much the same
as the proof of [8, Lemma 2.2]. Observe also that Lemma 2.3 follows from
[19, Proposition 3.1] in the case whereR is an algebraically closed field, and
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that the argument generalizes to our context. We include complete proofs
for the convenience of the reader.

Lemma 2.2. Let A f−→ B
g−→ C → ΣA be an AR-triangle in T . The

following statements hold for an object U in T :
(1) The morphism (U,B)

g∗−→ (U,C) is surjective if and only if C is not
a direct summand in U .

(2) The morphism (U,A)
f∗−→ (U,B) is injective if and only if Σ−1C is

not a direct summand in U .
(3) The morphism (B,U)

f∗
−→ (A,U) is surjective if and only if A is not

a direct summand in U .
(4) The morphism (C,U)

g∗−→ (B,U) is injective if and only if ΣA is
not a direct summand in U .

Proof. Note thatC is a direct summand in U if and only if there exists a split
epimorphismU → C. By the definition of an AR-triangle, this is equivalent
to g∗ not being surjective, which proves (1).
Our triangle yields the long-exact sequence

· · · → (U,Σ−1B)
(Σ−1g)∗−−−−→ (U,Σ−1C)→ (U,A)

f∗−→ (U,B)→ · · · .
The morphism f∗ is hence injective if and only if (Σ−1g)∗ is surjective. By
applying part (1) to the object ΣU , we see that (Σ−1g)∗ is surjective if and
only if C is not a direct summand in ΣU , which is equivalent to Σ−1C not
being a direct summand in U . This shows (2).
The statements (3) and (4) are verified dually, using that AR-triangles

equivalently can be defined in terms of a factorization property for the
leftmost morphism, see for instance [12]. �

Lemma 2.3. Let A f−→ B
g−→ C → ΣA be an AR-triangle in T . The

following statements hold for an indecomposable object U in T :
(1) We have [U,A] − [U,B] + [U,C] 6= 0 if and only if U ' C or

U ' Σ−1C.
(2) We have [A,U ] − [B,U ] + [C,U ] 6= 0 if and only if U ' A or

U ' ΣA.

Proof. From the long exact Hom-sequence arising from our triangle, we get
the exact sequence

0→ K → (U,A)
f∗−→ (U,B)

g∗−→ (U,C)→ L→ 0,

where K = Ker(f∗) and L = Coker(g∗). Splitting into short exact se-
quences and using our finiteness assumption, we see that the alternating
sum of the lengths of the objects in the sequence vanishes. This gives the
equation

[U,A]− [U,B] + [U,C] = lengthR(K) + lengthR(L).

Consequently, we have [U,A]− [U,B] + [U,C] 6= 0 if and only if the right-
hand side of the equation is also non-zero. This means that either K or L
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(or both) must be non-zero. The objectK is non-zero if and only if f∗ is not
injective. By part Lemma 2.2 part (2), this is the case if and only if Σ−1C is
a direct summand in U . Similarly, the object L is non-zero if and only if g∗
is not surjective. Using part (1) of Lemma 2.2, this is equivalent to C being
a direct summand in U . As U is indecomposable, a direct summand in U is
necessarily isomorphic to U , which finishes our proof of part (1).
Our second statement is showndually, using part (3) and (4) of Lemma2.2.

�

We are now ready to prove our two main results, which show that we
can study representation-finiteness of our category T by considering the
relations for the associated Grothendieck group.

Theorem 2.4. Assume there is an objectX in T such thatHomT (Y,X) 6= 0
or an object X ′ in T such that HomT (X ′, Y ) 6= 0 for every non-zero Y
in T . If Ex(T ) = AR(T ) in K0(T , 0), then T has only finitely many
isomorphism classes of indecomposable objects.

Proof. Let X be an object with the property described above, and consider
the triangle Σ−1X → 0→ X

1X−→ X . As this is a distinguished triangle, we
have [Σ−1X] + [X] ∈ Ex(T ). By the assumption Ex(T ) = AR(T ), there
hence exist AR-triangles

Ai → Bi → Ci → ΣAi

and integers ai for i = 1, 2, . . . , r such that

[X] + [Σ−1X] =
r∑

i=1

ai([Ai]− [Bi] + [Ci])

in K0(T , 0). Given an object U in T , Lemma 2.1 now yields the equality

[U,X] + [U,Σ−1X] =
r∑

i=1

ai([U,Ai]− [U,Bi] + [U,Ci])

in Z. If U is non-zero, our assumption on X implies that the left-hand side
of this equation is non-zero. Hence, there must for every non-zero object
U be an integer i ∈ {1, . . . , r} such that [U,Ai]− [U,Bi] + [U,Ci] 6= 0. In
particular, this is true for every U ∈ ind(T ). By Lemma 2.3 part (1), this
means that any indecomposable object in T is isomorphic to an object in
the finite set {Ci,Σ

−1Ci}ri=1, which yields our desired conclusion.
The proof in the dual case is similar, using Lemma 2.3 part (2). �

In the theorem below, an object X in T is called a generator of T if

Hom∗T (X, Y ) =
⊕
n∈Z

HomT (X,ΣnY ) 6= 0

for any non-zero object Y in T . Dually, an objectX is called a cogenerator
of T if Hom∗T (Y,X) 6= 0 for any non-zero Y .
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Theorem2.5. Assume that our category T has a generator or a cogenerator.
If Ex(T ) = AR(T ) inK0(T , 0), then T has only finitely many isomorphism
classes of indecomposable objects up to translation.

Proof. Let X be a cogenerator and consider an indecomposable object U
in T . Notice that as X is a cogenerator, there exists an integer n such that
HomT (ΣnU,X) 6= 0. As in the proof of Theorem 2.4, our assumption
Ex(T ) = AR(T ) implies existence of a finite family of AR-triangles

Ai → Bi → Ci → ΣAi

which yields an equality

[ΣnU,X] + [ΣnU,Σ−1X] =
r∑

i=1

ai([Σ
nU,Ai]− [ΣnU,Bi] + [ΣnU,Ci])

in Z. The left-hand side of this equation is non-zero, so there is an integer
i ∈ {1, . . . , r} such that [ΣnU,Ai]−[ΣnU,Bi]+[ΣnU,Ci] 6= 0. By applying
Lemma 2.3 part (1), this yields that either ΣnU ' Ci or Σn+1U ' Ci. Con-
sequently, every indecomposable object in T can be obtained as a translation
of an object in the finite set {Ci}ri=1, which yields our desired conclusion.
The proof in the case where our category T has a generator is dual, using

Lemma 2.3 part (2). �

3. Application to Frobenius categories

We nowmove on to an application of Theorem 2.4. Throughout the rest of
the paper, let C be an essentially small R-linear Frobenius category. Recall
that a Frobenius category is an exact category with enough projectives
and injectives, and in which these two classes of objects coincide. The
stable category of C, i.e. the quotient category modulo projective objects,
is denoted by C. We assume C to be a Krull–Schmidt category and that the
stable category C is Hom-finite.
AsC is a Frobenius category, the associated stable category is triangulated.

Recall that the distinguished triangles in C are isomorphic to triangles of
the form X → Y → Z → Ω−1X, where 0 → X → Y → Z → 0
is a short exact sequence in C and Ω−1X denotes the first cosyzygy of X .
Note that Ω−1 is a well-defined autoequivalence on the stable category. The
morphism Z → Ω−1X in our distinguished triangle above is obtained from
the diagram

0 X Y Z 0

0 X I(X) Ω−1X 0,

1X

where I(X) is injective and both rows are short exact sequences. For a
more thorough introduction to exact categories and the stable category of a
Frobenius category, see for instance [12].
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Based on the correspondence between short exact sequences in a Frobe-
nius category and distinguished triangles in its stable category, we get results
also for Frobenius categories. In order to see this, we need to rephrase some
of our terminology in the context of exact categories. Let us first recall that
a short exact sequence 0→ A→ B

g−→ C → 0 in C is an Auslander–Reiten
sequence if the following conditions are satisfied:

(1) A,C ∈ ind(C);
(2) the sequence does not split;
(3) given any morphism t : W → C which is not a split-epimorphism,

there is a morphism t′ : W → B such that g ◦ t′ = t.
Just as in the triangulated case, we let K0(C, 0) denote the free abelian

group generated by isomorphism classes of objects in Cmodulo the subgroup
generated by the set {[A ⊕ B] − [A] − [B] | A,B ∈ C}. Again, we can
define the subgroups Ex(C) and AR(C) of K0(C, 0), but now in terms of
short exact sequences instead of distinguished triangles. Namely, we let
Ex(C) be the subgroup generated by the subset{

[X]− [Y ] + [Z]

∣∣∣∣ there exists a short exact sequence0→ X → Y → Z → 0 in C

}
and AR(C) the subgroup generated by{

[X]− [Y ] + [Z]

∣∣∣∣ there exists an AR-sequence0→ X → Y → Z → 0 in C

}
.

The next lemma describes a well-known correspondence between AR-
sequences in C and AR-triangles in C, see [17, Lemma 3].
Lemma 3.1. An exact sequence 0 → A → B → C → 0 in C is an
AR-sequence in C if and only if the corresponding distinguished triangle
A→ B → C → Ω−1A in C is an AR-triangle in C.
We are now ready to show the following lemma regarding the subgroups

Ex(C) and AR(C) of K0(C, 0) and the analogous subgroups of K0(C, 0).
Lemma 3.2. If Ex(C) = AR(C) in K0(C, 0), then Ex(C) = AR(C) in
K0(C, 0).
Proof. Assume Ex(C) = AR(C) in K0(C, 0) and consider a distinguished
triangle in C. As we work with isomorphism classes of objects, we can
assume that our triangle is of the form X → Y → Z → Ω−1X,
where 0→ X → Y → Z → 0 is a short exact sequence in C. Since
Ex(C) = AR(C), there exist AR-sequences 0 → Ai → Bi → Ci → 0
and integers ai for i = 1, 2, . . . , r such that

[X]− [Y ] + [Z] =
r∑

i=1

ai([Ai]− [Bi] + [Ci])

in K0(C, 0), and hence also in K0(C, 0). By Lemma 3.1, the right-hand
side of this equation is contained in AR(C). Thus, we have shown that
Ex(C) ⊆ AR(C). The reverse inclusion is clear. �
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We hence have the following corollary to Theorem 2.4.

Corollary 3.3. Assume there is an objectX in C such that HomC(Y,X) 6= 0
or an objectX ′ in C such that HomC(X

′, Y ) 6= 0 for every non-zero Y in C.
If Ex(C) = AR(C) in K0(C, 0), then the following statements hold:

(1) The category C has only finitely many isomorphism classes of non-
projective indecomposable objects.

(2) If C has only finitely many indecomposable projective objects up to
isomorphism, then C has only finitely many isomorphism classes of
indecomposable objects.

Proof. As C is an essentially small R-linear Krull–Schmidt category, the
same is true for the stable category C. As Ex(C) = AR(C) in K0(C, 0),
Lemma 3.2 yields that Ex(C) = AR(C) inK0(C, 0). The result now follows
from Theorem 2.4. �

Let us consider the example where R is a complete Gorenstein local ring
with an isolated singularity. Recall that the category of Cohen–Macaulay
R-modules is Frobenius. As R is an isolated singularity, the associated sta-
ble category is Hom-finite, and completeness ofR yields the Krull–Schmidt
property. By [13, Lemma 2.1], our category has an object which satisfies the
assumption in the corollary above. Since R is local, there are only finitely
many isomorphism classes of indecomposable projective objects. Conse-
quently, part (2) of Corollary 3.3 yields that if the AR-triangles generate the
relations for the Grothendieck group of this category, thenR has only finitely
many isomorphism classes of indecomposable Cohen–Macaulay modules.
This recovers [13, Theorem 1.2] of Hiramatsu.
Note that one could, if preferred, state Theorem 2.4 and Corollary 3.3

in terms of taking the tensor product with Q, as in the result of Kobayashi
[15, Theorem 1.2]. Hence, also Kobayashi’s conclusions are recovered from
our approach in the case of a complete Gorenstein ring.
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APPENDIX: NORWEGIAN TRANSLATIONS

This appendix contains a list of Norwegian translations of terminology used
in the thesis.

English Norwegian (bokmål)

Auslander–Reiten triangle Auslander-Reiten-triangel
category of extensions utvidelseskategori
closed under n-extensions lukket under n-utvidelser
conflation konflasjon
deflation deflasjon
dense tett
extension utvidelse
extension-closed utvidelseslukket
extriangulated ekstriangulert
Frobenius algebra frobeniusalgebra
Frobenius category frobeniuskategori
functorially finite funktorielt endelig
gentle algebra mild algebra
Grothendieck group grothendieckgruppe
higher Auslander algebra høyere auslanderalgebra
higher homological algebra høyere homologisk algebra
higher Nakayama algebra høyere nakayamaalgebra
higher preprojective algebra høyere preprojektiv algebra
inflation inflasjon
Koszul dual koszuldual
Koszul duality koszuldualitet
lattice gitter
mapping cone avbildningskjegle
n-abelian n-abelian
n-cluster tilting n-klynge-vippe
n-exact n-eksakt
n-exangulated n-eksangulert
n-hereditary n-hereditær
n-representation finite n-representasjonsendelig
n-representation infinite n-representasjonsuendelig
n-torsion class n-torsjonsklasse
(n+ 2)-angulated (n+ 2)-angulert
realization realisering
Serre functor serrefunktor
tilting module vippemodul
tilting object vippeobjekt
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