
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Eivind Vold Aunebakk

Internet-of-Things Frameworks For
Pervasive Games: A Comparative
Study

Master’s thesis in Informatics
Supervisor: Dag Svanæs
December 2022

Eivind Vold Aunebakk

Internet-of-Things Frameworks For
Pervasive Games: A Comparative Study

Master’s thesis in Informatics
Supervisor: Dag Svanæs
December 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Exergames have proven health benefits and may play a bigger role in the prevention of negative
health effects and rehabilitation in the future. This thesis is part of the EXACT research project.
The project is directed at exploring the use of IoT technologies in exergames in physical reha-
bilitation. IoT offers new opportunities for building pervasive exergames with the inclusion of a
variety of sensors and actuators and this thesis aims to help fill the gap in the limited literature
about the development of Internet of things (IoT) based pervasive games. The thesis continues
the work of Bärnholt and Lyngby [13] by improving upon their framework and comparing it
to a cloud-based solution. Along with the previous findings a literature review was performed
to discover additional architectural challenges concerning pervasive IoT games, and a new set
of criteria were derived based on the findings. Two different solutions were chosen based on
the criteria and implemented. One solution re-implementing the framework of Bärnholt and
Lyngby [13] and a minimal solution built on AWS IoT Services. An example game, Follow the
Red Dot, was implemented using both solutions. The two solutions were evaluated based on the
criteria and compared to one another. The evaluation shows that both solutions were able to
support the game in a satisfactory manner, however, the AWS solution failed to meet some of
the requirements. Though some of the shortcomings are believed to be caused by the minimal
implementation and not a fault of the architecture.

Sammendrag

Treningsspill har beviste helseeffekter og kan i framtiden spille en større rolle i forebyggingen
av negative helseeffekter, samt rehabilitering. Denne oppgaven er en del av forskningsprosjektet
EXACT som går ut på å undersøke bruken av IoT teknologier i treningsspill for rehabilitering.
Ved å ta i bruk sensorer og aktuatorer Tingenes Internett (IoT) åpner nye muligheter innen virke-
lighetsknyttede treningsspill og denne oppgaven sikter på å bidra til den manglende kunnskapen
om bruk av IoT i virkelighetsknyttede spill. Oppgaven bygger på arbeidet til Bärnholt and
Lyngby [13] ved å utbedre rammeverket deres etter deres anbefalinger og så sammenlikne det
med en skybasert løsning. I tillegg til deres tidligere funn ble det gjort et litteratursøk for å
kartlegge utfordringer forbundet med virkelighetsknyttede IoT spill, for så å utarbeide et nytt
sett med kriterier til en mulig løsning. Det ble valgt to løsninger basert på disse kriteriene: en
re-implementasjon av deres rammeverk og en minimal skyløsning ved bruk av AWS IoT Services.
Et eksempel spill, Follow the Red Dot, ble så implementert ved bruk av hvert av rammeverkene.
De to løsningene be så evaluert basert på de tidligere kriteriene og sammenliknet med hverandre.
Det viste seg at begge løsningene løste implementasjonen av spillet på en tilfredstillende måte,
men at noen av kriterier ikke ble møtt av den skybaserte løsningen. Noen av disse svakhetene
er tenkt at stammer fra at løsningen er en minimal implementasjon uten nødvendige abstrak-
sjonsnivåer, ikke svakheter i arkitekturen.

i

Preface

This thesis is a continuation of the semester project produced in the autumn of 2021, and com-
pletes my studies of the Master’s degree programme in Informatics at the Norwegian University
of Science and Technology.

I would like to thank my supervisor, Dag Svanæs, for his assistance in completing the thesis.
His continued feedback and guidance throughout the project have been invaluable.

ii

Table of contents

Abstract i

Preface ii

Table of contents iii

1 Introduction 1
1.1 Motivations . 1
1.2 Related work . 1
1.3 Objectives . 1
1.4 Contributions . 1
1.5 Limitations . 1
1.6 Outline . 2

2 Background 3
2.1 Exergames . 3

2.1.1 Pervasive games . 4
2.2 Architecture and design patterns . 5

2.2.1 Broker . 5
2.2.2 Publish and Subscribe . 6
2.2.3 Events / Observer . 6

2.3 Internet of Things . 6
2.3.1 The IoT technology stack . 6
2.3.2 Wi-Fi . 7
2.3.3 MQTT . 7
2.3.4 ESP8266 . 7
2.3.5 Raspberry Pi . 8

2.4 Digital Twins . 8
2.5 Cloud computing . 9

2.5.1 AWS IoT . 9
2.6 UNITY-Things . 10

2.6.1 The current technology stack . 10
2.7 Free and open source software . 11

2.7.1 FOSS in practice today . 13
2.7.2 Readme . 13
2.7.3 Contributing guidelines . 13
2.7.4 Code of conduct . 14
2.7.5 Coding conventions . 14
2.7.6 License . 14

2.7.6.1 License alternatives . 15

3 Research Methodology 17
3.1 Literature Review . 17
3.2 Conceptual Framework . 17
3.3 Design and Creation . 18
3.4 Research Questions . 18

3.4.1 RQ1: What architectural challenges exist in relation to pervasive IoT games? 19

iii

3.4.2 RQ2: What are the requirements for an IoT-based pervasive game archi-
tecture and framework? . 19

3.4.3 RQ3: Which architectures and technologies may be suited to implement
an IoT game framework? . 19

3.4.4 RQ4: How well do the proof of concept implementations match the re-
quirements found in RQ2? . 19

4 Architectural Requirements 20
4.1 Stakeholders . 20

4.1.1 End users . 20
4.1.2 Framework developers . 20

4.2 Architecturally Significant Requirements . 20
4.2.1 Functional and non-functional requirements 20
4.2.2 Functionality . 20

4.2.2.1 Transparent linking of digital and physical objects 20
4.2.2.2 Centralised game logic . 21
4.2.2.3 Robust communication . 21

4.2.3 Quality Attributes . 21
4.2.3.1 Usability . 21
4.2.3.2 Modularity . 21
4.2.3.3 Interoperability . 21
4.2.3.4 Performance . 21

4.2.4 Evaluation criteria . 21

5 Unity Implementation 23
5.1 Unity . 23

5.1.1 Manager . 23
5.1.2 Device . 23
5.1.3 Device Component . 23
5.1.4 Inspector . 24
5.1.5 Events . 24

5.2 Message Protocol . 24
5.3 Messages in Unity . 26
5.4 Follow the Red Dot . 27

5.4.1 The tiles . 28
5.4.2 Game logic . 28

6 AWS Implementation 29
6.1 Device . 29

6.1.1 Circuit . 29
6.1.2 Logic . 29
6.1.3 Shadows . 30

6.1.3.1 Create . 30
6.1.3.2 Update . 30

6.2 Server . 31
6.2.1 EC2 . 31
6.2.2 Game logic . 31

iv

7 Analysis 32
7.1 Evaluation criteria . 32

C1.1 Reduce implementation cost . 32
C1.2 Integration . 32
C1.3 Customisation . 32
C2.1 Centralised game logic . 32
C2.2 Addressability . 33
C2.3 Distributed & local use . 33
C3.1 Interoperability . 33
C3.2 Scalability . 33
C3.3 Connecting new devices . 33
C4.1 Free and open source . 34

7.2 Summary . 34

8 Discussion 35
8.1 RQ1: What architectural challenges exist in relation to pervasive IoT games? . . 35
8.2 RQ2: What are the requirements for an IoT-based pervasive game architecture

and framework? . 35
8.3 RQ3: Which architectures and technologies may be suited to implement an IoT

game framework? . 35
8.4 RQ4: How well do the proof of concept implementations match the requirements

found in RQ2? . 36

9 Conclusion 37

References 38

v

1 Introduction

1.1 Motivations

The Internet has made the world a lot smaller, allowing one to communicate across all con-
tinents. Lately, there’s also been a big focus on shorter-range communication, and instead of
connecting people, it has become a goal to connect all possible things to the Internet, aptly
called the Internet of Things (IoT) [76]. IoT helps us turn on the coffee maker from the com-
fort of our bed, and turn up the heating on the way home from work. This immense goal of
practicality has the consequence of helping us move less than we had to before. Parallel to
this, researchers are exploring ways of utilising technology to improve people’s health through
exercise and rehabilitation.

EXACT is an interdisciplinary research project between the Department of Computer Science
(IDI) and the Department of Neuromedicine and Movement Science (INB) at NTNU. The project
is directed at exploring the use of IoT technologies in exergames combined with social media in
physical rehabilitation. This thesis will focus on solving technical challenges.

1.2 Related work

This thesis builds on the thesis of Bärnholt and Lyngby [13], and one of the suggested implemen-
tations builds on their work. The health benefits of exercise are well established and, moreover,
there’s a lot of research on the benefits of exergames. Exergames have been explored as a tool
in exercise and rehabilitation of the elderly, as well as younger patients [62].

1.3 Objectives

The primary goal of this thesis is to explore the possibilities and challenges surrounding the
development of pervasive games, and to create an analysis by comparing two possible archi-
tectures for IoT-enabled games. The two architectures will be implemented independently and
then compared by a set of requirements, followed by a comparative evaluation by implementing
the same simple game with both architectures. While many of the existing products, such as
the Moto Tiles [50] are not built on the principles of free and open source software (FOOS), this
thesis aims to use FOOS components where this is feasible.

The following research questions were derived to help achieve these goals:
RQ1: What architectural challenges exist in relation to pervasive IoT games?
RQ2: What are the requirements for an IoT-based pervasive game architecture and framework?
RQ3: Which architectures and technologies may be suited to implement an IoT game frame-
work?
RQ4: How well do the proof of concept implementations match the requirements found in RQ2?

1.4 Contributions

The thesis contributes to the research of IoT-based pervasive games. There’s limited literature
about the development of IoT-based games and the resulting analysis of this project aims to fill
this gap. The analysis is based on the two example implementations as well as related papers.

1.5 Limitations

The thesis evaluates two possible technology stacks for IoT exergames by comparing proof of
concept implementations. Due to the sheer number of possible technology stacks, two were
selected due to the natural time constraints of a thesis. The two implementations are different

1

in many aspects and still prove for an interesting comparison. The AWS implementation was
kept simple and does not utilise all of the possibly useful AWS services. The other framework is
integrated into Unity, though it has no hard Unity dependencies and can be extracted without
too much effort. Part of the comparison is based on the example game, which may not be
representative of all exergames. Other games may have exposed different properties of the
technologies.

1.6 Outline

Chapter two introduces relevant topics and provides the necessary background information for
the rest of the thesis. It covers exergames and pervasive games, IoT with relevant technologies
and communication patterns, cloud computing and digital twins, as well as free and open source
software. Chapter three describes the research methods utilised to answer the presented research
questions. This is followed by chapter four describing the architectural requirements of the two
technology stacks. Chapter five describes the Unity implementation and the custom MQTT
protocol. The AWS implementation is covered in chapter six. Chapter seven contains the final
analysis of the two technology stacks and their implementations. Chapter eight and nine provides
answers to the proposed research questions and concludes the findings.

2

2 Background

The sections 2.1, 2.3, 2.6, and 2.7 are carried over from the semester project. In section 2.3 the
subsections 2.3.4 and 2.3.5 are new additions.

2.1 Exergames

The modern human is much less active than our predecessors. Both children, adults and the
elderly spend a considerable amount of their time sitting still which is leading to obesity and
deteriorating health, which is only worsened by age. A lack of activity doesn’t only affect
physical health, but also mental health. This has led to an increase in research on these issues
and offers an intuitive use case for serious games: the use of games and gaming technology for
purposes other than pure entertainment. Such purposes include education, training, health, etc
[64]. Serious games that promote physical activity has been shown to improve physical fitness,
mood, confidence and the overall quality of life of the player [53]. Exergames is a subset of
serious games defined by Oh and Yang [59] as:

A video game that promotes (either via using or requiring) players’ physical move-
ments (exertion) that is generally more than sedentary and include strength, balance,
and flexibility activities

While it may not have been intentional, the worldwide phenomenon Pokémon Go has proven
to be a salient example of an exergame. It has over 600 million installs to date [16]. The game
uses the mobile device’s GPS to locate, capture, train, and battle Pokémon, which through AR
appear as if they are in the player’s real-world location. With game objectives being linked to
real-world locations it encourages the player to physically move around. Screenshots of the game
can be seen in figure 1. Certain activities has sett requirements such as walking anywhere from
2 to 12km to hatch an egg to obtain a new Pokémon. Althoff et al. [1] found that Pokémon
Go leads to a significant increase in physical activity, with particularly engaged users increasing
their average number of steps per day by more than 25%, and conclude that:

Mobile apps combining gameplay with physical activity lead to substantial short-
term activity increases and, in contrast to many existing interventions and mobile
health apps, have the potential to reach activity-poor populations

3

Figure 1: Pokémon Go requires the player to physically walk around to move their in-game
character.

Such activities can also lead to unforeseen social impacts such as animal shelters offering dog
walks to players who want to hatch Pokémon eggs, which in some instances had great success
[56].

Pokémon Go is an example of great success but was mainly targeted at children and young
adults. While studies have shown that serious games have much to offer in prevention and
rehabilitation, they also show that it’s difficult to archive similar results among the elderly [74].
The studies show trends where older people have specific playing preferences and difficulties
handling digital games. Naturally this creates requirements for the games including appropriate
content, interface design and game demands. The games may have to be adapted to individuals
or a smaller audience.

2.1.1 Pervasive games

A pervasive game is a game which brings digital gaming experiences into the real world through
the use of non-invasive computational devices.[15] Two examples of such games are Moto Tiles
and Johansen’s Follow the Red Dot [51]. Moto Tiles is a finished product consisting of modular
tiles with embedded pressure sensors and LED’s. By connecting multiple tiles and placing them
on the floor the user can play a variety of games such as "Simon says". During clinical effect
studies, Moto Tiles has shown a positive effect on the physical abilities of the elderly [50]. While
Moto Tiles has proved effective and can act as inspiration as to what exergames can achieve, it’s
developed as a self-contained and finished product. Johansen explores different technologies that
can form the basis for a framework for prototyping and developing pervasive games utilising the
Internet of Things (IoT). The concept was then evaluated by creating a prototype game called
Follow the Red Dot. The game consists of multiple modules where each module has a light and
a button; a light appears on one of the modules and the player has to press the button on the
lit module to turn it off; the light will then appear on a different module and so on. While
the game is not revolutionary in itself, the proposed technologies and the proof of concept set
the starting point for Bärnholt and Lyngby [13]. The tiles used in their project, as well as this
thesis, are displayed in figure 2.

4

Figure 2: (a) Tiles and cube. (b)(c) Older adult participant training with the tiles [63].

2.2 Architecture and design patterns

An architectural pattern defines the larger architecture of a system [66]. A design pattern is a
known method of solving a technical problem on the code level.

The current implementation of this project uses MQTT which is based on a message broker
and the publish and subscribe pattern.

2.2.1 Broker

The broker pattern is an architectural pattern used to decouple components by utilising an
intermediate message broker. This way multiple components can communicate through a central
point without being explicitly aware of each other. A minimal implementation of the pattern is
illustrated in figure 3. As seen in figure 4, the multicast pattern is an extension of the broker
pattern allowing a sender to broadcast a message to all receivers connected to the broker [49].

Message
Client Client

Message
Broker

Figure 3: The broker pattern [49].

Message
Sender Receiver

Receiver

Receiver

Mes
sag

e

Message

Message
Broker

Figure 4: The multicast pattern [49].

5

2.2.2 Publish and Subscribe

The publish and subscribe patterns works by allowing a client to subscribe to one or more topics,
and similarly, when a client wishes to send a message it has to specify the topic. When the broker
receives a message it’ll broadcast the message to all clients subscribed to the specific topic [49].
The pattern is illustrated in figure 5.

Publish
Sender Receiver

Subscribe

PublishBroker

Figure 5: The publish and subscribe pattern [49].

2.2.3 Events / Observer

The event or observer pattern allows observing the state of an object and get notified when the
state changes. This is often done by triggering an event/callback function [49].

2.3 Internet of Things

In recent years we have seen a surge of interest in the Internet of Things (IoT) and numerous
standards, services and devices have been introduced. The term IoT, dating back over 20 years
[4], has no common definition and sees a broad use today. Some of the proposed definitions
focus on the things themselves, while others focus on Internet-related aspects such as protocols
and network technology, or even the storage, search and organisation of the large volumes
of information created by the [76]. One can argue that these propositions are too concerned
about the details and current technologies, and as a result, misses what IoT is all about. The
International Telecommunication Union has defined it as:

A global infrastructure for the Information Society, enabling advanced services by
interconnecting(physical and virtual) things based on, existing and evolving, inter-
operable information and communication technologies [69].

This definition puts emphasis on the idea and covers the bigger picture so that there’s likely no
need to redefine it in the future. Cisco has defined it as "simply the point in time when more
’things or objects’ were connected to the Internet than people" [22]. IoT allows monitoring,
controlling and collecting data from countless devices such as lights, air conditioning, security
systems, washing machines, medical devices, etc.

2.3.1 The IoT technology stack

To describe an IoT solution, Wortmann and Flüchter [76] proposes a three-layer technology stack
consisting of the device layer, the connectivity layer and the cloud layer. A simplified version is
shown in figure 6.

6

IoT cloud

Connectivity

Thing / Device

Figure 6: The IoT technology stack [76]

The thing/device layer is the device itself, including the hardware, software and additional com-
ponents such as sensors and actuators; anything regarding the physical device. The connectivity
layer is how the device communicates with the cloud layer and determines the choice of commu-
nication protocols, such as MQTT or Zigbee. The Cloud layer encompasses all the aspects of
the application of the device. It may handle device communication and management, analytics
and data management, and process management in the case to execute and monitor processes
across people, systems and devices. The Cloud layer also contains the software providing an
interface for interaction between people and the system and devices.

2.3.2 Wi-Fi

Wi-Fi is a collection of wireless network protocols based on the IEEE 802.11 standards [45],
allowing wireless transfer of data over radio waves on the 2.4 GHz and 5 GHz bands. Wi-
Fi is commonly used to connect devices in a Local Area Network (LAN), and usually as an
intermediate step to connect the device to the internet, but many IoT devices also use it for
local data exchange. Its wide spread use makes Wi-Fi a noteworthy candidate for most IoT
applications; as most areas are already covered by Wi-Fi there’s little additional infrastructure
cost. Some modern access points claim up to a 150-metre range and on the correct hardware,
WiFi6 can achieve speeds up to 9.6 Gb/s; and while these numbers are impressive, the power
requirements are higher than desirable on smaller battery powered devices.

2.3.3 MQTT

MQTT [57] is a publish-subscribe network protocol for machine-to-machine communication. It
resides in the application layer and will usually run on top of TCP/IP. The protocol defines two
types of entities: the message broker and any number of clients. The broker acts as a server
which receives all the messages from the clients and relays the information to the appropriate
recipients. A client cannot transmit messages to other clients directly; a client must subscribe
to a topic from the broker, and the broker will then relay any messages matching the specified
topic to that client.

MQTT and Wi-Fi is commonly combined to create a complete protocol for communication
between IoT devices.

2.3.4 ESP8266

The ESP8266 is a small form factor and low cost microcontroller [24]. In addition to the
official SDK, there are several different alternative SDKs available including Arduino [75]. The
numerous available Arduino libraries in combination with its small size and built-in WiFi and
Bluetooth capabilities make it a good choice for many IoT applications. The ESP8266 is pictured
in figure 7.

7

Figure 7: An ESP8266 module [43].

2.3.5 Raspberry Pi

Raspberry Pi [61] is a collection of small and affordable single-board computers. Contrary to
the ESP8266, a Raspberry Pi is a fully fledged, general purpose computer capable of running a
number of operating systems including, but not limited to, Raspberry Pi OS and other Unix-like
operating systems as well as Windows 10 IoT Core. Raspberry Pi’s include USB and HDMI
ports as well as built-in WiFi. The Raspberry Pi 4 is pictured in figure 8.

Figure 8: The Raspberry Pi 4 [68].

2.4 Digital Twins

Digital twins consist of two systems, one physical and one virtual [65]. The systems are able to
communicate with each other in a way where the virtual system contains all information related
the physical system, and any change in either system should be reflected in the other. Digital
twins is a concept commonly used in IoT where being able to control and monitor a physical
device is a widespread use case in everything from home thermostats to industrial robots. The
use of a digital twin aims to aid prototyping, gather data, and make predictions of failures and
the physical device’s lifetime. Working on a digital version of the product allows for quicker
iteration in both design and behaviour. Instead of creating a physical prototype and extensively
testing it to make sure it adheres to the product requirements, with a sufficiently advanced twin
one can simply run a simulation with automatic testing.

The concept of digital twins is well established in areas with safety-critical systems such as
the aerospace industry. The potential for loss of life, or the cost of a mission failure may far out

8

weight the cost of developing a digital twin which may prevent such failures. An example of this
is NASA and the US Air Force where digital twins are an integral part of the development and
operation of different vehicles [39].

According to Tao et al. [65] there hasn’t been a big focus on exploring the use of digital
twins in the development of consumer products. In products with simpler and more predictable
systems, the ease of prototyping and testing may not warrant the use of a digital twin as the
cost of developing and maintaining said twin might still be substantial.

2.5 Cloud computing

Cloud computing is the on-demand availability of computer system resources, especially data
storage (cloud storage) and computing power, without direct active management by the user [55].
Most cloud service providers, such as AWS, Microsoft Azure and Google Cloud, offer services at
different levels of abstraction, the most common are: Infrastructure as a Service (IaaS), Platform
as a Service (PaaS), and Software as a Service (SaaS).

Infrastructure as a Service offers abstractions of infrastructure. Common services may include
virtual machines, physical servers, storage, firewalls, load balancers, etc. IaaS provides the
customer with the ability to run arbitrary software, including applications and operating systems
[2].

Platform as a service provides a platform where the customer has little to no control of
the under laying infrastructure, but onto which the customer may deploy applications of their
choice. This includes databases, web servers, and custom applications.

Software as a service provides the customer with the ability to use the provider’s software,
running in the cloud. The applications may allow some configuration but the customer has no
control of the platform it runs on. An obvious example is a web-based email service, but SaaS
also covers services such as online databases and numerous other ready-to-use components.

2.5.1 AWS IoT

Amazon Web Services is a cloud service provider owned by Amazon [5]. It provides cloud
computing platforms and APIs on a pay-as-you-go basis, including databases, storage, compute
services, and virtual machines. It also provides many free tires of the basic services lowering the
barrier of testing the platform for smaller projects.

On October 8 2015 AWS announced a managed cloud platform for IoT [11]. It aims to
bring IoT devices into the AWS allowing them to be seamlessly integrated into a larger system
[8]. An overview of the services is illustrated in figure 9. AWS IoT provides open source AWS
IoT Device SDKs for a number of different devices and languages. The SDKs help connect the
devices to AWS IoT and handle most aspects of the communication. The entry point to the IoT
cloud services is the device gateway which enables the devices to efficiently communicate with
AWS IoT through end to end encryption using X.509 certificates.

AWS IoT includes a MQTT message broker enabling the devices, and connected applications
and services to publish and receive messages from each other. One can communicate with MQTT
directly or over WebSocket. There’s also a REST API allowing devices to publish data via HTTP
requests.

The rules engine allows one to apply rules on how to handle incoming messages [9]. This
makes it easier to transform and relay data to other AWS IoT services such as storage or for
further processing.

A device shadow is a JSON document describing the state of a device and allows devices to
store persistent values [7]. The device shadow service also enables other applications to change
or retrieve the state regardless of whether the device is online. Any requested changes made

9

when the device is offline are automatically synced when the device retrieves the state the next
time the device goes online. When a change to the state is requested by another application or
device the request is stored in the device shadow. The device is notified of the change and should
act to reflect the new state. When the device has updated it’s internal state the device reports
the change to the shadow service. This allows one to see both the desired state, as well as the
reported, or actual, state of the device. Due to the bidirectional nature of the communication,
the shadow document may act as a digital twin to the connected device.

Message
broker

Rules
engine

Device
Shadows

Security and identity
Devices

DevicesIoT
applications

Devices
Devices

Devices

Amazon DynamoDB

Amazon Kinesis

AWS Lambda

Amazon S3

Amazon SNS

Amazon SQS

Thing SDK

AWS SDK

Figure 9: Overview of the AWS IoT Core services [8].

2.6 UNITY-Things

2.6.1 The current technology stack

Bärnholt and Lyngby [13] decided on a modified version of the previously described technology
stack (see figure 6). The current framework describes a four-layer technology stack, which differs
from the one proposed by Wortmann and Flüchter [76] by renaming the "IoT Cloud" layer to
"Application" and adding an additional layer called the "Object abstraction". This is illustrated
in figure 10. Application is better suited as it is more generalised than IoT Cloud, while still
describing the same thing: a management software, which covers a range of different applications
including the Unity Game Engine. The Object abstraction layer holds the different connection
types between the devices such as WiFi, Zigbee, Bluetooth etc.

The specific instance of the technology stack utilised in this project can be seen in figure
11. The framework is implemented in the Unity game engine which controls the game logic
and manages the data from and to the devices. MQTT is utilised as the messaging protocol,
supported by a MQTT-broker running on a Raspberry Pi which will relay the messages between
the Unity application and the devices. The devices themselves are Arduino’s and Raspberry
Pi’s fitted with actuators and sensors.

10

Application

Connectivity

Object Abstraction

Thing / Device

Figure 10: A modified IoT technology stack
[13].

Unity / PC

MQTT / RPi

WiFi

Arduino/ESP

Figure 11: The current technology stack for
this project [13].

This results in a framework where the custom Arduino devices can be programmed as dumb
MQTT client and their behaviour and device-to-device interaction can be programmed through
their digital twins in Unity as if they were ordinary Unity game objects. Prototyping behaviours
in Unity is effortless when compared to updating the software on all the Arduino’s, especially
regarding device-to-device interaction and coordination. This also creates a division between
the device developers and the behaviour/game developers, making it possible for them to work
independently of each other.

Raspberry Pi

DHCP

MQTT Broker

ESP8266

MQTT Client

ESP8266

MQTT Client

ESP8266

MQTT Client

Sensor/Actuator

PC

MQTT Client

Unity

Sensor/Actuator Sensor/Actuator

Digital Twin

Figure 12: The UNITY-Things solution [13].

2.7 Free and open source software

While there’s no official definition1 of free/libre and open source software (FOSS), it’s generally
regarded as software where anyone has the right to use, copy, distribute, study, and change the
software [34][47].

1The Open Source Initiative’s definition is recognised by some governments.

11

The idea of FOSS is as old as software itself. Openness and cooperation is long established in
academia, and as a result almost all of the software developed by academics and researchers in
the 1950s and 60s was shared openly. However, by the late 1960, as software started to become
more complex and the development cost increased there was a growing amount of software that
was for sale only under restrictive licenses, and to further increase revenue, a trend began to no
longer distribute source code.

The idea of free software was formalised in 1985 when Richard Stallman established the Free
Software Foundation (FSF) [32] after founding the GNU Project in 1983. He was distressed by
the decline of free software and aimed to create complete operating system so that people could
use computers using only free software. The Free Software Definition [34] was published by the
FSF in February 1986, where it’s noted that the word "free" does not refer to price, it refers
to freedom; the freedom to copy a program and redistribute it, and the freedom to change a
program, so that you can control it instead of it controlling you [34].
The modern definition describes the four essential freedoms [34]:

• The freedom to run the program as you wish, for any purpose (freedom 0).

• The freedom to study how the program works, and change it so it does your computing
as you wish (freedom 1). Access to the source code is a precondition for this.

• The freedom to redistribute copies so you can help your neighbour (freedom 2).

• The freedom to distribute copies of your modified versions to others (freedom 3). By doing
this you can give the whole community a chance to benefit from your changes. Access to
the source code is a precondition for this.

To be defined as free, a piece of software must grant it’s users all of these freedoms. The FSF
defines which software is considered free at its own discretion, but as a general rule, software is
free if it’s licensed under one of the licences approved by the FSF [33].

Another other big organisation is the Open Source Initiative (OSI) [48]. In 1997, Eric S.
Raymond published "The Cathedral and the Bazaar", which later became a motivating factor
for Netscape to release Netscape Communicator and its source code as free software and start
the Mozilla project. This made Raymond and others explore how to make free software more
appealing to the commercial-software industry as the word "free" is ambiguous2 and does not
resonate well with the industry. The term "open source" was adopted by some in the free software
movement during a strategy meeting and shortly after Bruce Perens and Raymond launched
www.opensource.org. At the Freeware Summit (later named the "Open Source Summit"), it
was put to a vote and "open source" was the winner and The Open Source Initiative was formed
shortly after [46]. The OSI has its own definition of open source software, aptly named The
Open Source Definition [47], which defines the following criteria:

1. Free redistribution.

2. The program must include source code or there must be a well-publicised means of ob-
taining the source code.

3. The license must allow modifications and derived works, and must allow them to be dis-
tributed under the same terms as the license of the original software.

2The free software community often uses the french adjective "libre" (free, at liberty) to avoid the ambiguity
of the word "free".

12

4. The license may restrict source-code from being distributed in modified form only if the
license allows the distribution of "patch files", as to protect the integrity of the original
author’s source code.

5. No discrimination against persons or groups.

6. No discrimination against fields of endeavour.

7. Distribution of license to all whom the program is distributed to.

8. The license must not be specific to a product.

9. The license must not restrict other software.

10. The license must be technology-neutral.

While both The Free Software Definition and The Open Source Definition refer to almost the
same class of software, the main difference is, according to Richard Stallman, that the free
software movement campaigns for freedom for the users of computing while the open source idea
mainly values the practical advantages [35].

2.7.1 FOSS in practice today

Today’s software development is dominated by Git and GitHub. In the Stack Overflow 2018
developer survey almost 90% of the responding developers reported using Git [60], and GitHub
has 81M users [37] and 238M repositories [38]. While many larger project has long established
internal guidelines, starting a new project can be a daunting task. In 2017 GitHub announced
the Open Source Guides [21] which contains resources for how to run and contribute to open
source projects [23]. The goal is to aggregate the best practices in the community to help people
get started with creating open source projects. The guidelines cover many different aspects of
open source for both contributors and maintainers.

2.7.2 Readme

A README file is a simple way of documenting a project. It should never replace proper doc-
umentation, but rather act as an introduction to the project. While every project has different
needs, some common sections should be included [40]. The name and a short description of
the project to let others know what it’s all about; what its goals are and why it is useful. How to
get started using the project; including how to install the project and its prerequisites, running
tests and examples. If contributions are welcome, and if so, how to contribute to the project.
It can also be beneficial to include how to get support, roadmaps and a changelog.

2.7.3 Contributing guidelines

A CONTRIBUTING file may be included to explain how to best contribute to the project [40].
It should include information such as how to file a bug report or suggest a new feature. How to
set up the environment to be able to run the tests and examples. What types of contributions
the project is looking for and to what extent tests are required.

13

2.7.4 Code of conduct

Especially for larger projects and communities having a code of conduct helps set rules for
your project’s participants and how they’re expected to behave (and how not to behave) [41].
Additionally, it should include information such as where the code of conduct applies; if it’s only
on GitHub issues and pull requests, if it extends to community chats or events, etc, and who it
applies to. It should also include how one can report violations, who receives the reports and
how the rules are enforced.

2.7.5 Coding conventions

A general rule when contributing to a project is to follow the coding conventions in the file(s)
you’re contributing to, but a project may benefit from formalising these rules in a dedicated
coding conventions document. This should include the conventions for naming, capitalisation,
white space, etc, as well as more complex topics such as best practices relevant to the project
[40].

2.7.6 License

The most important distinction between a project with source available and an open source
project is the inclusion of a licence permitting the use of the source code. Any source code is
copyrighted by default, even without a license or otherwise stating copyright [36], and as such
can not be legally utilised by a third party.

Choosing the correct license for a project can be a difficult task. In 2013 GitHub launched the
website choosealicense.com [20] and an accompanying license picker [42] (see figure 13) which
resulted in an immediate doubling of the number of licensed repositories on github.com [12].
There are theoretically an infinite amount of different licenses out there as anyone is free to
write their own. In order to make things easier, the different licences are often split into 2
categories: permissive and copyleft/restrictive [36]. Permissive licenses impose few restrictions
and will in general only require the inclusion of the license and an attribution notice, but some
licenses such as the Unlicense [14] pose no restrictions at all and dedicate the work to the public
domain. Copyleft includes a viral clause requiring all modified and extended versions of the
program to be open source as well, usually by requiring it to be released under the same licence
[31].

The choice of licence may affect the success of a project. Wang [73] found license restric-
tiveness to be marginally associated with survival at the initial stage of a project, and similarly,
Colazo and Fang [18] advocate that volunteer developers are more attracted to projects under a
copyleft license. Contrary, copylefted projects are associated with lower developer permanence,
meaning that the initial attractions do not necessarily translate into long term commitment.
A restrictive licence will also prevent the software from being used in a closed source project,
which may negatively affect the adoption rate [36].

14

Figure 13: Screenshot of the integrated license picker on GitHub (2021)

2.7.6.1 License alternatives

A selection of some common licences, all of which are listed on choosealicense.com, are described
below. All the listed licences permit modification and distribution of the software, as well as
commercial use. Private use is permitted with no restrictions, i.e. a modified GPLv3 program
can be used in private without the need to disclose the source code.

The Unlicense

The Unlicense [14] is a license which dedicates the work to the public domain. It aims to be short
and concise and as such consists of a copyright waiver which imposes no restrictions on the use
of the software. As with all of the licences listed here, it also contains a no-warranty statement
and liability waiver. While the Unlicense aims to be short and focuses on an anti-copyright
message, the FSF recommends CC0[19] over the Unlicense as it’s "more thorough and mature"
[30].

The MIT License

The MIT License [67] is a short permissive licence which only requires that the licence is included
in all copies or substantial portions of the software. It imposes no restrictions on the use of the
software.

The Apache License 2.0

The Apache License 2.0 [26] requires the preservation of copyright and license notices as well as
any "NOTICE" text file, and any modified files must include a prominent notice stating that it
has been changed. A notable difference from the MIT licence is that the Apache License also
includes an express grant of patent rights from the contributors to the software, meaning that
contributors are prevented from demanding patent royalties in the future for any patents covered
by their contributions to the project [52]. All of the following licences also contain some clause
on patent use.

15

The Mozilla Public License 2.0

The Mozilla Public License 2.0 [25] is a weak copyleft licence as it requires the source code of
licensed files and modifications of those files to be available under the same license. However
additional files constituting a larger work may be distributed under a different licence and
without source code.

The GNU General Public License v3.0

The GNU General Public License v3.0 [28] is a strong copyleft license requiring all modifications,
derivatives and larger works using a licensed work to have the complete source available under
the same license.

The GNU Lesser General Public License v3.0

The GNU Lesser General Public License v3.0 [29] is similar to the GPLv3.0, but makes a
distinction between works based on the library and works that use the library. That is, it
contains a clause allowing a larger work using the licensed work through interfaces provided by
the licensed work to be distributed under a different licence. This is applicable is cases such as
using a shared library.

The GNU Affero General Public License v3.0

The GNU Affero General Public License v3.0 [27] is a very strong copyleft license similar to
the GPLv3.0. The distinction is that AGPLv3.0 considers providing a service over a network
as distribution, and as such public use of a modified version of licensed works, on a publicly
accessible server, requires granting the public access to the source code of the modified version.
This licence is designed to ensure cooperation with the community in the case of network server
software, e.g. by preventing a huge cloud service provider from selling a service based on a
modified work without contributing to the public version of the software. One can also argue
that by utilising a service, even over a network, one should be considered a user of the program
providing the service, and as such it’s necessary to provide the source code of such programs to
fulfil the user’s freedom to study and modify the programs they use.

16

3 Research Methodology

Design and
creation

Research
question(s)

Strategies
Data generation
methods

Data
analysis

Interviews

Questionnaires

QuantitativeObservation

Documents

Qualitative

Survey

Experiment

Action
research

Case study

Ethnography

Conceptual
framework

Experiences
and motivation

Literature
review

usually
1:1

often
1:N

Figure 14: The selected elements from Oates research process model [58].

The research design of the thesis is based on Oates [58] research process model, as shown in
figure 14. The methods applied are a literature review, conceptual framework, and design and
creation.

3.1 Literature Review

A literature review is the process of reviewing existing literature both before and during a
research project. The aim of a literature review may vary a lot based on the current stage of
the project. It’s commonly used when selecting a topic, and often continues until the work is
published. When conducting research it’s necessary to conduct a literature review to place the
work in the context of the field of research, making sure the work contributes new knowledge
or is in another way useful. Literature reviews are also needed to gather knowledge to form the
basis on which one can build new knowledge. The literature review helps provide the conceptual
framework for the research [58].

3.2 Conceptual Framework

A conceptual framework is derived from the literature review and states how one thinks about
the topic and the research process. It should cover the factors that comprise the topic, how one
thinks of the topic, how one approaches the research questions, the strategy for analysing the
data, how to design and create any artefacts, and how one evaluates the research [58].

17

3.3 Design and Creation

The design and creation strategy is an iterative process consisting of five steps: awareness,
suggestion, development, evaluation, and conclusion [58][72].

1. Awareness: What exactly is the problem? Which criteria are imposed on a solution?

2. Suggestion: How can the problem be solved?

3. Development: Implement the solution.

4. Evaluation: How does the solution compare to the expectations?

5. Conclusion: What did we learn from this? Which aspects need further research?

The first two steps focus on articulating the problem and the solution criteria and creating a
tentative design for solving said problem. The next step is creating an artefact based on the
tentative design, during the development one may realise unexpected issues with the design or
encounter other problems which necessitate changes to the initially proposed solution. These
encounters provide new knowledge and raise the awareness of the problem, this is part of the
iterative nature of the process. If the artefact is successfully developed it must be evaluated
according to the proposed criteria. One must carefully evaluate whether the solution solves the
stated problem without deviating from the criteria. The final step is compiling the knowledge
gained during the process and presenting it in a proper manner. The knowledge gained is often
categorised as either firm, repeatable behaviour or facts, or loose ends, abnormalities which may
form the basis for future research [72]. The process is illustrated in figure 15.

11

DESIGN SCIENCE RESEARCH METHODOLOGY
This section predominantly focuses on the design science research methodology used in the
creation of artifacts to solve problems. Later, in this essay, we discuss the process of creating
design theory.

A DESIGN SCIENCE RESEARCH PROCESS MODEL

In this section, a model of the general process followed by design science research in its
multiplicity of as-practiced variants is described. This model is an adaptation of a computable
design process model developed by Takeda, et al. (1990). Even though the different phases in a
design process and a design science research process are similar, the activities carried out within
these phases are considerably different. Also, what makes the design science research process
model different from the corresponding design process model is the fact that contribution of new
(and true) knowledge needs to be a key focus of design science research. The research process
model shown in Figure 3 can be interpreted as an elaboration of both the Knowledge Using
Process and the Knowledge Building Process arrows in Figure 2. With reference to Figure 3, a
typical design science research effort proceeds as follows:

Figure 3. Design Science Research Process Model (DSR Cycle)

Awareness of Problem: An awareness of an interesting research problem may come from
multiple sources, including new developments in industry or identification of problems within a
reference discipline. Reading in an allied discipline may also provide the opportunity for
application of new findings to the researcher’s field. The types of problems that are relevant for a
design science research effort tend to be problem-solving focused in their approach as opposed to

Process
Steps

Outputs

Conclusion

* Circumscription is discovery of constraint knowledge about theories gained through detection and analysis of contradictions
when things do not work according to theory (McCarthy, 1980)

Knowledge
Contribution

Evaluation

Development

Suggestion

Awareness of
Problem

Knowledge
Flows

Design Science
Knowledge

Circumscription*

Proposal

Tentative Design

Artifact

Performance Measures

Results

Figure 15: The Design Science Research process model (DSR Cycle) [72].

3.4 Research Questions

The thesis aims to answer the following research questions:

18

3.4.1 RQ1: What architectural challenges exist in relation to pervasive IoT games?

Before we can start to answer any of the following questions it’s necessary to identify the current
challenges related to pervasive IoT games. The answer to this question is also a direct depen-
dency to RQ2 as one needs a basis to build the requirements upon. To answer this question
a literature review is performed, compiling information from relevant literature as well as the
papers this thesis builds upon.

3.4.2 RQ2: What are the requirements for an IoT-based pervasive game architec-
ture and framework?

To create a fair analysis of the two selected architectures it is necessary to form a set of require-
ments to evaluate them. This research question does not necessitate any information gathering
per se, as it builds on the criteria from Bärnholt and Lyngby [13] and the findings from RQ1.

3.4.3 RQ3: Which architectures and technologies may be suited to implement an
IoT game framework?

Based on the criteria found in RQ2, we can evaluate different architectures and technologies. As
it’s not feasible to make numerous prototypes, we can use the criteria to select two promising
architectures for the final proof of concept evaluation.

3.4.4 RQ4: How well do the proof of concept implementations match the require-
ments found in RQ2?

This question forms the basis for the final analysis. Before we can make a proper comparison
of the implementations we must first compare each implementation with the common set of
requirements. To answer this question two different prototypes, solving the same problem, were
created utilising the process of design and creation.

19

4 Architectural Requirements

4.1 Stakeholders

According to Ian Sommerville [44], a stakeholder is anyone who is affected by the system in some
way, i.e. anyone who has a legitimate interest in it. This covers everyone from the end user to
the engineers who built the system in the first place.

4.1.1 End users

The end users of the systems are the game developers utilising the frameworks in their game
development process. Their main concerns are the ease of use and the capabilities of the frame-
works. They depend on any framework to be able to solve the problems they are faced with
during the development process. To facilitate this the frameworks need to be flexible and thor-
oughly documented, including an overview of each feature as well as ready-made examples.

4.1.2 Framework developers

The developers of the frameworks are concerned with good development processes, including
cooperation and communication, documentation, and task distribution. To create a successful
open source project it’s essential to maintain best practices to incentivise community contribu-
tions.

4.2 Architecturally Significant Requirements

Chen et al. [17] defines Architecturally Significant Requirements (ASR) as:

...those requirements that have a measurable impact on a software system’s archi-
tecture.

ASRs are the subset of the total system requirements that require extra attention when designing
the system’s architecture as they are associated with a high cost of change.

4.2.1 Functional and non-functional requirements

Functional requirements are requirements that explicitly state what the system should and
should not do. They describe how the system reacts to specific inputs and situations. The
requirements can be expressed as general use cases or as very specific details of a process [44].
Non-functional requirements define more general constraints that apply to the system as a whole,
rather than specific features [44].

4.2.2 Functionality

4.2.2.1 Transparent linking of digital and physical objects

The main feature of the frameworks is the transparent use of digital twins in pervasive games.
The digital objects should match their physical counterpart as closely as possible in the context
of game development. Interacting with the physical object through the digital twin should be
as easy as interacting with a purely digital object.

20

4.2.2.2 Centralised game logic

By running the game logic in a central location such as a server or a game running on a PC,
the game logic is decoupled from the functionality of each device. This allows independent
development of devices and games using said devices. Being able to keep the logic in one place
also allows more rapid prototyping and easier deployment as the devices don’t need to change.

4.2.2.3 Robust communication

To facilitate a game, the communication between the game and the connected devices must be
reliable, and with acceptable latency in the context of the specific game. As the frameworks
target a general audience the latency should be minimised to enable use in a broad spectre of
games, while still keeping reliability as the main concern.

4.2.3 Quality Attributes

Quality attributes are non-functional requirements used to evaluate the system. Quality at-
tributes are usually architecturally significant [17].

4.2.3.1 Usability

The adoption of the frameworks is dependent on their usability. To be able to reach a wide
audience the systems should be familiar to the users of target platforms, in addition to being
properly documented.

4.2.3.2 Modularity

One of the main attributes of the frameworks should be modularity. A modular approach is
essential to enable developers to develop and integrate their own devices, as well as devices from
third parties.

4.2.3.3 Interoperability

To facilitate the use of a large set of devices the systems should be flexible enough to be able to
support multiple communication protocols. The due of standardised protocols makes it easier
to integrate new devices without designing specialised components for each device.

4.2.3.4 Performance

Performance is an important attribute of many games, and as such it must be considered when
designing a framework targeting games. Latency must be kept to a minimum to avoid introduc-
ing perceived discontinuity between the digital and physical devices. The framework is unlikely
to involve heavy processing as its main occupation is to forward messages to synchronise states.
To be able to support a large number of simultaneous devices communication should be kept to
a minimum. Using lightweight protocols enables the use of less powerful devices.

4.2.4 Evaluation criteria

The following criteria are derived from the requirements. The criteria are based on the criteria
from Bärnholt and Lyngby [13].

21

C1.1 - Reduce implementation cost The framework and the technology used should
reduce the overall time and cost of prototyping
pervasive exergames.

C1.2 - Integration Seamless integration with the development envi-
ronment.

C1.3 - Customisation The framework should allow developers to create
custom interactions and visualisations of different
devices that mirror the physical device.

C2.1 - Centralised game logic The framework should support running the game
logic in a central location outside of the IoT de-
vices.

C2.2 - Addressability The technology should provide the ability to
uniquely identify and address each device.

C2.3 - Distributed & local use The technology should support both local and dis-
tributed applications.

C3.1 - Interoperability The framework and the technologies used should
support communication with various IoT devices.

C3.2 - Scalability The framework and the technologies used should
support varying amounts of devices.

C3.3 - Connecting new devices The framework should provide handling of con-
necting new devices both during development and
at run time.

C4.1 - Free and open source The framework should be open source, as well as
being built on open source components.

Table 1: Modified evaluation criteria based on the criteria from Bärnholt and Lyngby [13].

22

5 Unity Implementation

The solution is an implementation of digital twins aiming to provide Unity game objects nearly
identical to the physical device. The physical devices contain no game logic and merely serve as
a physical manifestation of the logical object. The communication is done using MQTT, with
a custom protocol. A seen in figure 12, the example game is built using ESP8266’s where a
Raspberry Pi serves as the MQTT broker.

5.1 Unity

Unity [70] is a popular cross-platform game engine which utilises C# as its scripting language.
The integrated 3D environment and extendable editor make it a great candidate for this kind
of project.

The main building blocks in Unity are the game objects. A game object is often used to
represent a single entity in a game, such as a player, a bullet, or an obstacle. The game objects
can also be nested, allowing each object to serve as a part of the larger entity or simply to group
entities for easier maintainability.

A game object is composed of components. A component can be a custom script acting
on the object or its environment, or one of the built-in types such as a Sprite Render or a
Rigidbody. Unity requires all game objects to have a Transform component representing the
object’s position, scale and rotation in 3d-space.

Unity games are usually organised into a number of scenes, where each scene represents a
part of the game or a level. A scene is a collection of game objects, lighting information and
other environment data.

5.1.1 Manager

The implementation requires the existence of an ExactManager in the scene. The manager is
responsible for keeping track of all the connected devices and connecting them to their digital
twin. It handles incoming messages as well as transmitting the outgoing messages.

5.1.2 Device

A Device represents a single device. It handles the connection the the attached components and
serves as the base for the digital representation of a physical object.

The link to the physical device can be achieved in a number of ways. It’s first linked by
the device-id/MAC-address, if no id is provided or the provided it is not a match. The physical
device is then linked using the device name and if there’s no name match the device is linked
by the device type. Failing all three the physical device is not linked to any Device.

5.1.3 Device Component

While a physical device could be represented as a single class derived from Device, it’s often
composed of multiple components such as a LED-ring and a RFID-reader. A DeviceComponent
is a class meant to represent a single a physical component connected to the device. This Device-
DeviceComponent composition matches the GameObject-Component philosophy Unity is built
on, which should provide an intuitive and recognisable interface for Unity developers.

23

5.1.4 Inspector

A Unity component’s representation in the editor interface is called an inspector. As the name
suggests it allows one to inspect the current state of the component, and each component has a
default inspector providing an interface for viewing and editing the component’s public variables.
Like most parts of the Unity editor, the inspector can be customised on a per component basis.
One can affect how a field is presented using attributes [54]. The IMU inspector is pictured in
figure 16, where we can see that the sensitivity value is displayed as a slider limited to a value
between 0 and 1. In addition there’s added a button labelled Tap at the bottom of the inspector
which can be pressed to issue a tap event as if it was issued by the physical device. On Tap() is
a UnityEvent where one can add listeners to the list via drag and drop in the editor, in this case
the sole listener is the OnTapped function of the Follow the Red Dot script on the GameManager
game object. The function takes one parameter, the device that was tapped, which in the case
is the device the IMU is attached to.

Figure 16: Screenshot of the IMU inspector.

5.1.5 Events

A UnityEvent is a callback that can be invoked from code. It can’t take any arguments but has
the nice property that it’s persistent and listeners can be assigned via the editor. This allows
connecting otherwise completely decoupled code with a simple drag and drop interface. Though
the callback can’t be invoked with arguments one can still bind a function that requires them
by assigning a value to the arguments in the editor. This is demonstrated in figure 16.

Using C# attributes one can assign a callback function to listen for changes done to a variable
through the editor. In the example implementation, this is utilised to immediately synchronise
changes of a value on a twin to the physical device.

5.2 Message Protocol

Connection

The protocol follows a discovery pattern. As there’s no direct coupling between Unity and the
devices the protocol relies on both parts broadcasting their existence by publishing to specific
topics when they want to connect. A device publishes to exact/connected when powered on to
try to connect to Unity. If Unity is running, it’ll attempt to link the device to a digital twin.
On startup Unity will publish to exact/all_devices/are_you_connected to prompt any already

24

powered devices to reconnect. Figure 17 demonstrates a case where Unity is started after the
device.

Device

last_will(exact/disconnected/<mac>)

MQTT Broker

subscribe(exact/disconnected/#)

Unity

subscribe(exact/device_message/#)

subscribe(exact/<mac>/#)

subscribe(exact/all_devices/#)

publish(exact/connected/<mac>/<type>/<name>)

subscribe(exact/connected/#)

publish(exact/all_devices/are_you_connected)

publish(exact/all_devices/are_you_connected)

publish(exact/connected/<mac>/<type>/<name>)

publish(exact/connected/<mac>/<type>/<name>)

last_will(exact/all_devices/reset_all_components)

Figure 17: Diagram of the connect and disconnect protocol.

Last will

Last Will and Testament (LWT) is a built-in feature of MQTT. A client may specify a last-will
message when connecting to the MQTT broker. The broker with publish this message if the
event that the client ungracefully disconnects. As seen in figure 18, the protocol utilises LWT
to notify Unity when a device disconnects. Similarly, Unity has a last will to have the devices
reset into a ready state in the event of a game crash or network loss. Unity’s last will can be
seen in figure 17.

Device

...

MQTT Broker Unity

exact/disconnected/<mac>

...

last_will(exact/disconnected/<mac>) subscribe(exact/disconnected/#)

Figure 18: Diagram of last will.

Action

An action message is a message sent by Unity whenever it wants to perform an action on a
physical device. This can be anything from turning on a LED to setting the angle of a servo
motor.

The topic of the message is exact/<mac>/action/<component>/<action_name> where
<mac> is the unique identifier of the device, <component> is the component that should per-
form the action and <action_name> is a string identifying the action to be performed. Any
supplementary data is stored in the payload. Any message starting with exact/<mac> indicates
that it’s a message sent from Unity to a specific device.

An example request to set the colour of an RGB-led to red could have the topic exact/00-
11-22-33-44-55/action/rgb_led/set_color and payload 255,255,0.

25

Event

An event message is a message from a device to notify Unity of an event triggered on said
device. An event can be a button being pressed, motion detected, or any other change we might
be interested in.

The topic of the message is exact/device_message/<mac>/event/<component>/<event_name>
where device_message indicates this is a message sent from a device. As with the action message
<mac> is the unique identifier of the device, <component> is the component where the event
occurred and <event_name> is a string identifying the type of event. An event can also include
extra data in the payload.

An example event triggered by a user tapping an IMU may be sent with the topic
exact/device_message/00-11-22-33-44-55/event/imu/tap. This example is shown in figure 16.

Get

The get message is for Unity to request a value from a component in a physical device. The
device then responds with a value message. The message has a topic on the form
exact/<mac>/get/<component>/<variable_name>. The structure is similar to an action mes-
sage except that is cannot include a payload.

A request such as wanting to know the value of a temperature sensor may look like this:
exact/00-11-22-33-44-55/get/temp_sensor/current_temp.

Value

A value message is the device’s response to a get message from Unity. The message may also
be used for a value that is continuously updated without Unity having to repeatedly send
get messages. The message has the same structure as an event message with the topic ex-
act/device_message/<mac>/value/<component>/<variable_name> and where the value of
the requested variable is stored in the payload.

5.3 Messages in Unity

A message sent from a device to Unity is propagated through several layers. The MQTTHandler
maintains the connection to the MQTT broker and is the component that receives the raw
message. Connect and disconnect messages are processed immediately, while events and value
messages are matched and forwarded to a connected device. The device simply sends the message
to the correct device component where it’s processed. The three-layer division helps map the
logical objects to the physical ones, as well as exposing APIs at varying abstraction levels,
creating more choices for the user.

As seen in figure 19, an outgoing message is gradually composed by the different layers.
Similarly, 20 show how an incoming message is decomposed as it’s propagated down and through
the layers.

26

Unity

Physical Device

subscribe(exact/<mac>/#)

MQTTHandler Device

SendMessage(action/imu/
set_sensitivity, value)

IMU
(DeviceComponent)

SendAction(set_sensitivity, value)
SendAction(imu, set_sensitivity, value)

MQTT Broker

SetSensitivity(value)

SendMessage(exact/<mac>/
action/imu/set_sensitivity, value)

publish(exact/<mac>/action/imu/set_sensitivity, value)

Figure 19: Diagram of the message propagation in Unity when the user changes the sensitivity
of the IMU.

The top layer, the device components, are built to make the MQTT connection transparent
to the gameplay programmer. Figure 20 demonstrates the twin behaviour of the physical device
and the in-game object; an event caused by tapping the IMU is identical to an event from
pressing the corresponding in-game button.

Unity

Physical Device MQTTHandler

ProcessDeviceMessage

DeviceEvent

Device

EventMessage(imu, tapped, 0)

IMU
(DeviceComponent)

OnTap

OnTap

OnEvent(tapped, 0)

Taps device

MQTT Broker

Taps button in game

publish(exact/device_message/<mac>/event/imu/tapped, 0)

Figure 20: Diagram of the message propagation in Unity when the user taps on a physical IMU,
compared to pressing the twin-button in the GUI.

5.4 Follow the Red Dot

Follow the Red Dot is a simple, yet effective game for testing the capabilities of the implemen-
tation. The game consists of three or more tiles with a light and a button each. One on the tiles
will light up and the player has to tap the tile. When the tile is tapped the light is turned off
and another tile lights up, and so on. If the player takes too long to tap a tile the game is over.

While the rules are simple, this is a non-trivial problem to implement on three separate micro-
controller-enabled tiles. Moving the game logic to a centralised component in Unity allows easier
prototyping and makes it possible to quickly iterate on the specific rules, e.g. one can adjust the
time the player has to tap the tile before the game resets, or adjust the method used to select
the next tile, without the need to flash all the micro-controllers each time.

27

5.4.1 The tiles

To accurately model the tiles the following device components were made: the IMU, LED ring,
tone player, and RFID reader. In addition, a dice detector component was created, which
subscribes to events from the RFID reader to display the value of any RFID-enabled dice placed
on the tiles (see figure 2a). Though, the RFID reader was not utilised in the prototype game.

5.4.2 Game logic

The game is governed by a single script, the GameManager, containing the game logic. The
GameManager is notified when a device is tapped, be it the physical device or the in-game
button, through an event call to the OnTapped function (listing 1), where the device that issued
the event is passed as an argument. The event is connected through the Unity editor, as seen
in figure 16. This way there’s no hard coupling between the GameManager and the IMU, and
any other device may be utilised as well.

public void OnTapped(Device device)
{

if (device != active) { return; }
scoreKeeper.Score++;
SetNextActive();

}

Listing 1: The function called when a tile is tapped.

The process of changing the active device is made trivial by using the ready-made device com-
ponents. As seen in listing 2, by using the interface provided by the LedRing-component, both
the physical LED-ring and the visual representation are turned off.

var led = active.GetComponent<LedRing>();
led.StopFading();
led.SetColor(Color.black);

Listing 2: Example of turning off the led ring on the active device.

After selecting the newly active device, one can turn on the LED ring of the new device in a
similar fashion. Listing 3 demonstrates how one could instruct the led ring to fade from full
intensity to completely off in a span of 5 seconds. As the ring turns on a tone is played for a
short duration to guide the player in the right direction.

active.GetComponent<LedRing>().StartFading(Color.red, 1.0f, 0.0f, 5.0f);
active.GetComponent<TonePlayer>().PlayTone(500.0f, 0.1f);

Listing 3: Example of turning on the led ring and playing a tone on the active device.

28

6 AWS Implementation

The AWS implementation is based on AWS IoT Core. The devices are registered as things in
AWS IoT and are granted the required permissions to be able to communicate through the AWS
message broker. The game logic for the Follow the Red Dot example game is implemented as a
simple Python script running on an EC2 instance with the same permissions.

6.1 Device

The devices are Raspberry Pis equipped with a LED and a button (figure 21). Raspberry Pi
was chosen due to its combination of small size and the ease of prototyping.

Figure 21: A led and a button connected to the Raspberry Pi.

6.1.1 Circuit

A button should normally be connected in a pull-up or pull-down configuration, but the Rasp-
berry Pi has internal pull-up resistors making this redundant. The LED is connected with a
330Ω resistor. The circuit is shown in figure 22.

GND
GIPO21

GIPO26

Figure 22: Circuit diagram of the led and button connected to the Raspberry Pi.

6.1.2 Logic

Most of the logic is already supplied by the AWS IoT Device SDK [6]. The code is based
on an example of using device shadows. When the device receives a shadow delta message

29

containing the differing desired values from the reported ones the device can turn on or off the
LED according to the desired state. When the button is clicked the device publishes a MQTT
message to the topic things/<device_name>/click.

6.1.3 Shadows

The implementation relies on the device shadows to update the state of each device. This way
the server isn’t required to talk to any device directly. An added bonus it that any updates sent
when the device is offline are delivered when it reconnects.

6.1.3.1 Create

The first time a device connects to AWS there’s no existing shadow document for that device.
When the device tries to request the document it’s rejected and the device submits a new
document with its current state. This is illustrated in figure 23.

Device

shadow/get/rejected

AWS

shadow/get

shadow/update/accepted

shadow/update

shadow/update/documents

subscribe(shadow/#)

Figure 23: Diagram of the MQTT messages exchanged when a device connects without an
existing shadow document.

6.1.3.2 Update

Figure 24 shows an example where the shadow document already exists. When the device
connects it’s able to retrieve the document and apply any changes to its state. If the state is
changed it’ll publish an updated document with the reported state as seen in figure 23.

30

Device

shadow/get/accepted

shadow/update

AWS Client

shadow/get

shadow/update

shadow/update/delta

shadow/update/documents

shadow/update/accepted

shadow/update

shadow/update/documents

shadow/update/accepted

shadow/update/accepted

shadow/update/accepted

subscribe(shadow/#)

subscribe(shadow/update/accepted)

Figure 24: Diagram of the MQTT messages exchanged when a device connects, and later a
client updates the device shadow.

6.2 Server

The server is set up as a Python script running on an AWS EC2 instance.

6.2.1 EC2

Elastic Compute Cloud (EC2) is a scalable virtual computing service allowing the user to choose
among numerous configurations [10]. It was a good fit for this project as the free tire is more
than capable and the integration with the AWS MQTT service makes it convenient to set up
communication with the devices.

6.2.2 Game logic

The server maintains a list of the connected devices and the currently active device. When it
receives a click message from the active device, it uses the shadow service to turn off the LED
on said device and turns on the LED on a new device making it the active device. Setting the
state of a device is just a matter of publishing a MQTT message with the desired state. The
function for setting the state of the LED is shown in listing 4.

def set_device_light(device_name, light_state):
message_topic = f"{aws_prefix}/{device_name}/shadow/update"
message_json = f'{"state": {"desired": {"light": "{light_state}"}}}'
mqtt_connection.publish(

topic=message_topic,
payload=message_json,
qos=mqtt.QoS.AT_LEAST_ONCE)

Listing 4: The function called when a tile is tapped.

31

7 Analysis

7.1 Evaluation criteria

Following the implementation of the example game, both solutions were compared to the eval-
uation criteria found in table 1.

C1.1 Reduce implementation cost

The framework and the technology used should reduce the overall time and cost of
prototyping pervasive exergames.

Both solutions made prototyping both faster and easier at no extra cost. Using the Unity
framework most of the time was spent developing the various device components for the red
tiles. The relatively small interface of the framework is able to support the development of
complex component behaviours. With the use of the ready-made device components, it was
easy to develop the Follow the Red Dot game. The AWS implementation does not support
device abstraction to the same extent as the Unity implementation, though this is feasible to
implement given some time. The AWS device SDK made it very quick to set up synchronisation
of the LED connected to the device with the device shadow document. Requesting changes to
the document from the game logic was also very straightforward.

C1.2 Integration

Seamless integration with the development environment.

One of the design goals of the Unity framework was to seamlessly integrate it into the Unity
editor. When developing the example game, the use of the device components was familiar to the
use of other Unity components. The AWS solution was not built with a particular development
environment in mind. Thought, this minimal approach of not using a game engine does remove
some distractions.

C1.3 Customisation

The framework should allow developers to create custom interactions and visualisa-
tions of different devices that mirror the physical device.

As the state of the physical device is synced to the device components in Unity, setting up
a visualisation of the device becomes trivial. Custom interactions are supported by using the
interfaces each component supplies, as was done in the example game. The AWS solution does
not provide any means of displaying any type of visualisation, but connecting an additional
device for display purposes is feasible. Custom interactions can be implemented in code even
though there’s currently no explicit support for this.

C2.1 Centralised game logic

The framework should support running the game logic in a central location outside
of the IoT devices.

Both solutions support, and rely, on centralised game logic. Both solutions implemented the
devices as pure I/O devices with very little logic contained in them. The Unity solution imple-
mented the game logic in a script running in the game engine, while the AWS solution ran the

32

logic in an EC2 instance. The AWS solution has the added benefit of having the capability to
run the game logic on one of the devices.

C2.2 Addressability

The technology should provide the ability to uniquely identify and address each
device.

Both solutions are able to uniquely address each device. In Unity, this is enforced by the
protocol where the message topics contain the MAC-address of the relevant device. There’s
still the possibility of having poorly configured devices, or devices which purposely misidentify
themselves. AWS has strict enforcement of identities through the use of certificates.

C2.3 Distributed & local use

The technology should support both local and distributed applications.

The Unity solution is primarily designed for local use but also supports distributed deployment
by utilising a remote MQTT broker. The game logic can also run remotely. The AWS solution
is heavily dependent on AWS and as a result, there’s no way to run it locally. The game logic
can run on a local device or PC.

C3.1 Interoperability

The framework and the technologies used should support communication with vari-
ous IoT devices.

Through the use of MQTT, both solutions are able to support a variety of devices. The solutions
each have a custom MQTT protocol that the devices must explicitly support. One can feasibly
implement an adaptor to support third-party devices.

C3.2 Scalability

The framework and the technologies used should support varying amounts of devices.

The Unity implementation is limited by the message throughput in both the MQTT broker and
Unity. Depending on the game and the devices, Unity may slow down when there’s a large
number of devices connected due to Unity’s normal performance constraints when handling
many game objects. The AWS solution is configurable to handle near any number of devices
through the various distribution and load balancing features of cloud providers like AWS.

C3.3 Connecting new devices

The framework should provide handling of connecting new devices both during de-
velopment and at run time.

Both solutions are able to handle the connection of new devices both during development and
at run time. In Unity, one can link each device to a specific instance of a virtual device during
development. One can also use the device type the device reports when connecting to link it
to a device in a specific group or to instantiate a new device of the respective type to handle
any number of new devices. The AWS solution does not have logically distinct device types,
so the devices must be handled in code. To connect a device to AWS the device must first be

33

registered, this can be done by explicitly issuing a certificate to each device. To support new
devices one can load a claim certificate on each device during production. The claim certificate
can then be exchanged for a normal certificate the first time the device connects to AWS.

C4.1 Free and open source

The framework should be open source, as well as being built on open source compo-
nents.

Neither solution is completely open source, but both utilise some open source components. The
Unity solution is largely open course with the exception of Unity itself. The C# source of the
Unity Engine and the Unity Editor has been available on GitHub since 2018, but it’s licensed
with reference only licence [3][71]. The licence only permits reading the code, not modifying or
redistribution. The AWS Device SDK is open source under the Apache License 2.0 [6], but not
AWS itself. While the Unity framework can be made completely open source by porting it to
a different engine, the same would be challenging with the AWS solution as few cloud service
providers open source their services.

7.2 Summary

The comparison is summarised in table 2.

Unity-things AWS EC2
C1.1 Both solutions makes prototyping both faster and easier.
C1.2 The framework is integrated into the Unity

editor. No framework is provided for the
devices.

The solution does not provide any integra-
tion for the game logic. The devices utilise
the AWS IoT SDK.

C1.3 The Unity editor streamlines the setup of
custom interactions and visualisations.

The solution provides no framework for cus-
tom interaction and visualisation but allows
for the implementation of most features.

C2.1 Both solutions support centralised game logic.
C2.2 Both solutions support device identification.
C2.3 The solution supports both local use and

distributed use by hosting the MQTT bro-
ker remotely

As the solution relies on AWS it does not
support local use.

C3.1 Both solutions support a variety of devices through MQTT.
C3.2 Unity is able to support a great number of

devices.
An AWS solution can be configured to sup-
port nearly any number of devices.

C3.3 Devices are automatically detected when
they try to connect to the game.

Devices need to be registered to AWS. This
can be done in multiple ways including bulk
registration or using a claim certificate that
allows automatic registration the first time
the device connects.

C4.1 Open source with the exception of Unity
itself.

Open source with the exception of AWS.

Table 2: The criteria from table 1 in relation to the proposed solutions.

34

8 Discussion

8.1 RQ1: What architectural challenges exist in relation to pervasive IoT
games?

One of the challenges regarding the difficulties of the development of pervasive IoT games is
the ease of prototyping and rapid iteration. This may stem from multiple separate issues such
as using ad hoc solutions for each project which leads to a lack of mature development tools.
Dealing with physical devices is usually more cumbersome when compared to other objects
in a game, and the lack of proper integration of the devices results in unwanted complexity.
To support rapid iteration it may be useful to have the game logic in a central location, this
simplifies the deployment process as the devices can be kept as is when only the behaviour of
the game is changed. If the logic is handled by one or more devices it’s necessary to go through
the potentially time-consuming process of updating the devices for each iteration.

As a cost-saving measure, it’s desirable to be able to support off-the-shelf devices. While
many devices support standardised communication protocols such as MQTT, the structure of
the topics and messages still vary. A general solution must be able to provide adaptors to devices
with varying message structures.

Most communication methods used in games are not necessarily suitable for use in IoT
devices. It’s challenging to design a communication method which satisfies the requirements of
performance, reliability, and latency required by some games while still supporting a variety of
different devices.

A production-ready architecture should be designed with security and privacy in mind to
prevent eavesdropping and malicious behaviour in competitive games. Securing the communi-
cation to the devices may require more powerful devices, and may complicate the process of
connecting new devices.

8.2 RQ2: What are the requirements for an IoT-based pervasive game ar-
chitecture and framework?

Following the two implementations, the criteria for IoT-based pervasive game architectures found
in chapter 4 appear to apply. The requirements are still highly dependent on the application,
but for a general-purpose solution, all of the criteria should preferably be met.

Regarding the criteria of scalability, no exact figure for the number of devices was given as
the number of devices needed will vary wildly depending on the application. This requirement is
regarded as the least important for a general-purpose product as the architecture of a framework
for distributed games supporting thousands or millions of devices may look very different to a
framework for use in the home of a single player.

While the AWS solution communicates with the AWS shadow documents, the Unity frame-
work is implemented using an ad hoc protocol. An additional requirement may state that the
architecture should be built on open and standardised protocols as this will make it easier to
integrate new devices and may increase the adoption rates of the framework.

8.3 RQ3: Which architectures and technologies may be suited to implement
an IoT game framework?

With the variety of available technologies, it is challenging to create a comprehensive comparison.
Following the literature review, this thesis has considered two separate architectures built on
different technologies.

35

The Unity Things technology stack described in section 2.6 utilises a Raspberry Pi MQTT
broker, ESP8266 for the devices, and a PC running the game logic in Unity. The ESP8266
is a staple IoT component used in numerous applications, both commercially and DIY alike.
When designing a new solution it’s often beneficial to use a mature product which is likely to be
supported in the future. MQTT is a largely adopted, lightweight, and human-readable protocol,
all of which make it easier to work with. MQTT was chosen for both solutions and successfully
satisfied its role.

The Raspberry Pi for running a message broker and DHCP server was chosen to simplify the
setup of the devices. The devices rely on a hard-coded network SSID and password, as there’s
no solution implemented for communicating this information to the devices. The Raspberry Pi
provides a known network for the game and devices to connect to. This solution is not ideal
and would not be feasible for a commercial product. With a more flexible device setup, the
Raspberry Pi would be redundant and the MQTT broker could be hosted remotely, or on the
PC along with the game. The use of a Raspberry Pi in the devices for the AWS solution made for
very easy prototyping. It is well-documented and provides easy-to-use libraries to get started.

Using a game engine provides many features out of the box. With some familiarity, it makes
it trivial to set up simple interactions and visualisations. Unity was chosen for this particular
framework but any other engine would provide many of the same benefits. The use of a large
game engine comes with a cost in terms of resource consumption. If the game requires remote
hosting of the logic, using Unity may be more costly compared to a more minimal solution.

Cloud technologies have seen widespread use in IoT applications. Contrary to the first
solution, by connecting the devices to a remote broker like AWS the devices appear to be stand-
alone, only requiring an internet connection. The integrated broker, which is accessible from
other AWS services is a very powerful technology.

8.4 RQ4: How well do the proof of concept implementations match the
requirements found in RQ2?

The Unity solution largely meets all of the requirements. C3.2 is difficult to judge without
performing a large-scale test, which is outside the possibilities of this thesis. The solution fails
on the requirement of standardised protocols discussed in RQ2.

The AWS architecture meets most of the requirements. C1.2 is not met as the implementation
does not target any particular environment for the game logic. C1.3 is not met largely for the
same reason; the implementation is very bare bones and not representative of all the features that
may be included in a complete AWS solution. C2.3 is not met as the architecture largely inherits
the cloud architecture of AWS and, to my knowledge, there’s no way to host the services locally.
The AWS solution is more suited for a large number of devices where managing the devices on
your own becomes infeasible. Using a cloud platform has many benefits regarding scalability
and performance, in the ease of setting up devices with the SDK.

36

9 Conclusion

The goal of this thesis was to explore the possibilities and challenges surrounding the develop-
ment of pervasive games by conducting a comparative study of two selected architectures. Four
research questions were derived to achieve this task.

First, a literature review was performed to identify the challenges that exist in relation to
pervasive IoT games. Based on the literature review and the previous findings of Bärnholt and
Lyngby [13] we were able to identify several challenges which formed the basis for the next
question.

The second research question was to derive a set of requirements for an IoT-based pervasive
game architecture and framework. Based on the criteria from Johansen [51] a modified set of
requirements where formed by considering the challenges identified in research question 1. Said
requirements can be found in table 1.

Two potential architectures were selected based on the criteria found in research question
two. The Unity-Things framework proposed by Bärnholt and Lyngby [13] and a cloud-based
solution built on AWS. The AWS solution was known to violate requirement C2.3 but was
selected due to its differences compared to the Unity-based solution as well as the prevalence of
cloud applications in the IoT space.

Following this, two potential solutions were implemented. One of the solutions was a re-
implementation of the Unity-Things framework, with deeper integration in the Unity game
engine and a component-based design. The other solution was based on the AWS shadow
services, utilising Raspberry Pi as the devices.

To answer research question four, how well do the proof of concept implementations match
the requirement requirements created in research question two, the two solutions were individ-
ually evaluated by the requirements. The Unity solution was found to largely meet the criteria.
The AWS solution failed on some points, which is believed to be due to the minimal implemen-
tation of the solution.

Both solutions were found to be viable alternatives for building pervasive games. A simpler
cloud-based solution may perform better for creating e.g. a global Follow the Red Dot game,
while a game engine-based solution is more suited for applications that take advantage of the
graphical futures the engine has to offer.

37

References

[1] Tim Althoff, Ryen W White, and Eric Horvitz. “Influence of Pokémon Go on physical
activity: study and implications”. In: Journal of medical Internet research 18.12 (2016),
e315.

[2] A. Amies et al. Developing and Hosting Applications on the Cloud: Develop Hosting Applica
Cloud. IBM Press. Pearson Education, 2012. isbn: 9780133066852. url: https://books.
google.no/books?id=4gwIYbtTH5MC.

[3] Aras Pranckevičius. Releasing the Unity C# source code. 2018. url: https://blog.unity.
com/technology/releasing-the-unity-c-source-code.

[4] Kevin Ashton et al. “That ‘internet of things’ thing”. In: RFID journal 22.7 (2009), pp. 97–
114.

[5] AWS. AWS homepage. 2022. url: https://aws.amazon.com.

[6] AWS. AWS IoT Device SDK v2 for Python on GitHub. 2022. url: https://github.com/
aws/aws-iot-device-sdk-python-v2/.

[7] AWS. AWS IoT Device Shadow service. 2022. url: https://docs.aws.amazon.com/iot/
latest/developerguide/iot-device-shadows.html.

[8] AWS. How AWS IoT works. 2022. url: https : / /docs . aws . amazon . com/ iot / latest /
developerguide/aws-iot-how-it-works.html.

[9] AWS. Rules for AWS IoT. 2022. url: https : / / docs . aws . amazon . com / iot / latest /
developerguide/iot-rules.html.

[10] AWS. What is Amazon EC2? 2022. url: https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/concepts.html.

[11] AWS. What is AWS IoT? 2022. url: https : / / docs . aws . amazon . com / iot / latest /
developerguide/what-is-aws-iot.html.

[12] Ben Balter. Open source license usage on GitHub.com. 2015. url: https://github.blog/
2015-03-09-open-source-license-usage-on-github-com/ (visited on 11/2021).

[13] Magnus Bärnholt and Andreas Schatvet Lyngby. “An Internet-of-Things Software Frame-
work for Exergames”. MA thesis. NTNU, 2019.

[14] Arto Bendiken. The Unlicense. 2010. url: https ://spdx .org/ licenses/Unlicense .html
(visited on 11/2021).

[15] Steve Benford, Carsten Magerkurth, and Peter Ljungstrand. “Bridging the physical and
digital in pervasive gaming”. In: Communications of the ACM 48.3 (2005), pp. 54–57.

[16] Craig Chapple. Pokémon GO Catches $5 Billion in Lifetime Revenue in Five Years. url:
https://sensortower.com/blog/pokemon-go-five-billion-revenue (visited on 12/2021).

[17] Lianping Chen, Muhammad Ali Babar, and Bashar Nuseibeh. “Characterizing Architec-
turally Significant Requirements”. In: IEEE Software 30.2 (2013), pp. 38–45. doi: 10.1109/
MS.2012.174.

[18] Jorge Colazo and Yulin Fang. “Impact of license choice on Open Source Software de-
velopment activity”. In: Journal of the American Society for Information Science and
Technology 60.5 (2009), pp. 997–1011. doi: https://doi.org/10.1002/asi.21039. eprint:
https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/asi.21039. url: https://asistdl.
onlinelibrary.wiley.com/doi/abs/10.1002/asi.21039.

38

https://books.google.no/books?id=4gwIYbtTH5MC
https://books.google.no/books?id=4gwIYbtTH5MC
https://blog.unity.com/technology/releasing-the-unity-c-source-code
https://blog.unity.com/technology/releasing-the-unity-c-source-code
https://aws.amazon.com
https://github.com/aws/aws-iot-device-sdk-python-v2/
https://github.com/aws/aws-iot-device-sdk-python-v2/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://docs.aws.amazon.com/iot/latest/developerguide/aws-iot-how-it-works.html
https://docs.aws.amazon.com/iot/latest/developerguide/aws-iot-how-it-works.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
https://github.blog/2015-03-09-open-source-license-usage-on-github-com/
https://github.blog/2015-03-09-open-source-license-usage-on-github-com/
https://spdx.org/licenses/Unlicense.html
https://sensortower.com/blog/pokemon-go-five-billion-revenue
https://doi.org/10.1109/MS.2012.174
https://doi.org/10.1109/MS.2012.174
https://doi.org/https://doi.org/10.1002/asi.21039
https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/asi.21039
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/asi.21039
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/asi.21039

[19] Creative Commons. CC0 1.0 Universal. url: https://spdx.org/licenses/CC0-1.0.html
(visited on 11/2021).

[20] Curated by GitHub, Inc and 100+ contributors (https://github.com/github/choosealicense.com).
Choose an open source license. url: https ://choosealicense . com/ licenses/ (visited on
11/2021).

[21] Curated by GitHub, Inc and 200+ contributors (https://github.com/github/opensource.guide).
Open Source Guides. url: https://opensource.guide (visited on 11/2021).

[22] Dave Evan, Cisco. The Internet of Things - How the Next Evolution of the Internet Is
Changing Everything. 2011. url: https://www.cisco.com/c/dam/en_us/about/ac79/
docs/innov/IoT_IBSG_0411FINAL.pdf.

[23] Nadia Eghbal. Announcing Open Source Guides. 2017. url: https://github.blog/2017-02-
14-announcing-open-source-guides/ (visited on 12/2021).

[24] Espressif Systems. ESP8266 product page. 2022. url: https://www.espressif .com/en/
products/socs/esp8266.

[25] Mozilla Foundation. Mozilla Public License 2.0. 2012. url: https://spdx.org/licenses/
MPL-2.0.html (visited on 11/2021).

[26] The Apache Software Foundation. Apache License, Version 2.0. 2004. url: https://spdx.
org/licenses/Apache-2.0.html (visited on 11/2021).

[27] Free Software Foundation, Inc. GNU Affero General Public License v3.0 or later. 2007.
url: https://spdx.org/licenses/AGPL-3.0-or-later.html (visited on 11/2021).

[28] Free Software Foundation, Inc. GNU General Public License v3.0 or later. 2007. url:
https://spdx.org/licenses/GPL-3.0-or-later.html (visited on 11/2021).

[29] Free Software Foundation, Inc. GNU Lesser General Public License v3.0 or later. 2007.
url: https://spdx.org/licenses/LGPL-3.0-or-later.html (visited on 11/2021).

[30] Free Software Foundation, Inc. Various Licenses and Comments about Them. url: https:
//www.gnu.org/licenses/license-list.en.html#Unlicense (visited on 11/2021).

[31] Free Software Foundation, Inc. What is Copyleft? url: https://www.gnu.org/copyleft/
(visited on 11/2021).

[32] Free Software Foundation, Inc. Free Software Foundation. url: https ://www. fsf . org/
(visited on 11/2021).

[33] Free Software Foundation, Inc. Various Licenses and Comments about Them. url: https:
//www.gnu.org/licenses/license-list.html (visited on 11/2021).

[34] Free Software Foundation, Inc. What is Free Software? 2019. url: https://www.gnu.org/
philosophy/free-sw.html (visited on 11/2021).

[35] Free Software Foundation, Inc. Why Open Source Misses the Point of Free Software. url:
https : / / www . gnu . org / philosophy / open - source - misses - the - point . html (visited on
11/2021).

[36] Brian M. Gaff and Gregory J. Ploussios. “Open Source Software”. In: Computer 45.6
(2012), pp. 9–11. doi: 10.1109/MC.2012.213.

[37] GitHub, Inc. Search. 2021. url: https://web.archive.org/web/20211127002147/https:
//github.com/search.

[38] GitHub, Inc. Search. 2021. url: https://web.archive.org/web/20211119120759/https:
//github.com/search.

39

https://spdx.org/licenses/CC0-1.0.html
https://choosealicense.com/licenses/
https://opensource.guide
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://github.blog/2017-02-14-announcing-open-source-guides/
https://github.blog/2017-02-14-announcing-open-source-guides/
https://www.espressif.com/en/products/socs/esp8266
https://www.espressif.com/en/products/socs/esp8266
https://spdx.org/licenses/MPL-2.0.html
https://spdx.org/licenses/MPL-2.0.html
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/AGPL-3.0-or-later.html
https://spdx.org/licenses/GPL-3.0-or-later.html
https://spdx.org/licenses/LGPL-3.0-or-later.html
https://www.gnu.org/licenses/license-list.en.html#Unlicense
https://www.gnu.org/licenses/license-list.en.html#Unlicense
https://www.gnu.org/copyleft/
https://www.fsf.org/
https://www.gnu.org/licenses/license-list.html
https://www.gnu.org/licenses/license-list.html
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/open-source-misses-the-point.html
https://doi.org/10.1109/MC.2012.213
https://web.archive.org/web/20211127002147/https://github.com/search
https://web.archive.org/web/20211127002147/https://github.com/search
https://web.archive.org/web/20211119120759/https://github.com/search
https://web.archive.org/web/20211119120759/https://github.com/search

[39] Edward Glaessgen and David Stargel. “The Digital Twin Paradigm for Future NASA and
U.S. Air Force Vehicles”. In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference. doi: 10.2514/6.2012-1818. eprint: https://arc.aiaa.
org/doi/pdf/10.2514/6.2012-1818. url: https://arc.aiaa.org/doi/abs/10.2514/6.2012-
1818.

[40] Open Source Guides. Starting an Open Source Project. url: https://opensource.guide/
starting-a-project/ (visited on 12/2021).

[41] Open Source Guides. Your Code of Conduct. url: https://opensource.guide/code- of-
conduct/ (visited on 12/2021).

[42] Phil Haack. Choosing an Open Source License. 2013. url: https://github.blog/2013-07-
15-choosing-an-open-source-license/ (visited on 11/2021).

[43] HiLetgo. ESP8266 product page. 2022. url: http://www.hiletgo.com/ProductDetail/
1906570.html.

[44] Ian Sommerville. Software Engineering. 10th ed. Pearson Education Limited, 2016. isbn:
9781292096131.

[45] “IEEE Standard for Information technology—Telecommunications and information ex-
change between systems Local and metropolitan area networks—Specific requirements -
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Spec-
ifications”. In: IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012) (2016). doi:
10.1109/IEEESTD.2016.7786995.

[46] The Open Source Initiative. History of the OSI. url: https ://opensource .org/history
(visited on 11/2021).

[47] The Open Source Initiative. The Open Source Definition. 2007. url: https://opensource.
org/docs/osd (visited on 11/2021).

[48] The Open Source Initiative. The Open Source Initiative. url: https ://opensource .org
(visited on 11/2021).

[49] Intel. Choose the Right Communication Pattern for Your IoT Project. 2016. url: https:
//www.intel.com/content/www/us/en/developer/articles/technical/communication-
patterns-for-the-internet-of-things.html (visited on 05/2022).

[50] Jari Due Jessen and HH Lund. Evaluation and Understanding of Playware Technology-
Trials with Playful Balance Training. Technical University of Denmark, 2016.

[51] Petter Bakkan Johansen. “Iot-based pervasive game framework-a proof of concept case
study”. MA thesis. NTNU, 2018.

[52] Jeffrey Robert Kaufman. How to make sense of the Apache 2 patent license. 2018. url:
https://opensource.com/article/18/2/how-make-sense-apache-2-patent-license (visited
on 11/2021).

[53] E. I. Konstantinidis et al. “The interplay between IoT and serious games towards person-
alised healthcare”. In: 2017 9th International Conference on Virtual Worlds and Games
for Serious Applications (VS-Games). 2017, pp. 249–252. doi: 10.1109/VS-GAMES.2017.
8056609.

[54] Microsoft (15 contributors). Attributes (C#). 2022. url: https://learn.microsoft.com/en-
us/dotnet/csharp/programming-guide/concepts/attributes.

40

https://doi.org/10.2514/6.2012-1818
https://arc.aiaa.org/doi/pdf/10.2514/6.2012-1818
https://arc.aiaa.org/doi/pdf/10.2514/6.2012-1818
https://arc.aiaa.org/doi/abs/10.2514/6.2012-1818
https://arc.aiaa.org/doi/abs/10.2514/6.2012-1818
https://opensource.guide/starting-a-project/
https://opensource.guide/starting-a-project/
https://opensource.guide/code-of-conduct/
https://opensource.guide/code-of-conduct/
https://github.blog/2013-07-15-choosing-an-open-source-license/
https://github.blog/2013-07-15-choosing-an-open-source-license/
http://www.hiletgo.com/ProductDetail/1906570.html
http://www.hiletgo.com/ProductDetail/1906570.html
https://doi.org/10.1109/IEEESTD.2016.7786995
https://opensource.org/history
https://opensource.org/docs/osd
https://opensource.org/docs/osd
https://opensource.org
https://www.intel.com/content/www/us/en/developer/articles/technical/communication-patterns-for-the-internet-of-things.html
https://www.intel.com/content/www/us/en/developer/articles/technical/communication-patterns-for-the-internet-of-things.html
https://www.intel.com/content/www/us/en/developer/articles/technical/communication-patterns-for-the-internet-of-things.html
https://opensource.com/article/18/2/how-make-sense-apache-2-patent-license
https://doi.org/10.1109/VS-GAMES.2017.8056609
https://doi.org/10.1109/VS-GAMES.2017.8056609
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/attributes
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/attributes

[55] Ahmadreza Montazerolghaem, Mohammad Hossein Yaghmaee, and Alberto Leon-Garcia.
“Green Cloud Multimedia Networking: NFV/SDN Based Energy-Efficient Resource Al-
location”. In: IEEE Transactions on Green Communications and Networking 4.3 (2020),
pp. 873–889. doi: 10.1109/TGCN.2020.2982821.

[56] News 10, A Gray Media Group, Inc. Station. Shelter dogs benefit from Pokemon Go craze;
Gamers are helping walk dogs. url: https://www.wilx.com/content/news/Pokemon-Go-
craze-benefits-shelter-dogs-386795261.html (visited on 12/2021).

[57] OASIS. MQTT Version 5.0. 2019. url: https://docs.oasis-open.org/mqtt/mqtt/v5.0/
mqtt-v5.0.html.

[58] Briony J Oates. Researching information systems and computing. Sage, 2005.

[59] Yoonsin Oh and Stephen Yang. “Defining exergames & exergaming”. In: Proceedings of
meaningful play 2010 (2010), pp. 21–23.

[60] Stack Overflow. Developer Survey Results 2018. 2018. url: https://web.archive.org/web/
20190530142357/https :// insights . stackoverflow.com/survey/2018/#work-_- version-
control (visited on 12/2021).

[61] Raspberry Pi Foundation. Raspberry Pi homepage. 2022. url: https://www.raspberrypi.
com/.

[62] Nina Skjæret et al. “Exercise and rehabilitation delivered through exergames in older
adults: An integrative review of technologies, safety and efficacy”. en. In: Int. J. Med.
Inform. 85.1 (Jan. 2016), pp. 1–16.

[63] Sruti Subramanian et al. “ExerTiles: A Tangible Interactive Physiotherapy Toolkit for
Balance Training with Older Adults”. In: Proceedings of the 32nd Australian Conference
on Human-Computer Interaction. OzCHI ’20. Sydney, NSW, Australia: Association for
Computing Machinery, 2021, pp. 233–244. isbn: 9781450389754. doi: 10.1145/3441000.
3441043. url: https://doi.org/10.1145/3441000.3441043.

[64] Tarja Susi, Mikael Johannesson, and Per Backlund. Serious Games: An Overview. IKI
Technical Reports. 2007. url: http://urn.kb.se/resolve?urn%20=%20urn:nbn:se:his:diva-
1279.

[65] Fei Tao et al. “Digital twin-driven product design, manufacturing and service with big
data”. In: The International Journal of Advanced Manufacturing Technology 94.9 (Feb.
2018), pp. 3563–3576. issn: 1433-3015. doi: 10 .1007/s00170- 017- 0233- 1. url: https :
//doi.org/10.1007/s00170-017-0233-1.

[66] R.N. Taylor, N. Medvidovic, and E. Dashofy. Software Architecture: Foundations, Theory,
and Practice. Wiley, 2009. isbn: 9780470167748.

[67] Massachusetts Institute of Technology. MIT License. 1980. url: https://spdx.org/licenses/
MIT.html (visited on 11/2021).

[68] The Pi Hut. Raspberry Pi 4 Model B product page. 2022. url: https://thepihut.com/
products/raspberry-pi-4-model-b.

[69] International Telecommunication Union. Overview of the Internet of things. 2012. url:
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=y.2060.

[70] Unity Technologies. Unity. 2022. url: https://unity.com.

[71] Unity Technologies. Unity C# reference source code on GitHub. url: https://github.com/
Unity-Technologies/UnityCsReference.

41

https://doi.org/10.1109/TGCN.2020.2982821
https://www.wilx.com/content/news/Pokemon-Go-craze-benefits-shelter-dogs-386795261.html
https://www.wilx.com/content/news/Pokemon-Go-craze-benefits-shelter-dogs-386795261.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://web.archive.org/web/20190530142357/https://insights.stackoverflow.com/survey/2018/#work-_-version-control
https://web.archive.org/web/20190530142357/https://insights.stackoverflow.com/survey/2018/#work-_-version-control
https://web.archive.org/web/20190530142357/https://insights.stackoverflow.com/survey/2018/#work-_-version-control
https://www.raspberrypi.com/
https://www.raspberrypi.com/
https://doi.org/10.1145/3441000.3441043
https://doi.org/10.1145/3441000.3441043
https://doi.org/10.1145/3441000.3441043
http://urn.kb.se/resolve?urn%20=%20urn:nbn:se:his:diva-1279
http://urn.kb.se/resolve?urn%20=%20urn:nbn:se:his:diva-1279
https://doi.org/10.1007/s00170-017-0233-1
https://doi.org/10.1007/s00170-017-0233-1
https://doi.org/10.1007/s00170-017-0233-1
https://spdx.org/licenses/MIT.html
https://spdx.org/licenses/MIT.html
https://thepihut.com/products/raspberry-pi-4-model-b
https://thepihut.com/products/raspberry-pi-4-model-b
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=y.2060
https://unity.com
https://github.com/Unity-Technologies/UnityCsReference
https://github.com/Unity-Technologies/UnityCsReference

[72] Vijay Vaishnavi and William Kuechler. “Design research in information systems”. In:
(2004).

[73] Jing Wang. “Survival factors for Free Open Source Software projects: A multi-stage per-
spective”. In: European Management Journal 30.4 (2012), pp. 352–371. issn: 0263-2373.
doi: https://doi.org/10.1016/j.emj.2012.03.001. url: https://www.sciencedirect.com/
science/article/pii/S0263237312000199.

[74] Josef Wiemeyer and Annika Kliem. “Serious games in prevention and rehabilitation—a
new panacea for elderly people?” In: European Review of Aging and Physical Activity 9.1
(2012), pp. 41–50. doi: 10.1007/s11556-011-0093-x.

[75] Wikipedia contributors. ESP8266 — Wikipedia, The Free Encyclopedia. 2022. url: https:
//en.wikipedia.org/wiki/ESP8266#SDKs.

[76] Felix Wortmann and Kristina Flüchter. “Internet of things”. In: Business & Information
Systems Engineering 57.3 (2015), pp. 221–224.

42

https://doi.org/https://doi.org/10.1016/j.emj.2012.03.001
https://www.sciencedirect.com/science/article/pii/S0263237312000199
https://www.sciencedirect.com/science/article/pii/S0263237312000199
https://doi.org/10.1007/s11556-011-0093-x
https://en.wikipedia.org/wiki/ESP8266#SDKs
https://en.wikipedia.org/wiki/ESP8266#SDKs

	Abstract
	Preface
	Table of contents
	Introduction
	Motivations
	Related work
	Objectives
	Contributions
	Limitations
	Outline

	Background
	Exergames
	Pervasive games

	Architecture and design patterns
	Broker
	Publish and Subscribe
	Events / Observer

	Internet of Things
	The IoT technology stack
	Wi-Fi
	MQTT
	ESP8266
	Raspberry Pi

	Digital Twins
	Cloud computing
	AWS IoT

	UNITY-Things
	The current technology stack

	Free and open source software
	FOSS in practice today
	Readme
	Contributing guidelines
	Code of conduct
	Coding conventions
	License
	License alternatives

	Research Methodology
	Literature Review
	Conceptual Framework
	Design and Creation
	Research Questions
	RQ1: What architectural challenges exist in relation to pervasive IoT games?
	RQ2: What are the requirements for an IoT-based pervasive game architecture and framework?
	RQ3: Which architectures and technologies may be suited to implement an IoT game framework?
	RQ4: How well do the proof of concept implementations match the requirements found in RQ2?

	Architectural Requirements
	Stakeholders
	End users
	Framework developers

	Architecturally Significant Requirements
	Functional and non-functional requirements
	Functionality
	Transparent linking of digital and physical objects
	Centralised game logic
	Robust communication

	Quality Attributes
	Usability
	Modularity
	Interoperability
	Performance

	Evaluation criteria

	Unity Implementation
	Unity
	Manager
	Device
	Device Component
	Inspector
	Events

	Message Protocol
	Messages in Unity
	Follow the Red Dot
	The tiles
	Game logic

	AWS Implementation
	Device
	Circuit
	Logic
	Shadows
	Create
	Update

	Server
	EC2
	Game logic

	Analysis
	Evaluation criteria
	Reduce implementation cost
	Integration
	Customisation
	Centralised game logic
	Addressability
	Distributed & local use
	Interoperability
	Scalability
	Connecting new devices
	Free and open source

	Summary

	Discussion
	RQ1: What architectural challenges exist in relation to pervasive IoT games?
	RQ2: What are the requirements for an IoT-based pervasive game architecture and framework?
	RQ3: Which architectures and technologies may be suited to implement an IoT game framework?
	RQ4: How well do the proof of concept implementations match the requirements found in RQ2?

	Conclusion
	References

