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Abstract 

Data centres (DCs) are energy-intensive facilities that convert most of their energy use into 

waste heat. Given the rapidly increasing energy and environmental impacts of DCs, and the need to 

optimize regional energy structures, there is an increasing effort to recover DC waste heat for district 

heating (DH) systems. However, previous research mainly focused on exploring the possibilities and 

proposing technical solutions for capturing DC waste heat for DH systems. They rarely investigated 

solutions on optimal control of the DH system after recovering DC waste heat, particularly for a DC 

waste heat-based heat prosumer with thermal energy storage (TES). Therefore, this study applied a 

model predictive control (MPC) scheme for a university heat prosumer with DC waste heat and water 

tank TES by simulation. In the framework, the objective function minimized the overall energy cost 

considering the dynamic heating and electricity prices simultaneously, and the incorporated model 

described system dynamics including DC waste heat recovery units, TES, and campus DH system. 

The MPC framework was demonstrated to be more effective than a traditional rule-based control 

approach in terms of 1) providing more stable chilled water for the DC cooling system and 2) cutting 

monthly energy costs by up to 3.2%.  

Keywords: district heating system, distributed heat source, optimal control, economic boundary, 

energy cost.  
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Nomenclature 

COP Coefficient of performance 

CP Circulator pump 

DC  Data centre 

DH District heating 

DHS Distributed heat source 

EDC Energy demand component 

HE Heat exchanger 

HP Heat pump 

IT Information technology 

LDC Load demand component 

MAE Mean absolute error 

MAPE Mean absolute percentage error 

MPC Model predictive control 

MS Main substation 

NLP Nonlinear programming  

PI Proportional-integral  

RBC Rule-based control  

RMSE Root mean square error 

TES Thermal energy storage 

WCC Weather compensation controller 

WTTES Water tank thermal energy storage 

1. Introduction 

District heating (DH) systems, which satisfy buildings’ heat demand in an energy-efficient 

and environment-friendly way, has been globally used for more than a century. Nowadays, the total 

number of DH systems has been estimated to be around eighty thousand all overall the world, thereof 

about six thousand systems in Europe [1, 2]. However, with the transition from current energy 

systems to future sustainable energy solutions, the DH system, as an essential part of the energy 

systems, must undergo a generational transition to maintain its competitiveness compared with 
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alternative heating technologies [3]. As a result, the current second and third-generation DH systems 

are evolving towards the fourth and fifth-generation DH systems. Integrating renewables and waste 

heat into the DH system is one significant characteristic of the future DH system [3, 4]. Specifically, 

the renewables and waste heat can be integrated into the heat user side as distributed heat sources 

(DHSs), and these heat users with DHSs are known as heat prosumers because of their dual roles as 

producers and consumers [5]. In the future, heat prosumers will become critical participants in DH 

systems due to the increasing integration of renewables and waste heat [6]. In general, a large number 

of renewables and waste heat, such as solar thermal energy, geothermal energy, data centre (DC) 

waste heat and industrial waste heat, are available for heating purposes in most parts of the world. 

Among these, the waste heat from a DC is a promising heat source because of its evenly distributed 

load profile and waste heat generation [7, 8]. In addition, many DCs are constructed close to an 

existing DH network, which makes the DC waste heat is easy to access for the DH network.  

The integration of DC waste heat with the DH system is beneficial for the energy efficiency 

improvement of DCs as well. The rapid growth of the need for data processing, storage, and digital 

telecommunications has led to a dramatic increase in the DC industry [9]. A DC houses information 

technology (IT) equipment for data processing and storage, as well as communications networking. 

Moreover, a DC typically includes environmental control equipment to ensure the proper working 

environment of IT equipment. These two major energy end-user equipment results in a DC an energy-

intensive facility. A DC can be more than 40 times as energy-intensive as a conventional office 

building [10]. Therefore, with the concerns of energy and climate crisis, exploring the techniques for 

energy efficiency improvements of DCs is imperative[9]. Capturing and reusing the DC waste heat 

for a DH system is an effective way to improve the DC’s energy efficiency, especially in Nordic 

countries. Firstly, the cold climate in Nordic countries is ideal for DCs, since it provides much-needed 

cooling energy for DCs. Meanwhile, these countries have a significant demand for heat [7]. Secondly, 

a large portion of the electricity used in DCs is converted into waste heat. For a typical DC, 

approximately half of the electricity used ultimately becomes waste heat [11, 12].  

Due to the merits explained above, there is a growing effort to integrate DCs’ waste heat into 

DH systems and consequently contribute to the sustainability of the energy systems. Li et al. 

evaluated the financial benefit of recovering DC waste heat for a DH system by a CO2 heat pump 

(HP). Results showed that the DC waste heat heating system could reduce the annual energy cost by 

23-75% compared with other common heating methods [13]. Wahlroos et al. analysed DC waste heat 
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utilization for a DH system. Simulated results showed that with high shares of DC waste heat in the 

investigated DH system, the annual operational cost savings were 0.6–7.3% [7]. Hiltunen et al. 

evaluated the possibility of utilizing DC waste heat for the DH system in the city of Espoo, Finland 

to realize the decarbonisation goal in the near future. Simulation results showed that the integration 

of DC waste heat with the DH system enabled CO2 emissions reduction yet prevented the increase of 

production costs [14]. Davies et al. investigated the potential of utilizing DC waste heat for the DH 

system in London and calculated the possible savings of waste heat reuse in a DH system. Results 

showed that nearly £ 1 million in energy cost was saved per year for the case of a 3.5 MW DC [15]. 

He et al. proposed a distributed cooling solution to capture the waste heat from a DC for a DH system, 

and the proposed method was implemented in a DC in Hohhot, China. Results showed that the 

proposed waste heat utilization technology saved around 18 thousand tons of standard coal each year 

compared to the coal-fired boiler heating system [16]. Furthermore, Wahlroos et al. analysed the 

potential for reusing DC waste heat in DH systems, and presented an overview of several successful 

DC waste heat utilization projects, especially in Nordic countries [17].   

These previous studies have demonstrated the enormous economic benefits of integrating DC 

waste heat with the DH network. However, these studies are mainly subject to exploring the 

possibilities and proposing technical solutions for capturing DC waste heat for DH systems. The 

research focusing on the optimal control of the DH system after integrating DC waste heat is hardly 

found, especially for the optimal control of a DC waste heat-based heat prosumer. An optimal control 

strategy may fully unlock the flexibilities of the system and further improve the economic 

performance of the DH system. However, the optimal control of a DC waste heat-based heat prosumer 

is challenging, and the difficulties come from the following aspects: 1) a complex economic boundary 

involving not only dynamic heating prices but also electricity prices due to the electricity use of DC 

waste heat recovery units, 2) multi-level technical operation constraints from both the DH system and 

the cooling system of the DC, and 3) numerous manipulated variables need to be optimized 

originating from the multi-components, such as heat substation, heat users, or DC. Moreover, 

introducing thermal energy storage (TES), which is widely used to perform peak load shaving in DH 

systems, to the DC waste heat-based heat prosumer would further increase the complexity of the 

system as well as the complexity of the optimal control.  

Model predictive control (MPC), which can employ an economic-related objective function 

for real-time control, is an ideal optimal control strategy to realize the maximized possible economic 
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performance of the system while satisfying different technical operational constraints [18, 19]. In 

addition, all the manipulated variables can be incorporated into one control vector and the optimal 

control vector can be made based on the whole system. An MPC scheme uses a dynamic system 

model to predict the future behaviour of the system and generates an optimal control vector that 

minimizes an objective function over the prediction horizon in the presence of disturbances and 

technical operational constraints. The dynamic energy prices can be incorporated into the MPC 

controller as well. Therefore, for a DC waste heat-based heat prosumer with TES whose energy bill 

involves dynamic heating and electricity prices, the MPC can be used to obtain its best possible 

economic performance while satisfying the required technical operational constraints. However, 

building an MPC scheme to control a DH system is a complex task, and this is why most previous 

MPC research was dedicated to the HVAC systems of single buildings [20]. The implementation of 

MPC at the district level, i.e. the control of the energy supplied to a cluster of buildings has not yet 

been fully explored [21]. Nevertheless, as pointed out in [22], an MPC scheme is a promising optimal 

control strategy to meet the requirements of robustness, efficiency and scalability for the controller 

of a DH network. Despite the inherent difficulties, several researchers still proved the feasibility of 

the MPC application in DH systems. Verrilli et al. designed an MPC controller to optimize the 

operation of a DH system that integrates TES and uses a combined heat and power (CHP) plant as a 

heat source. The designed MPC focused on reducing the operating and maintenance cost of the CHP 

plant by scheduling boilers, TES units, and flexible loads. The proposed approach was tested using 

the data obtained from a DH system in Finland by both simulation and experiment methods, and the 

results showed the cost benefits of the approach [23]. Moreover, Saletti et al. developed an MPC 

controller to optimize the management and heat distribution of the CHP in a DH system by utilizing 

the thermal capacity of the connected buildings as TES. The approach was tested on a DH system 

located in central Sweden, and one week’s simulation results demonstrated the effectiveness of the 

MPC with a peak load shaving of 16% and a mass flow rate reduction of 23% [24]. Furthermore, 

Hermansen et al. proposed an MPC strategy for a heat booster substation in an ultra-low temperature 

DH system to minimize the operation costs of the heat pump, which was used to charge the TES, by 

optimizing the charging schedule of the TES. The proposed MPC strategy was successfully 

implemented in a real DH system in Copenhagen to verify the control strategy [25]. Lyons et al. 

proposed an MPC approach with reduced-order models [26]. These reduced-order models were 

tractable even for centralised MPC formulations with large numbers of buildings. The approach was 

tested by a case study of 95 dwellings connected to a single heat source. Aoun et al. studied a Mixed 
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Integer Linear Programming MPC strategy for the buildings connected to DH systems [27]. The MPC 

strategy exploited the thermal inertia of buildings for short-term TES. Numerical simulation showed 

that, compared to conventional weather-compensation control, the MPC proved to be cost-efficient, 

while preserving a decent indoor thermal comfort level. Leitner et al. applied MPC to operate electric 

heaters for low-temperature DH systems [28]. The method was tested on a system model with model 

components of a water tank TES, a heat exchanger and pipelines. Simulation results showed that the 

MPC reduced peak heat and electricity demands compared with the reference controller. However, 

the limited literature shows that MPC is commonly used to optimize the operation of a DH system 

with a single heat production plant, like a CHP plant. Research on the DH system with multiple heat 

sources, especially on the DH system integrated with DC waste heat and TES, is hard to find. The 

challenge is that the DH systems with multiple heat sources are much more complex than the DH 

systems with a single heat source, which makes the already complex modelling and control design 

method of the MPC schemes even more complicated.    

To overcome the above limitations and fill the knowledge gap, this study aimed to use an 

MPC scheme to realize the optimal control of the DC waste heat-based heat prosumer with TES. An 

MPC scheme that employed an economic-related objective function was proposed, and both the 

economic boundary and the technical operational constraints were formulated for this MPC scheme. 

The economic boundary was proposed by considering the heating and electricity pricing mechanism 

in Nordic countries simultaneously, and the technical operational constraints were defined by using 

the real measured data of the case system. The proposed MPC scheme was tested by simulation on a 

campus DH system in Norway, which was a DC waste heat-based heat prosumer. The case system 

was monitored by the university energy management platform, and extensive operational data were 

available to aid the study. The proposed MPC scheme together with a conventional rule-based control 

(RBC) strategy was evaluated in terms of DC performance, local DH system performance, and the 

overall performance of heat prosumer. The novelty of this study is summarized as the following. 

Firstly, this research aimed to explore an optimal control strategy for the DC waste heat-based heat 

prosumer with TES, which is a practical yet rarely addressed problem. Secondly, an MPC scheme 

was used to maximize the economic performance of a DH system by fully exploring the flexibilities 

of the system and thereby it may enrich the research on the implementation of MPC at a district level, 

especially for the DH systems with multiple heat sources. Thirdly, the dynamic pricing schemes of 

heating and electricity were considered simultaneously to formulate the economic boundary, which 
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may contribute to the research on the energy system coupling thermal and electrical networks. Finally, 

real measured operational data was used to define the technical operational constraints, which may 

supplement the reference values provided in standards and reveal the practical operation of the case 

system.  

This article is developed from our previous studies presented in [6, 29, 30]. As primary 

research, [6, 29, 30] has been focusing on modelling and system design. This paper adopts the system 

models and the selected system configuration from [6, 29, 30], while further solving the optimal 

operation and control problems. The remainder of this article is organised as follows. Section 2 

introduces a typical DC waste heat-based heat prosumer with short-term TES, the developed method 

of economic boundary, the modelling method of the system, and the formulation method for MPC. 

Section 3 introduces the case study and provides information on simulation settings and research 

scenarios. Section 4 presents the model validation and the simulation results. Finally, Section 5 

concludes this study. 

2. Method 

This section first introduces a typical DC waste heat-based heat prosumer with short-term 

TES and then elaborates on the economic boundary condition and the system modelling method. 

Finally, the formulation of MPC is illustrated. 

2.1. Typical data centre waste heat-based heat prosumer with short-term thermal energy 

storage  

Fig. 1 illustrates a typical DC waste heat-based heat prosumer with short-term TES. A water 

tank thermal energy storage (WTTES) was chosen as the short-term TES in this study, because it is 

easily implemented and economically reasonable for DH systems [6, 31]. A main substation (MS) is 

usually used to connect the city DH network with the distribution network of heat prosumer and to 

physically separate the flows so that the local DH system of heat prosumer can be managed 

independently from its city DH network. There are two heat exchangers (HEs) in the MS, HE1 is 

used to charge the WTTES and HE2 is used to supply heat from the city DH network to the heat 

prosumer’s local DH network. An HP was used to cool down the DC by utilizing the HP evaporator 

and to harvest the DC waste heat for the heat prosumer’s local DH network by utilizing the HP 

condenser, as shown in Fig. 1. There are usually two common connection ways between the DC and 



8 

the DH systems: the return to supply (R2S) and the return to return (R2R) connection. The R2S 

connection implies that water is extracted from the return pipe, heated to a proper temperature, and 

then fed into the supply pipe of the DH system. The R2R connection implies that water is extracted 

from the return pipe and heated to any temperature, because it already has a higher temperature than 

the return water of the DH system, and fed into the return pipe [9, 32]. In this study, the R2R 

connection was chosen, because it is preferable for low-temperature heat sources and no extra heat 

sources are required to raise the temperature of water delivered into the DH system [4, 9]. Finally, a 

cluster of buildings is the heat user, and a circulator pump (CP) is used to circulate the hot water for 

the heat prosumer’s local DH network.   

 

Fig. 1. Typical data centre waste heat-based heat prosumer with short-term thermal energy storage 

2.2. Economic boundary 

As presented in Fig. 1, the system energy bill comes from two parts: 1) heating bill paid for 

the DH use and 2) electricity bill paid for the electricity use. The DH company provides heat for the 

HE1 and HE2 in the MS, and the electricity company provides electricity to power the HP of DC and 

the CP. Therefore, this section illustrates the economic boundary by considering the pricing 
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mechanism in Nordic countries for the heating price model and electricity price model 

simultaneously.  

2.2.1 Heating price model 

A generalized heating price model has been discussed in detail and proposed in [30]. This 

generalized heating price model only considered the energy demand component (EDC) and the load 

demand component (LDC), because the EDC and the LDC are the most commonly used components 

in the existing heating price models. The EDC is used to cover the DH companies’ fuel costs, and it 

is charged based on the total heat use of heat users. The LDC is typically used to compensate DH 

companies' costs of maintaining a particular level of capacity for peak load, as well as new facility 

investment costs, depreciation, and other expenses, and it is charged based on the peak load of the 

heat users [33]. This study used the same generalized heating price model proposed in [30], which 

only considered the EDC and the LDC as shown in Equations (1), (2), and (3).  

 Chea = Cedc + Cldc (1) 

 Cedc= ∫ EP(t)

tf

t0

∙Q̇(t)∙dt (2) 

 Cldc=LP∙Q̇
p
 (3) 

where Chea is the total heating cost. Cedc is the EDC and calculated by Equation (2). Cldc is the LDC 

and calculated by Equation (3). EP(t) and Q̇(t) are the EDC heating price and the heat rate supplied 

to the heat user at time t, respectively. LP and Q̇
p
 are the LDC heating price and the peak heat rate. 

In this study, the units of EP(t) and LP were NOK1/kWh and NOK/kW, respectively.  

2.2.2 Electricity price model 

Although electricity contracts vary from country to country, a generalized electricity price 

model was proposed in this study. This generalized electricity price model was based on the 

investigation of electricity contracts in Norway. In Norway, the end-users have to pay for two parts 

when using electricity: 1) power price for the electricity bought from a power supplier and 2) grid 

rent to the local grid distribution company for transporting the power. Thereof, the end-users are free 

to choose any power supplier within the country. The grid company, however, cannot be chosen by 

 
1 The currency rate between NOK and EUR can be found from https://www.xe.com/, in this study 1 EUR=10.0 NOK. 
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the end-users. There is only one gird distribution company responsible for a certain geographical area 

[34, 35].  

Regarding the power price paid for a power supplier, it is determined by the different contracts 

provided by the power supplier. It is impossible to distinguish between different power suppliers. 

What differentiates power suppliers from each other is the contracts they offer. In general, end users 

can choose between three main types of contracts: fixed-price, variable price and spot price. 

According to Statistics Norway, the spot-price contract is the most common and widely used contract 

type in Norway [36]. Therefore, the spot-price contract was used in this study regarding the power 

price paid for a power supplier. In a spot-price contract, the price follows the market price determined 

by Nord Pool [37]. A mark-up must also be paid by the customer [38]. The price for the spot-price 

contract is calculated by Equations (4), (5), and (6).    

 Cele_pow=Cspo+Csur+Cmfi (4) 

 Cspo= ∫ PPspo(t)∙Ė(t)∙dt

tf

t0

 (5) 

 Csur= ∫ PPsur∙Ė(t)∙dt

tf

t0

 (6) 

where Cele_pow is the power price paid for a power supplier. Cspo is the spot price-related fee and 

calculated by Equation (5). Csur is the surcharge-related fee and calculated by Equation (6). Cmfi is 

the monthly fixed fee. PPspo(t) is the spot price at time 𝑡 and obtained from Nord Pool [37]. PPsur is 

the surcharge including electricity certificate, and Ė(t) is the electricity use at time t. In this study, 

both the units of PPspo(t) and PPsur were NOK/kWh.   

Regarding the grid rent paid for the grid distribution company, it is decided by the local grid 

distribution company and is strictly regulated by the Norwegian Water Resources and Energy 

Directorate (NVE). For a big business end-user, the grid rent consists of an energy link fee, a power 

link fee and an annual fixed link fee [39]. The grid rent price is calculated by Equations (7), (8), and 

(9). 

 Cele_gri=Cene+Cpow+Cafi (7) 

 Cene=Cpow ∫ GPene∙Ė(t)∙dt

tf

t0

 (8) 
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 Cpow=GPpow∙Ėp (9) 

where Cele_gri is the grid rent paid for the local grid distribution company. Cene is the energy link fee 

and calculated by Equation (8). Cpow is the power link fee and calculated by Equation (9). Cafi is the 

annual fixed fee. GPene is the energy link fee per energy unit, and Ė(t) is the electricity use at time t. 

GPpow is the power extraction price per power unit, and Ėp is the highest hourly power output. In this 

study, the units of GPene and GPpow were NOK/kWh and NOK/kW, respectively.  

Finally, a generalized electricity price model was proposed in this study based on the above 

explanation, and it is calculated as Equation (10).  

 Cele=Cele_pow+Cele_gri (10) 

where Cele is the total electricity cost, Cele_pow is the power price paid for a power supplier as shown 

in Equation (4), and Cele_gri is the grid rent paid for the local grid distribution company as shown in 

Equation (7).  

2.3. System modelling  

MPC inherently requires an appropriate dynamic system model, which is used to predict the 

future behaviour of the system and calculate the optimal manipulated variable trajectory. In this study, 

the system dynamic model was developed using the Modelica language, and it was based on the 

energy and mass flow exchanging connection between the individual component model. As shown 

in Fig. 1, a typical DC waste heat-based heat prosumer with WTTES includes the individual 

component of the WTTES, DC, buildings, CP, and pipelines. The energy and mass flow exchanging 

between these components and the modelling method for the individual component of the WTTES, 

buildings and pipelines are briefly presented in Sections Appendix A- Appendix D, yet the more 

detailed information is elaborated in the research [30]. This section focuses on the modelling method 

for the individual component of the DC and the CP.  

2.3.1 Model for data centre 

An HP was used to cool down the DC by utilizing the HP evaporator and to harvest the DC 

waste heat for the DH system by utilizing the HP condenser. Fig. 2 illustrates the basic components 

of the HP. There are mainly two types of HP models in existing studies: 1) theoretical model and 2) 

empirical model [40-43]. Thereof, the empirical model is usually developed based on measured data 
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rather than simulating the details of HP, and it is widely used for energy performance assessment of 

an HP [41, 43]. Therefore, an empirical HP model was developed in this study, because there were 

extensive available measured data for the case system and the developed HP model was mainly used 

for the energy use prediction.  

 

Fig. 2. The heat pump used to capture waste heat from the data centre 

Except for the inherent performance characteristics of the HP, the operational conditions are 

the main factors that influence the energy performance of an HP [44]. The operational conditions 

include the inlet and outlet water temperature and the water mass flow rate on the evaporator and 

condenser sides of an HP [45]. Therefore, the HP compressor power may be expressed by a simple 

function involving the above mentioned operational conditions, as shown in Equation (11): 

 ÊHP=a∙Tin_eva+b∙Tout_eva+c∙Tin_con+d∙Tout_con+e∙ṁeva+f∙ṁcon (11) 

where ÊHP is the simulated compressor power. Tin and Tout are the inlet and outlet water temperatures. 

ṁ is the water mass flow rate. Subscripts eva and con are the evaporator and the condenser. All the 

above-introduced variables have been marked in Fig. 2. Moreover, a , b , c , d , e , and f  are the 

parameters needed to be identified. In this study, the HP compressor power as well as operational 

conditions, including the inlet and outlet water temperature and the water mass flow rate on the 

evaporator and condenser sides of the HP, were measured every 10 minutes. These measured data 
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were used to identify the parameters (a, b, c, d, e, and f) by solving the following optimization 

problem.  

Minimize: 

 ∑ (ÊHP,k-EHP,k)
2

k=1

 
(12) 

subject to:  

 zL≤zk≤zU (13) 

where ÊHP,k is the simulated compressor power as described by Equation (11). EHP,k is the measured 

compressor power. The vector zk is the set of the parameters needed to be identified. zL and zU are 

the lower and the upper limits for these parameters. Finally, the Evolutionary engine provided by the 

Excel Solver was used in this study to solve the optimization problem and obtain the parameter values.  

2.3.2 Model for circulator pump  

A CP was used to circulate the warm water for the heat prosumer’s local DH network and 

overcome pipeline hydraulic resistance and local pipeline accessory resistance. A variable-speed 

circulator pump was used in this study because it has the potential to significantly reduce pumping 

energy use [46]. The total pumping power required to circulate the water in a distribution system can 

be calculated by using Equation (14) [2] as: 

 PCP=
∆P∙�̇�

η
CP

 (14) 

where V̇ is the volume flow rate of water, and η
CP

 is the total conversion efficiency for the CP that 

was obtained from CP manufacturers and was 0.7 at the design condition in this study [47]. ∆P is the 

total pressure drop of the DH pipeline network and can be calculated by Equation (15) [2] as: 

 ∆P=S∙ṁ
2
 (15) 

where ṁ  is the water mass flow rate. S  is the resistance friction coefficient of the DH pipeline 

network, which is related to the characteristics of the pipeline. Due to the lack of distribution network 

characteristics and measured data, one assumption was made in this study: the water flow rate was 

controlled by the variable-speed CP and the valves of the pipelines had no actions. Therefore, the 
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resistance friction coefficient S was a constant value and can be deduced from the design condition 

of the DH system. Meanwhile, the law of similarity of CP was used to obtain the pumping power.  

2.4. Formulation of model predictive control  

In this study, the MPC scheme employed an economic-related objective function to maximize 

the heat prosumer’s economic performance. The heating and electricity price models described in 

Section 2.2 were involved in this objective function as shown in Equation (16). However, the monthly 

fixed fee involved in the power price and the annual fixed fee involved in grid rent were not included, 

because they are not related to real-time electricity use. In addition, the power link fee involved in 

the grid rent of electricity price model was not considered as well. This is because only the electricity 

use for the HP and CP was involved in the optimization problem, the electricity use for other 

equipment, lighting, etc. was not involved, but the power link fee is charged based on the highest 

hourly total electricity use of the whole energy system. Therefore, at each time step, the MPC 

controller solves the following optimization problem: 

Minimize: 

 ∫ EP(t)∙Q̇
MS

(t)∙dt

H

0

+LP∙Q̇
MS_p

+ ∫ (PPspo(t)+PPsur+GPene)∙(ĖHP(t)+ĖCP(t))

H

0

∙dt (16) 

subject to: 

 Q̇
MS

(t)≤Q̇
MS_p

 (17) 

 F(t,z(t))=0 (18) 

 F0(t0,z(t0))=0 (19) 

 zL≤z(t)≤zU (20) 

where H is the predictive horizon, which was 12 hours in this study. Q̇
MS

(t) is the heat flow rate of 

MS at time t. Q̇
MS_p

 is the peak heat rate of MS, and it was a parameter to be optimized in this study. 

The peak heat rate was defined as the maximum hourly heat use during one month in this study 

according to the research [48]. EP(t), LP, PPspo(t), PPsur and GPene have been explained in Section 

2.2. Moreover, ĖHP(t) and ĖCP(t) are the electricity use of the HP and CP at time t, respectively. The 

equality constraints of Equation (18) and Equation (19) are the system dynamics as explained in 

Section 2.3 and the initial condition of the system, respectively. Finally, Equation (20) defines the 

inequality constraint including the technical operational constraints. z∊ Rnz  is the set of time-
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dependent variables, which includes the manipulated variables u∊ Rnu  to be optimized, the 

differential variables x∊ Rnx , and the algebraic variables y∊ Rny . zL∊ [-∞,∞]
nz  and zU∊ [-∞,∞]

nz  are 

the lower and upper limits, respectively.  

The above-formulated optimization problem was solved on the optimization platform 

JModelica.org [49]. The optimization algorithm used in JModelica.org is explained as follows. The 

formulated infinite-dimensional optimization problem was discretized into a finite-dimensional 

nonlinear programming (NLP) problem by using a direct collocation method [50, 51]. Afterwards, 

the discretized finite-dimensional NLP problem was solved using the NLP solver, Interior Point 

Optimizer (IPOPT), by the following steps. Firstly, the interior-point method was used to eliminate 

the inequality constraints of the NLP problem. Then, using Newton's iteration method, a local 

optimized manipulated variable trajectory was obtained by solving Karush-Kuhn-Tucker conditions. 

3. Case study 

The method proposed in Section 2 was tested by simulation on a campus DH system in 

Norway. The background of the case study, simulation settings and research scenarios are explained 

in this section. 

3.1. Background of the case study 

The case study was a campus DH system in Trondheim, Norway, as presented in Fig. 3. There 

is an MS to connect the campus DH system with the city DH network via HEs, and hence the campus 

DH system can be managed independently. A DC acts as a DHS because the return water of the 

campus DH network is used to harvest the DC’s waste heat by cooling down the high-temperature 

refrigerant vapour at the HP condenser. The heat users in this campus DH system are buildings whose 

total building area is about 300 000 m², and more detailed information about the buildings can be 

found in research [52]. According to the measurement data from June 2017 to May 2018, as shown 

in Fig. 4, the total heating demand of the buildings was 32.8 GWh. The DC provided around 20% 

heat for buildings, while the rest 80% of the heat was supplied from the city DH network via the MS. 

Therefore, this campus DH system is a DC waste heat-based heat prosumer.  
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Fig. 3. Campus district heating system 

 

Fig. 4. Heating demand and waste heat recovery of the campus district heating system  
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Another phenomenon observed from Fig. 4 is that the buildings’ heating demand was not 

evenly distributed and there were high peak loads from the MS, especially for the heating season. 

The heating price model adopted by the local DH company takes peak loads into account, and the 

peak load-related heating cost, LDC, accounted for about 26% of the total heating cost each year. 

Previous research has proven that introducing a short-term TES, WTTES, for the case system was 

able to address the high peak load problem and improve the system’s economic performance [6]. 

Moreover, an in-depth investigation for the optimal storage size of WTTES has been conducted in 

research [30]. Therefore, considering the trade-off between investment and heating cost saving, a 

WTTES with a storage volume of 900 m3, which was able to supply heat to the campus DH system 

for up to 12 hours, was introduced in this study. 

3.2. Simulation settings and research scenarios    

This research was a simulation-based study under the heating season (from October to April) 

of the year 2017- 2018. The heating season was divided into two periods to investigate, the 

transitional period and the midwinter period, due to the following reasons. Firstly, the heating demand 

in October and April were much smaller than that from November to March. The average heating 

demand in October and April were 2.6 and 3.4 MW, respectively, while the average heating demands 

from November to March were in the range of 5.7- 7.7 MW. Secondly, the average hourly heating 

demand profile was different in October and April from that from November to March, as shown in 

Fig. 5. The average heating demand in Fig. 5 was obtained by averaging all the heating demand at 

the same hour during the midwinter period and the transitional period, respectively. 
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Fig. 5. Average heating demand for each hour during the midwinter and transitional period 

Other simulation settings are explained as follows. The building’s heating demand came from 

the measured data as shown in Fig. 4 and was directly used as input in this study. The energy price 

including heating price and electricity price was obtained from the local DH company’s website [53] 

and a power supplier’s website [54]. The used LDC of the heating price was 39 NOK/kW. The used 

EDC of the heating price varied between 0.484- 0.868 NOK/kWh, and the electricity use-related 

electricity price fluctuated from 0.485 to 0.870 NOK/kWh.  

Two research scenarios were proposed to evaluate the MPC scheme. The operation principles 

for the two scenarios are presented in Table 1. The reference scenario was based on an RBC strategy, 

as shown in Fig. 6. A weather compensation controller (WCC) was used to control the supply water 

temperature of HE2 based on the outdoor air temperature. The water flow rate of HE2 was adjusted 

by a proportional-integral (PI) controller based on the feedback of return water temperature. The 

reference values of the return water temperature were obtained by the linear regression based on 

measured data, as explained in [30]. Another PI controller was used to determine the HP compressor 

power based on the feedback of the outlet water temperature of the evaporator. The reference value 

of the outlet water temperature of the evaporator was set as 6.5℃ because most of the measured outlet 

temperature of the evaporator fluctuated between 6 and 7℃ and the average value was 6.5℃. Finally, 

the charging and discharging processes of the WTTES were decided by a pre-defined schedule 
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presented in Table 2. The schedule was made based on the average hourly heating demand profile 

during the transitional and the midwinter period, respectively, as shown in Fig. 5. In the schedule, the 

charging heat rate was realized by maintaining the supply temperature of HE1 at 80℃ and adjusting 

the water flow rate of HE1, while the discharging heat rate was achieved by adjusting the water flow 

rate of the WTTES.  

Table 1. The operation principles for the two scenarios 

  Rule-based control 

scenario 

Model predictive 

control scenario 

Input variables Outdoor air temperature Yes No 

Heat demand No Yes 

Energy price No Yes 

Manipulated variables Supply temperature of 

HE1 

Maintain at 80℃ Decided by the MPC 

controller  

Water mass flow rate of 

HE1 

Adjusted based on 

charging heat rate 

Decided by the MPC 

controller 

Supply temperature of 

HE2 

Decided by the WCC 

controller 

Decided by the MPC 

controller 

Water mass flow rate of 

HE2 

Decided by the PI 

controller 1 

Decided by the MPC 

controller 

Water mass flow rate of 

WTTES 

Adjusted based on 

discharging heat rate 

Decided by the MPC 

controller 

Power of HP 

compressor 

Decided by the PI 

controller 2 

Decided by the MPC 

controller 

Table 2. The schedule of charging and discharging process of water tank thermal energy storage in 

the rule-based control scenario 

Month Discharging process Charging process Charging/ Discharging heat rate 

(MW) 

October, April 5:00 - 12:00 21:00 - 4:00 0.5 

November- March 7:00 - 17:00 22:00 – 6:00 1.0 
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Fig. 6. The scenario of rule-based control  

The MPC scenario was based on the MPC scheme proposed in Section 2.4 both during the 

transitional and midwinter period, as illustrated in Fig. 7. In this scenario, the building’s heating 

demand and the energy price over the predictive horizon were incorporated into the MPC controller. 

The controller evaluated the objective function with various manipulated variable trajectories until 
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an optimal trajectory was found. As presented in Fig. 7, the manipulated variables were the supply 

water temperature and mass flow rate of the HEs, the water mass flow rate of the WTTES and the 

power of the HP compressor. These manipulated variables were constrained to their feasible regions 

in the real system, which formulates the technique operational constraints of the MPC. The constraint 

settings for the supply water temperature and water mass flow rate of the HEs, and the water mass 

flow rate of the WTTES were elaborated in the research [30]. Moreover, the upper bound and lower 

bound of the HP compressor power were defined by the measured data. Another critical operational 

constraint was that the DC cooling requirement had to be satisfied. In this study, the DC cooling 

requirement was guaranteed by maintaining the outlet water temperature of the evaporator in the 

range of 6 - 7℃, because the measured inlet water temperature and mass flow of the evaporator were 

almost constant values while most of the measured outlet water temperature of the evaporator 

fluctuated in the range of 6- 7℃. 
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Fig. 7. The scenario of model predictive control  

4. Results  

This section first presents the model validation, and then evaluate the MPC scheme in terms 

of the DC performance, the local DH system performance, and the overall performance of the heat 

prosumer. In addition, January and April of 2018 were chosen as the typical month for the midwinter 

and the transitional period, respectively, to conduct the simulation-based study.  
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4.1. Model validation 

This section mainly presents the model validation of the DC, because the model validation of 

the other individual component, such as the WTTES and the pipelines, has been elaborated in the 

previous research [30]. 

The identified parameter values for the DC model are presented in Table 3. This developed 

DC model was validated against the measured data from the university energy management platform, 

as shown in Fig. 8. To quantify the deviation between the simulated and the measured compressor 

power, three indicators, i.e., mean absolute error (MAE), mean absolute percentage error (MAPE) 

and root mean square error (RMSE) were used to evaluate the prediction performance of the model 

[55, 56]. The resulted values of these indicators are shown in Fig. 8. In addition, Fig. 8 presents that 

the simulated compressor hourly power matched with the measured data well, with the coefficient of 

determination (R2) of 0.93 and no obvious overfitting. 

Table 3. Identified parameters for data centre model 

Parameter a b c d e f 

Value -1.54 10.55 -16.98 24.40 -5.74 -9.32 

 

Fig. 8. Simulated and measured hourly power of the compressor of heat pump 
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4.2. Data centre performance 

The outlet temperature of the evaporator, the coefficient of performance (COP) of the HP, and 

the electricity use of the HP were used as indicators to evaluate the DC performance. Firstly, Fig. 9 

presents the outlet temperature of the evaporator in January and April, respectively. Two obvious 

phenomena can be observed from Fig. 9: 1) Both the MPC scenarios had smaller outlet temperature 

fluctuating ranges compared to the RBC scenarios, especially in April; 2) Both the MPC scenarios 

preferred lower outlet temperatures with average values of 6.0 and 6.1℃, respectively. The average 

values of the outlet temperatures were 6.5℃ in the RBC scenarios. Moreover, one conclusion was 

obtained as well: the cooling requirement of DC was satisfied in both MPC and RBC scenarios, 

because most of the outlet water temperatures of the evaporator were within its feasible region from 

6.0 to 7.0℃.  
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Fig. 9. Simulated outlet temperature of evaporators (a) January of 2018 (b) April of 2018 

Fig. 10 presents the COPs of HP in January and April. Similar to the outlet temperature of the 

evaporator, the COPs of the HP in the MPC scenarios varied within a smaller range compared to the 

RBC scenarios, especially in April. The COPs of the HP in the MPC scenario varied within the range 

of 2.3 to 3.3 in April, while that of the range in the RBC scenario was 2.4 to 3.8, as presented in Fig. 

10 (b). In terms of the average value of COP, the MPC scenario was higher than that of the RBC 
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scenario in January, with values of 3.1 and 2.9 respectively. However, the average value of COP in 

the RBC scenario was a bit higher than that of the MPC scenario in April, with values of 3.1 and 3.0 

respectively. These results indicated that the MPC scheme was more robust than the RBC scheme 

expressed as the smaller fluctuating ranges of both the outlet temperature of the evaporator and the 

COP of the HP, which are crucial for the DC cooling system's safe operation. 

 

Fig. 10. Simulated coefficient of performance of heat pumps (a) January of 2018 (b) April of 2018 
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One phenomenon that can be noticed from the above results is that both the changing range 

of the evaporator outlet temperature and COPs of HP in April was higher than that in January. This 

can be explained by the following. For an optimization problem, the optimization results are strongly 

dependent on the inputs of the optimization problem. In this study, the heating demand was a key 

input for the optimization problem, and the heating demands in January and April are shown in Fig. 

4. Firstly, the heating demand in April had a larger changing range than that in January. Secondly, 

the heating demand in April could be lower or higher than the DC waste heat supply (1 MW), while 

the heating demand in January was more stable and higher than the DC waste heat supply. Finally, 

this resulted in the control situation in April being more complicated. These two characteristics of 

heating demand in January and April resulted in their corresponding different results.  

Fig. 11 presents the monthly electricity use of the HP for two scenarios, respectively. Two 

main phenomena can be noticed from Fig. 11: 1) The MPC scenarios used more electricity for HPs 

than the RBC scenarios in both January and April; 2) The electricity use of the HP in the MPC 

scenarios had no big difference in January and April, while the RBC scenario used much more 

electricity in January than in April. These phenomena indicated that the electricity use of the HP in 

the MPC scenarios was much more stable, and the MPC scenarios preferred to generate more waste 

heat from the HP by using more electricity because the COPs of the HP were always higher than 1.0 

and maintained at around 3.0-3.1. More explanation will be shown in Section 4.4. Moreover, this may 

be the reason why the MPC scenarios preferred the lower outlet temperatures of the evaporator as 

well.   
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Fig. 11. Simulated electricity use of heat pump  

4.3. Local district heating system performance 

Peak heat rate and heat use were chosen as the indicators to evaluate the performance of the 

local DH system. Fig. 12 presents the peak load of the MS for the two scenarios in January and April, 

respectively. As shown in Fig. 12, both MPC scenarios, in January and April, took better advantage 

of the WTTES flexibilities, which was demonstrated by the lower peak loads compared to their 

corresponding RBC scenarios. In January, the peak load of the MPC scenario dropped to around 10.9 

MW, a reduction of about 5.6% compared to the RBC scenario. In April, the peak load reduction of 

the MPC scenario was even more, with a reduction of almost 12.0% compared to the RBC scenario. 

Fig. 13 presents the heat use of the local DH system for two scenarios in January and April, 

respectively. As shown in Fig. 13, each MPC scenario saved the heat use compared to its 

corresponding RBC scenario, with savings of 2.0% and 3.7%, respectively.  
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Fig. 12. Simulated peak load for two scenarios  

 

Fig. 13. Simulated heat use for two scenarios 

4.4. Overall performance of heat prosumer 

The total energy use and energy bill were used to evaluate the heat prosumer’s overall 

performance. Fig. 14 presents the monthly total energy use for the two scenarios. The energy use 

included the heat supplied from the MS and the electricity supplied to power the DC’s HP and the 

CP. One obvious result that can be noticed from Fig. 14 was that both the MPC scenarios preferred 
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to use more electricity but less heat. In January, the heat supplied from the MS for the MPC scenario 

was 5.02 GWh, a decrease of 2.0% compared to the RBC scenario. In contrast, more electricity was 

used in the MPC scenario, with an increase of 8.1%. A similar phenomenon could be found in April 

as well: the heat use decrease was 3.7% and the electricity use increase was almost 19.0% in the MPC 

scenario. This result can be explained by the following reason: the MPC scenarios tended to gain heat 

as much as possible from the HP of DC to achieve the maximum economic performance, because the 

COPs of HP were always higher than 1.0 and maintained at around 3.0-3.1. For example, to supply 

3.0 kWh of heat for the heat user, the electricity use of HP would be only around 1.0 kWh while the 

MS would need to supply exactly 3.0 kWh heat. Meanwhile, the prices of electricity were only a bit 

higher than the heat during the studied period. Therefore, gaining heat as much as possible from the 

HP was the way that the MPC scheme used to achieve the maximum possible economic performance, 

and this will be further illustrated in the following text.  

 

Fig. 14. Simulated energy use for two scenarios 

Fig. 15 presents the monthly total energy bill for the two scenarios. The energy bill consisted 

of heating cost and electricity cost as illustrated in Section 2.2. Thereof, the heating cost included the 

LDC based on the heat user’s peak load and the EDC based on the total heat use of the heat user. 

There were several similar results presented both in January and April as follows: 1) Both the MPC 

scenarios saved the total energy bill compared to their corresponding RBC scenarios, with savings of 

1.8% and 3.2% in January and April, respectively; 2) Both the MPC scenarios reduced the heating 
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costs, which were brought by both the reductions of the LDC and the EDC, with the reduction of 2.3% 

and 5.1% in January and April; 3) Both the MPC scenarios increased the electricity cost due to the 

increased electricity use as explained by Fig. 14. The increases were 8.2% and 19.1% in January and 

April, respectively. However, the electricity cost accounted for less than 10% of the total energy bill 

and hence the increased electricity cost was not able to impair the total economic performance of 

MPC scenarios. Based on the above analysis, one important result was found as follows: the MPC 

scheme made an optimized trade-off between the heat use and the electricity use to achieve the 

possible maximum economic performance of the heat prosumer. 

 

Fig. 15. Simulated energy bill for two scenarios 

5. Discussion 

In this study, numerous manipulated variables needed to be optimized originating from the 

multi-components, which increased the computation load of MPC. To tackle this issue, a compromise 

between the developed model's accuracy and computational tractability should be made. The 

developed model must be accurate enough to predict the future behaviour of the system, meanwhile, 

it should be as simple as possible to be computationally tractable and numerically stable [57]. 

Therefore, the developed HP model in DC was a simplified linear model instead of a second-order 

model suggested by the ASHRAE handbook [45, 58]. Firstly, the second-order model features 
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nonlinearity, further increasing the already computing-demanding burden of the MPC scheme. 

Secondly, the developed linear HP model demonstrated even better prediction performance (R2 is 

0.93) than the second-order model (R2 is 0.87), as shown in Section Appendix E. As a result, the 

linear HP model was used for the MPC scheme in this study. In addition, to acquire computing 

efficiency, one crucial assumption was made: the boundary of the water temperature difference, 

which was obtained by measured data, at the primary side of the building substation could represent 

the whole thermal transfer potential of these substations. This assumption may underestimate these 

potentials if the system is under inappropriate operation, such as the so-called “big flow rate and small 

temperature difference” operation modes. However, the assumption provided a straightforward 

method to gain insights into the demand side from easily obtained measurements. 

Moreover, different energy price strategies affect the optimal control decisions and hence the 

system's economic performance. Therefore, a sensitivity analysis of the impact of different energy 

price strategies on system performance will be conducted in future work. 

6. Conclusion 

This study aimed to investigate the optimal control of the DC waste heat-based heat prosumer 

with short-term TES by utilizing an MPC scheme. In this MPC scheme, an economic-related 

objective function was employed, and both economic boundary and technical operational constraints 

were formulated. The economic boundary was proposed by considering the heating and electricity 

pricing mechanism simultaneously, and the technical operational constraints were defined by using 

the real measured data of the case system. The incorporated model described system dynamics 

including DC waste heat recovery units, TES, and the local DH system. The proposed MPC scheme 

was tested by simulation on a campus DH system in Norway. The proposed MPC scheme together 

with a conventional RBC strategy was evaluated in terms of the DC performance, the local DH system 

performance, and the overall performance of the heat prosumer. 

Results showed that the MPC scheme was more stable and robust expressed as the smaller 

fluctuating ranges of both the outlet temperature of the evaporator and the COP of the HP in DC, 

which are crucial for the DC cooling system's safe operation. In addition, the MPC scheme took better 

advantage of the WTTES flexibilities, which was demonstrated by the lower peak loads. The peak 

load reduction of the MPC scheme was up to 12.0% compared to the RBC strategy. Finally, the MPC 
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scheme tended to gain waste heat as much as possible from the DC by using more electricity for the 

HP but extracting less heat from the MS to achieve the maximum possible economic performance, 

and the resulting monthly energy cost saving was up to 3.2%. In total, the MPC scheme made an 

optimized trade-off between heat use and electricity use to achieve the best economic performance 

of the heat prosumer. 

This study may provide guidelines on optimal control of the DH system after integrating DC 

waste heat, and contribute to the development of the implementation of MPC at a local level.  
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Appendix A. Energy and mass flow exchanging between individual components 
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 Q̇
HE1

=c∙ṁHE1∙(Tsup,HE1-Tret,HE1) (A- 3) 

 Q̇
HE2

=c∙ṁHE2∙(Tsup,HE2-Tret,HE2) (A- 4) 

 Q̇
DC

=c∙ṁDC∙(Tsup,DC-Tret,DC) (A- 5) 

where Q̇, Q̇
loss

, ṁ, Tsup and Tret represent the heat flow rate, heat loss flow rate, water mass flow rate, 

supply water temperature and return water temperature, respectively. Subscripts MS, HE1, HE2, DC, 

Bui, WTTES, and pip denote MS, HE1, HE2, DC, building, WTTES, and pipeline. c is the specific 

heat capacity of water. 

Appendix B. Water tank thermal energy storage model 

 c∙ρ∙AXS∙
∂T

∂t
=c∙(ṁsou-ṁuse)∙

∂T

∂x
-U∙P∙(T(t,x)-Tamb)+ε∙AXS∙

∂
2
T

∂x
2
 (A- 6) 

where T denotes the water temperature inside WTTES. x, P and AXS  represent the perimeter, the 

cross-sectional area and the height of WTTES. t is the time. ρ is the water density. ṁsou and ṁuse 



34 

denote the water mass flow rate at the heat source and heat user side, respectively. Tamb refers to the 

ambient temperature. U represents the U-value of WTTES wall. ε is a parameter that describes the 

combined heat transfer effect of water due to turbulent flow via conduction, diffusion, and mixing.  

Appendix C. Building model 

 Q̇
Bui

=c∙ṁBui∙(Tsup,bui-Tret,bui) (A- 7) 

 ∆TBui, L≤∆TBui=Tsup,bui-Tret,bui≤∆TBui,U (A- 8) 

 Tsup,SH,L≤Tsup,bui≤Tsup,SH,U (A- 9) 

 ṁBui, L≤ṁBui≤ṁBui, U (A- 10) 

where ṁBui , Tsup,bui , Tret,bui , ∆TBui  are the water mass flow rate, the supply and the return water 

temperature and the water temperature difference of the primary side in building substation. 

Subscripts L and U denote the lower bound and upper bound, respectively. 

Appendix D. Pipeline model 

 Q̇
loss, pip

=Q̇
loss, pip,sup

+Q̇
loss, pip,ret

 (A- 11) 
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=L∙π∙d∙
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2
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 (A- 12) 

 
Q̇

loss, pip,ret
=L∙π∙d∙

(Rg+Ri)∙∆Tpip,ret-Rc∙∆Tpip,sup

(Rg+Ri)
2
-Rc

2
 (A- 13) 

where Q̇
loss, pip,sup

 and Q̇
loss, pip,ret

 are the supply pipe heat loss and the return pipe heat loss. L and d 

are the route length and the outer pipe diameter, respectively. Ri, Rg, and Rc denote the heat resistance 

of insulation, ground, and coinciding, respectively. ∆Tpip,sup and ∆Tpip,ret represent the supply pipe 

temperature difference and the return pipe temperature difference. 

Appendix E. Identified second-order heat pump model 

 

ÊHP_sec=0.9908+1.1879∙(Tout_con-Tmea_eva)+0.0401∙Tout_con-

Tmea_eva)
2
-0.0256∙Q̇

con
+4.7800×10

-5
∙Q̇

con

2
+0.0029∙(Tout_con-Tmea_eva)∙Q̇

con
     

(R2=0.87) 

(A- 14) 



35 

where ÊHP_sec is the simulated compressor power. Tmea_eva is the average water temperature flowing 

in and out of the evaporator. Q̇
con

 is the heat flow rate on the condenser side, which equals to Q̇
DC

 

[45].  
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