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Abstract 

Background: The aim of this study was to gain increased understanding of the etiology of breast 

cancer, by investigating possible associations between serum lipoprotein subfractions and 

metabolites and long-term risk of developing the disease.   

Methods: From a cohort of 65 200 participants within the Trøndelag Health Study (HUNT study), we 

identified all women who developed breast cancer within a 22-year follow-up period.  Using nuclear 

magnetic resonance (NMR) spectroscopy, 28 metabolites and 89 lipoprotein subfractions were 

quantified from prediagnostic serum samples of future breast cancer patients and matching controls 

(n = 1199 case-control pairs).  

Results: Among premenopausal women (554 cases) 14 lipoprotein subfractions were associated with 

long-term breast cancer risk. In specific, different subfractions of VLDL particles (in particular VLDL-2, 

VLDL-3 and VLDL-4) were inversely associated with breast cancer. Additionally inverse associations 

were detected for total serum triglyceride levels and HDL-4 triglycerides. No significant association 

was found in postmenopausal women.  

Conclusions: We identified several associations between lipoprotein subfractions and long-term risk 

of breast cancer in premenopausal women. Inverse associations between several VLDL subfractions 

and breast cancer risk were found, revealing an altered metabolism in the endogenous lipid pathway 

many years prior to a breast cancer diagnosis.  
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Background 

Breast cancer is the most common cancer diagnosis among women, and the incidence rate is following 

an increasing trend [1]. The overall breast cancer survival rates have increased bringing the 5-year 

survival up to 90.7% in Norway [2], possibly as a result of tailored treatment strategies and earlier 

detection due to the establishment of screening programs . However, despite the high overall survival 

rate,the prognosis greatly depends on the stage of the disease at diagnosis, in addition to treatment 

efficacy. A better understanding of the etiology of the disease and the biological mechanisms leading 

to disease could reveal methods for disease prevention and early detection. 

Cancer cells have a reprogrammed metabolism for conversion of nutrients to biomass while 

maintaining a high energy production. This phenomenon is increasingly recognized as a source for 

biomarkers for early detection. The serum metabolome is affected by the preceding levels of the omics 

cascade and external factors, providing a detailed snapshot of the current state of the organism [3, 4]. 

Significant changes in the metabolism of breast cancer patients have been described, both in tumor 

tissue and biofluids [5-8]. Furthermore, subtle differences in metabolic composition of prediagnostic 

serum samples have been associated with breast cancer risk [9-16].  

Lipids, playing a critical role in cell signaling and membrane formation, have altered levels in many 

types of cancer [17, 18]. However, the mechanisms governing dysregulated lipid metabolism in cancer 

development are not fully understood. The two main forms of circulating lipids in the body are 

triglycerides and cholesterol, which are transported through the bloodstream in lipoproteins. 

Lipoproteins are particles with an inner core, mainly composed of triglycerides and cholesteryl esters, 

surrounded by a hydrophilic membrane consisting of free cholesterol, phospholipids and 

apolipoproteins [19]. There are five main fractions of circulating lipoproteins, ranging from very-low 

(VLDL) to high-density (HDL) lipoproteins, each with its own characteristic protein and lipid 

composition. Traditional lipoprotein measurements, however, do not capture the delicate density 

range within the main fractions. Detailed characterization of the different lipoprotein subfractions and 
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their content, possible through nuclear magnetic resonance (NMR) spectroscopy, may give important 

biological information on early breast cancer development. 

In this study we aimed to identify associations between lipoprotein subfractions and circulating 

metabolites in prediagnostic serum samples and breast cancer risk, and to gain insight into the 

etiology of the disease. Our study aims were accomplished by a case-control study nested in the 

Trøndelag Health Study (the HUNT study), with samples taken up to 22 years before breast cancer 

diagnosis.  

Methods 

Sample Collection and Experimental Design 

The Trøndelag Health Study (the HUNT study) is a longitudinal population health study in Norway, 

including 230 000 participants. It includes a database of questionnaire data, clinical measurements, 

and biological materials. So far four health surveys have been completed, HUNT1 (1984-86), HUNT2 

(1995-97), HUNT3 (2006-08) and HUNT4 (2017-19) [20] in addition to an adolescent part (13 – 19 

years). HUNT2 was the first study to include biological material. By matching data from HUNT2 with 

the Norwegian Cancer Registry, we have identified all participants of HUNT2 that developed breast 

cancer between data collection and follow-up in 2019 (n = 1208). The mean time from blood collection 

to a breast cancer diagnosis was 11.7 years (range 0-22 years), while controls had at least 22 years 

follow-up. For each case, a participant that remained breast cancer free during follow-up was 

randomly selected as a control, matched for age at inclusion into HUNT2 in intervals of 5 years. To 

avoid bias towards controls that are healthier than the general population, the cases may have 

developed another type of cancer, and we did not require the controls to survive the whole follow-up 

period. This ensured that the controls are representative of true controls. Relevant clinical variables 

were selected from the HUNT2 databank for both the cases and controls, while cancer-specific 

variables were retrieved from the Norwegian Cancer Registry. All participants have completed a 
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written informed consent form, and the study was approved by the Ethics Committee of Central 

Norway (REK numbers #1995/8395 and #2017/2231).  

NMR Experiments 

Serum samples were collected in the years 1995-97 and were stored at -80°C until analysis. After 

thawing at room temperature, 150 µL serum was mixed with 150 µL buffer [D2O (20% in H2O) with 

0.075 M Na2HPO4, 6 mM NaN3, 4.6 mM 3-(trimethylsilyl)-2,2,3,3-tetradeuteropropanoic acid (TSP-d4), 

pH 7.4], and transferred to 3mm NMR tubes. Quality control (QC) samples were prepared from pooled 

serum samples of 10 healthy donors from the Norwegian blood bank (46 samples in total). One QC 

sample per 60 HUNT samples was to assess the quality of the NMR acquisitions and identify 

instrumental drifts. Approximately half of the samples were analyzed locally at the MR Core facility, 

NTNU in Trondheim, while the second half was shipped to Bruker BioSpin GmbH, Germany, for 

analyses. The study cohort included 1208 cases and 1208 matched controls, and the selection of 

samples to be analyzed at the two labs was random and independent of the case-control status. NMR 

analyses were carried out on a Bruker Avance III HD Ultrashield Plus 600 MHz spectrometer (Bruker 

BioSpin) equipped with a 5 mm TCI probe in Trondheim, and an Avance-IVDr system, a standardized 

Bruker Avance 600 MHz spectrometer (Bruker BioSpin) at the lab in Germany. The NMR spectrometers 

at both labs have been calibrated for use of the same protocol. Sample handling and data acquisition 

were automatically performed using SampleJet sample changer and the automation software 

IconNMR on Topspin 3.5 (Bruker BioSpin). NMR spectra were recorded using one-dimensional nuclear 

Overhauser effect spectroscopy (1D-NOESY) and Carr-Pucell-Meiboom-Gill (CPMG) experiments [21]. 

Both experiments were performed at 310 K and applied irradiation (25 Hz) on the water resonance 

during relaxation delay (4 s) and mixing time (10 ms). The 1D-NOESY experiment applied pulse 

sequence “noesygppr1d” (Bruker nomenclature) using 96k data points and 30 ppm spectral width. 32 

scans were recorded, and the free induction decays were Fourier-transformed after zero filling (128k 

real data points) and 0.3 Hz line broadening. The CPMG experiment (pulse sequence “cpmgpr1d”, 

Bruker nomenclature) was recorded with 72k data points, 20 ppm spectral width and 32 scans. Data 
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was zero filled to 128k data points, line broadening (0.3 Hz) before Fourier-transformation. The 

success of NMR experiments was assessed based on shim quality (linewidth of the alanine doublet at 

~1.5 ppm < 1.5Hz including line broadening) and size of residual water signal (its concentration 

equivalent < 30mmol/L), in accordance with quality requirements of serum NMR experiments 

described in Bruker protocols (B.I. Quant-PS 2.0TM). After the exclusion of samples for which the NMR 

acquisition was of poor quality, and their case/control pair, 2398 samples were retained for statistical 

analysis (1199 complete case and control pairs). The proportion of cases and controls was equivalent 

across the two labs. 

Metabolite quantification 

CPMG spectral data were transferred to Matlab R2020a for preprocessing. Spectra of samples run at 

NTNU and at Bruker BioSpin were preprocessed separately due to differences in peak positions of 

individual metabolites. The left peak of the alanine doublet at 1.47 ppm was used as a chemical shift 

reference for initial alignment of the spectra, followed by a more thorough peak alignment using the 

icoshift function, where the mean spectra was used as the reference [22]. The spectral region 0.2 to 

9.2 ppm was chosen as the region of interest. Spectral peaks were aligned to metabolites using the 

human metabolome database (HMDB), published literature, and an in-house overview over previously 

assigned spectral peaks in serum based on 2D HSQC acquisitions and the STOCSY algorithm [23]. Areas 

under the spectral peaks were integrated, and corrected for the number of protons giving rise to the 

signals. Thereafter, peaks were adjusted for T2 relaxation times (Table S1, Supplementary Methods). 

Peaks arising from the same metabolite were averaged, thus absolute metabolite concentrations were 

obtained for a total of 28 metabolites. The coefficients of variation (CVs) of the metabolites were 

below 15% and below 20% for 23 and 26 of the metabolites, respectively (Table S1).  

Lipoprotein Parameter Analysis 

Lipoprotein subfractions were automatically quantified using Bruker IVDr Lipoprotein Subclass 

Analysis (B.I.LISATM) software, from Bruker BioSpin. This method utilizes the broad lipid signals from 
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the methyl (-CH3) groups at 0.85 ppm and methylene (-CH2-) groups at 1.27 ppm of the NMR spectrum, 

to provide a detailed picture of circulating lipoproteins [24]. The concentrations of lipids [cholesterol 

(CH), free cholesterol (FC), triglycerides (TG), and phospholipids (PL)] in total serum and in four main 

lipoprotein classes: very low-, intermediate-, low-, and high-density lipoproteins (VLDL, IDL, LDL, and 

HDL) and 15 subclasses (VLDL 1−5, LDL 1−6, and HDL 1−4) are provided by the software. In addition, 

serum levels of apolipoproteins (Apo-A1, Apo-A2, and Apo-B) in the lipoproteins, 12 calculated 

parameters (ratios of LDL-CH/HDL-CH and Apo- B/Apo-A1), and particle numbers of total serum, VLDL, 

IDL, LDL, and LDL 1−6 are provided, giving a total of 112 lipoprotein subfractions. However, due to the 

presence of a contamination in the serum samples (neopentyl glycol, most likely originating from the 

original collection tubes), which interfered with the broad lipid peak at 0.85 ppm on the 1H spectra, 

some of the lipoprotein subfractions were excluded from further analysis (Supplementary Methods, 

Table S2, Figure S1), mostly from LDL-2 and LDL-4 particles. Calculated parameters and particle 

numbers were also excluded from the statistical analysis, resulting in 89 lipoprotein subfractions. CVs 

for the lipoprotein subfractions included were below 15% and 20% for 65 and 85 of the variables, 

respectively (Table S2). 

Statistical analysis 

Baseline characteristics of the cases and controls were described using mean and standard deviation 

(SD), and statistical significance was assessed by Student t-tests for continuous variables and the 

Fisher’s exact test for categorical variables.  

NMR derived variables were standardized to unit variance prior to statistical analysis. Correlation 

between the NMR-derived variables was tested using Pearson correlation analysis. Odds ratios (OR) 

and 95% Wald confidence intervals (CI) were calculated for a one SD increase in the concentration of 

each variable using unconditional logistic regression. The logistic regression models were fitted 

separately for pre- and postmenopausal women. P-values were corrected for multiple testing using 

the Benjamini-Hochberg approach, and significance was considered for Padj ≤ .05. The baseline model 
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was adjusted for age (matching factor) and lab at which the NMR measurement took place, due to the 

presence of a batch effect between labs. In the adjusted model, additional factors were included to 

correct for confounding. Possible confounding factors were selected a priori based on literature and 

through the use of a directed acyclic graph (DAG). Confounding factors are factors that may have a 

direct on the baseline blood sample and on the outcome (incidence of breast cancer). Therefore, the 

following addition factors were included in the full model: number of full-term pregnancies, age at 

menarche, body mass index (BMI), alcohol consumption (frequency per month) and smoking status 

(current smoker or non-smoker). Menopausal status was defined by the question: “If no longer 

menstruate, how old were you at last menstruation?”, thus missing values will include women that 

have not reached menopause and women that did not answer this question in the questionnaire. 

Menopausal age was available for only 235 of the cases, and these were defined as post-menopausal 

at baseline. For all remaining cases, age at participation in HUNT2 was used to define menopausal 

status, and cases aged 51 or higher at baseline were classified as postmenopausal, while the remaining 

cases as pre-menopausal. This cut-off value of 51 years was chosen at the basis of a large population 

study in Norway, including more than 300 000 individuals [25]. Because late menopause is a well-

established risk factor for breast cancer [26-29] menopausal status of the controls was defined by the 

menopausal status of the cases. This ensured that the population of controls was not older than the 

population of cases, and thus an age-bias. Clinical variables with less than 10% missing values for the 

cohort were included in the logistic regression model, where the missing values were imputed with 

the median values of the full cohort. The use of hormone replacement therapy (HRT) at baseline 

(systemic, local, previous or never use) was missing for 20.8% of the study cohort, thus this variable 

was not included in the adjusted model. To evaluate the influence of HRT usage on the studied 

associations, we concluded stratified analyses excluding women for whom use of HRT was reported 

or the information was missing. Stratified analyses were also performed for estrogen receptor positive 

(ER+) and negative (ER-) breast cancers. 
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Multivariate predictive models were fit using partial-least squares discriminant analysis (PLS-DA) for 

discriminating between lipoprotein profiles of pre- and postmenopausal women, including only the 

controls, and between cases and controls in pre- and postmenopausal women separately. The number 

of latent variables (LVs) giving the minimum cross validated test error (inner loop) was chosen. The 

models were validated using double 10-fold cross-validation with 30% of the samples included in the 

test sets of the inner and outer loops, and their significance (Pperm ≤ .05) was assessed by permutation 

testing (1000 permutations). Stratified analysis, based on the number of years between sample 

collection and breast cancer diagnosis were also performed.  

Results 

Population characteristics 

The baseline characteristics of the clinical and lifestyle variables for the participants are summarized 

in Table 1. Considering traditional breast cancer risk factors, there were significant differences 

between the groups for age at first pregnancy, the number of full-term pregnancies, height and 

alcohol intake (p < .05). The controls had their first full-term pregnancy at a younger age compared to 

the cases, and a higher number of full-term pregnancies. The frequency of alcohol intake was 

significantly higher for the cases. Women who developed breast cancer were also significantly taller 

than controls, while there was no difference in BMI and waist-hip ratio (WHR). Cases had more often 

diabetes and use of systemic HRT, however the difference between the cases and controls did not 

reach statistical significance.  

For breast cancer specific variables (Table 2) approximately 84% of the cancer cases were ER+, 69% 

were PgR+ and 20% were HER2-, however, this information was missing for 36-44% of the participants, 

depending on the variable. The majority of the cancers (52%) were stage I tumors, whilst below 4% 

were advanced (with a distant metastasis). The mean lapse of time between sample collection and 

the breast cancer diagnosis was 11.7 years (range 0-22 years) and the mean age at diagnosis was 64.4 

years. 
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High correlations were observed between the variables, especially among the lipoprotein subfractions 

(Figure S2). In general, lipoprotein subfractions from the same lipoprotein main fractions were highly 

correlated with each other, while weak correlations were observed between some of the lipoprotein 

subfractions and metabolites. 

Lipoprotein subfractions associated with breast cancer risk in premenopausal women 

From the full study cohort, 554 cases were classified as premenopausal and 645 as postmenopausal 

at inclusion into HUNT2. Postmenopausal women had significantly different lipid profiles compared 

to premenopausal women, with elevated levels of most lipoprotein subfraction, except for HDL-3 and 

HDL-4 cholesterol and phospholipids in postmenopausal women (Figure 1, Table S3). 

For premenopausal women, 38 out of the 89 lipoprotein subfractions had a significant inverse 

association with long-term breast cancer risk using the baseline model, of which 17 remained 

significant after correcting for multiple testing (Table 3). In the adjusted model, 14 of the lipoprotein 

subfractions showed a significant inverse association with long-term breast cancer risk (Figure 2, Table 

3). All of the lipoprotein subfractions with a significant association in the adjusted model are VLDL 

subfractions, except for HDL-4 triglycerides. All associations were in the inverse direction, with odds 

ratios from 0.77-0.83. Excluding all cases who had reported current use of HRT, or for whom the 

information about HRT usage was missing, and their matched controls, resulted in similar associations 

(significant ORs from 0.71-0.80; Table S4). Stratified analysis including ER+ cases or ER- cases only (384 

and 72 cases, respectively) showed that the associations were not dependent on the ER status (Table 

S4). For the postmenopausal women, no significant associations were found between lipoprotein 

subfractions and breast cancer risk, neither in the full cohort nor in stratified analysis (Results not 

shown).  

Circulating metabolites 

Analyses performed on premenopausal women showed a significant positive association between 

acetate and breast cancer risk in the baseline model (P-value = .037). In the adjusted model, acetate 
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and phenylalanine showed a significant positive association with breast cancer risk (P-values <.05; 

Table S5). However, none of the associations remained significant after correcting for multiple testing. 

Similarly as for lipoprotein subfractions, no significant associations were found between circulating 

metabolites and breast cancer risk for postmenopausal women. 

Prediction of a future cancer from prediagnostic serum metabolic profiles 

A weak but significant discrimination between breast cancer cases and controls was obtained for 

premenopausal women (Accuracy = 53%; P-value = .027; Table S6) from lipoprotein subfractions. 

Adding information on established breast cancer risk factors did not increase the prediction accuracy 

(Accuracy = 53%; P-value = .021; Table S6). No significant discrimination was obtained for 

postmenopausal women.  

Discussion 

The discovery of novel biomarkers for early breast cancer development has several clinical 

applications, such as insight into metabolic pathways that may represent new therapeutic targets, and 

early identification of individuals eligible for primary prevention. In this study we analyzed the 

association of circulating lipoprotein subfractions and metabolites with breast cancer incidence, and 

assessed the predictive value of serum metabolic profiles of healthy females. We found significant 

associations between multiple circulating lipoprotein subfractions and breast cancer risk 0-22 years 

after blood collection. This study is the first to report associations between lipoprotein subfractions 

and long-term breast cancer risk. 

Our results reveal alterations in the lipid metabolism of premenopausal women (at baseline) many 

years before they develop breast cancer. We found that high levels of circulating cholesterol, free 

cholesterol, phospholipids, and triglycerides in VLDL subfractions have a protective effect from 

developing breast cancer, even when adjusting for clinical risk factors including lifestyle factors, 

however only for premenopausal women. More specifically, several VLDL2-4 subfractions were 

inversely associated with breast cancer risk. VLDLs are large particles consisting mainly of triglycerides. 
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They are produced by the liver and take part in the endogenous path, where they are transported 

through the bloodstream, and deliver free fatty acids to the peripheral tissues and muscles (Figure 3). 

During this process VLDLs are reduced to IDLs and finally to LDLs as fatty acids are cleaved off. These 

are taken up by the liver, however a residual fraction of LDLs may turn into foam cells and form 

atherosclerotic plaque [19]. Their size depends on the content of triglycerides while the rate of 

synthesis depends on the availability of triglycerides (Figure 3) [30].  

Other studies, utilizing traditional clinical chemistry methods to assess serum lipids have suggested 

that levels of triglycerides may be inversely associated with breast cancer risk. A study by Jobard et al. 

has shown weak inverse associations between fatty acids, mainly from LDLs and VLDLs and breast 

cancer risk in premenopausal women, which is in accordance with our findings [31]. No study to date 

has looked at triglyceride levels or VLDL subfractions and premenopausal breast cancer risk, however 

a recent study by Bendinelli et al. investigated associations between VLDL subfractions and high 

mammographic breast density [32], which is a strong risk factor for breast cancer. They found free 

cholesterol, triglycerides, cholesterol and Apo-B levels in VLDL main fraction, and the subfractions 

VLDL-1 and VLDL-5 to be inversely associated with high mammographic breast density, supporting our 

finding of inverse associations between VLDL parameters and breast cancer risk. Similarly, a study on 

NMR metabolic profiles found an inverse association between lipids and lipoproteins and increased 

breast cancer risk, however, this study did not include subfraction analysis or stratified analysis based 

on the menopausal status [11]. 

Although we have stratified analysis based on the menopausal status, it is important to keep in mind 

that we are referring to menopausal status at baseline. Given a mean age at diagnosis of 64.4 years, 

most of the cancer incidences have occurred post menopause.  Studies have shown that circulating 

estrogens are positively associated with breast cancer risk [33], especially in postmenopausal women 

[34-36]. The ovarian function ceases during menopause, leading to a fall in the estrogen levels. The 

synthesis of estrogen in postmenopausal women occurs mainly in peripheral tissues, such as adipose 
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tissue, and estrogen levels correlate with BMI for these women [37]. Estrogen levels play an important 

role in the regulation of lipid metabolism, and are shown to be negatively correlated with triglycerides 

and VLDLs [38, 39]. Impaired estrogen signaling is associated with the development of metabolic 

disorders, and an estrogen deficiency will lead to insulin resistance, which in turn will cause increased 

lipogenesis, triglyceride accumulation and increased VLDL production in the liver [40]. In our study we 

found that in addition to VLDL subfractions, total triglycerides, IDL, LDL and HDL 2-4 triglycerides are 

inversely associated with premenopausal breast cancer risk. The protective effect of VLDL subfractions 

and triglycerides for premenopausal breast cancer risk observed in this study might thus reflect 

hormonal activity. Recently, the influence of menopausal hormone therapy (HRT) on breast cancer 

incidence and mortality was assessed through two placebo-controlled randomized clinical trials, 

involving in total 27 347 postmenopausal women, with a long-term follow-up. The study showed that 

the use of estrogen alone, compared with placebo, was significantly associated with lower breast 

cancer incidence and mortality, while the use of estrogen in combination with progestin was 

associated with a higher breast cancer incidence but not mortality [41]. Other studies have shown that 

use of HRT is associated with an increased risk of developing breast cancer, and that this risk is 

dependent on the type [42], timing and duration of HRT, and BMI [28]. Sensitivity analysis showed 

that our found associations were not dependent on the ER status of the tumor or the use of HRT. 

Detailed information on the type and duration of HRT is not available for our cohort. 

Several LDL 5-6 subfractions were inversely associated with breast cancer (Apo-B in LDL 5-6, 

phospholipids and cholesterol in LDL-5 and triglycerides in LDL-6), although these associations did not 

reach statistical significance when correcting for multiple testing. Interestingly, no association was 

found between LDL-1 or LDL-3 and breast cancer risk. As illustrated in Figure 3, LDL is synthesized in 

the same lipid pathway as VLDL, and in general smaller LDLs are the most atherogenic [43], thus these 

findings are surprising. However, due to the presence of a contamination in the serum samples (Figure 

S1, Supplementary methods), most parameters from LDL-2 (except triglycerides) and all parameters 

from LDL-4 subfractions were removed, and the associations of these parameters and breast cancer 
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risk could not be assessed. Collectively, our results suggest that early breast cancer formation in 

premenopausal women is likely driven by hormonal activity rather than an unhealthy lifestyle. This 

should thus be further elucidated. 

We found no significant associations between lipoprotein subfractions and long-term breast cancer 

risk for postmenopausal women. This is in accordance with a recent study by Jobard et al. showing 

that a perturbed metabolism is associated with increased breast cancer risk in premenopausal women 

only [31]. Furthermore,  our finding of different lipid profiles between pre- and postmenopausal 

women is in accordance with previous studies which have shown that the lipid profile is highly 

dependent on the menopausal status [44-46], reflected in significantly higher cholesterol and total, 

LDL and VLDL (but not HDL) triglyceride levels in postmenopausal women. Other studies have shown 

that a weight gain or high BMI is associated with increased breast cancer risk in postmenopausal 

women, while the opposite is true for premenopausal women [47, 48], thus the lipid metabolism is 

clearly affected by hormone activities.  

A few studies have employed mendelian randomization to evaluate the relationship between 

circulating lipids and breast cancer risk [49-51]. The studies by Johnson et al. and Nowak et al. showed 

that genetically elevated plasma HDL-cholesterol and LDL-cholesterol levels are associated with 

increased breast cancer risk [49, 50]. These studies did not include analyses stratified on menopausal 

status. In the study by Beeghly-Fadiel et al., they found that HDL cholesterol was associated with an 

increased risk of breast cancer for both pre- and post-menopausal women, while triglycerides were 

inversely associated with breast cancer risk in postmenopausal women only [51]. Taken together, our 

findings do not reflect genetical predisposition of an increased breast cancer risk. 

Although several metabolites significantly associated with breast cancer risk have been reported in 

other studies [10-15, 31, 52-54], there is a heterogeneity in the analytical platforms used and type of 

biological medium. Two recent studies have reported serum metabolic alterations, measured by NMR, 

associated with overall breast cancer risk [11] or premenopausal breast cancer risk [15, 31], with 
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metabolic panels that overlap with ours. We found weak associations between acetate and 

phenylalanine, and premenopausal breast cancer risk, however no longer significant after multiple 

testing correction. A similar association between phenylalanine and increased breast cancer risk has 

been reported previously, detected by liquid chromatography tandem mass spectrometry (LC-MS) in 

prediagnostic plasma, however this study did not include stratification on menopausal status [16]. 

Concerning the remaining metabolites from our panel, recent studies have reported positive 

associations between creatine [15], ethanol, leucine, ornithine, glutamine, glutamate, pyruvate and 

histidine [31], and premenopausal breast cancer risk, while no such associations were found in our 

study. The former study included 1057 case-control pairs, of which approx. 80% were premenopausal, 

had a mean follow-up of 8 years, and metabolites were quantified using LC-MS [15]. In the later study, 

the analytical platform for metabolite detection was 1H NMR, however metabolite concentrations 

were not absolute, the median follow-up period was 4.75 years, and the number of pre-menopausal 

case-control pairs was limited to 180 [31]. The study by Lécuyer et al. with a patient cohort including 

206 cases and 396 matched controls, of which approximately 60 % were premenopausal, several 

amino acids were significantly associated with breast cancer risk [11], which were not significant in 

our study. 

There are limitations of our study that need to be addressed. Firstly, the HUNT2 questionnaire data 

are self-reported, thus a self-reported bias and a recall bias will in general often be present. Because 

the lipid profiles undergo substantial changes in the menopausal transition, analyses were stratified 

based on the menopausal status. Only 20% of the study participants had reported menopausal age, 

while the mean age of the cohort was 52.6 years, thus most of the participants were likely 

postmenopausal, and thus this variable was imputed for most of the participants. In addition, the 

perimenopausal period is on average 4 years, and thus perimenopausal women may be included in 

both the analyses on pre- and postmenopausal women. Another limitation in this study, is related to 

our NMR experiments. As described in the Supplementary material, our biobank samples contained a 

contamination by neopentylglycol, and some lipoprotein variables had to be removed due to this. The 
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NMR experiments were also performed at two different labs, and although the same protocol was 

followed, a slight batch-effect in the lipid profiles was observed, which was taken into account in 

statistical analysis. Importantly, samples were run in a completely randomized order, with an 

equivalent proportion of cases and controls across the two labs. Another limitation of the study is the 

lack of an external validation cohort. However, no such cohort was available for this study, and our 

findings should thus be validated in future studies. 

This study presents one of the largest prospective analysis of serum metabolic profiles and breast 

cancer risk to date. The large study cohort, long follow-up period and availability of numerous lifestyle 

factors allowed for evaluating the behavior of significant associations when adjusting for established 

breast cancer risk factors. Associations between metabolic factors and breast cancer risk are in general 

modest, in terms of their odds ratios, as compared to other diseases such as diabetes, where 

metabolomics research findings have been replicated several times [55, 56]. This implies a lack of 

accurate predictive value of serum metabolic profiles of healthy females and breast cancer, which we 

have observed in this study.  

In conclusion, we identified several associations between lipoprotein subfractions and long-term risk 

of breast cancer in premenopausal women. In particular, we found inverse associations in several VLDL 

subfractions and breast cancer, revealing an altered metabolism in the endogenous lipid pathway 

many years prior to a breast cancer diagnosis.  

  



17 
 

Additional information 

Acknowledgements: The Trøndelag Health Study (HUNT) is a collaboration between HUNT Research 

Centre (Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology 

NTNU), Trøndelag County Council, Central Norway Regional Health Authority, and the Norwegian 

Institute of Public Health. The NMR analyses were performed at the MR Core Facility, Norwegian 

University of Science and Technology (NTNU), funded by the Faculty of Medicine at NTNU and Central 

Norway Regional Health Authority, and at Bruker BioSpin GmbH, Germany.  

Authors’ contributions: Conceptualization: JD, TFB, GFG. Data curation: JD, TFB, GFG. Formal analysis: 

JD, TA, TFB, GFG. Funding acquisition: TFB, GFG. Investigation: JD, HS, TA, FW, FF, CC, GFG. 

Methodology: JD, HS, TA, MS, TFB, GFG. Software: HS, MS. Supervision: TFB, GFG. Visualization: JD. 

Writing – original draft: JD. Writing – review & editing: JD, HS, TA, FW, FF, CC, MS, TFB, GFG. 

Ethical approval and consent to participate: All participants have completed a written informed 

consent form, and the study was approved by the Ethics Committee of Central Norway (REK numbers 

#1995/8395 and #2017/2231).  

Consent for publication: Not applicable. 

Data availability: The Trøndelag Health Study (HUNT) has invited persons aged 13 - 100 years to four 

surveys between 1984 and 2019. Comprehensive data from more than 140,000 persons having 

participated at least once and biological material from 78,000 persons are collected. The data are 

stored in HUNT databank and biological material in HUNT biobank. HUNT Research Centre has 

permission from the Norwegian Data Inspectorate to store and handle these data. The key 

identification in the data base is the personal identification number given to all Norwegians at birth 

or immigration, whilst de-identified data are sent to researchers upon approval of a research protocol 

by the Regional Ethical Committee and HUNT Research Centre. To protect participants’ privacy, HUNT 

Research Centre aims to limit storage of data outside HUNT databank, and cannot deposit data in 

open repositories. HUNT databank has precise information on all data exported to different projects 



18 
 

and are able to reproduce these on request. There are no restrictions regarding data export given 

approval of applications to HUNT Research Centre. For more information see: 

http://www.ntnu.edu/hunt/data. 

Competing interests: The authors declare that they have no competing interests. 

Funding information: This work has been supported by the Norwegian Financial Mechanism (2014-

2021, JD, TFB, Project 2019/34/H/NZ7/00503) the Norwegian Cancer Society (GFG, 6834362 and 

202021); Stiftelsen DAM (FW, 2020/FO298770); The K.G. Jebsen Foundation, the Liaison Committee 

for education, research and innovation in Central Norway (FW, 2020/3806-4), and the Joint Research 

Committee between St. Olavs hospital and the Faculty of Medicine and Health Sciences, NTNU (GFG, 

28328 and TFB, 28346).  

Authors’ Information: HS, FF, CC and MS are employed at Bruker BioSpin. Bruker BioSpin has funded 

release of the samples from the HUNT biobank. 

  



19 
 

References 

1. Ferlay, J., I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, et al., Cancer 
incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 
2012. International Journal of Cancer, 2015. 136(5): p. E359-E386. 

2. Cancer Registry of Norway, Cancer in Norway 2018 - Cancer incidence, mortality, survival 
and prevalence in Norway. 2019. 

3. van Roekel, E.H., L. Trijsburg, N. Assi, M. Carayol, D. Achaintre, N. Murphy, et al., Circulating 
Metabolites Associated with Alcohol Intake in the European Prospective Investigation into 
Cancer and Nutrition Cohort. Nutrients, 2018. 10(5). 

4. Carayol, M., M.F. Leitzmann, P. Ferrari, R. Zamora-Ros, D. Achaintre, M. Stepien, et al., Blood 
Metabolic Signatures of Body Mass Index: A Targeted Metabolomics Study in the EPIC 
Cohort. J Proteome Res, 2017. 16(9): p. 3137-3146. 

5. Bathen, T.F., B. Geurts, B. Sitter, H.E. Fjosne, S. Lundgren, L.M. Buydens, et al., Feasibility of 
MR metabolomics for immediate analysis of resection margins during breast cancer surgery. 
PLoS One, 2013. 8(4): p. e61578. 

6. Gu, H., Z. Pan, B. Xi, V. Asiago, B. Musselman, and D. Raftery, Principal component directed 
partial least squares analysis for combining nuclear magnetic resonance and mass 
spectrometry data in metabolomics: application to the detection of breast cancer. Anal Chim 
Acta, 2011. 686(1-2): p. 57-63. 

7. Slupsky, C.M., H. Steed, T.H. Wells, K. Dabbs, A. Schepansky, V. Capstick, et al., Urine 
metabolite analysis offers potential early diagnosis of ovarian and breast cancers. Clin 
Cancer Res, 2010. 16(23): p. 5835-41. 

8. Furberg, A.S., M.B. Veierod, T. Wilsgaard, L. Bernstein, and I. Thune, Serum high-density 
lipoprotein cholesterol, metabolic profile, and breast cancer risk. J Natl Cancer Inst, 2004. 
96(15): p. 1152-60. 

9. Bro, R., M.H. Kamstrup-Nielsen, S.B. Engelsen, F. Savorani, M.A. Rasmussen, L. Hansen, et al., 
Forecasting individual breast cancer risk using plasma metabolomics and biocontours. 
Metabolomics, 2015. 11(5): p. 1376-1380. 

10. His, M., V. Viallon, L. Dossus, A. Gicquiau, D. Achaintre, A. Scalbert, et al., Prospective 
analysis of circulating metabolites and breast cancer in EPIC. BMC Med, 2019. 17(1): p. 178. 

11. Lecuyer, L., A. Victor Bala, M. Deschasaux, N. Bouchemal, M. Nawfal Triba, M.P. Vasson, et 
al., NMR metabolomic signatures reveal predictive plasma metabolites associated with long-
term risk of developing breast cancer. Int J Epidemiol, 2018. 47(2): p. 484-494. 

12. Kuhn, T., A. Floegel, D. Sookthai, T. Johnson, U. Rolle-Kampczyk, W. Otto, et al., Higher 
plasma levels of lysophosphatidylcholine 18:0 are related to a lower risk of common cancers 
in a prospective metabolomics study. BMC Med, 2016. 14: p. 13. 

13. Moore, S.C., M.C. Playdon, J.N. Sampson, R.N. Hoover, B. Trabert, C.E. Matthews, et al., A 
Metabolomics Analysis of Body Mass Index and Postmenopausal Breast Cancer Risk. J Natl 
Cancer Inst, 2018. 110(6): p. 588-597. 

14. Playdon, M.C., R.G. Ziegler, J.N. Sampson, R. Stolzenberg-Solomon, H.J. Thompson, M.L. 
Irwin, et al., Nutritional metabolomics and breast cancer risk in a prospective study. Am J Clin 
Nutr, 2017. 106(2): p. 637-649. 

15. Zeleznik, O.A., R. Balasubramanian, Y. Zhao, L. Frueh, S. Jeanfavre, J. Avila-Pacheco, et al., 
Circulating amino acids and amino acid-related metabolites and risk of breast cancer among 
predominantly premenopausal women. Npj Breast Cancer, 2021. 7(1). 

16. Lecuyer, L., C. Dalle, B. Lyan, A. Demidem, A. Rossary, M.P. Vasson, et al., Plasma 
Metabolomic Signatures Associated with Long-term Breast Cancer Risk in the SU.VI.MAX 
Prospective Cohort. Cancer Epidemiology Biomarkers & Prevention, 2019. 28(8): p. 1300-
1307. 



20 
 

17. Baenke, F., B. Peck, H. Miess, and A. Schulze, Hooked on fat: the role of lipid synthesis in 
cancer metabolism and tumour development. Dis Model Mech, 2013. 6(6): p. 1353-63. 

18. Santos, C.R. and A. Schulze, Lipid metabolism in cancer. FEBS J, 2012. 279(15): p. 2610-23. 
19. Feingold, K.R. and C. Grunfeld, Introduction to Lipids and Lipoproteins, in Endotext, K.R. 

Feingold, et al., Editors. 2000: South Dartmouth (MA). 
20. Krokstad, S., A. Langhammer, K. Hveem, T.L. Holmen, K. Midthjell, T.R. Stene, et al., Cohort 

Profile: the HUNT Study, Norway. Int J Epidemiol, 2013. 42(4): p. 968-77. 
21. Dona, A.C., B. Jimenez, H. Schafer, E. Humpfer, M. Spraul, M.R. Lewis, et al., Precision high-

throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale 
metabolic phenotyping. Anal Chem, 2014. 86(19): p. 9887-94. 

22. Tomasi, G., F. Savorani, and S.B. Engelsen, icoshift: An effective tool for the alignment of 
chromatographic data. J Chromatogr A, 2011. 1218(43): p. 7832-40. 

23. Cloarec, O., M.E. Dumas, A. Craig, R.H. Barton, J. Trygg, J. Hudson, et al., Statistical total 
correlation spectroscopy: an exploratory approach for latent biomarker identification from 
metabolic 1H NMR data sets. Anal Chem, 2005. 77(5): p. 1282-9. 

24. Jimenez, B., E. Holmes, C. Heude, R.F. Tolson, N. Harvey, S.L. Lodge, et al., Quantitative 
Lipoprotein Subclass and Low Molecular Weight Metabolite Analysis in Human Serum and 
Plasma by (1)H NMR Spectroscopy in a Multilaboratory Trial. Anal Chem, 2018. 90(20): p. 
11962-11971. 

25. Bjelland, E.K., S. Hofvind, L. Byberg, and A. Eskild, The relation of age at menarche with age 
at natural menopause: a population study of 336 788 women in Norway. Human 
Reproduction, 2018. 33(6): p. 1149-1157. 

26. Clavel-Chapelon, F. and E.N. Group, Cumulative number of menstrual cycles and breast 
cancer risk: results from the E3N cohort study of French women. Cancer causes & control : 
CCC, 2002. 13(9): p. 831-838. 

27. Collaborative Group on Hormonal Factors in Breast, C., Breast cancer and hormone 
replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 
52,705 women with breast cancer and 108,411 women without breast cancer. . Lancet, 1997. 
350(9084): p. 1047-59. 

28. Collaborative Group on Hormonal Factors in Breast, C., Type and timing of menopausal 
hormone therapy and breast cancer risk: individual participant meta-analysis of the 
worldwide epidemiological evidence. Lancet, 2019. 394(10204): p. 1159-1168. 

29. Lacey, J.V., Jr., A.R. Kreimer, S.S. Buys, P.M. Marcus, S.C. Chang, M.F. Leitzmann, et al., 
Breast cancer epidemiology according to recognized breast cancer risk factors in the 
Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial Cohort. BMC Cancer, 
2009. 9: p. 84. 

30. Morrisett, J.D., R.L. Jackson, and A.M. Gotto Jr, Lipoproteins: structure and function. Annual 
review of biochemistry, 1975. 44(1): p. 183-207. 

31. Jobard, E., L. Dossus, L. Baglietto, M. Fornili, L. Lecuyer, F.R. Mancini, et al., Investigation of 
circulating metabolites associated with breast cancer risk by untargeted metabolomics: a 
case-control study nested within the French E3N cohort. British Journal of Cancer, 2021. 
124(10): p. 1734-1743. 

32. Bendinelli, B., A. Vignoli, D. Palli, M. Assedi, D. Ambrogetti, C. Luchinat, et al., Prediagnostic 
circulating metabolites in female breast cancer cases with low and high mammographic 
breast density. Sci Rep, 2021. 11(1): p. 13025. 

33. Key, T.J., P.N. Appleby, G.K. Reeves, R.C. Travis, A.J. Alberg, A. Barricarte, et al., Sex 
hormones and risk of breast cancer in premenopausal women: a collaborative reanalysis of 
individual participant data from seven prospective studies. Lancet Oncology, 2013. 14(10): p. 
1009-1019. 



21 
 

34. Key, T.J., P.N. Appleby, G.K. Reeves, A.W. Roddam, K.J. Helzlsouer, A.J. Alberg, et al., 
Circulating sex hormones and breast cancer risk factors in postmenopausal women: 
reanalysis of 13 studies. British Journal of Cancer, 2011. 105(5): p. 709-722. 

35. Kaaks, R., S. Rinaldi, T.J. Key, F. Berrino, P.H.M. Peeters, C. Biessy, et al., Postmenopausal 
serum androgens, oestrogens and breast cancer risk: the European prospective investigation 
into cancer and nutrition. Endocrine-Related Cancer, 2005. 12(4): p. 1071-1082. 

36. Zhang, X.H., S.S. Tworoger, A.H. Eliassen, and S.E. Hankinson, Postmenopausal plasma sex 
hormone levels and breast cancer risk over 20 years of follow-up. Breast Cancer Research 
and Treatment, 2013. 137(3): p. 883-892. 

37. Key, T.J., P.N. Appleby, G.K. Reeves, A. Roddam, J.F. Dorgan, C. Longcope, et al., Body mass 
index, serum sex hormones, and breast cancer risk in postmenopausal women. J Natl Cancer 
Inst, 2003. 95(16): p. 1218-26. 

38. Mesalic, L., E. Tupkovic, S. Kendic, and D. Balic, Correlation between hormonal and lipid 
status in women in menopause. Bosnian Journal of Basic Medical Sciences, 2008. 8(2): p. 
188-192. 

39. Palmisano, B.T., L. Zhu, and J.M. Stafford, Role of Estrogens in the Regulation of Liver Lipid 
Metabolism. Adv Exp Med Biol, 2017. 1043: p. 227-256. 

40. Faulds, M.H., C.Y. Zhao, K. Dahlman-Wright, and J.A. Gustafsson, The diversity of sex steroid 
action: regulation of metabolism by estrogen signaling. Journal of Endocrinology, 2012. 
212(1): p. 3-12. 

41. Chlebowski, R.T., G.L. Anderson, A.K. Aragaki, J.E. Manson, M.L. Stefanick, K. Pan, et al., 
Association of Menopausal Hormone Therapy With Breast Cancer Incidence and Mortality 
During Long-term Follow-up of the Women's Health Initiative Randomized Clinical Trials. 
JAMA, 2020. 324(4): p. 369-380. 

42. Roman, M., S. Sakshaug, S. Graff-Iversen, S. Vangen, E. Weiderpass, G. Ursin, et al., 
Postmenopausal hormone therapy and the risk of breast cancer in Norway. Int J Cancer, 
2016. 138(3): p. 584-93. 

43. Ivanova, E.A., V.A. Myasoedova, A.A. Melnichenko, A.V. Grechko, and A.N. Orekhov, Small 
Dense Low-Density Lipoprotein as Biomarker for Atherosclerotic Diseases. Oxidative 
Medicine and Cellular Longevity, 2017. 2017. 

44. Pardhe, B.D., S. Ghimire, J. Shakya, S. Pathak, S. Shakya, A. Bhetwal, et al., Elevated 
Cardiovascular Risks among Postmenopausal Women: A Community Based Case Control 
Study from Nepal. Biochemistry Research International, 2017. 2017: p. 3824903. 

45. Shenoy, R. and P. Vernekar. Fasting Lipid Profile in Pre- and Post-Menopausal Women: A 
Prospective Study. 2015. 

46. Carr, M.C., The emergence of the metabolic syndrome with menopause. J Clin Endocrinol 
Metab, 2003. 88(6): p. 2404-11. 

47. Alsaker, M.D., I. Janszky, S. Opdahl, L.J. Vatten, and P.R. Romundstad, Weight change in 
adulthood and risk of postmenopausal breast cancer: the HUNT study of Norway. Br J 
Cancer, 2013. 109(5): p. 1310-7. 

48. Liu, K., W.N. Zhang, Z.M. Dai, M. Wang, T. Tian, X.H. Liu, et al., Association between body 
mass index and breast cancer risk: evidence based on a dose-response meta-analysis. Cancer 
Management and Research, 2018. 10: p. 143-150. 

49. Johnson, K.E., K.M. Siewert, D. Klarin, S.M. Damrauer, K.M. Chang, P.S. Tsao, et al., The 
relationship between circulating lipids and breast cancer risk: A Mendelian randomization 
study. PLoS Med, 2020. 17(9): p. e1003302. 

50. Nowak, C. and J. Ärnlöv, A Mendelian randomization study of the effects of blood lipids on 
breast cancer risk. Nature Communications, 2018. 9(1): p. 3957. 

51. Beeghly-Fadiel, A., N.K. Khankari, R.J. Delahanty, X.-O. Shu, Y. Lu, M.K. Schmidt, et al., A 
Mendelian randomization analysis of circulating lipid traits and breast cancer risk. 
International Journal of Epidemiology, 2019. 49(4): p. 1117-1131. 



22 
 

52. Zeleznik, O.A., R. Balasubramanian, Y. Zhao, L. Frueh, S. Jeanfavre, J. Avila-Pacheco, et al., 
Circulating amino acids and amino acid-related metabolites and risk of breast cancer among 
predominantly premenopausal women. npj Breast Cancer, 2021. 7(1): p. 54. 

53. Lecuyer, L., C. Dalle, S. Lefevre-Arbogast, P. Micheau, B. Lyan, A. Rossary, et al., Diet-Related 
Metabolomic Signature of Long-Term Breast Cancer Risk Using Penalized Regression: An 
Exploratory Study in the SU.VI.MAX Cohort. Cancer Epidemiol Biomarkers Prev, 2020. 29(2): 
p. 396-405. 

54. Jobard, E., L. Dossus, L. Baglietto, M. Fornili, L. Lécuyer, F.R. Mancini, et al., Investigation of 
circulating metabolites associated with breast cancer risk by untargeted metabolomics: a 
case–control study nested within the French E3N cohort. British Journal of Cancer, 2021. 

55. Craig, A., O. Cloarec, E. Holmes, J.K. Nicholson, and J.C. Lindon, Scaling and normalization 
effects in NMR spectroscopic metabonomic data sets. Anal Chem, 2006. 78(7): p. 2262-7. 

56. Wang, T.J., M.G. Larson, R.S. Vasan, S. Cheng, E.P. Rhee, E. McCabe, et al., Metabolite 
profiles and the risk of developing diabetes. Nat Med, 2011. 17(4): p. 448-53. 

 

  



23 
 

Figure captions 

Figure 1. Scores and loading plots from PLS-DA for discrimination of pre- or postmenopausal women 

from their lipid profiles (analysis has been restricted to the controls). The model has been 

orthogonalized. Prediction accuracy = 69.0% (P-value < .001) with 4 latent variables included. LV1: first 

latent variable; LV2: second latent variable; TP: total plasma; VLDL: very-low density lipoprotein; IDL: 

intermediate-density lipoprotein; LDL: low-density lipoprotein; HDL: high-density lipoprotein; CH: 

cholesterol; FC: free cholesterol; PL: phospholipids; TG: triglycerides. AB: apolipoprotein-B; A1: 

apolipoprotein-A1; A2: apolipoprotein-A2. 

Figure 2. Odds ratio per SD for lipoprotein subfractions associated with long-term breast cancer risk 

in premenopausal women participating in the HUNT2 study. Colored subfractions indicate 

subfractions significantly associated with breast cancer risk in the fully adjusted model, after 

correction for multiple testing. Each color represents a property of the subfraction. TP: total plasma; 

VLDL: very-low density lipoprotein; IDL: intermediate-density lipoprotein; LDL: low-density 

lipoprotein; HDL: high-density lipoprotein; CH: cholesterol; FC: free cholesterol; PL: phospholipids; TG: 

triglycerides. AB: apolipoprotein-B; A1: apolipoprotein-A1; A2: apolipoprotein-A2. 

Figure 3. Lipoprotein metabolism. Exogeneous pathway: The exogeneous pathway starts in the 

intestine, where dietary lipids are hydrolyzed. The lipids are then assembled to chylomicrons, which 

are transported through the bloodstream to the liver. In this process free fatty acids are delivered to 

adipose tissue and muscles through the enzyme lipoprotein lipase (LPL), for energy and storage. 

Endogeneous pathway: VLDL is synthesized by the liver and transported through the bloodstream. 

There free fatty acids are delivered to adipose tissue and muscles through LPL, and VLDLs are reduced 

to IDLs and finally to LDLs as fatty acids are cleaved off. These are taken up by the liver, however a 

residual fraction of LDLs turn into foam cells and may form atherosclerotic plaque [19]. The reverse 

transport pathway: HDL is synthesized in the liver and enters the bloodstream, where it removes 

cholesterol from peripheral tissue, through the action of Apo-A which acts as an acceptor, and 
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transfers it back to the liver. Lipoprotein subfractions are numbered according to increasing density, 

as illustrated for VLDL in the figure. 

 

Table captions 
 

Table 1. Baseline characteristics for the study cohort. 

Table 2. Characteristics of breast cancer specific variables for the cases. 

Table 3. Odds ratios and 95% confidence intervals (CI) per 1 SD increase for lipoprotein subfractions 

significantly associated with risk of overall breast cancer (p-value < 0.05 and q-value < 0.05) in 

premenopausal women of the HUNT2 study. 
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Tables 

Table 1. Baseline characteristics for the study cohort. 

Variable 
Breast cancer cases  

(n = 1199) 
Controls 

(n = 1199) P-valuea 
Age at blood collection (years) 52.7 [14.1] 52.7 [14.2] .93 
Age at first menstrual period (years) 13.3 [1.4] 13.4 [1.4] .45 
Missing 48 (4.0%) 66 (5.5%)  
Number of full-term pregnancies (n)   <.001 * 
0 119 (9.9%) 86 (7.2%)  
1 136 (11.3%) 130 (10.8%)  
2 419 (34.7%) 401 (33.4%)  
3 334 (27.9%) 336 (28.0%)  
≥ 4 188 (15.7%) 236 (19.7%)  
Missing 3 (0.3%) 10 (0.8%)  
Age at first full-term pregnancy 
(years) 23.8 [4.6] 23.4 [4.1] .03* 
Missing 127 (10.6%) 100 (8.3%)  
Age at last full-term pregnancy 
(years) 30.5 [5.2] 30.3 [5.1] .46 
Missing 256 (21.3%) 226 (18.8%)  
Family history of cancer (mother) 
(n) 173 (14.4%) 144 (12.0%) .86 
Hormone replacement therapyb (n)   .07 
Systemic use  153 (12.8%) 115 (9.6%)  
Local use 38 (3.2%) 41 (3.4%)  
Previous use 61 (5.1%) 74 (6.2%)  
Never use 697 (58.1%) 720 (60.0%)  
Missing 250 (20.9%) 249 (20.8%)  
Menopausal agec (years) 48.0 [5.0] 47.4 [5.2] .18 
Missing 964 (80.4%) 951 (79.3%)  
Removal of part of or one ovary (n)   .60 
Yes 49 (4.1%) 43 (3.6%)  
No 226 (18.8%) 218 (18.2%)  
Unknown / Missing 924 (77.1%) 938 (78.2%)  
Removal of both ovaries (n)   .30 
Yes 32 (2.7%) 32 (2.7%)  
No 357 (29.8%) 354 (29.5%)  
Unknown / Missing 810 (67.6%) 813 (67.8%)  
Fasting status at blood collection  
(time since last meal)   .92 
< 3 h 830 (69.2%) 826 (68.9%)  
3-6 h 308 (25.7%) 307 (25.6%)  
> 6 h 55 (4.6%) 62 (5.2%)  
Unknown 6 (0.5%) 4 (0.3%)  
Alcohol consumption at recruitment 
(freq./month) 1.82 1.50 .002* 
Unknown 112 (9.3%) 114 (9.5%)  
Height (cm) 164.5 [6.3] 163.9 [6.3] .02* 
Missing 2 (0.2%) 8 (0.7%)  
Weight (kg) 71.9 [12.4] 71.0  [12.7] .08 
Missing 4 (0.3%) 9 (0.8%)  
BMI (kg/m2) 26.6 [4.6] 26.5 [4.6] .41 
Missing 4 (0.3%) 9 (0.8%)  
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Waist circumference (cm) 82.3 [11.5] 82.2 [11.3] .97 
Missing 6 (0.5%) 12 (1.0%)  
Hip circumference (cm) 102.6 [9.4] 102.5 [9.4] .68 
Missing 6 (0.5%) 12 (1.0%)  
WHR 0.80 [0.06] 0.80 [0.06] .56 
Missing 6 (0.5%) 12 (1.0%)  
Current smoker (n)   .09 
Yes 367 (30.6%) 333 (27.8%)  
No 762 (63.6%) 807 (67.3%)  
Missing 70 (5.8%) 59 (4.9%)  
Light exercise duration last 12 months in hours/week (n) .99 
0 86 (7.4%) 87 (7.4%)  
< 1 185 (15.4%) 178 (14.8%)  
1 – 2  403 (33.6%) 404 (33.7%)  
> 3 335 (27.9%) 329 (27.4%)  
Missing 190 (15.8%) 201 (16.8%)  
Hard exercise duration last 12 months in hours/week (n) .71 
0 354 (29.5%) 369 (30.8%)  
< 1 191 (15.9%) 182 (15.2%)  
1 - 2 150 (12.5%) 143 (11.9%)  
> 3 57 (4.8%) 48 (4.0%)  
Missing 447 (37.3%) 457 (38.1%)  

Baseline characteristics for the HUNT2 breast cancer study cohort. SD: Standard deviation; BMI: Body mass index; WHR: 
Waist-to-hip ratio. Values are reported as mean [SD]. a P-value for the comparison between breast cancer cases and controls 
using Student t-test for continuous variables or Pearson’s Chi-squared test for categorical variables; b Current use of systemic 
estrogen in the form of tablet or patches; c Missing values include women that have not reached menopause and women 
that did not give an answer; * Implies significance (P-value < .05) 
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Table 2. Characteristics of breast cancer specific variables for the cases. 

Variable Mean [SD] or Counts 
Length of follow-up from blood collection (years) 11.7 [6.1] 
Age at diagnosis (years) 64.4 [13.3] 
ER statusa 
Positive 639 (53.3%) 
Negative 123 (10.3%) 
Missing 437 (36.4%) 
PgR status 
Positive 527 (44.0%) 
Negative 233 (19.4%) 
Missing 439 (36.3%) 
HER2 status 
Positive 132 (11.0%) 
Negative 538 (44.9%) 
Missing 529 (45.0%) 
Local metastasisb   362 (30.2%) 
Distant metastasis  35 (2.9%) 
Tumor size (mm) 17 (0.9-120.0)* 
Stage (TNM classification) 
I  499 (41.6%) 
II 331 (27.6%) 
III  90 (7.5%) 
IV 35 (2.9%) 
Unknown  119 (9.9%) 
Detection method 
At screening 372 (31.0%) 
Interval cancer 87 (7.3%) 
Outside the screening program 740 (61.7%) 

Baseline characteristics of breast cancer specific variables for the cases in the HUNT2 breast cancer study cohort. SD: 
Standard deviation; ER: Estrogen receptor; PgR: Progesterone receptor; HER2: Human epidermal growth factor receptor 2; 
TNM: Tumor, nodes and metastases. aThe cut-off value for defining a breast tumor ER- was changed in 2010 from <10% to 
<1% in Norway; bMetastasis in reginal lymph nodes, or a local infiltration in skin and/or in the wall of the breast; *Median 
and range. 
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Table 3. Odds ratios and 95% confidence intervals (CI) per 1 SD increase for lipoprotein subfractions significantly associated 
with risk of overall breast cancer (p-value < 0.05 and q-value < 0.05) in premenopausal women of the HUNT2 study. 

  Baseline model* Adjusted model** 
  OR (95% CI) P Padj OR (95% CI) P Padj 

Total plasma  TPA2 1.16 (1.01,1.33) .04 .11 1.12 (0.97,1.29) .11 .209 
TPTG 0.81 (0.69,0.95) .009 .046 0.81 (0.69,0.96) .01 .07 

VLDL 

VLAB 0.78 (0.67,0.91) .002 .04 0.77 (0.65,0.90) .002 .049 
VLCH 0.80 (0.69,0.93) .005 .046 0.80 (0.67,0.94) .007 .049 
VLFC 0.79 (0.67,0.92) .002 .04 0.78 (0.66,0.92) .003 .049 
VLPL 0.79 (0.68,0.92) .002 .04 0.78 (0.66,0.91) .002 .049 
VLTG 0.82 (0.70,0.95) .009 .046 0.81 (0.69,0.96) .01 .07 

VLDL-1 

V1CH 0.84 (0.72,0.98) .02 .08 0.84 (0.72,0.99) .04 .12 
V1FC 0.83 (0.72,0.96) .02 .06 0.83 (0.71,0.98) .03 .08 
V1PL 0.85 (0.73,0.98) .03 .08 0.85 (0.72,0.99) .04 .12 
V1TG 0.86 (0.74,1.00) .05 .12 0.87 (0.74,1.01) .08 .16 

VLDL-2 

V2CH 0.79 (0.68,0.92) .003 .04 0.79 (0.67,0.93) .005 .049 
V2FC 0.81 (0.69,0.94) .007 .046 0.81 (0.69,0.95) .01 .06 
V2PL 0.80 (0.69,0.93) .003 .04 0.80 (0.68,0.93) .005 .049 
V2TG 0.80 (0.69,0.93) .004 .04 0.80 (0.69,0.94) .006 .049 

VLDL-3 

V3CH 0.81 (0.69,0.94) .007 .046 0.80 (0.68,0.95) .01 .06 
V3FC 0.80 (0.69,0.94) .005 .046 0.80 (0.67,0.94) .007 .049 
V3PL 0.79 (0.68,0.92) .003 .04 0.78 (0.67,0.92) .003 .049 
V3TG 0.80 (0.69,0.93) .004 .04 0.79 (0.68,0.93) .004 .049 

VLDL-4 

V4CH 0.82 (0.70,0.96) .01 .06 0.82 (0.70,0.96) .02 .07 
V4FC 0.83 (0.71,0.97) .02 .07 0.82 (0.69,0.97) .02 .07 
V4PL 0.81 (0.69,0.94) .006 .046 0.80 (0.68,0.93) .005 .049 
V4TG 0.81 (0.69,0.94) .006 .046 0.80 (0.68,0.93) .004 .049 

VLDL-5 V5CH 0.86 (0.75,0.99) .04 .10 0.84 (0.73,0.97) .02 .07 
V5PL 0.84 (0.73,0.96) .01 .06 0.82 (0.71,0.94) .006 .049 

IDL IDPL 0.82 (0.70,0.97) .02 .07 0.81 (0.68,0.97) .02 .07 
IDTG 0.83 (0.71,0.96) .02 .06 0.83 (0.71,0.98) .03 .08 

LDL LDTG 0.83 (0.70,0.96) .02 .06 0.82 (0.69,0.97) .03 .07 

LDL-5 
L5AB 0.86 (0.74,0.99) .04 .10 0.83 (0.72,0.97) .03 .07 
L5CH 0.88 (0.76,1.01) .07 .13 0.85 (0.73,0.98) .03 .09 
L5PL 0.87 (0.75,1.01) .06 .12 0.84 (0.72,0.97) .02 .07 

LDL-6 L6AB 0.84 (0.72,0.98) .03 .08 0.85 (0.72,1.00) .05 .12 
L6TG 0.84 (0.72,0.98) .03 .10 0.86 (0.73,1.00) .06 .146 

HDL HDTG 0.85 (0.75,0.96) .009 .046 0.85 (0.74,0.96) .01 .06 
HDL-1 H1TG 0.86 (0.76,0.98) .02 .07 0.87 (0.76,0.98) .03 .09 
HDL-2 H2TG 0.88 (0.78,1.00) .04 .11 0.89 (0.78,1.01) .06 .15 

HDL-3 H3CH 1.15 (1.01,1.30) .04 .10 1.11 (0.98,1.27) .11 .21 
H3FC 1.16 (1.01,1.32) .04 .10 1.13 (0.98,1.29) .10 .19 

HDL-4 H4TG 0.85 (0.75,0.96) .01 .06 0.83 (0.73,0.95) .008 .049 
TP: total plasma; VLDL: very-low density lipoprotein; IDL: intermediate-density lipoprotein; LDL: low-density lipoprotein; 
HDL: high-density lipoprotein; CH: cholesterol; FC: free cholesterol; PL: phospholipids; TG: triglycerides. AB: apolipoprotein-
B; A2: apolipoprotein-2. 
*Baseline model: adjusted for lab for NMR analyses and matching variable (age at participation in the HUNT2 study) 
**Adjusted model: in addition to lab and age, this model is adjusted for no. of full-term pregnancies, age at menarche, 
BMI, alcohol consumption (frequency per month) and smoking status. Bold font indicates variables significant in the 
adjusted model after multiple testing correction. 
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