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Abstract

Lie group integrators are numerical methods used for solving differential equa-
tions evolving on a manifold by means of a Lie group action. This thesis introduces
the type of Lie group integrators known as Runge-Kutta-Munthe-Kaas methods.
It is possible to choose between different coordinate maps and Lie groups. Here
we will consider on the three coordinate maps called canonical coordinates of the
first and second kind and the Padé(1,1) transform. We shall apply these coordin-
ate maps to the Lie groups SO(3), Sp(1), SE(3), and cSp(1). This thesis provides
numerical experiments on Euler’s free rigid body and the N -fold three dimensional
pendulum.
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Sammendrag

Liegruppeintegratorer er numeriske metoder brukt til å løse differensiallikninger
som utvikler seg på mangfoldigheter via Liegruppevirkninger. I denne masteropp-
gaven introduseres en type Liegruppeintegrator som kalles Runge-Kutta-Munthe-
Kaas-metoder. Det er mulig å bruke ulike koordinatavbildninger og Liegrupper.
Her vil vi vurdere tre forskjellige koordinatavbildninger, som kalles kanoniske
koordinater av første og andre slag og Padé(1,1)-transformasjonen. Vi vil bruke
disse koordinatavbildningene på Liegruppene SO(3), Sp(1), SE(3) og cSp(1). Denne
oppgaven inkluderer numeriske eksperimenter på Eulers frie stivlegeme og på N
koplede pendler i tre dimensjoner.
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Chapter 1

Introduction

Many physical problems can be described with Lie groups and manifolds. A simple
example is Euler’s free rigid body that has a configuration space made up of rota-
tion in three dimensions. This is often portrayed using the Lie group SO(3). In this
case solution evolves on a sphere, which is a manifold. Many classical methods do
not preserve properties of the manifold and the Lie group, like the orthogonality
of SO(3).

In the literature there are several different types of methods utilizing man-
ifolds and Lie groups. In 1993, Crouch and Grossman [1] developed a method
using flows of vector fields in a Lie algebra. In 1994 Lewis and Simo [2] wrote
a paper on integrators on Hamiltonian systems based on Lie groups. This thesis
focuses on the methods developed in four papers, two written by Munthe-Kaas in
published in 1995 and 1998 [3, 4], one by Munthe-Kaas and Zanna from 1999 [5],
and one by Munthe-Kaas in 1999 [6]. There is also Commutator free Lie group
integrators [7], and the α method introduced by Hilber, Hughes, and Taylor [8]
are generalized for Lie groups in [9–11].

An important component of a Lie group integrator is the coordinate map. The
aforementioned papers by Munthe-Kaas all use the exponential map. It is however
possible to consider other choices of mappings. In a paper by Müller from 2016
[12], Müller examines two different coordinate mappings, the exponential map
and the Cayley transform. Müller describes how these mappings, as well as their
differentials, have specific formulations for the Lie groups SO(3) and SE(3). These
Lie groups are formed by spacial rotation and rigid body motions respectively, both
in three dimensions. Additionally, Müller describes unit quaternions and dual unit
quaternions, how they can be used in place of SO(3) and SE(3) respectively, and
the specific expressions of the exponential map and the Cayley transform that
arise in this setting. This thesis aims to expand upon this paper by also including
canonical coordinates of the second kind and the inverses of the differentials, and
examining a variation of the classical Cayley transform, which is often referred to
as Padé(1,1).

This thesis starts with an introduction to Lie group integrators in chapter 2.
Chapter 3 starts with introducing the Lie group SO(3) and finding Lie group spe-
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2 Mathiassen: Coordinate maps for Lie group integrators

cific versions of three coordinate mappings known as the exponential map, ca-
nonical coordinates of the second kind, and the Cayley transform, as well as the
inverses of their differentials. Then the same is done for unit quaternions. As men-
tioned, the configuration space of Euler’s free rigid body is rotations. In chapter
4, we will see how Runge-Kutta-Munthe-Kaas methods can be applied to this par-
ticular problem using SO(3) and unit quaternions, as well as the three coordinate
maps. Chapter 5 covers covers the three coordinate mappings for SE(3) and dual
unit quaternions, before section 6 shows how this can be applied to the N -fold
pendulum.



Chapter 2

Background: Lie group
integrators

2.1 Manifolds, tangents, and vector fields

A d-dimensional M is a topological space covered by a collection of open subsets
U ⊂M called coordinate charts and one-to-one and onto maps ϕ : U → V ⊂ Rd ,
where V is an open, connected subset of Rd . Then (U ,ϕ) define coordinates on
M. M is a smooth manifold if the maps ϕ′′ = ϕ′ ◦ ϕ−1 are smooth where they
are defined, i.e. on ϕ(U ∩ U ′) to ϕ′(U ∩ U ′) [13]. The choice of coordinate map
ϕ plays an important role when preforming computations on a manifold.

An example of a manifold is Rd , which is a d-dimensional manifold covered
with a single chart. Another is the unit sphere Sd = {x ∈ Rd+1 | ∥x∥2 = 1}.

A tangent to a manifold can be defined by differentiating a curve. Let p ∈M,
and let ρ(t) ∈M be a smooth curve where ρ(0) = p. Then

v p =
d
dt

�

�

�

�

t=0
ρ(t).

The set of all tangent vectors at p forms the tangent space at p, which is denoted
as T M |p. The union of all tangent spaces at all points on a manifold is called a
tangent bundle of M, and is denoted T M =

⋃

p∈M T M |p. The tangent bundle
of a d-dimensional manifold is itself a manifold, with dimension 2d.

A vector field F on M is a smooth function F : M → T M such that F(p) ∈
T M |p for all p ∈M. The collection of all vector fields on M will be denoted by
X(M).

2.2 Lie groups, invariant vector fields, and Lie algebras

A Lie group G is simultaneously a group, which has a binary operation and sat-
isfies the axioms of a group, and a manifold. One type of Lie groups are matrix

3



4 Mathiassen: Coordinate maps for Lie group integrators

Figure 2.1: Coordinate charts on a manifold

Lie groups, where the elements of the group are matrices. Two of the Lie groups
covered in this thesis, SO(3) and SE(3), are matrix Lie groups.

One can define left and right multiplication maps on G. Let g, h ∈ G. Then the
left multiplication map Lg : G→ G is given by Lg(h) = g ·h, or simply Lg(h) = gh,
where · is the binary operation G is equipped with. The tangent map of the left
multiplication are defined as

T Lg(v) =
d
dt

�

�

�

�

t=0
Lg(γ(t)) =

d
dt

�

�

�

�

t=0
gγ(t),

where γ(t) ∈ G is a curve satisfying γ(0) = h and γ̇(t) = v ∈ ThG. A vector field v
is left invariant if

T Lg(v) = v, g ∈ G.

The set of all left invariant vector fields forms a vector space. Similarly, right mul-
tiplication Rg : G→ G is Rg(h) = hg. From this, the definition of the tangent map
of right multiplication and a right invariant vector field follows.

The Lie algebra g corresponding to a Lie group G can be defined as the tangent
space at the identity e, in which case g = TeG. A Lie algebra is equipped with a
Lie bracket, which is a bilinear, skew-symmetric mapping [·, ·] : g×g → g, that
satisfies the Jacobi identity

[u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0 ∀u, v, w ∈ g .
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An equivalent definition of the Lie algebra is that g is the vector space of all left
invariant vector fields on G. It is possible to construct a left invariant vector field by
using T Lg to translate vectors from one vector space to another. If X v|e = v ∈ TeG,
then X v|g = T Lg(v) ∈ Tg G. Let v, w be invariant vector fields on G. Then the Lie
bracket [v, w] is also an invariant vector field, since

T Lg([v, w]) = [T Lg(v), T Lg(w)] = [v, w].

This can also be done using right invariant vector fields.
For matrix Lie groups, formula for Lie bracket takes the form

[A, B] = AB − BA, A, B ∈ G.

2.3 The adjoint operator

The adjoint operator Adg : g→ g is defined as

Adg(ξ) = T Lg ◦ TRg−1(ξ)

for g ∈ G and ξ ∈ g. The Lie algebra g has a dual space g∗, that refers to the
set of linear functions on g. The dual space is connected to the Lie algebra with a
duality pairing 〈·, ·〉. Then the coadjoint operator is then defined as

〈Ad∗g(µ),ξ〉= 〈µ, Adg(ξ)〉

for ξ ∈ g and µ ∈ g∗ [14].
The Lie bracket can be found by differentiating the adjoint operator. Let g(t)

be a curve such that g(0) = e and ġ(0) = X . Then

[X , Y ] =
d
dt

�

�

�

�

t=0
Adg(t)(Y ).

2.4 Coordinate mappings

In a Lie group G, the neighbourhood around zero in g can be used as a coordinate
map around g ∈ G. Let Φ : g → G be a coordinate map where Φ(0) = e. Then
φ(u)g can be used to describe coordinates around g.

A natural choice of coordinate map is the exponential map. For a Lie group,
the exponential can be defined as the flow of left invariant vector fields at initial
value e. Then, for a curve a(t) ∈ G and a v ∈ g, we have the differential equation

ȧ(t) = X v|a(t) = T La(t)(v), a(0) = e.

Then a(1) = exp(v).



6 Mathiassen: Coordinate maps for Lie group integrators

For a mapping Φ, the right trivialized tangent of said mapping is a function
dΦu : g×g→ g such that

dΦu(v) =
d
dt

�

�

�

�

t=0
Φ(u+ t v) ·Φ−1(u) (2.1)

for u, v ∈ g.
In this thesis we will require Φ(0) = e and dΦ−1

0 = e.

2.5 Lie group actions

A Lie group acts upon a manifold with a group action Λ : G ×M → M, and
satisfies the following properties:

Λ(e, x) = x ∀x ∈M,

Λ(g(Λ(h, x)) = Λ(g · h, x) ∀x ∈M,∀g, h ∈ G.

Common choices includes Λ(g,ξ) = Adg(ξ) and Λ(g,µ) = Ad∗g−1(µ), both of
which will be used in the numerical examples in later chapters.

There is also a Lie algebra action λ : g×M→M. Suppose these actions are
related through a coordinate map Φ : g→ G such that

λ(y, p) = Λ(Φ(v), p), v ∈ g, p ∈M . (2.2)

Using the Lie algebra action, the infinitesimal generator is given by λ∗ : g→ X(M)
as

λ∗(v)(p) =
d
dt

�

�

�

�

t=0
λ(t v, p)

for v ∈ g and p ∈M. In practise, it is sufficient to note that since Φ(0) = e, one
can simply find

λ∗(v)(p) =
d
dt

�

�

�

�

t=0
Λ(g(t), p)

for a curve g(t) that with g(0) = e and ġ(0) = v, thus avoiding having Φ as part
of the calculations.

2.6 Lie group methods

A Lie group method aims to solve a differential equation evolving on a manifold
M,

ẏ(t) = F(y(t)), y(t0) = y0 ∈M, (2.3)

where F ∈ X(M) is a smooth vector field with flow Φ.
In his paper from 1999, Munthe-Kaas [6] assumes that the vector field F is

related to a map f : M→ g such that

F(y) = λ∗( f (y))(y).
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We can define a vector field f̃ : g→ g as

f̃ (u) = dΦ−1
u ( f (λ(u, p)))

for a point p ∈M. Set λp(u) = λ(u, p). Then f̃ relates to F via

λ′p ◦ f̃ = F ◦λp,

where the composition applies to the second argument of F . Munthe-Kaas proved
this in [6]withΦ := exp. In [15] there is a proof based on the one by Munthe-Kaas,
with a general Φ. This result implies that (2.3) can be replaced with a differential
equation u̇ = f̃ (u) on g. The solution of (2.3) is then y(t) = λp(u(t)). Recall
definition of λ in (2.2). Then we arrive on the following equation

u̇= dΦ−1
u ( f (Λ(Φ(u), p))), u(0) = 0. (2.4)

The equation on a Lie algebra can then be solved by a classical integration
method. A Runge-Kutta-Munthe-Kaas method, or a RKMK method, solves (2.4)
using a Runge-Kutta method. One step of a RKMK method can be summed up as

1. finding an approximation u1 ≈ u(h) of (2.4), using one step of a RK method
and p = yn,

2. finding yn+1 = Φ(σ1)yn.

The methods that are used in the numeric sections of this thesis are RKMK meth-
ods.





Chapter 3

Rotation in three dimensions

This section builds on section 2 of Müller’s paper [12], which focuses on rotation
in three dimensions.

3.1 SO(3)

The special orthogonal group in three dimensions is defined as SO(3) = {Q ∈
R3×3|Y T Y = I3, det(Y ) = 1}, where I3 is the 3×3 identity matrix. The correspond-
ing Lie algebra is so(3) = {A∈ R3×3 | A+AT = 0}, the group of all skew-symmetric
matrices. A matrix û ∈ so(3) can be written as

û =









0 −u3 u2

u3 0 −u1

−u2 u1 0









and can be associated with a vector u = (u1, u2, u3) via the hat map u 7→ û.
Let û, v̂ ∈ so(3). Then

T Lû(v̂) = uv̂ , TRû(v̂) = v̂u. (3.1)

It is also interesting to note that u× v = û v . Using (3.1), one can find the adjoint
operator

Adg(û) = T Lg ◦ TRg−1(û) = g û g−1 =Ógu

for g ∈ G. Then Adg(u) = gu. This also allows us to identify Ad∗g−1(v) = gv .
The Lie bracket can then be found by differentiating the adjoint operator, which
means that

[u, v] = û v = u × v .

Since SO(3) is a matrix Lie group, the Lie bracket can also be found by

[û, v̂] = û v̂ − v̂ û = ẑ. (3.2)

By examining the resulting matrix ẑ ∈ so(3), it can be found that z = u × v . Thus
[u, v] = u × v , which is the same result as before.

9



10 Mathiassen: Coordinate maps for Lie group integrators

3.1.1 The exponential map

The exponential map, also called canonical coordinates of the first kind, exp : g→
G is a coordinate map that can be defined for any Lie group G [16]. How the exact
expression ends up looking might change depending on the Lie group, but it will
always be possible to find an expression. This is one of the reasons the exponential
map is so commonly used. A downside is that it can be computationally expensive.

Let û ∈ so(3). Since this is a square matrix, it is possible to use the matrix
exponent

exp(û) =
∞
∑

k=0

1
k!

ûk.

It is unfortunately an infinite sum. It can be approximated by using a finite number
of terms, but this method is still inefficient. It would be advantageous to find an
alternative that is less expensive to compute.

Note that û2 = −α2I3. Combing this with the formula for the matrix exponen-
tial, one gets

exp(û) = I3 +
∞
∑

n=0

(−1)nα2n+1

(2n+ 1)!
û +

∞
∑

n=0

(−1)nα2n+1

(2n+ 1)!
û2

= I3 +
sinα
α

û +
1− cosα
α2

û2

where α2 = ∥u∥22. This formula is often referred to as Rodrigues formula.
There exists a specific formula for the inverse of the differential in this setting.

Then d exp−1
û (v̂) = d exp−1

û v , with

d exp−1
û = I3 −

1
2

û +
1− α2 cot α2
α2

û2 (3.3)

for u, v ∈ so(3)[16]. A proof of this can be found in [17].
When implementing methods that use exp(û) and d exp−1

û , it is important
to keep in mind that both these formulae include division by α. This can cause
problems whenever α either is or is very close to zero. A way to deal with this
problem is to use Taylor series. For example, the relevant term from (3.3) can be
approximated with

1− α2 cot(α2 )

α2
=

1
12
+
α2

720
+
α4

30240
+O(α6).

Note that d exp−1
û (v̂) is the vector representation, not the skew symmetric matrix.

Keep in mind that the use of û in exp(û) and d exp−1
û signals that these are the

versions specific to SO(3). This will distinguish them from other versions belong-
ing to other Lie groups, which will be covered later on. This holds for the other
coordinate maps as well.
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3.1.2 Canonical coordinates of the second kind

The exponential map can also be called canonical coordinates of the first kind.
Unsurprisingly, canonical coordinated of the second kind is closely related to the
exponential map. Let e1, ...,ed be a basis for a d-dimensional Lie algebra g. An
element u ∈ g can be written as u = u1e1 + ...+ uded . Canonical coordinates of
the second kind can be defined as

ccsk(u) =
d
∏

i=1

exp (uie i).

As previously mentioned, exponentials can be computationally expensive. How-
ever, the elements uie i will consist of mainly zeros and in many cases it is possible
to compute exp(uiei) fairly inexpensively.

A basis for so(3), written as vectors, is e1 = (1, 0,0), e2 = (0, 1,0), e3 =
(0,0, 1). Then

exp(u1ê1) =









1 0 0

0 cos(u1) − sin(u1)

0 sin(u1) cos(u1)









which is easily computed. The other exponentials exp(u2ê2) and exp(u3ê3) look
similar. Let si := sin(ui) and ci := cos(ui) for i = 1,2, 3. Then an expression for
canonical coordinates of the second kind is

ccsk(û) =









c2c3 −c2s3 s2

c1s3 + s1s2c3 c1c3 − s1s2s3 −s1c2

s1s3 − c1s2c3 c1s2s3 + c1s1 c1c2









.

Recall the definition of the differential of the coordinate map seen in (2.1).
Applying this formula leads to

d ccskû(v̂) = v1 AdI3(ê1) + v2 Adexp(u1ê1)(ê2) + v2 Adexp(u1ê1)Adexp(u2ê2)(ê3).

The resulting skew symmetric matrix can be reconstructed into the form A(u)v ,
where A is a 3× 3 matrix only dependent on u. Then finding d ccskû(ŵ ) simply
means solving the equation A(u)v = w with respect to v . That means d ccsk−1

û (ŵ ) =
A(u)−1w , and we get

d ccsk−1
û =









1 sin u1 tan u2 − cos u1 tan u2

0 cos(u1) sin(u1)

0 − sin(u1) sec u2 cos(u1) sec u2









.

First it is worth noticing that ccsk(û), unlike exp(û), is well defined for all
values of α. Secondly, while d ccsk−1

û is not defined for α = (2n + 1)π/2, and
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computations are unreliable in this neighbourhood, this is much less likely to occur
than α being in a close neighbourhood of zero. A quick examination of the way
an RKMK method is used will reveal that the they always includes a step where
dΦ−1

0̂
, which clearly results in α= 0. Thus this coordinate map will lead to much

less use of approximations than the exponential requires.

3.1.3 The Cayley map

The Cayley map that will be used here is also known as Padé(1,1), which is defined
as

cay(A) =
�

In −
1
2

A
�−1�

In +
1
2

A
�

where A ∈ Rn×n. The more standard version of the Cayley transform is defined
as (In − A)−1(In + A). Whenever this version is mentioned it will be called the
standard or classic Cayley transform, while Padé(1,1) will simply be referred to
as the Cayley transform.

To justify using this choice of definition, recall that RKMK methods are depend-
ent upon the differential of the coordinate map chosen. For ease of comparison
it is desirable to have similar properties for these differentials regardless of the
chosen map. In particular, I require dΦ−1

0 = e, where 0 and e are, respectively, the
zero element and the identity of the chosen Lie algebra. Choosing this version of
the Cayley transform ensures that this property is upheld.

The definition of the Cayley transform includes a matrix inverse. These can
be computationally expensive, so it is advantageous to seek out an alternative
formula. Utilizing that (I3 − û)−1 = I3 + û + û2 + û3 + . . . and û2 = −α2I3 it is
possible to find

cay(û) = I3 +
1

1+ 1
4α

2

�

û +
1
2

û2
�

.

Using (2.1) we can find

d cay−1
û (v̂) =

�

I3 −
û
2

�

v̂
�

I3 +
û
2

�

= I3 −
1
2
[û, v̂]−

1
4

û v̂ û. (3.4)

Note that this point can be reached without making any assumptions about the
matrices. By considering that û and v̂ are skew symmetric matrices, one can find

d cay−1
û =

�

1+
1
4
α2
�

I3 −
1
2

û +
1
4

û2.

One advantage of Cayley over the exponential is that there is no division by α
and therefore no need for any approximation using Taylor series.

3.2 Sp(1)

A quaternion Q is commonly represented as Q = q0 + q1i + q2 j + q3k, where
q0, q1, q2, and q3 are real numbers and i, j and k are the unit quaternions. The unit
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quaternions satisfy the property i2 = j2 = k2 = i jk = −1. This can also be written
as Q = (q0, q1, q2, q3). The scalar or real part of the quaternion is q0. The remaining
numbers of the quaternion, q1, q2, and q3, form the imaginary part, or the vector
part, which is often written as a vector q = (q1, q2, q3). This leads to another way
of representing a quaternions, which is Q = (q0,q). These last to versions will be
used throughout this thesis. The first version is useful for understanding e.g. the
rules for addition and multiplication.

Let Q and P be quaternions. Then Q+ P = (q0+ p0,q + p) and QP = (q0p0−
q · p, q0p+ p0q +q × p). The inverse of a quaternion is Q−1 = Q∗/∥Q∥, where the
conjugate is Q∗ = (q0,−q) and the norm is ∥Q∥2 = q2

0 + q · q .
The group of all unit quaternions, Sp(1) = {Q | ∥Q∥ = 1}, forms a Lie group

that has identity element e = (1,0). The corresponding Lie algebra is sp(1) = {Q |
Q + Q∗ = (0,0)}. These quaternions are called vector quaternions or imaginary
quaternions.

Müller provides a simple relation between the Lie groups so(3) and sp(1) in
[12]. Let u ∈ R3 be a vector, then û ∈ so(3) and u = (0, 1

2 u) ∈ sp(1). Additionally,
he includes a way to go from Q ∈ Sp(1) to A∈ SO(3), given by

A= (q2
0 − ∥q∥

2
2)I3 + 2(q0q̂ + qq T ). (3.5)

Note that there is no simple way to go from SO(3) to Sp(1).
For this Lie algebra, we have T LQ(u) = Qu and TRQ(u) = uQ, which results

in
AdQ(u) = QuQ∗, Ad∗

Q−1(v) = QvQ∗.

Then the Lie bracket is

[u, v] = u v + v u∗ =
�

0,
1
2

u × v
�

= u × v . (3.6)

Compare (3.6) to the Lie bracket for so(3) in (3.2). Both Lie brackets can be
written as the Lie algebra representation of the vector u × v . This means that
so(3) ∼= sp(1) are isomorphic Lie algebras [12]. It also allows one to argue that
both so(3) and sp(1) are isomorphic to R3.

3.2.1 The exponential map

Let a(t) = (a0(t), a1(t), a2(t), a3(t)) ∈ Sp(1), a(0) = e, and x = (0, x1, x2, x3) =
(0, x ) ∈ sp(1). Then ȧ(t) = T La(t)(x ) and a(1) = exp(x ). First order of business
is to identify T La(t)(x ).

Let b(t) = (b0(t), b1(t), b2(t), b3(t)) be a unit quaternion. We assume that
b(0) = e, and ḃ(0) = x . Then

T La(x ) =
d
dt

�

�

�

�

t=0
a · b(t) = a · x = Ax a
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where Ax is the 4× 4 matrix

Ax =















0 −x1 −x2 −x3

x1 0 x3 −x2

x2 −x3 0 x1

x3 x2 −x1 0















.

This results in the differential equation ȧ(t) = Ax a(t), which has solution a(t) =
exp(tAx )a(0). Since a(1) = exp(Ax )e and exp(Ax ) is a 4× 4 matrix, we can use
the matrix exponent to find exp(Ax ).

Let u = (0, 1
2 u) = x . Then

exp(u) = a(1) =
�

cos(α),
sin(α)
α

u
�

(3.7)

for α= ∥1
2 u∥2.

An interesting thing to notice is that using (3.5) to find the SO(3) equivalent
of exp(u) leads to the same matrix as exp(û). This, combined with the relation
between so(3) and sp(1), means that

d exp−1
u (v) =

�

0,
1
2

d exp−1
û (v̂)

�

where d exp−1
û (v̂) is the inverse of the differential of the exponential for SO(3)

seen in (3.3).
Similarly to the exponential for SO(3), the exponential for unit quaternions

needs to use Taylor approximations when α≈ 0.
In [12], Müller uses another method of finding the exponential for sp(1), util-

izing unitary matrices. He notes that so(3) ∼= su(2) ∼= sp(1) and that there exists
relation between an element in SU(2) and an element in Sp(1). The resulting unit
quaternion is the same as in (3.7).

3.2.2 Canonical coordinates of the second kind

A quaternion Q can be associated with a 4× 4 matrix

MQ =

 

q0 −q T

q q0I3 − q̂

!

(3.8)

where q̂ is found using the hat map [12].
A basis for sp(1) is e1 = (0, 1,0, 0), etc. Using (3.8) they can be written as

matrices. This allows the use of the same method for identifying ccsk(u) that was
used for so(3).

Let u = (0, u1, u2, u3) ∈ sp(1). Note that (ui Me i
)2 = −u2

i I4, which means that
exp(ui Me i

) = cos(ui)I4+sin(ui)Me i
, for i = 1,2, 3. This allows us to find ccsk(Mu).
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Define si = sin(ui) and ci = cos(ui). Then, using (3.8), this can be turned back
into the quaternion

ccsk(u) = (c1c2c3 − s1s2s3, c1s2s3 + s1c2c3, c1s2c3 − s1c2s3, c1c2s3 + s1s2c3).

Similarly to the exponent above, the orthogonal matrix version of ccsk(q), found
using (3.5), is the same as ccsk(q̂). Then

d ccsk−1
u (v) =

�

0,
1
2

d ccsk−1
û (v̂)

�

.

3.2.3 Cayley transformation

As previously mentioned, the Cayley transform is defined for matrices. In the case
of SO(3), and any matrix Lie group, this is not a problem. Unit quaternions, un-
fortunately, are not matrices. They do however have a matrix representation.

Let u = (0, 1
2 u) = (0, x ) ∈ sp(1). Then M2

u = −α
2I4 for α = ∥x∥2. Using

the same method as for skew-symmetric matrices, and then turning the resulting
matrix into a quaternion using (3.8), gives us

cay(u) =
�

4−α2

4+α2
,

4
4+α2

x
�

.

Note that, unlike for the exponential and second kind coordinates, this version of
Cayley does not correspond to the version for so(3).

Recall that (3.4) can be reached without any assumptions about the matrix.
By applying (3.4) to the matrix representation of a vector quaternion, and using
(3.8) to extract the unit quaternion from the resulting matrix, one can find

d cay−1
u (v) = (0, A(u)v)

where

A(u) =
�

1+
α2

4

�

I3 − û +
û2

2
.

Similarly to the Cayley transform for so(3), there is no need for any Taylor ap-
proximations.

3.3 Computational cost and computer memory

This section, and a similar section in chapter 5, is influenced by a section in [16]
which looks at computational costs of coordinate maps for so(3). I have applied
a similar system for counting operations, where I count addition and subtraction,
multiplication and division, square roots, and trigonometrical functions. The num-
bers reported in the tables 3.1 and 3.2, and similar tables further on, are my best
attempts at reducing costs for these coordinate maps, though there might be ways
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Φ(û) dΦ−1
û (v̂)

exp ccsk cay exp ccsk cay

Add/sub 15 14 15 21 4 15

Mult/div 15 4 14 24 12 18
p
· 1 – – 1 – –

Trig 2 6 – 1 4 –

Total 33 24 29 47 20 33

Table 3.1: Computational cost of the coordinate maps applied to so(3).

Φ(u) dΦ−1
u (v)

exp ccsk cay exp ccsk cay

Add/sub 2 4 4 21 4 21

Mult/div 7 12 8 27 15 19
p
· 1 – – 1 – –

Trig 2 6 – 1 4 –

Total 12 22 12 50 23 40

Table 3.2: Computational cost of the coordinate maps applied to sp(1).
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to bring them down further that I have not considered. For the purpose of com-
paring the methods I will assume the numbers are fairly accurate. Additionally I
assume all four types of operations have the same computational cost, which is
not necessarily the case.

For a matrix Lie group, with n× n matrices as elements, the expected compu-
tational cost for both the exponential and Cayley is Cn3. The constant C tends to
be larger for the exponential, where it often is around 20− 30 [15]. While so(3)
is made up of skew symmetric matrices, attempt at bringing down computational
costs by careful examination of various expressions affect the resulting numbers.
Nevertheless this tells us that we might expect the exponential to be more compu-
tationally expensive than the Cayley transform. Table 3.1 shows that this is in fact
the case for so(3). The inverse of the differential is also cheaper to compute for
the Cayley transform. Canonical coordinates of the second kind is computationally
cheaper than both the others.

While we have used matrices when identifying the coordinate maps for sp(1),
Sp(1) is not a matrix Lie group. From table 3.2 we can see that both the exponen-
tial and the Cayley transform are much cheaper to compute for sp(1), while the
cost of second kind coordinates has changed much less. On the other hand, the
inverse of the differential is slightly more expensive for all the coordinate maps. In
the case of the exponential and the second kind coordinates this is to be expected,
as their differentials are linked to the differentials from so(3).

When focusing solely on keeping the computational costs associated with the
computations of coordinate maps and their differentials, it seems that sp(1) is
preferable to so(3) for the exponential and the Cayley transform. For canonical
coordinates of the second kind there is very little difference.

Another issue to keep in mind is that the choice of Lie group determines how
much computer memory is required to record the Lie group and Lie algebra ele-
ments. For elements of so(3) and sp(1) there is not much difference. When keeping
in mind that elements of sp(1) are vector quaternions, which means the first num-
ber in the quaternion always is zero, there are only three numbers that must be
included. This is the same number as for so(3), when representing a skew sym-
metric matrix as a vector.

The difference here is for the Lie groups. An element of SO(3) contains nine
numbers, while an element of Sp(1) contains only four. While this is a small
enough difference to be considered inconsequential, we will see an example in
chapter 6 of using multiple Lie group and Lie algebra elements when modelling a
physical problem. In that case keeping the memory requirements down becomes
more important. When using N elements of a Lie group or Lie algebra that contains
c numbers there will be cN numbers that must to committed to the computer’s
memory.





Chapter 4

Euler’s free rigid body

An example of an equation that can be solved numerically with the application
of Lie group methods is the Euler’s free rigid body equation (FRB). This equation
models a rigid body that spins around a fixed point without any forces acting on
it.

The differential equation for FRB is

ṁ = −I−1m ×m m(0) =m0 (4.1)

where m is the angular momentum and I is the inertia tensor I = diag(I1, I2, I3).
Examination if the differential equation reveals that ∥m∥2 = (m2

1 +m2
2 +m2

3)
1/2

is conserved. That means that the solution of (4.1) evolves on a sphere S2 with
radius r = ∥m0∥2. In other words, we wish to rotate the vector. Then it is natural
to use the Lie group SO(3). Or, as we have previously seen, Sp(1). In any case, the
Lie group action is Λ(g, u) = Ad∗g−1(u), though how exactly that ends up looking
depends on the Lie group choice.

We start by looking at SO(3). Then the Lie group action is Λ(g, u) = gu, for
g ∈ SO(3) and u ∈ R3 as seen in section 3.1. Once the group action is identified,
it is possible to find the infinitesimal generator. Let h(t) be a curve such that
h(0) = I3 and ḣ(0) = û. Then

λ∗(u)(v) =
d
d t
Λ(h(t), v) = û v = u × v

and (4.1) can be written as

ṁ = λ∗( f (m))(m) = f (m)×m.

By comparing this with (4.1), one obtains

f (m) = −I−1m

and we have all necessary components for solving this problem with SO(3).

19
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It is also possible to solve (4.1) using unit quaternions. For G = Sp(1), the
group action is Λ(Q, u) =QuQ∗. Then the infinitesimal generator becomes

λ∗(u)(v) =
�

0,
1
2

u × v
�

for u = (0, 1
2 u), v = (0, 1

2 v) ∈ sp(1). Recall that R3 ∼= so(3) ∼= sp(1), as well
as the relation between elements of these two Lie algebras. Since m ∈ S2 ⊂ R3,
the angular momentum can also be represented by the vector quaternion m =
(0, 1

2 m). Since (4.1) evolves on S2, the equation can also be written as a vector
quaternion. Let f (m) = (0, 1

2 f ′). Then

ṁ =
�

0,−
1
2
I−1m ×m

�

=
�

0,
1
2

f ′ ×m
�

which results in

f (m) =
�

0,−
1
2
I−1m

�

.

4.1 Numerical experiments

The Runge Kutta (RK) methods that is used in this thesis are Euler’s method,
Heun’s method, and RK41. The resulting RKMK methods will be referred to as Lie
Euler (LE), Lie Heun (LH), and RKMK4, respectively.

All numerical calculations on FRB was done using initial value m0 = (3, 4,3),
inertia tensor I = diag(1, 2,3), and time interval t0 = 0 to t f = 5. Figure 4.1
shows the numerical solution of (4.1) using these values. This figure also includes
a sphere with radius ∥m0∥2 to illustrate that the solution does evolve on a sphere2.

Figure 4.2 show how the global errors for solutions found using different com-
binations of Lie groups and coordinate mappings develop for different step lengths
h for the different solution methods. The step lengths used was determined by set-
ting ki ∈ [k0, k f ] = [2, 3, ..., 14]. Then the number of steps are Ni = 2ki and the
step length is hi = (t f − t0)/Ni .For each i, the problem was solved using hi and
the solution in the final step, m f i , was compared to a reference solution, mre f .
The reference solution was calculated numerically using Φ= exp and N = 10·2k f .
The error ∥m f i −mre f ∥2 was plotted on a logarithmic scale.

When implemented correctly, a RKMK method inherits the order of the RK
method used. Figure 4.2 includes a dotted line y = xn, where n order of the RK
method used. If the RKMK method has the correct order, the error should follow
this line. Examining figure 4.2 shows that all the methods has the expected order.
It is also apparent that solutions found using higher order methods starts conver-
ging towards the reference solution for larger step lengths. This is also expected
behaviour.

1All three Runge Kutta methods are listed in appendix A.
2All code used can be found on GitHub at https://github.com/majabm/ThesisCode.git
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Numerical solution of FRB

Figure 4.1: Numerical solution of FRB (blue line), solved using RKMK4, with
G = SO(3), Φ= exp, and N = 1000. The blue point is the initial solution m0. The
grey sphere has radius ∥m0∥2.
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Figure 4.2: Convergence rate for the implemented methods, based on global er-
ror. The reference solution used RKMK4, SO(3), and the exponential map.
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Figure 4.3: Changes in angular momentum for each step when h= 1 · 10−3.
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Figure 4.4: Changes in angular momentum for each step when h= 1 · 10−4.
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Another area of interest is how well the numerical solution stays on the man-
ifold. Figure 4.3 shown how far from ∥m0∥2 the Euclidean norm of the numerical
solution differs for each step when the step length is h = 1 · 10−3. The error is of
order 10−13, which means all the methods preserve the angular momentum.

Figure 4.4 shows the same as figure 4.3, but with h= 1 · 10−4. Here the error
is of order 10−11, which is slightly higher than when using h = 1 · 10−3, but still
small enough to claim the angular momentum is preserved. What is worth noting
is the difference between the methods that use SO(3) and the ones using Sp(1).
The error found using Sp(1) tends to be larger and varies more than the error
found using SO(3).





Chapter 5

Rigid body motions

This section, similarly to section 3, builds on [12].

5.1 SE(3)

The special euclidean group, SE(3), is often used to model rigid body motions.
One way of defining this Lie group is as a semi-direct product of SO(3) and R3,
SE(3) = SO(3) ⋊ R3. Let (U , u) ∈ SE(3), where U ∈ SO(3) and u ∈ R3. The
product of two elements is then defined

(U , u) · (V, v) = (UV, Uv + u), (U , u), (V, v) ∈ SE(3).

The identity element of SE(3) is e = (I3,03), where 03 is the zero vector in R3.
The inverse of (U , u) is

(U , u)−1 = (U−1,−U−1u) = (U T ,−U T u)

since U−1 = U T is a property of orthogonal matrices. The Lie algebra of SE(3) is
se(3), which has elements (ξ̂,η). Here ξ̂ ∈ so(3) and η ∈ R3.

An alternative way of representing SE(3) and se(3) is via 4× 4 matrices

M(ξ̂,η) =

 

ξ̂ η

03 0

!

∈ se(3), M(U ,u)

 

U u

03 1

!

∈ SE(3).

Both these versions have their uses. The matrix representation allows the use of
matrix specific formulae. The other version, especially when ξ̂ is represented as a
vector, does not contain any numbers known to be either one or zero. This is why
the version of SE(3) that is first presented is the preferred version in this thesis.

Here T L(U ,u)(ξ,η) = (Uξ̂, Uη) = (U×ξ, Uη) and TR(U ,u)(ξ,η) = (ξ×U ,ξ×
u +η), which means that

Ad(U ,u)(ξ,η) = (Uξ,−Uξ× u + Uη) (5.1)

and
[(ξ,η), (µ,ν)] = (ξ×µ,−µ×η+ ξ× ν). (5.2)

27
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5.1.1 The exponential map

The preferred way of looking at SE(3) means elements that are not matrices,
which means using the method described for Sp(1) to determine an expression for
the exponential. Define a curve (U(t), u(t)) where (U(0), u(0)) = (I3,0). Then,
for (ξ̂,η) ∈ se(3),

(U̇(t), u̇(t) = T L(U(t),u(t))(ξ,η) = (U(t)ξ̂, U(t)η)

and exp(ξ̂,η) = (U(1), u(1)). The exponential map becomes

exp(ξ̂,η) = (exp(ξ̂),φ(ξ̂)η)

with φ(z) = (ez−1)/z. We cannot use φ(ξ̂) directly, since ξ̂ not invertible. Going

via an interpretation using z ∈ C, and by noting that ξ̂
3
= −α2ξ̂ with α = ∥ξ∥2,

we get

φ(ξ̂) =
ez − 1

z

�

�

�

�

z=ξ̂
=
∞
∑

k=0

ξ̂
k

(k+ 1)!
= I3 +

1− cos(α)
α2

ξ̂+
α− sin(α)
α3

ξ̂
2
.

In [14], there is an exact expression for the inverse of the differential for se(3).
Let (ξ̂,η) and (µ̂,ν) be elements in se(3). Then

d exp−1
(ξ̂,η)
(µ̂,ν) = (ζ,θ ),

where

ζ=µ−
1
2
ξ× (ξ×µ),

θ =ν−
1
2
(η×µ+ ξ× ν) +ρg2(α)ξ× (ξ×µ)

+ g1(α)(η× (ξ×µ) + ξ× (η×µ) + ξ× (ξ× ν)),

and

g1(z) =
1− z

2 cot z
2

z2
, g2(z) =

1
z

d
dz

g1(z),

ρ = ξTη, and α= ∥ξ∥2.
As before, be aware that these expressions for exp(ξ̂,η) and d exp−1

(ξ̂,η)
(µ̂,ν)

includes division by α and that some terms might need a Taylor approximation.

5.1.2 Canonical coordinates of the second kind

Let x = (x1, ..., x6) = (ξ,η), and x̃ = (ξ̂,η). A basis for se(3) is ẽ1, ..., ẽ6, where
e1 = (1,0, 0,0, 0,0) etc. Let Ei = exp(x i Mẽ i

).
It would be natural to define ccsk(x̃ ) = E1E2 · · · E6, following the pattern from

section 3. Calculating d ccsk−1
x̃ using this ordering is perfectly possible, but will
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unfortunately result in a fairly complex expression. However, it is not necessary to
use this ordering. There are other choices that results in better versions of d ccsk−1

x̃ ,
while not affecting complexity of the expression for the second kind coordinates
in any meaningful way. I have therefore chosen to define

ccsk(x̃ ) = E4E5E6E1E2E3.

Note that Ei = exp(x i ẽ i) = (exp(x i Mê i
),03) for i = 1, 2,3, and that E4E5E6 =

(I3, (x4, x5, x6)). Then
ccsk(ξ̂,η) = (ccsk(ξ̂),η)

Similarly to the result for so(3), the differential takes the form

d ccskũ(ṽ) =
6
∑

i=1

viBi(ẽ i)

with B1 = I4 and Bi = Adexp(u1ẽ1) . . . Adexp(ui−1ẽ i−1), i = 2, ..., 6. Then

d ccsk−1
(ξ̂,η)

=





d ccsk−1
ξ̂

03×3

−η̂ I3





where 03×3 is a 3× 3 zero matrix.

5.1.3 The Cayley map

For z ∈ C, cay(z) has Taylor series

1+ z/2
1− z/2

= 1+ z +
1
2

z2 + · · ·=
∞
∑

k=0

fkzk

where fk are the coefficients of this Taylor series. We assume a similar expression
of this holds true when z is a square matrix. Recall that an element of se(3) can
be written as a 4× 4 matrix, and let Z = M(ξ̂,η). Then

cay(Z) =
I4 + Z/2
I4 − Z/2

=

 

∑∞
k=0 fkξ̂

k ∑∞
k=1 fkξ̂

k
η

0 1

!

=

 

cay(ξ̂)
∑∞

k=1 fkξ̂
k
η

0 1

!

.

Let S(ξ̂) :=
∑∞

k=1 fkξ̂
k
. Then

S(ξ̂) =
cay(ξ̂)− 1

ξ̂
.

Note that everything until this point can be done whether or not you use the
Padé(1,1) version of the Cayley transform or not, as this choice only affects which
values the Taylor coefficients fk has.
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In the case of the Padé(1,1) version of the Cayley transform, it is also possible
to find

S(ξ̂) =
�

I3 −
1
2
ξ̂

�−1

.

This results in

cay(ξ̂,η) =
�

cay(ξ̂),
�

I3 −
1
2
ξ̂

�−1

η

�

. (5.3)

To avoid inverting a matrix, it is also possible to write S(ξ̂) as

S(ξ̂) = I3 +
1

4+α2
(ξ̂

2
+ A(ξ))

where

A(ξ) =









0 −2ξ3 2ξ2

2ξ3 0 2ξ1 − 2ξ1ξ3

−2ξ2 2ξ1 0









.

Using (5.3), the inverse of the differential can be found the following way.
Define φ(ξ̂,η) = cay(ξ̂,η), A := I3 −

1
2 ξ̂, and B := I3 −

1
2 ξ̂. Then

φ(ξ̂,η)(ζ,θ ) =
d
dt

�

�

�

�

t=0
φ(ξ̂+ tζ̂,η+ tθ )

=
�

A−1ζ̂A−1, A−1θ +
1
2

A−1ζ̂A−1η

�

and
φ−1(ξ̂,η) = (B−1A,−B−1η).

Note that B−2I3 = −A and A−1B−1 = B−1A−1. The differential of second kind
coordinates becomes

d cay(ξ̂,η)(ζ̂,θ ) = φ(ξ̂,η)(ζ̂,θ )φ
−1(ξ̂,η)

=
�

A−1ζ̂B−1, A−1θ −
1
2

A−1ζ̂B−1η

�

=: (µ̂,ν).

Solving this for (ζ,θ ) in terms of (µ̂, ν), and substituting A and B results in

d cay−1
(ξ̂,η)
(µ̂,ν) =

��

I3 −
1
2
ξ̂

�

µ̂

�

I3 +
1
2
ξ̂

�

,
�

I3 +
1
2
ξ̂

��

ν+
1
2
µ̂η

��

.

Note that in this particular result includes the skew symmetric matrix, not the
vector version of the matrix.

Details about the standard version of the Cayley transform can be found in
[18].
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5.2 Unit dual quaternions

Dual quaternions build on quaternions using dual numbers. A dual quaternion
can be written as Q̌ = Q + ϵQϵ = (Q,Qϵ), where Q and Qϵ are quaternions and
ϵ2 = 0. We call ϵ the dual unit. A dual quaternion can also be written as Q̌ =
(q0 + ϵqϵ0,q + ϵqϵ) or Q̌ = (q0, q1, q2, q3, qϵ0, qϵ1, qϵ2, qϵ3). It is more common to
denote a dual quaternion as Q̂, but doing so here, risks confusing dual quaternions
with skew symmetric matrices.

Let Q̌, P̌ be dual quaternions. Then Q̌ + P̌ = (Q + P,Qϵ + Pϵ) and Q̌P̌ =
(QP,QPϵ + QϵP). A dual quaternion has conjugate Q̌

∗
= (Q∗,Q∗ϵ), norm ∥Q̌∥ =

Q̌Q̌
∗
= (QQ∗,QQ∗ϵ +QϵQ

∗), and inverse: Q̌
−1
= Q̌
∗
/∥Q̌∥.

Dual quaternions, i.e. dual quaternions with norm equal to one, form a Lie
group cSp(1) with the binary operation being dual quaternion multiplication [12].
This group has identity element ě = (e,0), where e is the identity element from
Sp(1) and 0= (0,03) is the zero quaternion.

The Lie algebra is Òsp(1) = {Q̌ | Q̌ + Q̌
∗
= 0̌}, which is all vector dual qua-

ternions. They take the form Q̌ = (0,q)+ϵ(0,qϵ). For elements in the Lie algebra,

I will also use the notation Q̌ = (0,q + ϵqϵ).
Let (ξ,η) ∈ R6, then (ξ̂,η) ∈ SE(3) and 1

2(0,ξ+ ϵη) ∈ Òsp(1) are equivalent.

In this setting T LQ̌(P̌) = Q̌P̌ and TRQ̌(P̌) = P̌Q̌ which results in

AdQ̌(P̌) = Q̌P̌Q̌
∗

and

[Q̌, P̌] = Q̌ P̌ + P̌ Q̌
∗

=
1
2
(0,q × q + ϵ(q × qϵ − q × qϵ)) =:

1
2
(0, r + ϵr ϵ).

Comparing this to the Lie bracket for se(3) in (5.2), and letting Q, P be the cor-

responding se(3) elements of Q̌, P̌, [Q, P] = (r̂ , rϵ), while [Q̌, P̌] = ˇ(r, rϵ), in
which case we can conclude that se(3) ∼= Òsp(1). It is also possible to argue that
R6 ∼= se(3).

5.2.1 The exponential map

In [12], the exponential map for se(3) is given as

exp(0,ξ+ ϵη) =
�

cos(α),
sin(α)
α
ξ

�

+ ϵ
�

− ξ ·η
sin(α)
α

,
ξ ·η
α2

cos(α)ξ−
1
α2

sin(α)
α
ξ̂

2
η

�
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with α2 = ∥ξ∥. Define n = ξ/α. Then

exp(0,n + ϵη) =(cos(α), sin(α)n)

+ ϵ
�

− n ·η sin(α),n ·η cos(α)n −
sin(α)
α

n̂2η

�

.

When necessary, the term sin(α)/α can be approximated by a Taylor series. For
sufficiently small α, n also needs to be approximated. A simple way of doing this
is to note that n ≈ ξ for small α.

Let d exp−1
(ξ̂,η)
(µ̂,ν) = (ζ,θ ) for se(3), and let Q̌ = 1

2(0,ξ + ϵη) and P̌ =
1
2(0,µ+ ϵν). Then

d exp−1

Q̌
(P̌) =

1
2
(0,ζ+ ϵθ ).

5.2.2 Canonical coordinates of the second kind

Similarly to unit quaternions, dual unit quaternions can also be associated with
a matrix. In this case it becomes an 8 × 8 matrix. Let Q̌ = (Q,Qϵ) be a dual
quaternion. Recall the matrix associated with a regular quaternion from equation
(3.8). Then

MQ̌ =

 

MQ 04×4

MQϵ
MQ

!

where 04×4 is the 4× 4 zero matrix.
A basis for Òsp(1) is e1 = (1,0, 0,0, 0,0, 0,0), etc. Let ǔ = (0, u2, u3, u4, 0, u6, u7, u8) ∈

Òsp(1) and Ei = exp(ui Mei
) for i = 1, ..., 8. Similarly as in the section for second

kind coordinates for se(3) I have chosen to reorder the exponents, and will use

ccsk(ǔ) = E5E6E7E8E1E2E3E4.

Let si = sin(ui) and ci = cos(ui) for i = 1, ..., 8. Then

ccsk(ǔ) =(c2c3c4 − s2s3s4, c2s3s4 + s2c3c4, c2s3c4 − s2c3s4, c2c3s4 + s2s3c4,

(−s2c3a6 − (c2a7 + s2a8)s3)c4 + (−c2s3a6 + (s2a7 − c2a8)c3)s4,

(c2c3a6 + (s2a7 − c2a8)s3)c4 + (−s2s3a6 + (s2a8 + c2a7)c3)s4,

(−s2s3a6 + (s2a8 + c2a7)c3)c4 + (−c2c3a6 + (−s2a7 + c2a8)s3)s4,

(c2s3a6 + (−s2a7 + c2a8)c3)c4 + (−s2c3a6 − (c2a7 + s2a8)s3)s4).

Let d ccsk−1
(ξ̂,η)
(µ̂,ν) = (ζ,θ ) for se(3). Then

d ccsk−1
ǔ
(v̌) =

1
2
(0,ζ+ ϵθ )

for ǔ = 1
2(0,ξ+ ϵη) and v̌ = 1

2(0,µ+ ϵν).
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5.2.3 The Cayley map

Just as a quaternion is not a matrix, neither is a dual quaternion. Unlike for qua-
ternions, however, attempting to find an expression for the Cayley transform using
the matrix representation does not appear to work in this case. The resulting mat-
rix M

Q̌
has no relation on the form (M

Q̌
)2 = cI8 for some constant c. Nor have I

been successful in identifying a similar relation or pattern for powers of M
Q̌

. Thus
the method for finding the Cayley transform used previously is rendered unus-
able. This might imply that Cayley is not not defined for Òsp(1), or that a different
approach is necessary. I did not pursue the matter any further.

5.3 Computational cost and computer memory

Table 5.1 shows computational costs for the coordinate maps on se(3). While we
do not represent elements as 4×4 matrices, SE(3) can still be considered a matrix
Lie group. In that case we expect the exponential to be more computationally
expensive than the Cayley transform, which does appear to be the case. Similarly
to coordinate maps on so(3), canonical coordinates of the second kind preforms
the better than the two other options.

For Òsp(1), the first thing to keep in mind is that we have no expression for
Cayley in this case. From table 5.2, the two remaining maps both preform best in
one case each. For Φ(ǔ), the exponential map is less expensive to compute, while
it is the most expensive choice for dΦ−1

ǔ
(v̌).

In this particular case, when using the exponential map, Òsp(1) seems like the
most appropriate choice, while second kind coordinates is computationally less
expensive for se(3).

For elements of se(3) and Òsp(1) it is necessary to keep track of six numbers.
Again the difference is in the Lie groups, where SE(3) requires twelve numbers
and cSp(1) requires eight.
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Φ(ξ̂,η) dΦ−1
(ξ̂,η)
(µ̂,ν)

exp ccsk cay exp ccsk cay

Add/sub 35 4 27 47 10 27

Mult/div 35 14 35 69 18 45
p
· 1 – – 1 – –

Trig 2 6 – 3 4 –

Total 73 24 62 120 32 72

Table 5.1: Computational cost of the coordinate maps applied to se(3).

Φ(ǔ) dΦ−1
ǔ
(v̌)

exp ccsk cay exp ccsk cay

Add/sub 11 22 – 35 10 –

Mult/div 26 44 – 41 24 –
p
· 1 – – 1 – –

Trig 2 6 – 2 4 –

Total 40 72 – 79 38 –

Table 5.2: Computational cost of the coordinate maps applied to Òsp(1).



Chapter 6

The N-fold 3D pendulum

The N -fold pendulum is a system of N connected three dimensional pendulums.
This version assumes ideal spherical joints between the pendulums, and that the
pendulums cannot interact with one another. The masses of the pendulums are
m1, ..., mN and the lengths are L1, ..., LN . For more details on the system of equa-
tions, see [19] for the modelling and [14] where the problem was re-framed into
a Lie group setting. This section was adapted from the latter.

Pendulum i in the chain has position q i , which will lie on a sphere centered
around the pendulum above, or, in the case i = 1, a fixed suspension point. Then
q̇ i ∈ Tq i

S2 = {v ∈ R3 | v T q i = 0}. The angular velocityωi is given by q̇ i =ωi×q i ,
and since we assume that ωT

i q i = 0, we get ωi ∈ Tq i
S2.

In the case N = 1, we have a single pendulum with position q and angular
velocity ω. When looking at a single pendulum, choosing G = SO(3) is a natural
choice. However, we want to extend this to a general N > 1. In that case G = SE(3)
is more appropriate, since all but the first pendulum in the chain have a non
stationary suspension point.

The group action is defined from the adjoint operator Adh : se(3)→ se(3) for
h ∈ SE(3), seen in (5.1). Since se(3) ≃ R6, we can also define the group action
on R6. Additionally, since the group action then maps points of

TS2
|q | = {(q̃ , ω̃) ∈ R3 ×R3 | ω̃T q̃ = 0, |q̃ |= |q |} ⊂ R6

into points of TS2
|q | for all points in R6, the group action can be defines as an

action on TS2 = TS2
|q |=1. Then Λ : SE(3)× TS2→ TS2 is

Λ((R, r ), (u, v)) = Ad(R,r )(u, v) = (Ru, Rv + r̂Ru)

and the infinitesimal generator is

λ∗(u, v)(q ,ω) = (u × q , u ×ω+ v × q).

This can be extended to a general N > 1. In this case the Lie group is G =
(SE(3))N . This group has binary operation · given by

A · B := ((A1, a1)(B1, b1), ..., (AN , aN )(BN , bN ))

35
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where A= (A1, a1, .., AN , an), B = (B1, b1, ..., BN , bN ) ∈ (SE(3))N and (Ai , ai)(Bi , bi)
is the product on SE(3). In this case the group action Λ : (SE(3))N × (TS2)N →
(TS2)N is

Λ((A1, a1, ...,AN , an)(q1,ω1, ...,qN ,ωN ))

= (A1q1, A1ω1 + â1A1q1, ..., AN qN , ANωN + âN AN qN )

and the infinitesimal generator is

λ∗(ξ)(m) = (u1 × q1, u1 ×ω1 + v1 × q1, ..., uN × qN , uN ×ωN + vN × qN )

for ξ= (u1, v1, ..., uN , vN ) ∈ se(3)N and m = (q1,ω1, ...,qN ,ωN ) ∈ (TS2)N .
All the pendulums can be described with (q ,ω) = (q1,ω1,q2,ω2, ...,qN ,ωN ) ∈

(TS2)N . In the case of a general N , the system of equations is

q̇ i =ω× q i , i = 1, ..., N ,

ω̇= A−1
q ([g 1, ..., g N ]

T )

=









h1(q ,ω)

. . .

hN (q ,ω)









=









a1(q ,ω)× q1

. . .

aN (q ,ω)× qN









, i = 1, ..., N .

(6.1)

Here, Aq : Tq1
S2 × ·TqN

S2 → Tq1
S2 × ·TqN

S2 is a linear map Aq (ω) := R(q)ω,
where R(q) ∈ R3N×3N is a symmetric block matrix

R(q)ii =
� N
∑

j=i

m j

�

L2
i I3 ∈ R3×3,

R(q)i j =
� N
∑

k= j

mk

�

Li L jq̂
T
i q̂ j = R(q)Tji ∈ R3×3, i < j.

The elements g i are given by

g i = g i(q ,ω) =
N
∑

j=1
j ̸=i

M(q)i j|ω j|2ĝ iq j −
� N
∑

j=i

m j

�

g Liq̂ ie3, i = 1, ..., N

and a1, ..., aN : (TS2)N → R3, are N functions that can be set to be

ai := q i × hi(q ,ω).

Then

λ∗( f (q ,ω))(q ,ω) = F(q ,ω)
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for F ∈ X((TS2)N ). This allows us to identify the map f : (TS2)N → (se(3))N as

f (q ,ω) =

























ω1

q1 × h1

. . .

. . .

ωN

qN × hN

























∈ se(3)N .

This system of equations can also be solved using cSp(1), by utilizing that R6 ∼=
se(3)∼= Òsp(1). Let ξ= (u1, v1, ..., uN , vN ) ∈ se(3)N and m = (q1,ω1, ...,qN ,ωN ) ∈
(TS2)N . Then ξ̌ = (A1, ..., AN ) and m̌ = (B1, ..., BN ) contains the dual vector qua-
ternions Ai =

1
2(0, u i + ϵv i) and Bi =

1
2(0,q i + ϵωi) for i = 1, ..., N . The infinites-

imal generator is

λ∗(ξ̌)(m̌) = (C1, C2, ..., CN )

where Ci =
1
2(0, u i × q i + ϵ(u i ×ωi + v i × q i)).

Let m̌ i =
1
2(0,q i + ϵωi). The system of equations can be rewritten as

˙̌m i =
1
2
(0, q̇ i + ϵω̇i), i = 1, ..., N

where q̇ i and ω̇i are defined in (6.1). This leads to the map

f (q̌ , ω̌) = ( f1, f2, ..., f3) ∈ (Òsp(1))N ,

where

fi =
1
2
(0,ωi + ϵ(q i × hi)), i = 1, ..., N .

6.1 Numerical experiments on the 2-fold pendulum

All numerical computations in this section is done using t0 = 0, t f = 5, Li = 1,
mi = 1, and g = 10.

In addition to Taylor expansions some of the methods use, the exponential of
the cSp(1) needs an approximation for the vector n. This is done using TOL =
1e− 9, and then n = ξ when α < TOL.

The numerical solution of the 2-fold pendulum, found using the exponential
on se(3), RKMK4, and N = 1000, is shown in figure 6.1. Here, the initial solution
is q i(0) = (1/

p
2,0, 1/

p
2) and ωi(0) = (0, 1,0) for i = 1, 2.

From figure 6.2, we can see that all three methods have the correct conver-
gence rate. Similarly to figure 4.2 for FRB, the reference solution here uses the
exponential map and SE(3). In this case there does not appear to be much of a
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Numerical solution of 2-fold pendulum

Figure 6.1: Numerical solution of the 2-fold pendulum, with SE(3), RKMK4, the
exponential map, and N = 1000. The blue and orange lines represents the paths
of the pendulums, and the blue and orange points are the initial positions. The
black line and points are of the pendulums at t f = 5. The initial condition is
q i(0) = (1/

p
2, 0,1/

p
2), ωi(0) = (0, 1,0), i = 1,2.
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Figure 6.2: Convergence rate for the implemented methods, based on global er-
ror. The reference solution used RKMK4, SE(3), and the exponential map. The
initial condition is q i(0) = (1/

p
2,0, 1/

p
2), ωi(0) = (0, 1,0), i = 1,2.
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difference between the different choices, especially for small h. Note that in all
figures, the Lie group cSp(1) is written as SP(1).

We want these methods to preserve geometries of S2 and TS2. In other words
we require the methods to preserve the properties

• q i(t)
T q i(t) = 1, i = 1,2,

• q i(t)
Tωi(t) = 0, i = 1,2.

We start with the property q T
1 q1 = 1. Figure 6.3 and figure 6.4 show how

1 − q T
1 q1 evolves for N = 5000 and N = 50000. Here, we see the same trend

as we saw for FRB. For the smaller choice of N , there is little difference between
methods, and the error is of order 10−14, while for the larger N the error is of order
10−12, and there is a bit more difference between the methods. Since the error is
very small, these methods seems to preserve the property q T

i q i = 1, i = 1,2, i.e.
the solutions stay on S2.

Figure 6.5 and figure 6.6 show the evolution of q T
1ω1. Here the error is also

of order 10−14 for N = 5000 and 10−12 for N = 50000. Thus ω1 ∈ Tq1
S2.

Figures showing that the properties q T
2 q2 = 1 and q T

2ω2 = 0 also are pre-
served, are in appendix B. They show the same overarching trends, with error
between 10−12 and 10−14.
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Figure 6.3: Changes in 1 − q T
1 q1 for each step when h = 1 · 10−3.The initial

condition is q i(0) = (0,1, 0), ωi(0) = (1, 0,1), i = 1,2.
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Figure 6.4: Changes in 1 − q T
1 q1 for each step when h = 1 · 10−4.The initial

condition is q i(0) = (0,1, 0), ωi(0) = (1, 0,1), i = 1,2.
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Figure 6.5: Changes in q T
1ω1 for each step when h= 1 · 10−3
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Figure 6.6: Changes in q T
1ω1 for each step when h= 1 · 10−4



Chapter 7

Conclusion

In this thesis, I have considered how different Lie groups and coordinate mappings
can be utilized in Lie group integrators. The Lie groups SO(3), Sp(1), SE(3), and
cSp(1) can be used for rotation and rigid body motions in three dimensions. In
this thesis we have seen that the exponential, canonical coordinates of the second
kind, and the variant of the Cayley transform known as Padé(1, 1) can be applied
for these Lie groups, with the possible exception of Cayley for cSp(1).

Numerical experiments on Euler’s free rigid body and the N-fold three dimen-
sional pendulum show that the RKMK methods with relevant combinations of Lie
groups and coordinate mappings preserve the geometries properties of the prob-
lems.

There has also been a brief discussion on the computations costs of the vari-
ous coordinate maps, and a mention of the fact that the choice of Lie group will
influence the amount of computer memory that is required. The Lie groups based
on quaternions, Sp(1) and cSp(1), require less memory than SO(3) and SE(3). In
most cases the exponential is the most computationally expensive option while
canonical coordinates of the second kind is notably less expensive. However, ex-
amining only computational costs and memory requirements connected to the
choice of coordinate map and Lie group is not enough to declare that some com-
bination is always better than the others. Other elements of the Lie group method
will also affect the overall performance of the numerical solver. An example is the
Lie group action, which depends on the Lie group used and the mechanical system
the Lie group method is applied to.

Future work on this subject could be to determine whether or not the Cayley
transform exists for cSp(1). There is also the interesting possibility that a beam can
be modelled with a generalization of the N -fold pendulum.
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Appendix A

Runge-Kutta methods

For a differential equation
ẏ(t) = f (t, y(t))

the three Runge-Kutta methods used in this paper can be written as follows. Euler’s
method (first order method):

yn+1 = yn + hf (tn, yn),

Heun’s method (second order method):

ỹn+1 = yn + hf (tn, yn),

yn+1 = yn +
h
2

�

f (tn, yn) + f (tn+1, ỹn+1)
�

,

RK4 (fourth order method):

k1 = hf (tn, yn),

k2 = hf (tn +
h
2

, yn +
1
2

k1),

k3 = hf (tn +
h
2

, yn +
1
2

k2),

k4 = hf (tn+1, yn + k3),

yn+1 = yn +
1
6
(k1 + 2k2 + 2k3 + k4).
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Appendix B

Additional figures for section 6.1

The figures B.1, B.2, B.3, and B.4 show how 1− q T
2 q2 and q T

2ω2 develop for the
2-fold pendulum.
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Figure B.1: Changes in 1− q T
2 q2 for each step when h= 1 · 10−3
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Figure B.2: Changes in 1− q T
2 q2 for each step when h= 1 · 10−4
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Figure B.3: Changes in q T
2ω2 for each step when h= 1 · 10−3
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Figure B.4: Changes in q T
2ω2 for each step when h= 1 · 10−4


