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Abstract—The goal of this paper is to establish some facts
concerning the problem of zeroing the output of an input-output
system that does not have relative degree. The approach taken is
to work with systems that have Chen-Fliess series representations.
The main result is that a class of generating series called primely
nullable series provides the building blocks for solving this
problem using shuffle algebra. This is achieved by viewing the
latter as the symmetric algebra over the commutative polynomials
in Lyndon words in order to show that it is a unique factorization
domain. Next, the focus turns to factoring generating series in the
shuffle algebra into its irreducible elements. A specific algorithm
based on the Chen-Fox-Lyndon factorization of words is given.

Keywords—nonlinear control systems, zero dynamics, Chen-
Fliess series

I. INTRODUCTION

Consider a smooth control-affine state space realization

ż = g0(z) + g1(z)u, z(0) = z0 (1a)

y = h(z), (1b)

where g0, g1, and h are defined on W ⊆ R
n. If the realization

has a well defined relative degree at z0 ∈ W , then it is
a classical result that the corresponding input-output map
F : u 7→ y is left invertible [16], [21]. If the zero output
is known to be in the range of F for some class of inputs U ,
then there exists a unique input u∗ ∈ U satisfying F (u∗) = 0
which can be generated in real-time using feedback [16], [21]
or computed analytically using formal power series methods
[10]. This construction leads to the notion of zero dynamics
[12], [16], [17], [21]. When the system fails to have relative
degree, there appears to be little known about the problem of
zeroing the output. Take as a simple example the system

ż1 = 1− u, ż2 = z3 − u, ż3 = 1, z(0) = 0 (2a)

y = z1z2. (2b)

It is easily verified that this realization does not have relative
degree at the origin. Nevertheless, there are two inputs which
give the zero output: u∗(t) = 1, t ≥ 0 and u∗(t) = t, t ≥
0. The general goal of this paper is to establish some facts
concerning how to zero the output of a system that does not
have relative degree.

The approach taken will be to work purely in the input-
output setting using Chen-Fliess series representations. One
advantage to this point of view is that the nonuniqueness of
coordinate systems can be avoided. That is, the generating
series for the input-output map of a state space realization

is invariant under coordinate transformation. In addition, this
framework is more general as every analytic state space
realization has an input-output map with a Chen-Fliess series
representation but not conversely. In order to avoid conver-
gence issues associated with such series, the analysis will be
done using formal Fliess operators [14], that is, maps that take
an infinite jet representing a formal input function to an infinite
jet representing a formal output function. In this context, the
problem of zeroing the output boils down to a purely algebraic
problem.

The concept of a nullable generating series is presented
first. This is a formal power series representing a formal Fliess
operator having the property that the zero output (jet) is in the
range of the operator. A generating series is called strongly
nullable if there is a nonzero input that maps to the zero
output and primely nullable if this input is the only input
with this property. A special class of primely series are those
having relative degree and one additional property. These will
be called linearly nullable. While there is no known direct
test for general nullability, linearly nullable series can be
completely characterized, and in this case, the nulling input
can be directly computed. It is shown that the shuffle product
of two linearly nullable series is always strongly nullable
but not linearly nullable. The shuffle product corresponds to
the parallel product interconnection of two systems [6]. The
focus then turns to an inverse problem, namely, factoring a
polynomial into its irreducible elements in the shuffle algebra.
It is first established that the shuffle algebra on the set
of homogeneous noncommutative polynomials over R as a
commutative ring is a unique factorization domain. This is
achieved by assembling some existing results from algebra [4]
and algebraic combinatorics [20]. Of particular importance is
the fact that this shuffle algebra can be viewed as the sym-
metric algebra over the commutative polynomials in Lyndon
words [23]. Once this factorization result is established, it
is shown that irreducible nullable series are building blocks
for constructing other nullable series. What is unknown at
present is whether every nullable series can be written uniquely
as the shuffle product of primely nullable series. Finally, an
algorithm is given to factor a polynomial into its irreducible
shuffle components. This is done by first mapping the given
polynomial to the symmetric algebra using the Chen-Fox-
Lyndon factorization of words [3], [15], [20]. The resulting
polynomial is then factored using one of the many known
algorithms for factoring multivariate commutative polynomials
[26]. Then each factor is transformed back to the shuffle
algebra.



The paper is organized as follows. In the next section, a
brief summary is given of the mathematical tools used to estab-
lish the main results of the paper. In Section III, the concept of
nullable generating series is presented. The subsequent section
addresses the problem of factoring generating series in the
shuffle algebra and irreducibility. The final section provides
the main conclusions of the paper.

II. PRELIMINARIES

An alphabet X = {x0, x1, . . . , xm} is any nonempty
and finite set of symbols referred to as letters. A word
η = xi1 · · ·xik is a finite sequence of letters from X . The
number of letters in a word η, written as |η|, is called its length.
The empty word, ∅, is taken to have length zero. The collection
of all words having length k is denoted by Xk. Define
X∗ =

⋃

k≥0
Xk, which is a monoid under the concatenation

product. Any mapping c : X∗ → R
ℓ is called a formal power

series. Often c is written as the formal sum c =
∑

η∈X∗(c, η)η,

where the coefficient (c, η) ∈ R
ℓ is the image of η ∈ X∗ under

c. The support of c, supp(c), is the set of all words having
nonzero coefficients. A series c is called proper if ∅6∈supp(c).
The order of c, ord(c), is the length of the shortest word in
its support. By definition the order of the zero series is +∞.
The set of all noncommutative formal power series over the
alphabet X is denoted by R

ℓ〈〈X〉〉. The subset of series with
finite support, i.e., polynomials, is represented by R

ℓ〈X〉. Each
set is an associative R-algebra under the concatenation product
and an associative and commutative R-algebra under the shuffle
product, that is, the bilinear product uniquely specified by the
shuffle product of two words

(xiη) (xjξ) = xi(η (xjξ)) + xj((xiη) ξ),

where xi, xj ∈ X , η, ξ ∈ X∗ and with η ∅ = ∅ η = η
[6]. For any letter xi ∈ X , let x−1

i denote the R-linear left-

shift operator defined by x−1

i (η) = η′ when η = xiη
′ and

zero otherwise. Higher order shifts are defined inductively via
(xiξ)

−1(·) = ξ−1x−1

i (·), where ξ ∈ X∗. It acts as a derivation
on the shuffle product.

A. Chen-Fliess series

Given any c ∈ R
ℓ〈〈X〉〉 one can associate a causal m-input,

ℓ-output operator, Fc, in the following manner. Let p ≥ 1
and t0 < t1 be given. For a Lebesgue measurable function
u : [t0, t1] → R

m, define ‖u‖
p
= max{‖ui‖p : 1 ≤ i ≤ m},

where ‖ui‖p is the usual Lp-norm for a measurable real-valued

function, ui, defined on [t0, t1]. Let Lm
p [t0, t1] denote the set

of all measurable functions defined on [t0, t1] having a finite
‖·‖

p
norm and Bm

p (R)[t0, t1] := {u ∈ Lm
p [t0, t1] : ‖u‖p ≤

R}. Assume C[t0, t1] is the subset of continuous functions in
Lm
1 [t0, t1]. Define inductively for each word η = xiη̄ ∈ X∗

the map Eη : Lm
1 [t0, t1] → C[t0, t1] by setting E∅[u] = 1 and

letting

Exiη̄[u](t, t0) =

∫ t

t0

ui(τ)Eη̄[u](τ, t0) dτ,

where xi ∈ X , η̄ ∈ X∗, and u0 = 1. The Chen-Fliess series
corresponding to c ∈ R

ℓ〈〈X〉〉 is

y(t) = Fc[u](t) =
∑

η∈X∗

(c, η)Eη[u](t, t0)

[6]. If there exist real numbers Kc,Mc > 0 such that

|(c, η)| ≤ KcM
|η|
c |η|!, ∀η ∈ X∗, (3)

then Fc constitutes a well defined mapping from Bm
p (R)[t0,

t0 + T ] into Bℓ
q(S)[t0, t0 + T ] for sufficiently small R, T >

0 and some S > 0, where the numbers p, q ∈ [1,∞] are
conjugate exponents, i.e., 1/p + 1/q = 1 [13]. (Here, |z| :=
maxi |zi| when z ∈ R

ℓ.) Any series c satisfying (3) is called
locally convergent, and Fc is called a Fliess operator. The
subset of all locally convergent series is denoted by R

ℓ
LC〈〈X〉〉.

A Fliess operator Fc defined on Bm
p (R)[t0, t0 + T ] with

ℓ = 1 is said to be realizable when there exists a state space
realization (1) with each gi being an analytic vector field
expressed in local coordinates on some neighborhood W of
z0 ∈ R

n, and the real-valued output function h is an analytic
function on W such that (1a) has a well defined solution z(t),
t ∈ [t0, t0 + T ] for any given input u ∈ Bm

p (R)[t0, t0 + T ],
and y(t) = Fc[u](t) = h(z(t)), t ∈ [t0, t0 + T ]. Denoting the
Lie derivative of h with respect to gi by Lgih, it can be shown
that for any word η = xik · · ·xi1 ∈ X∗

(c, η) = Lgηh(z0) := Lgi1
· · ·Lgik

h(z0) (4)

[6], [16], [21].

B. System interconnections

Given Fliess operators Fc and Fd, where c, d ∈ R
ℓ
LC〈〈X〉〉,

the parallel and product connections satisfy Fc + Fd = Fc+d

and FcFd = Fc d, respectively [6]. It is also known that
the composition of two Fliess operators Fc and Fd with c ∈
R

ℓ
LC〈〈X〉〉 and d ∈ R

m
LC〈〈X〉〉 always yields another Fliess

operator with generating series c ◦ d, where the composition
product is given by

c ◦ d =
∑

η∈X∗

(c, η)ψd(η)(1) (5)

[5]. Here ψd is the continuous (in the ultrametric sense)
algebra homomorphism from R〈〈X〉〉 to the vector space
endomorphisms on R〈〈X〉〉, End(R〈〈X〉〉), uniquely specified
by ψd(xiη) = ψd(xi) ◦ ψd(η) with ψd(xi)(e) = x0(di e),
i = 0, 1, . . . ,m for any e ∈ R〈〈X〉〉, and where di is the i-th
component series of d (d0 := 1 := 1∅). By definition, ψd(∅)
is the identity map on R〈〈X〉〉. It can be verified directly that

x−1

j (c ◦ d) =







x−1

0 (c) ◦ d+
m∑

i=1

di (x−1

i (c) ◦ d) : j = 0

0 : j 6= 0.
(6)

If c, d ∈ R〈〈X〉〉 with m = ℓ = 1 and d non-proper, then one
can define the quotient c/d = c d −1 so that Fc/Fd = Fc/d
with the shuffle inverse of d defined as

d −1 = ((d, ∅)(1− d′)) −1 = (d, ∅)−1(d′) ∗,

where d′ = 1 − (d/(d, ∅)) is proper and (d′) ∗ :=
∑

k≥0
(d′) k [10]. The following lemma will be useful.

Lemma 2.1: For any c, d, e ∈ R〈〈X〉〉 with d non-proper,
the following identity holds

(c/d) ◦ e = (c ◦ e)/(d ◦ e).

Proof: It can be shown directly from the definition of the
composition product that if d is non-proper then so is d◦ e. In



fact, (d ◦ e, ∅) = (d, ∅) 6= 0. Thus, both sides of the equality
in question are at least well defined formal power series. In
light of the known identity

(c d) ◦ e = (c ◦ e) (d ◦ e) (7)

for any c, d, e ∈ R〈〈X〉〉 [7], it is sufficient to show that

d −1 ◦ e = (d ◦ e) −1. (8)

It is clear via induction that for any k ∈ N,

d k ◦ e = (d ◦ e) k.

Therefore, since d is non-proper, it follows that

d −1 ◦ e = (d, ∅)−1 lim
n→∞

n∑

k=0

(d′) k ◦ e

= (d ◦ e, ∅)−1 lim
n→∞

n∑

k=0

(d′ ◦ e) k

= (d ◦ e) −1.

As d′ and d′ ◦ e are both proper, all the limits above (in the
ultrametric sense) exist, and thus, the claim is verified.

C. Formal Fliess operators

Suppose X = {x0, x1} and define X0 = {x0}. Then
every series cu ∈ R[[X0]] can be identified with an infinite
jet j∞t0 (u) for any fixed t0 ∈ R. By Borel’s Lemma, there
is a real-valued function u ∈ C∞(t0) whose Taylor series
corresponds to j∞t0 (u). In the event that the coefficients of
cu satisfy the growth bound (3), then u is real-analytic. In
which case, for any c ∈ RLC〈〈X〉〉, Fcy [v] = y = Fc[u] =
Fc[Fcu [v]] = Fc◦cu [v], where v is just a placeholder in this
chain of equalities. If the Taylor series for u does not converge,
it is viewed as a formal function. Nevertheless, the mapping
c ◦ : R[[X0]] → R[[X0]] : cu 7→ cy = c◦cu is still well defined
and takes the input infinite jet to the output infinite jet. This is
called a formal Fliess operator [14]. The advantage to working
with these formal objects is that their algebraic properties can
be characterized independently of their analytic nature. This
will be the approach taken below.

D. Relative degree of a generating series

Observe that c ∈ R〈〈X〉〉 can always be decomposed into
its natural and forced components, that is, c = cN +cF , where
cN :=

∑

k≥0
(c, xk0)x

k
0 and cF := c− cN .

Definition 2.1: [10] Given c ∈ R〈〈X〉〉 with X =
{x0, x1}, let r ≥ 1 be the largest integer such that supp(cF ) ⊆
xr−1

0 X∗. Then c has relative degree r if the linear word

xr−1

0 x1 ∈ supp(c), otherwise it is not well defined.

It is immediate that c has relative degree r if and only if
there exists some e ∈ R〈〈X〉〉 with supp(e) ⊆ X∗/{X∗

0 , x1}
such that

c = cN + cF = cN +Kxr−1

0 x1 + xr−1

0 e (9)

and K 6= 0. This notion of relative degree coincides with the
usual definition given in a state space setting [11].

III. NULLABLE GENERATING SERIES

It is assumed for the remainder of the paper that all systems
are single-input, single-output, i.e., m = ℓ = 1 so that X =
{x0, x1} and all series coefficients are real-valued. Consider
the following classes of generating series.

Definition 3.1: A series c ∈ R〈〈X〉〉 is said to be nullable
if the zero series is in the range of the mapping c ◦ : R[[X0]] →
R[[X0]], cu 7→ c ◦ cu. That is, there exists a nulling series
cu∗ ∈ R[[X0]] such that c ◦ cu∗ = 0. The series is strongly
nullable if it has a nonzero nulling series. A strongly nullable
series is primely nullable if its nulling series is unique.

Observe that from (5) it follows that (c◦cu, ∅) = (c, ∅) for
all cu ∈ R[[X0]]. Thus, if c is nullable, then necessarily c must
be proper. Also, every series c = cF satisfies c ◦ 0 = 0. Thus,
it is nullable. If c = cN + cF with cN 6= 0, then c ◦ 0 = cN .
Therefore, if c is nullable, it must be strongly nullable.

Example 3.1: Observe that c = x20 − x1x0 is primely
nullable since c ◦ 1 = x20 − x20 = 0, and cu∗ = 1 is the
only series with this property.

Example 3.2: The polynomial c = x0 + x0x1 is not
nullable since c ◦ cu = x0 +x20cu 6= 0 for all cu ∈ R[[X0]].

A sufficient condition for a series to be primely nullable is
given in the following theorem.

Theorem 3.1: If c ∈ R〈〈X〉〉 has relative degree r, and
supp(cN ) ⊆ xr0X

∗
0 is nonempty, then c is primely nullable.

Proof: Since cN 6= 0 by assumption, any nulling series must
be nonzero. The claim is that c has a unique nonzero nulling
series. Applying (6) to cy = c ◦ cu with m = 1 (let d1 = d)
under the assumption that c has relative degree r gives

cy = c ◦ cu

x−1

0 (cy) = x−1

0 (c) ◦ cu
...

x−r+1

0 (cy) = x−r+1

0 (c) ◦ cu

x−r
0 (cy) = x−r

0 (c) ◦ cu + cu ((xr−1

0 x1)
−1(c) ◦ cu).

Since (xr−1

0 x1)
−1(c) is non-proper (specifically,

((xr−1

0 x1)
−1(c), ∅) = K 6= 0 in (9)) it can be shown

that (xr−1

0 x1)
−1(c) ◦ cu is also non-proper and thus has

a shuffle inverse. Setting x−r
0 (cy) = 0 and dividing by

(xr−1

0 x1)
−1(c) ◦ cu gives

0 = (x−r
0 (c) ◦ cu)/((x

r−1

0 x1)
−1(c) ◦ cu) + cu.

Next, applying Lemma 2.1 yields

0 = (x−r
0 (c)/(xr−1

0 x1)
−1(c)) ◦ cu + cu.

Define a generalized series δ with the defining property that
Fδ[u] = u for all admissible inputs u. Then it must have the
unital property δ◦c = c◦δ = c on the semigroup (R〈〈X〉〉, ◦).
The previous equation can be written as

0 = (δ + (x−r
0 (c)/(xr−1

0 x1)
−1(c)))

︸ ︷︷ ︸

:=dδ

◦cu.

It is known that the set of series δ + R〈〈X〉〉 forms a group
under the induced composition product [9]. Therefore, one can



solve for cu directly via left inversion to give cu = d◦−1

δ ◦ 0.
In which case, there exists a unique cu which will zero out all
coefficients of cy with the exception of the first r coefficients.
These initial coefficients are completely determined by c since

(cy, x
k
0) = (x−k

0 (cy), ∅) = (x−k
0 (c) ◦ cu, ∅)

= (x−k
0 (c), ∅) = (c, xk0), k = 0, 1, . . . , r − 1.

By assumption supp(cN ) ⊆ xr0X
∗
0 . Hence, all the coefficients

above must be zero so that cy = 0 as desired.

It is worth noting that (R〈〈X〉〉, ◦, δ) described above as
well as (R〈〈X〉〉, ,1) both include the monoids of char-
acters over their respective graded connected bialgebras of
coordinate functions. Identity (7), which is central in this
work, can then be viewed in terms of the concept of two
bialgebras in cointeraction [8]. In this respect, equation (8)
is equivalent to stating that the right action of the character
monoid (R〈〈X〉〉, ◦, δ) on the group of unital non-proper series
(1 + Rnp〈〈X〉〉, ,1) ⊂ (R〈〈X〉〉, ,1) is compatible with
the antipode of its Hopf algebra of coordinate functions.

Series satisfying the condition in Theorem 3.1 will be
referred to as linearly nullable since the linear word xr−1

0 x1
in its support plays a key role in computing the nulling series.
In light of (9), every such series has the form

c = xr0e0 +Kxr−1

0 x1 + xr−1

0 e1,

where r ∈ N, K 6= 0, e0 ∈ R[[X0]]/{0}, and supp(e1) ⊆
X∗/{X∗

0 , x1}.

Example 3.3: The polynomial c = x0 + x1 has relative
degree 1 and cN = x0 ∈ x0X

∗
0 . Therefore, it is linearly

nullable. Specifically, cu∗ = −1 is the only series that yields
c ◦ cu∗ = 0.

Example 3.4: The polynomial c = x20 − x1x0 in Exam-
ple 3.1 does not have relative degree. So it is primely nullable
but not linearly nullable.

Example 3.5: The polynomial c = x0 + x0x1 in Ex-
ample 3.2 has relative degree 2 and was shown not to be
nullable. Observe cN = x0 6∈ x20X

∗
0 , which is consistent with

Theorem 3.1.

Let c ∈ R〈〈X〉〉 be nullable. Define the two-sided ideal

Ic = {c d : d ∈ R〈〈X〉〉}

in the shuffle algebra on R〈〈X〉〉.

Lemma 3.1: Every series in Ic is nullable. If c is strongly
nullable, then every series in Ic is strongly nullable.

Proof: Applying (7) it follows that (c d) ◦ cu∗ = (c ◦
cu∗) (d ◦ cu∗) = 0 if cu∗ is selected so that c ◦ cu∗ = 0,
which is always possible since c is nullable by assumption.
The second claim is now obvious.

The first theorem below is obvious given the definition of
primely nullable. The second theorem is less trivial.

Theorem 3.2: If c, d ∈ R〈〈X〉〉 are primely nullable with
cu∗ 6= du∗ , then c d is strongly nullable but not primely
nullable.

Theorem 3.3: If c, d ∈ R〈〈X〉〉 are linearly nullable, then
c d is strongly nullable but not linearly nullable.

Proof: The strong nullability property follows directly from
the lemma above. Regarding the second assertion, if c d
is linearly nullable, then necessarily c d must have relative
degree, say s, and (c d)N ∈ xs0X

∗
0 . Observe that

c d = (xrc0 e0 +Kcx
rc−1

0 x1 + xrc−1

0 e1)

(xrd0 f0 +Kdx
rd−1

0 x1 + xrd−1

0 f1)

has the property that (c d)N ∈ xrc+rd
0 X∗

0 . But the assertion
is that c d cannot have relative degree rc + rd. This would
require that the shortest linear word in supp(c d)F be

xrc+rd−1

0 x1 and all other words in supp((c d)F ) must have

the prefix xrc+rd−1

0 . This linear word will only be present if

Kc(f0, ∅) +Kd(e0, ∅) 6= 0. (10)

This means that at least one of the constant terms (e0, ∅) or
(f0, ∅) must be nonzero. In addition, note that every word in
the support of

(e0, ∅)x
rc
0 Kdx

rd−1

0 x1 + (f0, ∅)x
rd
0 Kcx

rc−1

0 x1

= Kd(e0, ∅)(x
rc
0 xrd−1

0 x1) +Kc(f0, ∅)(x
rd
0 xrc−1

0 x1)

has length rc + rd, and these words must have the required
prefix xrc+rd−1

0 since no other words in the larger shuffle
product are short enough to cancel these words. But the only
way to remove an illegal word would violate (10). For example,
if rc = rd = 1, then

(e0, ∅)x0 Kdx1 + (f0, ∅)x0 Kcx1
= Kd(e0, ∅)(x0x1 + x1x0) +Kc(f0, ∅)(x0x1 + x1x0).

The illegal word x1x0 cannot be canceled without removing
the required linear word x0x1. Thus, c d cannot be linearly
nullable.

Example 3.6: Suppose c = x0−x1 and d = x20−x1. Both
series are linearly nullable with relative degree 1. The nulling
series for c is cu∗ = 1, and the nulling series for d is du∗ = x0.
Observe

c d = −x0x1 − x1x0 +2x21 +3x30 − x20x1 − x0x1x0 − x1x
2
0

does not have relative degree. Therefore c d is strongly
nullable, but not linearly nullable and not primely nullable.
In fact, if the coefficients for the realization (2) are computed
from (4), one will find directly that the generating series is
the polynomial given above. This is the origin of the example
given in the introduction.

Example 3.7: Suppose c = x0 + x1 and d = 1 + x1. In
this case, c is linearly nullable with relative degree 1, and d
also has relative degree 1 but is not nullable as it is not proper.
Observe

c d = x0 + x1 + x0x1 + x1x0 + 2x21

is also linearly nullable with relative degree 1. That is, Theo-
rem 3.3 does not preclude the possibility that primely nullable
series can have shuffle factors that are not nullable.

Example 3.8: Suppose c = d = x0−x1 so that both series
are linearly nullable with relative degree 1. As expected,

c d = 2x20 − 2x0x1 − 2x1x0 − 2x21



is not linearly nullable as it does not have relative degree, but
it is primely nullable since cu∗ = du∗ = 1 is the only nulling
series for c d as the shuffle product is an integral domain.
That is, in general (c d) ◦ eu = (c eu) (d ◦ eu) = 0 if
and only if at least one argument in the second shuffle product
is the zero series.

In summary, if Rp〈〈X〉〉 is the set of all proper series in
R〈〈X〉〉, then the following inclusions hold:

Rp〈〈X〉〉 ⊃ nullable series ⊃ strongly nullable series
⊃ primely nullable series ⊃ linearly nullable series.

In light of Theorems 3.2 and 3.3, only the set of nullable
series and strongly nullable series are closed under the shuffle
product.

IV. FACTORIZATIONS IN THE SHUFFLE ALGEBRA

Let Rp〈X〉 denote the set of all proper polynomials in
R〈X〉. The shuffle product on Rp〈X〉 forms a commutative
ring. Such structures appear in the following chain of class
inclusions:

commutative rings ⊃ integral domains ⊃ in-
tegrally closed domains ⊃ GCD domains ⊃
unique factorization domains ⊃ principal ideal do-
mains ⊃ Euclidean domains

[1], [19]. The integral domain property of the shuffle algebra
was proved in [24, Theorem 3.2]. The following theorem
identifies the strongest structure available on this ring.

Theorem 4.1: The shuffle algebra on Rp〈X〉 is a unique
factorization domain but not a principal ideal domain.

Proof: The claim that the shuffle algebra on Rp〈X〉 is a unique
factorization domain follows from existing results. Specifically,
it is known from [20, Chapter 5] (see also [23]) that this
shuffle algebra is isomorphic to the symmetric algebra over
the vector space R[L], where L is the set of Lyndon words.
This algebra is in turn isomorphic to R[L] as a commutative
polynomial algebra. It is shown in [4, Corollary 1] that any
such polynomial algebra is a unique factorization domain (see
also [2]).

To show that the shuffle algebra is not a principal ideal
domain, the following inclusions are useful:

GCD domains ⊃ Bézout domains ⊃ principal ideal
domains.

The assertion is that the shuffle algebra is not a Bézout domain
and thus not a principal ideal domain. Observe that x0 and x1
are coprime and yet the Bézout identity x0 c+ x1 d = 1

has no solution (c, d) in the shuffle algebra since in general
ord(c d) ≥ ord(c) + ord(d). In fact, the unit 16∈Rp〈X〉.

The main theorem of this section is presented next.

Theorem 4.2: Let c ∈ Rp〈X〉 with cN 6= 0 and unique
factorization c = c1 c2 · · · cn (modulo a permutation),
where each ci is irreducible as a polynomial in the shuffle
algebra. Then cu∗ 6= 0 is a nulling series for c if and only if
it is a nulling series for at least one of the factors ci.

Proof: If cu∗ 6= 0 is a nulling series for ci, then directly from
Lemma 3.1 it is a nulling series for c. Conversely, if

c ◦ cu∗ = (c1 ◦ cu∗) (c2 ◦ cu∗) · · · (cn ◦ cu∗) = 0

for some cu∗ 6= 0, then since the shuffle algebra is an integral
domain, at least one series ci ◦ cu∗ must be the zero series,
and the theorem is proved.

It is important to point out what the theorem above is
not saying, namely, that every nullable series can be factored
into a shuffle product of primely nullable series. While it is
easy to demonstrate that a primely nullable series need not be
irreducible (Example 3.7), it is unknown at present whether a
nullable and irreducible series is always primely nullable. This
is a much deeper problem.

The following algorithm to factor a given c ∈ Rp〈X〉 into
its irreducible components follows directly from the proof of
the previous theorem and existing results:

1. Map c to cL ∈ R[L] using the Chen-Fox-Lyndon factor-
ization to map each word in supp(c) to a unique non-
decreasing product of Lyndon words [3], [15], [20].

2. Factor cL using Mathematica’s Factor command [27].

3. Map each factor in R[L] from the previous step back to
Rp〈X〉 using the map L∗ → Rp〈X〉 : Li1Li2 · · ·Lik 7→
Li1 Li2 Lik .

An efficient algorithm for implementing step 1 is given in [25].
Mathematica’s implementation notes for Factor provide a
description of the specific algorithms used to factor multivari-
ate polynomials. Also see [26] for a more general treatment
of the subject.

Example 4.1: Consider the polynomial

c = 2x20 − 2x21 + 2x20x1x0 + 2x0x1x
2
0 − 2x0x

2
1x0

+ 2x1x
2
0x1 + 2x1x0x

2
1 + 2x21x0x1 + 2x0x1x0x1x0x1

+ 2x0x1x0x
2
1x0 + 4x0x

2
1x

2
0x1 + 2x0x

2
1x0x1x0

+ 2x1x
2
0x1x0x1 + 4x1x

2
0x

2
1x0 + 2x1x0x1x

2
0x1

+ 2x1x0x1x0x1x0,

which does not have relative degree since it has no linear words
of the form xr−1

0 x1 in its support. The algorithm above is
applied to c with the help of the Mathematica NCFPS package
[22].

Step 1: Assuming x0 < x1, the first few Lyndon words are:

L0 = x0, L1 = x1, L2 = x0x1, L3 = x20x1, L4 = x0x
2
1. In

this case, c maps to

cL = L2
0 − L2

1 + L2
0L2 + L2

1L2 + L0L1L
2
2 − 2L0L3 + 2L1L3

− 2L1L2L3 − 2L0L4 − 2L1L4 − 2L0L2L4 + 4L3L4.

Step 2: Using the Factor command in Mathematica gives

cL = (L0 + L1 + L0L2 − 2L3)(L0 − L1 + L1L2 − 2L4).

Step 3: Mapping each factor of cL back to Rp〈X〉 yields

c = c1 c2 = (x0 + x1 + x0x1x0) (x0 − x1 + x1x0x1).

Observe that the two factors of c are distinct and linearly
nullable with relative degree r = 1. Hence, there exist two
distinct nulling inputs cu∗

1
and cu∗

2
for this polynomial. Each



input can be computed via the algorithm in [10] or by solving
an initial value problem which follows from setting Fci [u] = 0
and then repeatedly differentiating with respect to time. For c1
the latter approach yields

uü− 2u̇2 − u4 = 0, u(0) = −1, u̇(0) = 0

so that

cu∗

1
= 1 + x20 + 7x40 + 127x60 + 4369x80 + · · · .

Similarly, for c2 the corresponding initial value problem is

u̇+ tu = 0, u(0) = −1,

which gives

cu∗

2
= −1 + x20 − 3x40 + 15x60 − 105x80 + · · · .

To empirically verify that c ◦ cu∗

i
= 0, it is necessary to

truncate cu∗

i
. This means that c ◦ cu∗

i
will not be exactly zero,

but instead zero up to some word length depending on the
number of terms retained in cu∗

i
. For example, truncating both

cu∗

i
to words of maximum length six gives

c ◦ cu∗

1
= 87380x100 + 2946560x120 + 153856528x140 +O(x160 )

c ◦ cu∗

2
= 2100x100 − 840840x140 + 57657600x160 −O(x180 ).

Example 4.2: Reconsider Example 3.7 where cL = L0 +
L1 and dL = 1+ L1 (slightly abusing the notation since d 6∈
Rp〈X〉). As observed earlier, c d is primely nullable but not
linearly nullable. Clearly (c d)L = cLdL is reducible with
one linearly nullable factor cL.

Example 4.3: Recall that for polynomials in one variable,
the class of irreducible polynomials depends on the base field.
For example, over the real field, the irreducible polynomials
are either of degree 1 or degree 2 (e.g., x20 + 1). Over the
complex field, there are only degree 1 irreducibles [18, Chapter
IV.1]. However, in every multivariate polynomial ring there are
irreducible elements of higher degree. Consider the polynomial
c = 6x31 − 2x1x

2
0 − 2x0x1x0 − 2x20x1 − 24x40 ∈ Rp〈X〉.

It does not have relative degree, and thus, it is not linearly
nullable. There is at present no direct test for any other form
of nullability. In the Lyndon basis, it follows that cL =
L3
1 − L2

0L1 − L4
0 ∈ R[L]. Now if cL is reducible, one could

write

cL = (L1 − p1(L0))(L
2
1 + p2(L0)L1 + p3(L0)) (11)

for some polynomials pi(L0). Since L4
0 = p1(L0)p3(L0),

necessarily p1(L0) = aLn
0 and p3(L0) = bL4−n

0 for some
n ∈ {0, 1, 2, 3, 4} and a, b ∈ R with ab = 1. Substituting
these forms into (11) shows directly that there are no values
of n that can yield cL. Thus, cL is an irreducible multivariate
polynomial of degree 4 as an element in R[L].

V. CONCLUSIONS

Working entirely in a Chen-Fliess series setting, it was
shown that a class of generating series called primely nullable
series provides building blocks in the shuffle algebra for the
problem of zeroing the output. This was accomplished by

showing that the shuffle algebra over R is a unique factoriza-
tion domain so that any nullable series can be uniquely factored
into its irreducible elements for the purpose of identifying
any nullable factors. This factorization is done by viewing the
shuffle algebra as the symmetric algebra over the commutative
polynomials in Lyndon words. A specific algorithm based on
the Chen-Fox-Lyndon factorization of words was given.
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