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Abstract. The merging of a gravimetric quasigeoid model with GPS-levelling data using second-generation 

wavelets is considered so as to provide better transformation of GPS ellipsoidal heights to normal heights. 

Since GPS-levelling data are irregular in the space domain and the classical wavelet transform relies on 

Fourier theory, which is unable to deal with irregular data sets without prior gridding, the classical wavelet 

transform is not directly applicable to this problem. Instead, second-generation wavelets and their associated 

lifting scheme, which do not require regularly spaced data, are used to combine gravimetric quasigeoid 

models and GPS-levelling data over Norway and Australia, and the results are cross-validated. Cross-

validation means that GPS-level-ling points not used in the merging are used to assess the results, where one 

point is omitted from the merging and used to test the merged surface, which is repeated for all points in the 

dataset. The wavelet-based results are also compared to those from least squares collocation (LSC) merging. 

This comparison shows that the second-generation wavelet method can be used instead of LSC with similar 

results, but the assumption of stationarity for LSC is not required in the wavelet method. Specifically, it is 

not necessary to (somewhat arbitrarily) remove trends from the data before applying the wavelet method, as 

is the case for LSC. It is also shown that the wavelet method is better at decreasing the maximum and 

minimum differences between the merged geoid and the cross-validating GPS-levelling data. 
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1. Introduction 

The relation among geoid (N), ellipsoidal (h) and orthometric heights (H) is  

h H N e− − =                   (1a) 

Likewise, the relation among quasigeoid (𝜁), ellipsoidal (h) and normal heights (H*) is  

ℎ − 𝐻∗ − 𝜁 = 𝑒′                  (1b) 

where h are usually obtained from GPS observations, and H and H* are derived from geodetic levelling. 

Acknowledging plumbline curvature and neglecting all data errors, the values of e and e' should be zero, but 

rarely are zero due to various errors, such as long-wavelength geoid or quasigeoid errors, systematic errors 

in levelling networks, and geodynamic effects like post-glacial rebound (e.g., Ekman 1989). As such, there 

are always discrepancies between a gravimetric (quasi)geoid model and the heights from GPS-levelling.  

Therefore, using a gravimetric quasigeoid/geoid model to transform GPS ellipsoidal heights to 

normal/orthometric heights does not always yield results that are compatible with the local vertical datum 

(e.g., Featherstone 1998; Nahavandchi and Soltanpour 2005). To improve this transformation, the gravimetric 

(quasi)geoid model can be fitted to the GPS-levelling data. The new combined surface (importantly which is 

no longer the classical (quasi)geoid) can then be used to give a more direct height transformation. 

For many years, GPS-levelling was used almost exclusively for testing gravimetric (quasi)geoid models 

on land, but as geoid computation techniques improve, these reveal discrepancies (i.e., non-zero e and e'). As 

such, numerous studies have been dedicated to combining a gravimetric (quasi)geoid and GPS-levelling data. 

For example, Heiskanen and Moritz (1967), Sideris et al. (1992) and Sideris (1993) used a trigonometric 

four-parameter surface to minimize biases and very long-wavelength differences between geoid and GPS-

levelling data. 
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More recently, a wide variety of higher-order parametric and non-parametric surfaces have been used 

for this purpose, such as artificial neural networks (Kavzoglu and Saka 2005), spline interpolation (e.g., 

Featherstone 2000), least squares collocation (LSC) (e.g., Iliffe et al. 2003, Featherstone and Sproule 2006), 

Kriging (e.g., Duquenne et al. 2004; Nahavandchi and Soltanpour 2004), combined least squares adjustments 

(e.g., Jiang and Duquenne 1996; Kotsakis and Sideris 1999; Marti et al. 2002; Fotopoulos 2005), and various 

other surfaces. Suffice it to say, there are numerous surface-fitting options, each with their own advantages 

and disadvantages, which will not be discussed nor debated here. 

This paper adds to the above list of fitting options by describing the merging of gravimetric quasigeoid 

models with GPS-levelling using second-generation wavelets, supplemented with case studies in Norway and 

Australia. 

• In Australia, there is an inconsistency between AUSGeoid98 (Featherstone et al. 2001) and the 

Australian Height Datum (AHD; Roelse et al. 1971). In addition to the above-mentioned factors, 

these inconsistencies are mostly due to a north–south trend, which is mostly caused by an un-

modelled sea surface topography on the 30 tide gauges used in the AHD (Featherstone 2002, 2004).  

• In Norway, although the recent gravimetric quasigeoid over Norway, OCTAS02 (Omang et al. 

2004), exhibits a shift compared to the GPS-levelling data, it has a good relative precision compared 

to its Australian counterpart. In Norway, heights are referred to the NN1954 Norwegian height 

system, which is based on precise levelling, conducted during 1916–1954 and adjusted in 1956 

(Lysaker 2003), but the height system remains ambiguous. 

Acknowledging these inconsistencies has become necessary to fit gravimetric quasigeoid models to GPS-

levelling as an interim solution to GPS-heighting until the AHD (1971) and NN1954 vertical datums and the 

respective quasigeoid models are refined. 

In this regard, wavelets are a very powerful tool in numerical data analysis. They are widely used in 

image and signal processing for de-noising, filtering and compressing signals (e.g., Mallat 1999). The 

advantage of wavelets over Fourier transforms is their space-localization property in the frequency domain 

that lets them detect local as well as global frequencies. Wavelets have been used in several geodetic studies 
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(e.g., Freeden and Schneider 1998, 2005; Keller 2000; Zhou et al. 2001; Lio and Sideris 2003; Kuroishi and 

Keller 2005; Hu et al. 2005), which demonstrate some advantages over traditional spectral-analysis 

techniques. 

However, classical wavelets are based on Fourier theory, which requires regularly spaced/sampled data, 

whereas GPS-levelling observations are not distributed in this way. Second-generation wavelets (Sweldens 

1997) are thus a more attractive option for our purpose because they do not require regularly spaced data. In 

addition, they are conceptually superior to LSC, because they do not require the stationarity assumption, 

which is not always fulfilled in real datasets. In practice, LSC often requires the a priori removal of a trend 

to attempt to achieve stationarity, which can be subjective (e.g., planes or any higher-order surfaces could be 

used). 

 

2 Wavelets and multiscale decomposition 

In general, wavelet analysis is based on two basic functions: the scaling function ( )x  and the wavelet, or 

detail, function ( )x .  A classical wavelet system comprises an infinite collection of translated and scaled 

versions of  ( )x and ( )x  according to (e.g., Antoniadis 1997) 

2
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Considering the function ( )f x  and the mother wavelet ( )x , ( )f x  can be expressed as a linear 

combination of basis functions , ( )j k x  as: 

, ,

,

( ) ( )j k j k

j k

f x a x=                   (3) 

where ,j ka  are the detail or wavelet coefficients.   

Unlike the Fourier transform, which is only localized in the (global) frequency domain, the wavelet 

transform is localized in both the space (or time) and frequency domains. This property introduces wavelet 
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analysis as a powerful tool to deal with signals whose spectral content changes in space (or time). In essence, 

a high frequency at 
0x  will only affect the coefficient ,j k  corresponding to the location and frequency at 

0x . Readers interested in the mathematical details of classical wavelets are referred to Mallat (1999), 

Daubechies (1992) and Antoniadis (1999). 

Considering a multi-resolution analysis (MRA) in 𝐿2, a sequence of subspaces {𝑉𝑗}
𝑗≥0

 is defined such 

that 

𝑉𝑗 ⊂ 𝑉𝑗+1 and clos ⋃ 𝑉𝑗 = 𝐿2
∞
𝑗=0          (4) 

Besides, there are complement spaces 𝑊𝑗 so that 𝑉𝑗+1 = 𝑉𝑗 ⊕ 𝑊𝑗. Therefore, a fine-resolution space 𝑉𝑗 can 

be decomposed into a coarser space and complement space, 

𝑉𝑗 = 𝑉0 ⨁ ⊕𝑖=0
𝑗−1

𝑊𝑖             (5) 

This is called multiscale decomposition (MSD). 

The spaces 𝑉𝑗 and 𝑊𝑗 are spanned by scale {𝜑𝑗,𝑘} and wavelet {𝜓𝑗,𝑘}  functions, respectively. The 

scale and wavelet functions at a coarser level are computed from scale functions at a finer level using some 

refinement coefficients ℎ𝑗𝑙𝑘 and 𝑔𝑗𝑙𝑚 such that 

𝜑𝑗,𝑘 = ∑ ℎ𝑗𝑙𝑘𝑙 𝜑𝑗+1,𝑘  and   𝜓𝑗,𝑚 = ∑ 𝑔𝑗𝑙𝑚𝑙 𝜑𝑗+1,𝑙               (6a) 

or 

𝜙𝑗 = 𝜙𝑗+1𝐻𝑗  and   Ψ𝑗 = 𝜙𝑗+1𝐺𝑗                 (6b) 

where 𝜙𝑗 and Ψ𝑗 are row vectors containing the functions 𝜑𝑗,𝑘 and 𝜓𝑗,𝑚, respectively, and 𝐻𝑗 and 𝐺𝑗 are the 

refinement matrices. 

 In biorthogonal cases, different basis functions are used for the decomposition and reconstruction of 

a signal. The 𝜙𝑗 and Ψ𝑗 are used in the reconstruction stage and their duals, 𝜙̃𝑗 and Ψ̃𝑗, are used for 

decomposition. Any function 𝑓(𝑥) can now be expressed by wavelet basis functions as 

𝑓(𝑥) = ∑ 𝑠𝑗0,𝑘φ𝑗0,𝑘(𝑥) + ∑ 𝑑𝑗,𝑘ψ𝑗,𝑘(𝑥)𝑗,𝑘𝑘                   (7) 

where 
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𝑠𝑗0,𝑘 = 〈𝑓, 𝜑̃𝑗0,𝑘〉   and  𝑑𝑗,𝑘 = 〈𝑓, 𝜓̃𝑗,𝑘〉                   (8) 

and the dual operators 𝐻̃𝑗 and 𝐺̃𝑗 are defined as 

𝜙̃𝑗 = 𝜙̃𝑗+1𝐻̃𝑗  and   Ψ̃𝑗 = 𝜙̃𝑗+1𝐺̃𝑗                   (9) 

 In this case, the biorthogonality conditions on the refinement matrices and their duals (i.e., filters) 

would be 

𝐻̃𝑗
∗𝐻𝑗 = 𝐼, 𝐺̃𝑗

∗𝐻𝑗 = 0 

𝐻̃𝑗
∗𝐺𝑗 = 0, 𝐺̃𝑗

∗𝐺𝑗 = 𝐼                  (10) 

where * indicates the Hermitian conjugate and I is the identity matrix. Let 𝑠𝑗 = {𝑠𝑗,𝑘} and 𝑑𝑗 = {𝑑𝑗,𝑘}. The 

forward wavelet transform is then given by 

𝑠𝑗 = 𝐻̃𝑗
∗𝑠𝑗+1 and  𝑑𝑗 = 𝐺̃𝑗

∗𝑠𝑗+1                 (11) 

and the inverse transform is 

𝑠𝑗+1 = 𝐻𝑗𝑠𝑗 + 𝐺𝑗𝑑𝑗                   (12)

 Signals subjected to wavelet analysis are sometimes highly correlated. This is the case for GPS-

levelling data, where for example systematic distortions occur in the levelling data tied to one vertical datum. 

Depending on the amount of correlation in the signal [here, the vales of e and e' in Eq. (1)], the wavelet 

coefficients will be small, and those below a certain threshold value can be set to zero. This allows the signal 

to be expressed by fewer coefficients, which is why wavelets are useful for image compression (e.g., the 

JPEG image format). The inverse wavelet transform can then be applied to the thresholded wavelet 

coefficients to recover the original signal without significant (depending on the threshold value) loss of 

information. In some cases, the resulting signal is de-noised when some frequencies have been filtered out 

during thresholding in the wavelet domain. Later in this paper, we shall investigate the role of thresholding 

in the merging of quasigeoid-GPS-levelling data. 
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3 Second-generation wavelets: a summary 

As stated, the classical wavelet transform relies on the Fourier transform, so cannot be applied to irregularly 

spaced datasets. The simplest solution would be to grid the data and then apply the classical wavelet 

transform. However, during data gridding we lose some (mainly high-frequency) information and the 

geometric structure of the original observations; moreover, gridding is subject to aliasing. Sideris (1995) 

developed a technique to implement the Fourier transform on irregular datasets, but it still fundamentally 

relies on a regular grid where empty cells are set to zero or include interpolated data. 

 To deal with irregular datasets, second-generation wavelets have been developed by Sweldens 

(1997), which are not necessarily the translates and dilates of one function, as is the case for the classical 

wavelet. Second-generation wavelets are constructed based on a lifting scheme (Sweldens 1997), which 

works in the space domain and thus does not rely on Fourier transformation, and hence avoids gridding. As 

such, it preserves the geometry of the observations. The lifting scheme can be used where no Fourier 

transform is possible, such as for wavelets on bounded domains, wavelets on curves and surfaces, and 

wavelets on irregular data sets (Sweldens 1996). Therefore, second-generation wavelets are well suited to 

modelling the residuals in Eqs. (1) and (2). 

 Considering two initial pairs of biorthoginal filters as (𝐻𝑗
𝑜 and 𝐺𝑗

𝑜) and (𝐻̃𝑗
𝑜 and 𝐺̃𝑗

𝑜), it is possible to 

improve their properties using the lifting scheme. The lifting scheme states that for any operator 𝑃𝑗, a new 

pair of biorthogonal filters can be found as (Delouille et al. 2003) 

(𝐻𝑗 = 𝐻𝑗
𝑜 + 𝐺𝑗

𝑜𝑃𝑗,       𝐺𝑗 =  𝐺𝑗
𝑜)  and  (𝐻̃𝑗 = 𝐻̃𝑗

𝑜,        𝐺̃𝑗 = 𝐺̃𝑗
𝑜 − 𝐻̃𝑗

𝑜𝑃𝑗)             (13a) 

which interchange the role of primal and dual filters, and for any operator 𝑈𝑗 

(𝐻𝑗 = 𝐻𝑗
𝑜,        𝐺𝑗 = 𝐺𝑗

𝑜 − 𝐻𝑗
𝑜𝑈𝑗) and  (𝐻̃𝑗 = 𝐻̃𝑗

𝑜 + 𝐺̃𝑗
𝑜𝑈𝑗 ,        𝐺̃𝑗 = 𝐺̃𝑗

𝑜)         (13b) 

The operations in Eq. (13) are called the prediction and update steps, respectively. 

 Now we may consider the model 

𝑒𝑖 = 𝑚(𝑥𝑖, 𝑦𝑖) + 𝑛𝑖                   (14) 
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where 𝑒𝑖 from Eq. (1) is located at the two-dimensional location (𝑥𝑖 , 𝑦𝑖) and 𝑛𝑖 is the noise in 𝑒𝑖 . A wavelet-

type transform, adapted to irregularly spaced two-dimensional data, is used to estimate the function 𝑚(𝑥𝑖, 𝑦𝑖). 

Some compactly supported scaling functions {𝜙𝐽, 𝜙̃𝐽} at the finest level (where J is the level of observation) 

are defined, and then the scaling and wavelet functions at coarser levels j = J −1, J −2, ... are obtained using 

Eqs. (6a) or (6b) and appropriate filters. 

 However, the output of second-generation wavelets may deliver unacceptable results. The problem 

is that the non-equispaced transform is unstable, i.e., far from orthogonal. 

Consequently, small-magnitude coefficients may turn out to carry crucial information, while other large-

magnitude coefficients may contain mostly noise (Jansen and Oonincx 2005). Indeed, since the basis is 

oblique (non-orthogonal), some large-scale features can leak into the small-scale part of the wavelet 

spectrum. This instability can be attenuated by a variance-normalization or update step. The minimum norm 

update operator is used here to keep the basis close to orthogonal by minimizing the update coefficients’ 

norm (Delouille et al. 2003). 

 

3.1. Lifting scheme in one dimension 

It is instructive to first consider the one-dimensional case. The classical fast wavelet transform and second-

generation wavelet transform are shown in Fig. 1. The classical wavelet transform starts by applying high-

pass and low-pass filters on the original signal j .  The results are then downsampled to details or wavelet 

coefficients ( 1j − ) and a coarser version of original signal ( 1j − ).  This process is repeated on 1j −  to get 

2j −  and 2j − , then continues until it reaches 
0  and 

0 .  This approach can be used in MRA, where a 

signal is spectrally analysed at different (space or time) scales. 

The second-generation wavelet transform is based on the so-called lifting scheme and starts with the 

“lazy wavelet”, which downsamples the signal to even and odd samples. The odd samples are then used to 

predict the even ones. The detail 1j −  is the predicted value subtracted from the even sample. The details are 

then used to update the odd samples to keep the mean value of the signal unchanged. 
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Let 0, ( )k f k = , k Z , be the original signal.  The first approximation based on applying the lazy 

wavelet is 

1, 0,2k k − = , k Z                    (15) 

and the details, or wavelet coefficients, are 

1, 0,2 1 1, 1, 1

1
( )

2
k k k k   − + − − += − + , k Z                        (16) 

If the signal is correlated, the wavelet coefficients ( ,i j ) are small and values below some threshold may be 

ignored (described later). In order to keep the mean of ( ) constant, the approximated values ( 1,k− ) must 

be updated using the detail or wavelet coefficients. Equation (15) is thus modified to

1, 1, 1 1,

1
( )

4
k k k  − − − −+ = + , k Z                                    (17) 

The above computations are represented schematically in Fig. 2. One can use a higher-order scheme 

to predict the odd indexed values from the even ones. For example, ,2 1j k +  can be predicted based on cubic 

polynomial interpolation through the values ,2 1j k − , ,2j k , ,2 1j k +  and ,2 2j k + .  As such, there is some 

interpolation embedded in the second-generation wavelet technique, but this applies to the treatment of the 

wavelet coefficients only, and not the original data. 



 10 

  The inverse second-generation wavelet transform is simply applied by reversing the update and 

prediction steps. 

 

3.2 Lifting scheme in two dimensions 

In two dimensions, which applies to our case (cf. Eq. 14), the above one-dimensional splitting into odd and 

even samples is not possible. Therefore, a different spatial geometry should be used for constructing the 

second-generation wavelets and defining the neighborhoods. In our study, Delaunay triangulations and 

Voronoi tessellations are used for this purpose (cf. dos Santos and Escobar 2004). The benefit of using 

Delaunay and Voronoi methods [also known as triangulated irregular networks (TINs)] is that they preserve 

the spatial structure of the original GPS-levelling observations. This allows more detail to be used in areas of 

dense data, which would be smoothed out by gridding if classical wavelets were to be used. 

Delaunay triangulation (Fig. 3) comprises triangles connecting the nearest-neighbour vertices (here, 

GPS-levelling points). The Delaunay triangulation is then used to build a Voronoi diagram: a set of cells, 

each of which contains the locations closer to a certain vertex than the others (Fig. 3). The edges of Voronoi 

polygons are bisectors of the sides of the Delaunay triangles (e.g., Delouille et al. 2003). 
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The wavelet scaling function φ𝑗0,𝜐0
(𝑥), corresponding to a vertex 𝜐0 (Fig. 4), at the observation level 

is the characteristic function of the Voronoi cell of the vertex 𝜐0 in which medians of the immediate 

neighboring triangles are used instead of the bisectors (Delouille et al. 2003).The area of support of the scaling 

function (A𝑗,𝜐0
) for the vertex  𝜐0 is thus equal to integral of scaling function φ𝑗,𝜐0

(𝑥), and is shown in Fig. 

4. 

In two-dimensional cases, at any given scale j, only one scaling coefficient or observation 

corresponding to a certain vertex is predicted, and then that coefficient is used to update its neighbors (cf. the 

one-dimensional lifting scheme), as will be explained below. Choosing a vertex for prediction is based on the 

support of scaling functions at all vertices. The vertex 𝜐0 that has the smallest support from the scaling 

function at each level is selected and predicted. 

The initial filters of the two-dimensional lifting scheme are 

𝐺𝑗
𝑜 = 𝐺̃𝑗

𝑜
= {𝜐0} and   𝐻𝑗

𝑜 = 𝐻̃𝑗
𝑜

= {𝑁(𝜐0)}           (18) 

where  𝑁(𝜐0) are neighboring points (vertices) of the vertex 𝜐0. The detail/wavelet coefficient corresponding 

to the vertex 𝜐0 is (Delouille et al. 2003): 

𝑑𝑗,𝜐0
= 𝐺̃

𝑗

∗
𝑠𝑗+1 = 𝐺̃𝑗

𝑜∗
𝑠𝑗+1 − 𝑃𝑗𝐻̃𝑗

𝑜∗
𝑠𝑗+1 = 𝑠𝑗+1,𝜐0

− 𝑃𝑗,𝑁(𝜐0)𝑠𝑗+1,𝑁(𝜐0)
             (19) 
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where 𝑠𝑗+1,𝜐0
 and 𝑠𝑗+1,𝑁(𝜐0)

 are the observations at 𝜐0 and its neighbouring points (𝑁(𝜐0)), respectively, and 

𝑃𝑗,𝑁(𝜐0) are the prediction weights. 

 In our case, the vertices are the GPS-levelling points and their values (𝑠
𝑗,𝜐

) at the finest level are the 

algebraic differences between the gravimetric quasigeoid model and GPS-levelling data [i.e., e' in Eq. (1b)]. 

The detail/wavelet coefficients are the differences between the wavelet scaling coefficients and their 

predicted values (Eq. 19). The number of neighboring points used in prediction can be varied, and depends 

on the method of prediction, which can be, e.g., a plane or a polynomial of degree n. As for the one-

dimensional case, the interpolation applies to the wavelet coefficients, which preserves the geometry of the 

observations. 

 After predicting the scale coefficient at 𝜐0 and subtracting it from the observed value (Eq. 19), it is 

replaced with the computed detail, and then that vertex is eliminated from the Delaunay triangulation. 

Another Delaunay triangulation is then applied on the remaining data and a new set of Voronoi polygons 

built. The area previously occupied by φ
𝑗+1,𝜐0

 is now taken by a new area corresponding to its neighbours 

(φ𝑗,𝑁(𝜐0)
). In this study, planar and second-order surfaces, determined using unweighted least-squares, are 

used for the coefficient prediction. The immediate neighbours (first ring) are used for the linear prediction, 

and both the first- and second-ring neighbors are used for the second-order polynomial prediction (Fig. 5). 

 

The prediction step is followed by an update step, which updates the scaling coefficients at 

neighboring vertices (Eq. 13b), 

𝑠𝑗,𝑁(𝜐0) = 𝐻̃
𝑗

∗
𝑠𝑗+1 = 𝐻̃𝑗

𝑜∗
𝑠𝑗+1 + 𝑈𝑗𝐺̃𝑗

∗
𝑠𝑗+1 = 𝑠𝑗+1,𝑁(𝜐0) + 𝑈𝑗𝑑𝑗,𝜐0

          (20)  
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The update coefficients 𝑈𝑗 are computed to keep ∑ 𝑠𝑗,𝑘𝐴𝑗,𝑘𝑘  unchanged.  This is equivalent to providing the 

primal wavelet 𝜓𝑗,𝜐0
with one vanishing moment (e.g., Mallat 1999).  To achieve this, we have to impose that 

(Jansen et al. 1999) 

𝐴𝑗+1, 𝜐0
= ∑ 𝐴𝑗,𝑘𝑘∈𝑁(𝜐0) 𝑢𝑗,𝑘                             (21) 

Update coefficients can then be computed using the minimum norm update operator (Jansen et al. 1999) 

𝑢𝑗,𝑘 =
𝐴𝑗,𝑘𝐴𝑗+1, 𝜐0

∑ 𝐴𝑗,𝑙
2

𝑙∈𝑁(𝜐0)
                                          (22) 

Since the update step modifies the primal wavelet basis functions, large update coefficients will cause 

the lifted wavelet function to be close to the space spanned by scaling function at a coarser level. This means 

that the wavelet and scaling function would be far from orthogonal, as stated earlier. The minimum norm 

update operator (Eq. 22) avoids this instability by minimizing the update coefficients (Delouille et al. 2003), 

thus making it more suited to our problem of merging quasigeoid and GPS-levelling data. 

 

3.3 Thresholding 

When applying thresholding to second-generation wavelets, any coefficients smaller than a specified 

threshold value are replaced by zeros (Sweldens 1996). This is analogous to multiple regression equations. 

Therefore, the signal of interest is expressed using the remaining coefficients. Finding an optimal threshold 

value is an important part in smoothing or filtering. A small threshold will cause the output to be the same as 

noisy input signal, and a large threshold introduces the risk of losing real signal in addition to noise. 

The following model of data (corrupted by noise, n) and its wavelet transform are considered: 

𝑦 = 𝑓 + 𝑛                                                          (23) 

𝜔 = 𝑊̃𝑦                                                                         (24) 

where 𝑊̃ is the forward wavelet transform and 𝜔 is the vector of wavelet coefficients. The coefficients below 

a threshold value λ are replaced with zero and the others are left untouched (hard thresholding) or shrunk by 

the factor λ (soft thresholding). Applying the inverse wavelet transform to the thresholded coefficients yields 

the filtered data                                                                    
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𝑦𝜆 = 𝑊𝜔𝜆                     (25) 

An optimal threshold value can be computed by minimizing the generalized cross-validation (GCV) 

function (Jansen and Bultheel 1999). Note that this is not the same as the cross-validation in Sect. 4.1.                               

GCV(𝜆) =
1 𝑁⁄ ‖𝜔−𝜔𝜆‖2

(𝑁0 𝑁⁄ )2                         (26) 

where N is the number of all coefficients (not to be confused with the geoid height), 𝑁0 is the number of 

coefficients replaced with zero during thresholding step, and 𝜔 and 𝜔̃ are vectors of the original and 

thresholded coefficients, respectively. GCV is a threshold that minimizes the MSE (mean square error) of the 

function with respect to the data (Jansen and Bultheel 1999).                                                                                                

Because the standard deviation of each coefficient is different for the coefficients computed by the 

second-generation wavelet transform (Jansen and Bultheel 1999), they must be normalized before 

thresholding, as follows.  If the covariance of the data (C) is known, the variances of coefficients can be 

computed by 

𝐷 = 𝑊̃𝐶𝑊̃𝑇                    (27) 

where the superscript T indicates matrix transposition. The normalized coefficients can then be computed by 

dividing them by their standard deviations 

𝜔̃𝑖 =
𝜔𝑖

√𝐷𝑖𝑖
                                                                                                                      (28) 

To verify the efficiency of the GCV method for finding the optimal threshold, we also look for an 

optimal threshold value by considering the standard deviation of results after applying the cross-validation 

technique [Sect. 4.1, not Eq. (26)]. In this case, different threshold values are trialled, and the maximum 

threshold is selected that gives the minimum standard deviation in the cross-validation with GPS-levelling 

data. The detail/wavelet coefficients below this threshold are ignored because they are assumed to contain 

unnecessary high-frequency information or noise, subject to the problem of possible leakage due the non-

orthogonality of the second-generation wavelet (discussed earlier). Some similarity can be seen between this 

method and LSC, where we look for the signal and neglect the noise to find a smoothed surface. 
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4 Numerical Experiments, Results and Analysis 

4.1 Cross validation 

The cross-validation technique is a well-known approach in areas such as soil science, and is described in 

Fotopoulos (2003) and Featherstone and Sproule (2006) for the case of fitting gravimetric quasigeoid models 

to GPS-levelling data. To summarize, one GPS-levelling point is omitted from the merged solution, then the 

difference between the resulting merged quasigeoid-type surface and the GPS-levelling height at that unused 

point is computed. This is repeated for all GPS-levelling points in the dataset to give a sample from which 

descriptive statistics are computed.  

The benefit of this approach is that the same data are not used twice; i.e., once to compute the merged 

surface, then again to test it. As such, we believe that it gives a more realistic and arguably more independent 

indication of the performance of the merged surface. In the case of our second-generation wavelet merging, 

the Delaunay triangulation and Voronoi cells are changed every time a point is omitted and used for cross-

checking. This is repeated for all points in the dataset. While this is time consuming for both methods, it only 

needs to be done during the tests, then all data used with the optimal parameters to produce the final merged 

quasigeoid-type ‘product’. 

4.2 Data description 

The two case-study regions of Norway and Australia were chosen principally for reasons of 

convenience to the authors, but they also exhibit different spatial densities of GPS-levelling data [1,724 

stations in Norway (Fig. 6) and 254 stations in Australia (Fig. 7)]. Considering the areas of two countries 

(Australia is ∼ 24 times bigger than Norway), the GPS-levelling data in Norway are much more dense, 

especially in the south. It will be shown later that, as expected for the second-generation wavelet technique, 

the denser the GPS-levelling data, the better the results.  

The most recent publicly available Australian quasigeoid model, AUSGeoid98 (Featherstone et al. 

2001), which is on a 2 by 2 arcmin grid, and the latest Norwegian quasigeoid model, OCTAS02 (Omang et 

al. 2004), which is on a 6 by 3 arcmin grid, were used in this study. The gravimetric quasigeoid heights were 
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bilinearly interpolated to the GPS-levelling points. The levelled heights refer to the AHD (Roelse et al. 1971) 

and NN1954 (Lysaker 2003) local vertical datums. 

 

 

Fig. 7 Spatial distribution of GPS-levelling stations in Australia (Lambert projection) 

  

The AHD uses a variant of the normal-orthometric height system, which is based on a truncated 

formula (Featherstone and Kuhn 2006). The height system used in NN1954 is rather ambiguous (Lysaker 

2003), but will be assumed to be a normal height system. As such, the heights on each local vertical datum 

will have to be assumed compatible with each respective quasigeoid model, notwithstanding the various 

errors affecting their practical realization (see the Sect. 1). Finally, the GPS-derived ellipsoidal heights in 

Norway are referred to the EUREF89 datum and those in Australia refer to the ITRF2000 datum.  
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In this study, the variance of all these observations will be assumed zero, which is unrealistic but we 

do not have any reliable variance information at present. Also, since we seek a merged surface that makes 

ℎ − 𝐻∗ − 𝜁 = 𝑒′ = 0 [cf. Eq. (1b)], which is enforced by assuming zero variance.  

4.3 LSC merging 

For the sake of comparison, and to show the efficiency of the second-generation wavelet method, LSC was 

also applied to the same datasets. Since covariance functions are generally not available, they have to be 

determined empirically (e.g., Moritz 1980), and then an analytic function fit to them in order to apply LSC. 

Normally, only isotropic (i.e., azimuth independent) covariance functions are considered, which is not the 

case with second-generation wavelets. Figure 8 shows empirical covariances computed from the Norwegian 

and Australian quasigeoid-GPS-levelling differ ences [e  in Eq. (1b)], as well as an exponential analytical 

covariance function fitted to them using unweighted least squares. From Fig. 8, the empirical covariances 

decay faster in Norway (correlation length of 200 km) than in Australia (correlation length of 1,000 km), 

which reflects the spatially more dense data in Norway. Note that the correlation length for Australia differs 

from the 2,500 km calculated in a different way by Featherstone and Sproule (2006). The correlation lengths 

of 200 and 1,000 km were used for Norway and Australia, respectively. 

 The difference between empirical and analytic covariance functions at zero-distance was taken to be 

the variance of the noise, which gave ±3.6 cm for Norway and ±11.4 cm for Australia. The smaller noise for 

Norway indicates both a better dataset and a better initial fit of OCTAS02 to the EUREF89-NN1954 data 

(i.e., gravimetric quasigeoid to the GPS-levelling) than the AUSGeoid98-ITRF2000-AHD (1971) data. Note 

that a planar surface had to first be removed from the data before the covariance functions were determined, 

unlike the second-generation wavelet method.  

The LSC results were evaluated using the cross-validation approach (Sect. 4.1), and the results will 

be presented in Sect. 4.4, together with those obtained from the second-generation wavelet approach. 
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4.4 Wavelet merging 

The second-generation wavelet transform based on the lifting scheme (Sect. 3.2) was applied to the 

Norwegian and Australian quasigeoid-GPS-levelling differences. Both planar and second-degree polynomial 

surfaces were tested for detail prediction, and the resulting wavelet coefficients were first normalized using 

Eq. (28). Because the covariance of the observations is unknown, 𝐶 = 𝜎2𝐼 is assumed as their covariance 

matrix, where σ is the standard deviation of the noise.  

These normalized coefficients were soft-thresholded with the optimal threshold value computed from 

the GCV method (Eq. 26), which gave (dimensionless) values of 0.0040 for Norway and 0.0084 for Australia. 

As for the LSC covariance function, the larger value for Australia indicates a combination of poorer data and 

a poorer initial fit of the AUSGeoid98- ITRF2000-AHD data. To verify the threshold values computed using 

GCV (Eq. 26), a range of different threshold values were also applied, and assessed using the GPS-levelling 

cross-validation technique (Fig. 9). In Norway, the standard deviation of the cross-validation increases with 

increasing threshold. In Australia, it decreases until threshold of 0.16 and increases after that. The first ten 
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threshold values, their corresponding cross-validation standard deviation, and the number of thresholded 

(removed) wavelet coefficients for Norway and Australia are summarized in Table 1. Comparing the values 

in Table 1 with the values obtained from GCV method (0.0040 for Norway and 0.0084 for Australia) shows 

that the GCV method was successful in finding the optimal threshold value for Norway, but not in Australia. 

Assuming 0.5 mm as an acceptable tolerance for the standard deviation, the maximum threshold value of 

0.25 was selected as the optimal value for both Norway and Australia (marked in bold in Table 1). The 

normalized coefficients were then soft-thresholded using this value, and then the inverse wavelet 

transformation was applied to give the (slightly smoothed) merged surface.  

The final surfaces (for a threshold of 0.25) were then validated with the unused GPS-levelling points 

based on the cross-validation method (Sect. 4.1). The results in both absolute and relative senses (cf. 

Featherstone 2001) are summarized in Tables 2, 3, 4 and 5. All possible baselines between GPS-levelling 

points were considered in relative validation (i.e., 32,131 and 1,485,226 baselines for Australia and Norway, 

respectively). Table 4 includes the cross-validation statistics for the LSC combination by Featherstone and 

Sproule (2006), which used 253 of the same GPS-levelling points (one value was rejected as an outlier). In 

terms of standard deviation of the cross-validated differences after fitting, the soft-thresholded second-

generation wavelet method is slightly better than LSC in Australia and slightly worse in Norway. Considering 

the maximum and minimum columns in Tables 2 and 4, however, wavelets have been more successful than 

LSC at decreasing the maximum and minimum differences (ignore the last row of Table 4, which rejected 

one suspected outlier). Both sets of results in Tables 4 and 5 show proportionally more improvement in 

Norway (∼ 75%) than in Australia (∼ 50%), which is due mostly to the spatially denser GPS-levelling data 

in Norway. In Tables 2, 3, 4 and 5, the linear and second-order detail prediction in the second-generation 

wavelets yielded very similar results, with the second-order method being slightly worse in Norway. 
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4. Summary, discussion and conclusion 

To improve the accuracy of normal height determination on a local vertical datum by GPS, second-generation 

wavelets based on the lifting scheme, together with coefficient thresholding, has been introduced and 

implemented on the differences between gravimetric quasigeoid models and discrete GPS-levelling data over 

Norway and Australia. Unlike the classical wavelet transform, the second-generation wavelet can be applied 

directly to irregular datasets. The second-generation wavelet coefficients were soft-thresholded by a verified 

optimal threshold value from the GCV method, and then the inverse wavelet transformation was applied to 

give the merged surface. Importantly, this method is applicable to non-stationary data. As such, removing an 

a priori trend, which is necessary for LSC-based merging, is not required for the second-generation wavelet 

method. 

 The resulting merged quasigeoid-type surfaces were then cross-validated using GPS-levelling data 

not used to compute them. The results show that differences between the new surfaces and the unused GPS-

levelling have decreased in both absolute and relative senses (∼ 75% for Norway, and ∼ 50% for Australia). 

The differences in standard deviation between the results from LSC and wavelets are a few millimetres, but 

the wavelets have been more successful at decreasing the maximum and/or minimum differences than LSC. 

Therefore, second-generation wavelets are another alternative method that can be used for merging 

gravimetric quasigeoid/geoid models and GPS-levelling data on a local vertical datum. 
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