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ABSTRACT A digital twin is a powerful tool that can help monitor and optimize physical assets in real-
time. Simply put, it is a virtual representation of a physical asset, enabled through data and simulators,
that can be used for a variety of purposes such as prediction, monitoring, and decision-making. However,
the concept of digital twin can be vague and difficult to understand, which is why a new concept called
"capability level" has been introduced. This concept categorizes digital twins based on their capability and
defines a scale from zero to five, with each level indicating an increasing level of functionality. These
levels are standalone, descriptive, diagnostic, predictive, prescriptive, and autonomous. By understanding
the capability level of a digital twin, we can better understand its potential and limitations. To demonstrate
the concepts, we use a modern house as an example. The house is equipped with a range of sensors that
collect data about its internal state, which can then be used to create digital twins of different capability
levels. These digital twins can be visualized in virtual reality, allowing users to interact with and manipulate
the virtual environment. The current work not only presents a blueprint for developing digital twins but also
suggests future research directions to enhance this technology. Digital twins have the potential to transform
the way we monitor and optimize physical assets, and by understanding their capabilities, we can unlock
their full potential.

INDEX TERMS Digital Twin, Artificial Intelligence, Virtual Reality, Machine Learning, Building Physics

I. INTRODUCTION

A digital twin (DT) is a virtual replica of a physical asset,
enabled through data and simulations, that can be used

for real-time monitoring, optimization, and decision-making
[1]. The motivation to study DTs is rooted in the potential
cost savings and efficiency gains they offer. In Fig. 1, we
can see the concept of a DT. The physical asset is located
in the top right side of the figure, equipped with various
sensors that provide real-time big data. However, this data
has limited spatio-temporal resolution and does not tell about
the future state of the asset. To complement the measurement
data, models are used to create a digital representation of
the asset. If the DT can provide the same information as
the physical asset, it can be utilized for informed decision-
making and optimal control. The green arrows in the figure
show real-time data exchange and analysis. To perform risk
assessment, what-if analysis, uncertainty quantification, and
process optimization, the DT can be run in an offline setting

for scenario analysis. It is then called digital siblings. The
grey box and arrows represent the digital sibling. Addition-
ally, the DT predictions can be archived during the lifetime of
the asset and can be used for designing a next generation of
assets, in which the concept is referred to as digital threads.
The authors in [2] present a DT capability level scale adapted
from a DNV GL report [3] that divides a DT into six dis-
tinct levels. These levels are 0-Standalone, 1-Descriptive, 2-
Diagnostic, 3-Predictive, 4-Prescriptive and 5-Autonomous
(Fig. 2). Standalone DT can exist even before the asset is built
and can consist of solid models. When the asset is in place
and is equipped with sensors, data can be streamed in real-
time to create a descriptive DT, giving more insight into the
state of the asset. When analytics tools are applied to the in-
coming data stream to diagnose anomalies, the DT advances
to a diagnostic level. At the first three levels, the DT can
provide information/insight only about the past and present.
However, a predictive DT can describe the future state of the
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FIGURE 1: Schematic of a digital twin, and digit sibling concept. The top-right most box with a house represents any asset
equipped with sensors acquiring big data. The data is processed using models to improve the spatio-temporal resolution for
instilling physical realism in the digital twin. Information from the digital twin can be used for informed decision making and
public engagement. Additionally it can be used for optimally controlling the asset. The green arrows signify real-time data /
information transfer. The same architecture can also be used for conducting offline hypothetical scenario analysis, in which
case can be called digital siblings.
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FIGURE 2: Description of capability levels of a digital twin.

asset. Using the predictive DT, one can do scenario analysis
to provide recommendations to push the asset to the desired
state. This is then referred to as prescriptive level. Lastly, the
asset updates the DT at the autonomous level, and the DT
controls the asset autonomously. We will refer to this setting
as the capability level framework for DTs from now onwards.

Within the field of DTs there is no consensus as to what
qualifies as a DT application [4]. Organizations and sectors
operate with different definitions of DTs that are simply too
vague and generic to provide any indication of the current
capabilities of the DT [5]. Due to the ambiguity of the
definitions of DTs, researchers and practitioners may dis-
miss them as mere marketing hype. As a result, once the

excitement and the inevitable backlash have passed, interest
in and use of this promising technology may not reach its
full potential [6]. Furthermore within the built environment,
a BIM of a building relates somehow to the DT of the
asset, but many still struggle to see the liaison between
the two [7]. More recently some encouraging advancement
has started to happen in the field for e.g. [8] improves the
construction efficiency to ensure the infrastructure needs of
urban development using the BIM model. In [9] the focus is
on the modelling methodology used by the energy domain to
support the development of a DT for a multi-functional build-
ing element. The authors in [10] argue that a comprehensive
perception of physical systems is the preconditions for DTs
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TABLE 1: Comparing current work with industry DT services.

Comparing Digital Twin Solutions
Capability Standalone Descriptive Diagnostic Predictive Prescriptive
Current work X X X X X
Matterport X - - - -
Openspace X - - - -
Revit X - - - -
Invicara X X - - -
TwinView X X - X -

implementation while in [11] it is demonstrated that DT
technologies can enable efficient and responsive planning and
control of facility management activities by providing real-
time status of the building assets. Researchers in [12] studied
the structural system integrity using finite element method in
historical masonry buildings using the concept of the DT. It
can be easily realized that the capability level scale concept
has the potential to make the DT related communication
more standardized and can help compare different existing
DT solutions available in the market. A brief overview of the
capability of existing solutions in the market is presented in
Table 1. It shows a clear lack of high capability level DTs in
the industry. The connection between the DT capability level
and the service that each company provides depends on what
the focus of the provider is. For instance, Matterport [13] and
Openspace are virtual tour services that focus on providing
360 degrees photogrammetry for building management [14],
[15], and therefore only qualify as a standalone DT service.
Note that there are many other similar standalone services
in the market [16], [17]. Revit is a BIM modeling software
and is therefore only limited to constructing 3D models of
a building [18]. Invicara and TwinView have an ambition of
allowing customers to combine BIM models with IoT sensor
data integration qualifying both companies for descriptive
DT, with the addition of Twinview providing predictive DT
capabilities [19], [20]. None of the above-mentioned applica-
tions qualify as diagnostic or prescriptive DTs. To this end,
the current work

• introduces the concept of DT and its capability level in
the context of built environment.

• presents the basic ingredients to get started with build-
ing a DT.

• combines the power of AI, advanced sensor technolo-
gies, and virtual reality (VR) to develop the DT which
is used as a way to communicate the concept and its
values.

• proposes future research directions to enhance the capa-
bility of DTs.

It is important to stress that the objective of this paper is not
to present a detailed analysis of the diverse class of data used
in this project. Instead, we are using data, and their analysis
to demonstrate the potential value of DTtechnology. To the
best of our knowledge, this has never been attempted before
at the fidelity addressed in the current article.

This paper is structured as follows. Section II presents the
relevant theory that has been used to develop the DT. We then

outline the methodology of the work in Section III, namely
how the data was generated, how the models were trained,
and how they were evaluated. In Section IV we present the
results and discuss them. Finally, we summarise our findings
and outline future work in Section V.

II. THEORY
This section gives a brief description of the concepts, algo-
rithms, and tools utilized to develop and demonstrate the DT
concept using the capability level framework. Since one of
the goals of this work is to provide a blueprint for developing
DT of any asset from scratch, for the sake of completion, we
have also included some theories (eg. collaborative filtering
and big data cybernetics) which we have not yet used in the
current work.

A. 3D MODEL REPRESENTATION
As explained earlier, a standalone DT is a virtual description
of an asset, disconnected from its physical counterpart. In the
current context the house might not even exist at the inception
of a standalone DT. However, the standalone DT can give
the stakeholders a feel of the building and its environment,
enabling them to make informed decisions. In creating the
standalone DT we involved three basic steps, 3D modeling,
rendering/texturing, and creating a virtual representation of
the building. These are explained in the following section.

1) 3D Modeling
The term 3D modeling is the process of using a software
tool to construct a 3D representation of an object (house in
the current context). The 3D model also called the Com-
puter Aided Design (CAD) model consisting of point clouds,
edges, and surfaces giving the illusion of physical objects.
The 3D models can be utilized for engineering analysis using
Computational Fluid Dynamics (CFD) and Finite Element
Methods (FEM).

2) 3D Rendering
3D rendering is a computer graphics process in which sur-
faces of a 3D model are overlayed with textures such that
the 3D object achieves a photorealistic appearance [21]. 3D
rendering can be broken down into three steps; visual textur-
ing, lighting, and detailing. Visual textures refer to the visual
perception of a spatial surface with a variety of details such
as color, orientation, intensity, size, shape, and density [22],
[23]. In addition, lighting, reflection, and shadows can all be
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generated in 3D rendering software, and the light-absorbing
characteristics of the materials are integrated into the texture.
Detailing is the last step and requires a designer to carefully
sculpt wear and tear, imperfections, dents, and other details
into the surfaces, giving the model a more lifelike impression.
For texturing to be interpreted across different platforms, it is
usually represented in the form of a uv-map. uv-mapping is
projecting a 2D image onto a 3D surface, where the "uv" part
refers to the axes of the image projection.

3) Virtualization using 3D Game Engine
A 3D game engine is a software development environment
that effectively allows for the rapid development of interac-
tive 3D experiences and games. A game engine is known to
support a programming environment, 2D and/or 3D render-
ing, accurate physics engines, and many more well-optimized
features that would take much time for a single developer to
create on their own. Thanks to commercially available game
engines, it is easy for an individual to only focus on the
specifics of their own game, simulation, or experience [24].
Creating a standalone DT of an asset with 3D modeling and
3D rendering allows only for a static 3D model while using a
3D game engine through scripting language allows for state
management of the 3D asset. This enables real-time evolution
of the DT with respect to the asset it represents.

B. VIRTUAL REALITY
The concept of VR is not recent and can be defined as
a model of the real world that is maintained in real-time,
sounds and feels real with the possibility to directly and
realistically manipulate the environment. Today there exist
many affordable VR solutions generally consisting of a head-
set and complimentary controllers, that either utilize their
own internal hardware or external processing power to render
the virtual environment. Such a representation of a virtual
environment through the usage of VR hardware compliments
very well the visualization of a DT asset, which allows for a
more realistic representation and feel of the asset.

C. TIME SERIES PREDICTION AND FORECASTING
MODEL
A time series can be defined as sequenced data consisting
of real-valued continuous numerical observations that are
a function of time [25]. The data collected in the current
work comes from sensors sampled at regularly spaced in-
tervals; thus, the data can be viewed as continuous-valued
but discrete in time. Time series predictions and time series
forecasting, while being slight variations of the same thing,
can often be confused to mean the same thing [26]. In the
context of machine learning (ML) and this work, a time series
predictions model will refer to a regression model capable
of predicting unknown or unseen values based on present
information. On the other hand, a time series forecasting
model is a regression model capable of making future predic-
tions based on learned trends and seasonality, amongst other
things.

1) AutoRegressive Integrated Moving Average

ARIMA, a time series forecasting model, is a versatile model
that can capture both the linear and non-linear patterns in
the data, as well as handle different types of seasonality
and trend. The ARIMA model consists of three components:
Autoregression (AR), Integration (I), and Moving Average
(MA). AR models the relationship between an observation
and a number of lagged observations. The idea behind this
is that the current value of a time series is a function of its
past values. AR models can be used to capture linear patterns
in the data. Moving Average (MA) models the relationship
between the errors of the time series. The idea behind this
is that the errors in a time series are correlated with the
errors of the previous time points. MA models can be used
to capture non-linear patterns in the data. Integration (I) is
a technique used to transform a non-stationary time series
into a stationary one. A stationary time series has a constant
mean and variance over time, which makes it easier to model.
Integration is achieved by taking the difference between
consecutive observations. ARIMA models are typically de-
noted as ARIMA(p, d, q), where p, d, and q are integers
that represent the order of the AR, I, and MA components,
respectively.

2) Prophet

Prophet [27] is a popular time series forecasting model de-
signed to handle seasonality, holiday effects, and other time
series features that are commonly encountered in real-world
data. It is based on a decomposable time series model that can
capture trend, seasonality, and holiday effects using piece-
wise linear models. Prophet is also robust to missing data
and can handle outliers and changes in trend. Additionally, it
offers a wide range of customizable options and hyperparam-
eters to fine-tune the model performance. Overall, Prophet
has gained popularity due to its ease of use, flexibility, and
ability to provide accurate and reliable forecasts for a variety
of time series applications.

3) Long Short Term Memory Networks

LSTM [28] is a type of RNN architecture that is specifically
designed to handle time series data. LSTM networks are ca-
pable of learning and remembering long-term dependencies
in time series data, making them well-suited for a wide range
of applications such as speech recognition, natural language
processing, and temperature prediction. Unlike traditional
RNNs, which have a simple structure and can suffer from the
vanishing gradient problem, LSTMs use a memory cell and a
set of gates to selectively store, retrieve, and forget informa-
tion. The memory cell can retain information over long time
periods, while the gates control the flow of information into
and out of the cell. This allows LSTMs to capture complex
patterns and dependencies in time series data, making them a
powerful tool for time series forecasting and prediction.
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4) Gradient Boosting Machines
GBM is a powerful ML algorithm used for both regression
and classification tasks. It works by iteratively building an
ensemble of weak decision trees, where each new tree is
trained to correct the errors made by the previous trees in
the ensemble. GBM is a form of boosting, which means
it improves the accuracy of the model by focusing on the
misclassified samples in each iteration. The algorithm works
by minimizing a loss function, such as mean squared error or
log loss, using gradient descent. GBM has several advantages
over other ML algorithms, such as the ability to handle
missing data and outlier detection, and it is less prone to
overfitting. GBM has become a popular choice for solving
complex ML problems. GBM were one of the first sequential
ensemble methods of its kind created by Friedman and have
evolved to many of the state-of-the-art tree-based algorithms
such as XGBoost, CatBoost and LightGBM [29], [30], [31].

5) Stacking
Stacking uses output predictions of base models as input
to a second-level model, usually called the meta-learner.
However, one cannot simply train the base models on the
full training data, generate predictions on the full test set and
then output these for the second-level training. This would
not lead to the benefits that stacking provides. Instead, K-
folds of the dataset is created. Then each model is fitted on
K − 1 of the training set and predicts only on 1

K of the data
set, this is done for K iterations until all data appears on the
test set. All K predictions of a single model are concatenated
into the size of the original test set vector, this is done for
each of the models. Finally, all these vectors are fed together
as features to the meta-regressor, which produces the final
predictions [32], [33]. Empirical evidence shows that model
stacking makes the model more robust to changes in the data
set, allowing for better generalization [34]. This is because
the stacking deduces the bias in a model on a particular data
set, and then corrects said bias in the meta-learner [35].

6) Weight Averaging
A simple but powerful way to create a strong predictor is
by using parallel ensembling. One way to think of parallel
ensemble learning is weighting the predictions of multiple
different models. Another way of parallel ensemble predic-
tions is to have multiple models of the same type e.g. LSTM,
but each LSTM model has different hyperparameters or is
fed with different features, and then their predictions are
weighted to get the final prediction. One can combine and
experiment with endless types of parallel ensembling, as
each dataset might work very well with a specific kind. In
Equation 1 assuming predictions from N different models,
then the final prediction ŷf is the weighted average of all the
individual models represented by ŷi.

ŷf =

∑N
i=1 ŷiwi∑N
i=1 wi

(1)

where the weights wi given by

wi =
1

(
√

1
N

∑N
k=1(y

val
k − ŷvalk )2)p

(2)

are calculated using the predictions on the validation set
(represented with the subscript val) Note that the tunable
hyperparameter p can be chosen to be any value greater than
zero.

D. SUN POSITION PREDICTION MODEL
The approximate algorithm that is used in the current imple-
mentation of the predictive DT is inspired by [36] which is
taken from Montenbruck’s book on algorithms about astro-
nomical phenomena. The precision of these calculations is
in the range of 01.03.1900 till 28.02.2100 as stated by the
author [37]. The resulting sun position algorithm in Unity
is accurate enough that it can be used for external lighting
simulations on the house. In order to calculate the azimuth
and altitude of the sun accurately, several parameters are
required to convert the input date into the correct format.
These parameters include JD, JC, tUT , tSR, tSRUT , and
tLSR. Additionally, the ecliptic coordinates of the sun, λ and
β, are calculated using the values of L0 and M0. The ecliptic
coordinate system is used to represent the apparent positions
of any solar system object. These coordinates, together with
Ω, are then used to calculate the equatorial coordinates, α
and δ. This enables us to determine the position of the sun
relative to the earth, with the earth located at the origin of
the equatorial coordinate system. Finally, the coordinates are
converted into azimuth and altitude angles, ϕ and θ, which
provide the output sun coordinates relative to a stationary
point on the earth’s surface. In our case, the stationary point
is the longitude and latitude positions of the house.

First, in order to calculate the number of days relative to
the reference date and time of January 1, 2000, 12h Universal
Time (J2000), we need to calculate the Julian Date. The
Julian Date is represented by JD and can be calculated using
the following equations:

JD = 367Y − 7

4
(Y +

9

12
M) +

275

9
M +D − 730531.5

This relates to the Julian Century as

JC =
JD

36525

Furthermore using Julian Century, Sidereal time (given in
hours) can be defined, which is the meridian of Greenwich
at midnight (00h) for a given date as well as the conversion
from sidereal time of the Greenwich meridian for Universal
Time can be calculated as follows.

tSR = 6.6974 + 2400.0513JC

tSRUT = tSR +
366.2422

365.2422
tUT
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Where 365.2422 is the length of a tropical year given in days.
Finally, the local sidereal time for a geographical longitude L
can be found as such.

tLSR = tSRUT + L

Local sidereal time will come in handy later when calculating
the altitude and azimuth of the sun. Firstly number of days d
from J2000 for the input date is given as.

JDd = JD +
tUT

24

Which is needed to calculate the relative centuries from the
reference time.

JCd =
JDd

36525

Using the Julian century of the input date the sun’s mean
longitude and its mean anomaly can be calculated.

L0 = 280.466 + 36000.770JCd

M0 = 357.529 + 35999.050JCd

The sun’s equation of center C is given as

C = (1.915− 0.005JCd) sin(M0) + 0.020 sin(2M0)

Using the Equation of center of the sun the ecliptic longitude
can be found. Note that the ecliptic latitude is approximately
zero (β ≈ 0).

λ = L0 + C

There are many intermediate calculations that need to be
done in order to get the correct position of the sun relative to
where a person’s relative geographical longitude and latitude.
Consequently in order to find the azimuth and altitude it
is important to find the Sun’s equatorial coordinates, right
ascension α and declination δ which are both relying on the
obliquity of the ecliptic Ω.

Ω = 23.439− 0.013JCd

α = arctan(tan(λ) cos(Ω))

δ = arctan(sin(α) sin(Ω))

Now it is possible to proceed to find the horizontal coordi-
nates for the sun for a given input of geographical longitude
L and latitude B. First the hour angle of the object is given
as.

HA = tLSR − α

Resulting in the final Equations for the altitude of the sun θ
and the azimuth ϕ respectively, where the algorithmic version
of the azimuth ϕ is calculated using Arctan2 as suggested by
[38].

θ = arcsin(sin(B) sin(δ) + cos(B) cos(HA))

ϕ = arctan
( − sin(HA)

tan(δ) cos(B)− sin(B) cos(HA)

)
These angles are required is utilized to correctly render the
objects in the DT.

E. RECOMMENDER SYSTEMS
Recommender systems are widely used for information fil-
tering, providing users with valuable insights from relevant
data sources. These insights can be inferred from the data or
concatenated from a collection of data features.

1) User-Based Collaborative Filtering
Collaborative filtering is an information filtering technique
that predicts a user’s interests or behavior by collecting data
from many users. The underlying assumption is that if person
A behaves similarly to person B in a specific context, then
person A might behave similarly to person B in another
context than a randomly chosen person from the population.
Companies such as Amazon, Netflix, YouTube, and other
services extensively use recommender systems to learn about
user preferences and provide personalized recommendations
based on their behavior and similarities with other users [39].
However, the main challenge with this approach is that it
requires a lot of data about user behavior, not necessarily
from the user in question, but from the entire user base from
which the data is collected. Moreover, the cold start problem
arises when a new user registers and has not provided any
interaction yet, making it impossible to provide personalized
recommendations [40]. At the beginning, the algorithm may
not be very accurate but becomes more precise as more data
is collected while the user is active.

F. CONTROL SYSTEMS
The aim of cybernetics in autonomous DTs is to guide the
house towards an optimal set point. To achieve this, the sys-
tem’s output is continuously monitored and compared against
a reference. The difference between the two, referred to as
the error signal, is fed back to the controller, which generates
a system input to bring the output set-point closer to the
reference. As more sensors and communication technologies
become available, larger volumes of real-time data, i.e., big
data, are being generated. However, the quantity of interest
may not be directly measurable, and it becomes a challenge
to extract and understand the relevant information to be used
for control purposes. Big Data Cybernetics is a new field
of research that aims to address this challenge in a real-
time control context. The first step involves interpreting the
big data using well-understood physics-based models. The
difference between the observation and the physics-based
model is called the interpretable residual. In the second
step, interpretable data-driven modeling approaches are used
to model and analyze this residual. The remaining uninter-
pretable residual is then modeled using more complex black
box models like Deep Neural Networks, which generally
represent noise that can be discarded. This approach is known
as Hybrid Analysis and Modeling (HAM), which continu-
ously loops with the availability of new data resulting in
ever-improving models. HAM is a promising new approach
that aims to combine existing physics-based models with
interpretable and non-interpretable big data-driven modeling
techniques. Fig. 3 illustrates the looped steps of the HAM
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FIGURE 3: Big Data Cybernetics control loop.

process and the overall Big Data Cybernetics philosophy.
HAM models can be utilized not only in the context of the
interpretability of big data, but also in the Controller block.
They can be incorporated alongside model-free control algo-
rithms such as reinforcement learning (RL), or with model
predictive control (MPC) algorithms, to improve the overall
control performance of the system.

III. METHOD AND SET-UP
This section gives the brief overview of setting up DTs at
different capability levels. For a more detailed description of
the setup we refer the readers to [41]

A. SET-UP FOR STANDALONE DT
The asset in this case consists of a house, its surroundings ter-
rain, and objects inside the house. Creating a standalone DT
involved creating CAD models as a starting point. Here we
give a detail of the steps involved in building the standalone
DT.

1) 3D CAD Model of the House
The house’s 3D CAD model was created using Autodesk
Revit software based on the 2D floor plans, as shown in
Fig. 4. The three floors were stacked on top of each other, and
details such as doors and windows were accurately placed. To
distinguish different components of the house, each surface
was tagged and textured appropriately. This tagging ensured

that components could be identified accurately at a later
stage if necessary. The scene was rendered using Autodesk
3DS Max and converted into a format compatible with the
Unity Game Engine. High-quality textures were obtained
from Architextures [42], a library designed for architectural
models, and imported into 3DS Max. The textures were then
applied to the uv-maps of walls, floors, and other surfaces to
achieve the final look of the building.

2) Unity Game Engine for Interaction with the 3D Objects
The Unity Game Engine offers a C# .NET programming
environment, 3D rendering capabilities, accurate physics en-
gines, and optimized features that help developers create
games more efficiently. Importing CAD models into Unity
allows for real-time interaction with objects and instills phys-
ical realism through precise physics engines. If the exact
physics engine is not available, it can be implemented within
the Unity framework using programming languages such as
C# or Python. While Revit and 3DS Max are integrated by
default, setting up the connection between 3DS Max and
Unity requires additional steps. Unity can be linked with 3DS
Max through a middleware called FBX Exporter, which was
developed collaboratively by Unity and Autodesk to facilitate
the workflow between their programs [43]. To use the FBX
Exporter, it must be added as a plugin to the Unity project
after installing all necessary software. Once the 3DS Max
model is exported into Unity, some final setup is required.
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FIGURE 4: 2D floor plans of the target house with all the sensors and devices setup for the project. All sensors are identified by
their label and color as there are temperature, proximity, humidity, water detection and light sensors. All sensors are integrated
into the Unity application environment where the BIM model of the house lives.

This includes selecting the 3D model in Unity, going under
Materials" in the Unity inspector, and checking off Use Ex-
ternal Materials" under Location" to import the textures from
3DS Max. Finally, clicking on Generate Colliders" under the
model enables Unity to treat the house as a physical object
and interact with other physical objects in compliance with
Newtonian mechanics.

This work uses Unity Version 2020.3.16f1 with the Uni-
versal Render Pipeline version 10.5.1 (URP). Unity offers
three different graphics rendering pipelines: the standard
pipeline is a general-purpose tool with limited features and
options; the High Definition Render Pipeline (HDRP) fo-
cuses on creating high-end graphics that are supported only
by cutting-edge graphics cards and machinery; and URP is
customizable and provides optimized graphics across a broad
range of platforms [44]. URP is preferred for this project
because the DT is intended to run on low-end android VR
platforms, such as the Oculus Quest 2. Additionally, the setup
requires the following add-on packages from the Unity Asset
Store:

• FBX Exporter version 4.1.1
• Oculus XR Plugin 1.9.1
• Post Processing 3.1.1
• Test Framework 1.1.27
• TextMeshPro 3.0.6
• Timeline 1.5.2

• Toolchain Win Linux x64 1.0.0
• Unity UI 1.0.0
• XR Legacy Input Helpers 2.1.8
• XR Plugin Management 4.1.0
• NuGet 3.0.2

Each of which supports some particular module of the setup,
for example, the Oculus XR Plugin makes it easier to in-
tegrate the application in Unity with the Oculus Quest 2
with minimal setup. While NuGet is used to manage .NET-
specific libraries. Unity also allows the possibility of bringing
different 3D models together to live in the same environment.
This could be a car, or furniture, as seen in Fig. 5. Note that
when importing models in Unity, it is crucial to be aware of
the relative scale/unit associated with the model.

3) Other 3D objects
To create the paintings on the walls, we used 3DS Max
to design the image frames and add images of the actual
paintings. For other furniture pieces like the carpet, TV table,
and sofa, we downloaded models from open-source websites
such as Polantis [45], which provides free CAD and BIM 3D
objects that resemble furniture from brands like IKEA. To
ensure optimal performance, it’s important to use 3D models
with a low polygon count. High-polygon models can create
a performance bottleneck, but it’s possible to use 3DS Max
to reduce the polygon count of downloaded models without
compromising their appearance. It’s worth noting that Unity
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(a) Virtual living room. (b) Real living room.

FIGURE 5: Comparison of furnished living room.

3D objects work on a meter scale by default, while external
3D models may be generated using other units of measure-
ment like centimeters or inches. Therefore, it’s important
to be aware of the units of measurement used in external
models and scale them appropriately before importing them
into Unity.

4) Terrain
Creating terrain in Unity based on a height map of Trondheim
is not a straightforward task. However, the Norwegian gov-
ernment provides accurate height maps of Norwegian terrain
with up to 1m × 1m resolution. One can apply for this data
at Kartverket website, by selecting the specific region one
wants to extract from the map of Norway and sending a
request [46]. The data retrieved from Kartverket needs to be
preprocessed from its original file format GeoTIFF to RAW,
which is the input format that Unity supports for height maps.
Here is an enumerated instruction list to convert heightmap
data into a format usable in Unity:

1) Apply for heightmap data from Kartverket.
2) Import all the GeoTIFF files to the software QGis.
3) Merge the GeoTIFF files into one common one us-

ing QGis merge option (Raster → Miscellaneous →
Merge) use output data type as UInt16 and click run.

4) Export file by converting it to a BIL file, which is a
variant of the RAW file type. This is done by navigating
to (Raster → Convert → Translate).

5) Click on Advanced Parameters, and add the follow-
ing commands "-ot UInt16 -outsize 2049 2049" into
"Additonal command-line parameters [optional]", note
outsize needs to be scaled to be in bit format +1 i.e.
1025,2049,4097 etc.

6) Click on "Converted → Save to File" and change "save
as type" to BIL files (*.bil).

7) Click run, go to the folder where you saved the BIL
file, create a copy and change filetype to ".raw".

8) Finally upload the extracted RAW file into a Unity
Terrain object using the height map property of the
object.

The 3D model of the house is placed in the location based
on its real location in terms of longitude and latitude, where

the top left corner of the terrain height map functions as the
origin in a Unity grid, such that the house can be precisely
positioned.

5) Orientation of the House
The Unity environment also simulates a day-night-cycle,
including a highly accurate algorithm for the sun. Here orien-
tation and altitude of the house are essential to synchronize
the house’s position relative to the sun simulation. For the
orientation, the house needed to be rotated 203◦ from the
cardinal north direction of a compass. This was to align the
front of the house correctly with the sun’s movement. Since
the setup of the standalone DT also includes a correct height
map terrain of the outside environment in Trondheim, the
house was elevated to the correct altitude, which is 211m.

B. SET-UP FOR DESCRIPTIVE DT
At this stage, the physical house has been constructed, and
a standalone DT has been developed. The next step is to
refine the DT to match the physical house and equip it with a
diverse class of sensors. A data stream is then established to
convert the standalone DT into a descriptive DT. More details
regarding the placement of the sensors can be found in Fig.
4, and are explained in detail in the following sections.

1) Netatmo Weather Station
The Netatmo Weather Station is located in the living room,
as shown in Fig. 4, and records data once every five
minutes [47]. The station measures temperature, humid-
ity, CO2 concentration, noise levels, and pressure. While
the weather station can be customized and equipped with
many more sensors, it is only equipped to monitor the
aforementioned data. All Netatmo endpoints are located at
"https://api.netatmo.com". Before accessing the data, it is
important to first make a POST request for an access token
by adding the "/oauth2/token" endpoint to the Netatmo API
link. The request must include the grant_type, client_id,
client_secret, username, password, and scope [48]. Once the
request is successful, Netatmo grants access to the current
state of the sensor via an access token.

2) Philips Hue
The Philips Hue sensors are located throughout the house,
as depicted by the yellow dots in Fig. 4. A total of 16
Philips Hue lights were used in the project. Information
about the brightness, state of the light (on/off), colors, and
any other relevant information about the lights can be re-
trieved in real-time using the Philips Hue API. The API that
hosts the endpoints is "https://api.meethue.com". To refresh
an access token, one must provide a valid refresh token
as part of the request and perform a POST request to the
"/v2/oauth2/token" endpoint. Assuming a valid access token,
one can access the light data by making a GET request to the
"/bridge/<USER_ID>/lights" endpoint, where USER_ID is
an id granted by Philips Hue when an account is registered.
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Like with Netatmo, the access token must be provided as part
of the GET request to obtain the data.

3) Disruptive Technologies Sensors

A total of twenty-eight sensors for disruptive technologies
are positioned on all floors, as shown in Fig. 4. Among them
are 16 temperature sensors, with one placed outside the house
to track external temperatures. There are also five proximity
sensors, with one used to detect the opening and closing of
the fireplace doors, while the remaining four monitor the
open-close status of other doors. Four water sensors detect
any water leakage in different locations, while three humidity
sensors also record the temperature. Moreover, all sensors
can function as touch sensors, meaning that if one is pressed,
it could trigger an event. This provides significant freedom
for experimentation, such as triggering an email or an action
inside the disruptive technologies platform.

The authentication process for the sensors is similar to
that of Netatmo but with an additional security layer. To
obtain an access token, the email and key_id provided at
the time of account registration must be encrypted using the
HS256 hash algorithm. The encrypted token must then be
sent using a POST request to the "https://identity.disruptive-
technologies.com/oauth2/token" endpoint, along with an as-
sertion and grant_type [49]. With a valid access token in a
GET request, various data can be obtained using the endpoint
"https://api.disruptive-technologies.com/v2", with parameter
variations provided in the documentation [50]. Note that data
is updated at a frequency of every fifteen or five minutes or
when a significant change occurs.

4) Weather Conditions

The house’s local weather data, including wind speed and
direction, is obtained by making requests to the "api.met.no"
weather forecast API, which is operated by the Norwegian
Meteorological Institute. While there are several endpoints
available, we use the "Nowcast 2.0" endpoint for our specific
use case. To make a successful request to this endpoint, a
User-Agent identity is required to identify the purpose of
the request [51]. In order to visualize the wind direction and
speed, a Unity vignette is created, which appears around the
house. This visual effect is designed to show a wavy white
line moving across the sky, indicating the wind’s direction
and velocity. The vignette is a useful tool for conveying the
wind’s speed and direction at any given moment, making it
easier to understand the weather conditions outside.

C. SET-UP FOR DIAGNOSTIC DT

Once the data stream is established in the descriptive DT, data
analysis should give additional insight into the asset and this
should be presented to the end user in an easy-to-understand
format. The set-up presented here for the diagnostic DT
enables that.

Left Thumbstick:
Move Right Thumbstick:

Rotate 45Deg

A Button:
Interact

FIGURE 6: How to use the Oculus controllers in VR. If the
play area is big enough, one is also able to physically move
around or rotate without using the thumbsticks. Pointing at an
interactable object with the right hand controller and clicking
on the "A" button triggers events.

1) Virtual Reality User Interface

The VR setup uses an Oculus Quest 2, where a UI "tablet"
is implemented on the user’s left hand. This way, the user
can move the menu in and out of sight. The main focus
of the UI is to give the user a sense of empowerment,
curiosity, and, most importantly, feedback, which are all
ideas derived from the Octalysis Framework for Gamification
[52]. The empowerment and feedback come directly from
the real-time control that a user feels when they can, for
example, slide the time of the day and see the weather
change to reflect reality. Furthermore, this responsive system
triggers an exploratory curiosity in the user, making them
want to seek out the remaining contents of the UI system.
Recall that the diagnostic DT is mainly about monitoring and
troubleshooting, meaning that sparking the user’s interest in
seeking diagnostic information is as important as presenting
the information itself.

In Fig. 7 one can see the enumeration of images featuring
different navigation panels of the UI system. Fig. 7a is the
main menu which is at the center of all the other monitoring
and troubleshooting systems for the diagnostic DT. Fig. 7b
features the sensor inspector, providing critical information
related to condition monitoring. By pointing at spherical
probes around the house and scanning them with the "A"
button of the right-hand controller, the sensor inspector dis-
plays relevant information relating to that probe. Real-time
data from the specific sensor implemented for the descriptive
DT is then revealed in the sensor inspector panel. Note that
the probe positions are supposed to reflect the real three-
dimensional positions of the sensors from Fig. 4. Fig. 7c
shows the UI for the sun control panel. The sliders can be
used to simulate the lighting conditions depending on the
time of the year. Fig. 7d demonstrates how data from multiple
sensors can be combined to create a heat map that gives a
better feeling of the indoor environment.

10 VOLUME X, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3265191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Elfarri et al.: Preparation of Papers for IEEE Access

(a) Main Menu. (b) Sensor Inspector.

(c) Sun Panel. (d) Heat Map.

FIGURE 7: Navigating UI panels in Oculus Quest 2 VR.

2) Temperature Heat Map

The temperature heat map is a visualization aspect of the
diagnostic DT that conveniently presents valuable informa-
tion. The heat map does not represent the temperature on the
room’s floor, but the temperature distribution of the temper-
ature probes around the room. The heat map in Fig. 25 as-
sumes that the heat distributes itself in a plane, and therefore

is using a euclidean distance equation (Equation 3) for path-
finding to render the temperature gradient radially outwards
onto a Unity shader with the path limited to a reach based on
α
2 . A shader is an object that communicates how to correctly
color pixels onto a material in Unity [53]. The implemented
algorithm takes the current warmest and coldest temperature
sensor measurements in a room and uses that interval to
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weight the radial output of the temperature gradient. The
color mapping from temperature to color is the same as the
one in Fig. 21, i.e. if the minimum temperature is 16.5◦C and
maximum 25.7◦C then that would be the blue and red colors
respectively, and the other temperatures would fall within the
color space in between.

d (p, q) =
α

2

√√√√ n∑
i=1

(qi − pi)
2 (3)

3) Fog Particle Effects
Another possible way to monitor the real-time data com-
ing into Unity from the various data sources is by using
the particle system in Unity. In the current set-up, the red
fog has its opacity adjusted based on if the real-time CO2
concentration is within a certain ppm interval, while the
temperature is being mapped to color to represent the heat.
The CO2 and temperature representations in Fig. 20 and 21
are implemented to visualize the Netatmo Weather Station
placed in the living room, seen in Fig. 4. The temperature
reading is first transformed into an HSV value to be mapped
into a color, and then from HSV into an RGB that is finally
displayed as fog in Unity. It is important to note that the
temperature intervals can be redefined, but for this example,
the temperature interval is set to be between zero and 40
degrees Celsius.

D. SET-UP FOR PREDICTIVE DT
This section is about the setup and methodology used to
achieve a predictive DT. At this level, the DT can predict the
system’s future states or performance and support prognostic
capabilities. To demonstrate the DT’s predictive capability,
we consider two cases, one related to the prediction of the
inner state of the house in terms of the indoor temperature
and another related to the external state in terms of the
available solar potential. The reason for choosing the first
case is that knowing the evolution of inside temperature can
help develop cost and energy-effective control strategies. The
second case is of great relevance for a country like Norway,
where complex terrain can significantly affect solar exposure.

This section also demonstrates two entirely different ap-
proaches to modeling that are relevant to DT-like technolo-
gies. One is pure data-driven modeling (DDM), while the
other is physics-based modeling (PBM). DDM is effective
when the physics governing a process is not entirely known,
is computationally expensive to solve in real-time, or the
values of physical parameters are not known accurately. PBM
is more effective when the physics is known, or there is a
need for generalization in unseen situations for which no data
exists. We will use a DDM to predict the indoor second-floor
temperature based on past experiences because the state-of-
the-art building simulation model can not precisely describe
the dynamics of the buildings, and the exact composition of
the built material is unknown. On the other hand, we will
use a PBM for sun position prediction because the equations

governing the sun’s movement are well-known and can be
used to deterministically simulate any situation.

1) Data Collection and Preprocessing
First, the raw time series data (temperature, humidity, prox-
imity) from Disruptive Technologies sensors are aligned and
sampled at five-minute intervals to generate a multivariate
timeseries corresponding to 90 days, out of which 70 days
were used for training, 10 for validation, and 10 for testing.
The training of the ML models is done on a computer with
the following specifications: Intel(R) Xeon(R) Gold 6140M
CPU @ 2.30GHz for a CPU and NVIDIA Quadro RTX 5000
for GPU. The GPU is mainly used to speed up the training of
the LSTM utilizing NVIDIA’s CUDA library [54], [55].

2) Forecasting and Prediction Pipelines
As seen in Fig. 8, a weight-averaging ensemble is used as
the final model. Gradient boosting machines and the stacked
model worked very well with a differencing transform of the
target, while the LSTM model performed better with standard
data normalization. For the Prophet model, providing extra
features increased performance. Also based on the RMSE
validation score, hyperparameters of every single model are
optimized using the Optuna Python library. The final fore-
casts on the validation and test set are achieved by using
the weighted average based on the validation RMSE of each
model. All the forecast models except for LSTM are setup
as incremental forecasting models, mainly because none of
them support an instant multi-output target. In the prediction
model, the data is preprocessed in a similar fashion to the
forecasting model. In practice, the prediction pipeline in
Fig. 9 can be used in two ways. First, it can be used to predict
the potential state of an out-of-commission sensor, assuming
that the fireplace sensor in the room is still operational with
data X. Or it can be used to fill in the eight forecasted
temperature sensors using the forecasted output ŷ of Fig. 8,
where in the context of Fig. 9 the forecasted fireplace data is
denoted as input X̂. Therefore assuming a temperature sensor
deployed in the second floor dies after a few years, instead of
replacing it, these sensors can be accurately predicted based
on the fireplace sensor. Otherwise, the prediction model can
be seen as an extension of the forecasting model.

3) Hyperparameters of the LSTM
The neural network is simply constructed of a LSTM layer,
followed by one-dimensional global max pooling into a
dense output layer. The following hyperparameters are used,
hyperparameters not explicitly mentioned here can be as-
sumed to be the default of the Keras/Tensorflow library:

• Learning Rate: 0.01
• Batch Size: 4
• Optimizer: ADAM
• Epochs: 5
• Loss Function: Mean Squared Error
• LSTM Units: 64
• Dense layer neurons: 64
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FIGURE 9: High level view of the prediction pipeline.

E. SET-UP FOR PRESCRIPTIVE DIGITAL TWIN
This section is about the setup and methodology used to
achieve the prescriptive DT. The prescriptive DT is the
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fourth capability of a DT pipeline. In this level, the DT is
able to make recommendations based on what-if? scenarios,
and through that support uncertainty quantification. What-if
scenarios in our case can be potential weather forecasts or
historical weather conditions in the past that may have led to
certain behaviors.

Behaviors can certainly be used to motivate future rec-
ommendations, given if such a situation would again occur
sometime in the future. The recommendations can be used
to give experts a decision support system, but for our case,
such a system might be used for uncertainty quantification of
the unpredictable parts of the future forecasts, that have been
modeled and highlighted in the predictive DT.

1) Collaborative Filtering

There are only eight recorded fireplace events for 102 days.
This is a very small dataset to work from, making it hard
to conclude anything in particular about the user’s fireplace
lighting behavior. Furthermore, no data has been collected
from other homeowners and there are therefore no other
users, from whom we can obtain our recommendations to
the specific user. Hence there is insufficient data, as the
sparsity of data comes from that most of the days the fire-
place is simply not used. The motivation for demonstrating
this particular method comes from its potential to become
valuable, as more data is collected from this house and other
locations. The collaborative filtering for fireplace lighting
events is set up with U homeowners (users) as the rows
and V days (items) as columns. Note each day has specific
information about the outdoor temperature of that certain day.
In the collaborative filtering matrix from Fig. 11, the fireplace
timesteps for every single day are extracted and used as a row
for a specific user. The timestep for when the fireplace was
approximately turned on is inferred by finding the biggest
difference between two points on a specific day. The timestep
for a lit fireplace for a specific day can be seen in the first row,
as a red vertical line in Fig. 11.

The user-based collaborative (UBCF) pipeline as imple-
mented is visualized in Fig. 10. Given that an unknown
input outdoor temperature forecast or scenario is given to the
pipeline, first, the RMSE between the input and each column-
specific outdoor temperature is calculated to find the most
similar scenario to our input. For simplicity all users are as-
sumed to have experienced the same outdoor temperature in
Trondheim, therefore for users outside of Trondheim, RMSE
specific to that user needs to be calculated. The remaining
pipeline would still work the same way. Resulting in the
RMSE weight vector wRMSE seen in Equation 4.

The recommendation pipeline seen in Fig. 10 is supposed
to be for the first user. In parallel with finding wRMSE for
the user, the Pearson correlation of all the fireplace lighting
event actions of said user is calculated against the other users
in the population, assuming these exist. Then the highest
correlated users based on some threshold are extracted as a
weight vector wpearson seen in Equation 5. Where χpq is the

set of days both users p and q that have fireplace behavioral
data.

Knowing the most similar scenarios to the input scenario
and the most correlated users to the user we wish to make rec-
ommendations for, now we extract a matrix denoted T. This
matrix is the region where both the green and red rectangles
cross as seen in Fig. 10. Each row of said matrix is weighted
by the RMSE score of the specific user in a weighted average.
This gives the predicted fireplace lighting behavior of each
individual user, given that specific scenario. That particular
prediction vector tpredicted is then weighted by the most
similar users to the particular user we are recommending, to
produce the final recommendation time to light the fireplace
tn+1.

wRMSE =

 1

(
√

1
N

∑N
k=1(T

item1
k −T input)2)

. . . 1

(
√

1
N

∑N
k=1(T

itemV
k −T input)2

 (4)

wpearson =


∑

j∈χ1i
(t1j−t̄1)(tij−t̄i)√∑

j∈χ1i
(t1j−t̄1)2

√∑
j∈χ1i

(tij−t̄i)2

. . .
∑

j∈χ1U
(t1j−t̄1)(tUj−t̄U )√∑

j∈χ1U
(t1j−t̄1)2

√∑
j∈χ1U

(tUj−t̄U )2


(5)

F. SET-UP FOR AUTONOMOUS DIGITAL TWIN
In the current work we have not demonstrated the au-
tonomous capability of the DT.

IV. RESULTS AND DISCUSSIONS
In this section, we aim to showcase the potential and value of
various types of DTs. To illustrate each capability level, we
begin with a scenario that presents specific challenges, and
then use the DT to demonstrate how these challenges can be
addressed effectively.

A. STANDALONE DT
Scenario: A potential homebuyer is interested in purchasing
a yet-to-be-constructed house. The real estate company pro-
vides the buyer with a tour of the construction site (Fig. 12)
and several 2D sketches (Fig. 4) depicting the different levels
of the future house. Unfortunately, the provided documents
do not offer any insight into how the neighborhood will
look once the construction is complete. Despite the lack of
information, the buyer commits to the purchase. Later on, the
buyer is invited to customize the house, but once again, lacks
insight into how their choices will look and feel in the real
world. In this scenario, a virtual tour using a standalone DT
could provide the buyer with the necessary information to
make a more informed decision, and improve communication
between the seller and buyer.

Solution: The image provided by the real estate agent
in Fig. 12 only provides a limited idea of the site before
construction. However, with a standalone DT, it is possible
to create a more immersive experience of the interior and
exterior environment. This would allow the buyer to make
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FIGURE 10: User based collaborative filtering pipeline.
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FIGURE 11: Collaborative filtering matrix. Note that other
than the house that we have collected data from in row one,
the remaining houses and their data is artificial for the sake
of demonstrating user based collaborative filtering.

informed decisions about customizing the interior, estimating
solar potential, and assessing the recreational activities in the
area. By using a DT, the buyer can gain a better understanding
of the property and make more informed decisions.

It is apparent that Figs. 13 and 14 provide more compre-
hensive information in contrast to Fig. 12. Figs. 13a and
13b offer a better understanding of the surroundings after
construction, facilitating the selection of building materi-
als that complement the natural environment. The available
space in the driveway, as shown in Fig. 13c, can assist in
planning which car sizes can be accommodated, or whether

FIGURE 12: A visit to the site before the deal of the house
was finalized.

the driveway design should be altered to allow for larger cars.
In addition, the balcony lighting simulation (illustrated in
Fig. 13d) can provide an estimation of the sunlight availabil-
ity for any day and time of the year. Furthermore, visualiza-
tion of the interior environment (depicted in Fig. 14) can aid
in optimal placement of lighting fixtures, selection of wall
colors, flooring, furniture, and other relevant objects.

B. DESCRIPTIVE DT
Scenario: Suppose a standalone DT of the house was avail-
able, allowing the buyer to make an informed decision
and customize the house to their liking. With digitalization
in mind, advanced sensors and controllers were installed,
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(a) Front view. (b) Back view.

(c) Driveway. (d) Balcony.

FIGURE 13: Demonstration of the external environment
using a standalone DT.

(a) Entrance. (b) Bathroom.

(c) Living room. (d) Living room.

FIGURE 14: Demonstration of the internal environment us-
ing a standalone DT.

providing real-time information about various aspects of
the house, including indoor air quality, water leakage, door
status, occupancy, security breaches, and external weather
conditions. The homeowner wants to monitor the house
remotely while away and desires more insight into the indoor
environment while present inside the house.

Solution: We now show how a descriptive DT can provide
additional information regarding the house using real-time
data from the installed sensors.

(a) Virtual office door. (b) Real office door.

FIGURE 15: Real-time states of 2OfficeDoor, 2Stair,
HueColorLamp2 located in the second floor, observed
21.02.2022. Note that the color of the spheres follows the
same standards set in Fig. 4 and their positions represent the
3D position of the sensor in the physical asset.

In Figs. 15 and 16, the real-time states of the house are
displayed, based on the data collected by various sensors
and lights. The presented data is raw and unprocessed, in-
tended for human interpretation to draw relevant conclusions.
Fig. 17 provides an example of rendering the prevailing
weather conditions on specific days. Additionally, Fig. 18
shows real-time data from sensors measuring CO2, humidity,
temperature, and paintings, which are otherwise not visually
representable in the descriptive DT. The homeowner regu-
larly updates the data from the sensors, and the DT database
stores this information. This enables the DT to reflect the
up-to-date state of the objects in the house, such as the
name of the selected painting. Although monitoring the name
of a painting may seem trivial, the same concept can be
applied to other objects in the house, such as monitoring
resource inventory levels or the amount of wood remaining
in the fireplace. Advanced object detection and classification
algorithms are necessary to monitor such details.

C. DIAGNOSTIC DT
Scenario: Imagine two scenarios, one where the homeowner
is physically present inside the house and the other where the
homeowner is remotely located and does not have physical
access to the house. With the multitude of sensors installed
in the house, the diagnostic DT provides not only real-
time updates on the current state of the house, as with the
descriptive DT, but also critical alerts in case of any changes.
When the homeowner is physically present, the diagnostic
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(a) 0BGuestDoor. (b) 0BDoor.

(c) 1MainDoor,
Entrance1Ceiling. (d) 1MainDoor, Outdoor1.

(e) 2OfficeDoor,
HueColorLamp2. (f) 2OfficeDoor, OfficeCeiling.

FIGURE 16: Demonstration of various door and light sensor
states in the descriptive DT. Observations recorded through-
out the day on 21.05.2022.

DT can be utilized to gain insight into the internal environ-
ment using virtual reality to visualize air quality, noise, or
temperature maps, which are not visible to the naked eye. On
the other hand, when the homeowner is remotely located, the
diagnostic DT can provide analytics on the current situation
in the house, such as temperature increases, room occupancy,
and other relevant information by fusing data from various
sensor sources.

1) Remote Location
When the homeowner is remotely located, they can diagnose
whether a room is occupied or not by analyzing temperature
and door sensors related to a specific room. Fig. 19 shows
a clear temperature rise in the office when the door was
opened. Since the sensor was placed under the table, it can
sense the body heat of the occupant, and by using simple

(a) Rain observed 24.03.2022. (b) Snow observed 03.04.2022.

(c) Fog observed 25.04.2022.
(d) Cloudy observed
03.05.2022.

(e) Clear sky observed
21.04.2022. (f) Wind effect.

FIGURE 17: Demonstration of weather conditions taking
place in the descriptive DT.

diagnostic tools, these peaks corresponding to occupancy can
be automatically detected and communicated. Thus, one can
diagnose that the room was occupied between 11:00-14:00.

2) Inside The House
When the homeowner is present inside the house, they can
visualize diagnostic information such as temperature and
CO2 density, as shown in Figs. 21 and 20, respectively. This
information can be used to gain insight into those aspects of
the indoor environment which are otherwise invisible to the
naked eye, such as CO2 and CO concentration. Note that at
the descriptive level, these data could only be presented as
numbers, while the diagnostic DT allows for visualization
and interpretation of the data to gain a deeper understanding
of the indoor environment.

D. PREDICTIVE DT
Scenario: The homeowner now has access to a significant
amount of high-quality sensor data from both past and
present, but is interested in knowing the future state of the
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(a) Pastel painting. (b) Real-time CO2 data.

(c) Real-time tempera-
ture/humidity data. (d) Another pastel painting.

FIGURE 18: Information from the remaining sensors and
other objects, obtained using a virtual reality interface.
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FIGURE 19: Diagnostic information from fusing office tem-
perature and office door proximity sensor. Scenario one
recorded 21.01.2022.

house to plan for more efficient and cost-effective utilization
of energy. They may also want to know about the availability
of natural sunlight due to potential future developments, such
as the construction of a high-rise building.

(a) [0, 400) ppm. (b) [400, 600) ppm.

(c) [600, 800) ppm. (d) [800, ∞) ppm.

FIGURE 20: Visualizing CO2 concentration from Netatmo
Weather Station as fog in the Unity Game Engine based on 4
predefined intervals. Recorded 27.11.2021.

0°C 40°C

(0,0,255) (255,0,0)(0,255,0)

20°C15.6°C 35°C

FIGURE 21: Visualizing indoor temperature from Netatmo
Weather station as fog by converting temperature in Cel-
sius to an RGB color representation. 15.6◦C was observed
30.11.2021 at 07:30 AM, 20◦C at the same date 10:30 AM
and 35◦C was not an observation but a simulated scenario
to display how that would look like in the event of such an
occurrence.

1) Temperature prediction and forecasting

To fill in missing temperature values for eight sensors when
only the fireplace sensor is available, the predictive model
pipeline can be used, as shown in Fig. 22. This ensures that
the temperature in the room can still be tracked even if some
sensors go out of commission in the future.

Fig. 23 shows how different timeseries forecasting models
predict the future temperature profile at the fireplace (2Fire-
place) during a typical day when the fireplace is routinely
lit. The black line represents the profile used to train the
model for the next 24 hours. The weight averaging ensemble
model was found to be the best for making accurate forecasts.
Once the future temperature profile is available, it can be used
to predict the temperature profiles at other sensor locations.
Fig. 24 presents the weight averaging ensemble predictions
at all the other locations, showing good agreement with what
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was later observed. Finally, these point measurements are
converted into contour plots and projected onto the floor
surface for visualization purposes in Fig. 25.

2) Sun Position Prediction Model Performance
Fig. 26 shows the predictive sun model for each month, for
informing decision-making around sun hours for the entire
year. Furthermore, Fig. 27 shows the same algorithm used
in VR. The significance of knowing about how many sun-
hours, a house gets in the span of a day is a key factor for
any potential homeowner. Therefore having a PBM that accu-
rately displays that future prediction both as a bar plot of the
entire year as well as viewing a specific day visually within
the VR setup, allows for better decision-making around the
biggest investment that the majority of people go through.
While the bar plot does show you the sun hours, the value of
the visual demonstration is that it fills in the gaps by showing
exactly which part of the house will be exposed to the sun.
For instance, if the terrace or balcony does not get a lot of
sun exposure, some buyers would become disinterested in the
property.

E. PRESCRIPTIVE DT
Scenario: Now that the homeowner has a predictive DT,
he can foresee possible future scenarios based on past data
or physics simulations. However, he is not only interested
in the forecasts but specific recommendations in the house
based on his past behavior. Such as what time of day is it
recommended for the user to turn on the fireplace, given
the temperature profile the next day. Perhaps there is also a
cluster of neighbors with a DT setup, and the recommenda-
tions can be supported by all of them if they share a similar
behavioral pattern.

In Fig. 28 we are trying to predict day 23 of the 102 regis-
tered days in the dataset, using the seven other existing sce-
narios where the fireplace is turned on. The RMSE threshold
is set to 1.5, and the days with RMSE under 1.5 are then days
one, two, and 25, which resemble the outside weather of day
23 the most out of the existing samples. There isn’t any other
user data, such that the final recommendation is only based
on the user’s weighted average of other similar days, and not
the Pearson correlation. Therefore the recommendation uses
only the RMSE part of the UBCF pipeline in Fig. 10. We can
see the recommendation for turning on the fireplace based on
previous observations is very close.

F. AUTONOMOUS DT
Scenario: Now imagine that the homeowner has an accurate
and computationally efficient model for predicting the future
state of the house and its surroundings under the influence of
input changes that the homeowner can affect. These models
in combination with advanced control algorithms can be used
to get humans completely out of the loop. The asset can
continuously update the DT while the latter can control the
asset to push it towards a preset optimal operating condition.

Despite the ability to develop control algorithms and the
availability of remotely controllable equipment like the bal-
ance ventilation system and heat pump, no effort was made
to demonstrate this capability. There are several reasons for
that, which we briefly mention here. Due to a lack of time,
all the algorithms and modeling tools presented could not
be rigorously tested. Furthermore, using black-box neural
network-based methods for predictions complicates the mat-
ter. Unless the model’s working is humanly interpretable, it
is not wise to use them in a controlled setting. Doing so could
risk the safety of the inhabitants or at the least make the
manufacturer’s guarantee on the equipment null and void.

V. CONCLUSION AND FUTURE WORK
In this work, we exploited the power of artificial intelligence,
advanced sensor technologies, and virtual reality to develop
a fully functional and high capability level digital twin (DT)
of a modern house. The work involved creating a realistic
3D model of the house that is not only good for visu-
alization but also for conducting engineering simulations.
This corresponded to a standalone DT. The physical house
was then equipped with a diverse class of sensors, and the
corresponding digital representation of the house was up-
dated accordingly. A real-time data acquisition pipeline was
established to update the state of the DT with any changes
in the state of the physical house, resulting in a descriptive
DT. Analytics tools were applied to the incoming data to
detect critical changes, resulting in a diagnostic DT. These
three levels of DT were not capable of giving any information
about the future state as they all relied on the incoming data.
At the next level, i.e., the predictive DT, an ensemble of
pure data-driven timeseries forecasting models was built and
trained to predict the future state of the house accurately. In
addition, a physics-based modeling approach to predict the
sun’s movement and its obstruction by the local terrain was
also implemented to predict the solar potential for any time
in the future. At the prescriptive DT level, it was argued how
data/insight from similar houses in the neighborhood could
be utilized using collaborative filtering. It also demonstrated
how a prescriptive DT could learn about the user’s own
behavior to support future recommendations. Finally, the
autonomous DT wove all the subsystems together by closing
the control loop. The main contributions of the work can be
enumerated as follows:

• We demonstrated the concept and value of DT [1] and
its capability levels [2]. Although the asset chosen for
the demonstration was a modern house, the workflow
proposed is generic in nature.

• We have shown the concept and value of DT [1], as
well as its capability levels [2]. While we used a modern
house as an example, the proposed workflow is applica-
ble to various contexts.

• We have highlighted the significance of a diverse set
of data and two distinct modeling approaches (physics-
based and data-driven) to enhance the physical realism
of DTs.
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FIGURE 22: Temperature predictions at different sensor locations when the temperature profile at the fireplace is known. This
approach can be used to fill in missing data due to sensor malfunction or should need to decommission some of the sensors
arises in the future. The Fig. shows the performance of different regression models. The best model is the weight averaging
ensemble from Fig. 9, which weighs the contribution of each model based on their validation set RMSE.

20 VOLUME X, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3265191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Elfarri et al.: Preparation of Papers for IEEE Access

03-28 00 03-28 06 03-28 12 03-28 18 03-29 00 03-29 06 03-29 12 03-29 18
48 Hours in  5 Minute Time Frequency - 576 points

19

20

21

22

23

24

Te
m

pe
ra

tu
re

 (°
C

)

X_test
Ground_Truth
randomWalk - 2.4095RMSE
xgboost - 0.492RMSE
lgbm - 0.8147RMSE
catboost - 1.2045RMSE
stacked - 0.9343RMSE
lstm - 0.5389RMSE
prophet - 0.8316RMSE
arima - 0.9559RMSE
weightAveragedEnsemble - 0.4463RMSE

FIGURE 23: 2Fireplace temperature forecast. Given 24 hours
of past fireplace sensor data from Disruptive Technologies
temperature sensor "2Fireplace" (black graph), these models
are constructed to forecast 24 hours into the future of said
sensor. The best forecasting model is the weight averaging
ensemble (blue graph), weighing the contribution of each
model seen in Fig. 8. Note that the random walk is not part of
the forecasting model, but merely a way to demonstrate that
the models can learn a pattern better than a baseline coin flip
forecast. The ground truth is the red graph where the models
are compared to that.
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(h) 2Stair

FIGURE 24: Using the output of the fireplace forecaster in
Fig. 23, we can feed it to the weighted average prediction
model from Fig. 9, similarly to the one used to output
Fig. 22 and generate forecasts for the remaining second floor
temperatures.

(a) 00:00. (b) 04:00.

(c) 10:00. (d) 12:00.

(e) 16:00. (f) 20:00.

FIGURE 25: Using the forecasting model to forecast the next
24 hours in the future (29.03.2022), visualized in the temper-
ature heat map made for the diagnostic DT. The visualization
shows how the model believes that the temperature on the
second floor will develop the next day.

• We have demonstrated how computer graphics, specif-
ically virtual reality technology developed with game
engines, can significantly enhance the capability levels
of DTs.

• Through an interactive graphical interface in virtual
reality, we have showcased the potential of DTs not only
for remote monitoring but also for remote interaction
with assets.

• Our proposed workflow and future research directions
outlined in the following section can serve as a guide
for developing DTs from scratch.

While we have highlighted the strengths of our work,
we have also identified areas where improvements can be
made. One advantage of the DT framework we developed is
its modular nature, which allows for individual capabilities
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FIGURE 26: Predictive sun position model used to give a
range of sunlight for the last day of each month in the year
2022 from the location of the house.

(a) 09:15. (b) 10:00.

(c) 12:00. (d) 15:00

(e) 17:00. (f) 18:00.

FIGURE 27: Sunlight simulation in Unity using the sun po-
sition algorithm. This observation was made at 07.03.2022.
Note that the view is from the balcony of the virtual house
placed in the correct altitude, rotation and geographic loca-
tion on a terrain generated based on a Trondheim height map
from Kartverket.
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FIGURE 28: Recommendation to turn on the fireplace. Per-
formance for day 23 of the dataset. 0 corresponds to midnight
and the timestep corresponds to 5 minutes resulting in 288
data points, which corresponds to the 24th hour

to be extended and improved without compromising the
functionality of others. We list these areas for improvement
below:

• Standalone DT: At this capability level, we manually
created a 3D model of the house and its furnishings,
which can be a bottleneck for scaling DT technol-
ogy to encompass multiple houses in a neighborhood.
However, this issue can be addressed with image-based
photogrammetry, as demonstrated in recent works [56],
[57]. Additionally, solid models are typically repre-
sented by textured tessellated polygon surfaces, whose
number can be reduced without an observable degra-
dation in quality to enable the DT to run on low-end,
affordable computing devices.

• Descriptive DT: Geometric change detection [58] can
be implemented in a descriptive DT to keep track of
geometric changes within the house using cost-effective
solutions like RGB cameras, limited communication
bandwidth, and storage. Furthermore, real-time satellite
data can be used to more accurately describe the external
environment, such as cloud cover.

• Diagnostic DT: Principal component analysis or au-
toencoder can be used for detecting deviations from
the norm in heterogeneous multivariate data to detect
anomalies. Other sensor data, like temperature, humid-
ity, noise, and air quality, are only measured in a few
discrete locations. A simple interpolation scheme was
implemented to create heatmaps, which can be im-
proved by sensitizing inverse distance weighting with
door states and wall corner locations [59]. Additionally,
optimal sensor placement strategies [60] can be evalu-
ated for more efficient use of sensors and reconstruction.

• Predictive DT: In the current project, we used either a
purely physics-based model or a data-driven model to
predict the external and internal state of the house, but
both approaches have inherent weaknesses, as discussed
in [2]. Recent works [61], [62] have shown how a hybrid
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modeling approach can address these weaknesses and
make accurate and more certain predictions, making
it ideal for modeling partially understood physics and
addressing the issues of input parameter uncertainties.
For instance, [63] has already shown the applicability
of accurately modeling heat transfer in an aluminum ex-
traction process, which is similar to the building energy
modeling considered in our work.

• Prescriptive DT: At this level, we used the DT to
provide recommendations based on learning from the
behavior of the same house. However, we faced chal-
lenges due to the lack of available data for training
ML algorithms, as the house was newly constructed.
Collaborative filtering or self-organizing maps can be
useful to learn from the performance of older houses for
which data exists.

• Autonomous DT: We could not practically demonstrate
the full potential of a fully autonomous DT due to
concerns of voiding equipment guarantees, such as the
balance ventilation system and heat pumps. While the
smart lights could be controlled remotely, no data was
recorded to develop a control strategy for lighting.
Therefore, recording data regarding the lighting prefer-
ences of occupants and developing a controller to satisfy
those preferences would be interesting. Alternatively,
research on the psychological effects of lighting on
occupants can be integrated into the autonomous DT.
Additionally, making the models on which decisions
are made humanly interpretable is a challenge worth
addressing before realizing a fully autonomous DT.

The concept of DT is rapidly advancing and this work,
along with the future research directions proposed, represents
only a small piece of the larger puzzle. However, this work
has produced an extensible DT framework that can be valu-
able for educational purposes and for testing new techniques
that can help make DT indistinguishable from its physical
counterpart.
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