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Face recognition systems (FRS) are vulnerable to different kinds of attacks. Morphing attack combines multiple
face images to obtain a single face image that can verify equally against all contributing subjects. Various
Morphing Attack Detection (MAD) algorithms have been proposed in recent years albeit limited generalizability.
We present a new approach for MAD in this work with better generalization than state-of-the-art (SOTA) algo-
rithms.We propose an end-to-endmulti-stage encoder-decoder network for learning the residuals of morphing
process to detect attacks. Leveraging the residuals, we learn an efficient classifier using cross-entropy loss and
asymmetric loss. The use of asymmetric loss in our approach is motivated by imbalanced distribution of morphs
and bona fides. An extensive set of experiments are conducted on five different datasets consisting of two land-
mark based and three Generative Adversarial Network (GAN) based morphs in various settings such as digital,
print-scan and print-scan-compression. We first demonstrate a near-ideal performance of the proposed MAD
with Detection Equal Error Rate (D-EER) of 0% in the best case and 2.58% in the worst case in the digital domain
in closed-set protocol, i.e., known attacks. Further, we demonstrate the applicability of the proposed approach on
60 different combinations where the testing set contains unknown morphing attacks in open-set protocol to
illustrate the generalization ability of our proposed approach. Through training the proposed approach on
landmark-based morph generation data alone, we obtain an EER of 3.59% in the best case and 12.89% in the
worst case for morphed images in the digital domain, reducing the error rates from 45.67% and 30.23% respec-
tively, in open-set protocol. We further present an extensive analysis of the proposed approach through Class
Activation Maps (CAM) to explain the decisions using by making use of three complementary CAM analysis.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

With recent progress in image manipulation techniques, the attacks
and the attack potential is increasing making the FRSs vulnerable.
Recently studied morphing attacks combine face images of multiple
subjects to obtain a single image [1–7]. A resulting image, commonly
referred to as a morphed image, compromises FRSs by providing a
high comparison score to all contributing face images represented in
morphed face image. For instance, a malicious actor can obtain a valid
ID and carry out illegal activities if the morphed image is uploaded to
obtain ID cards leading to security lapses. It is therefore critical to have
attack detection, especially in unsupervised access control settings.

A number of recent works have proposed Morphing Attack Detection
(MAD) algorithms to mitigate the attacks. MAD algorithms either deter-
mine a given image as a bona fide or morphed image using different
MAD, Single Image Morphing
etection.
s Horizon 2020 Research and

. This is an open access article under
approachesmakinguseof classicalmachine learningor end-to-end learned
deep networks [1–6]. MAD approaches further are designed to consider
scenarioswhere a single imagehas tobedecidedas abonafideormorphed
image and are categorized under Single-Image MAD (S-MAD) [8]. Simi-
larly, MAD algorithms are also proposed when a reference image is
available to detect morphing attacks (i.e., Differential-MAD (D-MAD)) [8].

The recent advances enable the creation of morphed attacks with
minimal efforts using GANs [9–12] while challenging to detect if such
samples are not seen during training. Detecting the attacks is further
challenging if the images after morphing are post-processed, printed
and scanned (re-digitalized) [3,6,8] or printed-scanned and compressed
[8,9,13]. Further, as all possible morph generation cannot be known at
training phase, the problem can be posed as an open set detection
task. The set of all related works are listed in the section below for the
convenience of the reader where we note limited generalizability of
existing works addressing unknown attacks.

2. Related works on S-MAD

The initial set of MAD algorithms focused on detecting the attacks in
digital domain and illustrated a very high attack detection rate [2,11,14,
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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15–21]. These algorithms were based on hand-crafted features and fo-
cused on localizing and detecting the artefacts at the image level reflected
at digital pixel-level information [2,14,15–19]. In all of theseworks, a clas-
sifier was trained on the texture-level and observing pixel-level features
to detect morph attacks. Noting the poor visual appearance of the
morphed images from initialmorphing approaches using landmarks, sub-
sequent works proposed approaches which can better control the quality
of morphed images by carefully choosing the contributing pairs in the
same ethnic group, age, and gender [3,9,20,21]. Further, a number of
post-processing steps have been used, which typically involve retouching
the images to make the hair silhouette visually realistic, eliminating the
artefacts due to incorrect registration of the iris region and making the
skin colour consistent. Generative Adversarial Networks (GAN) have
also been explored to create realistic images with ease [9,11]. With the
improved visual quality of morphed images challenging human percep-
tion, one can foresee the need for better MAD algorithms. A number of
newMAD approaches have therefore been proposed using deep learning
[3,8,22–24]. All existingworks in this direction are typically based on pre-
trained networks and transfer learning. The first work in this direction
was based on using pre-trained networks such as AlexNet and VGG18,
whose features are fused and classified to detect a morphing attack [3].
Following this, several deep CNN pre-trained networks such as AlexNet,
VGG19, VGG-Face16, GoogleNet, ResNet18, ResNet150, ResNet50, VGG-
Face2 and Open face [21,25,26,27–32] have been explored.

While deep networks have improved MAD performance as com-
pared to hand-crafted MAD methods on both digital and print-scan
data, the generalization capability of these approaches is limited across
different print-scan datasets [6,9,22]. Venkatesh et al. [21] proposed
using multi-scale Context Aggregation Networks (CAN) to detect the
morphing traces from images and used it efficiently to detect the
morphing attacks. Scherhag et al. [22] proposed using the embeddings
from deeply learnt FRS to detect the morphing attacks and demon-
strated the applicability on two independent evaluations conducted
by a European project [8,13] and the NIST FRVTMORPH evaluation [33].

In addition to this, wavelet-based approaches for detecting morphs
have been proposed using attention aware mechanisms [23], group
sparsity [34] and mutual information [24]. Approaches have explored
Siamese networks [35] for detecting morphs and feature space from
morphs [36]. Most recently, adversarial learning has been explored to
make the MAD algorithms better by using adversarial examples [37,
38]. Pixel level information has been explored, specifically to detect
morphs in the digital domain [39].

In an alternative direction, hybrid approaches have been proposed
combining more than one feature extractor or classifier to detect face
morphing attacks in a bettermanner. Approaches have been earlier pro-
posed to combine features and detection or decision scores for better
MAD accuracy [20,26,28,31,40,41]. As these approaches combine more
than one feature extraction and classifier, the MAD performance is
generally superior to single-image MAD techniques. However, while
they provide better MAD performance when tested on known data
(i.e., closed-set protocol), they cannot generalize well to detect attacks
from different types of morphs and morphs after print-scan processes.
Further, the robustness of the MAD algorithms in multiple works has
been tested on both internal datasets with an exception of few that
have been tested on sequestered datasets in NIST FRVT MORPH evalua-
tion [33], and SOTAMD evaluation [13,42].

Retrospection of theMAD algorithms reported so far in the literature
leads to two critical observations in lines with observations of other re-
cent works [6,8,9]:

• MAD algorithms tend to perform well when trained and tested with
the same type of morphing data, for instance, digital morphed images
against digital bona fide images created using a specific kind of
morphing (i.e., closed-set protocol). However, the algorithms suffer
from performance degradation when presented with morphed im-
ages from unseen algorithms (i.e., open-set protocol).
2

• The performance degradation is further pronounced when the
morphed images of a specific generation process are tested against a
model trained on different morphed images, especially in printed-
and-scanned and printed-scanned-compressed settings.

Both of these factors in MAD in an open-set scenario (images
from different morph types in testing than in the training phase)
hinder the deployment of MAD algorithms owing to high error
rates for Attack Presentation Classification Error Rate (APCER) at a
fixed Bona fide Classification Error Rate (BPCER). The degradation
in performance can be seen in a recent work reported by Zhang
et al. [9] where the same morph type generation for testing and
training resulted in high detection accuracy close to 0% Equal Error
Rate (EER) while it degraded in cross-generation type testing. The
performance of EER degradation is shown in Fig. 1 where one can
see that the unknown morphing generation in the testing set results
in a higher Equal Error Rate (EER) in SOTA methods. At the same
time, the proposed approach reduces the EER and BPCER, as noted
in Fig. 1.

2.1. Our contributions

Considering the challenges in cross-data MAD, we propose a new
approach for detecting morphing attacks by incorporating three basic
but necessary ideas to make MAD algorithms better.

• We note that the morphed image and the bona fide image, despite
looking very similar in RGB colour space, present complementary in-
formation in other colour spaces as illustrated in Fig. 2.We thus assert
that using such complementary colour information fromdifferent col-
our spaces can lead to better MAD algorithms. Our motivation also
stems from the capture devices, printers and scanners operating on
various colour gamuts, adjusting the colour spaces accordingly.
While previouswork [20,40] proposedMADalgorithmusing the inde-
pendent colour spaces to extract the features and then learn classifiers
independently, we assert that learning features from different colour
spaces together can lead to increased accuracy in detecting morphs.
RGB can serve as a colour representation for a wide variety of capture
devices, specifically for bonafide images andmorphed images that are
printed and scanned using a variety of printers, HSV colour space is
device-independent. HSV colour space encapsulates information
about a colour in a manner that is more familiar to humans and help
in detecting post-processed morphed images where familiar colours
are used to eliminate the artefacts such as ghosting artefacts. Lab col-
our space is further designed to approximate human vision and con-
sider perceptual uniformity. The L component closely matches the
human perception of lightness. It can thus be used to make accurate
colour balance corrections by modifying output curves in the a and b
components or to adjust the lightness contrast using the L component.
Multiple colours within Lab space cannot be reproduced in the phys-
ical world. Thus if an image editing software is employed, for instance,
in morph post-processing, the colours would be the closest in-gamut
approximation, changing lightness and colourfulness. We assert that
such clues can be used to benefit from morphing attack detection.
YCbCr colour space is further based on the RGB colour model and is
used for storage and data transmission due to its efficiency in
compressing colour data in images and video. Asserting that morphed
images can be transmitted through a digital transmission device or
when the images are compressed to correspond to passport size,
using only RGB representation may lead to not using important
clues in MAD. Thus, we propose using four different colour spaces
such as RGB, HSV, Lab and YCbCr for creating the MAD algorithm
based on the complementarity as illustrated in Fig. 2.

• Secondly, many morph generation algorithms manipulate the image
information, and such a process tends to leave traces of the morphing



Fig. 1. Illustration of high EER for cross-dataset MAD under training with LMA and LMA-UBO tested with data from unknown morphing generation in digital domain. Higher EER can be
noted for SOTA methods such as Ensemble Features [20] and Hybrid Features [41] while proposed approach reduces the EER significantly.
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process in the resulting image.While colour spaces can reveal them in
complementary spaces, we also assert that using residuals jointly can
be advantageous. The problem, however, remains in reliably
obtaining the residuals. Therefore, we propose employing an
encoder-decoder network to recover the images that approximate
the input images, either bona fide or morphs. We hypothesize that
the artefacts commonly present in morphs can easily be captured
through an encoder-decoder network different from bona fide im-
ages. Therefore, we propose using such reconstructed images from
the encoder-decoder network as auxiliary information to pronounce
these artefacts before learning a classifier as described in the upcom-
ing section.

• We conduct an extensive evaluation on a large scale in–house database
consisting of ICAO compliant face images and their corresponding
morph images from 5 different types of morph generation algorithms
[9]. The evaluation considers morphs generated from two different
landmark based approaches (LMA [43], and LMA-UBO [25]) and three
different GAN based morphing approaches (StyleGAN [10], MIPGAN-I
and MIPGAN-II [9]). Further, bona fide and morphed images from all
five datasets are analyzed in digital, print-scan and printed-scan-
compression domains to study the generalizability of the proposed ap-
proach. In addition, the approach is benchmarked against two SOTA
MAD algorithms evaluated in NIST FRVT MORPH evaluation [33].

In the rest of this article, we present the proposed approach in
Section 3 with a detailed discussion. We then present the details of ex-
periments in Section 4 with a brief summary of database in Section 4.1.
We present the baseline results in Section 4.5 alongwith a set of results
on ablation study in Section 4.6. Further, the results on generalization is
presented in Section 4.7 alongwith a detailed analysis on explainability
in Section 5 and conclusion in Section 6.
Fig. 2. Illustration of complementarity of color spaces for bona fide and morph images.
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3. Proposed approach

The proposed approach is based on our assertion that the bona fide
samples have a few properties different from the morphed samples, as
argued before. A morphed image can be seen as a noisy version of the
bona fide image with multiple residues due to the morphing. We note
that post-processing and printing-scanning remains a common factor
across bona fide and morphs, while traces of the morphing process are
absent in bona fide image.

Suppose IbS1 and IbS2 are bonafide images of two subjects S1 and S2. In

that case, the morphed image Im can be represented as Im ↦ ϕfIbS1, IbS2g
where ϕfIbS1, IbS2g without loss of generality can be approximated as a
function which involves the process of morphing, post-processing and
printing-scanning. The function ϕf:, :g varies based on the generation
mechanisms involved, for instance Land-Mark Based Morphing [43,
25], StyleGAN [10] or MIPGAN [9]. While the latter two involve manip-
ulating the latent space to create morphs, the former involves manipu-
lating the pixel level information in images. Thus, we propose to exploit
the traces resulting from themorphing process to deviseMAD, i.e., to in-
vert the ϕf:, :g. Our proposed approach consists of two steps,
(i) identifying the traces (which we refer to as residuals for the sake of
consistency in the rest of this article) and (ii) learning a classifier to
detect morphs against bona fide using the residuals. Diverse morph
generation processes result in images that exhibit different image char-
acteristics due to the process of morphing, post-processing, retouching.
Considering a compact sphere formed by bona fide images, we can note
that morphed images drift farther away from the center of the compact
sphere. We assert to create a generalizable MAD approach utilizing this
and learning the residuals of the morphed images. We, therefore, detail
the process of learning residuals in the first stage, as described in the
next section.

3.1. Morph residual learning

In an ideal setting, an encoder-decoder architecture should faithfully
reproduce the original image, i.e., given an input x, the encoder-decoder
network produces an image x

^
≈ x. The residual R ¼ x

^ � x in such a case
is expected to be very low. However, given a number of steps of
involved in morphing and post-processing, taking complementary
information to compute residuals is an advantage. Considering the
morphing process as modelled by Eq. (1):

Im ↦ ϕfIbS1, IbS2g ð1Þ

the residuals can be approximated by Eq. (2):

R ≈ ϕfIbS1, IbS2g � Im ð2Þ



Fig. 3. The proposed network architecture for MAD using U-Net architecture for multi-channel input images with ResNet18 backbone.

1 The code can be availed from https://github.com/kiran-raja/Residual-MAD/.
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Making use of complementary information available in different colour
spaces (i.e., different channels) and revise the Eq. (2) as given by Eq. (3).

Rc ≈
Xc
i¼1

ϕfIbS1; IbS2g � Im ð3Þ

where c indicates different channels from different color spaces (c ¼ 12
from RGB, HSV, Lab, YCbCr color spaces). We, therefore, learn the resid-
uals frommultiple color channels as they differ for bonafide andmorphs.

As the first part of our proposed approach, we learn such residuals
using the encoder-decoder network using all the 12 channels simulta-
neously through a multi-channel ResNet [44]. We choose ResNet18 as
a backbone network considering its design of skip connection to miti-
gate the so-called degradation problem [44]. While a simple encoder-
decoder can be used, we resort to using a U-Net like architecture with
four encoders and four decoders which we refer to as Encoder Residual
Units (ERU) encoding the image and Decoder Residual Units (DRU),
which reconstruct the images. In each of the DRUs, the feature map
from the previous layer is upsampled using nearest-neighbour interpo-
lation. Unlike the classical U-Net architecture, our approach based on
multi-channel inputs learns the residuals in different color spaces si-
multaneously. The reconstructed image (Ioc) can then be used to obtain

the residual difference (Rc) between the input image (Iic) and the recon-
structed output image (Ioc) of original input image.

Rc ≈ Ioc � Iic ð4Þ

for all channels c and the input image Ii and output image Io. As we are
interested in learning residual differences for morphs and bona fide im-
ages, we obtain the difference between the original image and recon-
structed images for both the cases. However, the input image and
reconstructed image exhibit different statistical characteristics that
can lead to unstable parameters in network and result in vanishing/ex-
ploding gradients problems. Thus, we propose to zero-center and nor-
malize the residual difference over the image by employing the mean
μðRcÞ and variance σ2ðRcÞ for an image to obtain the actual residual dif-
ference Dc from Eq. (4) as given in Eq. (5).

Dc ¼ Rc � μðRcÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ðRcÞ

p ð5Þ

With the ResNet18 as the backbone in our proposed approach, each
ERU consists of a convolutional layer followed by batch normalization,
rectified linear activation function (ReLU) and max-pool layer. Each
convolution layer in ERU consists of a kernel of size 3x3, with a
4

stride of 1 and a padding of 1. Each DRU consists of a block with a
convolutional layer of kernel 3 × 3, a stride of 1 and a padding of 1
followed by batch normalization, rectified linear activation function
(ReLU) andmax-pool layer and another blockwith kernel 3 × 3, a stride
of 1 and a padding of 1 followed by batch normalization, downsampling
layer. The output of the first two bocks is then fed to a convolution layer
with a kernel of 2 × 2 followed by normalization and ReLU followed by
a convolution layer of 1 × 1 and ReLU. Each DRU is designed to upscale
the output by an interpolating factor of 2 before passing on to the next
DRU, as illustrated in Fig. 3. An off the shelf classifier architecture is used
with adaptive average pooling and a linear activation function in a fully
connected layer with a drop out of 0:4. We have a total of 4 ERU and 5
DRU in our proposed approach as illustrated in Fig. 31.

3.2. Learning to classify morphs

Formulating a morphed sample as a noisy version of a bona fide
image, we can assert the bona fide samples belong to a closed-set
space while the morphed samples are outliers from this closed-set.
Based on such a formulation, we can consider the distribution of
the bona fide samples to lie in the center of a compact sphere in the
learned feature representation space while the morph samples
drift from the center. Considering the input space ðX ⊆ RdÞ and
output space ðZ ⊆ RpÞ and ϕð � ;WÞ : X ! Z as the neural network
with L hidden layers, the corresponding set of weights can be
represented as W ¼ W1, . . . ,WL� �

. Given Nb bona fide samples
ðx1, . . . , xNb

⊆ XÞ,Nm morphed samples ðy1, . . . , yNm
⊆ XÞ, let c be the

center of the bona fide samples in the output space Z, the objective is:

min
W

1
Nb

XNb

i¼1

ϕðxi;WÞ� ck k2; ð6Þ

max
W

1
Nm

XNm

i¼1

ϕðyi;WÞ� ck k2: ð7Þ

Thus, the distance from ϕðq;WÞ to the center of the bona fide
hypersphere for any image q can be represented as:

sðxÞ ¼ ‖ϕðq;WÞ � c‖: ð8Þ

We impose an explicit regression supervision on the bona fide samples
to achieve the optimization goal of Eq. (6) and the implicit metric

https://github.com/kiran-raja/Residual-MAD/
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learning supervision on the bona fide and morphed images samples to
solve Eq. (7) as explained further below.

3.2.1. Learning to classify morphs and bona fide using Negative Log-
Likelihood (NLL) Loss

The obtained discriminatory (or pronounced) residuals are used as
inputs to a ResNet classifier [44] which produces a score indicating the
input image as bona fide or morph. With Pc as input, the classification
loss can be formulated as:

Lc ¼ 1
N

XN
i¼1

zilogqi þ ð1� ziÞlogð1� qiÞ; ð9Þ

where N is the number of samples, zi is the binary label and qi is the
network prediction.

3.2.2. Leveraging the imbalance in the dataset through Asymmetric Loss
(ASL)

We note that the morphed images and bona fide images can be
highly imbalanced corresponding to a real-world scenario. Symmetric
loss functions in such a case can help in addressing the asymmetric na-
ture of the dataset as noted in recent work [45]. We, therefore, propose
to employ the Asymmetric Loss (ASL) to mitigate the impact of imbal-
ance in training dataset on MAD performance.

Further, asymmetric focusing is shown to reduce the contribution of
negative samples to the losswhen their probability is low. However, the
level of imbalance in bona fide and morph images can be very high in
terms of the number of samples and not all face features correspond
to morphing, making this attention insufficient. Specifically, when
morphing is carried out within the face region keeping the silhouette
of one of the contributing subjects as in LMA-UBO [25], face component
plays bigger role than silhouette. We, therefore, incorporate the addi-
tional asymmetric mechanism of probability shifting to perform hard
thresholding of easy negative samples to discard themwhen their prob-
ability is very low [45]. The probability shifting pm, can therefore be
defined as:

pm ¼ maxðp�m, 0Þ ð10Þ

Where the probability marginm ⩾ 0 is a tunable hyper-parameter.
We further employ two mechanisms of asymmetric focusing and

probability shifting in a unified manner motivated by the results
reported in earlier works [45], where Lþ and L� are the positive and
negative loss parts, and γ is the focusing parameter:

ASL ¼ Lþ ¼ ð1� pÞγþ logðpÞ
L� ¼ ðpmÞγ� logð1� pmÞ

(
ð11Þ

Where pm is defined in Eq. (10). ASL allows us to apply two types of
asymmetry for reducing the contribution of easy negative samples to
the loss function - soft thresholding via the focusing parameters
γ�>γþ, and hard thresholding via the probability marginm.

It can be convenient to set γþ ¼ 0 so that positive samples will incur
simple cross-entropy loss, and control the level of asymmetric focusing
Table 1
Details of all five databases with training and testing splits employed in this work.

Generation Digital

Type Bona fide Morph Bona fide

Training Testing Trasssining Testing Training T

LMA [43] 693 583 1189 1310 693 5
LMA-UBO [25] 693 583 1203 1318 693 5
StyleGAN [10] 693 583 1189 1310 693 5
MIPGAN-I [9] 693 583 1203 1318 693 5
MIPGAN-II [9] 695 583 1203 1318 695 5

5

via a single hyper-parameter, γ�. Thus, we employ ASL as a major con-
tributing loss in our proposed approach for classifying morphs, and we
refer to this as Lasl in the rest of the article.

3.2.3. Auxiliary loss - regression
As the bona fide samples belong to a closed set and the morph sam-

ples constitute outliers from this closed set, we impose constraints on
the bona fide samples. The morph traces only exist in morphed images,
and therefore themorph traces should be close to zero in bonafide sam-
ples. It can therefore be safely assumed the zeromorph trace as a center
of the bona fide in the feature space, and the regression loss on the bona
fide images achieves the optimization goal of Eq. (6).

Given amulti-channel image I as input, the residualmap of the same
size, we hypothesize the residual R to be a zeromap for a bonafide sam-
ple. It is worth noting that the center C remains unknown for amorphed
image owing to various morphing generation processes. The morph
trace regression loss for a bona fide sample is the pixel-wise L1 loss in
the formulation of:

Lr ¼ 1
Nb

∑
Ii∈bonafide

jjRijj2, ð12Þ

where Nb is the number of bona fide in one batch.

3.2.4. Auxiliary loss - triplet loss
We use the metric learning-based loss to promote intra-class com-

pactness in bona fide samples and inter-class separability for bona fide
and morphed samples at the feature level. This can be easily seen as
an optimization goal of Eq. (7). Specifically, we obtain a set of feature
vectors fVg by employing the global average pooling (GAP) on feature
maps from a layer in each of the ERUs and DRUs and apply the triplet
metric supervision in each batch. The triplet metric learning loss can
be formulated as:

Lt ¼ 1
T
∑T

i¼1maxðdðai, piÞ � dðai,niÞ þm, 0Þ,

dði, jÞ ¼ jj vi
jjvijj2

� v j

jjv jjj2 jj2,
ð13Þ

where fai, pi,nig denotes the anchor (bona fide), positive (bona fide),
negative (morphed) samples within the ith triplet respectively, T de-
notes the number of triplets, dði, jÞ represents the L2-normalized dis-
tance between feature vectors output by the GAP layer, and m is the
pre-definedmargin constant.We employ online batch-all tripletmining
proposed in [46]where at each training step,we collect all the valid trip-
lets within the current batch of data for metric loss computation, the
triplets satisfying jjdða,nÞ � dða, pÞjj2 < m.

3.3. Training loss function

The loss functions of the proposed model are fourfold: the binary
classification loss La, asymmetric loss Lasl, the triplet loss Lt and the
pixel-wise regression loss Lr for residuals on bona fide samples. The
total loss L used for training is thus a combination of all four losses:
Print-Scan Print-Scan-Compression

Morph Bona fide Morph

esting Training Testing Training Testing Training Testing

83 1189 1310 693 583 1189 1310
83 1203 1318 693 583 1203 1318
83 1189 1310 693 583 1189 1310
83 1203 1318 693 583 1203 1318
83 1203 1318 695 583 1203 1318



Table 2
Proposed approach - same set results.

Morphing Digital Print Scan Print Scan Compression

EER BPCER_20 BPCER_10 EER BPCER_20 BPCER_10 EER BPCER_20 BPCER_10

LMA [43] 0 0 0 0.86 0 0 0.69 0 0
LMA-UBO [25] 2.58 2.06 1.72 7.99 12.15 5.73 9.38 19.97 9.2
StyleGAN [10] 0 0 0 0.08 0 0 0.34 0 0
MIPGAN-I [9] 1.03 0 0 0.34 0 0 0.69 0 0
MIPGAN-II [9] 0.86 0.17 0.17 8.73 29.9 2.58 8.73 31.79 2.92
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L ¼ λ1Lc þ λ2Lasl þ λ3 ∑
c∈fERU�DRUg

Lkt þ λ4Lr ð14Þ

where k indexes the layer where we apply the triplet loss, and
λ1,λ2,λ3,λ4 are the regularization weights to balance the influence of
the different loss components.

4. Experiments and results

In this section, we present the details of the database employed, the
set of experiments conducted and the results obtained to demonstrate
Table 3
Ablation study for effectiveness of various losses for MAD classifier trained on LMA-UBO morp

NLL (Lc) ASL (Lasl) Triplet Lt

LMA [43] ✓

LMA-UBO [25] ✓

StyleGAN [10] ✓

MIPGAN-1 [9] ✓

MIPGAN-2 [9] ✓

LMA [43] ✓

LMA-UBO [25] ✓

StyleGAN [10] ✓

MIPGAN-1 [9] ✓

MIPGAN-2 [9] ✓

LMA [43] ✓

LMA-UBO [25] ✓

StyleGAN [10] ✓

MIPGAN-1 [9] ✓

MIPGAN-2 [9] ✓

LMA [43]
LMA-UBO [25]
StyleGAN [10]
MIPGAN-1 [9]
MIPGAN-2 [9]

LMA [43] ✓ ✓

LMA-UBO [25] ✓ ✓

StyleGAN [10] ✓ ✓

MIPGAN-1 [9] ✓ ✓

MIPGAN-2 [9] ✓ ✓

LMA [43] ✓ ✓ ✓

LMA-UBO [25] ✓ ✓ ✓

StyleGAN [10] ✓ ✓ ✓

MIPGAN-1 [9] ✓ ✓ ✓

MIPGAN-2 [9] ✓ ✓ ✓

LMA [43] ✓ ✓

LMA-UBO [25] ✓ ✓

StyleGAN [10] ✓ ✓

MIPGAN-1 [9] ✓ ✓

MIPGAN-2 [9] ✓ ✓

LMA [43] ✓ ✓ ✓

LMA-UBO [25] ✓ ✓ ✓

StyleGAN [10] ✓ ✓ ✓

MIPGAN-1 [9] ✓ ✓ ✓

MIPGAN-2 [9] ✓ ✓ ✓
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the applicability of the proposed approach. We use the dataset pre-
sented in earlier works consisting of 5 different types of morphing at-
tacks covering the categories of landmark-based morphs and GAN
based morphs. For the convenience of the reader, we present a sum-
mary of datasets in this section.
4.1. Databases

All the datasets used in this work are derived from the FRGC-V2 face
image database [47] to generate themorph images. The dataset consists
of high-quality face images captured from 140 unique subjects (47
h types - Digital Domain.

Reg-Loss Lr EER BPCER_20 BPCER_10

2.23 1.37 1.37
1.2 0.17 0.17
4.98 4.98 3.26
28.35 73.2 57.73
24.66 60.14 47.59

3.61 3.09 1.72
0.91 0.34 0.17
7.55 13.4 6.53
15.1 35.74 24.4
11.84 27.15 14.6

71.82 97.42 95.88
47.95 94.67 91.41
73.02 97.59 96.22
65.63 95.19 93.64
66.54 95.02 93.81

✓ 54.72 97.43 94.17
✓ 39.10 95.37 88.16
✓ 42.55 93.14 85.42
✓ 38.93 85.42 75.13
✓ 43.80 96.05 89.54

4.27 2.92 0.86
1.37 0.34 0.17
8.42 11.86 7.39
12.03 19.24 13.23
7.28 10.14 5.84

1.07 0.52 0.52
0.86 0.52 0.52
7.93 23.71 1.37
35.74 79.9 74.74
32.3 78.87 70.96

✓ 7.22 9.62 4.98
✓ 2.88 0.17 0.17
✓ 9.45 14.26 9.11
✓ 19.42 40.55 28.18
✓ 15.02 26.29 20.1

✓ 3.59 2.58 1.72
✓ 2.58 2.06 1.72
✓ 9.15 16.84 8.59
✓ 12.89 22.51 15.46
✓ 8.93 14.43 8.59



Table 4
Quantitative performance ofMAD - Training- Landmarks-I [43]. Results are noted in bluewhenproposed approach is superior over SOTA or equal to SOTA and noted in
red when it is inferior to SOTA.
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female and 93 male) from the FRGC dataset resembling the enrolment
passport image quality. A total of 1270 face samples corresponding to
140 data subjects are used in line with the previous works (7–21 sam-
ples available for each unique subject).

We employ two morphed datasets created using facial landmarks
constrained by Delaunay triangulation with blending [43] (referred to
as LMA), landmarks-based techniques with automatic post-processing,
and colour equalization (referred to as LMA-UBO) [25]. Further, we
choose three different GAN based morphing approaches, which are re-
ferred to as StyleGAN [10], MIPGAN-I and MIPGAN-II [9]. All the em-
ployed datasets have the images pre-processed to meet the ICAO
standards [48] and morphed images with careful selection of subjects
based on gender and similarity score using an FRS with realistic and
high-quality attacks [43,49].
Table 5
Quantitative performance ofMAD trained on LMA-UBOdata [25]. Results are noted in
in red when it is inferior to SOTA.
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Further, in line with the previous works, we employ (i) Digital
images (bona fide and morphs), (ii) Print-scanned images (bona fide
and morphs) and (iii) Print-scanned compressed images (bona fide
and morphs). While the digital set consists of bona fide images and
morphed images after post-processing to eliminate the artefacts, the
print-scanned dataset consists of re-digitized morphed and bona fide
images where printing is carried out using a DNP-DS820 [50] in 300
dpi as suggested in ICAO standards [48]. Print-scanned compressed im-
ages consist ofmorphed andbonafide images compressed to have a size
of 15kB, making them suitable to store in the e-passport. Both Print-
scanned and Print-scanned compressed subsets mimic real-world set-
tings of the passport application and issuance processes.

The reader is further referred to the original works to get complete
details of dataset [10,9,43], however, we present the details on the
bluewhen proposed approach is superior over SOTA or equal to SOTA and noted



Table 6
Quantitative performance of proposed MAD trained with LMA-UBO [25] with increased number of epochs (60).

Morphing Digital Print Scan Print Scan Compression

EER BPCER_20 BPCER_10 EER BPCER_20 BPCER_10 EER BPCER_20 BPCER_10

LMA 3.61 2.06 0.34 21.07 81.77 71.01 30.31 88.37 75.69
LMA-UBO 0.68 0.17 0.17 7.22 33.16 0.35 7.45 18.23 1.22
StyleGAN 13.73 31.1 19.07 16.32 73.09 55.73 11.52 51.22 21.88
MIPGAN-I 25.43 58.93 47.94 4.17 0.87 0.17 5.08 5.21 1.39
MIPGAN-II 24.73 58.59 46.91 2.05 0.17 0.17 2.05 0.52 0.35
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total number of images used in this work in Table 1. The attack strength
of the databases in the form of vulnerability analysis of FRS is further
provided in Tables A.1, A.2, A.3.
4.2. Protocols

We adopt the evaluation protocols as described in earlier works
[9,20,40] to evaluate the proposed MAD algorithm by dividing the
dataset into training, validation and testing set that consists of indepen-
dent data subjects with no overlap between the splits. In a slight modi-
fication to the recent protocol, we derive a validation set from the
training set to validate the learning of the network where 30% of the
training set is used as the validation set. Similar to earlierworks,we pro-
videwithin database (training and testing dataset from the samemorph
generation approach) and cross-database-evaluation of MAD mecha-
nismsondigital, print-scan and print-scanwith compression data types.

All the results obtained on the proposed S-MAD on five different
types of generation mechanisms are reported using the ISO/IEC metrics
[51] which are specifically measuring the detection accuracy of attacks,
namely APCER (%) and BPCER (%), along with the EER (%).
4.3. Training details

We train the proposed approach by fixing the number of epochs to
30, a learning rate of 5e� 4, with a batch size of 32 for all the experi-
ments. Further, we present the individual analysis of hyper-
parameters through empirical validation, discussing the impact of
each of the different loss functions in Section 4.6. The training and
Table 7
Quantitative performance ofMAD trained onMIPGAN-I data [9]. Results are noted in b
red when it is inferior to SOTA.
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testing are conducted on an Nvidia 2080 Ti GPU enabled computer
with a Linux operating system (Ubuntu 20.04).
4.4. SOTA benchmarks

Of the number of works available from state-of-the-art MAD [25,27,
31,52–56], we choose to compare our results to a recent benchmark
provided on the datasets used in our work [9]. Specifically, we bench-
mark our approach against Hybrid features [41] and Ensemble features
[20] for detectingmorphing attacks based on the performance obtained
in NIST FRVT MORPH challenge [33] with the best performance in de-
tecting printed and scanned morph images. While the Hybrid features
[41] use both scale space and colour space combinedwithmultiple clas-
sifiers, the Ensemble features [20] use textural features in conjunction
with a set of classifiers.
4.5. Results - known set testing (closed-set)

We first establish the applicability of the proposed approach
using the known training and testing set in a closed-set protocol.
The key motivation for this evaluation is to validate the applicability
when the testing set resembles the training set characteristics. The
results are presented in Table 2 where one can note less then 3%
EER and BPCER for digital dataset. The proposed approach also ob-
tains near ideal error rates for most cases in print-scan and print-
scan-compression except for LMA-UBO [25] and MIPGAN-II [9]
sets. The results suggest promising nature of proposed approach
for 11 of 15 different cases.
luewhenproposed approach is superior over SOTA or equal to SOTA andnoted in
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4.6. Choosing weights through ablation studies

The results presented in Table 2 are based on the chosen weights for
different loss combinations. Thus, we first study the impact of various
losses before evaluating open-set protocol for generalizability. The im-
pact of various losses can be seen from Table 3 when trained on LMA-
UBO and tested on different digital morph data. While the NLL loss pro-
vides very high detection accuracy for LMA, LMA-UBO and StyleGAN,
the same deteriorate for MIPGAN-I and MIPGAN-II. On the other hand,
the ASL has better scalability for MIPGAN-I and MIPGAN-II while losing
some performance in LMA and StyleGAN. However, Triplet Loss and
Registration Loss do not contribute heavily to improving the perfor-
mance. Combining all four losses provides a stable performance across
the same-set and cross-set scenarios. Specifically, using greater weights
on NLL and ASLwith lowerweights on Triplet and Registration provides
a balanced but not ideal performance. We have chosen to employ the
weights asλ1 ¼ 0:6,λ1 ¼ 0:2,λ1 ¼ 0:15 andλ1 ¼ 0:05 for all the exper-
iments reported further below. It should, however, be noted that the
performance can be further tuned by optimizing the weights for loss
function based on the availability of data. The impact of chosen weights
is evident when all the loss functions are incorporated in the training
where EER, BPCER_20 and BPCER_10 result in lower errors than either
NLL, ASL or a combination of them.
Fig. 4.XGradCAManalysis of proposed approach on bonafide andmorphed images in dig-
ital domain.
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4.7. Results - unknown set testing (open-set)

We extend the experiments to verify the applicability of the
proposed approach as a generalizableMAD algorithm by benchmarking
it against two NIST evaluated MAD algorithms. For such an evaluation,
we train the proposed approach using the data from LMA, LMA-UBO,
StyleGAN, MIPGAN-I and MIPGAN-II independently in a corresponding
setting of digital, print-scan and print-scan-compression. While we
present results from LMA, LMA-UBO, and MIPGAN-I here, we present
results and analysis from StyleGAN and MIPGAN-II in Appendix
(Section E and Section D respectively), due to page constraints.

4.7.1. Unknown testing - LMA trained
Table 4 presents the results obtained using the proposed approach

in an unknown testing set scenario. All the results are compared
against two SOTA approaches and we note the following observations
accordingly:

• The proposed approach obtained significantly lower EER in 9 out of
12 cross-data settings performing better than any of the two SOTA
approaches based on Hybrid features [41] and Ensemble features
[20]. Along with the EER, we note a lower BPCER_10 in 10 of 12
cases. A lower error rate of BPCER_20 and BPCER_10 further indicates
Fig. 5. AblationCAM analysis of proposed approach on bona fide and morphed images in
digital domain.
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the superior performance of the proposed approach in detecting
morphing attacks.

• Wenote that the proposed approach can perform better for styleGAN,
MIPGAN-I and MIPGAN-II in the digital domain, while it degrades for
MIPGAN-I after print-scan and print-scan-compression. Although a
lower performance can be observed for MIPGAN-II under print-scan,
the performance is comparable for MIPGAN-II in the print-scan-
compression setting.

• Intrigued by the low performance of the proposed approach on LMA-
UBO generally, we analyze the scores and note that the scores tend to
be very biased towards bona fide or morphs leading to high BPCER.
Due to such binning of scores, it is natural that the BPCER metric,
which is obtained at fixed APCER, tends to be very high (Refer
Fig. C.13 in Appendix).

4.7.2. Unknown testing - LMA-UBO trained
In line with previous experiments, we train the proposed approach

using LMA-UBO data, whose results are presented in Table 5. While
we note a superior performance when trained with LMA-UBO and
tested on different datasets, the known set testing suffers from perfor-
mance degradation. We note specific observations from this set of
experiments:
Fig. 6. AblationCAM analysis of proposed approach on bona fide and morphed images in
print-scan domain.
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• The proposed approach reduces the EER in all unknown testing set
scenarios. The EER in the case when LMA is tested equals 3:59%,
reducing the error rate from 45.67% in the digital domain.

• At the same time, reduction in error rates is also reduced significantly
from 24.19% to 9,85% and 21.64% to 13.82% for print-scan and print-
scan-compression respectively for LMA as testing set.

• The proposed approach reduces the error rates significantly for
StyleGAN, MIPGAN-I and MIPGAN-II. The EER is observed to be
9.15%, 8.16% and 8.09% for StyleGAN for digital, print-scan and print-
scan-compression while simultaneously reducing BPCER at APCER
= 5% and APCER = 10%.

• Similar to StyleGAN, MIPGAN-I and MIPGAN-II also is detected with
high accuracy with 12.89%, 6.45% and 1.44% for digital, print-scan
and print-scan-compression, respectively in MIPGAN-I. Similarly,
MIPGAN-II attacks are detected with high accuracy with 8.93%,
4.51% and 2.26% for digital, print-scan and print-scan-compression,
respectively.

• We investigate it further by increasing the number of training epochs
to verify if the robustness of the proposedMAD approach increases. As
noted from the results in Table 6, the results for the closed-set (LMA-
UBO) and open-set MIPGAN-I andMIPGAN-II decreases, and the error
rates for LMA and StyleGAN in print-scan and print-scan-compression
Fig. 7. AblationCAM analysis of proposed approach on bona fide and morphed images in
print-scan-compression domain.
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increase. Such an observation can be argued from over-fitting param-
eters favouring one kind of data. However, we hypothesise that such a
challenge can be mitigated by employing various morph generation
algorithms in training in future works.
4.7.3. Unknown testing - MIPGAN-I trained
Weanalyze the results obtained usingMIPGAN-I data in the training

set, and the same is presented in Table 7. Based on the results obtained,
one can make the following observations:

• The proposed approach, when trained with MIPGAN-I, obtains lower
EER rates in 9 of the 12 individual cases in unknown data testing.

• MIPGAN-I training detects MIPGAN-II attacks in an unknown setting
but fails to detect LMO-UBO as the unknowndata. This observation in-
dicates the limited generalization of proposed MAD when trained on
GAN data and tested on landmark-based data.

• The proposed approach slightly deteriorates against SOTA
approaches when print-scan-compression data from the StyleGAN
approach is presented. As the data StyleGAN generation is sig-
nificantly different to MIPGAN-I data, this degradation can be
addressed by incorporating the StyleGAN data into the training
set. However, we refrain from this as the focus of the work is to
Fig. 8. ScoreCAM analysis of proposed approach on bona fide andmorphed images in dig-
ital domain.
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study the generalizability of the proposed approach when the test-
ing data is completely unknown.

5. Explainability and discussion

To better understand the proposed MAD approach, we analyse
images using the Class Activation Mapping (CAM) on all the trained
models. We first analyse the normalised activations by using
GradCAM with scaled gradients [57]. GradCAM analysis illustrates
the coarse localisation map highlighting important regions in the
image for predicting the ground truth, and we employ the same to
visualise the regions employed for morph classification in the pro-
posed approach. We, therefore, employ images from two bona fide
face images from the testing set and the corresponding morph as il-
lustrated in Fig. 4 to conduct this set of analyses. For simplicity, we
demonstrate the activation maps obtained from the conv layer of
the decoder block in our proposed approach and a similar analysis
can be extended for other layers.

Some key observations from this analysis correspond to the morph
generation process to a greater degree, as noted below:

• As noted in Fig. 4, the first column represents the bona fide and
morphs from LMA [43], and in this case, the proposed approach
Fig. 9. ScoreCAM analysis of proposed approach on bona fide and morphed images in
print-scan domain.
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focuses on the lip region and eyebrow region for detecting morphs.
The LMA approach [43] employs landmarks and the resulting artefacts
around the lip and the eyebrow region has been processed in this
dataset. Our proposed approach focuses on these regions to detect
morphs.

• The second column illustrates the activation maps of LMA-UBO [25]
where the morphs are processed along with the silhouette based on
the highest contributing subject chosen for morphing, and the same
can be seen in the last row of the second column. The silhouette of
the face region appears to be activated largely from the proposed ap-
proach, along with the regions around the eye.

• Further, StyleGAN [10] basedmorphing illustrated in the third column
does not employ any landmarks, and the same can be observed in im-
ages where the network focuses on the regions inside the face area.

• While in MIPGAN-I [9] shown in column 4, the proposed approach
tends to focus on regions around the face as the process ofmorph gen-
eration itself is a superior version of StyleGAN with identity priors
enforced, making the identity information stronger. It is also interest-
ing to note that the proposed approach in such a case tends to focus on
the eye region for detecting the morphs. However, it should also be
carefully noted that activations take into consideration the hair region
Fig. 10. ScoreCAM analysis of proposed approach on bona fide and morphed images in
print-scan-compression domain.
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where visible artefacts can be seen due MIPGAN-I generation process
[9]. A similar observation can be drawn for the proposed approach
trained within MIPGAN-II [9] which is a variant of MIPGAN-I.

Noting the Fig. 4, it can be deduced that the proposed approach can
be made more effective by carefully cropping the images in the pre-
processing step such that the network can further uniformly focus on
important regions to achieve better accuracy.

5.1. Complementary CAM analysis

We further employ Ablation-based CAM (AblationCAM) [58] and
ScoreCAM [59]. AblationCAM uses ablation analysis to determine the
importance (weights) of individual feature map units w.r.t. class and
generate gradient-free visual explanations for the proposed approach.
AblationCAM can be used to produce a coarse localisation map high-
lighting the important regions in the image for predicting the concept
[58]. On the other hand, Score-CAM provides a gradient-free visual ex-
planation bridging the gap between perturbation-based and CAM-
based methods and intuitively representing the weight of activation
maps. Score-CAM incorporates network confidence in deriving weight
for each activation map. While AblationCAM can help understand the
important regions through a class-discriminative approach, ScoreCAM
obtains the weight of each activation map through its forward passing
score on the target class resulting in a linear combination of weights
and activation maps. Thus, these approaches can provide complemen-
tary visualisation of the proposed MAD.

5.1.1. Analysis from AblationCAM
We analyze the results for the proposed approach for digital, print-

scan and print-scan-compression images (bona fide and morph) as
presented in Figs. 5–7, respectively. As noted from Fig. 5, the proposed
approach focuses on the regions corresponding to facial silhouette and
landmark areas, including the areas such as the chin, eyebrows and
eye region. It can be further noted that the activations of high intensity
above the forehead (between forehead and transition to hair) where
traces of morphing can be seen, despite post-processing. Nonetheless,
the network occasionally seeks the background area in making the de-
cisions and this can be easily argued from the nature of data as seen in
Fig. 5 for digital images.

In the case of Figs. 6 and 7 corresponding to print-scan and print-
scan compression, high activation can be observed for models trained
on LMA, LMA-UBO. StyleGAN andMIPGAN-I, while incorrect activations
can be noted for MIPGAN-II. This observation can be easily correlated to
the low performance noted in Table E.5 where the clear failure of
MIPGAN-II trained models in generalisation can be observed.

5.1.2. Analysis from ScoreCAM
Weanalyze the results from the proposed approach for digital, print-

scan and print-scan-compression images (bona fide andmorph) as pre-
sented in Figs. 8–10, respectively. It can be noted that weights of each
activation map through its forward passing score on target class results
in predictions close to the ground-truth (i.e., morphs and bona fide).
The results indicate the decisions explainable with respect to the
morphing generation type as noted from Figs. 8–10.

5.1.3. Interpreting CAM maps and uncertainty in explainability
CAM maps illustrated in Figs. 5–7, can help the human observer to

make a decision. Specifically, a higher activation, i.e., most intense
(red) areas, provide the regions for deciding an image as bona fide or
morph. The activations around the face silhouette in bona fide images,
as shown in Fig. 11 indicate the information used in determining an
image as bona fide, and this appears to be relatively less intense for a



Fig. 11. Uncertainty in activation maps from AblationCAM analysis of proposed approach on bona fide and morphed images in digital domain for LMA.
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morphed image. For the model trained using LMA data, intense activa-
tion around the eye region and silhouette can be used for deciding an
image as bonafide, while the heavy activations aroundnostrils can indi-
cate the probability of morphing and post-processing as illustrated in
Fig. 11.
Fig. 12. Uncertainty in activation maps from AblationCAM analysis of proposed a
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While the activation maps provide a reasonable way of inter-
preting the decision, we also illustrate that activation maps do not
take the model and data uncertainties into account. Fig. 11 presents
an illustration of such potential uncertainties for a model trained on
LMA data. As it can be noticed, the activation is not uniform for both
pproach on bona fide and morphed images in digital domain for MIPGAN-I.
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bona fide and morphed images. Looking into the zoomed areas of
the eye region and nostrils, one can note that the activation is differ-
ent for bona fide andmorph. Such differences in activationmaps can
help determine the morphs when a human observer looks at
the activation maps. However, the observations are inverted for
the model trained on MIPGAN-I for the same set of images as
shown in Fig. 12. Thus, a human observer looking at CAM maps as
an explainability tool should be aware of model variations and the
uncertainties.

6. Conclusion

MAD algorithms need to be robust enough to detect themorphed
images of unknown generation types to be usable in operational
settings. Noting the limited performance of MAD algorithms in
detecting unknown morph types in testing, we have proposed a
new approach in this work that generalizes better compared to
SOTA algorithms. The proposed approach uses a multi-stage
encoder-decoder network to learn the residuals across different col-
our spaces to detect morphing attacks. The proposed approach
achieves a generalizable MAD by learning a linear classifier with
cross-entropy loss, asymmetric loss, regression and triplet loss We
have conducted experiments on five different datasets created
using landmark-based morphs and GAN-based morphs where
images are available in the digital domain, print-scan and print-
scan-compression domain. The obtained results indicate a near-
ideal performance of the proposed MAD with an Equal Error Rate
(EER) of 0% in the best case and 2.58% in the worst case in the digital
domain. The applicability of the proposed approach to 60 different
combinations is illustrated where the testing set consists of data
from unknown morphing generation to study the generalization
ability of our proposed approach. By training the proposed approach
on landmark-based morph generation data, we obtain an EER of
3.59% in the best case and 12.89% in the worst case for morphed
images in the digital domain, reducing the error rates from 45.67%
and 30.23% respectively. The analysis for explainability is further
presented to analyze the decisions using three different CAM analy-
ses. Future works in this direction should investigate reducing the
total number of channels by analyzing channel-wise importance to
improve generalizability further.
Table A.1
Vulnerability of COTS Cognitec-FRS [60] for various morph generation approaches. As FNMR ¼
equal to MMPMR/FMMPMR.

Morph generation MMPMR/RMMR (%) FMMPMR/RMMR (%) MMPMR/RMM

Digital

Landmark-I [43] 100 98.84 97.64
Landmark-II [25] 88.65 78.72 91.85
StyleGAN [10] 64.68 41.49 61.72
MIPGAN-I [9] 94.36 84.65 92.97
MIPGAN-II [9] 92.93 81.59 80.56

Table A.2
Vulnerability of COTSNeurotech [61] for variousmorph generation approaches. As FNMR ¼ 0@F
MMPMR/FMMPMR.

Morph generation MMPMR/RMMR (%) FMMPMR/RMMR (%) MMPMR/RM

Digital

Landmark-I [43] 99.51 95.37 96.32
Landmark-II [25] 90.16 71.17 90.59
StyleGAN [10] 55.06 29.39 36.36
MIPGAN-I [9] 63.22 35.73 40.46
MIPGAN-II [9] 57.47 31.45 51.72
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Appendix A. Attack potential of the databases

Wepresent the attack potential of the databases by studying the vul-
nerability of FRS using Mated Morphed Presentation Match Rate
(MMPMR) [49] and Fully Mated Morphed Presentation Match Rate
(FMMPMR) [10] based on the threshold provided by respective FRS.
We report the vulnerability of COTS FRS - Cognitec-FRS [60] and
Neurotech [61] along with an open source FRS -Arcface [62]. Further,
to effectively analyse the vulnerability, we also present the results
using Relative Morph Match Rate (RMMR) [4].RMMR can be related to
MMPMR and FMMPMR as given by Eqs. (A.1) and (A.2).

RMMRðτÞMMPMR ¼ 1þ ðMMPMRðτÞÞ � ½1� FNMRðτÞ� ðA:1Þ

RMMRðτÞFMMPMR ¼ 1þ ðFMMPMRðτÞÞ � ½1� FNMRðτÞ� ðA:2Þ

where, F NMR indicates the False Reject Rate (F NMR) of the FRS under
consideration obtained at the threshold τ. In this work, τ represents the
value corresponding to FMR ¼ 0:1% compliant to FRONTEX FAR/FRR
constraints. We present F NMR corresponding to the FRS to calculate
the RMMR. It has to be noted that RMMR in Eqs. (A.1) and (A.2) equals
to MMPMR/FMMPMR when F NMR= 0.

A detailed analysis of the MMPMR of these datasets according to
gender distribution can be obtained in corresponding articles - LMA
[43], LMA-UBO [25], StyleGAN [10], MIPGAN-I [9] and MIPGAN-II [9].
0@FMR ¼ 0:1% for Cognitec-FRS [60] following Eqs. (A.1) and (A.2), the value of RMMR is

R (%) FMMPMR/RMMR (%) MMPMR/RMMR (%) FMMPMR/RMMR (%)

Print-Scan Print-Scan with compression

97.60 97.84 97.30
81.56 90.61 79.33
39.90 58.92 35.89
82.23 92.29 79.88
79.02 90.24 75.20

MR ¼ 0:1% forNeurotech [61] following Eqs. (A.1) and (A.2), the value of RMMR is equal to

MR (%) FMMPMR/RMMR(%) MMPMR/RMMR(%) FMMPMR/RMMR(%)

Print-Scan Print-Scan with compression

85.43 94.30 79.25
66.67 83.50 57.38
14.83 35.62 14.28
28.71 61.66 34.14
23.54 54.94 27.46



Table A.3
Vulnerability of Arcface [62] FRS for variousmorph generation approaches. FNMR ¼ 0@FMR ¼ 0:1% for Arcface [62] following Eqs. (A.1) and (A.2), the value of RMMR is equal toMMPMR/
FMMPMR.

Morph generation MMPMR/RMMR(%) FMMPMR/RMMR(%) MMPMR/RMMR(%) FMMPMR/RMMR(%) MMPMR/RMMR(%) FMMPMR/RMMR(%)

Digital Print-Scan Print-Scan with compression

Landmark-I [43] 99.68 98.00 97.88 96.89 97.84 96.75
Landmark-II [25] 91.79 84.96 94.33 86.96 94.53 86.54
StyleGAN [10] 72.80 56.95 75.60 59.79 75.16 59.51
MIPGAN-I [9] 94.45 85.94 93.81 85.46 93.97 85.48
MIPGAN-II [9] 94.21 86.94 94.05 85.95 93.85 85.77
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Appendix B. Training details

We train the proposed approach by fixing the number of epochs
to 30, a learning rate of 5e� 4, with a batch size of 32 for all the exper-
iments. Further, we present the individual analysis of hyper-parameters
through empirical validation, discussing the impact of each of the differ-
ent loss functions in Section 4.6. All the training and testing is conducted
on a Nvidia 2080 Ti GPU enabled computer with Linux operating sys-
tem.

Appendix C. Overlap of scores leading to high BPCER in MAD
Fig. C.13. Overlap of scores leading to high overlap of bona fide and morph scores when
.
trained with LMA data and tested on LMA-UBO data.
Fig. D.14. DET curves obtained on proposed a
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Appendix D. Unknown testing - StyleGAN trained

We further train the proposed MAD using StyleGAN data, and the
results are noted in Table D.4. Unlike the previous two results pre-
sented, the MAD trained on StyleGAN data performs relatively
poor, indicating limited generalizability. We note our observations
as presented below:

• The proposed approach obtains lower EER rates in 9 of the 12 individ-
ual cases in unknown data testing.

• Despite the obtained performance, we note very high EER and BPCER
in LMA-UBO, indicating low generalizability of the proposed approach
when trained on StyleGAN data irrespective of digital, print-scan and
print-scan-compression.

• A similar drop in performance can also be noted for MIPGAN-I and
MIPGAN-II data in print-scan and print-scan-compression, for which
further analysis is provided below.

We further analyse the high error rates using the Detection Error
Trade-off (DET) curves to understand the proposed approach’s low
generalisation when trained with the StyleGAN data. As noted from
Fig. D.14 and Table D.4, the proposed approach performs poorly for
MIPGAN-I and MIPGAN-II. However, a closer inspection of the DET
curves for print-scan and print-scan-compression reveals low and
near-ideal BPCER at APCER = 20%. The analysis demonstrates the
grouping of scores, and due to the nature of scores which are highly
dense around 0 and 1, the BPCER_20 is observed to be very high. Fu-
ture work in direction should also investigate the widening of
the score range to make the approach robust when trained with
StyleGAN data.
pproach with StyleGAN data in training.



Table D.4
Quantitative performance ofMAD trained on StyleGAN data [10]. Results are noted in bluewhen proposed approach is superior over SOTA or equal to SOTA and noted
in red when it is inferior to SOTA. (*Refer Fig. D.14 for further analysis of the obtained performance for models trained with StyleGAN data.)
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Appendix E. Unknown testing - MIPGAN-II trained

Similar to StyleGAN data, another set of experiments is conducted
using MIPGAN-II as a training set, and the results are presented in
Table E.5. We further note that the MIPGAN-II trained data does not
generalize well on MIPGAN-I, StyleGAN or other landmark-based ap-
proaches when trained under the same settings as the rest of the others
mentioned above (i.e., 30 epochs).We, therefore, conduct another set of
experiments by increasing the epochs to 60 for both print-scan and
print-scan-compression data. The results corresponding to this experi-
ment are presented in Table E.6, and theDET curves for this set of exper-
iments are illustrated in Fig. E.15. Finally, we note that the low
Table E.5
Quantitative performance ofMAD trained onMIPGAN-II data [9]. Results are noted in
in red when it is inferior to SOTA.

16
performance of theMIPGAN-II trainedmodel in Table E.5 reduces signif-
icantly when the number of epochs is increased, leading to better-
generalized performance across the different unknown testing sets.
However, one can note that the EER for the MIPGAN-II dataset itself
does not increase marginally, but the BPCER for MIPGAN-II testing at
APCER = 5% and APCER = 10% for print-scan and print-scan-
compression increases. The observation can be noted from Fig. E.15
where a sudden increase can be noted around APCER = 10%, while
the performance for both MIPGAN-I and MIPGAN-II decreases signifi-
cantly with an increased number of epochs. However, the same model
performs near-ideal at APCER= 20%, indicating the need for further in-
vestigations. A potential reason for this observation can be argued in the
bluewhen proposed approach is superior over SOTA or equal to SOTA and noted



Table E.6
Quantitative performance of proposed MAD trained with MIPGAN-II [9] with increased number of epochs (60) for print-scan and print-scan-compression data.

Morphing Print Scan Print Scan Compression

EER BPCER_20 BPCER_10 EER BPCER_20 BPCER_10

LMA [43] 5.33 5.50 2.92 11.34 20.27 12.71
LMA-UBO [25] 35.17 67.01 67.01 36.04 66.15 66.15
StyleGAN [10] 12.51 20.27 13.40 8.16 11.68 7.04
MIPGAN-I [9] 53.13 67.01 67.01 59.46 66.15 66.15
MIPGAN-II [9] 10.02 57.39 9.28 10.70 66.15 38.49

Fig. E.15. DET curves obtained on proposed approach with MIPGAN-II data in training with 60 epochs for print-scan and print-scan-compression data.
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light of over-fitting due to the limited number of samples. Therefore, al-
ternative training strategies should be investigated tomitigate such be-
haviour.
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