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Abstract— A direct data-driven strategy for snake-robot lo-
comotion control is proposed in this paper. The approach leads
to a time-varying state feedback controller with robustness
guarantees. Instead of relying on exact model knowledge -
which is often not available in practice - the proposed control
strategy requires only input-state data collected during offline
experiments. The efficacy of the proposed strategy is demon-
strated via simulations. Notably, by using data to compensate
for inaccurate models, the proposed control strategy can lead
to significant improvements in closed-loop performance com-
pared to existing (model-based) control strategies, while also
eliminating the need for manual tuning of control parameters.

I. INTRODUCTION

Snake robots have gained interest for a wide range of
applications. Mimicking the motion of biological snakes (see
e.g. [1], [2]), notably their undulatory locomotion pattern,
snake robots have excellent mobility and maneuverability,
even in hard-to-reach, challenging environments. With these
capabilities, snake robots are well suited for performing mon-
itoring and intervention tasks in the context of ground-based,
subsea and space applications (see, for instance, [3], [4],
[5], [6], [7], [8] and references therein). However, obtaining
accurate mathematical models to describe the dynamics of
snake robots is challenging. The complex friction forces act-
ing between the robot and its surroundings, for instance, play
a fundamental role in the locomotion of snake robots, but are
very difficult to model [6]. Existing models (see e.g. [6], [9],
[10]) are often based to some degree on empirical studies,
and the presence of parameters that are difficult to estimate
accurately may necessitate that control parameters are tuned
via ad-hoc procedures (see, e.g. [10]). The fact that snake
robots are underactuated poses a further challenge in terms
of control design. Thus, with the aim of easing the control
design task, a simplified, control-oriented model has been
introduced in [4]. The model provides a good qualitative
representation of the dynamical behaviour of snake robots
and renders the task of designing control laws ensuring
such robots follow a desired locomotion readily solvable.
More precisely, in the presence of complete knowledge of
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the underlying model, it has been demonstrated in [4], [6]
that a relatively simple control law can be designed, via
partial feedback linearisation, to render a desired locomotion
globally exponentially stable (GES). In this paper, we use
data to derive a similar control law in the absence of accurate
model parameter knowledge.

Direct data-driven control, see e.g. [11], [12], allows to de-
sign controllers directly using measured data, bypassing any
modelling step. Snake robots, which are complex nonlinear
systems, achieve a desired motion via undulatory locomotion
by tracking a repetitive, sinusoidal joint angle trajectory.
By approximating the behaviour of the actuated degrees of
freedom of the robot around the undulatory motion trajectory
as a linear time-varying (LTV) system, and hinging upon a
data-driven framework for LTV systems [13], [14], we im-
plement a direct data-driven tracking controller. Differently
from existing techniques, the proposed data-driven control
design method does not require accurate prior knowledge of
model parameters or manual tuning. An additional benefit
of the approach, which results in a time-varying controller,
is that it is naturally amenable to settings in which model
parameters are time-varying. For instance, varying friction
coefficients as the snake robot “slithers” across different
surfaces. We demonstarte (via simulations) that by using
data to compensate for lack of accurate model knowledge,
the proposed control strategy outperforms alternative control
laws employed in the literature.

The remainder of this paper is organised as follows. In
Section II the considered problem is introduced along with
some preliminaries on data-driven control of unknown LTV
systems. A brief overview of existing results on modelling
and locomotion of snake robots is provided in Section III.
The main result of the paper, namely a data-driven control
design strategy to ensure a snake robot follows a desired
locomotion pattern is presented in Section IV. Finally, the
proposed control scheme is illustrated via simulations in Sec-
tion V and concluding remarks are provided in Section VI.

Notation. Let f : Rn → Rm be a differentiable func-
tion, then ∂f/∂x denotes the Jacobian matrix of f with
respect to the variable x ∈ Rn. When m = 1, ∂f/∂x =
[∂f/∂x1, ..., ∂f/∂xn] denotes the row vector of partial
derivatives of f with respect to x = [x1 , x2 , . . . , xn]

>. In
represents the n × n identity matrix, and 0 the zero matrix
of appropriate dimension. Given a matrix A ∈ Rn×n, A > 0
(A ≥ 0) indicates that the matrix is positive definite (positive
semi-definite). We use square brackets to denote a discrete-
time signal s[·] and round brackets to denote a continuous-
time signal s(·). A function γ : R≥0 → R≥0 is a class K-
function if it is continuous, strictly increasing and γ(0) = 0.



Given a vector v ∈ Rn, ||v|| denotes its Euclidean norm.

II. PROBLEM FORMULATION AND PRELIMINARIES

The dynamic behaviour of snake robots is highly depen-
dent on friction forces - which are difficult to model or
estimate accurately - posing a major challenge in terms of
control design. Motivated by this, we consider the problem
of designing - without requiring the knowledge of the coeffi-
cient of frictions in the model - a feedback control law, which
ensures the snake robot follows a desired reference path, and
we provide a data-driven solution to the considered problem.

A. Preliminaries on data-driven control of LTV systems

We introduce here some preliminaries concerning the
direct data-driven control technique, which will be used to
design a controller for the snake robot (see [14], [13] for
more details). Consider a discrete-time system subjected to
process noise (denoted by d[k]) described by

x[k + 1] = A[k]x[k] +B[k]u[k] + d[k] (1)

where x ∈ Rn denotes the state of the system, u ∈ Rm
denotes the control input, and A[k] and B[k] of appropriate
dimension denote the unknown (time-varying) dynamics and
input matrices, respectively. With the aim of designing a state
feedback control law for system (1) of the form

u[k] = K[k]x[k] , (2)

for k ∈ [0, N ], consider the following standing assumption.

Assumption 1. It is possible to collect an ensemble of
input-state data sequences1 ud,j,[0,N−1], xd,j,[0,N ], for j =
1, . . . , L, with L ≥ n+m, capturing the same time-varying
behaviour for k = 0, . . . , N , with N ∈ N.

The L data sequences are combined to form the matrices

X[k] = [xd,1[k], xd,2[k], . . . , xd,L[k]] , (3)

for k = 0, . . . , N , and

U [k] = [ud,1[k], ud,2[k], . . . , ud,L[k]] (4)

for k = 0, . . . , N − 1. A similar matrix can be assembled
for the (unknown) process noise D[k], for k = 0, . . . , N −
1, corresponding to the measured data. Note that D[k] is
not measured. In [14] it has been shown that (3) and (4)
can be used to design controllers of the form (2), which
guarantee a decreasing bound on the closed-loop trajectories
in the presence of process noise, as recalled in the following
statement.

Lemma 1. [14] Consider the system (1). Suppose that data
matrices (3) and (4) are available and that these are such
that the rank condition (5) holds.

rank
[
X[k]
U [k]

]
= n+m. (5)

1The subscript d indicates measured data samples.

Finally, suppose D[k] satisfies a quadratic bound, that is[
In

D[k]>

]> [
Qr[k] Sr[k]
Sr[k]> Rr[k]

] [
In

D[k]>

]
≥0, (6)

with Qr[k] ∈ Rn×n, Sr[k] ∈ Rn×L and Rr[k]≤0 ∈ RL×L
for k = 0, . . . N − 1. Then a control input of the form (2)
with

K[k] = U [k]Y [k]P [k]−
1
, (7)

is such that the trajectories of the closed-loop system (1), (2)
satisfy the bound

‖x[k]‖ ≤
√
ρ

η

(
1− 1

ρ

) k
2

‖x[0]‖+ γ1(|d|k−1, k),

for k = 0, . . . , N , where

γ1(|d|k−1, k) =

k−1∑
j=0

√
ρ

η

(
1− 1

ρ

) k−1−j
2

 |d|k−1,

with |d|k−1 = sup {‖d(j)‖, 0 ≤ j ≤ k − 1} ≤ ∞, is a class
K function, and where Y [k], P [k] are a solution ofP [k + 1]− In −Qr[k] −Sr[k] X[k + 1]Y [k]

−Sr[k]> −Rr[k] Y [k]

Y [k]
>
X[k + 1]

>
Y [k]> P [k]

≥0,

(8a)
X[k]Y [k] = P [k], (8b)

for k = 0, . . . , N − 1, and

ηIn ≤ P [k] ≤ ρIn, (8c)

for k = 0, . . . N , and η ≥ 1, ρ > η.

The result in Lemma 1 entails that the control design involves
data matrices only, i.e. it does not require any knowledge of
the (time-varying) matrices A[k] and B[k].

In the following sections, we first recall some insights re-
lated to the dynamics and locomotion of snake robots, before
showing how the described data-driven control method can
be applied to the snake robot system.

III. DYNAMICS AND LOCOMOTION OF SNAKE ROBOTS

Some preliminaries related to modeling and control of
snake robots (in the presence of full model knowledge) are
provided in this section (see [4], [5], [6] for more details).

A. Equations of motion

We consider a planar snake robot consisting of Nl > 1
links and Nl − 1 joints, where each joint is actuated. For
simplicity we assume that all links have the same length
li = l and the same mass mi = m, for = 1, . . . , Nl, hence
the total mass of the robot is

∑Nl

i=1mi = Nlm.
We consider the simplified control-oriented model of snake

robots introduced in [4], [6]. Namely, we let the joint angles
φi and the joint velocity vφ,i for i = 1, . . ., Nl − 1 denote,
respectively, the normal direction distance between links i
and i + 1 and the relative velocity between links i and
i + 1. Let φ = [φ1 , . . . , φNl−1]T ∈ RNl−1 and vφ =
[vφ1 , . . . , vφNl−1]T ∈ RNl−1. The coordinates of the centre



of gravity of the snake robot in the global frame is denoted
by p = (px, py) (with the subscripts denoting the x- and
y-coordinates), whereas its tangential and normal direction
velocity in the body frame are denoted by (vt, vn). Finally,
θ and vθ denote the global orientation of the snake, i.e. the
angle between the body frame and the global frame, and
the corresponding angular velocity, respectively. We utilise
the following notation (similar to that of [5], [9], [10]). Let
e =

[
1, · · · , 1

]> ∈ RNl , ē =
[

1, · · · , 1
]> ∈ RNl−1 ,

let A ∈ R(Nl−1)×Nl and D ∈ R(Nl−1)×Nl denote the
matrices

A =

1 1
. . . . . .

1 1

 , D =

1 −1
. . . . . .

1 −1

 ,
and let D̄ = DT (DDT )−1 ∈ RNl×(Nl−1) . We consider
an anisotropic viscous model to represent the friction forces
acting on the snake model (see e.g. [4], [6]). In what follows
cn and ct denote the coefficients of friction in the normal
and tangential directions, respectively, whereas cp denotes
the propulsion coefficient given by cp = (cn − ct)/(2l). The
equations of motion of the snake robot are then given by

φ̇ = vφ, (9a)

θ̇ = vθ, (9b)
ṗx = vt cos θ − vn sin θ, (9c)
ṗy = vt sin θ + vn cos θ, (9d)

v̇φ = −cn
m
vφ +

cp
m
vtAD

Tφ+
1

m
DDTu, (9e)

v̇θ = −λ1vθ +
λ2

Nl − 1
vtē

Tφ, (9f)

v̇t = − ct
m
vt +

2cp
Nlm

vnē
Tφ− cp

Nlm
φTAD̄vφ, (9g)

v̇n = −cn
m
vn +

2cp
Nlm

vtē
Tφ , (9h)

where λ1 and λ2 are defined as rotational parameters,
capturing the rotational dynamics of the snake robot (see [4],
[6]). The control input is u = [u1, . . . , uNl−1]

>, where ui is
the actuator force at joint i, for i = 1, . . . , Nl − 1. Finally,

let x =
[
φ> , θ , px , py , v

>
φ , vθ , vt , vn

]>
∈ R2Nl+4.

B. Snake locomotion

A difficulty in designing a controller for the snake robot
described by equation (9) lies in the fact that the system is
underactuated. Common techniques are aimed at “steering”
the snake robot’s heading in particular directions to follow
a desired path ([6], [10]) by following a certain gait pattern.
We focus our attention on the inertial shape motion and,
in particular, we consider undulatory gait patterns (see, e.g.
[2], [4], [5], [6], [9], [10]) that can be utilised to generate
forward propulsive foces. That is, the snake robot is required
to follow a serpenoid curve which is achieved when the joint
angles φi follow a reference signal of the form

φi,loc(t) = α sin(ωt+ (i− 1)β) + γ (10)

where α represents the amplitude of the motion, ω corre-
sponds to the frequency and, β and γ are the phase shift
between the joints and the joint offset, respectively, for
i = 1, . . . , Nl− 1. The corresponding locomotion is referred
to as lateral undulation. The parameters α, β, ω and γ can be
used to achieve trajectory control (see e.g. [5]). Considering
the overall robot, lateral undulation for the ensemble of joint
angles is defined as

φloc = [φ1,loc, φ2,loc, . . . ,φNl−1,loc]> ∈ RNl−1 . (11)

The corresponding reference for the relative velocity between
links is given by

vφ,loc = [φ̇1,loc, φ̇2,loc, . . . , φ̇Nl−1,loc]> ∈ RNl−1 . (12)

The following result provides a control law that ensures - in
the presence of full model knowledge (including the friction
coefficients) - that the desired locomotion (11) is achieved.

Lemma 2. [4, Section V] Consider the system (9). If the
system parameters m, cn and cp are known exactly, then the
choice of control law u = u?fl, where

u?fl = m(DDT )−1
(
ū+

cn
m
φ̇− cp

m
vt(t)AD

Tφ
)
, (13)

partially feedback linearises the dynamics. Namely, (9e)
becomes v̇φ = ū, where ū∈ RNl−1 is the input of the
partially feedback linearised snake robot model and can
be designed to ensure the joint angles φ track a desired
trajectory. The choice

ū = φ̈loc + kp(φloc − φ) + kd(φ̇loc − vφ) , (14)

with kp > 0 and kd > 0, ensures that limt→∞(φloc(t) −
φ(t)) = 0, for any initial condition x(0) = x0.

IV. CONTROL OF THE ACTUATED DEGREES OF FREEDOM
WITHOUT EXACT KNOWLEDGE OF THE MODEL

The result in Lemma 2 is such that the desired locomotion
(10), for i = 1, . . . , Nl − 1, is globally attractive for
the system (9) in closed loop with the control law (13)-
(14). However, such result is not guaranteed to hold in the
absence of complete knowledge of the model (9) (e.g. in the
absence of accurate estimates of the friction coefficients).
We consider instead the case in which only certain nominal
values for the normal and tangential friction coefficients,
denoted by c̃n and c̃t (potentially different from the actual
friction coefficients cn and ct), are available for control
design. The corresponding nominal propulsion coefficient is
given by c̃p = (c̃n − c̃t)/(2l). Letting u = ufl in (9), with

ufl = m(DDT )−1

(
ū+

c̃n
m
φ̇− c̃p

m
vtAD

Tφ

)
, (15)

designed on the basis of the nominal friction coefficients
(as opposed to the control law (13) which is designed
based on the actual friction coefficients), the terms including
the friction coefficients no longer cancel out and (9e) be-
comes v̇φ = c̃n−cn

m vφ +
cp−c̃p
m vtAD

Tφ + ū . To streamline
the presentation, let Bfl = m(DD>)−1 , and ufl,nom =



Bfl

(
c̃n
m φ̇−

c̃p
m vtAD

Tφ
)
. We will provide a mechanism to

design a control law similar to (13)-(14), using data in place
of exact knowledge of the friction coefficients. The result
is achieved by considering the “actuated subsystem” of (9)
with u = ufl, described by the dynamics{

φ̇ = vφ ,

v̇φ = c̃n−cn
m vφ +

cp−c̃p
m vtAD

Tφ+ ū ,
(16)

with state xa =
[
φ> , v>φ

]>
= Cx, where

C =

[
INl−1 0 0 0

0 0 INl−1 0

]
.

Remark 1. Note that the evolution of (16) is dependent on
(9), via the tangential velocity vt.

Our objective is to provide a strategy to design a control
law taking the place of (14), i.e. ensuring the joint angles
of the snake robot (9) track the desired reference trajectory
corresponding to undulatory locomotion, directly using data.
Let the reference trajectory for the actuated states associated
with lateral undulation be

xa,ref =

[
φloc(t)
vφ,loc(t)

]
, (17)

with φloc and vφ,loc defined in (11) and (12), respectively,
and introduce the error coordinates

δxa(t) = xa(t)− xa,ref(t). (18)

In what follows, we assume that T (recall that we are inter-
ested in controlling the system over the interval t ∈ [0, T ]) is
a multiple of the sampling time Ts, such that N = T/Ts and
the discrete-time interval k ∈ [0, N ] corresponds to uniform
samples of the continuous-time interval of interest. Consider
the snake robot dynamics (9) and the controller u = ucl with

ucl(t) = ufl,nom(t) +Bfl(φ̈loc(t) + δũ(t)), (19)

where δũ(t) is obtained from a discrete-time feedback con-
trol law δũ[k] using zero-order hold (ZOH). Note that ucl
corresponds to the control law (15) with ū = φ̈loc(t)+δũ(t).

In the following subsections we will derive a discrete-
time LTV representation of the actuated subsystem (16) and
demonstrate how to apply the results on direct data-driven
control recalled in Section II-A to design the discrete-time
control input δũ[k] (in the form of a state feedback). A block
diagram representation of the control strategy is provided
in Figure 1. The subsystem indicated by the green dashed
line represents the (open-loop) system (9) with u = ufl as
defined in (15). The blue solid line highlights the actuated
subsystem as defined in (16). The overall system considered
for control design is indicated by the red solid line and is
referred to as the DT actuated error subsystem. Note that
the output of the DT actuated error subsystem is obtained
by sampling the difference between the actuated states xa
and the reference signal xa,ref at a (uniform) rate 1/Ts, i.e.
δxa[k] = δxa(kTs).

A. A LTV approximation of the actuated subsystem

To apply the direct data-driven control design method
recalled in Section II-A, we linearise the actuated subsystem
(16) about the reference trajectory (17) corresponding to
lateral undulation. Consider the trajectories for ū and vt,
labelled ū∗ref and vt,ref respectively, which ensure that (9)
in closed loop with (15) is such that the actuated subsystem
(16) follows the desired trajectory (17). Note that

ū∗ref(t) = φ̈loc(t)− c̃n − cn
m

φ̇loc(t)

− cp − c̃p
m

vt,ref(t)AD
Tφloc(t) ,

(20)

which is obtained by solving (16) in terms of ū for xa =
xa,ref .

Introducing the error coordinates, δū(t) = ū(t)−ū∗ref(t), a
linear approximation of the system (16) about the reference
trajectories (17), (20) and vt,ref yields the LTV system

δẋa(t) = A(t) · δxa(t) +B(t) · δū(t) + d̄(t), (21)

where
A(t) =

∂f

∂xa

∣∣∣
xa,ref (t),ū∗

ref (t),vt,ref (t)
,

and
B(t) =

∂f

∂ū

∣∣∣
xa,ref (t),ū∗

ref (t),vt,ref (t)
,

with

f =

[
vφ

c̃n−cn
m vφ +

cp−c̃p
m vtAD

Tφ+ ū

]
,

and d̄(t) contains the higher order terms, as well as the
effects of the deviation vt − vt,ref , which is not explicitly
accounted for since vt is not considered a state of the
actuated subsystem (16).

The feasible reference control input ū∗ref(t), defined in
(20), depends on both the actual and the nominal friction
coefficients. Since we consider the actual friction coefficients
cn, cp to be unknown, we introduce another change of
coordinates, to a known reference ūref(t). Let δũ(t) =
ū(t)− ūref(t) and

d(t) = d̄(t) +B(t)(ūref(t)− ū∗ref(t)) ,

then (21) can be written as

δẋa(t) =

[
0 INl−1

cp−c̃p
m vt,ref(t)AD

T c̃n−cn
m INl−1

]
δxa(t)

+

[
0

INl−1

]
δũ(t) + d(t). (22)

Note that ūref(t) is not required to be feasible (i.e. ūref , xa,ref

and vt,ref are not required to satisfy the actuated subsystem
dynamics (16)), but it can be freely defined by the user.

To apply the results of Lemma 1 we discretise (22) using
ZOH, resulting in a DT LTV system of the form

δxa[k + 1] = Ad[k]x[k] +Bd[k]δũ[k] + dd[k] . (23)



Fig. 1. Block diagram representation of the overall data-driven control strategy for the snake robot.

where the matrices Ad[k], Bd[k] are regarded as unknown.
The process noise dd[k] captures the noise d(t) as well as the
effects of ZOH and sampling. In the following subsections,
we will present a method to design (discrete-time) feedback
control laws of the form

δũ[k] = K[k]δxa[k] , (24)

guaranteeing a bound on the error trajectories δxa, without
knowledge of the LTV dynamics (22), using data. Exploiting
the result in Lemma 1 the time-varying gain K[k] can be
designed strategically, without relying on manual tuning.

B. Data-driven control design

In the following we provide a direct data-driven strategy
for designing δũ[k], of the form (24). The strategy relies on
two steps: data collection and control design.

1) Data collection: The first step of the control strategy
is to gather input-state data to form matrices similar to (3)
and (4), which are used to represent the DT actuated error
subsystem. To this end, we assume it is possible to per-
form multiple (L) simulations/experiments of the system (9)
(where, as depicted in Figure 1, the input to the continuous-
time system (9) is obtainend via a ZOH and the state data
is obtained by uniformly sampling the difference bewteen
the actuated states and the reference, i.e. δxa). For the data
collection, we choose δũ[k] of the form

δũ[k] = kp(φloc[k]− φ[k]) + kd(φ̇loc[k]− vφ[k])

+ uexp[k] ,
(25)

where kp > 0 and kd > 0, and uexp is a randomly
generated “exploring input” such that uexp[k] ∈ [0, 1], for
k = 0, . . . , N − 1. Note that (25) is similar to a discrete-
time version of the PD controller utilised in (14) (introduced
in Lemma 2), with the addition of the “exploring input” term
uexp[k]. The role of the feedback term is to ensure that the
collected state data trajectories do not diverge rapidly (which
may cause subsequent numerical issues), whereas the role of
uexp[k] is to ensure that the rank condition (5) is satisfied
for all k ∈ [0, N ]. In practice such a randomly generated

exploring input typically results in that the (easily verifiable)
rank condition is satisfied. Proceeding as per Section II-A,
the data collected through the L experiments are combined
to form the data matrices

X[k] = [δxa,1[k], δxa,2[k], . . . , δxa,L[k]] , (26)

for k = 0, . . . , N , and

U [k] = [δũ1[k], δũ2[k], . . . , δũL[k]], (27)

for k = 0, . . . , N − 1, where the subscripts i indicate
data collected from a specific experiment, i = 1, . . . , L.
As in Section II-A, consider also the matrix D[k], for
k = 0, . . . , N − 1, containing the (unknown) process noise
samples corresponding to the collected data in (26) and (27).

Remark 2. A necessary condition for (5) to hold is that
the number of experiments L ≥ 3(Nl − 1). Recalling
Assumption 1, it is further required that the open-loop
experiments capture the same time-varying behaviour (of the
LTV approximation). In the current context, the evolution of
vt will differ from one experiment to another due to the
different sequences of inputs δũi[k], k = 0, . . . , N − 1,
i = 1, . . . , L, applied during each experiment. This deviation
(vt−vt,ref ) is accounted for in the disturbance term of (22).

2) Control design: The second step consists in using the
data matrices (26), and (27) to design a control law for the
DT actuated error subsystem, which ensures that the actuated
states of the snake robot (9) stay within a given bound around
the desired reference trajectories corresponding to undulatory
locomotion (17). The control design for the snake robot is
detailed in the following statement that utilises Lemma 1.

Lemma 3. Consider a snake robot described by the dynam-
ics (9). Suppose data matrices (26) and (27) are available
and these are such that the rank condition (5) holds. Further
suppose D[k] satisfies a quadratic bound of the form (6) for
k = 0, . . . , N − 1. Then a control input of the form (24),
with K[k] as given in (7), where Y [k], P [k] are a solution
of the feasibility problem (8), is such that the trajectories of



the closed-loop DT actuated error subsystem satisfy

‖δxa[k]‖ ≤
√
ρ

η

(
1− 1

ρ

) k
2

‖δxa[0]‖+ γ1(|d|k−1, k),

(28)

for k = 0, . . . , N , where η ≥ 1, ρ > η are constants and
γ1(·, k) is a class K function.

V. SIMULATION

Consider a snake robot with Nl = 3 links of mass m =1
kg and of length l = 0.14 m. The coefficients of frictions
are taken to be ct = 1 and cn = 3 (such that cp = 7.1429)
and are considered to be unknown. The values of λ1 and
λ2 are set to, respectively, 0.5 and 20. The aforementioned
parameters are similar to those considered in [6, Chapter
6.10]. The parameters for the undulatory motion are chosen
as α = 0.045 m, ω = 2.0944 rad/s, β = 0.6981 rad and
γ = 0 rad. We consider the case in which the coefficients of
friction are unknown, with only certain nominal values, i.e.
c̃t = 1.2 and c̃n = 4 (resulting in the nominal propulsion
coefficient c̃p = 10), available for control design.

In the following the performance of two controllers is
compared via simulations. Namely, considering the overall
control law ufl given by (15), we compare the performance
of the closed-loop system for two different selections of
ū. Specifically, we consider the case in which ū is the
(continuous-time) controller given by (14), and the case in
which ū = φ̈loc + δũ(t), as in (19), where δũ(t) is obtained
(via ZOH) from the data-driven (discrete-time) controller
(24), with the time-varying gains designed according to
Lemma 3. The overall control law ufl corresponding to
the former selection is denoted by uPD, whereas the one
corresponding to the latter (data-driven) selection is denoted
by uDD. We emphasise again that only nominal values for
the coefficients of friction are utilised to design the two
controllers. The gains of uPD are chosen to be kp = 20
and kd = 5 (as in [6]). The same values of kp and kd are
selected for data collection (i.e. in (25)). For the data-driven
controller the sample time is taken to be Ts = 0.02 s and
the time horizon N = 800 s. The values of ρ and η in
(8) are chosen to be ρ = 60 and η = 1. The system is
simulated in MATLAB using ode45, whereas the feasibility
problem (8) is solved using CVX [15]. In the following we
consider the initial conditions of (9) to be φ1(0) = 0.1,
φ2(0) = −0.1, whereas those of the remaining states, namely
the initial conditions of θ, px, py, vφ,1, vφ,2, vθ, vt, vn, have
been randomly generated in [0, 1]. The time histories of the
norm of the error coordinate δxa corresponding to ufl = uPD

(dashed, grey line) and ufl = uDD (solid, blue line) are
shown in Figure 2, along with the time history of the bound
(28) (solid, red line). It is clear that (28) is satisfied by the
trajectory corresponding to the controller uDD, but not for
that corresponding to the controller uPD.

VI. CONCLUSION

A direct data-driven approach to control the locomotion
of a snake robot has been presented. The result uses data in
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Fig. 2. Time histories of the bound (28) (solid, red line) and of the norm
of δxa for ufl = uPD (dashed, grey line) and ufl = uDD (solid, blue line).

place of an accurate model to construct time-varying state
feedback control laws that ensure the snake robot follows
an undulatory locomotion. Using nominal values for friction
coefficients and data collected from offline experiments, the
proposed control design relies on a LTV approximation of
the actuated subsystem about the desired trajectory, and the
subsequent solution of a purely data-dependent convex feasi-
blity problem. The resulting control law is demonstrated, via
simulations, to result in improved performance with respect
to an alternative model-based control law (designed purely
on the basis of the nominal parameter values available).
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[6] P. Liljebäck, K. Y. Pettersen, Ø. Stavdahl, and J. T. Gravdahl, Snake
robots: modelling, mechatronics, and control. Springer, 2013.

[7] R. Bogue, “Snake robots: a review of research, products and applica-
tions,” Industrial Robot, vol. 41, no. 3, pp. 253–258, 2014.

[8] M. M. Tonapi, I. S. Godage, A. Vijaykumar, and I. D. Walker, “A novel
continuum robotic cable aimed at applications in space,” Advanced
Robotics, vol. 29, no. 13, pp. 861–875, 2015.

[9] M. Sato, M. Fukaya, and T. Iwasaki, “Serpentine locomotion with
robotic snakes,” IEEE Control Syst. Mag., vol. 22, no. 1, pp. 64–81,
2002.

[10] E. Kelasidi and A. Tzes, “Serpentine motion control of snake robots
for curvature and heading based trajectory - parameterization,” in 20th
Mediterranean Conference on Control Automation, 2012, pp. 536–541.

[11] C. D. Persis and P. Tesi, “Formulas for data-driven control: Stabi-
lization, optimality, and robustness,” IEEE Transactions on Automatic
Control, vol. 65, no. 3, pp. 909–924, 2020.

[12] H. J. van Waarde, M. K. Camlibel, and M. Mesbahi, “From noisy
data to feedback controllers: Nonconservative design via a matrix s-
lemma,” IEEE Transactions on Automatic Control, vol. 67, no. 1, pp.
162–175, 2022.

[13] B. Nortmann and T. Mylvaganam, “Data-driven control of linear time-
varying systems,” in 59th IEEE Conference on Decision and Control,
2020, pp. 3939–3944.

[14] ——, “Direct data-driven control of linear time-varying systems,”
Nov 3, 2021. [Online]. Available: https://arxiv.org/abs/2111.02342

[15] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, 2014.

https://arxiv.org/abs/2111.02342
http://cvxr.com/cvx

	Introduction
	Problem formulation and preliminaries
	Preliminaries on data-driven control of LTV systems

	Dynamics and locomotion of snake robots
	Equations of motion
	Snake locomotion

	Control of the actuated degrees of freedom without exact knowledge of the model
	A LTV approximation of the actuated subsystem
	Data-driven control design
	Data collection
	Control design


	Simulation
	Conclusion
	References

