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Increasing evidence links changes in epigenetic systems, such as DNA methylation, histone modification, and non-coding RNA expression, to the 
occurrence of cardiovascular disease (CVD). These epigenetic modifications can change genetic function under influence of exogenous stimuli 
and can be transferred to next generations, providing a potential mechanism for inheritance of behavioural intervention effects. The benefits of 
exercise and nutritional interventions in the primary and secondary prevention of CVD are well established, but the mechanisms are not com-
pletely understood. In this review, we describe the acute and chronic epigenetic effects of physical activity and dietary changes. We propose 
exercise and nutrition as potential triggers of epigenetic signals, promoting the reshaping of transcriptional programmes with effects on CVD 
phenotypes. Finally, we highlight recent developments in epigenetic therapeutics with implications for primary and secondary CVD prevention.
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Background
As cardiovascular disease (CVD) remains the most common cause of 
death worldwide, preventing CVD is a top public health priority.1

Primary prevention consists of controlling CVD risk factors (such 
as smoking, hypertension, and diabetes) in people free of CVD; 

secondary prevention entails reducing the risk of a subsequent car-
diovascular event in patients with existing CVD. Clinical outcomes 
are improved following implementation of primary or secondary 
CVD prevention strategies, but the biological mechanisms respon-
sible for these improvements remain only partially resolved despite 
extensive research.2 Heritability of CVD is insufficiently explained 
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by DNA sequence changes alone.3 Rather, increasing evidence 
shows that environmental and lifestyle factors influence epigenetic 
systems, which include DNA methylation, histone modification, 
and non-coding RNA expression. Epigenetic systems are flexible gen-
omic parameters that can change genome function under exogenous 
influence, while also providing a mechanism for stable propagation of 
gene activity states from one generation of cells to the next.4

Exercise and nutrition are powerful epigenetic modifiers that induce 
both transient and lasting epigenetic changes, thereby activating sig-
nalling cascades associated with cardiovascular benefits.5,6

The separate role of exercise or nutrition in CVD prevention has 
been reviewed previously, and excellent reviews exist on epigenetic 
treatments of established CVD.3,4,7,8 In this review, we focus on how 
epigenetic systems could act as central regulators of clinical out-
comes in CVD. By concentrating on the distinctive aspects of pri-
mary and secondary CVD prevention, we aim to: (i) summarize 
current evidence for modulation of epigenetic systems through ex-
ercise and nutrition; and (ii) evaluate emerging data on therapeutic 
epigenetic interventions. Wherever possible, we focus on human 
studies and highlight current gaps in knowledge to aid clinical trans-
lation. Overall, we propose the interaction between key environ-
mental stimuli of exercise and nutrition influences CVD via direct 
epigenetic modifications, which in turn may be targeted and trans-
lated for direct therapeutic use.

Part 1: understanding basic 
epigenetics
Epigenetics is the study of heritable alterations in phenotypes and gene 
expression that occurs without changes in DNA sequence, i.e. when 
environmental changes induce different phenotypical traits in organ-
isms with identical genotype.9 Epigenetic mechanisms determine re-
versible changes to gene function under exogenous stimuli and may 
explain gene expression from one generation of cells to the next.4

These modifications fall into three main categories: chemical 

modification of DNA (e.g. methylation), alteration of chromatin struc-
ture (e.g. histone modification), and post-transcriptional gene regula-
tion by non-coding RNAs (e.g. microRNAs, miRNAs; Figure 1). A 
complex network of interactions results from these modifications, 
as methylation and histone modifications also affect non-coding 
RNA expression, and DNA methylation associates with certain his-
tone modifications.3

DNA methylation
DNA methylation is a covalent modification that forms 5-methylcyto-
sines (5mCs). DNA methylation is performed by DNA methyltrans-
ferases (DNMTs) in the presence of the methyl donor 
adenosyl-methionine (Figure 1). Methylation of cytosine is known as 
5mC, occurring predominantly at cytosine followed by guanine 
(CpG) sites. CpG-dense regions at 5′ transcriptional start sites are called 
CpG islands, and methylation within gene promoters and CpG islands 
seems to have the highest functional relevance for gene expression.3

In humans, 60–80% of CpG sites are typically methylated. Genes may 
be methylated differently in response to exogenous stimuli such as ex-
ercise or nutrition, either becoming hypermethylated or hypomethy-
lated. Hypermethylation of gene promotors in general decreases 
accessibility of chromatin and functionally inhibits binding to DNA to ef-
fectively reduce gene expression, hypomethylation acts in a reverse 
manner increasing gene expression. Of note, different DNMTs have 
subtle differences in function, e.g. DNMT1 mostly maintains existing 
methylation patterns, while DNMT3a and 3b are more involved in de 
novo methylation.10 In addition to 5mC, adenosine methylation and 
intermediate forms of cytosine methylation have been discovered, 
but their functional role in humans remains to be determined. For tech-
nical reasons, DNA methylation of circulating cells is the most studied 
epigenetic modification.

Histone modifications
In the nucleosome, around which DNA is wound, histones are the 
key structural proteins. Nucleosomes occur in repeating units to 
form chromatin and chromosomes, thus organizing the genetic 

Figure 1 Epigenetic modifications. Major epigenetic mechanisms include histone modification, DNA methylation, and ncRNA expression, occur-
ring at different levels of DNA expression. See text for explanation. DNMT, DNA methyl transferase; HAT, histone acetyltransferase; HDAC, 
histone deacetylase; mRNA, messenger RNA; miRNA, microRNA; ncRNA, non-coding RNA.
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material in the cell nucleus. The four histone proteins (H2A, H2B, 
H3, and H4) can be modified through post-translational modifica-
tions of specific amino acid residues, influencing the accessibility of 
DNA and thus gene expression (Figure 1). Histone modification re-
sults from different biochemical processes, such as acetylation, 
methylation, ADP ribosylation, and others.3 These modifications al-
ter the physical interaction between the histone and the DNA 
wound around it, influencing the accessibility of genes for transcrip-
tion. Histone modification may induce either repression or activation 
of transcription, depending on the type of modification and the pos-
ition of the amino acid residue. For instance, methylation of histone 
H3 lysine 9 (H3K9) is associated with chromatin inactivation, while 
acetylation of histone H3 activates transcription.11 The combination 
of diverse modifications, large number of modifiable amino acid resi-
dues, and many enzymes capable of modifying histones results in a 
complex network of interactions. A single histone modification is 
thus unlikely to modify gene expression significantly. However, 
changes in histone modifying enzymes are likely to have important 
downstream consequences. For example, interference in histone 
acetyltransferase (HAT) or histone deacetylase (HDAC) function 
has been shown to influence cardiac hypertrophy.12

Non-coding RNA expression
Over 97% of the human genome does not encode protein sequences. 
About 80% of this non-coding DNA is highly transcriptionally active, 
transcribing into non-coding RNA with structural and cellular func-
tions, including transfer RNA and ribosomal RNA.7 Of more interest 
are non-coding RNA molecules with regulatory functions, including 
miRNAs, small interfering RNAs, piwi-interacting RNA, small nucleolar 
RNAs, and long non-coding RNAs. These non-coding transcripts par-
ticipate in most biological processes and play a causative role in human 
pathologies such as CVD.4 Of these, miRNAs have been most intense-
ly studied. miRNAs are short (20–25 nucleotides) RNA molecules, 
transcribed by RNA Polymerase II into primary miRNAs and pro-
cessed in the nucleus and cytoplasm by RNases into final mature 
miRNAs. These bind to their target mRNAs (Figure 1), influencing their 
translation in several ways, usually resulting in inhibition of protein syn-
thesis.7 While this review will focus predominantly on miRNAs given 
these have been the focal point in most studies related to CVD, exer-
cise, and nutrition, it is important to recognize that other non-coding 
RNAs may also play a key role in this interaction which includes small 
non-coding (sncRNA), long non-coding (lncRNA), circular RNA 
(circRNA; as reviewed in detail elsewhere13).

Evidence for epigenetic regulation of 
cardiovascular disease
Inherited genetic variance can predispose individuals towards 
CVD.14 Twin studies have demonstrated the importance of heritabil-
ity in CVD: monozygotic twins have higher concordance in the risk of 
premature death due to CVD compared with dizygotic twins.15 A 
genetic component is demonstrated for CVD risk factors such as 
dyslipidaemia, hypertension, diabetes, and obesity.15 Subsequent 
genome-wide association studies identified hundreds of single- 
nucleotide polymorphisms (SNPs) related to coronary artery 
disease.16 However, these combined SNPs can only explain a small 
fraction of CVD heritability, suggesting gene–gene interaction and/ 

or epigenetic mechanisms could contribute more than genetic vari-
ation. Experimental evidence further supports a strong link between 
epigenetic modifications and risk of CVD.3

This link between epigenetics and CVD can potentially exist on 
various levels. In cardiomyocytes, prenatal development, postnatal 
maturation, and disease development are all characterized by a co-
operation of active CpG methylation and histone marks shaping 
the cardiac myocyte transcriptome.17 In biopsies of failing human 
hearts, profound DNA hypomethylation was found, and these 
were associated with differential expression of angiogenic factors.18

In human atherosclerotic plaques, global DNA hypomethylation was 
demonstrated, clustering at locations known to interact with vascu-
lar function-related genes and miRNAs.19 Histone modifications as-
sociate with foetal cardiac genes, which are known to be reactivated 
in human heart failure (HF).20 The importance of individual non- 
coding RNAs in CVD is attested by several studies linking dysregu-
lated circulating non-coding RNA levels to disease states such as 
CAD, HF, and myocardial infarction as reviewed elsewhere.7,21

Of note, these studies have all been conducted in the absence of a 
reference of a ‘normal’ epigenetic state. There are ongoing efforts to 
establish a reference for the human epigenome across different cel-
lular states and methodologies.3 Finally, exposure to CVD risk fac-
tors such as smoking, diabetes, air pollution, physical inactivity, and 
dietary behaviour can modify epigenetic mechanisms.3 For example, 
air pollution rapidly decreased DNA methylation which associated 
with elevated CVD biomarkers.22 Overall, evidence indicates the po-
tential for a direct link between epigenetic modification and the on-
set of CVD, but the underlying mechanisms remain poorly 
understood. Here, we describe the emerging role of two environ-
mental stimuli, physical exercise, and nutritional changes, as potential 
triggers of epigenetic signals promoting the reshaping of transcrip-
tional programmes with effects on CVD phenotypes (Figure 2).

Part 2: epigenetics in the primary 
prevention of cardiovascular 
disease

Epigenetic modulation in primary 
cardiovascular disease prevention: 
exercise effects
Exercise has numerous health benefits, with protective effects against 
at least 35 chronic conditions including CVD.8 Exercise is a physio-
logical stressor that provokes widespread perturbations in all the 
body’s physiological systems via increasing metabolic activity of con-
tracting skeletal muscles (i.e. the largest organ by mass). Although the 
molecular mechanisms underlying the exercise response remain only 
partially resolved, the current paradigm highlights the importance of 
transient increases in mRNA levels of various metabolic, myogenic, 
and regulatory genes in skeletal muscles in response to each individual 
bout of exercise.23 When exercise is repeated regularly over time (i.e. 
exercise training), transient increases in gene expression cumulatively 
induce adaptations which confer positive health benefits.23

Muscle-specific changes in DNA methylation, histone modifications, 
and miRNAs are proposed to regulate skeletal muscle and myocardial 
interactions during and after exercise.23,24 This adaptive response is 
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heavily influenced by exercise type, duration, and intensity,25 with 
both resistance and endurance training changing DNA methylation 
and miRNA expression in a time-dependent manner (i.e. acute vs. 
chronic).26 A few animal studies have demonstrated links between 
exercise-induced epigenetic modulation and improvements in CV 
function.27–29 In humans, epigenetic modifications associated to phys-
ical activity have been correlated to indirect markers of reduced CV 
risk, such as improved physical performance, endothelial function, or 

arterial compliance.30–37 A direct influence of exercise-induced epi-
genetic modifications on primary CV prevention in human subjects 
remains to be established.

Figure 2 Epigenetic mechanisms underlying the effects of exercise and nutrition in cardiovascular disease. Exercise and nutrition influence gene 
expression through epigenetic mechanisms, thereby contributing to primary and secondary CV prevention. Potential mechanisms for regulation of 
epigenetic modifications through exercise and nutrition are outlined. 5m, 5-methyl; 5hm, 5-hydroxymethyl; CV, cardiovascular; Gadd45, growth 
arrest and DNA damage; HDAC, histone deacetylase; MEF2, myocyte enhancer factor 2; ncRNA, non-coding RNA; XPG, xeroderma pigmentosum 
Group G endonuclease.

Acute epigenetic effects of exercise

(1) DNA methylation: Evidence indicates dynamic changes in DNA 
methylation in skeletal muscle as an early event in 

D
ow

nloaded from
 https://academ

ic.oup.com
/eurjpc/article/29/17/2183/6672951 by N

orges Teknisk-N
aturvitenskapelige U

niversitet user on 12 April 2023



Epigenetics in CVD prevention                                                                                                                                                               2187

contraction-induced gene activation.38,39 Global hypomethyla-
tion in skeletal muscle from healthy males occurs 20 min after 
the completion of a maximal exercise test (i.e. peak oxygen up-
take; VO2peak).

39 Hypomethylation was evident in promoters 
of metabolic genes resulting in increased gene expression, 
with exercise intensity dependent expression of PGC-1α, 
PPAR-δ, and PDK4 accompanied by hypomethylation of each re-
spective promoter either immediately or 3 h after an exercise 
bout.39 Interindividual differences observed in the exercise re-
sponse may partly be explained by epigenetic regulation, with 
evidence indicating DNA methylation status of the skeletal 
muscle PGC-1α promoter involved for endurance training.38

Fewer studies exist on the acute effect of exercise on DNA 
methylation in circulating cells. No changes in global DNA 
methylation were detected in peripheral blood mononuclear 
cells (PBMCs) after a prolonged exercise bout in trained male 
runners.40 In contrast, hypomethylation in leucocytes (both 
globally and in the PGC-1α promoter) was shown 60 min fol-
lowing cycling exercise, with a positive correlation between 
leucocyte PPARGC1A methylation and exercise performance.41

Less is known about the acute epigenetic effects of resistance 
exercise, although four genes demonstrated hypomethylation 
after a single bout of acute exercise and these changes were 
maintained 22 weeks later, indicating a role for epigenetic regu-
lation in the muscle hypertrophic response.42

(2) Histone modification: Although exercise-induced histone modifica-
tions are less studied, there is some evidence for histone modifica-
tions to occur following acute exercise in human skeletal muscle. 
For example, 60 min of cycling increased acetylation of histone pro-
tein 3 lysine 36 (H3K36) associated with enhanced transcription of 
exercise-associated genes.43 In addition, some HDACs (HDAC4 
and 5) were exported from the nucleus during exercise, thereby 
removing transcriptional suppression.43 This evidence, together 
with evidence from rodent studies, indicates that histone modifica-
tions play a key role in the transcriptional response to exercise.23

(3) Non-coding RNA: Changes to miRNAs are the most studied 
exercise-induced epigenetic modification and are implicated 
as molecular markers of physiological adaptive responses to ex-
ercise.24 Skeletal muscle-specific miRNAs (myomiRs) are pro-
posed to regulate the exercise response, being released into 
the circulation by exercising muscles and remotely influencing 
cellular function in other tissues through exercise-associated 
signalling pathways. After acute exercise, miR-1 and -133a are 
the most consistently up-regulated miRNAs in skeletal muscle 
and blood (Table 1). Variability in sampling time, statistical 
power, exercise mode, and miRNA determination likely con-
tribute to some of the discrepancies seen in Table 1.50,75

Epigenetic effects of sustained exercise training

(1) DNA methylation: While some studies in healthy populations 
have investigated genome-wide DNA methylation changes fol-
lowing exercise training using human skeletal muscle,42,76–78

limitations include heterogeneity in age, sex, and exercise re-
gimes. Following 6 months of endurance training, 18 genes 
decreased and 20 genes increased methylation status in indivi-
duals without vs. with a family history of diabetes.76

Hypomethylation included genes for MAPK and calcium signal-
ling pathways, which play an important role in the muscle meta-
bolic response. After 7 weeks of resistance training in healthy 
young men, most CpG sites showed hypomethylation with 
subsequent enhanced gene expression.42 In this study, partial 
maintenance of the hypomethylated state was observed after 
detraining, indicating some degree of ‘muscle memory’ for 
methylation signatures. In a one-legged knee-extension inter-
vention for 3 months, methylation changes of >5% occurred 
at 839 sites across the genome towards a trained muscle 
phenotype in the exercised leg, with sex as a key determinant 
of DNA methylation variability.77 Two studies have investi-
gated the effects of exercise on methylation of the ASC gene, 
responsible for interleukin (IL)-1β and IL-18 secretion in the 
circulation.79,80 In healthy individuals, ASC from whole blood 
was hypermethylated after 6 months of walking-based exercise, 
potentially counteracting the ASC hypomethylation with age.80

Exercise-induced hypermethylation of p66shc gene promotor 
was accompanied by a reduced p66shc gene expression and 
lower systemic oxidative stress.35 Overall, the magnitude of 
DNA methylation changes appear to be smaller for chronic 
compared with acute exercise, despite key DNA methylation 
changes being maintained and accumulating over multiple exer-
cise sessions.39,78

(2) Histone modification: Histone acetylation is involved in the adap-
tations to resistance exercise training in healthy volunteers.81,82

Responders (displaying myofibre hypertrophy) were found to 
have higher levels of acetylated histone H3 (K36) in the pre- 
training transcriptome, priming them to more efficient 
exercise-induced adaptations. Accordingly, a differential ex-
pression of characteristic genes for cell-cycle progression, 
such as α-tubulin, was observed after the first exercise stimulus. 
In contrast, metabolically demanding high-intensity resistance 
training decreased p38 MAPK phosphorylation and H3K4 tri-
methylation in human skeletal muscle.83 Another study found 
an up-regulation of acetylated H3, H3 monomethylated at 
lysine 4, and trimethylated at lysine 27, as well as a down- 
regulation of the distribution of H3.3 variant after intense 
resistance training in healthy men.84 We conclude that histone 
modifications are closely related to an up-regulation of gene ex-
pression stimulating muscle metabolism and training 
adaptations after resistance training; however, the clinical im-
portance remains uncertain.

(3) Non-coding RNA: Some evidence, but less than for acute re-
sponses to exercise, are available on the chronic effects of exer-
cise on miRNA expression in skeletal muscle (Table 1). The 
working skeletal muscle is a key organ and place of origin respon-
sible for endogenous exercise-induced release of miRNAs into 
the circulation. Interestingly, miR-1 and -133a expression signifi-
cantly increased after acute exercise, whereas these miRNAs de-
creased in most exercise training studies (Table 1). It can be 
concluded that, compared with acute exercise, chronic exercise 
induces moderate but more consistent changes in skeletal mus-
cle miRNA expression. In mice as well as humans, it has been 
found that training increased circulating miR-133 while it de-
creased muscular levels.50 This suggests that miRNA species 
may be secreted from muscle into the circulation upon exercise.
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Table 1 Important miRNAs implicated in the response to exercise and nutrition

MiRNA Increase– 
decrease

Most important biological pathwaysa Tissue, exercise/nutrition type 
[Reference]b

Acute exercise

hsa-let-7e-5p ↓ Apoptosis, adipogenesis, DNA damage response Circulation, 30 min cycling44,45

hsa-let-7i-5p ↓ Oligodendrocyte specification and differentiation, cytokines and 
inflammatory response, extracellular vesicles in the crosstalk of cardiac 

cells

Circulation, 30–60 min cycling46,47

hsa-miR-1-5p ↑ PI3K-Akt signalling, Hippo signalling, TGF-β signalling Skeletal muscle, 60 min cycling48

Skeletal muscle, 60 min cycling49

Circulation, 30–240 min running50–55

hsa-miR-15a-5p ↑ TGF-β signalling, cell-cycle control, PI3K-Akt signalling Circulation, 30 min cycling45,56

hsa-miR-21-5p ↑ Spinal cord injury, viral acute myocarditis, DNA damage response Circulation, 30–130 min cycling,  

or maximal test45,57,58

hsa-miR-23a-5p ↓ Platelet-mediated interactions with vascular and circulating cells, 
interleukin-1-induced activation of NF-kB, brain-derived neurotrophic 

factor signalling

Skeletal muscle, 60 min cycling48

Skeletal muscle, 45 min resistance59

hsa-miR-23b-5p ↓ Extracellular vesicle mediated signalling, TGF-β signalling, NRF2 signalling Skeletal muscle, 60 min cycling48

Circulation, 30 min cycling45,56

hsa-miR-29b-5p ↑ Endoderm differentiation, TGF-β signalling, mesodermal commitment Skeletal muscle, 60 min cycling49

Circulation, 30 min cycling44,56

hsa-miR-29c-5p ↑ Methylene tetrahydrofolate deficiency, one carbon metabolism, 

haematopoietic stem-cell gene regulation

Circulation, 30 min cycling44,56

hsa-miR-30e-5p ↑ Rett syndrome, Oncostatin M signalling, endoderm differentiation Circulation, 30 min cycling44,56

hsa-miR-31-5p ↓ Regulation of microtubule cytoskeleton, DNA damage response, 

trans-sulphuration, and one carbon metabolism

Skeletal muscle, 60 min cycling48,49

Circulation, 30 min cycling45

hsa-miR-106a-5p ↓ DNA damage response, sudden infant death syndrome susceptibility, 
TGF-β signalling

Circulation, 30–60 min cycling46,47

hsa-miR-126-5p ↑ Endoderm differentiation, ErbB signalling, mesodermal commitment Circulation, 10–240 min cycling  

or 240 min running55,58,60

↓ Circulation, 30 min cycling44,45,47

hsa-miR-130a-5p ↓ Mesodermal commitment, Rett syndrome, oestrogen signalling Circulation, 30 min cycling44,45,47,56

hsa-miR-133a-5p ↑ Spinal cord injury, advanced glycation end-product signalling, extracellular 
vesicles in the crosstalk of cardiac cells

Skeletal muscle, 60 min cycling48

Skeletal muscle & plasma, 45 min 

resistance59,60

Circulation, 30–240 min running or 
walking50–55,60,61

hsa-miR-133b-5p ↑ Advanced glycation end-product signalling, androgen receptor signalling, 

adipocyte regulation

Skeletal muscle, 60 min cycling48

Circulation, 30–45 min running or 
walking54,61,62

hsa-miR-140-5p ↑ Endochondral ossification, cardiac progenitor differentiation, angiogenesis Circulation, 30 min cycling45,56

hsa-miR-146a-5p ↑ Toll-like receptor signalling, NF-kB signalling, VEGF signalling Skeletal muscle, 45 min resistance59

Circulation, 30–240 min running or 

cycling46,50,55,57

hsa-miR-151-5p ↓ ErbB signalling, Notch signalling, p53 network Circulation, 30–60 min cycling44–47,56

hsa-miR-181a-5p ↑ DNA damage response, aryl hydrocarbon receptor, hepatocyte growth 

factor receptor signalling

Circulation, 30 min cycling45,62

hsa-miR-181b-5p ↑ EGFR signalling, somatroph axis, regulation of microtubule cytoskeleton Circulation, 30 min cycling or walking45,47,61

hsa-miR-199a-5p ↓ VEGF signalling, extracellular vesicle-mediated signalling, TGF-β signalling Circulation, 30 min cycling44,56

hsa-miR-206-5p ↑ PI3K-Akt signalling, pentose phosphate metabolism, endochondral 

ossification

Skeletal muscle, 45 min resistance59

Circulation, 45–240 min running51,52,54

hsa-miR-208b-5p ↑ ErbB signalling, phosphodiesterases in neuronal function, endoderm 

differentiation

Circulation, 30–240 min running or 

walking52,61

hsa-miR-214-5p ↑ Cell cycle, DNA damage response, Prader–Willi and Angelman syndrome Circulation, 30 min walking47,61

Continued 
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Table 1 Continued  

MiRNA Increase– 
decrease

Most important biological pathwaysa Tissue, exercise/nutrition type 
[Reference]b

hsa-miR-221-5p ↓ Endochondral ossification, cell cycle, oxidative damage Circulation, maximal cycling test  

or 30–60 min cycling44,46,56,57

hsa-miR-222-5p ↑ Anti-angiogenesis Circulation, maximal cycling test57

hsa-miR-338-5p ↑ ErbB signalling, leptin signalling, VEGF signalling Circulation, 30 min cycling44,45,56

hsa-miR-363-5p ↑ Histone modifications, ErbB signalling, integrin-mediated cell adhesion Circulation, 30 min cycling44,45

hsa-miR-486-5p ↓ Somatroph axis, insulin-like growth factor-Akt signalling, PI3K-Akt 

signalling

Circulation, 30–60 min cycling45,63

hsa-miR-499-5p ↑ Adipogenesis, apoptosis, Aryl hydrocarbon receptor Circulation, 240 min running52,55

hsa-miR-652-5p ↓ ErbB signalling, leptin signalling, ATM signalling Circulation, 30–60 min cycling44,46

hsa-miR-939-5p ↑ Integrin-mediated cell adhesion, sudden infant death syndrome 

susceptibility, Wnt signalling

Circulation, 30 min cycling45,47

hsa-miR-940-5p ↑ MAPK signalling, STAT3 signalling, NF-kB signalling Circulation, 30 min cycling45,47

hsa-miR-1225-5p ↑ Interferon type 1 signalling, eptin signalling, prolactin signalling Circulation, 30 min cycling45,47

hsa-miR-1238-5p ↑ Endochondral ossification, Histone modification, ErbB signalling Circulation, 30 min cycling45,47

Exercise training
hsa-miR-1-5p ↑ PI3K-Akt signalling, Hippo signalling, TGF-β signalling Skeletal muscle, 10 days cycling48

= Circulation, 10 weeks running53

↓ Skeletal muscle, 12 weeks cycling49

Skeletal muscle, 12 weeks resistance64

hsa-miR-29b-5p ↑ Endoderm differentiation, TGF-β signalling, mesodermal commitment Skeletal muscle, 10 days cycling48

= Circulation, 10 weeks running53

hsa-miR-92a-5p ↑ Cytoplasmic ribosomal proteins, cell cycle, Notch signalling Circulation, 10 weeks endurance65

↓ Circulation, 12 weeks cycling46

hsa-miR-133a-5p ↓ Spinal cord injury, advanced glycation end-product signalling, extracellular 

vesicles in the crosstalk of cardiac cells

Skeletal muscle, 12 weeks cycling49

Circulation, 12 weeks cycling46

= Circulation, 10 weeks running53

hsa-miR-486-5p ↓ Somatroph axis, insulin-like growth factor-Akt signalling,  

PI3K-Akt signalling

Circulation, 4 weeks cycling46,63

Nutrition
hsa-miR-15b-5p ↑ TGF-β signalling, cell cycle, nanoparticle effects Circulation, diet rich in sodium66

↓ Circulation, diet rich in vitamin E66

hsa-miR-17-5p ↑ Cell cycle, adipogenesis, DNA damage response Rectal mucosa, diet high in red meat67

Circulation, olive oil consumption68

hsa-miR-18a-5p ↑ Haematopoietic stem-cell gene regulation, pathogenesis of cardiovascular 
disease, TGF-β signalling

Rectal mucosa, diet high in red meat67

Circulation, polyunsaturated fatty acid 

intake69

hsa-miR-19a-3p ↑ DNA damage response, insulin signalling, cardiac hypertrophic response Circulation, selenium + Q10 supplement70

↓ PBMC, olive oil intake71

hsa-miR-19b-5p ↑ Energy metabolism, insulin signalling, TGF-β signalling Rectal mucosa, diet high in red meat67

Circulation, polyunsaturated fatty acid 
intake69

hsa-miR-20a-5p ↑ TGF-β signalling, adipogenesis, TGF-β receptor signalling Rectal mucosa, diet high in red meat67

Circulation, olive oil consumption68

hsa-miR-23a-3p ↑ Copper homeostasis, interleukin-6 signalling, apoptosis Circulation, diet rich in sodium66

↓ Circulation, diet rich in fatty acids, or vitamin E66

hsa-miR-92a-5p ↑ DNA damage response, cell cycle, apoptosis Circulation & stool, vegan diet72

Rectal mucosa, diet high in red meat67

↓ Circulation, zinc deficiency73

hsa-miR-125a-5p ↓ ErbB signalling, brain-derived neurotrophic factor signalling, leptin 
signalling

Circulation, selenium + Q10 supplement70

Circulation, polyunsaturated fatty acid 

intake69

Continued 
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Table 1 Continued  

MiRNA Increase– 
decrease

Most important biological pathwaysa Tissue, exercise/nutrition type 
[Reference]b

hsa-miR-155-5p ↑ PI3K-Akt signalling, prolactin signalling, ciliary landscape Circulation, alcohol consumption74

↓ Circulation, zinc deficiency73

hsa-miR-192-5p ↑ DNA damage response, oestrogen signalling, focal adhesion Circulation, polyunsaturated fatty acid 

intake69

↓ PBMC, olive oil intake71

hsa-miR-221-3p ↓ ErbB signalling, DNA damage response, apoptosis Circulation, selenium + Q10 supplement70

Circulation, polyunsaturated fatty acid 

intake69

hsa-miR-328-3p ↑ TGF-β signalling, EGFR signalling, DNA damage response Circulation, alcohol consumption74

↓ Circulation, polyunsaturated fatty acid 

intake69

hsa-miR-423-5p ↑ Angiopoeietin-like protein 8 regulation, ErbB signalling, neural crest 

differentiation

Circulation, diet rich in vitamin E66

↓ Circulation, diet rich in sodium66

hsa-miR-769-5p ↑ Leptin signalling, STAT3 signalling, TGF-β signalling Circulation, polyunsaturated fatty acid 

intake69

↓ PBMC, olive oil intake71

hsa-miR-7977-3p ↑ Membrane trafficking, neuronal system, generic transcription Circulation, diet rich in sodium66

↓ Circulation, diet rich in vitamin E66

Only miRNAs mentioned in ≥2 papers are included in the table. 
ATM, ataxia telangiectasia mutated; EGFR, epidermal growth factor receptor; ErbB, erythroblastic leukaemia viral oncogene; MAPK, mitogen-activated protein kinase; NF-kB, nuclear 
factor kappa B; NRF2, nuclear factor-erythroid factor 2-related factor 2; PBMC, peripheral blood mononuclear cells; PI3K-Akt, phosphoinositide 3 kinase—protein kinase B; STAT3, 
signal transducer and activator of transcription 3; TGF-β, transforming growth factor beta; VEGF, vascular endothelial growth factor; Wnt, Wingless and Int-1. 
aThree most significantly enriched non-cancer biological pathways from Wiki pathways in miRPathDB v2.0 (http://mpd.bioinf.uni-sb.de). 
bFor simplification, estimates of exercise time were made (e.g. marathon: 240 min running).

Summary and knowledge gaps
The acute and chronic effects of exercise on epigenetic systems are 
heterogeneous and affected by exercise type, mode, duration, and in-
tensity as well as tissue type, age, sex, population, and disease state. 
Acute and chronic exercise predominantly induce DNA hypomethyla-
tion of key genes in skeletal muscle, leading to increased expression.85

No global trend can be observed for histone modifications or miRNA 
expression, but individual changes usually lead to increased expression 
of exercise-related genes. The effects of chronic exercise on miRNA 
expression in circulating blood differ from those in skeletal muscle, al-
though the interrelation remains to be investigated.

Most of the studies on epigenetic modulation through exercise 
have investigated effects of endurance exercise, with less evidence 
for resistance training. Furthermore, potential sex differences have 
largely been ignored86 and most studies included males only. 
Overall, validating the causal relationship between exercise-induced 
epigenetic modifications and physiological adaptations (i.e. beneficial 
metabolic benefits) in health and disease represents a major future 
challenge. Noteworthy, however, recent data highlighted a functional 
link between epigenetic rewiring and risk of CVD following exercise 
training in humans82 but more evidence is required. Epigenetic 
markers are indeed vulnerable to confounding and reverse 
causation. In this setting, Framework of Mendelian randomization—a 
process which interrogates the causal relationships between 
exposure, epigenetic marks, and outcome—could help to 
establish meaningful hierarchies, thus discriminate between epigen-
etic phenomena and epi-phenomena.87 Large epigenomic studies 

over the next years will help decipher the complex link between epi-
genetics and CVD.4 Molecular pathways explaining how exercise in-
fluence epigenetic mechanisms remain understudied, potential 
mechanisms are outlined in Figure 2 and reviewed extensively 
elsewhere.24,88,89

Epigenetic modulation in primary 
cardiovascular disease prevention: 
nutritional effects
Beyond exercise, epigenetic mechanisms involved in CVD risk are like-
ly modified by nutrition, occurring not only in adulthood but already 
start in infancy. Links between diet-induced epigenetic modulation 
and improvements in CV function have been mainly demonstrated 
in animal studies, similar to exercise.90–92 In humans, indirect evidence 
of benefits on CV prevention of nutritional epigenetic changes includes 
lower lipid levels and improved vascular function.30,93,94 A direct influ-
ence of diet-induced epigenetic modifications on primary CV preven-
tion in human subjects remains to be established.

Interaction between epigenetics and nutrition during 
early life
Early evidence showed that nutrition during infancy and even in utero 
influence the occurrence of CVD in adulthood. The relationship be-
tween birth size and weight and long-term CVD was first established 
in the 1990s: male offspring with a small head circumference had an 
increased CVD risk until the age of 65 years.95 CVD risk was also 
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related to postnatal growth: in males, the highest risk was in babies 
who were below average weight at birth and still small at 1 year of 
age, whereas in women the highest risk was in babies born with be-
low average body weight but above average weight at 1 year of age.95

These findings are among the pillars of the ‘Developmental Origins of 
Health and Disease’ concept. Later studies since revealed that pre-
natal malnutrition (during famine) was associated with differential 
methylation of genes involved in growth, metabolic homeostasis, in-
flammation, and longevity, key processes underlying the pathogen-
esis of cardiometabolic disease.96 Current research has shifted the 
attention to the link between maternal overnutrition during preg-
nancy and the increased risk of obesity in offspring, and has shown 
that maternal overnutrition changes global DNA methylation pat-
terns.97 Specific patterns of foetal DNA methylation, histone modi-
fication and non-coding RNA expression have been linked to 
maternal nutritional and physical activity behavior.98 Epigenetic in-
heritance via the paternal line is also gaining increasing attention.99

Others have reviewed animal studies on nutrition and the epigenome 
in extensive detail.6,100

Nutritional influence on cardiovascular disease–related 
epigenetic changes
Several genome-wide studies identified correlations between dietary 
patterns and the epigenetic signature,101,102 whereas other studies 
found associations between epigenetic marks and CVD (reviewed 
in van der Harst et al.3). Few studies, however, have identified dietary 
patterns which lead to epigenetic changes with relevance for CVD. 

(1) DNA methylation: In 9724 participants from five population- 
based study on leucocyte DNA methylation, nutritional quality 
scores (Mediterranean-style diet score and the Alternative 
Healthy Eating Index score) were associated with either 
hypo- or hypermethylation at 30 CpG positions, out of which 
12 were associated with all-cause mortality.103 Six CpG posi-
tions pointed to mechanistic links with CVD risk and metabolic 
health, which included functional measures of body weight, tri-
glycerides, high-density lipoprotein cholesterol concentrations, 
and T2D. Overall, diet was associated with epigenetic modifica-
tions related to risk factors of CVD, but a direct link with CVD 
occurrence was not established.103 Specific targets of nutrition- 
related DNA methylation affecting CVD risk factors include 
CPT1A, encoding carnitine palmitoyltransferase-1A, and 
MTHFR (encoding methylenetetrahydrofolate reductase). 
Methylation of CPT1A was strongly associated with fat and 
carbohydrate intake as well as metabolic phenotype (including 
weight, lipids, and glucose).104 Regarding MTHFR, supplementa-
tion with its cofactor riboflavin led to specific changes in DNA 
methylation of NOS3, which is involved in blood pressure regu-
lation.105 Specific dietary fatty acids are known to influence epi-
genetic mechanisms, with DNA methylation the most widely 
studied.106 However, no CVD-specific effects have been 
investigated.

(2) Histone modification: Similarly, several dietary components are 
able to inhibit HDACs, such as phytochemicals (e.g. flavonols, 
quinones) and stilbene, which inhibit specific HDAC classes 
to cause more acetylated histones.107 Short-chain fatty acids, 
which are created in large amounts by gut bacteria, are also 

known to inhibit HDACs (see below). miRNAs are promising 
targets of dietary intervention as well.

(3) Non-coding RNA expression: Dietary interventions are hypothe-
sized to influence plasma miRNA expression via the gut–liver 
axis108 as well as the renin–angiotensin system (i.e. to modulate 
blood pressure108). Key changes in microRNA expression re-
lated to nutritional interventions and dietary habits are sum-
marized in Table 1.

Role of the gut microbiome
The gut microbiome could play a role as a mediator between diet and 
host epigenome. Bacterial metabolites, such as short-chain fatty 
acids, influence the host epigenome in breast-fed and formula-fed in-
fants.109 This hypothesis has been transferred to adults: dietary pat-
terns (such as fibre, protein, and fat content, and the source of the 
nutrient), modify the composition of the gut microbiota, which influ-
ences the metabolites available for the host. Bacterial metabolites 
can either work as co-factors for epigenetic reactions, among 
them methylation reactions of both DNA and histones, or inhibit en-
zymatic reactions, such as short-chain fatty acids inhibiting 
HDACs.110 Dietary regulation of circulating miRNAs may also be 
controlled via gut–liver axis,108 with multi-organ crosstalk linked 
via nutrient filtering, which influences synthesis of specific molecules 
such as miRNAs in hepatocytes, and liver–gut communication by bile 
salt and antibody secretion. However, evidence for specific targets is 
scarce.

Summary and knowledge gaps
Taken together, evidence indicates that dietary factors in combin-
ation with the gut microbiota influence epigenetic mechanisms. 
Some links to metabolic risk factors involved in CVD have been 
shown such as cholesterol, blood glucose, and body mass; however, 
a direct influence on CVD remains poorly established. There is also 
limited information on how these changes are linked to CVD at the 
molecular level, meaning specific dietary recommendations to influ-
ence epigenetic changes are not yet available. In addition, combining 
diet and exercise interventions induces superior reductions in CVD 
risk factors compared with diet or physical activity alone,111–113

which could occur via complex interactions of epigenetic modifica-
tions.114 Future research should determine the isolated and com-
bined effect of dietary and exercise interventions on epigenetic 
modifications relevant for CVD risk.

Novel epigenetic therapies in primary 
cardiovascular disease prevention
Besides exercise and nutrition to enhance epigenetic modifications 
for primary CVD prevention, reversible epigenetic signals acquired 
during the life course are also amenable to nutraceutical and pharma-
cological intervention.4 Nutraceutical polyphenols such as resvera-
trol, curcumin, or cocoa polyphenols may interfere with 
genome-wide epigenetic modifications in humans. As DNA hypo-
methylation in many cells (e.g. cardiac, endothelial, immune; although 
not always c.f. skeletal muscle) is generally associated with increased 
cardiovascular risk, DNMTs offer a potential therapeutic target. 
Nutraceutical DNMT inhibitors include resveratrol and cocoa poly-
phenols, which may offer primary prophylaxis against CVD (Table 2). 
The evidence remains largely indirect, i.e. cocoa polyphenols inhibit 
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the expression of DNMTs in circulating inflammatory cells,132 and in-
take of cocoa polyphenols is associated with a reduced cardiovascu-
lar risk.115 Editing-specific chromatin marks by epigenetic drugs 
represent a promising approach to reset maladaptive epigenetic 
and transcriptional signatures (Table 2). These epigenetic drugs are 
either repurposed existing pharmaceuticals or newly developed to 
target a specific epigenetic modification.

Epigenetic drugs have shown potential to prevent vascular inflam-
mation, endothelial dysfunction, and atherosclerosis through diverse 
molecular mechanisms such as reduced autophagy, modified cardiac 
energy metabolism, and improved mitochondrial function (Table 2). 
Various epigenetic drugs are approved by the United States 
Food and Drugs Administration and are currently being tested in 
clinical trials.4,133 One of these, using the Bromodomain and 
Extra-Terminal motif (BET) inhibitor apabetalone in CV prevention, 

has been published.130 BET inhibitors represent an emerging class of 
drugs that prevent protein–protein interaction between BET pro-
teins, acetylated histones, and transcription factors. In rodents, 
BET inhibition attenuated atherosclerosis and intimal hyperplasia 
by suppressing vascular inflammation as well as by lipid-lowering ef-
fects.129,134 Apabetalone was also shown to decrease systemic in-
flammation in humans.135 However, the BETonMACE trial (Effect 
of RVX000222 on Time to Major Adverse CV Events in High-Risk 
Type 2 Diabetes Mellitus Subjects with CAD) did not demonstrate 
a reduction in CV events among diabetic patients taking apabetalone 
in primary prevention.130 Interestingly, the drug was associated with 
a rather striking effect on HF hospitalizations (first hospitalization: 
29 vs. 48, P = 0.03; first and recurrent hospitalizations: 35 vs. 70). 
A recent subanalysis of the BETonMACE trial suggests that apabeta-
lone may be particularly effective in patients with diabetes and 
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Table 2 Epigenetic therapies

Component Mechanism of action Physiological effect Clinical effect— 
primary prevention

Clinical effect— 
secondary 
prevention

Nutraceuticals

Cocoa 
polyphenols

DNMT inhibition ↑ endothelial function (rodents & humans)115 ↓ blood pressure, modify 
lipid profile115

Curcumin Histone acetyltransferase 

inhibition

↓ inflammation, ↓ LV hypertrophy, 

↓ atherosclerotic lesions, ↑ endothelial 
function, ↑ mitochondrial function 

(rodents)116

Modify lipid profile116

Resveratrol HDAC modulation, Sirtuin 
deacetylase activation, 

DNMT inhibition

↓ blood pressure, ↓ pulmonary hypertension,  
↓ LV hypertrophy (rodents) ↑ LV function 

(rodents), ↑ endothelial function (rodents & 

humans),117 ↓ mitochondrial oxidative 
stress118

↓ blood pressure,117

modify lipid 

profile117,119

↑ LV diastolic function in 
patients with CAD119

Existing pharmaceuticals with epigenetic effects

Statins HDAC inhibition Renoprotection (rodents)120 ↓ all-cause death and CV 
events in primary 

prevention1

↓ all-cause death and CV 
events in secondary 

prevention1

Metformin Sirtuin deacetylase activation ↓ LV hypertrophy (rodents), ↑ LV function 
(rodents)121,122

↓ all-cause death and CV 
events in diabetic 

patients1

↓ all-cause death and CV 
events in diabetic 

patients with CAD1

SGLT2 
inhibitors

Sirtuin deacetylase activation, 
HDAC inhibition

Modified cardiac energy metabolism, ↑ 
autophagy, ↑ mitochondrial function 

(rodents)123,124

↓ all-cause death and CV 
events in patients with 

diabetes125

↓ all-cause death and CV 
events in patients with 

CAD or HF126

Pharmaceuticals designed for epigenetic modulation

5-Azacytidine DNMT inhibition ↑ endothelial function, ↓ atherosclerotic lesions,  

↓ inflammation19 (in vitro)

Vorinostat HDAC inhibition ↓ reperfusion injury, ↑ autophagy (rodents)127

Sodium 

butyrate

HDAC inhibition ↑ lipolysis, ↑ mitochondrial function 

(rodents)128

BET inhibitors Modulate protein–histone 

interaction

↓ atherosclerosis, ↓ angiogenesis, ↓ intimal 

hyperplasia, ↓ LV hypertrophy129

No reduction of CV 

events in patients with 

diabetes130

↓ CV events in patients 

with CAD131

BET, bromodomain and extra-terminal motif; CAD, coronary artery disease; CV, cardiovascular; DNMT, DNA methyltransferase; HDAC, histone deacetylase; HF, heart failure; 
LV, left ventricular; SGLT2, sodium glucose transporter 2.
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chronic kidney disease: patients randomized to apabetalone experi-
enced fewer CV events and HF-related hospitalizations.136 More 
studies are needed to establish the role of currently marketed, repur-
posed, or newly developed epigenetic drugs in the setting of primary 
prevention in CVD.

Part 3: epigenetics in secondary 
prevention of cardiovascular 
disease

Role of exercise after cardiovascular 
disease
Exercise-based multidisciplinary cardiac rehabilitation leads to signifi-
cant reductions in cardiovascular mortality and hospitalizations in 
secondary prevention of CVD (i.e. in CAD or HF137,138). These ef-
fects are, at least in part, explained by improvements in CVD risk fac-
tors and physical fitness that likely involve epigenetic regulation (as 
discussed earlier). For example, in patients with established CVD dif-
ferent patterns of exercise-induced miRNA expression are noted, 
with miRNA expression patterns able to distinguish CAD patients 
from healthy counterparts.139 As a result, it is relevant to address 
the impact of different exercise modalities on these epigenetic mar-
kers and their relation to current guidelines on exercise-based car-
diac rehabilitation. Patients with CVD are recommended to engage 
in aerobic exercise at a frequency of at least three (but preferably 
more) days per week, at moderate or moderate-to-high intensity, 
with additional resistance exercises (twice per week).140

Numerous studies have examined the impact of chronic exercise 
training on epigenetic mechanisms in patients with CVD within these 
recommended guidelines (Table 1).

The interindividual variability in response to exercise training re-
sponse could be caused by differences in the epigenetic response 
to exercise. A failure to increase VO2peak after exercise training is 
seen in up to 33% of patients with CVD, despite adequate compli-
ance to the exercise protocol and the underlying mechanism(s) re-
mains unclear.2 However, several miRNAs have been identified as 
predictors of the training response in patients with HF,141,142 which 
may be useful in identifying ‘low responders’ to training. Identifying 
‘low responders’ would provide the possibility of early individualized 
management in high-risk patients with a poor exercise response. 
miRNAs have also been able to differentiate patient subpopulations, 
such as between individuals with HF and CAD, or between HF with 
preserved vs. reduced ejection fraction (HFpEF vs. HFrEF). For ex-
ample, cardiac rehabilitation up-regulated the miR-92 family in CAD 
patients,65 which can differentiate between stable and vulnerable 
CAD.143 In patients with T2D, both moderate endurance and resist-
ance training independently up-regulated circulating miR-451a,144

while in HF patients, endurance exercise decreased miR-1 levels in 
skeletal muscle and miR-146 in blood.145,146 Subsequent target ana-
lysis revealed a significant relation between changes in miR-1, follistatin 
expression, and VO2peak.

145 Divergent findings in miRNA expression 
between circulating blood and skeletal muscle have been reported and 
may be explained by secretion of miRNAs from muscle into circula-
tion: high-intensity treadmill running in mice increased circulating 
but decreased muscular levels of miR-133.50 In patients with HF, 

ASC hypermethylation from PBMCs was associated with gene silen-
cing, as confirmed by lower ASC mRNA and IL-1β plasma levels after 
walking-based exercise.79 In another targeted approach, the effect of a 
12-week high-intensity interval training on DNA methylation of p66shc 

gene, a key regulator of oxidative stress, was assessed in older patients 
with obesity and additional cardiovascular risk.35 Exercise-induced hy-
permethylation of p66shc gene promotor was accompanied by a re-
duction in its gene expression parallel to decreased systemic 
oxidative stress but increased VO2peak and muscle mass, as well im-
proved metabolic health related to lower body mass and LDL concen-
trations.35 Another group found >17 000 CpG sites altered in adipose 
tissue after 6 months of exercise training, mapped to gene regions in-
volved in obesity and Type 2 diabetes.147 Importantly, the acute re-
sponse to exercise is modulated by chronic exercise training: the 
lower miR-191 levels observed after acute exercise in patients with 
HF was blunted following a training programme.146 Overall, the im-
pact of different exercise modalities (e.g. intensity, duration/volume, 
frequency, and type) on epigenetic modifications remain poorly stud-
ied in patients with established CVD, highlighting a future area with 
potential to optimize exercise prescription.

Role of nutrition after cardiovascular 
disease
Optimal nutrition is a key strategy to prevent secondary cardiovas-
cular events, as detailed elsewhere,148 although the mechanisms of 
action (including epigenetic modifications) remain poorly defined. 
Current dietary recommendations are mainly based on population- 
level primary prevention studies or surrogate outcomes such as lipid 
levels and blood pressure.1 Few studies have robustly examined the 
effect of nutritional interventions on clinical outcomes in patients 
with established CVD.149 The largest randomized trial to date de-
monstrated that a Mediterranean-style dietary pattern was asso-
ciated with lower all-cause and cardiovascular mortality among 
individuals with CVD,150 while more indirect evidence derived 
from diet scores reported a similar trend.151,152 Furthermore, indices 
of cardiac diastolic function as well as carotid intima media thickness 
were improved with a Mediterranean diet.153,154 Consistent with 
primary prevention, therefore, a causal role of a high-quality diet in 
secondary CVD prevention is likely, but firm evidence remains 
scarce.

In terms of epigenetic modifications following dietary interven-
tions in established CVD, little data are available. The 
CORDIOPREV study assessed epigenetic modifications as a direct 
consequence of nutritional intervention (Mediterranean or low-fat 
diet) in patients with established CVD and endothelial dysfunction.155

Patients classified as having severe endothelial dysfunction had altered 
miRNA expression levels, differing among Mediterranean or low-fat 
diet. Of interest, lower levels of miR181c, let-7e, and miR-939, and 
higher levels of miR-188 and miR-25 were observed in the 
Mediterranean diet group. These miRNAs were associated with re-
duced ROS production, reduced NF-κΒ activation, increased cell pro-
liferation, reduced endothelial cell senescence, and inhibition of 
pro-inflammatory pathways, and linked to improved endothelial func-
tion in CHD patients. To our knowledge, there is no available evidence 
concerning DNA methylation or histone modification following diet-
ary interventions in patients with established CVD. In individuals 
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with obesity, energy-restricted diets induce altered DNA methylation 
in high responders (losing >3% body fat) compared with low respon-
ders.156 In summary, dietary interventions are associated with im-
proved secondary prevention of CVD and this has been linked to 
evidence of altered miRNA expression. Nevertheless, more rando-
mized control studies implementing specific nutritional interventions 
and determining epigenetic modifications in patients with established 
CVD are required.

Novel epigenetic therapies in secondary 
cardiovascular disease prevention
Experimental evidence indicates the potential of epigenetic therap-
ies in established CVD (Table 2). Several HDAC inhibitors pre-
vented pathological cardiac remodelling in experimental models 
of myocardial infarction or pressure overload.157 HDAC inhibitors 
consistently improved cardiac function in rodent HFrEF mod-
els.157,158 Vorinostat blunts pro-inflammatory cytokines in hyper-
tensive cardiomyopathy, thus preventing perivascular fibrosis, 
cardiac hypertrophy, and diastolic dysfunction.159 Moreover, this 
compound was recently found to ameliorate ventricular passive 
stiffness in experimental models of HFpEF.160 Most epigenetic drugs 
under investigation, however, act genome-wide and may not be fully 
selective leading to undesired side effects. With numerous gene- 
specific causal epigenetic modifications being discovered,4 precision 
medicine by epigenetic editing (the targeted modification of a spe-
cific epigenetic mark), may pose new solutions in cardiovascular 
medicine.157,161 Already, experimental data suggested that renal fi-
brosis can be treated by silencing RASAL1 or Klotho through epigen-
etic editing.162

Translational studies in humans with CVD are emerging but have 
used surrogate outcomes. Treatment with resveratrol in patients 
with stable CAD improved LV diastolic function in a double-blind, 
placebo-controlled clinical trial.119 In patients with ischaemic heart 
disease, treatment with resveratrol decreased B-type natriuretic 
peptide, suggesting a favourable impact on left ventricular remodel-
ling and function.163 The ongoing RES-HF randomized trial 
(NCT01914081) will provide information on the efficacy of resver-
atrol on quality of life in HF patients. The BET inhibitor apabetalone 
showed that improvements in cholesterol levels were associated 
with a reduction in the incidence of major adverse cardiac events 
in patients with CVD.131 Future trials will help to define the potential 
clinical application of these epigenetic drugs among patients with es-
tablished CVD. Besides chromatin modifying agents, a growing num-
ber of miRNA-based therapies are reaching clinical trials.133 Phases I 
and II clinical trials are investigating the therapeutic modulation of 
several microRNAs (e.g. miR-29, miR-21, miR-155, and miR-33) 
for the treatment of extracellular matrix remodelling, cardiac fibro-
sis, inflammation, and cardiometabolic disorders.164 A first-in-human 
Phase Ib randomized, double-blind, placebo-controlled study 
showed that miR-132 inhibition was safe and associated with a dose- 
dependent, sustained miR-132 reduction in plasma.165 CDR132L 
treatment reduced natriuretic peptides, narrowed the QRS com-
plex, and reduced biomarkers related to cardiac fibrosis. Although 
this study was limited by small numbers, its findings justify further 
clinical studies using miR-132 inhibition and are encouraging for 
other non-coding RNA therapies for secondary prevention of CVD.

Part 4: future directions and 
conclusions
We have summarized current knowledge on the role of epigenetics 
in the primary and secondary prevention of CVD, with a focus on the 
impact of exercise and nutrition. The following areas could be ex-
plored to improve translation towards clinical use: 

(1) Human randomized trials: A greater number of clinical rando-
mized trials with large sample sizes that directly address 
whether epigenetic modifications occur as a consequence of in-
terventions for primary and secondary CVD prevention. 
Further evidence is required to link epigenetic changes directly 
to improved cardiometabolic health. This will identify what epi-
genetic modifications are most closely linked to CVD 
prevention.

(2) Mechanisms of exercise and nutrition: There is a lack of studies 
focusing on epigenetic mechanisms underlying exercise or nu-
tritional interventions in patients with established CVD. This 
is particularly pertinent for secondary CVD prevention.

(3) Optimal doses of exercise and/or nutrition: Determining the opti-
mal exercise regime or dietary recommendation for maximiz-
ing epigenetic modifications linked to CVD prevention are 
unclear. This information would help optimize rehabilitation 
prescription guidelines in CVD, where adherence is often 
challenging.

(4) Precision epigenetic therapies: More focus on developing preci-
sion epigenetic therapies that benefit CVD prevention. 
Tissue- or cell-specific therapies may overcome off-target toxic 
effects. Attention on developing the most effective epigenetic 
therapies (using currently marketed, repurposed, or newly de-
veloped drugs) will accelerate identification of those providing 
the greatest benefits to CVD prevention.

In conclusion, epigenetic modifications appear to play an import-
ant role in the pathophysiology of CVD. Evidence indicates 
exercise and nutrition are important stimuli that can be used to 
promote beneficial epigenetic modifications in health, but little 
evidence is currently available to strongly support a direct role in 
the primary, and especially secondary, prevention of CVD. 
However, recent developments of novel epigenetic therapeutics 
could hold great promise for CVD prevention in the future. 
As such, improved understanding of epigenetic modifications via 
exercise or nutrition could result in more targeted and novel 
epigenetic treatments for preventing CVD in both the primary 
and secondary setting.
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