
Author Accepted Manuscript version of the paper by Viggen et al. in SPE Drilling & Completion, https://doi.org/10.2118/209529-PA 
Distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) 

Assisted Cement Log Interpretation using Machine Learning 
Erlend Magnus Viggen, Norwegian University of Science and Technology; Bjørn-Jostein Singstad, 
Simula Research Laboratory; Eirik Time, Siddharth Mishra and Eirik Berg, Equinor;   
Keywords: Machine learning; Cement log interpretation; Well integrity 

 

Summary 

The Assisted Cement Log Interpretation project has used machine learning (ML) to create a tool that 
interprets cement logs by predicting a predefined set of annular condition codes used in the cement log 
interpretation process. 
 The development of a cement log interpretation tool speeds up the log interpretation process and 
enables expert knowledge to be efficiently shared when training new professionals. By using high-
quality and consistent training data sets, the project has trained a model that will support unbiased and 
consistent interpretations over time.   
The tool consists of a training and a prediction tool integrated with the cased hole logging interpretation 
software. By containerizing the code using an “API First” design principle (API: Application 
Programming Interface), the applicability of this add-on tool is broad. The ML model is trained using 
selected and engineered features from cement logs, and the tool predicts an annular condition code 
according to the cement classification system for each depth segment in the log. The interpreters can 
easily fetch a complete cement log interpretation prediction for the log and use that as a template for 
their final interpretation. The ML model can easily be retrained with new data sets to improve accuracy 
even further.  
To improve cement log interpretation consistency in the industry, the code will be made available as 
open source. 
 
 
 
Introduction 
 
Cementing is a critical procedure in the well construction process. The annular cement sheath provides 
multiple benefits (Montgomery 2006, Piot and Cuvillier 2006): It can be used to provide an annular barrier, 
which is a hydraulic seal to prevent undesired migration of fluids between formations and to surface. 
Furthermore, it anchors and mechanically supports the casing and wellhead.  

After cementing, logging tools are used to check the quality of the cement. The tools predominantly 
used for this purpose are acoustic (Allouche et al. 2006). The simplest of these are sonic tools, where an 
omnidirectional transmitter excites a wave that propagates along the casing and where two receivers 
further down the tool then record wavefronts from the casing wave. The recordings provide a cement bond 
log (CBL) curve as a function of well depth, which provides information on the bonding between the 
casing and annular solids (Anderson and Walker 1961, Grosmangin et al. 1961, Pardue et al. 1963, 
Allouche et al. 2006). Low CBL values indicate good azimuthal coverage of bonded solids, while high 
CBL values indicate little to no coverage. (More advanced sonic tools exist, but were not used for the logs 
underlying this work.) 

Having omnidirectional transmitters, CBL tools cannot provide any information on the azimuthal 
distribution of annular solids outside the casing. For that reason, ultrasonic pulse-echo tools were 
introduced. The principle of the tools underlying this work has been explained in detail by Hayman et al. 



(1991) and Allouche et al. (2006). In short, a rotating transducer fires ultrasonic pulses at points on the 
casing. At each point, processing of the recorded echo provides an estimate of the annular material’s 
acoustic impedance, which is the product of mass density and sound speed. Hence, the resulting depth-
by-azimuth impedance images allow estimating the spatial distribution of very-low-impedance gases, low-
impedance liquids, and high-impedance solids. Ultrasonic pitch-catch tools were also introduced more 
recently by van Kuijk et al. (2005). These rotating tools comprise an angled transmitter that excites flexural 
waves on the casing and two angled receivers that estimate these waves’ attenuation. Such estimates can 
be combined with pulse-echo-based estimates of acoustic impedance to help differentiate between higher-
impedance liquids and lower-impedance solids (van Kuijk et al. 2005, Kalyanraman et al. 2021). 

The recorded cement log primarily consists of data channels, each containing one type of tool 
measurement indexed against depth. Some channels, such as CBL, are represented as curves, while others, 
such as acoustic impedance, are represented as images. This set of channels must be interpreted as a whole 
to classify contiguous depth intervals in the log according to their isolating potential. The cement log 
interpretation process requires specialized skills, and with increased workload due to higher demand, 
companies may experience scarcity of such competence. In addition, cement log interpretation is difficult 
and subjective, and it can be challenging to get consistent interpretations over time and across interpreters 
(Viggen et al. 2020).  

To assist professional well log interpreters in performing unbiased, consistent, and high-quality cement 
log interpretations over time, the project has developed an assisted cement log interpretation tool using 
machine learning. The trained machine learning model assists the interpreters by predicting cement log 
interpretations with confidence values. The predicted interpretations will provide decision support for the 
interpreters by acting as a starting point for their interpretation, and as such this tool can: 

• Make the interpreters' jobs easier  
• Help to make interpretations more consistent across multiple interpreters 
• Efficiently share the expert knowledge learned by the machine learning model from a 

consistent, high-quality labeled training data set 
It should be noted that the tool should not be used in a fully automated workflow. Cement log 

interpretation is a safety-critical task, and as such a professional interpreter needs to make the final 
qualitative interpretation decision for each cement job.   

For such a tool to be useful, it must be sufficiently accurate, especially in consistently identifying zones 
with a high probability for isolation, as required by the NORSOK D-010 (2021) standard. False negatives 
(omitting intervals that could provide isolation) may be somewhat problematic, as they reduce the length 
of an isolating interval. False positive predictions, however, are more problematic since annular barrier 
quality and length will be overestimated. 

The research field of producing automatic interpretations of cement logs by means of machine learning 
is gaining increasing interest from researchers. Since 2020, several papers on this specific topic have been 
published: Reolon et al. (2020) defined classes of annular conditions via clustering CBL and 
solid/liquid/gas fractions derived from acoustic impedance data and used Bayesian statistics to produce a 
probability distribution for each condition throughout each log. However, they could only report 
qualitative results due to the lack of a reference interpretation. Viggen et al. (2020) treated performing 
supervised learning (Kotsiantis et al. 2007) on expert-interpreted logs similarly to an image classification 
problem, using convolutional neural networks (CNNs) (Krizhevsky et al. 2012, Chollet 2018), finding 
human-comparable quantitative performance. Viggen et al. (2021) further improved this performance by 
reducing the negative combined effect of interpreter subjectivity and data complexity identified in their 
previous work by means of feature engineering (i.e., designing predictive features based on the raw log 
data) and using ML algorithms that are less susceptible to overfitting (Webb 2011). Voleti et al. (2020) 
also reported good results with a comparable tool trained and tested on a small number of wells, estimating 
that it could save their company 75% of their current interpretation effort. 



Furthermore, other related work has been reported: Kalyanraman et al. (2021) discussed how errors in 
the processing of ultrasonic pulse-echo and pitch-catch measurements can be corrected (either manually 
or via ML) to facilitate a more robust and detailed characterization of the annular materials behind the 
casing prior to interpretation. Imrie (2021) developed an algorithm to distinguish between good cement 
coverage, partially good bonding quality cement coverage, and free pipe using CNNs on acoustic 
impedance maps. Furthermore, he also developed a method to detect and classify fluid channels, in cases 
with partial coverage, into four predefined classes.  

The work reported here merged an operator's internal R&D project with published academic methods 
(Viggen et al. 2021) to develop a machine learning tool that will be used by interpreters in real-world 
cases. While the tool is currently limited to usage with the logging data of one service company, it is 
written with extensibility in mind. The tool is written in Python and is currently in a beta state where it is 
being tested in practice by cased hole logging domain experts. When the tool is completed, it will be 
released under an open-source license to benefit the rest of the industry. 
 
Methods 
The general approach has been to use supervised machine learning, providing a machine learning 
algorithm examples of well log data and corresponding interpretations, so that it can learn generalizable 
relationships between these. The machine learning pipeline operates on the numerical log data rather than 
plotted log curves and images. It can therefore not be biased by plot style choices such as log images’ 
color maps. 
 
Dataset 

A supervised machine learning approach requires raw data and interpretations as the basis for training 
and testing. The dataset underlying this work consists of 70 interpreted cement logs on the standard DLIS 
well log format defined in API RP66 V1 (1991), mostly gathered between 2017 and 2021. These DLIS 
files are read using dlisio, an open-source Python library (Equinor 2019). Every log contains a CBL 
channel and an acoustic impedance channel, and most of the logs contain channels from pitch-catch tools. 
All log files are preprocessed to azimuthally rotate depth-by-azimuth image data so that the middle of the 
image corresponds to the bottom of the casing, and to reduce the file size by discarding data channels that 
are not relevant for interpretation. 

The logs are all interpreted according to the same interpretation schema: The interpretation process 
splits the logged well section by depth into consecutive zones according to the condition of the materials 
in the annulus. Each zone is assigned an annular condition code from a set of codes defined based on 
experience gathered from impedance distributions in sonic and ultrasonic data. The full list of the 30 
annular condition codes used in this project can be found in Table 1. In particular, note that the 
interpretation schema includes MAWCem/MADCem codes representing various types of microannuli — 
gaps between casing and cement ranging from a few µm to hundreds of µm (Jutten and Hayman 1993, 
Kalyanraman et al. 2017, Issabekov et al. 2017) — and the FORMCEM codes representing combinations 
of cement and formation, typically where a creeping formation has closed in on the casing through the 
gaps in cement coverage (see e.g. Kalyanraman et al. 2021 for an example). 

 
Table 1—The 30 annular condition codes used for interpretation 

Code Isolating potential Description 
CEM 1A High Well Bonded, homogeneous, cement around the entire annulus 
CEM 1B High Well Bonded, heterogeneous, cement around the entire annulus 
CEM 1C High Well Bonded, heterogeneous, cement around the entire annulus with non-connected small liquid 

pockets / short liquid filled channels 
CHNCem 2A Low Continuous Liquid Filled Channeling — <20% Fluid Channel Width   
CHNCem 2B Low Continuous Liquid Filled Channeling — 20–40% Fluid Channel Width   
CHNCem 2C Low Continuous Liquid Filled Channeling — >40% Fluid Channel Width   
CONCem 3A High Well bonded Cement High Side, Slightly Contaminated Cement Low side 
CONCem 3B Medium Well bonded Cement High Side, Heavily Contaminated Cement Low side 



CONCem 3C Medium Homogeneous Contaminated (or Unset) Cement — Lower than the expected impedance  
PATCem 4A Medium Patchy Cement Bond — Medium Isolating potential 
PATCem 4B Low Patchy Cement Bond — Low Isolating potential 
MAWCem 4C High Wet Microannulus — High Isolating Potential  
MAWCem 4D Medium Wet Microannulus — Medium Isolating Potential 
MAWCem 4E Low Wet Microannulus — Low Isolating Potential 
MADCem 4F Low Dry Microannulus 
GCCem 5 Low Gas Cut Cement  
LLCem 6 Low Cement in Liner Lap — Eccentralized Liner 
FORM 7A  High Formation Bond Good / Barrier Quality 
FORM 7B Medium Formation Bond Medium / Not Barrier Quality  
FORM 7C Low Formation Bond Low / Not Barrier Quality 
FORMCEM7C Low Combined Cement and Formation Bond — Poor Bond 
FORMCEM7D Medium Combined Cement and Formation Bond — Medium Bond 
FORMCEM7E High Combined Cement and Formation Bond — Good Bond — PRESSURE TEST REQUIRED 
MUDS 8A Not applicable Settled mud solids — High Density / Well Bonded 
MUDS 8B Not applicable Settled mud solids — Medium Density / Medium Bond 
MUDS 8C Not applicable Settled mud solids — Low Density / Patchy Bonded 
FPL 9A Not applicable Liquid Filled Free Pipe 
FPG 9B Not applicable Gas (or light oil) filled free pipe 
OTHER   If the annulus status cannot be classified by one of the above categories 
PDQ  Data Quality Issues –—such that data is not interpretable  

 
Furthermore, for each log, the dataset contains essential external information that is not provided in the 
original log file, such as: 

• The theoretical top of cement calculated from the borehole diameter, the casing diameter, and the 
pumped cement slurry volume 

• Whether losses occurred during cement displacement (Daccord et al. 2006) 
• The time elapsed between cementing and logging 
• The depth of the outer casing shoe 

Previous work has shown that keeping interpretations consistent is essential for a good ML result 
(Viggen et al. 2020, Viggen et al. 2021). Therefore, the cement logs in the dataset have been hand-picked 
by a team of cement log interpretation experts, who have performed an additional quality control (QC) 
step to further improve the internal consistency of the cement logs in the dataset. We describe the 
construction of the dataset in more detail in the Data Selection section below. Even so, maintaining perfect 
consistency is not possible. There are various uncertainties related to the condition of the downhole 
environment that relate to the cement job and hence the interpretation of the cement log. Some aspects of 
the interpretation process are also subjective, for example, what level of detail is appropriate. Where one 
interpreter defines one long zone, another interpreter could prefer to define several smaller zones. 

 
Table 2—Distribution of the annular condition codes defined in Table 1, showing the number of 1 m segments and the number of 

logs with each annular condition code, across the training and test sets 

Annular condition code Training set Test set 
No. of segments No. of logs No. of segments No. of logs 

FPL 9A 18 101 34 6026 15 
FORM 7A 5846 18 2006 7 
CEM 1A 4957 21 1931 10 
Other 4720 28 1215 9 
FORM 7B 3436 14 1706 10 
CEM 1C 2476 27 669 12 
CONCem 3A 2442 16 735 7 
CEM 1B 2343 22 889 10 
MUDS 8C 2288 11 693 3 
FORM 7C 2165 11 1853 8 
CONCem 3B 1876 17 723 8 
CHNCem 2B 1780 15 644 9 
PATCem 4B 1774 15 505 9 
MUDS 8B 1227 4 258 3 
PATCem 4A 978 15 274 7 
FPG 9B 899 6 4 1 
MUDS 8A 880 5 256 2 
FORMCEM7D 852 2 160 4 
CHNCem 2C 749 6 295 2 
LLCem 6 705 4 30 1 
PDQ 635 7 560 2 
FORMCEM7C 545 2 363 1 



CHNCem 2A 538 9 244 4 
CONCem 3C 467 7 207 1 
MADCem 4F 420 2 0 0 
MAWCem 4C 296 5 236 1 
MAWCem 4D 240 3 161 2 
FORMCEM7E 205 2 35 2 
GCCem 5 149 2 236 1 
MAWCem 4E 118 2 0 0 
Total 64 107 — 22 914 — 

 
Following common practice in ML, the dataset is split into two parts, one for training the algorithm, 

and one for testing it on unseen data. The split was performed on a log-by-log basis in order to avoid 
similar data from the same log being present in both parts, as this would lead to unrepresentative improved 
test performance. Like Viggen et al. (2020) and Viggen et al. (2021), we use an optimization algorithm 
based on simulated annealing (Press et al. 2007) to ensure that the two parts have a similar distribution of 
annular condition codes. The training set consists of 50 logs, and the test set consists of 20 logs. Table 2 
shows how the different annular condition codes are distributed throughout the training and test sets. 

 
 

 
Figure 1—Simplified overview of the structure of the automatic cement log interpretation system 

 
Data Selection 

The cement log dataset underlying this work was built in a step-by-step fashion. Initially, it consisted 
of a small number of logs with clear-cut interpretations to ensure that the ML had good examples of the 
most common codes. As the project evolved, logs of a more typical quality and level of uncertainty were 
added. To guide the selection of new logs, the distribution of the annular condition codes (as seen in Table 
2 for the dataset reported here) was continuously monitored to identify annular condition codes with 
insufficient representation in the dataset. Furthermore, logs that were reviewed and interpreted as part of 
the day-to-day activities of the company’s cased hole logging experts were also added to the dataset after 
an additional QC step. However, logs that were identified as very difficult to interpret due to high levels 
of the aforementioned uncertainties were not included in the dataset; such logs would be poor training 
examples or poor references for testing a trained system. 
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In order to reduce the effect of interobserver variation (Popović and Thomas 2017) of the cement log 
interpretations, previously interpreted logs were subject to an additional QC step. In this process, a small 
team of two interpreters fine-tuned previous interpretations to further improve the consistency in these 
interpretations’ level of detail and choice between bordering annular condition codes. 

The QC step also identified logs where the acoustic impedance image channels showed spurious stripes 
of low impedance caused by mud deposits on the bottom side of the casing in deviated wells (Thierry et 
al. 2016) and ensured that more suitable acoustic impedance channels, produced by reprocessing the 
underlying ultrasonic pulse-echo data with a processing algorithm that accounts for this effect (Klieber 
and Lemarenko 2016), were available to the ML before including the log in the dataset.  

 
System Structure 

The automatic cement log interpretation system can be viewed as consisting of three interlinked 
components, as shown in Figure 1: A training tool, an interpretation tool, and a display-tool. 

 
Training Tool 
Using the training set of interpreted cement log data, the training tool trains an ML classifier to be able 

to interpret input cement log data. If the training is successful, the classifier can provide reasonable 
interpretations of unseen cement log data. To test that the training process is successful, the training tool 
can calculate various performance metrics. These metrics can be calculated on the test set, as well as on 
the training set through k-fold cross-validation (Refaeilzadeh et al. 2011, Viggen et al. 2020). Figure 2 
shows an overview of the training tool, including details that will be explained in later sections. 

In the cross-validation process, the logs in the training set are distributed into k different folds. As 
before, the simulated annealing-based algorithm is employed to distribute the logs while optimizing the 
balance of annular condition codes between the folds. Each fold is, in turn, used for testing after the 
remaining k–1 folds have been used for training a classifier. In the end, the test results for all the folds are 
combined to calculate the desired performance metrics. 

When the tool is in regular use, the trained classifier will regularly be retrained with additional logs 
and interpretations added to the training set. It is therefore expected that the interpretation tool’s 
performance will gradually improve over time.   

 



 
Figure 2 - Detailed overview of the training and interpretation tools 

  



 
Interpretation Tool 

 
As Figure 2 shows, when the interpretation tool is provided with a classifier from the training tool and 

an appropriately preprocessed cement log file, it produces a log interpretation on the same zonation form 
used by the expert interpreters. Furthermore, it provides a confidence curve specifying at each depth how 
confident the classifier is about its conclusion, based on the classifier’s class probability distribution. Even 
though such a confidence curve may not be very predictive of where classifiers make errors (Viggen et al. 
2020), the curve helps interpreters see where the classifier is close to making another interpretation. To 
further help the interpreters, the tool also provides the second most likely annular condition code for each 
zone, according to the classifier. 

To help avoid getting many very short zones as seen in previous publications on automatic cement log 
interpretation tools (Reolon et al. 2020, Viggen et al. 2020, Voleti et al. 2020, and Viggen et al. 2021), the 
tool includes a post-processing component. The user can specify the minimum length of a zone (e.g., 3 m), 
and the tool will merge and/or replace shorter zones based on the classifier’s class probability distribution. 
The post-processing also assists the machine learning by removing impossible annular conditions from 
consideration, such as the presence of formation in dual-casing geometries and free pipe sections with gas 
or light oil zones below zones of heavier liquids. 

The interpretation tool exposes an application programming interface (API), to ensure that it can be 
treated as a separate component and integrated with a variety of programs as necessary. The API can be 
provided with a log file and outputs a zoned interpretation, an alternate interpretation, and a confidence 
curve. 

 
Display-Tool 
The most common use case is to use machine learning interpretation systems directly from the cased 

hole logging interpretation software used by the professionals. The predicted interpretation is plotted 
alongside the log data, and the professional will then correct the automatic interpretation as necessary. 
The display-tool in this work is based on a pre-existing commercial log-interpretation software that also 
provides Python scripting capabilities. 

When the interpreter opens a new cement log and wants an automatic interpretation, a Python script in 
the display-tool gathers the necessary log data channels and parameters, writes them to a temporary log 
file, and calls the interpretation tool’s API to point it to the temporary file and the classifier to be used. 
The API returns a zoned interpretation, in addition to the confidence curve and alternate interpretation, 
which the interpreter can then display and edit. This process is described in more detail in the Using the 
Interpretation Tool section below. 
 
Machine Learning Task 

To build an ML-based automatic interpretation system, the problem of interpreting cement logs must 
be posed in a fashion that is appropriate for machine learning. The project has utilized the same approach 
as Viggen et al. (2020) and Viggen et al. (2021). The well is split into depth segments of 1 meter length, 
and the classifier’s task is to provide an annular condition code for each of these segments based on 
features extracted from larger surrounding intervals of well log data. 
The classifier is not tasked to recognize every single annular condition code in the interpretation schema; 
two annular condition codes have been excluded, namely “Other” and “PDQ” from training. “Other” is a 
catch-all code for different conditions that cannot be generalized and are not very important (specified in 
a comment field in the final interpretation), and its diversity makes it difficult for a classifier to learn. The 
“PDQ” code indicates poor quality of the log data, which is usually easy enough for human interpreters 
to spot but can be more difficult for a classifier to identify. 
Data Preprocessing 

It is well-known, and evident from any acoustic well log plot, that acoustic well log data contains 
systematic outliers around casing collars and casing centralizers. This is because the acoustic logging 



techniques implicitly assume the casing to be continuous and uninterrupted. For example, CBL curves 
contain spikes near casing collars, and acoustic impedance estimates from ultrasonic pulse-echo 
measurements contain spurious high values at casing collars and spurious low values at casing centralizers. 
While human interpreters quickly learn to look past these outliers, ML algorithms generally take their 
inputs at face value. Therefore, the effect of the outliers should not be present in the ML input. 

For CBL data, a median filter was sufficient to remove the effect of the casing collar spikes, as we 
explain in the Feature Extraction section below. To extract precise features from the image channels 
produced by the ultrasonic tools, however, the outliers should first be removed from the images. 

At a casing collar or centralizer, the resulting outliers are visible in the image data for most, if not all, 
of the azimuths over a small range of depths. To identify these depths, the mean value of the image was 
first taken over all azimuths, providing a curve against depth where strong spikes at collars or centralizers 
stick out from an otherwise relatively smooth curve. Applying a median filter with a kernel size of 1.5 m 
to this curve provides a slightly smoother version of the same curve, without the spikes. The depths 
containing the spikes can then be identified by thresholding the difference between the original curve and 
the median filtered curve. All values at these depths in the image channel are replaced with special values 
called Not a Number (NaN) to indicate the absence of usable values. These NaN values are ignored when 
calculating the ML input as described in the Feature Extraction section. 

Furthermore, some scattered outliers are caused by issues with the recording or processing of ultrasonic 
pulses. A separate image channel flags pulses with such issues, and values derived from the flagged pulses 
are also replaced with NaN. 

 
Feature Extraction 

Another essential part of posing the ML problem is to determine which form the input cement log data 
should take when provided to the classifier. One approach, taken by Viggen et al. (2020) and the operator's 
internal R&D project, is to treat the classification similarly to a computer vision problem. Here, CNNs 
(Krizhevsky et al. 2012, Chollet 2018) automatically determine the connections between the log data and 
outputs. This work selected, however, the feature engineering approach that Viggen et al. (2021) showed 
to be superior to the former approach on the same dataset. 

In the feature engineering part, the project designed a set of features that could be calculated based on 
the cement log data. In this manner, the domain knowledge can be used to design features that are relevant 
for cement log interpretation. Ideally, each feature should be directly predictive of one or more classes. 
For each 1 m segment to be interpreted, all features are calculated, typically from a “context interval” of 
surrounding well log data. The length of the context interval depends on the type of data the feature is 
based on. Where systematic outliers are not removed as described in the Data Preprocessing section, the 
context interval must be long enough to avoid the impact of such outliers, while remaining short enough 
that short-scale cement log structures such as small fluid patches can be detected. In addition to these 
shorter context intervals, each feature based on log data is also recalculated for a long interval of 20 m 
length, in order to provide longer-range context as suggested by Viggen et al. (2021). 

The choice of features is largely similar to that of Viggen et al. (2021), where they are more rigorously 
defined than in the following summary. In machine learning, it can be critical to ensure that all features 
have a similar range of values. Hence, every feature is normalized to a value interval [0,1] based on its 
distribution in the dataset. 

 
Acoustic Impedance Features 
Many of the features are based on the aforementioned depth-by-azimuth acoustic impedance images. 

Because the preprocessing removes the vast majority of the systematic outliers, a context interval as short 
as 2 m could be used. The features calculated from each context interval of the preprocessed impedance 
image data are: 

• The median impedance in the interval. 



• The impedance heterogeneity, which is calculated as the absolute difference between the 
median impedance and a particular impedance percentile. In this work, the 10th and 90th 
percentiles are used. This feature helps quantify the spread of impedance values. 

• The difference between the median impedances in the top (360° − 𝜃) and the bottom 𝜃 
azimuths of the casing. In this work, two such features are calculated, one for 𝜃 = 180° to help 
identify wide structures at the bottom of the casing, and one for 𝜃 = 40° to help identify 
narrower structures such as thin liquid channels. 

• The liquid fraction, defined as the proportion of impedances in the interval between predefined 
gas-liquid and liquid-solid thresholds, typically 0.3 MRayl and 2.6 MRayl, respectively. 

• The solid fraction, defined as the proportion of impedances above the liquid-solid threshold. 
 
CBL Feature 
Furthermore, a feature based on the cement bond log (CBL) curve is calculated, which has high values 

in free-pipe sections (where the impedance is low) and low values in well-cemented sections (where the 
impedance is high). To suppress the outlier spikes in the CBL curves around casing collars, a 4 m context 
interval has been used. Because the expected CBL value in free-pipe sections varies with the casing size, 
the CBL values are not necessarily comparable across different logs. To compensate, we normalize each 
log’s CBL curve with the expected free-pipe CBL value for that log. While Viggen et al. (2021) found 
that CBL did not provide a significant additional benefit to impedance-based features, that work was based 
on a different interpretation schema that did not take microannuli explicitly into account like the schema 
used here does with the MAWCem/MADCem codes shown in Table 1. Different types of atypical 
relationships between the CBL and impedance values can be used to identify and differentiate wet and dry 
microannuli (Jutten and Hayman 1993, Kalyanraman et al. 2017, Issabekov et al. 2017), which should 
make the normalized CBL curve more valuable. From this curve, only one feature is calculated: 

• The median normalized CBL value in the interval 
 
External Features 
The project also used a number of features based on external information: 

• From the theoretical top of cement and the presence or absence of cement losses, a curve 
indicating the probability of a given depth segment being below the actual top of cement is 
calculated, based on the distributions of theoretical and actual top of cement in the dataset. 

• From the outer casing shoe depth, a binary feature specifying whether or not there is another 
casing outside the logged casing at the given depth segment is calculated. 

• From the time between cementing and logging, the tool calculates a value correlated with the 
probability of formation collapse having occurred at the time of logging. 

 
 
Unused Features 
While the project did design more features than those mentioned above, some were rejected for various 

reasons, including a feature evaluation based on univariate statistical analysis and recursive feature 
elimination based on permutation feature importance. The rejected features were based on: 

• Log data from an ultrasonic pitch-catch tool (van Kuijk 2005). Unlike the ubiquitous ultrasonic 
pulse-echo and CBL tools, pitch-catch tools are not provided by a wide range of service 
companies. Hence, relying on the presence of pitch-catch data would rule out training a single 
classifier that can work on logs from a range of service companies. Furthermore, feature 
evaluation found that the pitch-catch features, based on pitch-catch attenuation and solid-liquid-
gas maps, did not improve the performance of the machine learning. This may be partly because 
the non-linear relationship between pitch-catch attenuation and acoustic impedance (van Kuijk 
2005) is difficult for machine learning to deal with. 



• Gamma ray log data. Gamma curves are difficult to normalize to make them comparable 
between different wells. This feature did not improve performance. 

• Features based on the area and length of consecutive fluid regions. The idea of these features 
was to help differentiate wide but short fluid patches and long but narrow fluid channels, but 
these features did not improve performance. 

 
Quantitative Metrics 

To objectively evaluate the prediction performance of the ML tool, we must define some 
performance metrics. As there is no ground truth available, the expert interpretations must be treated as a 
“correct” reference. The interpretations’ match with the ML predictions can be quantified on a segment-
by-segment basis. For the 𝑖	th 1 m segment out of all 𝑁	, the chosen annular condition code (Table 2) in 
the expert interpretation is denoted as 𝑦! and the annular condition code in the ML prediction as 𝑦"4 . 

The most basic metric is unbalanced accuracy, which is the proportion of segments where the two 
annotations match: 

𝑈𝐴(𝑦, 𝑦7) =
1
𝑁8 1(𝑦! = 𝑦"4)

#$%
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Here, 1(𝑦! = 𝑦"4) is an indicator function that equals 1 if its argument is true and 0 if it is false. However, 
unbalanced accuracy is most heavily affected by the performance on the most prevalent annular condition 
codes and is hardly influenced by the performance on rare annular condition codes. The balanced accuracy 
metric weights each segment as 𝑤! = 1/<∑ 1>𝑦( = 𝑦)4?( @		 i.e. inversely proportional to the prevalence of 
its annular condition code prevalence so that every annular condition code is made equally important: 

𝐵𝐴(𝑦, 𝑦7) =
1

∑ 𝑤!#$%
!&'
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Accuracies calculated based on individual classes may not necessarily give the right impression. 
Whether the annular condition code is, e.g., CEM 1B or CEM 1C often does not matter in practice, as 
both annular condition codes represent the same high isolation potential indicating a barrier. For a more 
coarse-grained representation, the annular condition codes can be pooled according to their isolating 
potential. Then, unbalanced and balanced accuracies can be calculated in terms of isolating potentials 
instead of individual annular condition codes. 

Furthermore, as mentioned in the introduction, the most important job of the ML tool is to correctly 
separate barrier-level zones of high isolating potential from zones that are not barrier-level. To quantify 
how well the ML tool performs this task, the coarse-graining can be taken further, pooling all annular 
condition codes of high isolation potential into a “positive” class and all other annular condition codes 
into a “negative” class. With two classes, this becomes a binary classification problem with four possible 
outcomes per 1 m segment, according to whether the ML prediction assigns the same positive or negative 
class as the reference expert interpretation: 

• True Positive (TP) is a correct positive assignment 
• True Negative (TN) is a correct negative assignment 
• False Positive (FP) is an incorrect positive assignment 
• False Negative (FN) is an incorrect negative assignment 

Standard metrics for binary classification problems can then be calculated from the total number of these 
outcomes: 

• Precision (TP/(TP+FP)) is the proportion of correct positive ML predictions 
• Sensitivity (TP/(TP+FN)) is the proportion of positive interpretations where the ML prediction is 

correct 



• Specificity (TN/(TN+FP)) is the proportion of negative interpretations where the ML prediction is 
correct 

• F1 score (TP/(TP+(FP+FN)/2)) gives an overall accuracy via the harmonic mean of precision and 
sensitivity. 

Finally, to give more insight into exactly what kind of mispredictions the ML classifier tends to make, 
the joint distributions of reference interpretations and ML predictions can be displayed as balanced 
confusion matrices (Ting 2017). The matrix element at the 𝑘	th row and 𝑙	th column represents the 
proportion of segments where the ML prediction is the 𝑙	th annular condition code out of all segments 
where the reference interpretation is the 𝑘	th annular condition code. Thus, for a hypothetically perfect 
prediction, only the diagonal matrix elements would be populated; however, perfect agreement is not 
realistic even among experts (Viggen et al. 2020). Confusion matrices can be similarly built for the coarse-
grained representations as well. 

 
Choice of Machine Learning Classifier 

There are many types of machine learning classifiers for supervised learning that all do a comparable 
job. During training, they learn the relationship between the inputs (features) and outputs (interpretations) 
by example. After training, they predict outputs based on inputs that they have not seen before. 

There are also many software libraries providing implementations of such classifiers. While not all 
previous articles on ML-based cement log interpretation specify which libraries were used, Viggen et al. 
(2020) used the Keras library’s (Chollet et al. 2015) implementations of CNNs, and Viggen et al. (2021) 
showed significant improvements over these earlier CNN results with a feature engineering-based 
approach using the scikit-learn library’s (Pedregosa et al. 2011) implementations of various classifiers. Of 
the 8 different classifiers that the latter article compared, logistic regression (LR) classifiers performed the 
best, statistically significantly outperforming most of the others. For this reason, LR classifiers were also 
used for this work as the setup is very similar to that of Viggen et al. (2021). However, because the 
improvements to the interpretation schema and data quality in this work could have affected the relative 
performance of classifiers, this project also re-evaluated the gradient tree boosting (GTB) classifier. 
According to Chollet (2018), GTB is often the best-performing classifier for “non-perceptual” problems 
that do not deal with image or sound data, and Viggen et al. (2021) also found GTB to be among the top-
performing classifiers tested. However, an initial re-evaluation on the current dataset found that GTB is 
still outperformed by LR by 7% and 14.6% measured in terms of unbalanced and balanced accuracy in 
classifying all 28 classes and 3.6% and 2.7% measured in terms of unbalanced and balanced accuracy 
when determining the isolation potential. (When comparing the two, the hyperparameters of both by 
means of a grid search were optimized. This optimization only weakly affected the performance, 
indicating that the performance is mainly limited by other factors.) Hence, only LR-based results are 
presented in the Results section below. 

 
Using the Interpretation Tool 

A Graphical User Interface (GUI) was developed using the Python environment of the cased hole log 
interpretation software which allows the user to select the well, dataset, and a few critical parameters such 
as the theoretical top of cement, previous casing shoe, losses during cementing, etc. Once the user inputs 
this information using the GUI, this tool then prepares the raw log data before calling the API of the 
interpretation tool. Figure 3 shows the workflow. 

 



 
Figure 3—Workflow of calling the interpretation tool from the display-tool 

 
Below is an example of how the output of the interpretation tool looks like (the last 3 tracks in  

Figure 4). Two zonation datasets are created: The first is the classifier’s most confident zonation dataset 
with interpretation classes, and the second zonation contains the second most likely class according to the 
classifier. The last track in Figure 4 shows the ML interpretation's confidence curve — the confidence that 
its primary interpretation is correct. The last step of this entire workflow is for expert interpreters to modify 
these ML-based interpretation zonations by applying their domain knowledge and field expertise. 

 



 
 

Figure 4—Example output of the interpretation tool. 1st column: Acoustic impedance behind the casing as a depth-by-azimuth 
image. 2nd column: The same acoustic impedance, with color thresholds indicating liquids (blue) and gas (red). 3rd column: The 

maximum (blue), average (black) and minimum (red) acoustic impedance value at each depth. 4th column: CBL curve (black) on top 
of the relative azimuthal proportion of solid (yellow), liquid (blue), and gas (red) at each depth, estimated by thresholding the 

acoustic impedance. 5th column: Variable density log (VDL) showing the sonic tool’s recorded waveform at each depth, with gamma 
ray (green) and CBL transit time (blue) measurements superimposed. 6th column: Well schematic. 7th column: Formation names. 
8th column: The primary prediction of the ML tool. 9th column: The alternate prediction of the ML tool. 10th column: The ML tool's 

confidence at each depth that the primary prediction is correct. 
 

 
Results 
 
Qualitative Results 

 
Figure 5 and Figure 6 below show two example log datasets and compare the interpretation performed 

by domain experts with the ML predicted interpretation. It can be observed that ML predicts a greater 
number of zones as compared to the expert interpretations. However, there is a very good agreement on 
the isolation potential (represented by zone color) between the ML and expert interpretations for both the 
example datasets. Moreover, none of the zones interpreted as medium or low isolating potential by experts 
are predicted to have high isolating potential by the ML model. This is a very important point, because 
this annular bond interpretation is a safety-critical task and misinterpreting a zone to have high isolating 
potential can have serious consequences. The disagreement in the annular condition codes between expert 
and ML interpretations are discussed in more detail in the Quantitative Results and Discussion sections of 
this paper. 

 
 



 
 

Figure 5—Comparison of expert interpretation with ML interpretation for one example log. The columns represented are plotted 
similarly to Figure 4 , but with the addition of a column showing the expert interpretation of the wells. 

 
 
 



 
Figure 6 - Comparison of expert interpretation with ML interpretation for another example log, similar to Figure 5. 

  
 
 
 

Quantitative Results 
Cement log data can be used both to train the classifier and to test its performance. However, one must 

be careful not to test the classifier on data already used during training, only testing it on unseen data. 
There are multiple ways to avoid this. The classic approach is to split the dataset into a training set and 

a test set, as described in the Dataset section above, train the classifier on the training set, and evaluate its 



performance on the test set. However, if the test set is too small to reliably capture the possible variations 
in the dataset, the performance on the test set may not be representative of the performance on a larger 
dataset. Hence, one can perform k-fold cross-validation on the larger training set. (This work uses k=5.) 
The results of this process may be more representative as the training set is larger, though the results may 
also be biased if some part of the training optimization procedure has overfitted the classifier to the training 
set. Performing both these evaluations gives complementary results; the 5-fold cross-validation gives 
results from a large sample of logs, while the test set evaluation gives results from a smaller sample that 
can indicate whether the 5-fold cross-validation is biased or not. 

 
Table 3—Accuracy metrics related to Figure 7, Figure 8, and Figure 9. For each metric, mean and sample standard deviation are 

calculated based on 10 training repetitions. Comparable results from a reference paper are included. 

Result Unbal. acc. 
(%) 

Bal. acc. 
(%) 

Precision 
(TP/PP) (%) 

Sensitivity 
(TP/P) (%) 

Specificity 
(TN/N) (%) 

F1 score 
(%) 

All annular condition codes 
(5-fold CV) 64.0 ± 0.30 48.0 ± 0.89 — — — — 

All annular condition codes 
(test set) 61.2 ± 0.04 47.4 ± 0.15 — — — — 

Isolation (5-fold CV) 83.3 ± 0.15 76.4 ± 0.23 — — — — 
Isolation (test set) 83.8 ± 0.03 80.1 ± 0.03 — — — — 
Binary (5-fold CV) 92.8 ± 0.06 91.2 ± 0.13 89.9 ± 0.16 86.9 ± 0.32 95.5 ± 0.09 88.4 ± 0.12 
Binary (test set) 94.5 ± 0.01 92.9 ± 0.02 92.9 + 0.02 88.8 ± 0.04 97.0 ± 0.01 90.8 ± 0.02 
Bond quality (6 classes) 
(Viggen et al. 2021) 57.4 50.1 — — — — 

Hydraulic isolation (binary) 
(Viggen et al. 2021) 88.9 89.5 ≈ 75.5 ≈ 91.0 ≈ 88.0 ≈ 82.5 

 
The performance is evaluated using the metrics defined in the Quantitative Metrics section above. As 

the ML training process is stochastic, the results can vary between training runs. To ensure representative 
results, Table 3 shows the mean and sample standard deviation of each numerical metric based on 10 runs. 
The confusion matrices shown below originate from runs whose results were representative of this mean. 

 

   
Figure 7—Balanced confusion matrices in terms of every annular condition code. The codes are sorted and gridded according to 

their hydraulic isolation potential. Left: 5-fold cross-validation on the training set. Right: Evaluation on the test set. 
 
Figure 7 shows confusion matrices of the annular condition codes defined in Table 1. The confusion 

matrices are subdivided into grids, where annular condition codes of the same hydraulic isolation potential 
are grouped. Many annular condition codes are predicted well by the ML classifier, in particular those of 
high and no isolation potential.  



However, some annular condition codes are poorly predicted. Some of these annular condition codes, 
such as MAWCem and FORMCEM, represent rare conditions with a low prevalence in the dataset (see 
Table 2). Hence, the classifier has few examples to learn from during training, as well as few cases to test 
its performance against. For the evaluation on the test set, the MAWCem 4E and 4F classes are missing 
from the confusion matrix, as these annular condition codes are not present in the test set. 

Figure 7 

   
Figure 8—Balanced confusion matrices in terms of isolating potential. Left: 5-fold cross-validation on the training set. 

Right: Evaluation on the test set. 
 
Figure 7 shows that when annular condition codes are confused with each other, they are largely 

confused with other annular condition codes of the same isolating potential. One can investigate this more 
directly by pooling annular condition codes according to their isolating potential. Figure 8 shows the 
resulting confusion matrices. The classifier is very good at identifying high isolation potential, as well as 
the more-or-less-free-pipe conditions identified as “not applicable” isolating potential. 

 

                   
Figure 9—Balanced confusion matrices in terms of a binary classification problem on annular condition codes representing high 
isolating potential (“positive”) versus other annular condition codes (“negative”). Left: 5-fold cross-validation on the training set. 

Right: Evaluation on the test set. 
 

Going a step further, the results can be turned into a binary classification problem by pooling annular 
condition codes representing high isolating potential into the “positive” group, and all other annular 
condition codes in the “negative” group. Figure 9 shows the resulting confusion matrices. As mentioned 



in the introduction, it is important to avoid false negatives and false positives, and the classifier is quite 
proficient at avoiding these issues. The false negative rate is only around 12%, while the false positive 
rate is as low as around 4%. Hence, the chance of the classifier misidentifying a non-isolating interval as 
isolating is low. 

 

   
Figure 10—Joint plots of accuracy on a log-by-log basis, with cross-plots of different accuracy types and marginal histograms for 

each type. Left: 5-fold cross-validation on the training set. Right: Evaluation on the test set. 
 

The results shown so far are based on either the entire training set or the entire test set. It is also relevant 
how much the results can vary from log to log. Figure 10 cross-plots the full accuracy (treating every code 
separately as in Figure 7) and the binary accuracy (as in Figure 9) for every log in the training and test 
sets, with marginal histograms for each type of accuracy. We see that the spread in full accuracy is much 
larger than the spread in binary accuracy. In the test set, every log has a binary accuracy above 90%. 
Furthermore, the two types of accuracy are not strongly correlated; a low full accuracy for a log does not 
imply a low binary accuracy or vice versa. 

 
Discussion 
Performance 

The full confusion matrix in Figure 7 implies that the ML often confuses certain neighboring annular 
condition codes that we know are inherently difficult to be perfectly consistent with. The most 
straightforward examples are the MUDS 8A/8B/8C codes, which differ only in the degree of packing 
density of the settled mud solids. Figure 7 shows that MUDS 8B, in particular, is frequently confused with 
the MUDS 8A and MUDS 8C codes. 

As another example, consider the classes describing well-bonded cement, CEM 1A/1B/1C. While the 
classifier identifies the homogeneous cement of CEM 1A well, the heterogeneous cement of CEM 1B is 
more difficult to separate from CEM 1A, both for experts and the classifier, as there is no clear-cut point 
of transition between homogeneous and heterogeneous cement. And the even more heterogeneous CEM 
1C class, which can include small liquid pockets or channels that are unlikely to affect the hydraulic 
isolation, is also particularly challenging. With a more detailed zonation, the well-cemented parts of a 
CEM 1C zone could be identified as CEM 1A or CEM 1B zones, while the liquid pockets and channels 
could be identified as PATCem or CHNCem zones. It is expected that the classifier’s performance suffers 
due to such annular condition codes, due to being trained on examples with some internal inconsistency, 
as well as being evaluated against similarly inconsistent data. Even so, while this inconsistency leads to a 



reduction in quantitative performance, it might not be felt by cased hole logging interpreters as a reduction 
in qualitative performance, as they have experience dealing with such uncertainties. 

Compared with a previously published work with a comparable approach whose performance was 
quantified on a large dataset (Viggen et al. 2021), Table 3 shows that the quantitative results in the current 
work are very good. This previous work interpreted logs in terms of two separate parameters: Bond 
quality, with 6 ordinal classes, and hydraulic isolation, with 2 classes. For bond quality, one can compare 
the results with those of the current full classification problem, which is much more difficult, having 28 
classes instead of 6. Despite this, these current results are almost as good or better than previous bond 
quality results. For hydraulic isolation, one can directly compare the results with the current binary results 
to find that the previous results are outperformed by the current results on all but one metric. 

 
Success Factors 

Why, specifically, is the approach taken here better than that of previous work? Some success factors 
can be identified: 

• The interpretation schema is different; while the previous work used an inherently subjective 
Likert scale-like interpretation schema for bond quality, the current work uses the more specific 
and objective interpretation schema shown in Table 1, which is likely to lead to more consistent 
expert interpretations 

• The datasets in the current work have undergone a QC process to further improve their internal 
consistency 

• This work has applied several other improvements suggested but not implemented by Viggen 
et al. (2021) to improve the feature set, for example: 

o Calculating features from both short- and longer-range context intervals 
o Including features based on metadata such as the theoretical top of cement, the time 

between cementing and logging, and others 
• The decision to use a simpler classifier together with a more comprehensive feature engineering 

step instead of using a convolutional neural network approach has proven successful 
• The work has been performed by a cross-functional team using an agile project methodology, 

and this has been very efficient and effective, despite the pandemic 
 

Limitations 
The current dataset only contains data from one service company. While various service companies 

can perform cement logs providing similar CBL and ultrasonic pulse-echo data, the lack of standardization 
in how log data should be stored and represented means that the data provided by different vendors must 
be handled in different ways when preparing the logs for machine learning. This handling has currently 
not yet been implemented for more than one service company; in the near future, the tool and the dataset 
will be extended to data from multiple service companies. 

As mentioned in the Data Selection section, some logs are afflicted by stripes of spurious low 
impedance at the bottom of the casing due to mud segregation. As the assisted cement log interpretation 
tool takes the input log data at face value (apart from the outlier removal described in the Data 
Preprocessing section), it would regard these stripes as actual low-impedance channels behind the casing, 
which could lead to mispredictions. While one service company provides a processing algorithm that 
accounts for this effect of mud segregation (Thierry et al. 2016, Klieber and Lemarenko 2016), this 
reprocessing can only be performed on recent logs from this service company. Logs where such stripes 
are present and where reprocessing is not possible should not form part of the training or test sets. 
Furthermore, when the interpretation tool is applied to such logs, it would produce questionable 
predictions in the intervals where these stripes are present. 

The current tool requires using the interpretation schema shown in Table 1. Consequently, the dataset 
must consist solely of cement logs interpreted according to this schema. While it would be relatively 



straightforward to adapt the tool to use a different interpretation schema, this adaptation would also require 
substituting the dataset with a new dataset interpreted according to the new schema. 

Furthermore, the current assisted interpretation tool can only interpret logs recorded with the same 
logging tools as used for the training set, or logging tools that are interchangeable with those used for the 
training set. As described in the Feature Extraction section, the interpretation tool is currently based on 
CBL curves and acoustic impedance images, which are available for all logs in the training set. Using the 
interpretation tool on a log with, say, an impedance image but no CBL curve would require either imputing 
an artificial CBL curve based on the impedance, or using an ML classifier trained without using CBL. 
Making use of data from other kinds of logging tools that are not present in the training dataset would 
require assembling a new dataset of logs produced with the desired combination of logging tools, defining 
features to be extracted from the new logging tools, and retraining the ML classifier on this dataset using 
these features. 

The current interpretation tool is also limited to interpreting logs from the same kind of wells as in the 
current training set. For example, the logs in the training set are recorded in wells cemented with 
conventional cements. If the trained ML classifier were applied to a log from a well cemented with 
lightweight cement, whose acoustic impedance is lower than that of conventional cements, its predictions 
would not be reliable. Viggen et al. (2021) discuss this issue further. 

 
Conclusions 

1. This work presents a tool for assisted cement log interpretation based on supervised machine 
learning, where a dataset of previously interpreted acoustic cement log data is used for training the 
tool and evaluating its performance. 

2. The implemented tool can produce an automatic interpretation of a well log to be used as a basis 
for an expert interpretation and is currently being beta tested by cased hole logging domain experts 
as an integrated part of their workflow. 

3. New logs can be continuously added to the training dataset, continuously improving the 
performance of the tool. 

4. The current work represents a significant improvement over previously published work whose 
performance has been quantified on a large dataset. 

5. A major success factor is the usage of a more specific and objective interpretation schema that 
reduces the effect of subjectivity, as well as thorough quality control of the dataset. 

6. The source code of this tool is intended to be shared as an open-source library. This will allow a 
broader usage in the industry and enable the operators and vendors to perform more consistent 
cement log interpretations going forward.  
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