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Abstract: A high prediction accuracy of optical printer models is a prerequisite for accurately
reproducing visual attributes (color, gloss, translucency) in multimaterial 3D printing. Recently,
deep-learning-based models have been proposed, requiring only a moderate number of printed
and measured training samples to reach a very high prediction accuracy. In this paper, we present
a multi-printer deep learning (MPDL) framework that further improves data efficiency utilizing
supporting data from other printers. Experiments on eight multi-material 3D printers demonstrate
that the proposed framework can significantly reduce the number of training samples thus the
overall printing and measurement efforts. This makes it economically feasible to frequently
characterize 3D printers to achieve a high optical reproduction accuracy consistent across different
printers and over time, which is crucial for color- and translucency-critical applications.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Reproducing visual attributes (color, gloss, or translucency) via 3D printing requires optical
printer models that accurately predict optical properties of the printed output from the input
signals controlling the printer. Such signals can be material ratios or arrangements as well as
print-process parameter selections.

Optical printer models can be classified into phenomenological models [1–16], models based
on the radiative transfer equation (RTE) or its simplifications [17–22], and neural-network-based
models [23–28]. A discussion of these models can be found in our paper [27]. The process of
fitting the parameters of an optical model using printed and measured samples is called optical
characterization. The objective of developing a printer model is to maximize prediction accuracy
while minimizing optical characterization effort.

In this paper, we propose a framework that uses existing optical characterization data from
multiple printers to improve the prediction accuracy of deep-learning-based models on a targeted
printer. This approach improves accuracy without requiring more data from the targeted printer.
In turn, it needs drastically less data to achieve a similar accuracy. To our knowledge, this is the
first approach for optically modeling a printer using characterization data from other printers,
even though these printers might differ from the targeted printer significantly as described in the
following.

We denote by a printing system the combination of hardware, software and used printing
materials. Even if controlled with equal input signals, different 3D printing systems produce
outputs that can significantly differ in appearance. This is not surprising because

1. printing material sets can significantly differ in intrinsic optical (refractive index, scatte-
ring, absorption, phase function) and mechanical properties (viscosity, surface tension),
impacting light transport and physical material mixing behavior,

2. the software can use halftoning algorithms resulting in different material arrangements, or
interlacing strategies for material placement,
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3. the hardware may differ in material placement accuracy or other factors such as UV
exposure in material jetting.

For these reasons, an optical printer model fitted to one printing system performs usually
poorly if applied to a different printing system.

On the other hand, even two instances of the same printing system (e.g. two printers using the
same material set, software and hardware, but located at two different geographic locations) may
create deviating outputs for the same control signal because of material lot variability, different
maintenance state or deviating environmental factors (humidity or temperature). We call it
inter-printer variability. These factors may also cause a printing system to deviate over time,
which we call intra-printer variability. Optical printer models must be re-fitted to account for
inter- and intra-printer variability to ensure maximum prediction performance.

Yet another important factor causing deviations in the visual appearance of the printed object
is post-processing, such as polishing, clear coating or applying chemical treatments. Fig. 1 shows
the color difference histogram of the same set of physical samples measured before and after
applying a silicone-based plastic care treatment that seals the surface of the prints preventing them
from drying out. The average color difference between post-processed and non-processed prints
is large, particularly for dark samples. Existing optical printer models do not model postprocess
treatments. They consider them only implicitly because their parameters are fitted to printed and
measured samples on which the postprocess has been applied. If the postprocess changes, the
models must be re-fitted, requiring a complete new set of printed, post-processed and measured
samples.

Fig. 1. Histogram of CIEDE2000 color differences between printed samples with and
without applying plastic care post-process treatment. The dashed line represents the average
color difference, and the solid line represents the average color difference for dark samples
with L∗<20.

For the sake of simplicity, in the following we will use the term different printers to mean all
these settings: different printing systems, different instances of the same printing system and
printing systems with deviating post-process treatments.

Despite all the factors of different printers causing the appearance of their outputs to deviate,
various optical and mechanical mechanisms are shared across such prints. These similarities
may include physics of light transport or the volumetric material arrangement for prints which
only deviate in postprocess treatments. The similarities dominate for similar printing systems
even though the inter- and intra-printer variability might be noticeable. This leads to the open
research question of how to exploit data from other printing systems possessing these similarities
to 1) improve an optical model’s prediction accuracy for a particular printer, or 2) to reduce the
characterization effort by using fewer training samples without sacrificing accuracy.

In this paper, we propose a methodology answering this research question. We make the
following contributions:
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1. A dataset embedding-based learning framework to improve prediction accuracy and data
efficiency of deep-learning optical printer models, by using existing characterization data
from different printers.

2. A contrastive learning-based approach to learn dataset embeddings that are used as extra
inputs (besides material arrangement or tonals) of the above dataset embedding-based
learning framework.

3. A learning strategy for training the model and fitting its hyperparameters.

The proposed methodology can drastically reduce the number of required samples that have to
be printed, measured and postprocessed to characterize a targeted printing system for achieving
an application-specific prediction accuracy. This makes it economically feasible to continuously
(e.g. every month/season instead of every one/several years) characterize machineries of 3D
printers to achieve more consistent output across different printers and over time with smaller
tolerances, which is crucial for color- and translucency-critical applications such as 3D printed
prosthetic eyes or dental restorations.

2. Precondition and problem formulation

In this paper, an optical printer model is a function Φ : T ↦→ S × A that predicts spectral
reflectances r ∈ S = [0, 1]N and translucency [29] α ∈ A = [0, 1] from material arrangement i.e.
tonals t ∈ T = [0, 1]M , |t|1 ≤ 1. N is the number of considered wavelengths that is set to N = 31
with equidistant sampling in the range of [400nm, 700nm]. A 3D printing system using M + 1
printing materials can be controlled by an M-dimensional tonal vector, because the fraction of
the (M + 1)-th material in the material mixture is implicitly defined by 1 − |t|1. Here we use
M = 5 corresponding to the materials cyan (C), magenta (M), yellow (Y), black (K), and clear
(T). The implicitly defined material is white (W), i.e. for a printer using CMYKWT materials,
t = (0, 0, 0, 0, 0) corresponds to the pure white ink. This approach can be generalized to more
and other materials. As described in our previous works [27,28], different printing systems
have different transforms to convert nominal tonals to effective tonals (e.g. 1D-per-tonal curves
as described in [30]) for final printing. The previous works simply used the nominal tonals
and this was not an issue because the optical printer characterizations for different printers are
independent. However, in the setting of cross-printer generalization, using the same effective
tonal space will reduce the input discrepancy among different printers. For this reason, we use
effective tonals.

To characterize a new printer, existing datasets from other printing systems could be helpful in
addition to the dataset collected for the targeted printer. Suppose there are m datasets {Di}

m
i=1

collected from m printers respectively. Di is the dataset from the ith printer, consisting of
ni samples, i.e. Di = {(t(j)i , r(j)i ,α(j)i )}

ni
j=1, where t(j)i ∈ T = [0, 1]M is the tonal vector of the

jth sample in Di, r(j)i ∈ S = [0, 1]N is the corresponding spectral reflectances vector, and
α
(j)
i ∈ A = [0, 1] is the corresponding translucency α-value. Without loss of generality, we

regard the Γth (1 ≤ Γ ≤ m) printer as the targeted printer that we want to characterize using its
dataset DΓ, as well as all datasets from other printers i.e. {Di |i ≠ Γ}m

i=1 as supporting data. In
practice, the supporting datasets are from historical characterizations of other printers.

To facilitate reading, we provide a symbol lookup table in Appendix A.

3. Dataset embedding-based multi-printer learning framework

We propose a dataset embedding-based Multi-Printer Deep Learning Framework (or MPDL) to
improve characterization accuracy and data efficiency, utilizing data from other printers. In the
MPDL framework, each dataset Di is implicitly represented by a pre-learnt vector (referred to as
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dataset embedding) ei ∈ E = RK (e.g. K=256). The dataset embeddings ei and ej (i ≠ j) for 2
dissimilar printers Di and Dj should be different enough in order to help discriminate printers,
while for similar printers the embeddings should be similar to reflect printer similarity. Dataset
embedding ei ∈ E are fed into a single neural network to discriminatively learn diverse optical
and mechanical mechanisms of multiple printers simultaneously. For this, the optical printer
model’s input domain is extended by the dataset embeddings E, i.e. Ωθ : T × E ↦→ S × A,
whereΩθ is an extended neural network-based optical printer model and θ is the neural network’s
parameters to be trained.

The proposed MPDL framework is general and not limited to a certain way of obtaining dataset
embedding ei ∈ E. Nevertheless, in Section 4 we will propose a contrastive learning-based
approach to learn such dataset embeddings.

3.1. Dataset-aware feature learning

To allow the neural network to learn not only printer-dependent mechanisms but also printer-
independent behavior (considering underlying similarities among printers), as shown in Fig. 2,
we designed a 2-path feature learning: A path with hidden layers to learn dataset-aware features
from dataset embedding ei shown in Fig. 2(I), and another path with hidden layers to learn
dataset-agnostic features from tonals t shown in Fig. 2(II). The learnt features from the 2 paths
are merged via concatenation and fed to a sub-network shown in Fig. 2(III) that predicts the
final appearance (translucency, spectral, and CIELAB color). The dataset-agnostic path and
the dataset-aware path both consist of one hidden layer with 200 neurons, so the 2-path merged
features contains 400 entries. The sub-network has the same structure as PDL [27] or RPDL
[28] models, except that the first hidden layer of PDL and RPDL is discarded and that the
sub-network takes as input the aforementioned 2-path merged features instead of tonals directly.
Specifically, the trunk of the sub-network has 2 hidden layers each with 300 neurons. The
reflectance-predicting branch has one hidden layer with 100 neurons and an output layer with 31
neurons to predict spectral reflectances r ∈ S = [0, 1]31. The translucency-predicting branch
has one hidden layer with 30 neurons and an output layer with 1 neuron to predict translucency
α ∈ A = [0, 1]. Note that PDL and RPDL take as input the dataset-agnostic tonals only and thus
are not able to perform dataset-aware feature learning, i.e. are not able to discriminatively learn
diverse printer behaviors.

The dataset-agnostic path, the dataset-aware path, and the sub-network are trained together
in an end-to-end manner with tonals and dataset embeddings as inputs, and with appearance
(translucency, spectral, and CIELAB color) as output.

The whole framework contains around 0.3 million neural network parameters. We show a
more detailed structure of the neural network in Section 1 of Supplement 1.

3.2. Dataset embedding-based adaptive loss weights

The state-of-the-art deep learning optical model, RPDL [28], used a loss that is a weighted
summation of 6 loss terms:

ERPDL = Ecol + a1Eref + a2Etra + a3Emono_LK + a4Emono_AT + a5Elap (1)

where Ecol is the CIEDE2000 color error computed for specific viewing conditions (illuminant,
observer), Eref is the spectral reflectances root-mean-square error (RMSE), Etra is the α-based
translucency absolute error, Emono_LK is monotonicity loss for lightness CIE-L∗ w.r.t. black
material K, Emono_AT is monotonicity loss for translucency α w.r.t. transparent material T , and
Elap is Laplacian smoothness loss. RPDL adopted the first three loss terms from PDL [27].
Weights a1−5 ∈ R are printer-agnostic hyper-parameters and are selected as described in [28], in
particular a1 = 50, a2 = 10, a3 = 0.1, a4 = 0.1, and a5 = 10−5. For more details on loss terms
and automatic hyper-parameter tuning we refer to [28]. We also list all loss terms in Appendix B.

https://doi.org/10.6084/m9.figshare.22301320
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Fig. 2. Overview of the proposed dataset embedding-based learning framework. A
dataset-aware learning path (I) that learns from dataset embedding ei the printer-dependent
features, complementing a dataset-agnostic learning path (II) that learns from tonals the
printer-independent features. The features learnt by the two paths are concatenated to be fed
into a sub-network (III) that predicts the resulting spectral, CIELAB color and translucency
α. On these predictions, we calculate (IV) the spectral loss Eref, the color loss Ecolor, and
the translucency loss Etra. Superscript (i, j) corresponds to the jth sample in the ith dataset
Di. These losses are adjusted (V) by multiplying with our proposed adaptive loss weight ci
(VI) that depends on L2 distance between the ith dataset Di’s embedding ei and the targeted
dataset DΓ’s embedding eΓ: the smaller this embedding distance, the bigger weight ci is
assigned to Di.

In contrast to RPDL where all samples are treated equally in the loss function, we treat samples
discriminatively based on their underlying contributions to the characterization of the targeted
Γth printer. We apply a function adaptation to assign bigger weights to samples of those datasets
that are more similar to the targeted dataset than those that are less similar. Dataset similarity is
evaluated via distance in dataset embedding space. Specifically, we adapt Eref, Ecol and Etra in
Eq. (1) by applying a per-sample coefficient ci (Fig. 2(V) and (VI)) as follows:

E′
ref =

1∑︁m
i=1 ni

m∑︂
i=1

ci

ni∑︂
j=1

E(i,j)
ref (2)

E′
col =

1∑︁m
i=1 ni

m∑︂
i=1

ci

ni∑︂
j=1

E(i,j)
col (3)

E′
tra =

1∑︁m
i=1 ni

m∑︂
i=1

ci

ni∑︂
j=1

E(i,j)
tra (4)

where superscript (i, j) corresponds to the jth sample in the ith dataset Di, and ci is a dataset-
dependent weight shared by all the above three loss terms for samples within the ith dataset Di,
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with ci defined as:
ci = exp(−∥ei − eΓ∥2/λ) (5)

where ∥ei−eΓ∥2 represents the L2 distance between the dataset embeddings of datasets Di and the
targeted dataset DΓ (Note the Γth dataset is from the targeted printer), and λ is a hyper-parameter
shared across all printers.

Since ∥ei − eΓ∥2 ∈ [0,∞), we have ci ∈ (0, 1] with ci = 1 for the targeted dataset itself. The
more similar a dataset Di is to the targeted DΓ, the smaller is the L2 distance between their
dataset embeddings (i.e. the smaller ∥ei − eΓ∥2), the bigger is the loss weight ci for dataset Di.
In this way, the contribution of characterization data from different printers to train the optical
model for the targeted printer is considered based on their similarity to the targeted printer’s
characterization data.

The parameter λ in Eq. (5) is the only hyper-parameter to tune in the loss function. When the
targeted Γth printer has sufficient samples in its dataset DΓ, samples from supporting printers
might have adverse influences by over-constraining the neural network’s capacity, in which case
we need to reduce the influence from those supporting printers. On the other hand, when the
targeted Γth printer has only scarce data, the neural network suffers from overfitting, in which
case we need to increase the influence from those supporting printers that could provide extra
constraints on the neural network. In the MPDL framework, the influence from those supporting
printers is automatically adjusted via the tunable λ parameter: The larger λ, the larger is the
influence from supporting printers, and vice versus. Note that λ is shared across all printers as
a global controller. The automatic tuning process simply selects the λ ∈ {0.01, 0.1, 1, 10} that
minimizes the CIEDE2000 color difference on the validation data.

The final loss function in our MPDL framework is specified by replacing Eref, Ecol and Etra in
Eq. (1) with E′

ref, E′
col by E′

tra as defined in Eq. (2)–(4):

E = E′
col + a1E′

ref + a2E′
tra + a3Emono_LK + a4Emono_AT + a5Elap (6)

3.3. Remarks on the necessity of dataset embeddings

One benefit of using dataset embeddings in the proposed MPDL framework is that dataset
embeddings allow a dataset-aware learning path (Section 3.1) to learn printer-dependent behaviors,
complementing the dataset-agnostic learning path that learns only printer-independent behaviors
(considering underlying printer similarities).

Another benefit of using dataset embeddings is that dataset embeddings allow adaptive loss
weights (Section 3.2) for different datasets based on dataset embedding similarity between each
supporting dataset and the targeted dataset. This adaptively adjusts the supporting datasets’
impacts on the characterization of the targeted printer.

4. Contrastively learnt dataset embeddings

To obtain dataset embeddings {ei} that are fed into the proposed MPDL framework, we propose
a contrastive learning-based strategy. Contrastive learning has recently become a dominant
technique due to its success in representation learning for natural language processing (NLP) and
computer vision [31]. It typically learns to represent each input sample as a latent vector (also
referred to as an embedding or representation) [32–34]. The learnt latent vector instead of the
original sample is then used as an input of another learning task (referred to as a downstream
task) e.g. an image classification task [35]. Contrastive learning requires none or just few data
annotations (e.g. Images are annotated to belong to class 1 or class 2) which could be difficult or
expensive in many applications, and this allows it to learn on a large amount of unlabeled data
(e.g. numerous unlabeled images on Internet) to extract useful information for a downstream task
whose training data is labeled but significantly smaller. We refer to Section 2.A of Supplement 1
for more details about the related works.

https://doi.org/10.6084/m9.figshare.22301320
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Similar to [32], our strategy to learn dataset embeddings comprises four major components:

1. A transformation module shown in Fig. 3 (I) that randomly transforms any dataset Di
into two vectors vi1 and vi2 , that we call views. To derive a view from dataset Di,
two successive steps are executed: 1) uniform-randomly sample a subset ˜︁Di1 ⊂ Di of
cardinality p (In this paper, we use p = 100); 2) rearrange elements of ˜︁Di1 to a vector
vi1 = (t(1)i1 , r(1)i1 ,α(1)i1 , . . . , t(p)i1 , r(p)i1 ,α(p)i1 ) where t(j)i1 is the tonal of jth sample of ˜︁Di1 , r(j)i1 is
the corresponding spectral reflectance, and α(j)i1 is the corresponding translucency. Note
that two views vi1 and vi2 derived from the same dataset can be correlated because the
corresponding subsets ˜︁Di1 , ˜︁Di2 ⊂ Di may have elements in common. A pair of views,
(vi1 , vi2 ), derived from the same dataset is called positive pair.

2. A neural network encoder f shown in Fig. 3(II) that produces intermediate representations
from dataset views (i.e. from vi1 and vi2 ). For simplicity, we adopt the encoder architecture
from [34] that is a fully-connected network comprising 4 hidden layers each with K=256
neurons.

dataset 

subset sampling

subset subset 

vector vector 

rearrange to vector

encoder network 

projection head
network 

maximize
similarity

(I)

(II)

(III)

(IV)

After training,  is used to extract dataset
embedding by averaging its predictions

over  randomly-derived views:  
 

 where  is used in this paper

(V)

subset sampling

rearrange to vector

encoder network 

projection head
network 

Fig. 3. Overview of a proposed strategy to learn dataset embeddings. Each dataset Di is
processed by a transform module (I) that consists of a subset sampling step resulting in 2
sub-datasets i.e. ˜︁Di1 and ˜︁Di2 and a successive step that rearranges elements of each subset
into a vector views vi1 or vi2 . The 2 views are fed into (II) a neural network encoder f to
produce intermediate representations hi1 and hi2 . The intermediate representations h is
further mapped by (III) a small neural network projection head g to high-level features zi1
and zi2 . A contrastive loss function (IV) is calculated on z to encourage the 2 derived views
from the same dataset to be similar in z feature space. After training, dataset embedding (V)
is obtained by averaging h over multiple randomly-derived views.



Research Article Vol. 31, No. 8 / 10 Apr 2023 / Optics Express 13493

3. A small neural network g, called projection head, shown in Fig. 3 (III) maps dataset
embeddings to higher level features i.e. zi = g(hi) on which a contrastive loss (see below)
is calculated. We adopt the projection head architecture from [34] that is a fully-connected
network comprising 2 hidden layers each with 256 neurons. With the loss calculated on z,
[32] and [36] observed performance gains by using h rather than z as learnt representation
for downstream tasks, and based on experiments they showed that h contains more
information for downstream tasks than the condensed z.

4. A contrastive loss function used in Fig. 3(IV) encourages each positive pair of views (i.e.
derived from the same dataset) to be similar in z feature space, and each negative pair of
views (i.e. derived from 2 different datasets) to be dissimilar in z feature space. Similar to
[32–34], we adopt the InfoNCE [37] loss that is commonly used for contrastive learning,
and we calculate it on each positive pair of samples (i, j):

L(i, j) = − log
exp(si,j)∑︁

k∈V |k≠i exp(si,k)
(7)

where si,j = zT
i zj/(∥zi∥2∥zj∥2) measures the cosine similarity between zi and zj, V =

{11, 12, . . . , m1, m2} is the index set corresponding to the 2m views from the m datasets.
Note that negative pairs of views are used in the denominator in Eq. (7), i.e. one view from
each considered dataset is compared with view i.

Algorithm 1. Contrastive learning-based algorithm for learning dataset embeddings.

The networks f and g are trained jointly according to Algorithm 1. Note the 2 derived views
from each dataset are re-sampled at every training iteration in order to well cover the dataset.
After training, for each dataset Di, we use f to obtain the dataset embedding by averaging f ’s
output i.e. h representations predicted on q randomly-derived views of Di. We use q = 100 in this
paper. Specifically, Di’s dataset embedding ei is obtained by ei = (

∑︁q
j=1 hij )/q = (

∑︁q
j=1 f (vij ))/q

where vij is the jth of q views derived from dataset Di. The resulting dataset embeddings {ei} are
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used in the proposed MPDL framework described in Section 3. In Section 2.B of Supplement
1, we further discuss the necessity and advantages of this averaging way of calculating dataset
embeddings.

5. Experiments

5.1. Datasets

We use all four datasets described in [27,28] to characterize state-of-the-art material-jetting
3D-printers employing six materials (cyan (C), magenta (M), yellow (Y), black (K), white (W),
clear (T)): Two datasets to characterize Stratasys J750 printers and two datasets to characterize
Mimaki 3DUJ-553 printers, respectively. The Stratasys printers use VeroCyan-V, VeroMagenta-V,
VeroYellow-V, VeroBlack, VeroPureWhite, and VeroClear materials and the Mimaki printers use
MH100-C-BA, MH100-M-BA, MH100-Y-BA, MH100-K-BA, MH100-W-BD, and MH100-CL-
BD materials. The datasets consist of reflectance and α-measurements of printed flat targets
with known tonal values, except for those datasets where all samples are opaque and thus
α-measurements were not collected and not available for experiments. We denote the two
Stratasys datasets as Stratasys 1 and Stratasys 2, and the two Mimaki datasets as Mimaki 1 and
Mimaki 2. We refer to [27] for details on the set of sampled tonal values and the measurement
setup. In addition, we collected four more datasets from Stratasys printers using the same
measurement setup:

Stratasys 3: The data comes from a printing system similar to Stratasys 1 except that the rigid
VeroCyan-V, VeroMagenta-V, VeroYellow-V, VeroPureWhite materials have been replaced by
flexible AgilusCyan, AgilusMagenta, AgilusYellow, AgilusWhite materials. The dataset consists
of a regular grid {0, 63.75, 127.5, 191.25, 255}4 ⊂ CMYK of tonal values, and 1000 random
CMYK-samples. All samples are opaque, i.e. T = 0. In total there are 54 + 1000 = 1625
samples.

Stratasys 4: The data comes from a different instance of a printing system similar to Stratasys 1.
It consists of 450 random CMYKT-samples and 100 CMYKT-samples randomly selected from
Stratasys 1 (i.e. The two corresponding printers printed these 100 samples using the same material
arrangement controlled by tonal values, resulting in 100 printed samples from each printer, which
can be used to investigate inter-printer variability). In total there are 450 + 100 = 550 samples.

Stratasys 5: The data consists of the 450 random CMYKT-samples from Stratasys 4 printed
by a different instance of the same printing system, to investigate inter-printer variability.

Stratasys 6: The samples have been printed on a Stratasys J850 printer with VeroCyan-V,
VeroMagenta-V, VeroYellow-V, UltraBlack, UltraWhite, VeroClear and UltraClear materials.
UltraClear and VeroClear are both controlled by the same tonal value T whereas UltraClear is
used in the core of the prints and VeroClear close to the surface. The dataset consists of a regular
grid {0, 127.5, 255}5 ⊂ CMYKT of tonal values, 1757 random CMYKT-samples, 1500 random
opaque CMYK-samples with T = 0, 500 random CMYK-samples with T = 255, 187 light-color
opaque CMYK-samples, and 113 random CMYKT-samples from Stratasys 2. In total there are
35 + 1757 + 1500 + 500 + 187 + 113 = 4300 samples.

In summary, the characterization data covers a wide range of different printing systems (models
and materials) and includes also different instances of the same printing system allowing to
investigate model performance on inter-printer dissimilarities .

5.2. Computing and evaluating predictions

Random samples from the dataset belonging to the targeted printer are held-out as the test set, and
the remaining samples are split into a validation and a training set: The validation set consists of
10% of these samples to fit the hyper- and regularization parameters and the training set consists
of the remaining 90% samples to fit the neural network weights. The training set from the

https://doi.org/10.6084/m9.figshare.22301320
https://doi.org/10.6084/m9.figshare.22301320
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targeted printer, as well as all samples from supporting datasets, are used for training. Validation
data and test data are only from the targeted printer.

Similarly to the PDL and RPDL models [27,28], non-test samples of the targeted printer
are uniform-randomly split into validation samples and training samples as per the ratio being
validation:training=10%:90%. This random validation-training splitting is performed 10 times
independently with different randomizations e.g. via different random seeds across different
splitting runs. For each random splitting, a MPDL model is trained on all training samples (i.e.
the training samples from the targeted printer, plus all samples from all other printers), and the
model’s hyperparameters are fit based on the validation samples from the targeted printer. The
10 different validation-training splittings result in 10 slightly differently trained models. After
training, we averaged the predictions computed by these 10 models. Note that the union of
training and validation data is exactly the same for the 10 models, with the same test data always
unseen.

The contrastive learning neural network is trained on the same union of training and validation
data as the neural network in the MPDL framework.

5.3. Environment and model training setup

All neural networks are implemented with TensorFlow 2.2.0, and trained on an NVIDIA GeForce
RTX 3090 GPU. Training a MPDL neural network takes approx. 300s for 282 training samples of
Stratasys 1 as targeted printer and a total of 19317 samples from supporting printers, i.e. totally
282+19317=19599 training samples. We observe a similar runtime for other targeted printers if
a similar number of training samples are used. Training a contrastive learning neural network
takes approx. 30s.

For the MPDL neural network, Adam optimizer with an initial learning rate of 0.003 is used.
The same learning rate decay as in [28] is used. For the contrastive learning neural network,
Adam optimizer with a fixed learning rate 0.0003 is used.

5.4. Results

In Fig. 4, we compare MPDL with the state-of-the-art RPDL model [28] in terms of prediction
accuracy. All results are evaluated on the test data of the targeted printer. Models trained on the
entire union of training and validation data are indicated with the term Big Data. To investigate
the performance of the models on much smaller data, we also trained some models with only
10% of the union of training and validation data. These models are indicated with the term Small
Data. To show how good RPDL generalizes across printers, we show also the best results of
the RPDL model on the targeted printer while trained on another printer’s dataset (The targeted
printer’s data was not used for training). These results are indicated by best reference model.

The results in Fig. 4 show:

1. When directly reusing the best reference model, the mean color prediction error on the
targeted dataset is high, ranging from CIEDE2000 = 2 to 18. One example is Stratasys
6, for which the best reference model is trained on Stratasys 4 data yielding CIEDE2000
around 5. Another example is Stratasys 3, for which the best reference model has a very
poor average CIEDE2000 prediction error of 10. These two printing systems use very
different materials than all the other printing systems, as described in Section 5.1. A color
difference of CIEDE2000 > 5 is not acceptable for most color critical applications. This
shows the poor model generalization performance across different printing systems.
Characterization datasets from different instances of the same printing system (Stratasys 1-2
and 4-5) indicate also a noticeable inter-printer variability because prediction errors from
the best reference model are noticeably larger than from RPDL trained on the full targeted
training dataset. The best reference model’s prediction errors range from CIEDE2000 = 2
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Fig. 4. Accuracy comparison between RPDL and MPDL. Each bar shows the average
prediction error, and the whisker above the bar shows the 90-th percentile of that prediction
error. For the best reference model, only the average error is shown. Note translucency α
measurements are not available for Stratasys 3-6 and Mimaki 2, thus there are no translucency
α plots for these datasets.

to 3, which might not be acceptable for color critical applications, such as for prosthetic
eyes or dental restorations. This shows also the limits of using an universal color profile
for different instance of a printing systems.

2. MPDL outperforms the state-of-the-art RPDL model learned on just the targeted charac-
terization data by a large margin especially for small data: For small data of Stratasys
5, MPDL improves color accuracy by up to 6.8 times. For Stratasys 2, Stratasys 5, and
Mimaki 2, MPDL trained on small data leads to an accuracy comparable with RPDL
trained on big data, meaning 10X data reduction for a similar performance. This verifies
the data efficiency of MPDL employing supporting data from other printers.

3. Surprisingly and interestingly, despite very poor performance of the best reference models
due to the differences among printers, adding data from supporting printers into MPDL can
significantly improve accuracy for the targeted printer: For Mimaki 1, the best reference
model has a very high prediction error of CIEDE2000=18, indicating that the targeted
printer is very different to the other printers. The RPDL model on small data has an
average prediction error of CIEDE2000=2.3, but adding supporting datasets into MPDL
significantly reduces the prediction error to CIEDE2000=1.4 on small data, i.e. by about
40%. Even if printing systems are very different their characterization data possess some
underlying similarities, so it is beneficial to let the model learn printer-independent general
features on multiple datasets simultaneously, because the supporting datasets provide extra
constraints as regularization to improve the model’s generalization performance on the
targeted dataset. This verifies the effectiveness of MPDL employing supporting datasets
from other printers. We speculate that underlying information shared by datasets from
very different printers can be exploited by the MPDL framework: Potentially it is related
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to the physics of light transport or similar strategies for halftoning, i.e. statistically similar
droplet positioning that ideally has blue-noise characteristic [38]. This is an interesting
research question that we cannot answer in this paper.

4. The second row of subplots shows that spectral prediction errors (Root Mean Square Error,
or RMSE) have a similar trend as color prediction error (CIEDE2000) and that we can
draw the same conclusions as in 1-3.

5. The third row of subplots shows that the accuracy improvement on translucency α
predictions is not as large as for color or spectral predictions, even though translucency
data is available only in three datasets. Nevertheless, translucency α accuracy is already
much lower than the Just-Noticeable-Difference (JND) of approx ∆α = 0.1 [29]. This
means it is sufficient for most applications.

5.5. Visualization of spectral predictions

In Fig. 5, we compare the proposed MPDL with RPDL and the best reference model by visualizing
their spectral predictions if trained on small data (i.e. only 10% training data from the targeted
printer is used for training MPDL and RPDL). The sRGB color of each spectral prediction is also
shown. The figure shows that MPDL’s predictions match the groundtruth significantly better
than the two counterparts, e.g. in the first subplot of the first row (Stratasys 3) where the two
counterparts’ predicted spectrals and colors are both way off from the groundtruth. This indicates
a much higher accuracy from MPDL.

Fig. 5. Spectral predictions by different models. The 3 rows correspond to datasets Stratasys
3, Stratasys 6, and Mimaki 1, respectively. The 7 subplots in each row correspond to the
7 test samples on which RPDL and MPDL have the largest root mean square difference.
The sRGB color of each spectral prediction is also shown at the upper-left corner of the
corresponding subplot, in the order of the best reference model, RPDL with small data (i.e.
10% training data), MPDL with small data, and groundtruth.

5.6. MPDL captures post-processing influence

We compare MPDL trained on small data for Stratasys 6 for samples on which a plastic care
treatment was applied as post-processing, with the best reference RPDL model trained on all
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available data of a post-processing-free version of Stratasys 6. Fig. 6 shows histograms of the
spectral prediction RMSE of these two models. It shows that even with only 10% data, MPDL
leads to lower spectral prediction errors on dataset Stratasys 6 than reusing the best reference
model trained on a very similar full-size dataset (i.e. the post-processing-free version of dataset
Stratasys 6).

Fig. 6. Spectral RMSE histogram

6. Limitations and future work

We see the dataset embedding-based learning framework MPDL as our major contribution,
and regard the contrastive learning-based strategy of learning dataset embeddings a minor
contribution. As a replaceable component, the contrastive learning-based strategy of learning
dataset embeddings is not fully exploited, with most settings (e.g. the projection head neural
network g during training) adopted from related works that are optimized for different learning
tasks e.g. image classification. For future work, we plan to explore the use of contrastive
learning-based strategies for exploiting dataset embeddings, as well as alternative methods of
learning dataset embeddings optimized for optical printer modelling.

7. Conclusion

In this paper, we propose a methodology to improve the prediction accuracy and data efficiency of
an optical printer model for characterizing a targeted printing system, by exploiting characterization
data from other printing systems. For that, we proposed a dataset embedding-based Multi-Printer
Deep Learning (or MPDL) framework with a 2-path feature learning strategy that not only
learns printer-independent features shared across multiple printers, but also learns from dataset
embeddings the printer-dependent features. The MPDL framework also uses dataset embedding-
based adaptive loss weights to balance the supporting datasets’ respective influences on the
model. We provided a learning strategy for training the model and fitting its hyperparameters.
On the other hand, to provide dataset embeddings that are required by the MPDL framework, we
propose a contrastive leaning-based approach to learn dataset embeddings.

Experiments on datasets from eight state-of-the-art multi-material 3D printing systems show
that the MPDL framework can drastically reduce the number of required samples that have to be
printed, measured and postprocessed to characterize a targeted printing system, for achieving
an application-specific prediction accuracy. For some printers, the MPDL framework requires
10% of the samples to achieve a similar accuracy as the state-of-the-art RPDL model [28]. This
makes it economically possible to frequently characterize machineries of 3D printers to achieve
more consistent output across different printers with higher accuracy over time, which is crucial
for color- and translucency-critical individualized mass production, such as 3D printed prosthetic
eyes or dental restorations. A smaller number of characterization samples is also very beneficial
for characterizing desktop 3D printing systems that possess a very small build space and thus
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require more separate print runs than other printing systems. Note each separate print run requires
additional efforts of cleaning print heads and the print tray. The data efficiency improvement from
MPDL reduces the number of separate print runs and thus the overall characterization efforts.

Although conditioned on dataset embeddings, the MPDL framework is general and not limited
to any a certain way of obtaining dataset embeddings.

Appendix A. Symbol lookup table

In Table 1 we summarize symbols in the alphabetical order, with Greek symbols at the end.

Table 1. Symbol lookup table

α A translucency scalar. α ∈ A

α
(j)
i The translucency of the jth sample of the ith dataset.

ci The loss weight for the ith dataset. ci = exp(−∥ei − eΓ ∥2/λ)

ei The dataset embedding of the ith dataset. ei ∈ E

m The number of datasets used in the proposed framework

ni The cardinality of the ith dataset, i.e. ni = |Di |

q The number of randomly-derived views for calculating dataset embedding

r A spectral vector. r ∈ S

r(j)i The spectral of the jth sample of the ith dataset.

t A tonal vector. t ∈ T

t(j)i The tonal of the jth sample of the ith dataset.

vij The jth derived view of Di

A Translucency space. A = [0, 1]

Di The dataset collected from the ith printer. Di = {(t(j)i , r(j)i ,α(j)
i )}

ni
j=1˜︁Dij The jth random subset of Di. ˜︁Dij ⊂ Di

E Dataset embedding space. E = RK (K=256 in the paper)

M The dimensions of tonal space.

N The dimensions of Spectral space, i.e. the number of considered wavelengths.

S Spectral space. S = [0, 1]N

T Tonal space. T = [0, 1]M

Γ The dataset index of the targeted printer. 1 ≤ Γ ≤ m

λ A hyperparameter for calculating ci

Appendix B. Loss terms used by RPDL [28]

The loss function of the PDL [27] consists of three parts: 1) the spectral root-mean-square
error (RMSE) Eref, 2) the CIEDE2000 color error Ecol computed for specific viewing conditions
(illuminant, observer), and 3) the α-based translucency error Etra, defined respectively as follows:

Eref =
1
n

n∑︂
j=1

√︃
1
N
∥r̂(j) − r(j)∥2

2 (8)

Ecol =
1
n

n∑︂
j=1
∆E00(LAB(r̂(j)), LAB(r(j))) (9)

Etra =
1
n

n∑︂
j=1

|α̂(j) − α(j) |. (10)



Research Article Vol. 31, No. 8 / 10 Apr 2023 / Optics Express 13500

where r̂(j), r(j) ∈ S are the predicted and the measured reflectances respectively for the j-th sample
within a minibatch of n samples, LAB : S ↦→ CIELAB is the function that computes CIELAB
values from reflectances assuming specified viewing conditions, ∆E00 means CIEDE2000
color difference, α̂(j),α(j) ∈ A are the predicted and the measured translucency α-values [29]
respectively for the j-th sample.

Adopting the above 3 loss terms, RPDL [28] introduced 3 more loss terms to improve physical
robustness and plausibility: 1) monotonicity loss Emono_LK for lightness CIE-L∗ w.r.t. black
material K, 2) monotonicity loss Emono_AT for translucency α w.r.t. transparent material T , and
3) Laplacian smoothness loss Elap, defined respectively as follows:

Emono_LK(MLK) =
1

|MLK |

∑︂
τ∈MLK

∂L(PDL(t))
∂tK

|︁|︁|︁|︁
t=τ

(11)

Emono_AT(MAT) =
1

|MAT |

∑︂
τ∈MAT

∂A(PDL(t))
∂tT

|︁|︁|︁|︁
t=τ

(12)

Elap(M) =
1

M |M|

∑︂
τ∈M

M∑︂
i=1

log

(︄|︁|︁|︁|︁|︁ ∂2L(PDL(t))
∂t2

i

|︁|︁|︁|︁|︁
t=τ

|︁|︁|︁|︁|︁ + 1

)︄
. (13)

where t ∈ T = [0, 1]M , tK and tT are the element of t corresponding to the black and transparent
materials respectively, ti is the ith element of t, L : S × A ↦→ [0, 100] extracts lightness CIE-L∗

from PDL model predictions, i.e. it uses the predicted reflectance and computes lightness for a
given viewing condition (illuminant, observer), A : S × A ↦→ A extracts translucency α-values
from PDL model predictions, M ⊂ T is a set of tonals randomly selected from tonal space T at
each training iteration, MLK ⊂ M is M’s subset containing positive derivatives of CIE-L∗ w.r.t.
the black material, i.e.

MLK =

{︃
τ ∈ M |

∂L(PDL(t))
∂tK

|︁|︁|︁|︁
t=τ
>0

}︃
(14)

and similarly, MAT ⊂ M is M’s subset containing positive derivatives of α w.r.t. the transparent
material:

MAT =

{︃
τ ∈ M |

∂A(PDL(t))
∂tT

|︁|︁|︁|︁
t=τ
>0

}︃
(15)

Note Emono_LK, Emono_AT and Elap are heuristic losses calculated on arbitrary sampled tonals
without measured "groundtruth", hence M is re-sampled from tonal space T at each training
iteration to better cover the whole space. In the paper, we use CIED50 as illuminant and the
CIE1936 color matching functions as observer. Readers are referred to RPDL [28] for more
details about the above equations.
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