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Summary

Recently, the core idea of using Model Predictive Control (MPC) as a function
approximator for the Reinforcement Learning (RL) methods has been proposed and
justified. More specifically, it has been shown that a parameterized MPC scheme with
a possibly inaccurate model can capture the optimal value functions and policy of a
given Markov Decision Process (MDP).

The thesis investigates more on this idea and provides theorems supporting and
developing this idea and answering some fundamental questions in the intersection of
MDP, MPC, Moving Horizon Estimation (MHE), and RL based on the publications
during the Ph.D.

We implement MPC-based RL in engineering applications such as Autonomous
Surface Vehicle (ASV), including path planning, obstacle avoidance, and docking,
and some investigations in the smart grid context, including learning the optimal
bang-bang policy and multi-agent batteries with power peak constraint.

In the intersection of MDP and MPC, we provide a theory on the equivalence of
optimality criteria for MPC and MDP. We show that an (undiscounted) MPC scheme
can capture the optimal value and optimal policy of a (possibly discounted) MDP,
even if an inaccurate model is used in the MPC scheme. This equivalence can be
established using a proper selection of the stage cost and the terminal cost of an MPC
scheme. This observation leads us to parameterize an MPC scheme fully, including
the cost function. In practice, Reinforcement Learning algorithms can then be used
to tune the parameterized MPC scheme. Using the cost modification idea, we also
eliminate the bias of the optimal steady state in the discounted setting.

In the context of MDP and RL, we provide the Quasi-Newton technique with a novel
approximated hessian of the performance function that yields a superlinear conver-
gence in the learning using the policy gradient method. In addition, we characterize
the stability of MDPs with discounted cost using Economic Model Predictive Control
(EMPC) dissipativity theory in the measure space.
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Summary

In the context of EMPC, we propose the use of Q-learning to capture a valid storage
function that satisfies the dissipation inequality and verify the dissipativity for both
discounted and undiscounted settings.

Robust Model Predictive Control (RMPC) is used for different purposes and forms.
We address the bias issue in the MPC-based policy gradient method when a linear
compatible advantage function approximator is used in the actor-critic. When hard
constraints restrict the policy, the exploration may not be Centred or Isotropic (non-
CI). As a result, the policy gradient estimation can be biased. We solve this issue
using the RMPC approach accounting for the exploration based on the first-order
Taylor approximation of the constraint-tightening. Moreover, we investigate using
RL methods to adjust RMPC with ellipsoidal uncertainty set for stochastic nonlinear
systems. Scenario-tree-based RMPC was implemented to handle potential failures of
the ship thrusters and Q-learning was used to improve the closed-loop performance.

Moreover, we provide a generic convex function approximator in the stage cost of the
MPC scheme and also address the safe RL problem using the Distributionally Robust
Model Predictive Control (DRMPC) scheme and chance constraints.
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1 | Introduction

This chapter contains a brief motivation for the topics covered in this thesis, a summary
of the main contributions, and an overview of the publications presented in the thesis.
We finally provide an outline of the thesis.

1.1 Motivation

Reinforcement Learning (RL) has drawn increasing attention thanks to its striking
accomplishments ranging from computers beating chess and Go masters [1]. Indeed,
RL is a powerful tool for tackling Markov Decision Process (MDP) without prior
knowledge of the process to be controlled. Most RL methods are based on learning the
optimal policy and optimal value functions for the real system, described by an MDP,
using a function approximator. The function approximator must be ensured that it is
general enough that is able to capture the optimal policy or optimal value function of a
given MDP. A common choice in the RL community is to use a Deep Neural Network
(DNN). For instance, in [2] the baseline control is employed to ensure stability and
tracking performance of an Autonomous Surface Vehicle (ASV), while DNN-based
RL is added to handle uncertainties and collision avoidance.

Unfortunately, the closed-loop stability of a system with the optimal policy supported
by a DNN or a generic function approximation can be difficult to formally analyze [3].
Moreover, providing meaningful initial weights for the DNN can be very difficult.

Model Predictive Control (MPC) is an optimization-based control approach operating
with a receding horizon [4]. MPC employs a (possibly inaccurate) model of the real
system dynamics to produce an input-state sequence over a given finite horizon. The
resulting trajectory optimizes a given cost function while explicitly enforcing the
system constraints. The optimization problem is solved at each time instance based
on the current system state, and the first input of the optimal solution is applied to
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the system. Due to the finite-horizon scheme and (possibly) model mismatch, MPC
usually delivers a reasonable but suboptimal approximation of the optimal policy.

For computational reasons, simple models are usually preferred in the MPC scheme.
Hence, the MPC model often does not have the structure required to correctly capture
the real system dynamics and stochasticity. As a result, MPC usually delivers a
reasonable but suboptimal approximation of the optimal policy.

Recently, the integration of Machine Learning (ML) in MPC has been investigated,
with the aim of learning the model of the system, used in the MPC scheme, in a data-
driven fashion [5]. While this paradigm has a clear value, it does not eliminate the
issues related to model inaccuracies. Indeed, the performance of a policy delivered by
an MPC scheme integrating an ML-based model is still only as good as the ML-based
model is, and therefore limited by the structure and choices made in the ML tools.

Using MPC as a function approximator of a given MDP has been first proposed and
justified in [6]. It was shown that a parameterized MPC is able to capture the optimal
policy and optimal value function of a given MDP by modification of the stage cost
and terminal cost even if a simple and inaccurate model is used in the MPC scheme.
Then RL methods, such as Q-learning and policy gradient method can be used in order
to adjust the parameters to achieve the best long-term closed-loop performance.

Considering that the central and primary theories related to this type of learning based
on MPC have been recently published, there are still open questions in this field.
Therefore, the current thesis has been proposed and carried out in order to cover some
of the theoretical challenges. These challenges include some developments in the
former work, applying the method for different engineering applications such as ASVs
and smart grids, and showing the advantages of the method in solving challenging
questions in the context of (E)MPC, RL, and MDP. Summaries of the developed
theories are listed in the following of this chapter.

1.2 Publications

Taking into account the collaboration works around the topic, in total 19 papers (12 as
the main author), including 13 conf. papers (9 as the main author) and 6 (3 as the main
author) journal papers have been prepared during the Ph.D. carrier. Among them, 11
(9 as the main author) of the conf. papers and 4 (2 as the main author) of the journal
papers have been published at the time of writing the thesis and the rests are under
review. Given below is the list of all 19 publications in the order of submitted time
starting from the earliest.

2
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1.3. Contributions

In Chapter 5, the papers in which the candidate contributed as the first author have
been collected. 1

1.3 Contributions

A summary of contributions covered by the papers of the previous section is listed as
follows 2. These contributions are discussed in detail in Chapter 3.

• Learning MPC for the ASV applications.

– Papers i and ix .

• Learning MPC/MHE for the state estimation and control.

– Papers ii and xvii .

• Learning MPC for bang-bang policies, multi-agent battery storage, and peak
power management.

– Papers iii , vii , viii , and xv .

• Learning RMPC for bias correction of policy gradient and adjusting ellipsoidal
uncertainty.

– Papers iv and v .

• Q-Learning of the storage function in EMPC schemes.

– Papers vi and xiv .

• Quasi-Newton iteration for deterministic policy gradient.

– Paper x .

• Functional stability of discounted MDPs.

– Paper xi .

• Bias correction of the optimal steady state in discounted OCP.

1Journal article xiv has been published as an extension of conference article vi . Therefore, we

do not include conference paper vi in Chapter 5.
2All the papers are included in one of the categories, except paper xiii , which provides an overview

and challenges on the learning MPC.
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– Paper xii .

• Generic convex function approximator in the cost of learning MPC.

– Paper xvi .

• Optimality equivalency of MDP and MPC.

– Paper xviii .

• Probabilistic safe policy using Distributionally Robust MPC.

– Paper xix .

1.4 Outline

The rest of the thesis is structured as follows: Chapter 2 contains background on the
topics covered in the publications. Chapter 3 gives an in-depth presentation of the
contributions of the publications. Chapter 4 provides a summary and conclusion of
the thesis and discusses some directions for future works. Finally, Chapter 5 contains
the publications that were written as a result of the work on this thesis.
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2 | Background

In this chapter, we first present some background on MDPs which is a core concept
in the context of RL. MDP is a general description of the real system where its state
transitions satisfy the Markov property. Next, we detail RL, as a practical and powerful
technique to solve MDPs. We provide Q-learning and policy gradient methods in
this section. Then we provide a background on MPC and the detail of the provided
policy from an MPC scheme. Finally, we present the combination of MPC and RL
and provide a fundamental theorem that recently has developed in order to detail the
main scope of the current work.

2.1 Markov Decision Processes

Markov Decision Processes (MDPs) provide a standard framework for the optimal
control of discrete-time stochastic processes, where the stage cost and transition
probability depend only on the current state and the current input of the system. An
MDP operates over given state and action (aka input) spaces S,A, respectively. These
spaces can be discrete (i.e. integer sets), continuous, or mixed. We denoted ρ as a
conditional probability (measure) defining the dynamics of the system considered,
i.e. for a given state-action pair s, a ∈ S × A, the successive state s+ is distributed
according to

s+ ∼ ρ(·|s, a) (2.1)

Note that (2.1) is a generalization of the classic dynamics, deterministic or not, often
considered in the context of control theory, usually cast as

s+ = F (s, a,w) , w ∼W (2.2)

where w ∈ D is a random disturbance from distribution W and F : S ×A×D → S
is a Borel-measurable function. In the special case w = 0, (2.2) simply yields
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deterministic dynamics. Solving an MDP is then the problem of finding the optimal
policy π? : S → A solution of:

π? ∈ arg min
π

J(π) , (2.3)

(2.4)

where J(π) is the performance function and depends on the optimality criteria de-
scribing the MDP.

2.1.1 Discounted setting

In the discounted setting, an MDP is defined by the triplet (L, γ, ρ), where L :
S ×A→ R is a stage cost, γ ∈ (0, 1] a discount factor and the performance function
J(π) is defined as follows:

J(π) = E

[ ∞∑

k=0

γkL (sk,ak)

∣∣∣∣∣ ak = π (sk)

]
, (2.5)

and the expected value operator E[.] is taken over the (possibly) stochastic closed loop
trajectories of the system. Discussing the solution of MDPs is often best done via the
Bellman equations defining implicitly the optimal value function V ? : S → R and
the optimal action-value function Q? : S ×A→ R as

V ? (s) = min
a

Q? (s, a) (2.6a)

Q? (s, a) = L (s, a) + γE [V ? (s+) | s, a ] (2.6b)

The optimal policy then reads as:

π? (s) ∈ arg min
a

Q? (s, a) (2.7)

2.1.2 Undiscounted setting

Undiscounted MDPs refer to MDPs with a discount factor γ = 1. If using γ = 1
in (2.5), V ? is in general unbounded and the MDP ill-posed. In order to tackle this
issue, alternative optimality criteria are needed. Gain optimality is one of the common
criteria in the undiscounted setting. Gain optimality is defined based on the following
average-cost problem:

V̄ ?(s) := min
π

lim
N→∞

1

N
E

[
N−1∑

k=0

L(sk,ak)

∣∣∣∣∣ ak = π (sk)

]
, (2.8)
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for all initial state sπ0 = s, ∀π, where V̄ ? is the optimal average cost. We denote the
optimal policy solution of (2.8) as π̄?. This optimal policy is called gain optimal.

The gain optimal policy π̄? may not be unique. Moreover, the optimal average cost
V̄ ? is commonly assumed to be independent of the initial state s [7]. This assumption
e.g. holds for unichain MDPs, in which under any policy any state can be reached in
finite time from any other state.

Unfortunately, the gain optimality criterion only considers the optimal steady-state
distribution and it overlooks transients. As an alternative, bias optimality considers
the optimality of the transients. Precisely, bias optimality can be formulated through
the following OCP:

Ṽ ?(s) = min
π

E

[ ∞∑

k=0

(L(sk,ak)− V̄ ?)

∣∣∣∣∣ ak = π (sk)

]
, (2.9)

where Ṽ ? is the optimal value function associated with bias optimality. Note that
(2.9) can be seen as a special case of the discounted setting in (2.5) when γ = 1 and
the optimal average cost V̄ ? is subtracted from the stage cost in (2.5). Therefore, for
the rest of the paper, we will consider the discounted setting (2.5). Without loss of
generality, we assume that V̄ ? = 0 in the case γ = 1. This choice yields a well-posed
optimal value function in the undiscounted setting. Clearly, if this does not hold, one
can shift the stage cost to achieve V̄ ? = 0.

2.2 Reinforcement Learning

As discussed, solving an MDP refers to finding an optimal policy that minimizes the
expected value of a total cumulative cost as a function of the current state. Dynamic
Programming (DP) techniques can be used to solve MDPs based on the Bellman
equations. However, solving the Bellman equations is typically intractable unless the
problem is of very low dimension [8]. This issue is known as the “curse of dimen-
sionality” in the literature [9]. Besides, DP requires the exact transition probability
of MDPs, while in most engineering applications, we do not have access to the exact
probability transition of the real system.

Reinforcement Learning (RL) is a common technique that tackles these difficulties.
The fundamental goal of RL is to use data to deliver an approximation of the optimal
policy π?. Indeed, RL offers practical tools for tackling MDPs without having an
accurate knowledge of the probability distribution underlying the state transition ρ. RL
methods are usually either directly based on an approximation of the optimal policy
or indirectly based on an approximation of the action-value function.
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The field can be coarsely divided into two large classes of approaches, value-based
methods, and policy-based methods. Here we will detail Q-learning and Policy
gradient methods as the indirect and direct methods, respectively.

2.2.1 Q-learning

The first class generically labelled Q-learning, approximates the optimal action-value
function Q? via a parametrized function approximator Qθ. The parameters θ are then
adjusted using data such that Qθ? ≈ Q? for the optimal parameters θ?.

Q-learning solves the following Least Square (LS) problem in order to achieve the
best parameters θ?, describing the optimal action-value function Q?:

min
θ

E
[
(Qθ(sk,ak)−Q?(sk,ak))2

]
. (2.10)

Temporal-Difference (TD) learning is a common way to tackle (2.10). More specifi-
cally, a basic TD-based learning step uses the following update rule for the parameters
θ at time instance k in the discounted setting (and the undiscounted setting when γ =
1):

δk = L(sk,ak) + γVθ(sk+1)−Qθ(sk,ak) (2.11a)

θ ← θ + ζδk∇θQθ(sk,ak) (2.11b)

where the scalar ζ > 0 is the learning step-size, δk is labelled the TD error and Vθ
is the parameterized value function. Note that there are more advanced methods to
tackle (2.10) in the literature.

An approximation of the optimal policy π? can then be obtained using:

π̂? (s) = arg min
a

Qθ? (s, a) (2.12)

2.2.2 Policy Gradient method

The second class approximates π? directly via a parametrized policy πθ, and adjust
the parameters θ from data so as to minimize J(πθ). This can, e.g., be done by
estimating policy gradients ∇θJ(πθ), or by building surrogate models of J(πθ),
used to adjust θ. The former typically uses the gradient descent technique to update
the parameters θ as follows:

θ ← θ − α∇θJ(πθ), (2.13)
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where α > 0 is the step size. Using deterministic policy gradient theory developed in
[10], the gradient of J with respect to parameters θ is obtained as

∇θJ(πθ) = E [∇θπθ(s)∇aAπθ
(s, a)|a=πθ

] , (2.14)

where Aπθ
(s, a) = Qπθ

(s, a)− Vπθ
(s) is the advantage function associated to the

policy πθ, and where Qπθ
and Vπθ

are the action-value and value functions for the
policy πθ, respectively. Under some conditions detailed in [10], the action-value
function Qπθ

in (2.14) can be replaced by an approximation Qw without affecting the
policy gradient. Such an approximation is labelled compatible and can, e.g., take the
form:

Qw (s, a) = (a− πθ (s))>∇θπθ(s)>w + Vv (s) , (2.15)

where w is a parameters vector estimating the action-value function and Vv ≈ Vπθ
is

a baseline function approximating the value function, which can, e.g., take a linear
form:

Vv (s) = Φ (s)> v, (2.16)

where Φ is a state feature vector and v is the corresponding parameters vector. The
parameters w and v of the action-value function approximation (2.15) ought to be the
solution of the Least Squares problem:

min
w,v

E
[
(Qπθ

(s, a)−Qw(s, a))2
]
. (2.17)

For instance, problem (2.17) can be tackled via Least Squares Temporal Difference
(LSTD) [11].

2.3 Model Predictive Control

Model Predictive Control (MPC) is a popular and widely used practical approach to
optimal control. MPC is often selected for its capability to handle both input and state
constraints [4]. At each time instant, MPC calculates the input and corresponding
state sequence minimizing a cost function while satisfying the constraints over a given
prediction horizon. For a given system state s, MPC produces control policies based
on repeatedly solving an optimal control problem on a finite, receding horizon, often
cast as:

min
x,u

T (xN ) +

N−1∑

k=0

L (xk,uk) (2.18a)

s.t. xk+1 = f (xk,uk) , x0 = s (2.18b)

h (xk,uk) ≤ 0, uk ∈ A, (2.18c)
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for a given system state s, where N is the horizon length, T is the terminal cost, f is a
model of the system and h is the mixed input-state constraint.

Problem (2.18) produces a complete profile of control inputs u? = {u?
0, . . . ,u

?
N−1}

and corresponding state predictions x = {x?
0, . . . ,x

?
N}. Only the first element u?

0 of
the input sequence u? is applied to the system. At the next physical sampling time, a
new state s is received, and problem (2.18) is solved again, producing a new u? and a
new u?

0. MPC hence yields a policy:

πMPC (s) = u?
0, (2.19)

with u?
0 solution of (2.18) for s given. For γ ≈ 1, policy (2.19) can provide a good

approximation of the optimal policy π? for an adequate choice of prediction horizon
N , terminal cost T and if the MPC model f approximates the true dynamics (2.1)
sufficiently well. In that context, the latter is arguably the major weakness. Indeed,
many systems are difficult to model accurately. Furthermore, within a modelling
structure, selecting the model f that yields the best closed-loop performance J(πMPC)
is very difficult. Indeed, there is in general no guarantee that the model f that best fits
the data collected from the real system is the best model in terms of J(πMPC).

2.4 Learning based MPC

The combination of RL and MPC can address the issues raised above. In this section,
we provide the central result supporting that statement. To that end, it is useful to
construe MPC as a (possibly local) model of the action-value function Q?. Indeed,
consider an MPC-based policy

πθ(s) = u?
0 (2.20)

where u?
0 is part of the solution of:

x?,u? = arg min
x,u

Tθ (xN ) +

N−1∑

k=0

Lθ (xk,uk) , (2.21a)

s.t. xk+1 = fθ (xk,uk) , x0 = s, (2.21b)

hθ (xk,uk) ≤ 0, uk ∈ A. (2.21c)

This MPC formulation is identical to (2.18), but the cost, constraints, and dynamics
underlying the MPC scheme are now all parametrized in θ, to the exception of the
input constraint uk ∈ U . This choice is motivated below. An MPC-based model of
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Q? is then provided by:

Qθ(s, a) = min
x,u

(2.21a), (2.22a)

s.t. (2.21b)− (2.21c), u0 = a, (2.22b)

where a constraint u0 = a on the initial input has been added to (2.21). MPC (2.22) is
a valid model of Q? in the sense that it satisfies the relationships (2.6) and (2.7), i.e.:

πθ (s) = arg min
a
Qθ(s, a), Vθ(s) = min

a
Qθ(s, a), (2.23)

where Vθ(s) is the optimal cost resulting from solving MPC (2.21). One can then
readily verify that if the MPC parameters θ are such that Qθ = Q?, then MPC scheme
(2.21) delivers the optimal policy π? through (2.20), i.e. πθ = π?. An important
question, then, is how effective can an MPC scheme be at approximatingQ?, at least in
a neighborhood of a = π? (s). In addition,Q? is typically built from a discounted sum
of the stage costs L, while undiscounted MPC formulations are typically preferred.

The Theorem reported below addresses these concerns and provides the central justi-
fication for considering the MPC parametrization (2.21) in learning-based MPC. It
establishes that under some mild conditions, (2.22) is able to provide an exact model
of Q? even if its predictive model (2.21b) is inaccurate. This in turn entails that
MPC (2.21) can achieve optimal closed-loop performances even if the MPC model is
inaccurate.

Theorem 1. Suppose that the parameterized stage cost, terminal cost, and constraints
in (2.21) are universal function approximators with adjustable parameters θ. Then
there exist parameters θ? such that the following identities hold, ∀γ:

1. Vθ?(s) = V ?(s), ∀s ∈ S

2. πθ?(s) = π?(s), ∀s ∈ S

3. Qθ?(s, a) = Q?(s, a), ∀s ∈ S , for the inputs a ∈ A such that |V ?(fθ?(s, a))| <
∞

if the set

S =:
{
s ∈ S

∣∣∣ |[V ?(x?
k)]| <∞, ∀ k ≤ N

}
(2.24)

is non-empty.

13



Background

Proof. We select the parameters such that the following holds:

Tθ?(s) = V ?(s) (2.25a)

Lθ?(s, a) = (2.25b)
{
Q?(s, a)− V ?(fθ?(s, a)) If |V ?(fθ?(s, a))| <∞

∞ otherwise

The proof then follows from [6, 12]. �

Theorem 1 states that, for a given MDP, an MPC scheme with a possible inaccurate
model can deliver the optimal value functions and the optimal policy of the original
MDP. This can be achieved by selecting the proper stage cost, terminal cost, and
constraints. Theorem 1 extends to robust MPC, stochastic MPC, and Economic
MPC (EMPC), all discounted or not. The assumption in (2.24) can be interpreted as
some form of the stability condition on fθ? under the optimal trajectory x?. More
specifically, this assumption requires the existence of a non-empty set such that the
optimal value function V ? of the predicted optimal trajectories x? based on the system
model is finite with a unitary probability for all initial states starting from this set.

Then We can use RL techniques, detailed in the previous section, such as Q-learning
and policy gradient method to tune the parameters θ of parameterized MPC scheme
(2.21) and approach the optimal parameter θ?.
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3 | Contributions

The contributions provided from the published papers can be split into 11 categories as
listed in Section 1.3 of Chapter 1. In this chapter, we discuss the detailed contributions
of the each category.

3.1 Learning MPC for the ASV applications

Autonomous Surface Vehicles (ASVs) have been extensively investigated recently
in industry and research [13–15]. However, designing a control strategy that is able
to realize collision-free path planing, docking and handling potential failures of the
ship thrusters in a freight mission with time-varying disturbances is still a topic worth
exploring. With the development of ML, RL control strategies are getting noticed, as
they can exploit real data to reduce the impact of model uncertainties and disturbances.

MPC is a successful control strategy in this field due to its capability for satisfying
the state/input constraints while minimizing a finite-horizon cost function. However,
model uncertainties can severely impact the performance of the MPC policy. In Robust
Model Predictive Control (RMPC), Scenario tree MPC is a useful approach to handle
nonlinear systems with finite and discrete uncertainties [16]. Scenario-based MPC
approach for ship collision avoidance is presented in [17]. Using the MPC based
RL idea presented in [6], RL methods then can be utilized in order to update the
MPC scheme and achieve the best closed-loop performance over missions using the
collected data form the real system. This approach solves the challenges arised from
the wind and ocean current stochasticity, model uncertainty, and potential failures of
the ship thrusters.

In paper i , we presented the use of Q-learning based on scenario-tree based RMPC
for the obstacle avoidance and path planning of an ASV. The scenario-tree RMPC was
used to handle potential failures of the ship thrusters. Besides, the wind and ocean
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current were considered as unknown stochastic disturbances in the real system, which
were handled via constraints tightening. An economic cost is considered, minimizing
the time and energy required to achieve the ship missions. Actually, a trade-off
between time and energy was considered to reach a neighborhood of the target as a
baseline cost of RL. Moreover, this cost is penalized linearly when approaching the
obstacles. The tightening and other cost parameters are adjusted by the RL method in
order to achieve the best closed-loop performance with respect to the economic cost.
The simulations on a nonlinear 3-DOF model of a scaled version of the Cybership II
showed how RL managed to adjust the RMPC parameters in the several missions to
improve the performance.

Paper ix provided an MPC based on deterministic policy gradient method for a
complete ASV freight mission problem, including obstacle avoidance, path following,
and autonomous docking, solved in a stochastic environment. Least-Squares Temporal-
Difference (LSTD) method was used in order to update the action-value function.

Paper ix was led by Wenqi Cai [18].

3.2 Learning MPC/MHE for state estimation and control

In many real applications, a state estimator (observer) is needed to provide an esti-
mation of the current system states to the MPC scheme. Moving Horizon Estimation
(MHE) is an optimization-based state observer that works on a horizon window
covering a limited history of past measurements [19].

Accurate models of dynamical systems are often difficult to obtain due to uncertainties
and unknown dynamics. It is also worth noting that even if an accurate model is
available, it may be in general too complex to be used in MHE and MPC schemes.
However, if the model is imperfect, the inaccuracies can significantly degrade the
performance of the MHE-MPC scheme. To cope with this problem, data-driven
methods can be used in order to either improve the MPC and MHE models [20–23] or
modify the MHE/MPC cost functions [6].

In some real-world control applications, the measurements available from the real
system at a given time instant do not constitute a Markov state. In the context of RL,
these systems are then formulated as Partially Observable Markov Decision Process
(MDP) [24, 25]. To tackle a POMDP, one solution is to formulate a belief MDP where
the information about current state is described as a probability distribution over the
state space a.k.a belief state. Hence, POMDPs can be regarded as traditional MDPs
using the concept of belief states as complete observable states [26]. Most previous
works in the context of POMDPs use Neural Network (NN) to summarise the past
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observations and learn the optimal policy [27–29]. An NN-based framework (posterior
distributions over states) was proposed in [30, 31] in order to estimate a belief state
based on historical information.

In paper ii (see [32]), a Q-learning method based on MHE-MPC with inaccurate
models was proposed for dealing with POMDPs. In this research, we proposed to
integrate MHE and MPC to treat the hidden Markovian state evolution and build
an optimal policy based on the historic of the available measurements rather than
on the full state of the system. More specifically, a structured solution by using a
parameterized MHE-MPC scheme as a model based approach was proposed to create
a state from the measurement history and a provide a parameterized policy. Then we
utilized the Q-learning method to update the parameters of the MHE-MPC scheme in
order to improve the performance.

This idea was investigated more in the both stochastic (probability measure space)
and deterministic MHE-MPC schemes in xvii (see [33]) based on policy gradient
method. The effectiveness of the proposed learning-based estimator/controller has
been established for two examples including a model mismatch problem and a climate
control of smart building where the building model used in the MHE-MPC is simplified
and different from the real dynamics.

Papers ii and xvii were led by Hossein Nejatbakhsh Esfahani [32, 33].

3.3 Learning MPC for bang-bang policies, multi-agent bat-
tery storage and peak power management

Making decisions for the energy system in the presence of different forms of uncer-
tainty is the object of recent publications [34, 35]. In smart grids, the uncertainty
mainly arises from the imperfect forecasts for the prices, demand, and power gen-
eration. Finding a policy minimizing the economic cost of operating the grid in the
presence of these uncertainties is highly valuable [36]. Economic costs for smart grids
are linear, based on the difference between the profit made by selling electricity to the
power grid, and the losses incurred from buying it [37].

MPC is a promising choice for the management of smart grids [35], because it
provides a simple way to exploit forecasts on the grid prices, local power demand, and
production, while respecting the physical limitations of the system. The stochasticity of
the forecasts uncertainty is, however, not straightforward to treat at low computational
costs.

In paper iii , we investigated a simple, well-known battery storage problem having a
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purely economic cost and stochastic dynamics. This example has an optimal policy
with a nearly bang-bang structure [38], in the sense that the optimal policy selects
inputs that are either in the bounds or zero for a large subset of the state space. We
showed that the deterministic policy gradient method is difficult to use for this type of
problem because the state trajectories mostly lie in the set where the policy is trivially
zero or in the bounds, which impedes the learning. We then proposed a homotopy
strategy based on the interior-point method, which smoothness the MPC policy via
the barrier parameter associated to the method, allowing for a more homogeneous and
faster learning than a classical policy gradient approach.

A multi-agent battery storage system, usually includes several batteries that are con-
nected to a main grid. The main grid exchanges the power with all of the batteries
and the batteries attempt to optimize their own cost. Since the total power exchanged
by the main grid is limited at each time, finding an optimal policy that satisfies this
restriction is challenging.

In paper vii , considering the time-varying prediction of the spot market (using
real power price data for Trondheim provided by the Nord Pool European Power
Exchange [39]) and the production-demand uncertainty, we used a centralized MPC-
scheme to minimize the running cost of the multi-agent battery storage system, while
penalizing extreme State of Charge (SOC) and respecting the power peak constraint at
the connection point of all batteries to the main grid. We supposed that a low level
controller monitors the SOC in real time and prevents violating the constraints by
buying or selling more power if needed.

In paper viii , we first considered a multi-agent residential smart grid system, where
each agent has local renewable energy production and energy storage, and all agents
are connected to a local transformer. The objective then was to develop an optimal
policy that minimizes the economic cost consisting of both the spot-market cost for
each consumer and their collective peak-power cost. In the paper, the MPC-based RL
method was adopted to seek an optimal smart-grid policy that minimizes the long-
term economic costs, including the spot-market cost and the peak-power cost. We
used a parametrized MPC-scheme to approximate the optimal policy suffering from
varying spot-market prices and inaccurate local agent’s power production-consumption
forecasts. To improve the closed-loop performance of the MPC-based policy we used
deterministic policy gradient method.

Paper xv extended the latter paper and presented an Energy Management (EM)
strategy for residential micro-grid systems using MPC-based RL. The EM problem
was formulated as a Cooperative Coalition Game (CCG). The objective was to find an
energy trading policy that reduces the collective economic cost (including spot-market
cost and peak-power cost) of the residential coalition, and then to distribute the profits
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obtained through cooperation to all residents. Then, at the end of the monthly billing
period, we apply the Shapley value approach to equitably distribute the profits (i.e.,
cost savings) gained through cooperation, that is, to determine the amount of electricity
fee each resident should pay.

Papers viii and xv were led by Wenqi Cai [40, 41].

3.4 Learning RMPC for bias correction of policy gradient
and adjusting ellipsoidal uncertainty

Actor-Critic (AC) techniques combine the strong points of actor-only (policy search
methods) and critic-only (e.g., Q-learning) methods [42]. AC approaches are based on
genuine optimality conditions of the closed-loop policy and typically deliver less noisy
policy gradients than direct policy search. The deterministic policy gradient is built
based on an approximation of the advantage function associated with the policy. To
this end, a linear compatible advantage function approximator is a convenient choice,
because it provides a correct policy gradient estimation with a given structure and a
low number of parameters [10]. For deterministic policies, exploration is required
in order to estimate the corresponding policy gradient. For deterministic policies,
exploration is required in order to estimate the corresponding policy gradient. In
the presence of hard constraints, this exploration can be restricted. As a result, the
exploration may not be Centred or Isotropic (non-CI). In [43], it is shown that a linear
compatible advantage function approximator can deliver an incorrect policy gradient
estimation for a non-CI exploration.

Paper iv proposed to use a RMPC scheme that is robust with respect to a bounded dis-
turbance of its first control input to enable the feasibility of a Centred or Isotropic (CI)
exploration. Because RMPC is computationally expensive, we used an inexpensive
approximate RMPC instead, feasible to a first-order approximation. The RMPC-based
policy ensures that a CI exploration is approximately feasible. A posterior projection
technique was used in order to ensure the feasibility of the exploration. We then
formally proved that the exploration resulting from RMPC scheme and the projection
delivers an unbiased policy gradient estimation.

RMPC has received a great attention recently in the control community. Model-plant
mismatch and disturbances can be treated via Robust NMPC (RNMPC) techniques.
For linear MPC models and polytopic disturbance models and constraints, tube-based
MPC techniques provides computationally effective techniques [44]. Treating non-
linear MPC models or generic disturbances and constraints is more challenging [45].
Researchers in [46] proposed to use a tube-based MPC with a Min-Max differential
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inequality. Multi-stage or Scenario-tree NMPC scheme was proposed in [47, 48] as a
real-time NMPC that accounts for the uncertain influence and generates decisions to
control a nonlinear plant in a robust sense. These approaches remain challenging for
problems that are not of small scale.

In paper v , we modeled the propagation of perturbations in the state dynamics via
ellipsoids, based on the linearization of the system dynamics and constraints on the
nominal trajectories and using a Gaussian disturbance model. Then we proposed
Robust Model Predictive Control (RMPC) based RL frame-work for controlling
nonlinear systems in the presence of disturbances and uncertainties. We proposed
to adjust the RMPC parameters generating the ellipsoids using the RL method in
order to tailor this inaccurate uncertainty model to the real system and achieve a
best closed-loop performance. A fast convergence of the adjustable parameters of
RNMPC is achieved via a second-order Least Square Temporal Difference Q-learning
(LSTDQ). The approach was tested on a simulated Wheeled Mobile Robot (WMR)
tracking for a desired trajectory while avoiding static obstacles.

Paper v was led by Hossein Nejatbakhsh Esfahani [49].

3.5 Q-Learning of the storage function in EMPC schemes

Tracking Nonlinear Model Predictive Control (NMPC) refers to NMPC schemes that
are formulated with a cost function penalizing the deviations of the current state and
input from a desired steady-state reference [50]. More formally, the stage cost of a
tracking NMPC scheme is lower-bounded by a class-K∞ function, usually selected
as convex, often quadratic. In contrast, the cost function used in Economic NMPC
(ENMPC) does not satisfy such requirement [51–54]. The cost function used in
ENMPC is typically an economic cost, often corresponding to the energy, the time or
the financial cost of running a system [55]. Thus an ENMPC employs a cost function
that is not necessarily lower-bounded by a class-K∞ function with respect to any
setpoint.

The closed-loop stability of an optimal policy provided by an ENMPC scheme requires
the existence of a storage function satisfying dissipativity conditions while the stability
of undiscounted tracking MPC schemes is fairly straightforward to establish [4], as
the optimal value function can typically be used as a Lyapunov function for the closed-
loop system. Finding the storage function for a given problem can be very demanding
for nonlinear dynamics and non-quadratic stage costs [56].

In paper vi , we leveraged on Q-learning technique to compute a data-based storage
function for a given ENMPC problem. In order to capture the storage function and
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verify dissipativity, we first parameterized the storage function, stage cost, and terminal
cost in an undiscounted tracking MPC-scheme. We then used the parameterized
tracking MPC, as a function approximator, in order to capture the optimal action-value
function resulting from a specified infinite-horizon sum of economic stage costs. The
undiscounted tracking MPC then provided a stabilizing policy for the closed-loop
system regardless of whether the original ENMPC scheme is dissipative or not, and
discounted or not. We showed that, for dissipative problems, if the parameterization is
rich enough, then the resulting storage function satisfies the dissipativity conditions
for the parameters that capture the optimal action-value function accurately. Finally,
Q-learning was used in order to adjust the parameters of the tracking MPC-scheme.
For a non-dissipative problem, Q-learning converges to sub-optimal parameters that
cannot capture the optimal action-value function of the original ENMPC scheme.

The dissipativity theory for discounted formulations is more involved than for the
undiscounted setting. In the former case, the discount factor has a central role to
establish the closed-loop stability of the policy. Asymptotic stability requires an
additional condition to the discounted strict dissipativity conditions. Recently the
dissipativity condition has been extended to the discounted setting [57]. The resulting
conditions are called Strong Discounted Strict Dissipativity (SDSD). The SDSD con-
ditions guarantee asymptotic stability of the closed-loop dynamics with the discounted
optimal policy.

Paper xiv extends this idea for the discounted EMPC setting and we used an undis-
counted tracking MPC-scheme function approximator for both the discounted and
undiscounted ENMPC setting and showed that the proposed method works in both
cases. Moreover, a detailed explanation of the stage cost parameterization that is
lower-bounded by a class-K∞ function and practical implementation were added.

3.6 Quasi-Newton iteration for deterministic policy gradi-
ent

Deterministic policy gradient algorithms are widely used in RL with continuous
action spaces [58]. These methods attempt to learn the optimal parameters of a
parameterized policy using only state transitions observed on the real system. These
methods commonly use gradient descent methods to optimize a discounted sum of
stage costs, called closed-loop performance. Unfortunately, the convergence rate
of classical gradient descent is limited, especially when the Hessian of closed-loop
performance is far from a scalar multiple of the Identity matrix [59].

Natural policy gradient methods has been attracted many attentions in RL community
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recently due to its capability for better convergence [60]. The efficiency of the natural
policy gradient in RL was showed in [61]. The natural policy gradient methods use
the Fisher information matrix as an approximate Hessian [62].

Although the Fisher information matrix, as an approximation for the Hessian, is posi-
tive definite, it does not asymptotically converge to the exact Hessian necessarily, when
the policy converges to the optimal policy [60]. As a result, the rate of convergence
of the natural policy gradient method is linear, i.e., the same as the regular gradient
descent [63]. Therefore, providing an approximation of the Hessian (without imposing
heavy computation) that converges to the exact Hessian at the optimal policy can
improve the convergence rate.

In paper x , we first derived a formulation for exact Hessian of deterministic policy
performance with respect to the parameters. Then we provided a model-free approxi-
mation for the Hessian of the performance function. We showed that the approximate
Hessian converges to the exact Hessian at the optimal policy when the parameterized
policy is rich. As a result, it gives a superlinear convergence using a Quasi-Newton
optimization.

3.7 Functional stability of discounted MDPs

In the context of MDP, most of the research has been done in order to find the optimal
policy or verify the optimality of a given policy. However, in general, optimality may
not lead to the stability of the closed-loop Markov Chain. Stability of the Markov
Chains has been extensively studied in [64]. However, this framework provides
results that are not easily related to MDPs and optimality criteria. To the best of
our knowledge, there are limited results characterizing the stability of MDPs as an
outcome of the interplay between its objective function and its dynamics.

In order to characterize the closed-loop stability of MDPs, we extend the concept
of stability and dissipativity developed in the context of Economic Nonlinear Model
Predictive Control (EMPC) [4]. This theory is based on a so-called storage function
satisfying the dissipativity inequality. Dissipativity is well-known for EMPC schemes
having an undiscounted cost and deterministic dynamics. In the discounted setting,
finding the Lyapunov function still is challenging even for positive-definite stage
costs [65]. In the discounted setting, the discount factor plays a vital role in the closed-
loop stability. Recently the dissipativity theory has been extended to the discounted
setting with deterministic dynamics [57]. These conditions are called SDSD.

In paper xi , we used the generalization of the classic dissipativity theory by making
an argument on the measure space underlying the MDP rather than on the state space
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itself. This idea was first discussed in [66], but was limited to undiscounted MDPs,
where the dissipativity is fairly straightforward. In this paper, we considered MDPs
with a general functional stage cost. We use the concept of D-stability [66] and
introduce generalized functional dissipativity conditions for MDPs with a discounted
objective function. We labeled these conditions Functional Strong Discounted Strict
Dissipativity (FSDSD). These conditions require the transition probability, the stage
cost, and the discount factor of the MDP to satisfy certain inequalities. We showed
that if a given problem is FSDSD, then the D-stability of MDP follows.

3.8 Bias correction of the optimal steady state in discounted
OCPs

One of the central objectives in control engineering, especially in chemical processes,
power networks, etc [67, 68], is to steer the closed-loop trajectories of a given system
to a steady point that has the minimum stage cost. Mathematically, the optimal steady-
state problem can be formulated as a constrained optimization problem, where the
cost function is the stage cost, and its constraint is the equilibrium of the point. This
concept also appears in Economic Model Predictive Control (EMPC) problems, where
the purpose is not tracking but to minimize a generic stage cost, such as time, energy
and etc [4].

MPC schemes are generally formulated in an undiscounted setting. However, in
some cases, it is reasonable to introduce a discount factor in the objective [69].
Discounted OCP has drawn wide attention in, e.g., economic application [70] and
social science [71]. Moreover, a discounted infinite-horizon objective function is often
the preferred setting in dynamic programming [8, 72] and reinforcement learning [73,
74].

The optimal steady state, resulting from the discounted OCP, differs from the optimal
steady-state obtained from the undiscounted OCP. Although the discounted optimal
steady-state is optimal in the sense of discounted OCP, the discounted optimal steady-
state point does not result in the minimum one-step stage cost [75]. The bias between
the discounted optimal steady-state and the undiscounted optimal steady-state depends
on the discount factor, and tends to zero as the discount factor tends to one.

Paper xii provides an inexpensive approximated cost modification using a second-
order Taylor expansion of the optimal value function at the optimal steady state. We
provide simple tools to compute the gradient and curvature needed for the approxima-
tion. Moreover, it was shown that the approximated cost modification preserves the
stability of the closed-loop system locally.
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3.9 Generic convex function approximator in the cost of
learning MPC

One direction of Learning based MPC is the use of learning to build the MPC pre-
diction model. In that context, neural networks (NNs) have typically been used for
learning an approximation of the system dynamics from data, which is then used as
the prediction model in the MPC scheme, see e.g. [76], [77], [78]. However, it is
in general difficult to conclude regarding the closed-loop optimality of the resulting
MPC scheme.

Another approach to learning-based MPC, is using cost modifications to handle model
imperfection. The idea of compensating model inaccuracy with cost modifications
was first established in [6]. However, the theory underlying this result suggests that in
principle the cost parametrization should be "rich", i.e. it should be able to capture
fairly generic functions. Rich parametrizations of the cost in the context of ENMPC
were first considered in [79]. In paper xvi , we elaborated on this early investigation
and propose a more complete framework to provide such a rich parametrization. More
specifically, we proposed to use a class of NNs that preserve convexity. This choice
has two important benefits. First, ensuring convexity of the MPC cost alleviates the
difficulties inherent to solving MPC schemes numerically using sensitivity-based
solvers. Second, the stage cost in the MPC scheme must be lower-bounded by a
K∞-function to ensure stability. A convex function can be designed to satisfy this
lower bound, and in turn ensures nominal stability of the resulting MPC scheme.

The main contribution of paper xvi is the introduction of convex NNs as cost
modifications in MPC schemes with imperfect prediction models. Using the MPC
scheme as a function approximator for the value function and the policy, we will
use RL to adjust the cost parameters, including the NN weights, in pursuance of the
optimal economic policy. The second contribution of the paper is the combination
of RL methods for when neither value-based nor policy-based RL methods alone are
sufficient.

Paper xvi was led by Katrine Seel [80].

3.10 Optimality equivalency of MDP and MPC

Solving an MDP refers to finding an optimal policy that minimizes the expected value
of a total cumulative cost as a function of the current state. The cumulative cost can be
either discounted or undiscounted with respect to the time instant. Therefore, different
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definitions for the cumulative cost yields different optimality criteria for the MDPs.

RL is a model-free method that tackles these difficulties [58]. In most cases, RL
requires a function approximator to capture the optimal policy or the optimal value
functions underlying the MPD. Deep Neural Networks (DNNs) are common function
approximators to capture either the optimal policy underlying the MDP directly or the
action-value function from which the optimal policy can be indirectly extracted [81].
However, the formal analysis of closed-loop stability and safety of the policies pro-
vided by approximators such as DNNs is challenging. DNNs usually need a large
number of tunable parameters. Moreover, a pre-training is often required so that the
initial values of the parameters are reasonable.

An MPC scheme can be used as a function approximator without these difficulties [6],
where it was shown that the optimal policy of a discounted MDP can be captured
by a discounted MPC scheme even if the model is inexact. Stability for discounted
MPC schemes is challenging, and for a finite-horizon problem, it is shown in [82]
that even if the provided stage cost, terminal cost and terminal set satisfy the stability
requirements, the closed-loop might be unstable for some discount factors. Indeed,
the discount factor has a critical role in the stability of the closed-loop system under
the optimal policy of the discounted cost. Therefore, an undiscounted MPC scheme
is more desirable, where the closed-loop stability analysis is straightforward and
well-developed.

The equivalency of MDPs criteria (discounted and undiscounted) has been recently
discussed in [83] in the case an exact model of MDP is available. However, in practice,
the exact probability transition of the MDP might not be available and we usually have
a (possibly inaccurate) model of the real system. In paper xviii , we first showed
that, under some conditions, an undiscounted finite-horizon Optimal Control Problem
(OCP) can capture the optimal policy and the optimal value functions of a given MDPs,
either discounted or undiscounted, even if an inexact model is used in the undiscounted
OCP. We then proposed to use a deterministic (possibly nonlinear) MPC scheme as
a particular case of the theorem to formulate the undiscounted OCP as a common
MPC scheme. By parameterizing the MPC scheme, and tuning the parameters via
RL algorithms one can achieve the best approximation of the optimal policy and the
optimal value functions of the original MDP within the adopted MPC structure.
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3.11 Probabilistic safe policy using Distributionally Robust
MPC

Enforcing safety in the presence of uncertainty and stochasticity of nonlinear dy-
namical systems is a challenging task [84]. Chance constraints are common way
of mathematical modeling of safety that requires a user-specified upper bound for
the probability of the constraint violation [85]. However, from the computational
point of view, it is challenging to handle a chance constraint due to its nonconvexity.
Conditional Value at Risk (CVaR) [86] is a convex risk measure that has received
considerable attention in decision-making problems, such as MDP [87, 88].

The theory of stochastic optimal control typically assumes that the probability distri-
bution of the disturbance is fully known. However, this assumption may not hold in
many real-world applications and one needs to estimate the probability distribution.
In data-driven stochastic optimization, Sample Average Approximation (SAA) is a
fundamental way to estimate the probability distribution of the random variables [89].
SAA typically needs quite a large set of data to fulfill risk constraints accurately. Dis-
tributionally Robust Optimization (DRO) is an alternative that overcomes this problem.
DRO tackles stochastic optimization by considering the worst-case distribution in an
ambiguity set. There are several ways to construct ambiguity sets (see e.g., [90–92]).
Wasserstein based ambiguity set is well-known in this context, because it provides a
probabilistic guarantee based on finite-samples in a tractable formulation [93]. The
Wasserstein-based ball is a statistical ball in the space of probability distributions
around the empirical distribution such that the radius of this ball is measured using
Wasserstein distance.

In paper xix , we used the DRO in the chance-constrained nonlinear MPC. This
approach has been known as Distributionally Robust Model Predictive Control
(DRMPC) [94]. We then proposed to use a parameterized nonlinear DRMPC based on
the Wasserstein metric as a function approximator for RL in order to generate a family
of policies that are safe by construction. DRMPC is subject to the chance constraint
that is approximated by the CVaR risk measure and we reformulated Wasserstein
DRMPC as a tractable optimization. A safety projection technique was used in
order to ensure the safety with a random exploration. Then we used the Q-learning
technique to optimize the parameters of the DRMPC scheme to achieve the best
closed-loop performance among the safe policies.
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In this chapter, we will conclude the thesis by summing up some of its main contribu-
tions and a discussion on each contribution. In addition, we will suggest some future
research directions for the topics.

4.1 Conclusion

As discussed in Sections 3.1 and 3.3, MPC-based RL can be successfully applied
for engineering applications such as ASV and smart grids, and the advantages of
this method were shown in these fields. In ASV applications, the MPC scheme
can solve crucial problems, such as path planning, trajectory tracking, autonomous
docking, and obstacle avoidance. However, RMPC schemes such as scenario tree
MPC is a successful approach to handle the finite and discrete uncertainties, the other
uncertainties of the ship model, and stochastic disturbances caused by wind and ocean
currents, and the data collected from the real system can improve the performance
of the closed-loop system employing RL methods simultaneously. In the smart-grid
and energy applications, it is shown that the MPC-based RL can be used in order to
provide a smooth and fast learning procedure for bang-bang policies. Moreover, this
framework can handle multi-agent battery systems while respecting all the individual
state-input constraints and peak power capacity of the system.

MHE is a well-known state estimator that optimizes a moving finite-horizon cost based
on a model of the read system in order to find the best estimations of the unobservable
states. Similar to the way that RL is used to update MPC parameters, RL methods
can also be used to update MHE parameters to compensate for the possible model
mismatch. The use of MHE along with MPC can improve the performance of the
closed-loop system and refine the state estimation for the systems whose states are not
fully observable, known as PAMDPs in the literature of MDP and RL. Learning-based
MHE-MPC is discussed in detail in Section 3.2.
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RMPC can be used in different forms in the field of learning MPC, which we men-
tioned two applications in Section 3.4. In the first application, RMPC was used for
constrained problems to generate optimal policies that remain feasible with random
CI exploration. The CI exploration made it possible to evaluate the policy gradient
without bias with respect to the actual policy gradient. RL-based MPC was used in
another application to adjust ellipsoids that modeled the propagation of perturbations
in the state dynamics for nonlinear systems.

Learning based on MPC is not limited only to the practical aspects but also solves
some theoretical problems in the context of data-driven MPC. In Section 3.5, we
explained the use of Q-learning to update a tracking MPC along with a parameterized
storage function for Economic Model Predictive Control (EMPC) problems. It has
been shown that this method leads to learning valid storage functions that satisfy
dissipative conditions in both discounted and undiscounted EMPC settings.

Some contributions of this thesis are in the context of MDP and RL and can be used
independently of the field of MPC. In Section 3.6, the Quasi-Newton method for
deterministic policy gradient was explained using a novel proposed hessian. This
method yields a faster learning rate. In Section 3.7, it was explained that one could
characterize the closed-loop stability of a given MDP with the discounted optimality
criterion by the inspiration of dissipativity theory in EMPC. This concept introduces
stability properties on the measure space underlying the MDP rather than the state
space itself.

The reason the optimal policy and optimal value functions of a given MDP with
different optimality criteria can be captured only by modifying the stage cost and
terminal cost function of an undiscounted MPC (even with an inaccurate model) was
explained in Section 3.10. In fact, using the idea of parameterizing for the MPC
scheme can be reasonable with the explanation of this section. In addition, the cost
modification establishes equivalency in the optimality for discounted and undiscounted
MDPs. In the field of EMPC, as explained in Section 3.8, the cost modification can
correct the bias in the optimal steady state for the discounted setting with respect to
the actual optimal steady state point ( for the undiscounted setting). As explained in
Section 3.9, the parameterized cost function, especially for the stage cost, can have
properties such as convexity so that numerical methods do not struggle to solve the
optimization problem and other properties such as being lower-bounded by a K∞ can
be satisfied by construction.

As discussed in Section 3.11, the combination of distributionally robust optimization
in the MPC scheme and the use of parameterized DRMPC as an approximator function
for RL methods results in the extracted policies being safe by construction for unknown
distributions of disturbances.
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4.2 Future work

The future directions of the current research can be considered as follows:

Stability of the closed-loop system. The nominal stability of the closed-loop system
with the policy provided by an MPC scheme is relatively straightforward, while the
stability of the real system in the present uncertainty and stochasticity is generally
challenging. Although RMPC offers practical tools to discuss the stability of the
system with uncertainty, it imposes a conservatism on the policy. Using the recently
developed concept of stability and dissipativity of MDPs, characterizing the properties
of the nominal model and MPC scheme to achieve some type of stability of the real
system (e.g., functional stability of MDPs) can be valuable research in this field.

Convergence analysis. Specifying the properties of the parameterized MPC scheme,
as well as the baseline cost and the algorithm used in RL in order to achieve a sequence
of parameters that converge to the optimal parameter can be considered as another
future research direction.

Learning the storage function for stochastic systems. Using the learning methods
of the storage function provides a platform for applying the technique for stochastic
systems and noisy data. Therefore, learning a valid storage function (or possibly
functional) and verifying the dissipativity for a stochastic system (possibly MDP in
the general case and functional space) using the proposed method can be a direction
for future work. Moreover, combining the proposed method with the SOS technique
can provide an interesting and fast method for evaluating the storage function.

Distributed MPC-based RL. One can investigate fully distributed MPC-based RL
and utilize game theory to solve exciting questions in decentralized and large scales
problems.

MPC-based Quasi-Newton RL. MPC can effectively provide a less noisy gradient
and curvature of the parameterized action-value function. Therefore, providing actor-
critic algorithms based on the MPC scheme using the proposed Hessian can be an
interesting research direction.

Model mismatch and joint chance-constrained for safety. Considering inaccurate
MPC models and joint-chance constraints in safety-critical systems can cover more
practical problems. However, this will have some theoretical challenges, especially in
nonlinear problems.

Implementations on real systems. Finally, applying the proposed method to real
systems can be practical research.
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Reinforcement Learning based on Scenario-tree MPC
for ASVs

Arash Bahari Kordabad1, Hossein Nejatbakhsh Esfahani1, Anastasios M. Lekkas1, and Se-
bastien Gros1

1Department of Engineering Cybernetics, Norwegian University of Science and Technology
(NTNU), Trondheim, Norway.

Abstract: In this paper, we present the use of Reinforcement Learning (RL) based on Robust
Model Predictive Control (RMPC) for the control of an Autonomous Surface Vehicle (ASV).
The RL-MPC strategy is utilized for obstacle avoidance and target (set-point) tracking. A
scenario-tree robust MPC is used to handle potential failures of the ship thrusters. Besides, the
wind and ocean currents are considered as unknown stochastic disturbances in the real system,
which are handled via constraints tightening. The tightening and other cost parameters are
adjusted by RL, using a Q-learning technique. An economic cost is considered, minimizing the
time and energy required to achieve the ship missions. The method is illustrated in simulation
on a nonlinear 3-DOF model of a scaled version of the Cybership II.

1 Introduction

Autonomous Surface Vehicles (ASVs) have been extensively investigated recently in industry
and research [1–3]. However, designing control systems that can tackle obstacle avoidance
and tracking control, with severe external time-varying disturbances due to the wind, wave,
and ocean currents, is one of the most challenging research topics for ASVs in maritime
engineering [4, 5]. In the control literature, the motion control scenarios of such vehicles
are divided into target tracking, path following, path tracking, and path maneuvering [6].
This paper focuses on target (set-point) tracking motion control in the presence of static
elliptic-shaped obstacles and mission-varying wind and ocean currents. In set-point tracking,
only a terminal point is given, which ought to be reached at minimum cost.

Reinforcement Learning (RL) is a powerful tool for tackling Markov Decision Processes
(MDP) without prior knowledge of the process to be controlled [7]. Indeed, RL attaches a
reward function to each state-action pair and tries to find a policy to optimize the discounted
infinite rewards labelled performance [8]. Dynamic Programming (DP) methods can be used to
solve MDPs. However, DP requires a knowledge of the MDP dynamics, and its computational
complexity is unrealistic in practice for systems having more than a few states and inputs.
Instead, most investigations in RL have focused on achieving approximate solutions, while
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not requiring a model of the dynamics. Fuzzy Neural Networks and Deep Neural Networks
(DNNs) are a common choice to approximate the optimal policy [9]. However, analysing
formally the closed-loop behavior of a learned policy based on a DNN, such as stability and
constraints satisfaction is challenging. Moreover, providing meaningful initial weights for
the DNN can be very difficult. For instance, in [10] the baseline control is employed to
ensure stability and tracking performance of ASV, while DNN-based RL is added to handle
uncertainties and collision avoidance.

Model Predictive Control (MPC) is a well-known model-based control method that employs a
model of the system dynamics to build an input sequence over a given finite horizon such that
the resulting predicted state trajectory minimizes a given cost function while respecting the
constraints imposed on the system [11]. The first input is applied to the real system, and the
problem is solved at each time instant based on the latest state of the system. The advantage
of MPC is its ability to explicitly support state and input constraints while producing a nearly
optimal policy [12]. However, model uncertainties can severely impact the performance of the
MPC policy.

In Robust Model Predictive Control (RMPC), Scenario- tree MPC is a useful approach to
handle nonlinear systems with finite and discrete uncertainties. Scenario-based MPC approach
for ship collision avoidance is presented in [13]. Tube-based MPC is another technique for
RMPC mostly used when the MPC model and constraints are linear and the uncertainties can
be contained in a polytope [11].

Data-driven adaptation of the RMPC model, e.g. using system identification, to better fit
the real system is a fairly obvious strategy to tackle the issues concerning inaccurate model
and unknown disturbance. However, if the model cannot capture the real system dynamics,
adapting the model from data does not necessarily improve the performance of the MPC
policy. Instead, we propose to use RL to online tune the RMPC formulation using the data
obtained from the real system [14]. Unlike DNN, MPC as a function approximator for RL,
can explicitly handle constraints satisfaction, stability, and safety [15–18].

In this paper, we use a scenario-tree MPC to manage potential thruster failures. Constraint
tightening is used to avoid obstacles in the presence of stochastic wind and ocean currents.
We consider a trade-off between time and energy to reach a neighborhood of the target as a
baseline cost of RL. This cost is penalized linearly when approaching the obstacles. RL will
adjust the tightening parameter and other RMPC parameters to find an optimal policy during
some missions.

The paper is structured as follows. Section 2 presents the 3-DOF nonlinear ship’s dynamics
and its thruster configuration. Section 3 formulates the scenario-tree MPC and RL, and
details an RMPC parameterized scheme as a function approximator of Q-learning. Section
4 describes the simulation details and illustrates the results. The target point tracking with
back-off constraint in obstacle will be considered, and Q-learning tunes the parameters.
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2 Vessel Model

The 3-DOF nonlinear dynamics of the Cybership II can be represented by a pose vector
η = [x, y, ψ]⊤ ∈ R3 in the Earth-fixed frame, where x is the North position, y is the East
position, ψ is the heading angle. The velocity vector ν = [u, v, r]⊤ ∈ R3 includes the surge u
and sway v velocities, and yaw rate r decomposed in the body-fixed frame (see Fig.1). The
model dynamics can be written as follows [19]:

η̇ = J(ψ)ν (1a)
MRBν̇ +MAν̇r + CRB(ν)ν + CA(νr)νr +D(νr)νr = τ + τw (1b)

where νr = ν − νc = [ur, vr, r]
⊤ is the ship velocity relative to the ocean current, and

North (x)
u

v

ψ

East (y)

βc

Vc

Figure 1: The 3-DOF Ship model in North-East-Down (NED) frame with surge u, sway v and
heading angle ψ, and ocean current vector vc

νc = J(ψ)⊤vc where vc = [Vc cosβc, Vc sinβc, 0]
⊤ are the ocean current in the body-fixed

and Earth-fixed frames, respectively, and where Vc is the current velocity and βc is its angle in
the Earth-fixed frame. The rotation matrix J(ψ) is given by:

J(ψ) =



cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


 (2)

The rigid-body inertia matrixMRB and added massMA are given by:

MRB =



m 0 0
0 m mxg
0 mxg Iz


 , MA =



−Xu̇ 0 0
0 −Yv̇ −Yṙ
0 −Nv̇ −Nṙ


 (3)

wherem is the mass of the ship, Iz is the moment of inertia about the body zb-axis (yaw axis)
and xg is the distance between the center of gravity and the body xb-axis. Furthermore, the
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rigid-body and hydrodynamic of the Centripetal and Coriolis acceleration matrices read as:

CRB(ν) =




0 0 −m(xgr + v)
0 0 mu

m(xgr + v) −mu 0


 , CA(νr) =




0 0 c13
0 0 c23
−c13 −c23 0




(4)

where c13 = Yv̇vr +0.5(Nv̇ + Yṙ)r, c23 = −Xu̇ur, andXu̇, Yv̇ , Yṙ, Nv̇ andNṙ are constant
model parameters [20]. Moreover, the damping matrix is:

D(νr) = −



d11 0 0
0 d22 d23

d32 d33


 (5)

where

d11 =Xu +X|u|u|ur|+Xuuuu
2
r, d22 = Yv + Y|v|v|vr|+Y|r|v|r| (5a)

d23 =Yr + Y|v|r|vr|+Y|r|r|r|, d32 = Nv +N|v|v|vr|+N|r|v|r| (5b)
d33 =Nr +N|v|r|vr|+N|r|r|r| (5c)

where X(.), Y(.), and N(.) are the hydrodynamic coefficients [20]. The model parameters are
taken from [19]. Finally, τ = [X,Y,N ]⊤ is the external control forces X,Y and moment N
vector and τw is the wind effects disturbance.

2.1 Thruster Allocation

We consider one tunnel thruster (transverse) f1 and two main propeller thrusters (longitudinal)
f2, f3 as the thrust configuration (see Fig. 2). Then

τ =



0 1 1
1 0 0
lx −ly ly


a (6)

where a = [f1, f2, f3]
⊤ is the actuator forces vector subject to the bounds:

amin ≤ a ≤ amax (7)

2.2 Obstacle Avoidance

For simplicity, we consider obstacles of elliptic shape. Hence, the condition for obstacles
avoidance can be seen as the following inequality:

((x− ox,j) /(rx,j + ro))
2
+ ((y − oy,j) /(ry,j + ro))

2 ≥ 1 (8)

where (ox,j , oy,j) and (rx,j , ry,j) are the center and radii of the jth ellipse (j = 1, . . . , No),
respectively, ro is radius of the vessel and No is number of obstacles.
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ly

ly

f3

f2

yb

f1

lx

xb

Figure 2: Schematic drawing showing the thrusters configuration in the body-fixed frame {b}

3 RMPC-based Reinforcement learning

In this section, we formulate the scenario-tree MPC scheme and detail how it can be treated
via Q-learning.

3.1 Robust Model Predictive Control

Scenario-tree MPC is a robust MPC technique that can treat finite and discrete uncertainties in
the system [21]. Fig. 3 shows the evolution of the system described by a scenario tree, where
xk,i and uk,i are the state and input of scenario k at time i, given by:

xk,i+1 = fk,i (xk,i,uk,i) (9)

where fk,i is the k
th (time-varying) model. In this paper, the scenario tree will be used to

model the thruster failures in the system, hence each model fk,i corresponds to a specific
failure k at a specific time i. Since the number of scenarios grows exponentially with the
length of the MPC horizon, it is common to fix the uncertain parameters after a certain period
of time called Robust horizon Nr < N , where N is the MPC prediction horizon. Then the
number of scenarios isM = mNr

d , wheremd is the number of realization (branches) at each
time stage. We assumed separate state and control variables for each scenario to enable parallel
computations. However, because the uncertainty cannot be anticipated, control action must
depend on only the historical realizations of the uncertainty. Then, uk,j = ul,j , ∀j = 0, ..., i if
the uncertainty realization for scenario k and l are identical up to and including the time stage
i. This restriction is commonly denoted as non-anticipativity constraint. In Fig. 3, N = 4,
md = 3, Nr = 2 and then, M = mNr

d = 9. Also, u1,0 = u2,0 = u3,0,u4,0 = u5,0 =
u6,0,u7,0 = u8,0 = u9,0 are the non-anticipativity constraints.

3.2 Reinforcement Learning

Reinforcement Learning considers that the real system is described by a Markov Decision
Process (MDP) with state transitions having the underlying conditional probability density
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MPC based, resulting in a block tridiagonal dual Hessian. It
additionally proposes a constraints elimination to guarantee
positive definiteness of the dual Hessian.

A. Notations

The notation Sn defines the set of symmetric matrices of
dimension n×n. Moreover, we use the notations Sn++ ⊂ Sn
and Sn+ ⊂ Sn for symmetric and positive definite and positive
semidefinite matrices, respectively.

II. SCENARIO-TREE MPC

As a result of imperfect models and uncertain distur-
bances, constraint satisfaction can in general not be guaran-
teed for MPC schemes. A common remedy, often denoted as
scenario-tree MPC, is to discretize the underlying stochastic
process, and describe the evolution of the uncertainty via a
scenario tree [4], [5]. To that end, we consider a discrete-
time, constrained system with uncertain parameters θ:

xi+1 = Ai(θ)xi +Bi(θ)ui (1a)
Ci(θ)xi +Di(θ)ui ≤ di(θ) (1b)

where xi ∈ Rn and ui ∈ Rm denote the state and
control variables respectively. To account for the uncertain
parameters, we consider md realizations of (1) at each time
stage. The evolution of the system can then be described by
a scenario tree as depicted in Figure 1.

Robust horizon Nr

Prediction horizon N

x1,3

x4,3

x7,3

x2,3

x5,3

x8,3

x3,3

x6,3

x9,3

x1,4

x4,4

x7,4

x2,4

x5,4

x8,4

x3,4

x6,4

x9,4

x1,0

x1,1

x4,1

x7,1

x1,2

x4,2

x7,2

x2,2

x5,2

x8,2

x3,2

x6,2

x9,2

u1,3

u2,3

u3,3

u4,3

u5,3

u6,3

u7,3

u8,3

u9,3

u1,2

u2,2

u3,2

u4,2

u5,2

u6,2

u7,2

u8,2

u9,2

u1,1

u2,1
u3,1

u4,1

u5,1
u6,1

u7,1

u8,1
u9,1

u4,0

u1,0

u7,0

Fig. 1: The evolution of the system represented as a scenario
tree. For nodes and branches that are shared between multiple
scenarios, the variable corresponding to the scenario with the
lowest index is visualized in the tree.

We define a scenario as a path from the root node to a
leaf node, see Figure 1. The number of scenarios resulting
from the scenario-tree approach grows exponentially with the
length of the MPC horizon, yielding very large optimization
problems. It is therefore often proposed to treat the uncertain
parameters as constant after a certain period of time. We
denote the time period where the parameters can change as

the robust horizon Nr, in contrast to the prediction horizon
N . Accordingly, we consider M = mNr

d scenarios.
To enable parallel computations, we introduce separate

state and control variables for each scenario, i.e. we in-
troduce xk = [xTk,1 . . . x

T
k,N ]T ∈ Rn̄, with xk,i ∈ Rn,

and uk = [uTk,0 . . . u
T
k,N−1]T ∈ Rm̄, with uk,i ∈ Rm, for

k = 1, . . . ,M . However, because the uncertainty cannot be
anticipated, control actions are restricted to only depend on
historical realizations of the uncertainty, such that the control
variables of the scenarios are coupled at their shared nodes.
More specifically, if the uncertainty realizations for scenario
k and l are identical up to and including time stage i, their
control inputs should be identical up to that time stage i.e.
uk,j = ul,j , ∀j = 0, . . . , i. This restriction is commonly
denoted as non-anticipativity constraints.

The resulting MPC problem can be formulated as:

min
x,u

M∑
k=1

Vk(xk, uk) (2a)

s.t. Ākxk + B̄kuk = bk, k = 1, . . . ,M (2b)
C̄kxk + D̄kuk ≤ dk, k = 1, . . . ,M (2c)
M∑
k=1

Ēkuk = 0 (2d)

where we have introduced the notations x = [xT1 . . . x
T
M ]T

and u = [uT1 . . . u
T
M ]T for the collection of variables over the

scenarios, and V (xk, uk) denotes a strictly convex quadratic
function. The dynamics (2b) are defined by:

Āk =


−I
Ak,1 −I

. . . . . .
Ak,N−1 −I

 (3a)

B̄k =

 Bk,0
. . .

Bk,N−1

 (3b)

and bk = [−xT0 ATk,0 0 . . . 0]T , whereas the constraints (2c)
are defined by the matrices:

C̄k =


0 . . . 0

Ck,1
. . .

Ck,N

 (4a)

D̄k =


Dk,0

. . .
Dk,N−1

0 . . . 0

 (4b)

and dk = [dk,0 . . . dk,N ]T , for Ck,i ∈ Rl×n, Dk,i ∈ Rl×m
and dk,i ∈ Rl. For notational simplicity, we denote the
convex polyhedral sets defined by (2b) and (2c) as Zk, and
Z = Z1 × · · · × ZM .

The formulation of the non-anticipativity constraints (2d)
provides some freedom in constructing the sparsity structure

Figure 3: The evolution of the system represented as a scenario tree [21]

P [s+|s,a], where s,a is the current state-input pair and s+ is the subsequent state. The
control literature typically uses the notation s+ = f real(s,a, ζ), where ζ is a random distur-
bance and f real is discretized real system dynamics (1) and s = [η⊤,ν⊤]⊤. We will label
L(s,a) as the baseline stage cost associated with the MDP at each transition. The optimum
action-value function Q⋆, optimum value function V⋆ and optimum policy π⋆ associated with
the MDP are defined by the Bellman equations:

V⋆(s) = min
a
Q⋆(s,a), (10a)

Q⋆(s,a) = L(s,a) + γE[V⋆(s+)|s,a], (10b)
π⋆(s) = argmin

a
Q⋆(s, a) (10c)

where γ ∈ (0, 1] is the MDP discount factor.

Q-learning is a classical model-free RL algorithm that tries to capture the action value function
Qθ ≈ Q⋆ via tuning the parameters vector θ ∈ Rn. The approximation of the value function
Vθ and parametric optimal policy πθ can then be extracted from the Bellman equations.
Q-learning uses the following update rule for the parameters θ at state sk [22]:

δk = L(sk,ak) + γVθ(sk+1)−Qθ(sk,ak) (11a)
θ ← θ + αδk∇θQθ(sk,ak) (11b)

where the scalar α > 0 is the learning step-size, δk is labelled the Temporal-Difference (TD)
error and the input ak is selected according to the corresponding parametric policy πθ(sk)
with possible addition of small random exploration.
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Using RMPC as a way of supporting the approximations Vθ and Qθ has been proposed and
justified in [14]. Hereafter, we detail how this can be done for the specific choice of RMPC
proposed here.

3.3 RMPC as a function approximator for RL

We propose to use the action-value function approximate Qθ ≈ Q⋆ obtained from the
following RMPC scheme parameterized by θ [14]:

Qθ(s,a) = min
x,u,σ

M∑

k=1

(
γNV f

k (xk,N ,θ) + ω⊤
f σk,N +

N−1∑

i=0

(
γilk (xk,i,uk,i,θ) + ω⊤σk,i

)
)

(12a)

s.t. ∀i = 0, ..., N − 1, ∀k = 1, ...,M :

xk,i+1 = fk,i(xk,i,uk,i,θ) (12b)

hθ(xk,i,uk,i) +Bk,i(θ) ≤ σk,i (12c)

hf
θ(xk,N ) +Bf

k,N (θ) ≤ σk,N (12d)

g(uk,i) ≤ 0 (12e)
uk,i = ul,i if xk,j = xl,j ,

∀k, l ∈ {1, ..,M} , ∀j ∈ {1, ..., i} (12f)
xk,0 = s (12g)
uk,0 = a (12h)
σk,i ≥ 0, σk,N ≥ 0 (12i)

where x = {x1,0, . . . ,xM,N}, u = {u1,0, . . . ,uM,N−1} and σ = {σ1,0, . . . ,σM,N} are
the primal decision variables, M is the number of scenarios, N is the prediction horizon,
f{1,...,M},i are M different (possibly) time-varying models supporting the discrete uncer-
tainties, l1,...,M and V f

1,...,M are the stage and terminal costs for the different scenarios,
respectively. The constraint tightening is performed in (12c) and (12d), whereBk,i(θ) ≥ 0

andBf
k,N (θ) ≥ 0 are the (possibly) time-varying tightening parameters. Variables σk,i and

σk,N are slacks for the relaxation of the mixed state-input constraints, using the positive
weights vectors ω and ωf , respectively. The relaxation prevents the infeasibility of the tight-
ened constraints of the RMPC in the presence of disturbances and mismatching models fk,i

to the real system f real. Constraint (12e) represents the input inequality constraints which is
defined in (7) for the ASV. Constraint (12f) is the non-anticipativity constraint [23]

In (12), θ is the parameters vector that can be modified by RL to shape the action-value function.
Under some mild assumptions (see [14] for the technical details), if the parametrization is
rich enough, the MPC scheme is able to capture the true optimal action-value function Q⋆,
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value function V⋆ and policy π⋆ jointly, even if the RMPC models fk,i do not capture the real
system dynamics (1).

One can verify that the parameterized value function Vθ that satisfies the Bellman equations
can be obtained by solving (12) without constraint (12h). Moreover, the parameterized
deterministic policy πθ reads as follows:

πθ(s) = u⋆
k,0(s, θ) (13)

where u⋆
k,0(s, θ) is the first element of u⋆, solution of the RMPC scheme (12) when constraint

(12h) is removed. Therefore, the value function Vθ(s) can be acquired together with the policy
πθ(s) by solving a classic MPC scheme, while the action value function results from solving
the same MPC scheme with its first input constrained to a specific value a.

The sensitivity∇θQθ(s,a) required in (11b) is given by [14]:

∇θQθ(s,a) = ∇θLθ(s,a,y⋆) (14)

where L is the Lagrange function associated to the scenario-tree RMPC (12), i.e.:

Lθ(s,a,y) = Φθ + λ⊤Gθ + µ⊤Hθ (15)

where Φθ is the cost (12a), Gθ gathers the equality constraints (12b), (12f), (12g), (12h), Hθ

collects the inequalities (12c), (12d), (12e), (12i), and λ,µ are the associated dual variables.
Argument y reads as y = {x,u,σ,λ,µ} and y⋆ is the solution to (12).

4 Simulation

In this section, we consider a target tracking problem in the presence of static obstacles
modelled as ellipsoids, random wind and ocean currents, and discrete uncertainties in the
dynamics. The objective is to reach the terminal (target) point while achieving an optimal
trade-off between time and energy.

We consider the nominal system as the first scenario (k = 1) and the failure of thrusters f2 or
f3 (k = 2, 3) as the discrete uncertainties in the system. As a result, by considering Nr = 1,
this formulation hasM = md = 3 scenarios and realization at each time instance.

We consider a stage cost that minimizes both energy and time. Also, the stage cost is in the
form:

L(s,a) = |X.u|+|Y.v|+|N.r|︸ ︷︷ ︸
power

+ T︸︷︷︸
time

+ c⊤max(0,hθ + d)︸ ︷︷ ︸
obstacles penalty

(16)

where T is a constant introducing a penalty on the time to reach the target. The term
c⊤max(0,hθ +d) penalizes violations of the relaxed inequality constraints hθ +d ≤ 0 with
a weight vector c. The parameter d can be interpreted as the dangerous distance from the
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obstacles. Indeed, when 0 < hθ + d, RL tries to increase the distance by adjusting the MPC
tightening parameters. Since the task is episodic here, we can use an undiscounted cost in RL
i.e. γ = 1.

The obstacles constraints tightening is parametrized as follows:

Bk,i(θ) = Bf
k,N (θ) = θh

k (17)

where θh
k = θh

k,{1,...,No} is horizon-invariant parameter and we use No = 2 obstacles.

The stochastic ocean current is represented as ζ = {Vc, βc}. We generate a random current
map for each mission independently, using the gradient of the Gaussian Radial Basis Functions
set, as follows:

υc =
∂

∂p

Nc∑

l=1

ql exp

(
−∥p− bl∥2

2ρ2l

)
(18)

where p = [x, y]⊤ is the position vector, {ql, bl, ρl} are random values and Nc is the number
of Gaussian functions which we take Nc = 2 here. Then Vc and βc are obtained as magnitude
and angle of the vector υc.

We consider N = 20 the prediction horizon. A sampling time of dt = 0.5s was chosen for the
discretization of the system dynamics (1), and the actuators bounds as amax = [2, 8, 8]⊤N and
amin = [−2, 0, 0]⊤N in (7). In addition, the stage and terminal costs of the RMPC scheme
can be represented as the following weighted vector norm:

lk(xk,i,uk,i,θ) =

∥∥∥∥
[
(xk,i −Xref )

⊤
,u⊤

k,i

]⊤∥∥∥∥
Θl
k

(19a)

V f
k (xk,i,θ) = ∥xk,i −Xref∥ΘV

k
(19b)

where Xref is the reference state in the target-tracking and parameters Θl
k and ΘV

k are the
weights of the vector norm. They can be tune by RL as well. The RL parameters read as:

θ =
{
θh,Θl

1, . . . ,Θ
l
M ,Θ

V
1 , . . . ,Θ

V
M

}
(20)

Fig. 4 shows the path for the first simulated mission. The corresponding random wind and
ocean current map is shown as well. The failure scenario prediction and nominal scenario are
specified by red and green, respectively. The learning process continues until RMPC predicts
the target point as the terminal state for the first time. Once the target point is within the
RMPC horizon, a different control scheme ought to be used.

Fig. 5 illustrates the paths over missions for the nominal system. We simulated seven missions
and for the sake of brevity, four missions were selected for illustration. It can be seen that the
paths are nearing obstacles during the missions until the RL penalty is activated and find the
optimal distance to handle disturbance.
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Figure 4: The path of the ship (black) in the first mission and random current, fail prediction
(k = 2, 3): red and nominal prediction (k = 1): green. RL updating is stopped in the dashed
line (the MPC prediction at the end of missions).

Figure 5: The path of the ship over missions.

Fig. 6 shows the surge u, sway v, and yaw r velocities over the missions. β(t) = arctan( v(t)u(t) )
is the sideslip angle. The wind and ocean current disturbance and parametric uncertainties in
the ship’s model are effective factors in increasing the absolute value of this angle.

The control inputs (thruster forces) are provided in Fig. 7 for the nominal system. As it is
observed, the propeller thrusters f2 and f3 work in their upper bounds as expected to reduce
the cost of the route to the target point.

The back-off RL parameters θh changes during the learning is demonstrated in Fig. 8. As can
be seen, in the first mission, which has a large distance from the obstacles, the parameters are
reduced in order to approach the obstacles until certain values.
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Figure 6: The surge u, sway v and yaw r velocities and sideslip angle β.

Finally, Fig. 9 illustrates the closed-loop performance of each mission. This performance is
obtained by summing of baseline stage cost L(s,a) during each episode. As can be seen, the
closed-loop performance is reduced by about 12% over seven missions.

5 Conclusion

This paper proposed an RL-based RMPC technique for controling an ASV in a target-tracking
scenario in the presence of obstacles and stochastic wind and ocean currents. A parameterized
scenario-tree-based MPC was used to approximate the action-value function, modelling a
potential propeller thrusters failure. Additionally, constraint tightening was used in the MPC
scheme to handle uncertain wind and current disturbances. The MPC tightening was adjustable
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Figure 7: Actuator forces: f2 and f3 are the propeller, and f1 is the tunnel thrusters.

by RL. A mixed energy and time cost was used as the RL’s baseline cost, with the addition of
a penalty when the ship’s trajectory was too close to the obstacles. We started the mission with
a conservative tightening, yielding a fairly large distance from the obstacles, and let RL adjust
the tightening. The simulations show how RL manages to adjust the tightening to better values.
The adaptation of more parameters in the MPC scheme will be considered in the future.
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Abstract: In this paper, we are interested in optimal control problems with purely economic
costs, which often yield optimal policies having a (nearly) bang-bang structure. We focus
on policy approximations based on Model Predictive Control (MPC) and the use of the
deterministic policy gradient method to optimize the MPC closed-loop performance in the
presence of unmodelled stochasticity or model error. When the policy has a (nearly) bang-bang
structure, we observe that the policy gradient method can struggle to produce meaningful steps
in the policy parameters. To tackle this issue, we propose a homotopy strategy based on the
interior-point method, providing a relaxation of the policy during the learning. We investigate
a specific well-known battery storage problem and show that the proposed method delivers
homogeneous and faster learning than a classical policy gradient approach.

1 Introduction

Making decisions for the energy system in the presence of different forms of uncertainty is the
object of recent publications [1, 2]. In smart grids, uncertainty mainly arises from imperfect
forecasts for the prices, demand, and power generation. Finding a policy minimizing the
economic cost of operating the grid in the presence of these uncertainties is highly valuable [3].
Economic costs for smart grids are linear, based on the difference between the profit made by
selling electricity to the power grid, and the losses incurred from buying it [4].

Reinforcement Learning (RL) offers tools for tackling Markov Decision Processes (MDP)
without having an accurate knowledge of the probability distribution underlying the state
transition [5, 6]. RL seeks to optimize the parameters underlying a given policy in view of
minimizing the expected discounted sum of a given baseline stage cost L(s,a) ∈ R, where
s,a are the system states and inputs.

RL methods are usually either directly based on an approximation of the optimal policy or
indirectly based on an approximation of the action-value function. Policy gradient methods
directly seek to find the optimal policy parameters [7, 8]. Different variants of Temporal Dif-
ference (TD) methods are at the core of many RL techniques for estimating the different value
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functions associated with the MDP. Least-Squares Temporal-Difference (LSTD) techniques
are widely used because of their reliability and efficient use of data [9].

Model Predictive Control (MPC) is a control strategy that employs a (possibly inaccurate)
model of the real system dynamics to produce an input-state sequence over a given finite
horizon such that the resulting predicted state trajectory minimizes a given cost function while
explicitly enforcing the input-state constraints imposed on the system trajectories [10]. The
problem is solved at each time instant, and only the first input of the input sequence is applied
to the real system. By solving the entire problem at each time instant based on the current
state of the system in a receding-horizon fashion, MPC delivers a policy for the real system.

For computational reasons, simple models are usually preferred in the MPC scheme. Hence,
the MPC model often does not have the structure required to correctly capture the real system
dynamics and stochasticity. As a result, MPC usually delivers a reasonable but suboptimal
approximation of the optimal policy. Choosing the MPC parameters that maximize the
closed-loop performance for the selected MPC formulation is a difficult problem. Indeed,
e.g. selecting the MPC model parameters that best fit the model to the real system is not
guaranteed to yield the best closed-loop performance that the MPC scheme can achieve [11].
In [11, 12], it is shown that adjusting the MPC model, cost and constraints can be beneficial
to achieve the best closed-loop performances, and RL is proposed as a possible approach to
perform that adjustment in practice. Further recent research have focused on MPC-based
policy approximation for RL [12–15].

MPC is a promising choice for the management of smart grids [2], because it provides a
simple way to exploit forecasts on the grid prices, local power demand, and production
while respecting the physical limitations of the system. The stochasticity of the forecast
uncertainty is, however, not straightforward to treat at low computational costs. In this paper,
we investigate a simple, well-known battery storage problem having a purely economic cost
and stochastic dynamics. This example has an optimal policy with a nearly bang-bang structure
[16], in the sense that the optimal policy selects inputs that are either in the bounds or zero
for a large subset of the state space. We show that the deterministic policy gradient method
is difficult to use for this type of problem because the state trajectories mostly lie in the set
where the policy is trivially zero or in bounds, which impedes the learning.

In this paper we propose a homotopy strategy based on the interior-point method [17], which
smoothens the MPC policy via the barrier parameter associated with the method, allowing for
more homogeneous and faster learning. The policy smoothing is gradually removed over the
learning to recover the optimal policy. The paper is structured as follows. Section 2 presents
the battery storage dynamics and provides its optimal policy of an economic cost. Section 3
formulates the LSTD-based deterministic policy gradient method. Section 4 details the use
of MPC-scheme as a function approximator in RL. The difficulties of applying the policy
gradient method for (nearly) bang-bang policies is analyzed. And the main contribution of this
paper is presented. Section 5 provides the simulation results for the proposed approach and
compares it with the classical implementation of the policy gradient methods. Finally, section
6 delivers the conclusions.
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2 A simple motivational example

Photovoltaic (PV) battery systems allow households to participate in a more sustainable energy
system [2]. The local electric demand is covered by the PV battery system or the connection
to the public distribution grid. A simple model for the battery storage reads as [1]:

sk+1 = sk + α (∆k + ak) , (1)

where sk ∈ [0, 1] is the State-of-Charge (SOC) of the battery and the interval [0, 1] represents
the SOC levels considered as non-damaging for the battery (typically 20%-80% range of
the physical SOC). Constant α is a positive value that reflects the battery size. Variable
∆k ∼ N

(
δ̄X , σX

)
is the difference between the local power production and demand, which–

for the sake of simplicity–is considered as a Normal centered random variable here, where δ̄X

and σX are the mean and variance of the Gaussian distribution. Input ak ∈ [−Ū , Ū ] is the
power bought from (for ak > 0) and sold to (for ak < 0) the power grid. The economic stage
cost can be written as follows:

L(sk,ak) =

{
φbak if ak ≥ 0
φsak if ak < 0

, (2)

where φb ≥ 0 is the buying price and φs ≥ 0 is the selling price, and we assume that φb ≥ φs.
For the sake of simplicity, we consider the prices φb and φs as constants. Appendix 6 provides
the model parameters we use in this paper. More complex models will be considered in the
future.

In the deterministic policy gradient context, the optimal policy can be defined as follows:

π? = arg min
π

Eπ

[ ∞∑

k=0

γkL̃ (sk,ak)

∣∣∣∣∣ak = π(sk)

]
, (3)

where γ ∈ (0, 1] is the discount factor, and for the battery storage dynamics (1) with stage
cost (2), the modified stage cost L̃(sk,ak) is defined as follows [8]:

L̃(sk,ak) = L(sk,ak) + pmax(sk − 1, 0) + pmax(−sk, 0), (4)

where p is a large constant. The expected value Eπ is taken over the Markov Chain distribution
resulting from the real system in closed-loop with policy π. Since the state sk ought to stay in
the interval [0, 1], a large penalty is introduced in the RL stage cost for sk /∈ [0, 1].

The example is selected such that its optimal policy π? can be solved via Dynamic Pro-
gramming (DP), see fig. 1, and used as a baseline to assess the policies learned via RL. As
can be seen in fig. 1, the optimal policy has a bang-bang-like structure. When the battery
is at s ≈ 0, maximum buying is the optimal policy. Then for a fairly large subset of the
states (s ≈ [0.05, 0.5]), no exchange with the grid is the optimal policy. For a high SOC (
s ≈ [0.55, 1]), maximum selling is optimum.

Note that the computational complexity makes DP unrealistic for systems more complex than
this example. Instead, most investigations in RL (e.g., policy gradient methods) focus on
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Figure 1: Optimal policy π? resulted from DP.

achieving approximate solutions, which do not require a model of the dynamics. The next
section details the RL algorithm that obtains an optimal policy based on the observed data
from the (stochastic) real system.

3 Deterministic policy gradient method

In the context of the deterministic policy gradient method [8], the policy πθ is parameterized
by parameters θ, which are optimized directly according to the closed-loop performance using
the gradient of the performance J defined as:

J(πθ) = Eπθ

[ ∞∑

k=0

γkL̃ (sk,ak)

∣∣∣∣∣ak = πθ(sk)

]
. (5)

The gradient of J with respect to parameters θ is obtained as follows:

∇θJ(πθ) = Eπθ

[
∇θπθ(s)∇aAπθ

(s,a)|a=πθ

]
, (6)

where Aπθ
(s,a) = Qπθ

(s,a) − Vπθ
(s) is the advantage function associated to πθ, and

where Qπθ
and Vπθ

are the action-value and value functions for the policy πθ, respectively.
Under some conditions detailed in [8], the action-value function Qπθ

in (6) can be replaced by
an approximation Qw without affecting the policy gradient. Such an approximation is labelled
compatible and can, e.g., take the form:

Qw (s,a) = (a− πθ (s))
>∇θπθ(s)

>
w + Vv (s) , (7)

where w is a parameters vector estimating the action-value function and Vv ≈ Vπθ
is a

baseline function approximating the value function, which can, e.g., take a linear form:

Vv (s) = Φ (s)
>
v, (8)
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where Φ is a state feature vector and v is the corresponding parameters vector. The parameters
w and v of the action-value function approximation (7) ought to be the solution of the Least
Squares problem:

min
w,v

E
[
(Qπθ

(s,a)−Qw(s,a))
2
]
. (9)

In this paper, problem (9) is tackled via Least Squares Temporal Difference (LSTD) [9].

Next section details using an MPC scheme to approximate the optimal policy and proposes a
smoothing approach based on the interior-point method for the (nearly) bang-bang policies.

4 MPC-based RL

Using MPC as a way of supporting the approximations of the value function, action-value
function, and policy πθ has been proposed and justified in [11]. In this paper, we focus on the
approximation of the optimal policy. Consider the following MPC scheme parameterized with
θ:

min
x,u,σ

Tθ (xN ) + ω>f σN (10a)

+
N−1∑

i=0

γi(`θ (xi,ui) + ω>σi)

s.t. xi+1 = fθ(xi,ui), x0 = s (10b)

hθ(xi,ui) ≤ σi, hf
θ(xN ) ≤ σN (10c)

g(ui) ≤ 0, σi ≥ 0, σN ≥ 0, (10d)

where Tθ and `θ are the MPC terminal and stage costs, respectively. Function fθ is the
model dynamics, g is the pure input constraint and hθ and hf

θ are the stage and terminal
inequality constraints, respectively. Vectors x = {x0, . . . ,xN}, u = {u0, . . . ,uN−1} and
σ = {σ0, . . . ,σN} are the primal decision variables, N is the prediction horizon and s is
the current state of the system. Variables σi and σN are slacks for the relaxation of the
state constraints, weighted by the positive vectors ω and ωf . The relaxation prevents the
infeasibility of the constraints of MPC in the presence of disturbances. The parameterized
deterministic policy can be obtained as:

πθ(s) = u?0(s, θ), (11)

where u?0(s, θ) is the first element of u?, which is the solution of the MPC scheme (10).

Theoretically, under some assumptions detailed in [11], if the parametrization is rich enough,
the MPC scheme is capable of capturing the optimal policy π? in the presence of disturbances
and model error [11].
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4.1 Primal-dual interior-point method

In the following, we will use the primal-dual interior-point method to solve the MPC scheme
(10). Let us cast (10) as the generic Nonlinear Program (NLP):

min
z

Ψθ (z) (12a)

s.t. Gθ (z, s) = 0, Hθ (z) ≤ 0, (12b)

where z = {x,u,σ}, function Ψθ gathers the cost of (10), and Gθ, Hθ are its equality
and inequality constraints, respectively. We denote Lθ(y) = Ψθ + λ>Gθ + µ>Hθ as
the Lagrange function associated to (12), where y = {z,λ,µ} is the primal-dual variables
vector, and where λ and µ are the dual variables corresponding to the equality and inequality
constraints, respectively. The primal-dual interior-point method is then based on the relaxed
Karush–Kuhn–Tucker (KKT) conditions associated to (12) as follows:

r (y, s,θ) =




∇zLθ (y)
Gθ (z, s)

diag(µτ )Hθ (z) + τ1


 , (13)

and we denote its primal-dual solution by yτ = {zτ ,λτ ,µτ} for each (s, θ) pair, i.e:

r (yτ , s,θ) = 0, (14)

where τ is the barrier parameter associated with the primal-dual interior-point method. Opera-
tor “diag" gathers the vector elements on the diagonal elements of a square matrix and 1 is a
vector with unit elements and suitable size. If satisfying the Linear Independence Constraint
Qualification (LICQ) and the Second Order Sufficient Condition (SOSC), yτ approximates a
local solution of (12) at the order of O(τ) [17].

4.2 Policy sensitivity

The policy gradient method requires one to compute∇θπθ(s) for every state s encountered
by the policy (see Eq. (6)). It is therefore crucial to be able to compute ∇θπθ from data
efficiently. We ought to recall here that πθ is given by the first element of the input profile
included in z, delivered by NLP (12). In this paper, we will replace that solution with its
interior-point approximation zτ . The problem of computing πθ then becomes the problem
of differentiating the parametric solution zτ (s, θ) of (14) with respect to θ. If the original
NLP (12) satisfies LICQ and SOSC, then the sensitivity of zτ is readily given by the Implicit
Function Theorem, i.e.: (

∂r

∂y

∂y

∂θ
+
∂r

∂θ

) ∣∣∣∣
y=yτ

= 0 (15)

holds. The policy sensitivity∇θπθ can then be extracted from (15) as follows [11]:

∇θπθ (s) = −∇θr (yτ , s,θ)∇yr(yτ , s,θ)
−1 ∂y

∂u0
(16)
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4.3 Smoothing strategy for (nearly) bang-bang policies

The solution of NLP (12) can be seen as a function of the NLP parameters s,θ, and can be a
non-differentiable or even discontinuous function of s,θ when changes of active set occur. In
that context, parameter τ acts as a “smoothing" factor in the NLP solution, in the sense that
for τ > 0, the parametric solution zτ (s, θ) obtained from solving (14) becomes a smooth
function of s,θ. For τ → 0, zτ tends asymptotically to the non-smooth solution of NLP (12),
and the derivatives of zτ can become unbounded for some s,θ. In contrast, for τ larger, all
derivatives of zτ remain bounded, and of lower magnitudes.

When the optimal policy has a (nearly) bang-bang structure–such as in the storage example
investigated here–it is beneficial to adopt a policy approximation πθ that approximates that
structure well while remaining smooth, such that the policy gradient (6) is guaranteed to be
valid. If such a policy approximation can be made arbitrarily close to the bang-bang structure,
then (6) remains asymptotically well-defined, and the approximation can approach the optimal
policy.

For non-episodic problems, such as the battery storage example considered here, the expected
value operator Eπθ

[.] in the policy gradient (6) is meant to be taken over the steady-state
distribution of the Markov Chain resulting from applying the policy πθ on the real system. If
the MPC policy πθ has a purely bang-bang structure meant to approximate π?, for τ → 0,
the interior-point policy approximation is asymptotically bang-bang. Then, the gradient of
the policy ∇θπθ, while remaining well-defined everywhere, tends to be nearly zero on large
parts of the state space, and takes very large (asymptotically infinite) values when the policy
switches between the different input levels. Hence, while the policy gradient (6) remains
formally correct, evaluating it via sampling the distribution of the Markov Chain becomes
very difficult, because the set of states where∇θπθ ≈ 0 has a measure close to unity, while
∇θπθ is very large on a set of very small measure. As a result, sample-based estimations of
(6) have a very large variance, which impedes the learning.

For nearly bang-bang policy structures, the difficulties can be less severe than for purely bang-
bang structures but they remain an issue. That issue can be observed in the battery storage
problem considered in this paper. Figure 2 shows the normalized∇θπθ∇aAπθ

(s,a)|a=πθ

for a given πθ during a fairly long closed-loop trajectory for different values of τ . Parameters
θ = [θ1, θ2] are the MPC parameters that will be introduced in detail in the simulation section.
When using τ = 10−4, it can be seen from Fig. 2(a) that the gradients are very close to zero
for almost every time instance, while they are fairly large at some states sk that are very close
to the switching conditions in the bang-bang policy. This observation is clear in the density
plot, where it can be seen that the value of the gradient is either zero or takes large values,
without intermediate values. This indicates that during the learning, most of the time the
policy gradient evaluation ∇θJ is close to zero and takes large values when state trajectories
yield large contributions ∇θπθ∇aAπθ

(s,a)|a=πθ
. In contrast, for results of τ = 10−2 as

displayed in Fig. 2(b), the distribution of the gradients is more uniform, avoiding the issues
detailed above.

Figure 3 shows the MPC policy and the state distribution of the closed-loop system for
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(a) τ = 10−4

(b) τ = 10−2

Figure 2: Normalized ∇θπθ∇aAπθ
(s,a)|a=πθ

with respect to θ1 and θ2 of a closed-loop
trajectory for different values of τ and their densities. (The densities are in logarithmic scale.)
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(a) Non-smooth policy with state distri-
bution for τ = 10−4

(b) Smooth policy with state distribution
for τ = 10−2

Figure 3: MPC policy and state distribution of the closed-loop system

two different values of τ . It can be seen that for both τ , the state density is mainly in the
interval where the policy is trivially zero, hence the state trajectories rarely visit the set
where ∇θπθ 6= 0. Besides, for τ = 10−4, the non-zero gradient occurs in a small subset
of states. The policy πθ tends to be the non-smooth solution of NLP (12) and the values of
∇θπθ∇aAπθ

are relatively large for those data collected around the switching conditions.
In contrast, for larger τ (τ = 10−2), the policy πθ is smoother. As a result, the values of
sensitivity ∇θπθ∇aAπθ

remain bounded and with lower magnitude for large τ and they
provide a meaningful gradient in a wider range of states compared with small τ .

In this paper, we exploit the smoothing effect of the barrier parameter τ to facilitate the use of
the policy gradient method on MDPs that are difficult to treat because of the bang-bang-like
structure of their optimal policy. More specifically, we propose to set the barrier parameter
τ at large values at the beginning of the learning to smoothen the policy and facilitate the
learning and decrease it–in a homotopy fashion– to small values as the learning progresses
towards the optimal policy. We adopt a linearly varying τ here that decreases from a large
value to the targeted τ̄ of the interior-point method, i.e.

τ ← max(τ − β, τ̄) (17)

where β > 0 is the progression step for τ , and τ̄ is the final barrier parameter targeted
for the interior point method. The starting τ and target τ̄ are problem dependent. Alterna-
tive progression rules to (17) can clearly be considered, including more advanced adaptive
strategies.

5 Simulation

In this section, we illustrate the difficulties encountered when using the LSTD-based policy
gradient method to learn the nearly bang-bang optimal policy for the battery storage problem.
We then demonstrate the proposed smoothing strategy as explained in section 4.3. We ought
to stress here that, this example has a policy that is not fully bang-bang, which allows the
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classical policy gradient method to work even without using the proposed technique. However,
it requires significantly more RL steps and struggles with a high variance in the gradient
estimation. A more extreme example with a pure bang-bang policy is likely to make the
classic policy gradient method fail unless the proposed technique is used. Appendix 6 gives
the parameters of the model and RL used in the simulations.

The explicit form of MPC scheme (10) used in the simulation is as follows:

min
x,u,σ

θ2
2(x10 − 0.5)2 + 10σ10 (18a)

+
9∑

i=0

(0.99)i(L (xi,ui) + 0.1θ2
1(xi − 0.5)2 + 10σi)

s.t. xi+1 = xi + 1/12ui (18b)
[
xi − 1
−xi

]
≤ σi, ui ∈ [−1, 1] (18c)

x0 = s, σi ≥ 0, σ10 ≥ 0. (18d)

We use quadratic stage and terminal costs with 0.5 as their reference points. Parameters θ1

and θ2 tune the curvature of the costs, and are squared to ensure their positive definiteness, i.e.
θ := [θ1, θ2]>. Based on our simulation results, this parameterization is sufficient to capture
the optimal policy.

Figure 4 displays the policy improvement process for a fixed τ = 10−4 using the LSTD-based
policy gradient algorithm. Figure 6 (blue curves) displays the policy parameters over the
learning. One can observe that the learning progresses very slowly for long periods of time,
when the state evolves in regions where∇θπθk ≈ 0, and undergoes some infrequent, sudden
changes otherwise. One can see in Fig. 4 that the policy gradient manages to approximate the
optimal policy π? well, but the convergence is uneven.

Figure 5 shows the policy improvement process resulting from τ starting at a relative large
value and being progressively reduced to τ̄ using (17). The method starts with a large
τ = 10−2, and the target τ̄ is 10−4. The step for decreasing τ is selected as β = 5 · 10−5.
With this choice of τ , the policy is fairly smooth. The resulting learning can be seen in Fig. 6
(light red curves). One can observe a significantly faster progression of the parameters, with
convergence in about 200 steps, as well as a significantly faster progression of the performance
throughout the learning process, see Fig. 6 lower graph. Starting with a larger τ when the
optimal policy approximation is still inaccurate and reducing τ during the learning allows for
a better learning progression and a better performance, while still delivering a policy having
the correct structure because τ is reduced to a small value eventually.

Hence, the proposed smoothing strategy not only accelerates learning but also solves the
dilemma between the smoothness of the policy improvement process and the accuracy of the
obtained policy.
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Figure 4: The policy improvement process of the policy gradient method during 300 steps
with τ = 10−4.

Figure 5: The policy improvement process of the policy gradient method during 200 steps
with τ linearly decreases from 10−2 to 10−4.

6 Conclusion

In this paper, we discuss the use of the policy gradient method on policies having (nearly)
bang-bang structures supported via MPC schemes. We detail why this kind of policy structure
is difficult to treat in the deterministic policy gradient context and propose a simple approach
to alleviating the problem. A homotopy strategy is used to adapt the barrier parameter in the
interior-point method that is used to solve the MPC scheme online. The proposed smoothing
approach is illustrated on a classic battery storage problem with an economic stage cost.
We show that a classical implementation of the policy gradient method results in a slow
convergence, occurring through sudden progressions, while the proposed method offers a more
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Figure 6: The evolutions of the policy parameters θ1, θ2, and the closed-loop performance J
of the policy gradient method for the small τ = 10−4 and linearly decreased τ from 10−2 to
10−4.

homogeneous and faster convergence, resulting in a better closed-loop performance throughout
the learning process. In future work, we will consider more sophisticated techniques to adapt
the barrier parameter, analyze the convergence more formally, and tackle challenging economic
problems with complex models.

Appendices

Parameters of the dynamics and RL

Dynamics

φb 5

φs 2.5

α 1/12

Ū 1

∆ N (0, 0.05)

RL
Φ

[
(s− 0.5)2 , s, 1

]>

p 1000
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Abstract: In this paper, we present the use of Model Predictive Control (MPC) based on
Reinforcement Learning (RL) to find the optimal policy for a multi-agent battery storage
system. A time-varying prediction of the power price and production-demand uncertainty are
considered. We focus on optimizing an economic objective cost while avoiding very low or
very high state of charge, which can damage the battery. We consider the bounded power
provided by the main grid and the constraints on the power input and state of each agent. A
parametrized MPC scheme is used as a function approximator for the deterministic policy
gradient method and RL optimizes the closed-loop performance by updating the parameters.
Simulation results demonstrate that the proposed method is able to tackle the constraints and
deliver the optimal policy.

1 Introduction

Increasingly many electricity consumers actively participate in the power system through
bidirectional power trades [1]. In order to improve the efficiency of power transmission and the
power quality, one of the key technologies is based on the Energy Storage Systems (ESS) [2].
A multi-agent battery storage system usually includes several batteries that are connected to
a main grid. The main grid exchanges the power with all of the batteries and the batteries
attempt to optimize their own cost. Since the total power exchanged by the main grid is limited
at each time, finding an optimal policy that satisfies this restriction is challenging.

Making decisions for the power system to optimize an economic cost in the presence of
different forms of uncertainties is the object of recent publications [3, 4]. In smart grids, uncer-
tainties mainly arise from the imperfect forecasts of long-term prices and the power production
demand. Reinforcement Learning (RL) offers tools for tackling Markov Decision Processes
(MDP) without having an accurate knowledge of the probability distribution underlying the
state transition [5, 6]. RL seeks to optimize the parameters underlying a given policy in view
of minimizing the expected sum of a given stage cost. RL methods are usually either directly
based on an approximation of the optimal policy or indirectly based on an approximation
of the action-value function. Policy gradient methods directly attempt to find the optimal
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policy parameters by optimizing the closed-loop performance. Q-learning and Least Squares
Temporal Different (LSTD) are among the algorithms that capture the action-value function [7].
Regarding the approximation of the generic optimal policy and optimal action-value function,
Fuzzy Neural Networks and Deep Neural Networks (DNNs) are common choices [8].

In the smart grid context, usually, there are reasonable forecasts of the statistics of the
uncertainties and knowledge of the dynamics of the system. Therefore, using a structured
function approximation such as Model Predictive Control (MPC) scheme can be beneficial.
Indeed, MPC uses the predicted information and model to provide a reasonable but usually
suboptimal policy [9]. Moreover, MPC is able to handle the high dimensionality of the
forecasts. In [10], it is shown that adjusting the model, cost, and constraints of the MPC
could achieve the best closed-loop performance, and RL is proposed as a possible approach to
perform that adjustment in practice. Recent research have developed further the combination
of RL and MPC (see e.g. [11–15]).

In this paper, considering the time-varying prediction of the spot market and the production-
demand uncertainty, we use an MPC scheme to minimize the running cost of the system,
while penalizing extreme State-of-Charge (SOC). A low-level controller monitors the SOC in
real-time and prevents violating the constraints by buying or selling more power if needed [16].
We suppose that all the agents are connected to a main grid, and each battery stores or releases
a limited amount of power at every time instant. The deterministic policy gradient method and
the LSTD method are adopted to update the policy parameters and action-value parameters,
respectively. The simulation results show that our proposed MPC-based RL method is capable
of finding the optimal MPC parameters for the multi-agent battery storage system.

The rest of the paper is structured as follows. Section 2 provides the multi-agent battery
storage dynamics and details the economic objective and constraints of the problem. Section
3 formulates the centralized MPC-scheme method via the MPC-based policy and it presents
the policy gradient method that is used to find the optimal policy. Section 4 presents the
simulations and section 5 delivers a conclusion.

2 Problem Formulation

In this section, we formulate the battery storage dynamics, the economic objective function
with state constraints for a multi-agent system, and peak power constraints over time.

2.1 Dynamics

Photovoltaic (PV) battery systems allow households to participate in a more sustainable energy
system ([3]). The battery storage dynamics can be written as the following linear system:

socik+1 = socik + αi
(
∆i
k + bik − sik

)
, (1)
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where i ∈ [1, . . . , n] is the ith battery, n is the number of batteries, subscript k = 0, 1, . . .
denotes the physical time, socik ∈ [0, 1] is the State-of-Charge (SOC) of the battery and
the interval [0, 1] represents the SOC levels considered as non-damaging for the battery
(typically 20%-80% range of the physical SOC). Constant αi is a positive value that reflects
the battery size. Process noise ∆i

k ∼ N
(
δ̄i, σi

)
is the difference between the local power

production-demand over the sampling time interval [k, k+1], which–for the sake of simplicity–
is considered as a Normal centered random variable, where δ̄i and σi are the mean and variance
of the Gaussian distribution. Input bik(sik) ∈ [0, Ū i] is the average power bought (sold) from
(to) the power grid over time interval [k, k + 1], where Ū i is the bound for the buying (selling)
energy for the ith battery. Fig. 1 illustrates the multi-agent battery system, where the batteries
are connected to the main grid at point T .

simulations and section V delivers a conclusion.

II. PROBLEM FORMULATION

In this section, we formulate the battery storage dynamics,
the economic objective function with state constraints for a
centralized multi-agent system, and peak power constraints
over time.

A. Dynamics

Photovoltaic (PV) battery systems allow households to
participate in a more sustainable energy system ([5]). The
battery storage dynamics can be written as the following
linear system:

socik+1 = socik + αi
(
∆i
k + bik − sik

)
, (1)

where i ∈ [1, . . . , n] is the ith battery, n is the number of
batteries, subscript k = 0, 1, . . . denotes the physical time,
socik ∈ [0, 1] is the State-of-Charge (SOC) of the battery
and the interval [0, 1] represents the SOC levels considered
as non-damaging for the battery (typically 20%-80% range
of the physical SOC). Constant αi is a positive value that
reflects the battery size. Process noise ∆i

k ∼ N
(
δ̄i, σi

)
is

the difference between the local power production-demand
over the sampling time interval [k, k + 1], which–for the
sake of simplicity–is considered as a Normal centred random
variable, where δ̄i and σi are the mean and variance of the
Gaussian distribution. Input bik(sik) ∈ [0, Ū i] is the average
power bought (sold) from (to) the power grid over time
interval [k, k + 1], where Ū i is the bound for the buying
(selling) energy for the ith battery. Fig. 1 illustrates the
multi-agent battery system, where the sub-load batteries are
connected to the main grid at point T .

Main Grid

s1 s2 s3 sn

b1 b2 b3 bn

soc1 soc2 soc3 socn

i = 1 i = 2 i = 3 i = n

. . .

T

Fig. 1. Multi-agent battery storage system

B. Objective Function

Economic costs for smart grids are usually linear, based on
the difference between the profit made by selling electricity
to the power grid, and the losses incurred from buying it (see
e.g., [18]). Hence, each battery has the following economic
stage cost:

L(bik, s
i
k) = φibb

i
k − φissik, (2)

where φib ≥ 0 and φis ≥ 0 are the (time-varying) buying and
selling prices, respectively.

In the context of RL, we seek a control policy π that maps
the state space to the input space and minimizes a closed-
loop performance, which can be defined as an infinite-horizon
sum of given discounted stage costs. For the battery storage
dynamics (1) with stage cost (2) and constraint soci ∈ [0, 1]
for all 1 ≤ i ≤ n, the modified stage cost L̃ for the centralized
system can be defined as follows:

L̃(sk,ak) =
n∑
i=1

(
L(bik, s

i
k) + pi max(socik − 0.9, 0)

+ pi max(0.1− socik, 0)
)
, (3)

where pi is a large constant that penalizes the state constraints
within 10% of the bound socik ∈ [0, 1]. Vectors sk = soc1,...,nk

and ak = {b1k−s1k, . . . , bnk−snk} describe entire system states
and inputs vectors, respectively. Note that under optimality
condition, the buying and selling can not be non-zero at the
same time, then the difference of buying and selling bik − sik
would be considered as the input of the system ([7]). The
closed-loop performance J reads as:

J(π) = Eπ

[ ∞∑
k=0

γkL̃(sk,ak)

∣∣∣∣∣ak = π(sk)

]
, (4)

where γ ∈ (0, 1] is the discount factor and expectation Eπ
is taken over the distribution of the Markov chain in the
closed-loop under policy π. The performance for agent ith

is then defined as:

J i(π) = Eπ

[ ∞∑
k=0

γk
(
L(bik, s

i
k) + pi max(socik − 0.9, 0)

+ pi max(0.1− socik, 0)
)∣∣∣∣∣ak = π(sk)

]
.

(5)

C. Peak Power Constraint

Electricity customers usually have different power demands
during the day, resulting in power peaks. In a multi-agent
battery problem with a common main grid, optimizing the
power peaks is critical. The methods for flattening the load
curve are often called peak shaving. In order to formulate
peak power constraints in an MPC-scheme, we first define
Pk as the maximum power amount exchanged with the main
grid, i.e.:

Pk = max

(
n∑
i=1

bik,
n∑
i=1

sik

)
. (6)

Assume that Pk is restricted by the following upper bound
over time:

Pk ≤ P̄ , ∀k ≥ 0, (7)

where P̄ > 0 is the maximum allowed power amount that
can be exchanged with the main grid.

Next section details the parametrization of the MPC-
scheme that is used as an approximator for the RL method

Figure 1: Multi-agent battery storage system

2.2 Objective Function

Economic costs for smart grids are usually linear, based on the difference between the profit
made by selling electricity to the power grid, and the losses incurred from buying it (see e.g.,
[17]). Hence, each battery has the following economic stage cost:

L(bik, s
i
k) = φibb

i
k − φissik, (2)

where φib ≥ 0 and φis ≥ 0 are the (time-varying) buying and selling prices, respectively.

In the context of RL, we seek a control policy π that maps the state space to the input space and
minimizes a closed-loop performance, which can be defined as an infinite-horizon expected
sum stage costs. For the battery storage dynamics (1) with stage cost (2) and constraint
soci ∈ [0, 1] for all 1 ≤ i ≤ n, the modified stage cost L̃ for the centralized system can be
defined as follows:

L̃(sk,ak) =
n∑

i=1

(
L(bik, s

i
k) + pi max(socik − 0.9, 0) + pi max(0.1− socik, 0)

)
, (3)
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where pi is a large constant that penalizes the state constraints within 10% of the bound
socik ∈ [0, 1]. Vectors sk = soc1,...,nk and ak = {b1k − s1k, . . . , bnk − snk} describe the entire
system states and inputs vectors, respectively. A very low or very high state of charge decreases
the battery lifetime [18]. Note that under optimality condition, the buying and selling variables
can not be non-zero at the same time, then the difference of buying and selling bik − sik can be
considered as the input of the system ([11]). The closed-loop performance J reads as:

J(π) = Eπ

[ ∞∑

k=0

γkL̃(sk,ak)

∣∣∣∣∣ak = π(sk)

]
, (4)

where γ ∈ (0, 1] is the discount factor and expectation Eπ is taken over the distribution of the
Markov chain in closed-loop with policy π. The performance for agent ith is then defined as:

J i(π) = Eπ

[ ∞∑

k=0

γk
(
L(bik, s

i
k) + pi max(socik − 0.9, 0)

+ pi max(0.1− socik, 0)
)∣∣∣∣∣ak = π(sk)

]
. (5)

2.3 Peak Power Constraint at point T

Electricity customers usually have different power demands during the day. In a multi-agent
battery problem with a common main grid, optimizing the power peaks is critical. The methods
for flattening the load curve are often called peak shaving. In order to formulate peak power
constraints at point T (see Fig.1), we first define Pk as the maximum power amount exchanged
with the main grid, i.e.:

Pk = max

(
n∑

i=1

bik,
n∑

i=1

sik

)
. (6)

Assume that Pk is restricted by the following upper bound over time:

Pk ≤ P̄ , ∀k ≥ 0, (7)

where P̄ > 0 is the maximum allowed power amount that can be exchanged with the main grid.
The maximum grid power P̄ is assumed to be less than the sum of the maximum exchanged
power for each battery. i.e.:

P̄ <
n∑

i=1

Ū i . (8)

Otherwise, (7) holds by construction.

Next section details the parametrization of the MPC scheme that is used as an approximator
for the RL method and provides the policy gradient formulation to update the parameters.
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3 MPC-based Deterministic Policy Gradient

Using MPC to support the approximations of the value function, the action-value function,
and the policy has been proposed and justified in [10]. In this section, we detail this approach.
We utilize the deterministic policy gradient method to adjust the MPC parameters and improve
the closed-loop performance.

3.1 Centralized MPC-scheme

We focus on an MPC-based approximation of the optimal policy. RL is used to adjust the
parameters θ in the MPC scheme to handle model uncertainties and the process noise ∆i.
Furthermore, RL will tune the parameters so as to push the SOC to a safe region (10%− 90%
of the state of the charge). Note that the outside the interval [0.1, 0.9] for soc, even if it is
feasible, may damage the battery and reduce its lifetime. In order to provide an MPC-based
policy approximator for RL, consider the following MPC scheme parameterized by θ:

min
ˆsoc,b̂,ŝ,σ

n∑

i=1

(
ωif
>
σiN + Tθ( ˆsociN )+ (9a)

N−1∑

j=0

γj
(
Lθ(b̂ij , ŝ

i
j) + φθ( ˆsocij) + ωi

>
σij

))

s.t. ∀i = 1, . . . , n, ∀j = 0, . . . , N − 1

ˆsocij+1 = ˆsocij + θiα(b̂ij − ŝij) + θiδ, (9b)

[ ˆsocij − 0.9, 0.1− ˆsocij ]
> ≤ σij , 0 ≤ σij (9c)

[ ˆsociN − 0.9, 0.1− ˆsociN ]> ≤ σiN , 0 ≤ σiN (9d)

0 ≤ b̂ij ≤ Ū i, 0 ≤ ŝij ≤ Ū i, (9e)
n∑

i=1

b̂ij ≤ P̄ ,
n∑

i=1

ŝij ≤ P̄ , (9f)

ˆsoci0 = socik, (9g)

where ˆsoc = ˆsoc1,...,n0,...,N , b̂ = b̂1,...,n0,...,N−1, ŝ = ŝ1,...,n0,...,N−1, σ = σ1,...,n
0...,N are the primal decision

variables for the predicted state, buying, selling, and slacks, respectively. Subscript j is the
MPC prediction step and N is the horizon length. We relax the stage and terminal state
inequalities by the positive slack variables σij and σiN , and penalize them by positive constant
weights ωi and ωif , respectively. This prevents the infeasibility of the MPC in the presence of
the process noise in the real system (1) out of the interval [0.1, 0.9] for the states. Stage cost
φθ and terminal cost Tθ are the additional parametric costs, depending on the states that allow
the MPC scheme (9) to provide a more generic function approximator. Moreover, because of
the stochasticity of the real system and the existence of different uncertainties in the system,
we select the parameterized economic cost Lθ as a generic function different from the true L
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in (2) and let RL adjust its parameters. Parameters θiα and θiδ , among the adjustable parameters
θ, are dedicated to capture the model correction. We summarize (9) as follows:

• Cost (9a) includes the discounted economic cost Lθ, additional stage cost φθ and
terminal cost Tθ and penalty for the slack variables σij and σiN .

• Equality constraint (9b) represents the parameterization for the deterministic model of
the real system (1).

• Inequality constraints (9c) and (9d) are the relaxed state constraints with positive slacks
for each battery.

• Inequality constraint (9e) are the input constraints for each battery.

• Inequality constraints (9f) represent the power peak constraint for the grid.

• Equality constraint (9g) initializes the MPC-scheme at current state socik.

The parameterized deterministic policy for agent i at time k can be obtained as:

πiθ(sk) = b̂i?0 (sk,θ)− ŝi?0 (sk,θ), (10)

where b̂i?0 and ŝi?0 are the first elements of b̂i? and ŝi?, which are the solutions of the MPC
scheme (9) associated to the decision variables b̂i and ŝi. Then the parametric centralized
policy extracted from the MPC-scheme (9) is written as follows:

πθ(sk) = [π1
θ, . . . , π

n
θ ]> (11)

The input ak is selected according to the corresponding parametric policy πθ in (11) with the
possible addition of small random exploration.

3.2 Low-level Control

In the smart grid context, there is usually a low-level control that monitors the current state of
charge (which has a 1h sampling time) and power demand/production. If the states tend to
violate the constraints socik ∈ [0, 1], the low-level control (which works at a lower sampling
time, e.g., every second) would decide to buy or sell more power to keep the states in the
feasible interval [16, 19].

3.3 Deterministic Policy Gradient Method

The deterministic policy gradient method optimizes the policy parameters directly via gradient
descent steps on the performance function J , defined in (4). The update rule is as follows:

θ ← θ − α∇θJ(πθ), (12)
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where α > 0 is the step size. Applying the deterministic policy gradient method, developed
by [20], the gradient of J with respect to parameters θ is obtained as:

∇θJ(πθ) = E [∇θπθ(s)∇aAπθ
(s,a)|a=πθ

] , (13)

whereAπθ
(s,a) = Qπθ

(s,a)−Vπθ
(s) is the advantage function associated toπθ , and where

Qπθ
and Vπθ

are the action-value function and value function of the policy πθ, respectively,
defined as follows:

Qπθ
(s,a) = L̃ (s,a) + γE

[
Vπθ

(
s+|s,a

)]
(14a)

Vπθ
(s) = Qπθ

(s,πθ (s)) , (14b)

where s+ is the subsequent state of the state-input pair (s,a). Under some conditions [20], the
action-value function Qπθ

in (13) can be replaced by an approximator Qw without affecting
the policy gradient. Such an approximation is labelled compatible and can, e.g., take the form:

Qw (s,a) = (a− πθ (s))
>∇θπθ (s)

>
w + V v (s) , (15)

where w is a parameter vector estimating the action-value function Qπθ
and V v ≈ Vπθ

is a
baseline function approximating the value function. The parameterized value function V v can,
e.g., take the linear form:

V v (s) = Φ (s)
>
v, (16)

where Φ(s) is a state feature vector and v is the corresponding parameter vector. The
parameters w and v of the action-value function approximation (15) ought to be the solution
of the Least Squares (LS) problem:

min
w,v

E
[
(Qπθ

(s,a)−Qw(s,a))
2
]
. (17)

In this paper, the LS problem in (17) is tackled via the Least Squares Temporal Difference
(LSTD) method (see e.g., [7]) based on the stage cost L̃. LSTD belongs to batch method,
seeking to find the best fitting value function and action-value function, and it is more sample
efficient than other methods.

The primal-dual Karush–Kuhn–Tucker (KKT) conditions underlying the MPC scheme (9) is
written as:

R =
[
∇ξLθ Gθ diag (µ)Hθ

]>
, (18)

where ξ = { ˆsoc, b̂, ŝ,σ} is the primal decision variable. Operator “diag" assigns the vector
elements onto the diagonal position of a square matrix. Lθ is the associated Lagrange function
of the MPC (9), written as:

Lθ(y) = Ψθ + λ>Gθ + µ>Hθ, (19)

where Ψθ is the MPC cost (9a), Gθ gathers the equality constraints and Hθ collects the
inequality constraints of the MPC (9). Vectorsλ,µ are the associated dual variables. Argument
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y reads as y = {ξ,λ,µ} and y? refers to the solution of the MPC (9). The policy sensitivity
∇θπθ required in Eq. (13) can then be obtained as follows ([10]):

∇θπθ (s) = −∇θR (y?, s,θ)∇yR(y?, s,θ)
−1 ∂y
∂u0

, (20)

where u0 is the first input variable, defined as follows:

u0 = [b̂10 − ŝ10, . . . , b̂n0 − ŝn0 ]>. (21)

The next section provides the simulation results of the proposed method for a simple configu-
ration of the multi-agent battery storage system.

4 Simulation

In this section, we illustrate the simulation results of the MPC-based deterministic policy
gradient method for a 3-agent battery storage problem.

The state feature Φ(s) for the value function approximator V v(s) in (16) is selected as a
vector of quadratic monomials as follows:

Φ(s) =
[
( ˆsoc1)2, ( ˆsoc2)2, ( ˆsoc3)2, ˆsoc1, ˆsoc2, ˆsoc3, 1

]>
. (22)

For the sake of simplicity, we don’t consider the joint state effects in the value function.

The parameterized economic cost Lθ, additional stage cost φθ, and terminal cost Tθ in the
MPC-scheme (9) are selected as follows:

Lθ(b̂ij , ŝ
i
j) = (φib + θib)b̂

i
j − (φis + θis)ŝ

i
j (23a)

φθ( ˆsocij) = φi1( ˆsocij)
2 + φi2 ˆsocij + φi3 (23b)

Tθ( ˆsociN ) = T i1( ˆsociN )2 + T i2 ˆsociN + T i3, (23c)

where θib, θ
i
s, φ

i
1,2,3, and T i1,2,3 are among the adjustable parameters θ, i.e:

θ = {θ1,...,nα , θ1,...,nδ , θ1,...,nb , θ1,...,ns , φ1,...,n1,2,3 , T
1,...,n
1,2,3 }. (24)

One can use more generic function approximators in (23), however, in [11], it shows that, for
this kind of battery storage problem, quadratic parameterizations for the stage and terminal
costs in the MPC-based policy approximator are rich enough to capture the optimal policy.

The rest of the parameter values used in the simulation are given in Table 1.

We use the time-varying power prices of Trondheim in the simulation, which is collected from
the website provided by the Nord Pool European Power Exchange [21]. Fig. 2 illustrates
the 24-hour buying price φb for five sampled days of Nov.2020. For the selling price φs, we
use φs = 0.5φs at every time step. Note that the prediction horizon is selected as N = 12,
because the power prices are usually accessible for 12-hours ahead [21].
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Table 1: Parameter values.
Symbol Value Symbol Value
γ 0.99 n 3

Sampling time 1h N 12
αi 1/12 ∆i N (0, 0.5)
Ū i 1 P̄ 1.5

ωi,ωif [20, 20]> pi 1000

α 5e−8 soci0 0.5

Figure 2: The 24-hour buying price φb of Trondheim for five sampled days in Nov.2020.

We run the simulation for 100 months. Each month we use a repetitive 30-days, where the
states soci start from 0.6 at the beginning of the day, and we apply the time-varying prices
and consider different stochasticity for each agent. We average along 30 days to approximate
the expectations (E) in the policy gradient (13) and LS (17), and update the parameters of the
value function, action-value function, and policy at the end of each month.

Figure 3 shows the state and policy trajectories over time for each agent during the first and
last month of the learning. The red trajectories show the states and policies for the first month.
As can be seen, at the beginning month of the learning, the MPC scheme has not been learned
yet and the states are sometimes in the position of lower than 10% of the SOC capacity, i.e,
the soci of the three agents are sometimes below 10%. The blue trajectories correspond to the
last month of the learning. It can be seen that with learning, RL pushes the states up so as to
prevent being close to the bounds of the state constraints.

Figure 4 illustrates the norm of policy gradient ∇θJ(πθ) over RL-steps. Since the existence
of the process noise and random exploration, the gradient is noisy, but the overall behaviour is
decreasing as the parameters approach their optimal points.

The variation of the closed-loop performance J is shown in Fig.5. It can be seen that the
performance is improved significantly over the learning. Besides, since the value of policy
gradient∇θJ(πθ) is relatively large within the first twenty months, the performance J drops
faster in this range.

Figure 6 presents the maximum power amount P exchanged with the main grid for five
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Figure 3: The state and policy trajectories over time for each agent. Red: the first month of
learning, Blue: the last month of learning.

Figure 4: Norm of the policy gradient∇θJ(πθ) over RL-steps.

sampled days in the last learning month. As can be seen, the values of P comply with the
upper bound constraints P̄ , which means the optimal policy we find can not only render the
minimum economic cost for the whole system but also meet the power peak constraints on the
main grid.

Figure 7 (Left) shows the learned policy for each agent after the last RL step. From the
previous work ([11]), we know that the linear economic stage cost often yields a (nearly) bang-
bang structure optimal policy when the battery dynamics are stochastic and linear. This figure
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Figure 5: Closed-loop performance J over RL-steps.

Figure 6: The maximum power amount P exchanged with the main grid for five sampled days.

demonstrates the similar optimal policy consequence as expected. Fig.7 (Right) illustrates the
improvement of the closed-loop performance J i for each agent during the learning.

Fig.8 illustrates the convergence of the parameter θiδ . Note that there are 24 parameters in this
simulation, and we select 3 representative parameters for the sake of brevity.

5 Conclusion

In this paper, we propose an MPC-based RL approach to seek for an optimal policy for the
multi-agent battery storage system. The objective is to minimize an economic cost considering
the battery health using penalties for the very low and high state of charge. We consider the
production-demand uncertainty as well as the constraints for the peak power exchanged with
the main grid. We parameterize an MPC scheme and use the deterministic policy gradient
method to learn the optimal policy subject to the power peak constraints of the main grid. The
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Figure 7: (Left) The learned policy of each agent. (Right) The closed-loop performance of
each agent.

Figure 8: Convergence of one of the policy parameters θiδ .

simulation results prove the feasibility of the proposed method. For future works, we will use
decentralized learning on more comprehensive power systems, where the dynamics are more
sophisticated and contain other uncertainties in the systems.
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Abstract: In this paper, we discuss the deterministic policy gradient using the Actor-Critic
methods based on the linear compatible advantage function approximator, where the input
spaces are continuous. When the policy is restricted by hard constraints, the exploration may
not be Centred or Isotropic (non-CI). As a result, the policy gradient estimation can be biased.
We focus on constrained policies based on Model Predictive Control (MPC) schemes and to
address the bias issue, we propose an approximate Robust MPC approach accounting for the
exploration. The RMPC-based policy ensures that a Centered and Isotropic (CI) exploration
is approximately feasible. A posterior projection is used to ensure its exact feasibility, we
formally prove that this approach does not bias the gradient estimation.

1 Introduction

Reinforcement learning (RL) provides powerful tools for tackling Markov Decision Processes
(MPDs) without depending on the probability distribution underlying the state transition [1,
2]. RL methods attempt to enhance the closed-loop performance of a control policy deployed
on the MDP, using the observed realization of the state transitions and of the corresponding
stage cost. RL methods are usually either direct, based on an approximation of the optimal
policy (e.g., deterministic and stochastic policy gradient methods [3]), or indirect, based on an
approximation of the action-value function (e.g., Q-learning). Unstructured function approxi-
mation techniques (e.g., Deep Neural Networks) are often used to carry these approximations.
Unfortunately, the closed-loop behavior of such approximators can be challenging to analyze
formally. In contrast, structured function approximations such as Model Predictive Control
(MPC) schemes provide a formal framework to analyze the stability and feasibility of the
closed-loop system [4]. Recent research have focused on MPC-based policy approximation
for RL [5–10].

For computational reasons, simple models are usually preferred in the MPC scheme. Hence,
the MPC model often does not have the structure required to correctly capture the real system
dynamics and stochasticity. As a result, while MPC can deliver a reasonable approximation of
the optimal policy, it is usually suboptimal [11]. Choosing the MPC model parameters that
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maximize the closed-loop performance of the MPC scheme is a difficult problem, and the
parameters that best fit the MPC model to the real system are not guaranteed to yield the best
MPC policy [6]. In [6, 9], it is shown that adjusting not only the MPC model, but also the
cost and constraints can be beneficial to achieve the best closed-loop performances, and RL
is proposed as a possible approach to perform that adjustment in practice. In the presence of
uncertainties and stochasticity, if constraints satisfaction is critical, Robust Model Predictive
Control (RMPC) provides tools to ensure that the constraints are satisfied, and can be used in
the RL context [12].

Actor-Critic (AC) techniques combine the strong points of actor-only (policy search methods)
and critic-only (e.g., Q-learning) methods [13]. AC approaches are based on genuine optimality
conditions of the closed-loop policy and typically deliver less noisy policy gradients than
direct policy search. The deterministic policy gradient is built based on an approximation of
the advantage function associated with the policy. To this end, a linear compatible advantage
function approximator is a convenient choice, because it provides a correct policy gradient
estimation with a given structure and a low number of parameters [3]. For deterministic
policies, exploration is required in order to estimate the corresponding policy gradient. In the
presence of hard constraints, this exploration can be restricted. As a result, the exploration may
become non-CI. In [14] it is shown that a linear compatible advantage function approximator
can deliver an incorrect policy gradient estimation for a non-CI exploration.

In this paper, we propose to use an RMPC scheme that is robust with respect to a bounded
disturbance of its first control input to enable the feasibility of a CI exploration. Because
RMPC is computationally expensive, we use an inexpensive approximate RMPC instead,
feasible to a first-order approximation. To ensure the feasibility of the exploration, a posterior
projection technique is used. As a main result of this paper, we formally prove that the
exploration resulting from the RMPC scheme delivers an unbiased policy gradient estimation.

The paper is structured as follows. Section 2 provides background material on RL and details
the bias problem. Section 3 presents the RMPC-based approach that tackles the problem. For
the sake of simplicity, we will consider a formulation robust with respect to the exploration
only, while in practice the formulation can also be robust against model uncertainties and
the stochasticity of the real system, as in [12]. Section 4 presents the projection approach
required for nonlinear problems. Section 5 describes the main theorem in the gradient bias
correction using RMPC-based policy and proves that the resulting approach asymptotically
yields a correct policy gradient. Section 6 provides numerical examples of the method. Section
7 delivers a conclusion.

2 Background

For a given MDP with continuous state-input space, a deterministic policy parametrized by θ
delivers an input a ∈ Rm as a function of state s ∈ Rn as, πθ(s) : Rn → Rm. If delivered
by an MPC scheme, this policy is obtained as:

πθ (s) = u?0 (s, θ) , (1)
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where u?0 is the first element of the solution u? given by:

min
u,x

Vθ(xN ) +

N−1∑

k=0

γk`θ(xk,uk), (2a)

s.t. xk+1 = fθ (xk,uk) , x0 = s, (2b)

hθ (xk,uk) ≤ 0, hf
θ (xN ) ≤ 0, (2c)

where Vθ and `θ are the MPC terminal and stage costs, respectively. Function fθ is the model
dynamics and hθ and hf

θ are the stage and terminal inequality constraints, respectively. Vector
x = {x0,...,N} is the predicted state trajectory and u = {u0,...,N−1} is the input profile. State
s is the current state of the system,N is the horizon length, and γ ∈ [0, 1] is the discount factor.
For the following theoretical developments, it will be useful to consider a single-shooting
formulation of MPC (2) resulting in a parametric Nonlinear Program (NLP):

min
u

Φθ(s,u), (3a)

s.t. Hθ (s,u) ≤ 0, (3b)

delivering the input profile of (2) for all θ, s for some cost Φθ and inequality constraintsHθ .
We seek the policy parameters θ that minimize the overall closed-loop cost J of the policy πθ
defined as follows:

J(πθ) = Eπθ

[ ∞∑

k=0

γkL(sk,ak)

∣∣∣∣∣ ak = πθ (sk)

]
, (4)

where L(s,a) ∈ R is the baseline stage cost evaluating the policy performance. It is shown in
[6] that using an MPC stage cost `θ different from the baseline stage cost L can be beneficial
when the MPC model is not exact. The expectation Eπθ

is taken over the distribution of the
Markov chain in closed-loop with the policy πθ. The policy gradient for the deterministic
policy πθ is obtained as follows [3]:

∇θ J(πθ) = Es [∇θπθ(s)∇aAπθ
(s,πθ(s))] , (5)

where Aπθ
(s,a) = Qπθ

(s,a) − Vπθ
(s) is the advantage function associated to πθ, and

where Qπθ
and Vπθ

are the action-value and value functions for the policy πθ, respectively.
In a non-episodic context, the expectation Es is taken over the steady-state distribution of
the Markov chain. In an RL context, the advantage function Aπθ

must be approximated and
evaluated from data. In the following, we label the advantage function approximation as Awπθ

with parameter vector w. The corresponding estimation of the policy gradient in (5) reads as:

̂∇θ J(πθ) = Eπθ

[
∇θπθ(s)∇aAwπθ

(s,πθ(s))
]
. (6)

The following theorem provides the condition allowing one to replace the exact advantage
Aπθ

in (5) by an approximation Awπθ
, without affecting the policy gradient.

Theorem 1. [3] If Awπθ
satisfies
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i. ∇aAwπθ
= ∇θπ>θw,

ii. w minimizes the following mean-squared error:

w = arg min
w

1

2
Es
[∥∥∇aAπθ

−∇aAwπθ

∥∥2
]
, (7)

where the gradients are evaluated at a = πθ, then we have:

̂∇θ J(πθ) = ∇θ J(πθ). (8)

Proof. See [3]. �

An advantage function approximator that achieves (8) is labelled compatible. A linear compat-
ible advantage function approximator Awπθ

, parametrized by w can read as [3]:

Awπθ
(s,a) = w>∇θπθ (a− πθ) . (9)

It is well known that estimating∇aAπθ
directly is very difficult [3]. As a surrogate to (7), the

least-squares problem:

w = arg min
w

1

2
Eπθ

[(
Qπθ

− V̂πθ
−Awπθ

)2
]
, (10)

is used, where the value function estimation V̂πθ
≈ Vπθ

is a baseline supporting the evaluation
of w. In order to obtain w from (10), the input a applied to the real system must be different
from the actual policy πθ, i.e. the input a applied to the real system should include some
exploration in order to depart from the given policy πθ . One common choice of exploration is
to add a random disturbance e to the policy as follows:

a = πθ(s) + e. (11)

For the sake of clarity, we define hereafter a CI exploration.

Definition 1. An exploration e is Centred and Isotropic (CI) if Ee[e] = 0, and there exists a
scalar p such that, Ee[ee>] = pI. Otherwise, it is non-CI.

Since the policy πθ is subject to the hard constraints (3b), an arbitrary input a resulting from
a random exploration e may not be feasible. Hence the exploration ought to be restricted such
that it respects the constraints. A possible solution for this problem is, e.g., to use a projection
of a on the feasible set of NLP (3). In the following, we provide a definition for the projection
operator.

Definition 2. For an arbitrary input a, the projection operator P (s,a) is defined as follows:

P (s,a) = u⊥0 , (12a)

u⊥ = arg min
u

1

2
‖u0 − a‖2, (12b)

s.t. Hθ (s,u) ≤ 0, (12c)

where u⊥0 is the first element of the input profile u⊥0,...,N−1 solution of (12b)-(12c).
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In particular, at a given state s, the input a⊥ resulting from projecting the exploration is given
by:

a⊥ = P (s,πθ (s) + e) . (13)

Then the projected exploration e⊥ is given by:

e⊥ = a⊥ − πθ. (14)

Unfortunately, even if the selected exploration e is CI, the projected exploration e⊥ may not
be [14]. It is shown in [14] that the linear compatible function approximator (9) using the
fitting problem (10) delivers a correct estimated policy gradient (6) only for a CI exploration.

In this paper, we modify (3) to find a policy π̂θ (s) for which a CI exploration is feasible. This
policy π̂θ (s) is based on creating a small distance from the boundaries of the constraints so
that a small CI exploration is feasible. To perform this modification, in the next section, we
will introduce an approximate RMPC scheme having a computational complexity similar to a
standard MPC scheme. This RMPC scheme delivers a policy that can be disturbed with an
additive perturbation in a given ball while keeping feasibility to a first-order approximation.

3 RMPC-based deterministic policy

In this section, we propose a modified policy π̂θ based on an RMPC-scheme such that any
input â resulting from:

â = π̂θ (s) + ê, ∀ê ∈ B(0, η), (15)

is feasible for the MPC (2), where B(0, η) is a ball of radius η. For the sake of brevity, we
consider in the following that the exploration ê is uniformly distributed in the ball B(0, η).
In that specific case, the exploration ê is CI with p = 1

3η
2. To generate π̂θ we tighten the

inequality constraint (3b) of NLP (3) as follows:

min
u

Φθ(s,u), (16a)

s.t. Hθ (s,u) + ∆θ (s,u) ≤ 0, (16b)

where ∆θ (s,u) ≥ 0 is a back-off term added to ensure that the NLP (3) is feasible for any
additive perturbation ê ∈ B (0, η) of the input u0 obtained from (16). In general, evaluating
∆θ (s,u) is difficult. To address this issue, we propose to compute ∆θ (s,u) using a first-
order approximation of the constraint (3b). More specifically, we will impose the approximated
constraint:

Hθ (s, û) ≈Hθ (s,u) +
∂Hθ

∂u0

∣∣∣∣
u

ê ≤ 0, (17)

where û is the input profile resulting from perturbing u with the exploration ê ∈ B (0, η) in
the first input u0. The following Lemma provides an explicit form for (17).

Publications

86



Lemma 1. Inequality (17) holds tightly for all ê ∈ B (0, η) if

Hi
θ (s,u) +

∥∥∥∥
∂Hi

θ

∂u0

∣∣∣∣
u

∥∥∥∥ η ≤ 0 (18)

holds, whereHi
θ is the ith element of the vectorHθ.

Proof. The following inequality

∂Hi
θ

∂u0

∣∣∣∣
u

ê ≤
∥∥∥∥
∂Hi

θ

∂u0

∣∣∣∣
u

∥∥∥∥ η , ∀ê ∈ B(0, η), (19)

holds and is tight, where ‖.‖ indicates an Euclidean norm. �

The principles detailed above readily apply to MPC scheme (2). More specifically, an input
disturbance ê yields:

hθ ≈ hθ (xk,uk) +

(
∂hθ
∂xk

∂xk
∂u0

+
∂hθ
∂u0

)
ê, (20)

where the left-hand side is evaluated of the perturbed trajectory and ∂xk

∂u0
is obtained from the

following linear dynamics:

∂xk
∂u0

=

(
∂fθ
∂xk−1

∂xk−1

∂u0
+
∂fθ
∂u0

) ∣∣∣
xk−1,uk−1

, (21)

with the initial condition ∂x0

∂u0
= 0.

Imposing an arbitrary exploration radius η may be infeasible for some state s. To avoid this
issue, we consider the radius as a decision variable ν ∈ [0, η̄] whose optimal solution is η. We
label η̄ the maximum desired radius for the exploration. The RMPC-based policy π̂θ is then
obtained as the first element of the input sequence given by:

min
u,x,ν

− wν + Vθ(xN ) +

N−1∑

k=0

γk`θ(xk,uk), (22a)

s.t. xk+1 = fθ (xk,uk) , x0 = s, (22b)

hθ (x0,u0)i +

∥∥∥∥
(
∂hθ
∂u0

)

i

∥∥∥∥ ν ≤ 0, (22c)

hθ (xk,uk)i +

∥∥∥∥
(
∂hθ
∂xk

∂xk
∂u0

)

i

∥∥∥∥ ν ≤ 0, k > 0,

hf
θ (xN )i +

∥∥∥∥∥

(
∂hf

θ

∂xN

∂xN
∂u0

)

i

∥∥∥∥∥ ν ≤ 0 (22d)

∂xk+1

∂u0
=
∂fθ
∂xk

∂xk
∂u0

, k = 2, . . . , N − 1, (22e)

∂x1

∂u0
=
∂fθ
∂u0

, 0 ≤ ν ≤ η̄, (22f)
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where w is a positive constant weight, chosen large enough such that η = η̄ when feasible.
Index i indicates the ith element of the vectors.

One can observe that this RMPC scheme is feasible if the original MPC scheme (2) is feasible.
Indeed, the choice ν = 0 makes the RMPC and MPC schemes equivalent. It follows that
the RMPC scheme (22) inherits the recursive feasibility of (2). We ought to stress again
here that the recursive feasibility of (2) may require the robust formulation to be extended
to take the stochastic disturbances and model errors into account, as e.g. in [12]. We have
omitted this aspect here for the sake of brevity and simplicity. The theory presented hereafter
is applicable to that extension. Additionally, one ought to note that RMPC (22) is accounting
for a disturbance on the initial input only. However, exploration is meant to be applied at all
times. This could be reflected in the RMPC by accounting for a disturbance of the entire input
profile, with minor modifications of the formulation. These modifications would, however,
unnecessarily reduce the feasible domain of (22). The proposed formulation arguably avoids
that issue and ensures feasibility by introducing the exploration radius as a decision variable
in the NLP. Finally, stabilizing feedback ought to be considered when forming the sensitivities
(21), especially when the dynamics (22e) are unstable. This additional feedback is a classic
tool to reduce the conservatism of the RMPC schemes. It is not presented here for the sake of
brevity.

Since a first-order approximation of the constraints is used when forming (22), its solution
may not ensure the feasibility of all exploration ê ∈ B (0, η). In the next section, we will
address this problem with a posterior projection technique. We will show that this projection
does not bias the policy gradient estimation.

4 Ensuring feasibility

Because we considered a first-order approximation of the constraints when forming the RMPC
(22), a posterior projection ought to be used to ensure the feasibility of the exploration. Using
(12), we apply the projection of â on the feasible set as:

â⊥ = P (s, π̂θ + ê) . (23)

Using (15), let us define the projection correction ε as:

ε := â⊥ −â, (24)

and using (14), the feasible projected exploration ê⊥ can be written as follows:

ê⊥ :=â⊥ −π̂θ = ê+ ε. (25)

In the following, we will show that the norm of ε is in the order of η2 for small enough η̄. To
this end, we make the following mild assumption for the constraints.

Assumption 1. Hθ is a second order differentiable function and we have:

∀i ,
∥∥∥∥
∂Hi

θ

∂u0

∣∣∣
π̂θ

∥∥∥∥ 6= 0. (26)
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Note that if the constraints satisfy Linear Independence Constraint Qualification (LICQ), then
(26) is satisfied.

Lemma 2. For the projection error ε defined in (24) and small enough η̄, there exists a
positive α such that:

‖ε‖≤ αη2. (27)

Proof. Let us defineHθ as,

Hθ(s,u0) := Hθ(s, ũ), (28)

where ũ :=
{
u0,u

⊥
1 , . . . ,u

⊥
N−1

}
. We defineHiθ as the ith element of vectorHθ. Consider

the exploration described by its unitary direction v, i.e. ‖v‖= 1, and magnitude ζ ≤ η, i.e.
e = ζv. We observe that:

Hiθ (s, π̂θ + ê) ≤ Hiθ (s, π̂θ) + (Hiθ)′ê+R (ê) , (29)

where (Hiθ)′ :=
∂Hi
θ

∂u0
|π̂θ

. The inequality (29) holds for all ê ∈ B (0, η) for some continuous
function R (ê), and there is a constant c such that:

|R (ê)| ≤ c‖ê‖2. (30)

Additionally:

Hiθ (s, π̂θ) ≤ −η
∥∥(Hiθ)′

∥∥ , (31)

because
{
π̂θ,u

⊥
1 , . . . ,u

⊥
N−1

}
is feasible for the RMPC scheme (22). Consider any sequence

ηk > 0 converging uniformly to 0, and a corresponding sequence tk = max(1 − αηk, 0)
for some positive constant α. One can readily observe that tkê ∈ B (0, η). Additionally, by
construction, there exists an index k0 such that for all k ≥ k0, tk = 1− αηk holds. Using tke
as the exploration in the right side of (29), for k ≥ k0 we have:

Hiθ (s, π̂θ) + (Hiθ)′ê (1− αηk) +R ((1− αηk) ê) ≤
− ηk

∥∥(Hiθ)′
∥∥+ (Hiθ)′ζv (1− αηk) + c (1− αηk)

2
ζ2 ≤

− ηk
∥∥(Hiθ)′

∥∥+
∥∥(Hiθ)′

∥∥ ηk (1− αηk) + c (1− αηk)
2
ζ2

= −
∥∥(Hiθ)′

∥∥αη2
k + c (1− αηk)

2
η2
k ≤ 0, (32)

where the first inequality uses (30) and (31). The second inequality is obtained by selecting
ζ = ηk and using the Cauchy–Schwarz inequality. Using Assumption 1, the last inequality
holds for c

∥∥(Hiθ)′
∥∥−1 ≤ α. Therefore, tkê is a feasible exploration for (3) and has a larger

(or equal) error than the projection error. Then we have:

‖ε‖= ‖â⊥ − â‖= ‖ê⊥ − ê‖≤ ‖tkê− ê‖=
‖(1− tk)ê‖= ‖αηkê‖≤ αη2. �
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The following theorem provides some useful properties on the statistics of ê⊥.

Theorem 2. The projected exploration ê⊥ defined in (23-25), for the policy resulting from
RMPC (22), has the following properties:

lim
η̄→0

Eê⊥ [ê⊥] = 0, (33a)

lim
η̄→0

Eê⊥
[

1

η2
ê⊥ê⊥

>
]

=
1

3
I, (33b)

lim
η̄→0

Eê⊥
[

1

η2
ê⊥ ξ(ê⊥)

]
= 0, (33c)

where η is the solution of ν in the RMPC (22) and ξ is any scalar function satisfying |ξ(.)|≤
r‖.‖2 for some positive r.

Proof. We have limη̄→0 η = 0, because η ∈ [0, η̄]. Using Lemma 2, we have:

lim
η̄→0
‖E[ε]‖ ≤ lim

η̄→0
E [‖ε‖] ≤ lim

η̄→0
αη2 = 0

⇒ lim
η̄→0

E[ε] = 0. (34)

Taking the expectation from (25) and using that the exploration ê is CI, we have:

lim
η̄→0

E[ê⊥] = lim
η̄→0

(
E[ê] + E[ε]

)
= 0. (35)

Using (25), the second moment can be written as follows:

lim
η̄→0

E
[

1

η2
ê⊥ê⊥

>
]

= lim
η̄→0

(
E
[

1

η2
êê>

]
+

E
[

1

η2
εê>

]
+ E

[
1

η2
êε>

]
+ E

[
1

η2
εε>

])
. (36)

For the first term we use that the exploration ê is CI with p = 1
3η

2I , i.e:

E[êê>] =
1

3
η2I ⇒ E

[
1

η2
êê>

]
=

1

3
I. (37)

Using (27), for the second term we have:

lim
η̄→0

∥∥∥∥E
[

1

η2
εê>

]∥∥∥∥ ≤ lim
η̄→0

E
[

1

η2
‖ε‖‖ê‖

]
≤

lim
η̄→0

αE[‖ê‖] = 0⇒ lim
η̄→0

E
[

1

η2
εê>

]
= 0. (38)
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The third term will vanish in the similar way and for the forth term we can write:

lim
η̄→0

∥∥∥∥E
[

1

η2
εε>

]∥∥∥∥ ≤ lim
η̄→0

E
[

1

η2
‖ε‖‖ε‖

]
≤ (39)

lim
η̄→0

αη2 ≤ lim
η̄→0

αη̄2 = 0⇒ lim
η̄→0

E
[

1

η2
εε>

]
= 0.

Then, they deliver (33b). Finally for (33c), we have:

‖ê⊥‖= ‖ê+ ε‖≤ ‖ê‖+‖ε‖≤ η + αη2. (40)

Then:

lim
η̄→0

∥∥∥∥E
[

1

η2
ê⊥ ξ(ê⊥)

]∥∥∥∥ ≤ lim
η̄→0

E
[

1

η2
‖ê⊥ ‖|ξ(ê⊥)|

]

≤ lim
η̄→0

E
[
r

η2
‖ê⊥ ‖3

]
≤ lim
η̄→0

rη(1 + αη)3 = 0, (41)

which delivers (33c). �

5 Corrected Policy Gradient

In this section, we will show that the robust policy π̂θ delivers the true gradient as η̄ → 0.
Indeed, the deterministic policy gradient method uses “small" exploration and all results are
valid in the sense of η̄ → 0. We propose the compatible advantage function:

Awπ̂θ
(s, â⊥) =

η̄2

η2
w>∇θπ̂θ (â⊥ − π̂θ) , (42)

where the factor η̄2

η2 is required to account for the varying exploration radius η and w is
obtained as follows:

w = arg min
w

1

2
Eπ̂θ,ê⊥

[
1

η̄2

(
Qπ̂θ

− V̂π̂θ
−Awπ̂θ

)2
]

(43)

where Eπ̂θ,ê⊥ = Eπ̂θ
[Eê⊥ [.|s]] and η̄−2 is introduced such that (43) remains well-posed for

η̄ → 0.

Assumption 2. Qπ̂θ
is analytic and at least twice differentiable for almost every feasible s

and ∇2
aQπ̂θ

is bounded.

Assumption 2 is usually satisfied in practice, as Qπ̂θ
tends to be at least piecewise smooth for

the many problems based on continuous state-input spaces. This assumption can be relaxed,
but it requires more technical developments.
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Theorem 3. The RMPC-based policy gradient estimation using the compatible advantage
function in (42) with w given by (43) asymptotically converges to exact gradient, i.e.:

lim
η̄→0

̂∇θ J(π̂θ) = ∇θ J(π̂θ). (44)

Proof. The solution of (43) is given by:

Eπθ,ê⊥

[
1

η2
∇θπ̂θ ê⊥

(
Qπ̂θ

− V̂π̂θ
−Awπ̂θ

)]
= 0. (45)

Using Assumption 2, the Taylor expansions of Qπ̂θ
and Awπ̂θ

are valid almost everywhere.
They read as:

Qπ̂θ
(s, â⊥) = Vπ̂θ

(s) +∇aAπ̂θ
(s, π̂θ(s))

>
ê⊥ +ξ,

Awπ̂θ
(s, â⊥) = ∇aAwπ̂θ

(s, π̂θ(s))
>
ê⊥, (46)

where ξ is the second-order remainder of the Taylor expansion of Qπ̂θ
at ê⊥= 0 and the

identity ∇aQπ̂θ
= ∇aAπ̂θ

was used. Using Assumption 2, ξ is of order ‖ê⊥‖2 for almost
every feasible s. By substitution of (46) in (45), we have:

Es,ê⊥
[

1

η2
∇θπ̂θê⊥ê⊥>

(
∇aAπ̂θ

−∇aAwπ̂θ

)]
+

Es,ê⊥
[

1

η2
∇θπ̂θê⊥ξ

]
+

Es,ê⊥
[

1

η2
∇θπ̂θ ê⊥

(
Vπ̂θ
− V̂π̂θ

)]
= 0. (47)

Using Theorem 2, the second and third terms will vanish in the sense of η̄ → 0 and the first
term will be:

lim
η̄→0

Es
[
∇θπ̂θ

(
∇aAπ̂θ

−∇aAwπ̂θ

)]
= 0, (48)

which delivers (44). �

In addition, under mild conditions, the RMPC-based policy resulting from (22) converges to
the main MPC-based policy resulting from (2) as η̄ → 0. For the sake of brevity, we do not
formalize this statement here.

6 Numerical Simulation

In this section, we propose two numerical examples in order to illustrate the theoretical
developments. The first example directly compares the MPC-based policy and the RMPC-
based policy and the optimal policy with a nonlinear constraint. We consider the deterministic
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scalar MDP s+ = s + a with stage cost L(s, a) = s2 + a2 , constraint s2 + 5a2 ≤ 1 and
discount factor γ = 0.9. Then we use the following MPC scheme to extract the approximated
policy:

min
x,u

x2
N +

N−1∑

k=0

γk(θx2
k + u2

k), (49a)

s.t. xk+1 = xk + uk , x
2
k + 5u2

k ≤ 1 , x0 = s, (49b)

then πθ(s) = u?0(s) obtained from the first element of the input solution. We can build the
RMPC scheme according to (22) and extract the modified policy π̂θ(s). Fig.1 (top) illustrates
the posterior projected error ‖ε‖ and the approximated feasible radius η for η̄ = 0.05. As
it can be seen, e.g., a fixed radius exploration with η = 0.05 may be infeasible at s = ±1.
Fig.1 (bottom) compares these policies with the MDP optimal policy. This simple example
shows that the RMPC-based policy makes a distance with the feasible bound to guarantee
the feasibility of the exploration in both directions. While classic MPC is on the feasible set
bound, a feasible exploration should only be in one direction.

Figure 1: Top-left: Blue region shows norm of the posterior projected error ‖ε‖. Top-right:
The approximated feasible radius η. Bottom: The optimal policy and parametrized policies
from MPC and RMPC scheme for θ = 0.5.

The second example compares the gradient of the RMPC-based and MPC-based policies with
the true policy gradient. We consider linear scalar dynamics s+ = 0.97s+0.1a+d where d ∼
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U(−10−3, 103) is a scalar uniform noise. RL stage cost is L(s, a) = 20(s− 0.5)2 + (a− 2)2

with γ = 0.9. The policy is extracted from the following MPC scheme:

min
u

50∑

k=0

γk(10(xk − 1/3)2 + (uk − uref(θ))
2), (50a)

s.t. xk+1 = 0.97xk + 0.1uk, x0 = s, (50b)
uk ≤ θ, (50c)

where uref(θ) = 0.2 − θ. The initial RL parameter θ = 0.1 is selected. The MPC policy
can be adjusted by increasing the input bound in (50c) and raising the input reference uref .
However, raising the input bound in (50c) by increasing θ results in decreasing the input
reference uref , such that these terms are in contradiction to find the optimal policy. Fig. 2
shows the policy gradient over the RL iterations. The red (dashed) curve is the outcome of
learning from the classic MPC, while the blue (solid) curve is the one from the RMPC. As it
can be seen, the RMPC gradient ̂∇θ J(π̂θ) delivers a very close gradient to the true gradient
∇θ J(πθ). However, the MPC policy gradient ̂∇θ J(πθ) has an obvious bias in both cases.
Note that the closed-loop performance loss from this bias issue is not necessarily large for this
example.

Figure 2: The policy gradients over the RL iterations. The outcome of learning using policy
gradients from MPC (red-dashed) and RMPC scheme (blue-solid). (◦ : ̂∇θ J(πθ). � :
∇θ J(πθ). M : ̂∇θ J(π̂θ).

A more complex example demonstrating the theory on a nonlinear example would be useful.
For the sake of brevity, such an example will be considered in the future.
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7 Conclusion

This paper presented the AC approach using a linear compatible advantage function approx-
imation for the MPC-based deterministic policies. When the policy is restricted by hard
constraints, the exploration may be non-CI and delivers a bias in the policy gradient. We
proposed RMPC using constraint tightening to provide an approximated feasible CI explo-
ration. A posterior projection is used to ensure feasibility and formally we showed that the
RMPC-based policy gradient converges to the true policy gradient for a small enough radius
of exploration.

References

[1] Dimitri P Bertsekas. Reinforcement learning and optimal control. Athena Scientific
Belmont, MA, 2019.

[2] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[3] David Silver et al. “Deterministic Policy Gradient Algorithms”. In: Proceedings of
the 31st International Conference on International Conference on Machine Learning -
Volume 32. ICML’14. Beijing, China: JMLR.org, 2014, I–387–I–395.

[4] Kim P Wabersich and Melanie N Zeilinger. “Safe exploration of nonlinear dynamical
systems: A predictive safety filter for reinforcement learning”. In: arXiv preprint
arXiv:1812.05506 (2018).

[5] Torsten Koller et al. “Learning-based model predictive control for safe exploration”. In:
2018 IEEE Conference on Decision and Control (CDC). 2018, pp. 6059–6066.

[6] Sébastien Gros and Mario Zanon. “Data-driven economic NMPC using reinforcement
learning”. In: IEEE Transactions on Automatic Control 65.2 (2019), pp. 636–648.

[7] Mario Zanon, Vyacheslav Kungurtsev, and Sébastien Gros. “Reinforcement learning
based on real-time iteration NMPC”. In: IFAC-PapersOnLine 53.2 (2020), pp. 5213–
5218.

[8] Arash Bahari Kordabad et al. “Reinforcement learning based on scenario-tree MPC for
ASVs”. In: 2021 American Control Conference (ACC) (2021), pp. 1985–1990.

[9] Sebastien Gros and Mario Zanon. “Reinforcement learning for mixed-integer problems
based on MPC”. In: IFAC-PapersOnLine 53.2 (2020), pp. 5219–5224.

[10] Hossein Nejatbakhsh Esfahani, Arash Bahari Kordabad, and Sébastien Gros. “Re-
inforcement learning based on MPC/MHE for unmodeled and partially observable
dynamics”. In: 2021 American Control Conference (ACC) (2021), pp. 2121–2126.

[11] James Blake Rawlings, David Q Mayne, and Moritz Diehl. Model predictive control:
theory, computation, and design. Vol. 2. Nob Hill Publishing Madison, WI, 2017.

[12] Mario Zanon and Sébastien Gros. “Safe reinforcement learning using robust MPC”. In:
IEEE Transactions on Automatic Control 66.8 (2020), pp. 3638–3652.

D. Bias Correction in Deterministic Policy Gradient Using Robust MPC

95



[13] Vijay R Konda and John N Tsitsiklis. “Actor-critic algorithms”. In: Advances in neural
information processing systems. 2000, pp. 1008–1014.

[14] Sébastien Gros and Mario Zanon. “Bias correction in reinforcement learning via the
deterministic policy gradient method for MPC-based policies”. In: 2021 American
Control Conference (ACC). IEEE. 2021, pp. 2543–2548.

Publications

96



E. Quasi-Newton Iteration in Deterministic Policy Gradient

E Quasi-Newton Iteration in Deterministic Policy Gradient

Postprint of [99] Arash Bahari Kordabad, Hossein Nejatbakhsh Esfahani, Wenqi
Cai, and Sebastien Gros. “Quasi-Newton Iteration in Deterministic Policy Gradient”.
In: 2022 American Control Conference (ACC) (2022), pp. 2124–2129. DOI: 10.
23919/ACC53348.2022.9867217

©2022 2022 American Control Conference (ACC). Reprinted and formatted to fit the
thesis with permission from Arash Bahari Kordabad, Hossein Nejatbakhsh Esfahani,
Wenqi Cai, and Sebastien Gros.

97

https://doi.org/10.23919/ACC53348.2022.9867217
https://doi.org/10.23919/ACC53348.2022.9867217


Quasi-Newton Iteration in Deterministic Policy Gra-
dient

Arash Bahari Kordabad1, Hossein Nejatbakhsh Esfahani1, Wenqi Cai1, and Sebastien Gros1

1Department of Engineering Cybernetics, Norwegian University of Science and Technology
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Abstract: This paper presents a model-free approximation for the Hessian of the performance
of deterministic policies to use in the context of Reinforcement Learning based on Quasi-
Newton steps in the policy parameters. We show that the approximate Hessian converges
to the exact Hessian at the optimal policy, and allows for a superlinear convergence in the
learning, provided that the policy parametrization is rich. The natural policy gradient method
can be interpreted as a particular case of the proposed method. We analytically verify the
formulation in a simple linear case and compare the convergence of the proposed method with
the natural policy gradient in a nonlinear example.

1 Introduction

Markov Decision Processes (MDPs) provide the standard framework for (stochastic) control
problem. The Bellman equations provide the exact solution for a given MDP, and can be
solved via Dynamic Programming (DP) [1]. Unfortunately, this is impractical because of the
curse of dimensionality of DP. In practice, Reinforcement learning (RL) provides model-free
tools to obtain an approximate solutions for the MDPs.

Deterministic policy gradient algorithms are widely used in RL with continuous action spaces
[2]. These methods attempt to learn the optimal parameters of a parameterized policy πθ using
only state transitions observed on the real system. These methods commonly use gradient
descent methods to optimize a discounted sum of stage costs, called closed-loop performance
J(θ). Depending on the policy type, these approaches are divided into the deterministic
and the stochastic policy gradient methods. In the stochastic policy gradient methods, a
parametrized distribution of action a conditioned on each state s taking the form of πθ(a|s)
is considered, while deterministic policy methods use a = πθ(s) to specify a deterministic
action for each state s. Both methods adjust the parameter vector θ in order to optimize J .
In practice, stochastic policy gradient may need more data when the action space has many
dimensions [3]. Hence, in this paper we focus on the deterministic policies.

Unfortunately, the convergence rate of classical gradient descent is limited, especially when the
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Hessian of closed-loop performance J is far from a scalar multiple of the Identity matrix [4].
In [5], the global convergence of policy gradient methods has been investigated for the Linear
Quadratic Regulator (LQR) problems. Various studies propose to use the Hessian of the policy
performance in a Newton-type methods in order to deliver a faster learning [6].

Natural policy gradient methods has been attracted many attentions in RL community recently
due to its capability for better convergence [7]. The efficiency of the natural policy gradient
in RL was showed in [8]. The natural policy gradient methods use the Fisher information
matrix as an approximate Hessian [9]. In [10], a natural policy gradient method is developed
for Constrained MDPs. A Quasi-Newton method is developed in [11] for Temporal Difference
(TD) learning in order to get faster convergence. Natural Actor-critic has been investigated
in [12]. Although the Fisher information matrix, as an approximation for the Hessian, is
positive definite, it does not asymptotically converge to the exact Hessian necessarily, when
the policy converges to the optimal policy [7]. As a result, the rate of convergence of the
natural policy gradient method is linear, i.e., the same as the regular gradient descent [6].
Therefore, providing an approximation of the Hessian (without imposing heavy computation)
that converges to the exact Hessian at the optimal policy can improve the convergence rate.

In this paper, we first derive a formulation for exact Hessian of deterministic policy perfor-
mance with respect to the parameters. Then we provide a model-free approximation for the
Hessian of the performance function J . We show that the approximate Hessian converges to
the exact Hessian at the optimal policy when the parameterized policy is rich. As a result, it
gives a superlinear convergence using a Quasi-Newton optimization.

2 Hessian of the Policy Performance

In the RL context, the problem is assumed to be an MDP with an initial state distribution
p1(s0) and transition probability density p(s+|s,a) where s ∈ S ⊆ Rns , a ∈ A ⊆ Rna , and
s+ are the current state, input, and subsequent state, respectively, and s0 is the initial state.
Every transition imposes a real scalar stage cost `(s,a). A deterministic policy denoted by
π : S → A specifies how the input a is chosen for each state s. We consider a parametrized
policy πθ with parameter vector θ ∈ Rnθ and seek an optimal policy by adjusting parameter
θ. The value function V πθ and action-value function Qπθ (s,a) are defined as follows:

Qπθ (s,a) = `(s,a) + γEp(·|s,a)

[
V πθ (s+)|s,a

]
, (1a)

V πθ (s) = Qπθ (s,πθ(s)), (1b)

where γ ∈ (0, 1] is a discount factor. The performance objective J(θ) is given as follows:

J(θ) = Es0 [V πθ (s0)] = Es [`(s,πθ(s))] . (2)

Note that we simplified the expectation notation Es0∼p1(s0)[·] = Es0 [·] and Es[·] is taken over
the expected sum of the discounted state distribution of the Markov chain in closed-loop with
policy πθ. The purpose is solving the following optimization problem:

θ? ∈ arg min
θ

J(θ). (3)
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In the following we make an assumption in order to guarantee the existence of the policy
gradient and we recall the deterministic policy gradient theorem.

Assumption 1. p(s′|s,a), ∇ap(s′|s,a), πθ(s), ∇θπθ(s), `(s,a), ∇a`(s,a), p1(s) are
continuous in all parameters and variables s, a, s′, θ. Also there exist b and L such that:

sup
s
p1(s) < b, sup

{a,s,s′}
p(s′|s,a) < b,

sup
{a,s}
‖∇a`(s,a)‖< L, sup

{a,s,s′}
‖∇ap(s′|s,a)‖< L. (4)

Moreover, there exists a policy πθ such that J(θ) is finite.

Assumption 1 is a standard assumption which is made in [3] in order to derive policy gradients.
All derivatives are also bounded for a smooth enough p, such as the Gaussian distribution.
Moreover, one can select the initial state distribution from a bounded probability function.
The existence of a policy that makes the performance J(θ) finite can be interpreted as a
controllability assumption in the control literature. Policy gradient methods usually solve (3)
using gradient descent method, i.e., at each iteration k, we update θ as follows:

θk+1 = θk − α∇θJ(θ)|θ=θk , (5)

where α is a positive step-size.

Theorem 1. (Deterministic Policy Gradient) Suppose that the MDP satisfies Assumption 1;
then∇aQπθ exists and the deterministic policy gradient reads as:

∇θJ(θ) = Es
[
∇θπθ(s)∇aQπθ (s,a)|a=πθ(s)

]
. (6)

Proof. See in [3]. �

The next standard assumption will be made to ensure the existence of the Hessian of the policy
with respect to the policy parameters θ and the Hessian of action-value function with respect
to the input a.

Assumption 2. ∇2
ap(s

′|s,a), ∇2
θπθ(s), ∇2

a`(s,a), are continuous in all parameters and
variables s, a, s′, θ. Moreover, there exists M such that:

sup
a,s,s′

‖∇2
ap(s

′|s,a)‖< M, sup
a,s
‖∇2

a`(s,a)‖< M. (7)

Similar to the assumption 1, assumption 2 is made to derive the Hessian of the performance.
In practice, the assumption is satisfied for a smooth enough transition p, policy π and stage
cost `. In the following we provide the exact Hessian of the deterministic policy performance
with respect to the policy parameters.
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Definition 1. In this paper, we use the operation ⊗ : Rn1×n2×n3 × Rn3 → Rn1×n2 for the
product of a tensor T and a vector v, such that:

T ⊗ v ,
n3∑

i=1

viT(:,:,i), (8)

where scalar vi is the ith element of vector v and matrix [T(:,:,i)]n1×n2 is the ith frontal slice
of tensor T [13].

Theorem 2. (Deterministic Policy Hessian) Under Assumptions 1 and 2, ∇2
aQ

πθ and the
deterministic policy Hessian exist. The latter is given by:

∇2
θJ(θ) = H(θ) + γΛ(θ), (9)

where H(θ) and Λ(θ) are defined as follows:

H(θ)
∆
=Es

[
∇2
θπθ(s)⊗∇aQπθ (s,a)

∣∣∣
a=πθ

+∇θπθ(s)∇2
aQ

πθ (s,a)
∣∣∣
a=πθ

∇θπθ(s)>
]
,

(10a)

Λ(θ)
∆
=Es

[ ∫
∇θp(s′|s,πθ(s))∇θV πθ (s′)>ds′ +

∫
∇θV πθ (s′)∇θp(s′|s,πθ(s))>ds′

]

(10b)

Proof. See Appendix. �

The terms in (10a) only depend on the policy and the action-value function, but the terms
in (10b) depend on the gradient of the transition probability p(s′|s,a), which is difficult to
calculate directly from data. Hence, we use H(θ) as a model-free approximator of the exact
Hessian∇2

θJ . Next section, we will show that the approximate Hessian H(θ) converges to
the exact Hessian∇2

θJ at the optimal policy.

Remark 1. Note that one can approximate p(s′|s,a) from observed data in order to obtain a
more accurate Hessian, e.g., using system identification techniques [14]. Such an estimation
can require a heavy computation if the state-action space of the problem is not small. Hence, in
order to provide a model-free approximator and for sake of brevity we ignore such evaluation
in this paper.

3 Quasi-Newton Policy Improvement

Quasi-Newton methods are alternative to Newton’s approach where the Hessian of the cost
function is unavailable or too expensive to compute at every iteration. A Quasi-Newton update
rule for the optimization problem (3) can be written as follows:

θk+1 = θk − αH−1(θk)∇θJ(θ)|θ=θk , (11)
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where H is an approximation of Hessian of the performance function J . Note that using a
Hessian in the policy optimization is advantageous when the different parameters would require
very different step sizes in a first-order method, i.e., when∇2J is far from being a multiple
of the identity matrix. This is often the case in practice, unless a pre-scaling is performed on
the policy formulation. From the computational viewpoint, the Hessian of a policy is usually
dense, and it can be troublesome to use in (11) for a policy parametrization using a very
large number of parameters. Hence the proposed second-order method is arguably best for
policies using a few dozens, up to a few hundreds of parameters. E.g., policy parametrizations
based on model predictive control techniques fall in that range of parameters [15]. Next mild
assumptions are made to allow one to use the Newton-type optimization in the policy gradient
methods.

Assumption 3. 1. The parameterized policy πθ is rich enough. I.e., there exists θ? such
that πθ?(s) = π?(s).

2. J(θ) has a Lipschitz continuous Hessian and ∇2
θJ(θ)−1 exists in a neighbourhood of

θ?.

The first statement of Assumption 3 is a standard assumption in the theoretical developments
associated to the policy gradient method. For instance, for a Linear dynamic with Quadratic
cost, a policy in the form of πθ(s) = Θ1s + Θ2 with proper matrix dimension Θ1 and Θ2

satisfies Assumption 3.1, where θ = {Θ1,Θ2}. In practice, for a general problem such
assumption is satisfied approximately by choosing a generic function approximator for the
deterministic policy, e.g., Deep Neural Networks [16] and Fuzzy Neural Networks [17].
Then a richer policy satisfies the assumption asymptotically. A key consequence of this
assumption is that the optimal policy π? is independent of the distribution of the initial state
p1(s0). The second statement guarantees the continuity of the Hessian and allows one to use a
Quasi-Newton approach.

Lemma 1. Assume that f : Rn → Rm is a bounded, continuous function of x ∈ Rn and
for any probability density g(x), we have Ex∼g[f(x)] = 0. Then f(x) = 0 holds almost
everywhere in Lebesgue measure.

Proof. If f(x) 6= 0 holds on a measurable set, then there exists a probability density g̃ on that
set such that Ex∼g̃[f(x)] 6= 0 �

Theorem 3. Under Assumptions 1-3, the approximate Hessian H(θ) converges to the exact
Hessian∇2

θJ(πθ) at the optimal policy, i.e.,

lim
θ→θ?

Λ(θ) = 0. (12)

Proof. The initial distribution p1(s0) is independent of the policy parameters θ. From the
optimality condition of (2), we have:

∇θJ(θ) = ∇θEs0 [V πθ (s0)] = Es0 [∇θV πθ (s0)] = 0
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at θ = θ? for any initial distribution p1(s0) (Assumption 3.1). Using Lemma 1, it implies
∇θV πθ (s) ≡ 0 at θ = θ?. Under Assumptions 3 and for any bounded∇θp, it reads:
∫
∇θp(s′|s,πθ(s))∇θV πθ (s′)>ds′ =

∫
∇θV πθ (s′)∇θp(s′|s,πθ(s))>ds′ = 0 (13)

at θ = θ?. Then, from the continuity of the Hessian (Assumption 3.2) and (10b), it implies
(12). Note that Assumption 1 guarantees the boundedness of∇θp. �

Next theorem provides necessary and sufficient conditions for the superlinear1 convergence of
the Quasi-Newton method.

Theorem 4. (superlinear convergence of Quasi-Newton methods) Suppose that f : Rn → R
is twice continuously differetiable. Consider the iteration xk+1 = xk − B−1

k ∇fk. Let us
assume that {xk} converges to a point such that∇f(x?) = 0 and∇2f(x?) is positive definite.
Then {xk} converges superlinearly to x? if and only if:

lim
k→∞

‖(Bk −∇2f(x?))B−1
k ∇fk‖

‖B−1
k ∇fk‖

= 0. (14)

Proof. See Theorem 3.7 in [4]. �

Next corollary concludes that the proposed Hessian implies a superlinear converges.

Corollary 1. (From theorem 3 and 4): Under assumption 3 and the assumptions in the theo-
rem 4, the policy parameters θk converge to the optimal policy parameters θ? superlinearly,
when H(θ) defined in (10a) is an approximator of the exact Hessian (9) with J(θ) defined in
(2) and the Quasi-Newton update rule (11) is used.

Natural policy gradient utilizes Fisher information matrix as its approximate Hessian in
the policy gradient method. The Fisher matrix for deterministic policies can be written as
follows [18]:

F (θ) = Es
[
∇θπθ(s)∇θπθ(s)>

]
. (15)

The following corollary connects our proposed Hessian with the Fisher Information matrix.

Corollary 2. Fisher Information matrix, defined in (15), is positive definite and by comparison
with (10a) and this matrix can be written equal to (10a) under the following conditions:

1. ∇2
aQ

πθ (s,a)|a=πθ
= I ,

2. ∇2
θπθ(s)⊗∇aQπθ (s,a)|a=πθ

= 0.

1The sequence xk is said to converge superlinearly to L if limk→∞
|xk+1−L|
|xk−L| = 0.
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Then clearly F (θ) does not converge to the exact Hessian at the optimal policy necessarily.
I.e., the parameters will not converge superlinearly to the optimal parameters if the Fisher
information matrix is used as a Hessian approximation (see Theorem 4).

Remark 2. Under assumptions 1-3, H(θ) is positive definite in a neighborhood of θ?.
Nevertheless H(θ) is not necessarily positive definite for a parameter θ that is far from the
optimal parameter θ? because of the term∇2

θπθ(s)⊗∇aQπθ (s,a)|a=πθ
, while the Fisher

information matrix F (θ) is (semi) positive definite by construction. A regularization of H
may be needed in practice, and one can use the Fisher information matrix F to regularize the
approximate Hessian H , when H is not positive definite. This regularization can be applied
using a Hessian in the form of H + βF at every step, where β ≥ 0 is a constant that must
be ideally selected at every step. However, other methods e.g., trust-region methods can
effectively take advantage of indefinite Hessian approximations.

Remark 3. Many RL methods deliver a sequence of parameters θk that is stochastic by
nature, because they are based on measurements taken from a stochastic system. From the
theoretical viewpoint, all of the results in this paper are valid for large data sets, where sample
averages converge to the true expectations. However, in practice, one can use the method to
improve the stochastic convergence rate and derive an extension of the current theorems.

4 Analytical Example

In this section, we consider a simple Linear Quadratic Regulator (LQR) problem in order to
verify the method analytically. Consider the following scalar linear dynamics:

s+ = s+ a+ w, (16)

where w ∼ N (0, σ2), i.i.d., Ew[wa] = 0 and Ew[ws] = 0. Transition probability of the MDP
(16) reads as follows:

p(s′|s, a) =
1√
2πσ

exp
(
− (s′ − s− a)2

2σ2

)
. (17)

Initial state distribution is p1(s0) ∼ N (0, σ2
0) , deterministic policy reads as πθ = −θs and

stage cost is `(s, a) = 0.5(s2 + a2). We assume value function in the from of V πθ (s) =
pθs

2 + qθ and we show it will satisfy the fundamental Bellman equations (1), then we have:

V πθ (s) = `(s, πθ(s)) + γEw[V πθ (s− θs+ w)] (18)

= 0.5s2(1 + θ2) + γ(1− θ)2pθs
2 + γpθσ

2 + γqθ.

It implies:

pθ =
0.5(1 + θ2)

1− γ(1− θ)2
, qθ =

γσ2

1− γ pθ. (19)
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Using the Bellman equations (1), the action-value function Qπθ (s, a) can be evaluated as
follows:

Qπθ (s, a) = `(s, a) + γE
[
V πθ (s+|s, a)

]
= 0.5(s2 + a2) + γE[pθ(s+ a+ w)2 + qθ]

= (0.5 + γpθ)s
2 + 2γpθsa+ (0.5 + γpθ)a

2 + qθ. (20)

One can check the identity V πθ (s) = Qπθ (s, π(s)). Then:

∇θπθ∇aQπθ (s, a)|a=πθ =
γθ2 + θ − γ

1− γ(1− θ)2
s2 (21a)

∇θπθ∇2
aQ

πθ (s, a)|a=πθ∇θπθ = s2(1 + 2γpθ). (21b)

Note that∇2
θπθ = 0. The closed-loop performance J reads:

J(θ) = Es0 [V πθ (s0)] =
0.5(1 + θ2)

1− γ(1− θ)2
(σ2

0 +
γσ2

1− γ ). (22)

Then, by taking derivation of J with respect to the parameters θ:

J ′(θ) =
γθ2 + θ − γ

(1− γ(1− θ)2)2
(σ2

0 +
γσ2

1− γ ). (23)

From policy gradient (6) and (21a), we can write:

J ′(θ) = Es[∇θπθ∇aQπθ (s, a)|a=πθ ] = Es[
γθ2 + θ − γ

1− γ(1− θ)2
s2]. (24)

Then (23) and (24) imply:

Es[s2] =
(σ2

0 + γσ2

1−γ )

1− γ(1− θ)2
. (25)

From (22), the exact Hessian of the performance J reads:

J ′′(θ) = p′′θ (σ2
0 +

γσ2

1− γ ) =
−2γ2θ3 − 3γθ2 + 6γ2θ − 4γ2 + γ − 1

(1− γ(1− θ)2)3
(σ2

0 +
γσ2

1− γ ). (26)

From (10a) and (21b), the approximate Hessian H(θ) reads:

H(θ) = Es[s2(1 + 2γpθ)] =
1 + 2γθ

(1− γ(1− θ)2)2
(σ2

0 +
γσ2

1− γ ). (27)

From (10b) and (17), we can write:

Λ(θ) =2

∫

S
∇θV πθ (s′)∇θp(s′|s, πθ)ds′ (28)

=2

∫ ∞

−∞
−p′θ((s′)2 +

γσ2

1− γ )
s(s′ − s+ θs)√

2πσ3
exp

(
− (s′ − s+ θs)2

2σ2

)
ds′

=− 4p′θs
2(1− θ) =

−4(γθ2 + θ − γ)(1− θ)
(1− γ(1− θ)2)3

(σ2
0 +

γσ2

1− γ ).

E. Quasi-Newton Iteration in Deterministic Policy Gradient

105



Therefore, one can easily verify (9) by substitution (26), (27) and (28) in (9). Note that we
used the following integration in (28):

∫ ∞

−∞
(x2 + a)(x− b) exp(−c(x− b)2)dx =

√
πb

c
3
2

, (29)

where a, b and c > 0 are constraints. Fig. 1 (right) compares the exact Hessian ∇2
θJ(θ),

the proposed approximate Hessian H(θ) and the Fisher matrix F (θ) for this example with
γ = 0.9 and σ2

0 = σ2 = 0.1. As can be seen, ∇2
θJ meets H(θ) at the optimal parameter.

Fig. 1 (left) shows the superlinear convergence of the policy parameters during the learning
using Quasi-Newton policy gradient method, while the (first order) policy gradient method
and natural policy gradient method result a linear convergence during the learning.

Figure 1: Right: Superlinear convergence of the proposed method. blue: policy gradient
method, red: natural policy gradient method, green: proposed method. Left: Comparison of
the exact Hessian ∇2

θJ(θ), the proposed approximate Hessian H(θ) and the Fisher matrix
F (θ).

5 Numerical Simulation

Cart-Pendulum balancing is a well-known benchmark in the RL community. The dynamics of
a cart-pendulum system, shown in fig. 2, reads as:

(M +m)ẍ+
1

2
mlφ̈ cosφ =

1

2
mlφ̇2 sinφ+ u, (30a)

1

3
ml2φ̈+

1

2
mlẍ cosφ = −1

2
mgl sinφ, (30b)

where M and m are the cart mass and pendulum mass, respectively, l is the pendulum length
and φ is its angle from the vertical axis. Force u is the control input, x is the cart displacement
and g is gravity. We used the Runge-Kutta 4th-order method to discretize (30) with a sampling
time dt = 0.1s and cast it in the form of s+ = f(s,a) + ξ, where s = [ẋ, x, φ̇, φ]> is the
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state, a = u is the input, ξ is a Gaussian noise and f is a nonlinear function representing (30)
in discrete time. A stabilizing quadratic stage cost is considered as `(s,a) = s>s+ 0.01a>a,
and the deterministic policy is considered in the form of πθ = −θs. Fig. 3 (right) shows

m, l

x

M

u

gφ

Figure 2: The cart-pendulum system. We use M = 0.5kg, m = 0.2kg, l = 0.3m and
g = 9.8m/s2 for the simulation.

the closed-loop performance J using the proposed Hessian H(θ) (green) and natural policy
gradient method (red). Moreover, the deterministic policy parameters θ is shown in fig. 3
(left).

Figure 3: Right: Closed-loop performance J(θ); Left: Convergence of the policy parameters
θ using the proposed Hessian (green) and natural policy gradient method (red).

6 Conclusion

In this work, we provided a Hessian approximation for the performance of deterministic
policies. We use the model-independent terms of the exact Hessian as an approximate Hessian,
and we showed that the resulting approximate Hessian converges to the exact Hessian at
the optimal policy. Therefore, the approximate Hessian can be used in the Quasi-Newton
optimization to provide a superlinear convergence. We analytically verified our formulation
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in a simple example, and we compare our method with the natural policy gradient in a cart-
pendulum system. In the future, we will investigate actor-critic algorithms for the proposed
Hessian.
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Proof of Theorem 2

Proof. We first calculate the Hessian of V πθ (s) as follows:

∇2
θV

πθ (s) =∇2
θQ

πθ (s,a)|a=πθ(s)= ∇2
θ

(
`(s,πθ(s)) +

∫

S
γp(s′|s,πθ(s))V πθ (s′)ds′

)

=∇2
θπθ(s)⊗∇a`(s,a)|a=πθ(s)+∇θπθ(s)∇2

a`(s,a)|a=πθ
∇θπθ(s)>

+∇2
θ

∫

S
γp(s′|s,a)V πθ (s′)ds′ (A.1)

The third term can be calculated as follows:

∇2
θ

∫

S
γp(s′|s,a)V πθ (s′)ds′ =

∫

S
γV πθ (s′)∇2

θp(s
′|s,πθ(s))ds′ (A.2)

+

∫

S
γ∇θp(s′|s,πθ(s))∇θV πθ (s′)>ds′ +

∫

S
γ∇θV πθ (s′)∇θp(s′|s,πθ(s))>ds′

+

∫

S
γp(s′|s,πθ(s))∇2

θV
πθ (s′)ds′

The first term can be extended as follows:

∫

S
γV πθ (s′)∇2

θp(s
′|s,πθ(s))ds′ =

∫

S
γV πθ (s′)∇2

θπθ(s)⊗∇ap(s′|s,a)|a=πθ(s)ds
′+

+

∫

S
γV πθ (s′)∇θπθ(s)∇2

ap(s
′|s,a)|a=πθ(s)∇θπθ(s)>ds′ (A.3)
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By rearranging (A.1), we can write:

∇2
θV

πθ (s) = ∇2
θπθ(s)⊗∇a(`(s,a)|a=πθ(s)+

∫

S
γp(s′|s,a)|a=πθ(s)V

πθ (s′)ds′)

+∇θπθ(s)∇2
a(`(s,a)|a=πθ(s)+

∫

S
γp(s′|s,a)|a=πθ(s)V

πθ (s′)ds′)∇θπθ(s)>

+

∫

S
γ∇θp(s′|s,πθ(s))∇θV πθ (s′)>ds′ +

∫

S
γ∇θV πθ (s′)∇θp(s′|s,πθ(s))>ds′

+

∫

S
γp(s′|s,πθ(s))∇2

θV
πθ (s′)ds′ = Fθ(s) +

∫

S
γp(s′|s,πθ(s))∇2

θV
πθ (s′)ds′

(A.4)

where Fθ(s) is defined as follows:

Fθ(s) ,∇2
θπθ(s)⊗∇aQπθ (s,a)|a=πθ(s)+∇θπθ(s)∇2

aQ
πθ (s,a)|a=πθ(s)∇θπθ(s)>+∫

S
γ∇θp(s′|s,πθ(s))∇θV πθ (s′)>ds′ +

∫

S
γ∇θV πθ (s′)∇θp(s′|s,πθ(s))>ds′

(A.5)

where we used:

Qπθ (s,a) =`(s,a)|a=πθ(s)+

∫

S
γp(s′|s,a)|a=πθ(s)V

πθ (s′)ds′ (A.6)

Now, we can go one step further for the last term of (A.4):

∇2
θV

πθ (s) =Fθ(s) +

∫

S
γp(s′|s,πθ(s))Fθ(s′)ds′+

∫

S

∫

S
γ2p(s′|s,πθ(s))p(s′′|s′,πθ(s′))∇2

θV
πθ (s′′)ds′ds′′ (A.7)

where we have used the following equality:

∇2
θV

πθ (s′) =Fθ(s′) +

∫

S
γp(s′′|s′,πθ(s′))∇2

θV
πθ (s′′)ds′′ (A.8)

We can define:

p(s→ s′′, 2,πθ) =

∫

S
p(s′|s,πθ(s))p(s′′|s′,πθ(s′))ds′

and interpret it probability of transition from s to s′′ in 2 steps by policy πθ . Then in last term
we can alter integral notation s′′ → s′ and rewrite (A.7) as follows:

∇2
θV

πθ (s) = Fθ(s) +

∫

S
γp(s′|s,πθ(s))Fθ(s′)ds′+

∫

S
γ2p(s→ s′, 2,πθ)∇2

θV
πθ (s′)ds′ (A.9)
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By continuing this procedure, we have:

∇2
θV

πθ (s) =

∫

S

∞∑

t=0

γtp(s→ s′, t,πθ)Fθ(s′)ds′ (A.10)

where

p(s→ s′, t,πθ) =

∫

S
p(s→ ŝ, t− 1,πθ)p(s′|ŝ,πθ(ŝ))dŝ

starting from p(s→ s′, 1,πθ) = p(s′|s,πθ(s)). Then, tacking the expectation over p1 for
Hessian of policy we have:

∇2
θJ(θ) = ∇2

θ

∫

S
p1(s)V πθ (s)ds =

∫

S
p1(s)∇2

θV
πθ (s)ds =

∫

S

∫

S

∞∑

t=0

γtp1(s)

p(s→ s′, t,πθ)

[
∇2
θπθ(s′)⊗∇aQπθ

(s′,a)|a=πθ(s′)+

∇θπθ(s′)∇2
aQ

πθ (s′,a)|a=πθ(s′)∇θπθ(s′)> +

∫

S
γ∇θp(s′′|s′,πθ(s′))

∇θV πθ (s′′)>ds′′ +
∫

S
γ∇θV πθ (s′′)∇θp(s′′|s′,πθ(s′))>ds′′

]
ds′ds

Or equivalently:

∇2
θJ(θ) = Es

[
∇2
θπθ(s)⊗∇aQπθ (s,a)|a=πθ

+∇θπθ(s)∇2
aQ

πθ (s,a)|a=πθ
∇θπθ(s)>

+

∫
γ∇θV πθ (s′)∇θp(s′|s,πθ(s))>ds′ +

∫
γ∇θp(s′|s,πθ(s))∇θV πθ (s′)>ds′

]

(A.11)

where Es[·] is taken over discounted state distribution of the Markov chain in closed-loop with
policy πθ. �
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Functional Stability of Discounted Markov Decision
Processes Using Economic MPC Dissipativity Theory

Arash Bahari Kordabad1 and Sebastien Gros1

1Department of Engineering Cybernetics, Norwegian University of Science and Technology
(NTNU), Trondheim, Norway.

Abstract: This paper discusses the functional stability of closed-loop Markov Chains under
optimal policies resulting from a discounted optimality criterion, forming Markov Decision
Processes (MDPs). We investigate the stability of MDPs in the sense of probability measures
(densities) underlying the state distributions and extend the dissipativity theory of Economic
Model Predictive Control in order to characterize the MDP stability. This theory requires a
so-called storage function satisfying a dissipativity inequality. In the probability measures
space and for the discounted setting, we introduce new dissipativity conditions ensuring the
MDP stability. We then use finite-horizon optimal control problems in order to generate
valid storage functionals. In practice, we propose to use Q-learning to compute the storage
functionals.

1 Introduction

Markov Decision Processes (MDPs) provide a generic and standard framework for optimal
stochastic control of discrete-time dynamical systems, where the stage cost and transition
probability depend only on the current state and the current input of the system [1]. For an
MDP, a policy is a mapping from the state space into the input space and determines how
to select the input based on the observation of the current state. Solving an MDP refers
to finding an optimal policy that typically minimizes the expected value of the discounted
infinite-horizon sum of stage costs. Reinforcement Learning (RL) and Dynamic programming
are two common techniques to solve MDPs [2].

Most of the research has been done in order to find the optimal policy or verify the optimality
of a given policy. However, in general, optimality may not lead to the stability of the closed-
loop Markov Chain. The stability of the Markov Chains has been extensively studied in [3].
However, this framework provides results that are not easily related to MDPs and optimality
criteria. To the best of our knowledge, there are limited results characterizing the stability of
MDPs as an outcome of the interplay between its objective function and its dynamics.

In order to characterize the closed-loop stability of MDPs, we extend the concept of stability
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and dissipativity developed in the context of Economic Model Predictive Control (EMPC) [4].
EMPC optimizes a sum of stage costs that is not necessarily positive definite [5]. Dissipativity
is a key concept in EMPC to argue about the asymptotic stability of the closed-loop system
under the optimal policy [6]. This theory is based on a so-called storage function satisfying the
dissipativity inequality. The storage function can be used to convert an EMPC to a tracking
MPC having a stage cost that is lower bounded by a K∞ function. Under the dissipativity
condition, one can show that the tracking MPC has the same optimal policy as the EMPC.
Moreover, the value function resulting from the tracking MPC can be used as a Lyapunov
function to show the closed-loop stability of the system under the optimal policy.

Dissipativity is well-known for EMPC schemes having an undiscounted cost and deterministic
dynamics. In the discounted setting, finding the Lyapunov function still is challenging even for
positive-definite stage costs [7]. In the discounted setting, the discount factor plays a vital role
in closed-loop stability. Recently the dissipativity theory has been extended to the discounted
setting with deterministic dynamics [8]. These conditions are called Strong Discounted Strict
Dissipativity (SDSD).

We use the generalization of the classic dissipativity theory by making an argument on the
measure space underlying the MDP rather than on the state space itself. This idea was first
discussed in [9], but was limited to undiscounted MDPs, where the dissipativity is fairly
straightforward. In this paper, we consider MDPs with a general functional stage cost. We use
the concept of D-stability [9] and introduce generalized functional dissipativity conditions
for MDPs with a discounted objective function. We label these conditions Functional Strong
Discounted Strict Dissipativity (FSDSD). These conditions require the transition probability,
the stage cost, and the discount factor of the MDP to satisfy certain inequalities. We show that
if a given problem is FSDSD, then the D-stability of MDP follows.

Moreover, [9] covers only the stability analysis, while we discuss it in the learning context
and provide practical aspects of the method. Indeed, first, we show that an undiscounted
finite-horizon Optimal Control Problem (OCP) is able to capture the optimal value functionals
and policy resulting from a discounted infinite-horizon OCP. Then we use a parameterized
undiscounted finite-horizon OCP to approximate the action-value functional and show that
this framework yields a valid storage function that satisfies FSDSD conditions. Q-learning
will be proposed as a practical way of learning the OCP parameters.

2 Problem Setting

In this section, we detail Markov Decision Processes (MDPs) and formulate their representation
in the state density space. We consider an MDP with the following transition probability
density:

ξ(sk+1|sk,ak) , (1)

where sk ∈ X ⊂ Rn, ak ∈ U ⊂ Rm, and sk+1 are the current state, input, and subsequent
state, respectively, and k ∈ I≥0 is the discrete-time index. The input ak applied to the system
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for a given state sk is selected by a deterministic policy π : X → U . We label P the set of
policies such that the conditional measure (1) is σ-finite, i.e., π ∈ P . We denote ρ0 ∈ Ξ as
the initial state s0 distribution, i.e s0 ∼ ρ0, where Ξ is the set of measures supported on X .
We define probability measure sequences ρπk ∈ Ξ generated by the closed-loop Markov Chain
ξ(s+|s,π(s)) with policy π, as:

ρπk+1(·) = Tπρπk (·) =

∫

X
ξ(·|s,π(s))ρπk (ds) , (2)

where Tπ : Ξ → Ξ is defined as the transition operator on measures and ρπ0 = ρ0, ∀π. In
general, characterization of convergence of the state sequences {sk}∞k=0 resulting from the
closed-loop Markov Chain ξ(s+|s,π(s)) is very difficult. To tackle this issue, in this paper,
instead of working with state sequences sk, we propose to work with probability measure
sequences {ρπk }∞k=0, describing the probability distribution of the states sk over time. The
selected (possibly nonlinear) stage cost functional, denoted by L : Ξ× U → R, does not have
a specific structure and it will be an important point in the rest of the paper. One can select it
as follows:

L[ρπk ,π] = Es∼ρπk [`(s,π(s))] , (3)

where ` : X × U → R is a stage cost function. In fact, stage cost (3) is a particular case of
functional stage cost, where it linearly depends on the stage function. Using cost functionals L
that do not necessarily take the form (3) is key in this paper to discuss the functional stability
of closed-loop Markov Chains. We then denote the optimal steady-state measure by ρ? and
the corresponding stage cost by L0. Without loss of generality, we can assume that L0 = 0 in
order to have a well-posed value functional. Clearly, if this does not hold, one can shift the
stage cost to achieve L0 = 0. Let us consider the following discounted infinite-horizon OCP:

V ?[ρ0] = min
π

∞∑

k=0

γkL[ρπk ,π] (4a)

s.t. ρπk+1 = Tπρπk , ρπ0 = ρ0 , (4b)

where γ ∈ (0, 1) is the discount factor and V ? : Ξ → R is the optimal value functional.
We denote the optimal policy by π?, solution of (4). In the following, we make a standard
assumption on the stage cost functional and V ?.

Assumption 1. 1) We assume that L[ρ,π] is bounded, ∀ρ ∈ Ξ, ∀π ∈ P
2) There exists a non-empty set of measures, denoted by Ξ0, such that for all ρ0 ∈ Ξ0, V ?[ρπ

?

k ]
remains bounded, ∀k.

The optimal action-value functional Q? and advantage functional A? associated to (4) are
defined as follows:

Q?[ρ,π] := L[ρ,π] + γV ?[Tπρ], ∀ρ ∈ Ξ, ∀π ∈ P , (5a)
A?[ρ,π] := Q?[ρ,π]− V ?[ρ], ∀ρ ∈ Ξ, ∀π ∈ P . (5b)
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Then from the Bellman equation, we have:

V ?[ρ] = Q?[ρ,π?] = min
π
Q?[ρ,π], ∀ρ ∈ Ξ (6)

One can verify the following , ∀ρ ∈ Ξ:

0 = A?[ρ,π?] = min
π
A?[ρ,π], π? ∈ arg min

π
A?[ρ,π] . (7)

We will use these results in Section 4. The next section presents the conditions on the MDP (1)
such that the sequence of measures under optimal policy converges to the optimal steady-state
measure in some sense.

3 Stability of MDPs

In this section, we will detail the stability of MDPs in the sense of probability measures.
We extend the dissipativity theory to propose a Lyapunov functional establishing the MDP
stability in the sense of limk→∞ ρπ

?

k . In order to discuss this limit formally, we first define the
following concept.

Definition 1. (Dissimilarity measure) For any ρ, ρ′ ∈ Ξ, we defineD(ρ||ρ′) as a dissimilarity
measure on measure space, that maps any two measures ρ and ρ′ to the real non-negative
numbers, and D(ρ||ρ) = 0, ∀ρ.

One can show that the Kullback-Leibler divergence, the Wasserstein metric, and the total
variation distance are Dissimilarity measures. Using the Dissimilarity measure concept, we
can define D-stability of Markov Chains [9].

Definition 2. (D-stability) The closed-loop Markov Chain ξ(s+|s,π(s)) with policy π is
D-stable with respect to the optimal steady probability measure ρ? and dissimilarity measure
D if, for any ε > 0 there exists a δ(ε) > 0 and a K ∈ I≥0 such that D(ρ0‖ρ?) < δ(ε) implies
D(ρπk ‖ρ?) < ε, ∀k ≥ K. Moreover, if limk→∞D(ρπk ‖ρ?) = 0 holds almost everywhere,
then the closed-loop Markov Chain is D-asymptotically stable.

The concept of D-stability provides a framework to argue about limk→∞ ρπ
?

k in the sense of
dissimilarity measures. The next lemma connects the functional stability to the existence of a
Lyapunov functional V , satisfying proper conditions.

Lemma 1. The closed-loop Markov Chain ξ(s+|s,π?(s)) is D-asymptotically stable with
respect to the optimal steady probability measure ρ? and dissimilarity measure D, if there
exists a Lyapunov functional V : Ξ→ R≥0, satisfying:

β0(D(ρ0‖ρ?)) ≤V [ρ0] ≤ β1(D(ρ0‖ρ?)) , (8a)
V [Tπ?ρ0]−V [ρ0] ≤ −β2(D(ρ0‖ρ?)) , (8b)

for some β0, β1, β2 ∈ K∞.
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Proof. The proof can be found in [9]. �

In the following, we will connect the Lyapunov functional in Lemma 1 with the value functional
under some conditions. The next definition develops the SDSD conditions for undiscounted
MDPs, where the stage cost is a generic functional.

Definition 3. (Functional Strong Discounted Strict Dissipativity (FSDSD)) MDP (1) with
functional stage cost L and discount factor γ is Functional Strong Discounted Strict Dissipa-
tive (FSDSD), If there exists a bounded “storage" functional λ such that λ[ρ?] = 0, satisfying:

L[ρ,π]− γλ[Tπρ] + λ[ρ] ≥ α(D(ρ‖ρ?)) , (9a)
L[ρ,π]− λ[Tπρ] + λ[ρ] + (γ − 1)V ?[Tπρ] ≥ α(D(ρ‖ρ?)) . (9b)

for some α(·) ∈ K∞1 and ∀ρ ∈ Ξ, ∀π ∈ P , where ρ is the probability measure of state s and
ρ? is the optimal steady measure.

Note that condition (9a) corresponds to the commonly discounted dissipativity condition [10],
but is generalized to a functional space [9]. Condition (9b) has been introduced in [8] in a
non-functional form to show the stability of deterministic nonlinear systems with discounted
cost. For an undiscounted setting with γ → 1, two conditions in (9) coincide, and correspond
to the condition proposed in [6]. For an FSDSD problem, we define the rotated functional
stage cost L̄ : Ξ→ R as follows:

L̄[ρ,π] = L[ρ,π]− γλ[Tπρ] + λ[ρ] . (10)

Then if (9a) holds, we have:

L̄[ρ,π] ≥ α(D(ρ‖ρ?)) . (11)

Indeed, condition (9a) allows us to convert the original general stage cost L to the rotated
stage cost L̄. For any measure ρ, the rotated stage cost functional L̄ is lower bounded by a K∞
function applied on the selected dissimilarity measure, even if the original stage cost L has
not such property. The next theorem relates the optimal value functional and optimal policy
resulting from L to the optimal value functional and optimal policy resulting from L̄.

Theorem 1. If MDP (1) is FSDSD, then the following discounted OCP:

V̄ ?[ρ0] := min
π

∞∑

k=0

γkL̄[ρπk ,π] , (12a)

s.t. ρπk+1 = Tπρπk , ρπ0 = ρ0 , (12b)

yields the same optimal policy π? as (4), ∀ρ0 ∈ Ξ0, and:

V̄ ?[ρ0] = V ?[ρ0] + λ[ρ0] . (13)
1A function α : R≥0 → R≥0 is said to belong to class K∞, if α is continuous, strictly increasing, unbounded

and α(0) = 0.
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Proof. For an FSDSD problem, L̄ exists. Substitution of (10) into the cost of (4) and using a
telescopic sum argument, one observes that:

∞∑

k=0

γkL[ρπk ,π] =

∞∑

k=0

γk
(
L̄[ρπk ,π] + γλ[ρπk+1]− λ[ρπk ]

)
=

− λ[ρ0] + lim
N→∞

γN L̄[ρπN ,π] +
∞∑

k=0

γkL̄[ρπk ,π] = −λ[ρ0] +
∞∑

k=0

γkL̄[ρπk ,π] . (14)

Note that under assumption 1, all terms in (14) remain bounded and limN→∞ γN L̄[ρπN ,π] =
0 . Taking minπ on both sides of (14) results in (13) and the optimal policy π? from (4),
minimizing the right-hand side, minimizes the left-hand side as well. �

Theorem 1 states that for an MDP that satisfies the FSDSD conditions, we can find an
equivalent OCP that yields the same optimal policy and the value functional that is shifted by
λ. In the next, we assume that, for any measure, ρ, the optimal value functional V̄ ?[ρ] is upper
bounded by a K∞ function applied on the selected dissimilarity measure. This will be useful
in showing Lyapunov stability.

Assumption 2. We assume following for some α1(·) ∈ K∞:

V̄ ?[ρ] ≤ α1(D(ρ‖ρ?)), ∀ρ ∈ Ξ0 (15)

The next theorem states that for an FSDSD MDP, V̄ ?, defined in (12), is a Lyapunov functional
in order to prove the D-stability of the closed-loop Markov Chain ξ(s+|s,π?(s)) with respect
to the optimal steady measure ρ?.

Theorem 2. Under assumption 1, if the MDP with transition probability ξ(s+|s,a), stage
cost L and discount factor γ is functional SDSD, then V̄ ?, defined in (12), is a Lyapunov
functional for the closed-loop Markov Chain ξ(s+|s,π?(s)) with optimal policy π?, solution
of (4).

Proof. Condition (15) directly implies the upper bound of (8a). Using (11), we have:

α(D(ρ‖ρ?)) ≤ V̄ ?[ρ] , (16)

which results in the lower bound of (8a). From the Bellman equation for OCP (4), we have:

L[ρπ
?

k ,π?]− V ?[ρπ?

k ] + γV ?[ρπ
?

k+1] = 0 , (17)

Rearranging (9b) and subtracting V ?[ρπ
?

k ] from both sides yields:

V ?[ρπ
?

k+1] + λ[ρπ
?

k+1]− V ?[ρπ?

k ]− λ[ρπ
?

k ] ≤

− α(D(ρπ
?

k ‖ρ?)) + L[ρπ
?

k ,π?]− V ?[ρπ?

k ] + γV ?[ρπ
?

k+1]
(17)
= −α(D(ρπ

?

k ‖ρ?)) , (18)
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where we replace ρ, and Tπρ in (9b) by ρπ
?

k , π? and ρπ
?

k+1, respectively, and we have used
(17) in the last equality. Then from (13) and (18), we have:

V̄ ?[ρπ
?

k+1]− V̄ ?[ρπ?

k ] = V ?[ρπ
?

k+1] + λ[ρπ
?

k+1]− V ?[ρπ?

k ]− λ[ρπ
?

k ] ≤ −α(D(ρπ
?

k ‖ρ?)) ,

which concludes (8b). Then V̄ ? satisfies the conditions of Lemma 1 and the closed-loop
Markov Chain ξ(s+|s,π?(s)) is D-asymptotically stable with respect to the optimal steady
probability measure ρ? and dissimilarity measure D. �

Theorem 2 states the conditions that imply a D-asymptotically stabilizing policy for the
FSDSD MDPs. However, finding the optimal policy under dissipativity conditions of theorem
2 and the storage functional that satisfies (9) are very difficult. In the next section, we address
this problem by using a parameterized finite-horizon OCP scheme.

4 Stabilizing Functional Approximator

Reinforcement Learning (RL) provides powerful tools to solve MDPs in practice. For instance,
Q-learning is based on capturing the optimal action-value function of a given MDP, from which
an optimal policy can be extracted. In this method, a parameterized action-value function
is provided, and Q-learning attempts to find the optimal parameters that result in the best
estimation of the optimal action-value. Deep Neural Network (DNN) is a common choice to
provide a generic parameterization [11]. However, formal analysis of the stability properties of
closed-loop systems is very challenging for DNNs-based function approximators. Therefore,
using a more structured approximator such as the MPC scheme can be beneficial. The idea
of using the function approximator based on a finite-horizon OCP has been introduced and
justified in [12], where an EMPC was used as an approximator for RL algorithms. In fact,
it has been shown that modifying stage cost and terminal cost in a parameterized MPC can
capture the optimal value functions of MDPs even if an inaccurate model is used in the MPC
scheme [12]. Moreover, this approximator has great capability to satisfy system constraints
and safety [13]. Recent research have developed further in using such approximators in the
RL context [14].

This section extends this parameterization to the functional space, where the arguments are on
the measure space underlying the MDP. We use an OCP-based approximator for the optimal
action-value functional to capture valid storage functional and verify the FSDSD conditions.
The next theorem expresses that an undiscounted finite-horizon OCP is able to capture the
optimal value functionals and policy of (4). Note that using the undiscounted OCP will be key
to establishing stabilizing approximator results.

Theorem 3. Under assumption 1, there exists a terminal cost functional T̂ : Ξ → R and a
stage cost functional L̂ : Ξ × P → R such that the following undiscounted finite-horizon
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OCP:

V̂ ?[ρ] = min
π

V̂ π[ρ] := T̂ [ρπN ] +
N−1∑

k=0

L̂[ρπk ,π], (19a)

s.t. ρπk+1 = Tπρπk , ρπ0 = ρ , (19b)

for all ρ ∈ Ξ0, results in the following:

1. π̂? = π?,

2. V̂ ?[ρ] = V ?[ρ],

3. Q̂?[ρ,π] = Q?[ρ,π],

where π̂? is the optimal policy resulting from (19) and:

Q̂?[ρ,π] := L̂[ρ,π] + V̂ ?[Tπρ] . (20)

Proof. We select the terminal cost functional T̂ and the stage cost functional L̂ as follows:

T̂ [ρ] = V ?[ρ] , (21a)

L̂[ρ,π] = Q?[ρ,π]− V ?[Tπρ] . (21b)

Under assumption 1, the terminal cost and stage costs have finite values on Ξ0. Substitution of
(21) into (19) and using telescopic sum, we have:

V̂ π[ρ] = T̂ [ρπN ] +

N−1∑

k=0

L̂[ρπk ,π] = V ?[ρπN ] +
N−1∑

k=0

Q?[ρπk ,π]− V ?[ρπk+1]

= Q?[ρ,π] +
N−1∑

k=1

Q?[ρπk ,π]− V ?[ρπk ] = Q?[ρ,π] +
N−1∑

k=1

A?[ρπk ,π] . (22)

From (7), we know that π? minimizes A?[ρπk ,π] and Q?[ρ,π], hence it minimizes V̂ π[ρ],
i.e.,:

π̂? =arg min
π
V̂ π[ρ] = arg min

π
Q?[ρ,π] +

N−1∑

k=1

A?[ρπk ,π] = π?

and it yields (1). Then substitution of the optimal policy π? in the cost function of (19) reads:

V̂ ?[ρ] =V̂ π
?

[ρ] = Q?[ρ,π?] +
N−1∑

k=1

A?[ρπ
?

k ,π?]︸ ︷︷ ︸
(7)
=0

(6)
= V ?[ρ] , (23)

which results in (2). Moreover, from (20) and (21b) we have:

Q̂?[ρ,π]) = L̂[ρπ,π] + V̂ ?[Tπρ] = Q?[ρ,π]− V ?[Tπρ] + V̂ ?[Tπρ]
(23)
= Q?[ρ,π]

which yields (3). �

F. Functional Stability of Discounted Markov Decision Processes Using . . .

121



Theorem 3 states that an undiscounted finite-horizon OCP can estimate the value functional,
action-value functional, and optimal policy of a discounted infinite horizon OCP. Then this
allows us to use a function approximator based on the undiscounted finite-horizon OCP
for the discounted MDP. Similar results can be found in [15] for value functions of classic
MDPs. More specifically, let us consider the following finite-horizon undiscounted OCP as an
approximator for the value functional, parameterized by θ:

Vθ[ρ0] = min
π
− λθ[ρ0] + Tθ[ρπN ] +

N−1∑

k=0

Lθ[ρπk ,π] (24a)

s.t. ρπk+1 = Tπρπk , ρπ0 = ρ0 , (24b)

where Vθ , λθ , Tθ and Lθ are the parameterized value functional, storage functional, terminal
cost and stage cost, respectively. Note that the term −λθ[ρ0] only depends on the first measure
sequence and does not affect on the optimal policy resulting from (24). The term −λθ[ρ0] is
added to the cost to have consistency with the EMPC context [4]. We denote the parameterized
policy by πθ, solution of (24).

The parameterized action-value functional associated with (24) is defined as follows:

Qθ[ρ,π] := −λθ[ρ] + Lθ[ρ,π] + Ψθ[Tπρ] (25)

where

Ψθ[ρ] := λθ[ρ] + Vθ[ρ] (26)

In fact, one can verify that the action-value functional Qθ[ρ,π], value functional Vθ[ρ] and
policy πθ satisfy the fundamental Bellman equations. We next make a standard assumption
on the terminal cost functional Tθ and the parameterization of OCP (24).

Assumption 3. We assume that the terminal cost functional Tθ satisfies Tθ[ρ] ≥ 0, ∀ρ ∈ Ξ.

Assumption 4. We assume that the parameterization of (24) is rich enough to capture the
optimal action-value functional, i.e., there exists an optimal parameters vector θ? such that:

Qθ? [ρ,π] = Q?[ρ,π], (27a)
Vθ? [ρ] = V ?[ρ] , (27b)

Assumption 4 requires a universal approximator in the functional space. Note that this
assumption may not hold in practice. In the next section, we detail Q-learning as a practical
way to approach this assumption asymptotically.

Theorem 4. Under assumptions 1, 3 and 4, λθ? [ρ] satisfies (9), if the following holds for
some α0(·) ∈ K∞:

Lθ[ρ,π] ≥ α0(D(ρ‖ρ?)), ∀ρ ∈ Ξ, ∀π ∈ P (28)

Publications

122



Proof. From assumption 4, we have:

L[ρ,π] + γV ?[Tπρ]
(5a)
= Q?[ρ,π]

(27a)
= Qθ? [ρ,π]

(25)
= −λθ? [ρ] + Lθ? [ρ,π] + Ψθ? [Tπρ]

(26)
= −λθ? [ρ] + Lθ? [ρ,π] + λθ? [Tπρ] + Vθ? [Tπρ]

(28)

≥ −λθ? [ρ] + α0(D(ρ0‖ρ?)) + λθ? [Tπρ] + V ?[Tπρ] . (29)

Rearranging (29) results in (9b). Moreover, from (26) we can write Ψθ as the following OCP:

Ψθ[ρ0] = min
π

Tθ[ρπN ] +
N−1∑

k=0

Lθ[ρπk ,π] (30a)

s.t. ρπk+1 = Tπρπk , ρπ0 = ρ0 , (30b)

Then using (28) and assumption 3, the cost of (30) is non-negative and we have 0 ≤ Ψθ[ρ],
∀ρ. Then:

0 ≤ Ψθ? [Tπρ]
(26)
= λθ? [Tπρ] + Vθ? [Tπρ]

(27b)
= λθ? [Tπρ] + V ?[Tπρ] . (31)

By rearranging and multiplying both sides of (31) by the positive factor 1− γ:

− (1− γ)V ?[Tπρ] ≤ (1− γ)λθ? [Tπρ] , (32)

or equivalently

(γ − 1)V ?[Tπρ]− λθ? [Tπρ] ≤ −γλθ? [Tπρ] . (33)

By adding L[ρ,a] + λθ? [ρ] to both sides of (33), we have:

L[ρ,π] + λθ? [ρ]− γλθ? [Tπρ] ≥L[ρ,π] + λθ? [ρ]− λθ? [Tπρ]+

(γ − 1)V ?[Tπρ]
(9b)

≥ α0(D(ρ‖ρ?)) , (34)

and it results in (9a). �

Assumption 4 is valid only for the FSDSD problems. In fact, for a non-FSDSD problem it
is not possible to find θ? that satisfies conditions of assumption 4. This approach enforces
D-stability conditions for a given MDP, and if it is not stabilizable (non-FSDSD), then
assumption 4 is invalid. Therefore theorem 4 implicitly assumes that the given problem is
FSDSD and states that using undiscounted finite-horizon approximator (24) yields a valid
storage functional that satisfies FSDSD conditions (9). The stage cost condition (28) can be
satisfied using constrained steps in the learning algorithm or providing a positive functional
by construction. The details of these methods for deterministic systems can be found in [16].
However, a detailed discussion on functional space is out of our scope. In general, finding
θ? that satisfies the conditions of assumption 4 is very difficult. However, Q-learning is a
practical way to fulfill assumption 4. Q-learning uses a Least-Square (LS) optimization and
approach assumption 4 asymptotically for a large number of data. Next section details this
approach.
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5 Practical Implementation

In this section, we focus on the classic MDPs with stage cost in the form of (3) and a given
deterministic initial state, i.e., ρ0 = δs0(·), where δs0(·) is the Dirac measure centered on the
fixed point s0. This assumption is appropriate for fully observable MDPs since the current
state is deterministic and available. We ought to stress here that we are still using functional
stage cost functional as an important concept in the current work. Partially Observable MDPs
(POMDPs) are the class of MDPs that the current state is estimated based on historical data of
the system. Recently, Moving Horizon Estimation has been used in order to tackle POMDPs
in combination with RL and MPC [17]. Note that all the results in the previous sections are
valid when the current state distribution is a Dirac measure. Using ρ0 = δs0(·), (4) reads:

v?(s0) :=V ?[δs0(·)] = min
π

∞∑

k=0

γkEs∼ρπk [`(s,π(s))]

s.t. ρπk+1 = Tπρπk , ρ0 = δs0(·) (35)

where v? : X → R is the classic optimal value function. The classic Bellman equation reads:

v?(s0) = min
π
`(s0,π(s0)) + γEs1∼ρπ1 [v?(s1)] (36)

where ρπ1 = ξ(·|s0,π(s0)). Moreover, from the Bellman equation associate to (35), we have:

v?(s0) = min
π
`(s0,π(s0)) + γV ?[ρπ1 ] (37)

Comparing (36) and (37), we have the following relation between the classic optimal value
function v?(s) and the optimal value functional V ?[ρ]:

V ?[ρπ1 ] = Es1∼ρπ1 [v?(s1)] (38)

The classic optimal action-value function q? : X × U → R can be defined as follows:

q?(s,π(s)) := `(s,π(s)) + γEs+∼ρ1
[
v?(s+)

]
(39)

where ρ1 = ξ(·|s,π(s)). Substituting ρ(·) = δs(·) in (5a), we have:

Q?[δs(·),π] = `(s,π(s)) + γV ?[ξ(·|s,π(s))] (40)
(38)
= `(s,π(s)) + γEs+∼ξ(·|s,π(s))

[
v?(s+)

] (39)
= q?(s,π(s))

This equation shows that the optimal action-value function of a classic MDPs q?(s,π(s)) can
be seen as a function action-value function Q?[ρ,π] where the argument of measure ρ is a
Dirac measure δs(·). Similarly, for the parametric action-value functional one can show that:

Qθ? [δs(·),π] = qθ(s,π(s)); (41)

where qθ(s,π(s)) is a classic parameterized action-value function. Moreover, we denote the
parameterized value function by vθ. For ρ0 = δs(·), assumption 4 reads:

Qθ? [δs(·),π] = Q?[δs(·),π] (42)
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Then using (40) and (41), (42) reads:

qθ?(s,π(s)) = q?(s,π(s)) (43)

Fortunately, condition (43) is a well-known problem in RL context, especially in the value-
based algorithms. Q-learning is a common method to approach (43) in practice. More
specifically, Q-learning uses the following LS optimization problem:

min
θ

E
[(
qθ(s,π(s))− q?(s,π(s))

)2]
, (44)

In fact, LS (44) tries to find the optimal parameters vector θ? that has the best approximation
of the exact optimal action-value function q?. A richer parameterization and a larger number
of data increase the accuracy of the method.

6 Conclusion

This paper provided a framework to analyze the functional stability of the closed-loop Markov
Chains under the optimal policy resulting from minimizing the expected value of the discounted
sum of stage costs for the associated MDPs. We used the dissipativity theory of EMPC in order
to characterize the stability properties of discounted MDPs that require a storage functional
satisfying FSDSD conditions. We showed that using a function approximator based on a finite-
horizon OCP allows us to obtain valid storage functional under some conditions. We focused
on the Dirac measure to use the theorems in practice and addressed the use of Q-learning as
a powerful RL technique to update the parameters. Considering an inaccurate model in the
function approximator and providing more theoretical tools for learning and/or computing of
the storage functional in a numerical example can be the direction of future works.
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Q-Learning of the Storage Function in Economic
Nonlinear Model Predictive Control
Arash Bahari Kordabad1 and Sebastien Gros1
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nology (NTNU), Trondheim, Norway.

Abstract: The closed-loop stability of an optimal policy provided by an Economic
Nonlinear Model Predictive Control (ENMPC) scheme requires the existence of a
storage function satisfying dissipativity conditions. Unfortunately, finding such a
storage function is difficult in general. In contrast, tracking NMPC scheme uses a
stage cost that is lower-bounded by a class-K∞ function and the closed-loop stability
is fairly straightforward to establish. Under the dissipativity conditions, ENMPC has
an equivalent tracking MPC that delivers the same optimal policy. In this paper, we
use this idea and parameterize the stage cost and terminal cost of a tracking MPC with
an additional parameterized storage function. We show that, if the parameterization
of the tracking MPC scheme is rich enough to capture the exact optimal action-
value function of the ENMPC scheme, then the parameterized storage function for
the optimal parameters satisfies the dissipativity conditions for both discounted and
undiscounted ENMPC schemes. In fact, we show that these conditions are met for
dissipative problems. We propose to use Q-learning as a practical way of adjusting
the parameters of the tracking MPC. Different numerical examples are provided to
illustrate the efficiency of the proposed method, including LQR, non-dissipative, non-
polynomial and a nonlinear chemical case studies. For instance, in the provided
non-polynomial case study, the learning method can improve the storage function
estimation by about 60% and 99.5% after 10 and 50 learning steps, respectively,
compared with the Sum-of-Square method.

Keywords: Economic Nonlinear Model Predictive Control, Reinforcement Learning,
Q-learning, Dissipativity, Storage Function

1 Introduction

Tracking Nonlinear Model Predictive Control (NMPC) refers to NMPC schemes that
are formulated with a cost function penalizing the deviations of the current state and
input from a desired steady-state reference [1]. More formally, the stage cost of a
tracking NMPC scheme is lower-bounded by a class-K∞ function, usually selected
as convex, often quadratic. In contrast, the cost function used in Economic NMPC
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(ENMPC) does not satisfy such requirement [2–5]. The cost function used in ENMPC
is typically an economic cost, often corresponding to the energy, the time, or the
financial cost of running a system [6]. Thus an ENMPC employs a cost function that
is not necessarily lower-bounded by a class-K∞ function with respect to any setpoint.

The stability of undiscounted tracking MPC schemes is fairly straightforward to es-
tablish [7], as the optimal value function can typically be used as a Lyapunov function
for the closed-loop system. Indeed, under mild controllability assumptions and ad-
ditional conditions on the terminal cost and constraints used in the MPC scheme,
the system is asymptotically stable in closed-loop with a tracking MPC scheme [8].
However, these properties do not necessarily hold when an economic stage cost is
used as an objective function [9] and an optimal economic policy may not lead to the
closed-loop stability of the system with respect to the optimal steady-state point [3,
10].

In [11], a Lyapunov function was proposed to establish asymptotic stability of the
closed-loop nonlinear systems satisfying a strong duality assumption for ENMPC.
Then a generalization of this result has been proposed to address generic systems, for
which stability requires that dissipation inequality is satisfied [3]. Recently, a stable
Sontag controller and corresponding region have been designed to ensure stability
and feasibility of EMPC in [12] for the boiler-turbine system. For a given ENMPC,
if the problem is dissipative, then there exists a corresponding tracking MPC that
yields the same policy as the ENMPC scheme. This observation allows one to use the
well-established stability conditions on the equivalent tracking MPC to discuss the
stability of the original ENMPC scheme and form that equivalent tracking controller.
Dissipativity is then a fundamental concept in ENMPC to argue about the closed-loop
stability of the resulting scheme [13]. Dissipativity was first discussed in [14, 15]. It
is shown in [16] that strict dissipativity with the addition of a suitable controllability
assumption yields the turnpike property in optimal control [17].

In order to establish dissipativity, the existence of a storage function satisfying the
dissipation inequality is required [18]. Finding the storage function for a given prob-
lem can be very demanding for nonlinear dynamics and non-quadratic stage costs [19].
Linear Matrix Inequality (LMI) techniques are used in [20] to compute the storage
function for linear systems with a quadratic stage cost. A similar method is used
in [21] to verify the dissipativity properties based on noisy data for linear systems.
Furthermore, the Sum-of-Squares (SOS) method is used in [19] for polynomials dy-
namics and stage cost. In [22], conditions have been provided to establish the local
existence of the storage function, based on solving a Semi-Definite Program (SDP).

Recently, there has been an increasing interest in using data from the system trajec-
tories to verify dissipativity. This approach has been investigated for linear systems
[23] and certain classes of nonlinear systems [24]. Some conditions in [25] have been
provided to establish the dissipativity based on observed trajectories for linear sys-
tems. Our contribution is to use Reinforcement Learning (RL) techniques to capture
a valid storage function for general nonlinear systems.
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RL offers powerful tools to find the optimal policy and associated optimal value func-
tions that minimize the expected value of the discounted infinite-horizon sum of a
stage cost [26, 27]. RL uses a parameterized function approximator of the optimal
policy or optimal action-value function of a problem, and provides data-driven tech-
niques to find the optimal function parameters. Recent research have focused on
MPC-based approximation for RL [28–30]. A parameterized MPC scheme can be
used as a function approximator for RL, providing a formal framework to analyze the
stability of the closed-loop system. In [31] it has been shown that adjusting the MPC
model, cost and constraints allows the MPC to capture the optimal policy for the
system even if using an inaccurate model in the MPC scheme.

In this paper, we leverage on RL technique to compute a data-based storage function.
In order to capture the storage function and verify dissipativity, we first parameterize
the storage function, stage cost, and terminal cost in an undiscounted tracking MPC
scheme. We then use the parameterized tracking MPC in order to capture the opti-
mal action-value function resulting from a specified infinite-horizon sum of economic
stage costs. The undiscounted tracking MPC then provides a stabilizing policy for
the closed-loop system regardless of whether the original ENMPC scheme is dissipa-
tive or not, and discounted or not. We show that, for dissipative problems, if the
parameterization is rich enough, then the resulting storage function satisfies the dissi-
pativity conditions for the parameters that capture the optimal action-value function
accurately. We use an undiscounted tracking MPC-scheme function approximator for
both the discounted and undiscounted ENMPC settings and show that the proposed
method works in both cases.

We then propose to use Q-learning to adjust the parameters of the tracking MPC
scheme. For a non-dissipative problem, Q-learning converges to sub-optimal param-
eters that can not capture the optimal action-value function of the original ENMPC
scheme if the tracking MPC scheme is used as a function approximator of the action-
value function. As a result, the learned storage function does not satisfy the dissipa-
tion inequality. Then we can characterize dissipative or non-dissipative problems by
whether the parameterized tracking MPC scheme provides an action-value function
that captures the optimal action-value function resulting from the ENMPC scheme
or not. Using different examples, we show that this method can be used for general
problems, i.e. nonlinear dynamics and non-quadratic stage cost, to deliver the storage
function with high accuracy.

Contributions. The approach, discussed in this paper was first suggested in [32]
but was limited to the undiscounted setting. In this paper, we aim at extending this
early work with the following additional novelties:

• We show that an undiscounted MPC scheme can be used as a function approxi-
mator of the optimal action-value function for the discounted setting regardless
of the discount factor (Theorem 3).

• The undiscounted tracking MPC is able to deliver a valid storage function in
both the discounted and the undiscounted setting (Theorem 4).
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• A detailed explanation of the stage cost parameterization and practical imple-
mentation (Section 5.2) was missing in [32]. The current work formally provides
a universal function approximator for the tracking stage cost parameterization
(Theorem 5).

• The case studies were limited in [32]. Therefore we present a wider range of
case studies (discounted setting of example 6.3 and example 6.4).

Outline. The paper is structured as follows. Section 2 recalls the undiscounted
ENMPC formulation and the standard dissipativity conditions, and details how one
can find an equivalent tracking MPC that yields the same optimal policy and value
function. Section 3 details the parameterization of the tracking MPC scheme in order
to obtain a parameterized action-value function. We then show that if the tracking
MPC-based function approximator can capture the optimal action-value function,
then under some conditions, it yields a valid storage function. Section 4 provides
the dissipativity conditions for the discounted ENMPC formulation and extends the
theorem of undiscounted setting to the discounted ENMPC scheme. Section 5 de-
tails the practical implementation of the proposed method. We introduce possible
parameterizations of the stage cost and the use of Q-learning to approach the op-
timal parameters of the tracking MPC scheme that have the best approximation of
the optimal action-value function of the ENMPC scheme. Moreover, we introduce
constrained learning steps in order to ensure that the stage cost of the tracking MPC
is lower-bounded by a K∞ function. Section 6 illustrates the simulation results for
the different case studies. Section 7 delivers a discussion and 8 provides a conclusion.

Notation. a is a scalar while a is a vector. We denote the set of non-negative real
numbers, non-negative integers, and natural numbers by R≥0, I≥0 and N, respectively,
while Ii:j refers to the set {i, i+1, . . . , j}. A function α : R≥0 → R≥0 is said to belong
to class K∞, if α is continuous, strictly increasing, unbounded and α(0) = 0. The
operator ∥ · ∥ indicates an Euclidean norm and ∥x∥Q =

√
x⊤Qx is the weighted

Euclidean norm of vector x with respect to the positive definite matrix Q, while
∥ · ∥p is the Lp function norm. For n vectors x1, . . . ,xn we define col(x1, . . . ,xn) :=
[x⊤

1 , . . . ,x
⊤
n ]

⊤.

2 Economic Nonlinear MPC

In this section, we formulate the concept of Economic Nonlinear Model Predictive
Control (ENMPC) and the associated dissipativity condition. Consider the following
discrete-time, constrained nonlinear dynamical system:

sk+1 = f (sk,ak) , h (sk,ak) ≤ 0, (1)

where k ∈ I≥0 is the physical time index, sk ∈ X ⊂ Rn is the state, ak ∈ U ⊂ Rm is the
input, and X and U are state and input set, respectively. Vector field f : Rn+m → Rn
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expresses the state transition. Function h : Rn+m → Rd is a vector of mixed input-
state constraints. The set of feasible state-input pairs is defined as follows:

Z := {(s, a) ∈ X× U | f (s, a) ∈ X, h (s, a) ≤ 0} (2)

In the ENMPC context, the selected stage cost, denoted by L : X×U→ R, typically
expresses the economic cost of operating the system (1) and is not necessarily lower-
bounded by a K∞ function. Note that X is the state set without system constraints,
e.g., the work area of a robot, while h is the system constraint, e.g, obstacles. Obvi-
ously, one could take into account h to redefine state set X, but for the sake of clarity,
we distinguish these two in this paper. The following standard assumption is essential
in the ENMPC context and will be used in the rest of the paper.

Assumption 1 The set Z is non-empty and compact and the cost L(·) and function
f(·) are continuous on Z.

An important consequence of this assumption is the boundedness of the stage cost
L on the compact set Z. An optimal steady-state pair (se,ae) with respect to the
economic stage cost L is defined as follows:

(se,ae) ∈ argmin
(s,a)∈Z

L(s, a) (3a)

s.t. s = f(s, a) (3b)

Note that under Assumption 1, an optimal steady-state pair (se,ae) exists [8]. We
then define the shifted stage cost ℓ, as follows:

ℓ(s, a) := L(s, a)− L(se,ae). (4)

One can readily observe that ℓ(se,ae) = 0. In the following, we define the concept of
dissipativity, which is crucial in the ENMPC context.

Definition 1 System (1) is strictly dissipative with respect to supply rate ℓ if there
exists a continuous storage function λ : X→ R satisfying:

λ(f(s, a))− λ(s) ≤− ρ(∥s− se∥) + ℓ(s, a) (5)

for all (s, a) ∈ Z and some ρ(·) ∈ K∞.

Sometimes we drop the word strict for the sake of simplicity. One can interpret the
storage function λ as a generalized energy that is stored in the system. Then the
property of dissipativity means that along any trajectory of the system, energy is
dissipated, i.e., the difference in stored energy is not larger than the supplied energy
to the system from the outside. Note that, adding a constant c in the storage function
in the form of λ + c does not invalidate (5). Hence, we can assume that λ(se) = 0
without loss of generality. The strict dissipativity is a critical concept in the ENMPC
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context, and the strict dissipativity with respect to supply rate ℓ yields the stability of
the closed-loop system in the ENMPC scheme (see e.g., [2]). If the system is strictly
dissipative with respect to supply rate ℓ, the rotated stage cost ℓ̄ is defined as follows:

ℓ̄(s, a) = ℓ(s, a) + λ(s)− λ(f(s, a)) (6)

From (5) and (6), we have the following property for the rotated stage cost ℓ̄:

ℓ̄(se,ae) = 0, ρ(∥s− se∥) ≤ ℓ̄(s, a) , (7)

Then the rotated stage cost ℓ̄ can be seen as a tracking stage cost with respect to the
optimal steady-state point (se,ae).

A deterministic policy π : X → U maps the state space to the input space, and
determines how to choose input ak at each state sk. Let us consider the following
infinite-horizon undiscounted optimal control problem:

V ⋆(s) = min
π

∞∑

j=0

ℓ(xj ,π(xj)) (8a)

s.t. ∀j ∈ I≥0 xj+1 = f (xj ,π(xj)) (8b)
(xj ,π(xj)) ∈ Z, x0 = s, (8c)

where V ⋆ : X → R is the optimal value function and sequence (xj)
∞
j=1 is the state

trajectory under policy π starting from an arbitrary (possibly random) state x0 = s.
We denote the optimal policy solution of (8) by π⋆.

The optimal action-value function Q⋆ : X × U → R associated to (8) is defined as
follows:

Q⋆(s, a) := ℓ(s, a) + V ⋆(f(s, a)) (9)

This equation will play a key role in this paper. The Bellman equations read as
follows:

V ⋆(s) = min
a

Q⋆(s, a), π⋆(s) ∈ argmin
a

Q⋆(s, a) (10)

Under Assumption 1, the stage cost ℓ and storage function λ will remain bounded
over the set Z. Then, using a telescoping sum, the cost (8a) can be expressed based
on the rotated stage cost ℓ̄ as follows:

∞∑

k=0

ℓ(xk,π(xk)) =

∞∑

k=0

ℓ̄(xk,π(xk))− λ(xk) + λ(xk+1)

= −λ(x0) + λ(x∞) +
∞∑

k=0

ℓ̄(xk,π(xk)) (11)
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Then using (11), (8) can be written as follows:

V ⋆(s) = min
π

− λ(s) + λ(x∞) +

∞∑

k=0

ℓ̄(xk,π(xk)), s.t. (8b), (8c) (12)

where x∞ := limk→∞ xk. Since the term −λ(s) is independent of the policy π, it does
not modify the optimal policy solution of (8c). For a strictly dissipative problem, an
infinite-horizon ENMPC (8) has the same optimal policy as a corresponding tracking
MPC (12) scheme using the rotated stage cost ℓ̄. This rotated cost is zero at the opti-
mal steady-state and lower-bounded by a K∞ function (see (7)). Thus, the dynamics
in closed-loop with the optimal ENMPC policy will be stable for a strictly dissipa-
tive problem [7]. Therefore the closed-loop state trajectories converge to the optimal
steady-state, i.e. limk→∞ xk = se. From the continuity of the storage function, it
results in limk→∞ λ(xk) = λ(se) = 0. In fact, tracking NMPC (12) delivers the same
input/state solution and same policy as ENMPC (8) and the closed-loop behaviour
of the system under the optimal policy resulting from (8) and (12) are equivalent.

In this paper, we use the above idea stating that under the dissipativity condition,
we can find an equivalent tracking MPC for a given ENMPC scheme. Indeed, we
are interested in doing the above procedure in reverse. We provide a parameterized
tracking MPC scheme and claim that if this problem can capture the optimal action-
value of the ENMPC scheme, then the problem is dissipative. Moreover, the resulting
storage function satisfies the dissipativity inequality. We will detail this idea in the
next section.

3 Tracking MPC-based function approximator

In general, verifying that the given problem is dissipative or not and finding the
storage function λ(s) that satisfies (5) is not trivial. In this section, we parameterize
the storage function as well as the stage cost and terminal cost of a tracking MPC
scheme. We use the parameterized tracking MPC scheme as a function approximator
for the optimal action-value function (9). Then we will show that if the resulting
action-value function from the tracking MPC-scheme is able to capture the optimal
action-value function of the ENMPC-scheme (9) for some parameters, then the storage
function will satisfy the strict dissipativity inequality.

Let us consider the following finite-horizon MPC scheme parameterized by θ:

Vθ(s) =min
u
−λθ(s) + Tθ(xN ) +

N−1∑

j=0

ℓ̂θ(xj ,uj) (13a)

s.t. ∀j ∈ I0:N−1 : xj+1 = f (xj ,uj) (13b)
(xj ,uj) ∈ Z, x0 = s, xN ∈ Xf (13c)
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where λθ is the approximated storage function, ℓ̂θ is the parameterized stage cost,
Tθ is the parameterized terminal cost and θ ∈ Θ ⊆ Rnθ is the parameters vector.
Function Vθ is the parameterized value function, N is the horizon length, Xf ⊆ X
is the terminal set, containing se, and (xj)

N
j=0 and u := col(u0, . . . ,uN−1) are the

predicted state and input profile, respectively. We assume that λθ, ℓ̂θ and Tθ are
continuous functions and Xf is a control invariant set. Moreover, we assume that the
MPC scheme (13) is a tracking MPC, i.e., the stage cost ℓ̂θ is lower-bounded by a
K∞ function for all θ ∈ Θ. More specifically, we will make the following assumption
held by construction.

Assumption 2 The stage cost ℓ̂θ satisfies:

ℓ̂θ(se,ae) = 0, α1(∥s− se∥) ≤ ℓ̂θ(s, a) , (14)

for all (s, a) ∈ Z, all θ ∈ Θ and some α1 ∈ K∞.

We will further discuss in Section 5.2 how to satisfy Assumption 2 in the learning
context.

For the MPC scheme (13), the parameterized deterministic policy πθ can be obtained
as follows:

πθ(s) = u⋆
0(s, θ) , (15)

where u⋆
0 is the optimal solution of (13) corresponding to the first input u0. We

introduce next the parameterized action-value function. MPC-based action-value
function Qθ associated to (13) can be defined as follows (see [31]):

Qθ(s, a) :=min
u

(13a) (16a)

s.t. (13b), (13c) (16b)
u0 = a (16c)

Constraint (16c) is added to the MPC scheme (13) in order to enforce the first input
u0 to have a specific value a. One can verify that the value function Vθ in (13),
the action-value function Qθ in (16) and the policy πθ in (15) satisfy the following
fundamental Bellman equations:

Vθ(s) = min
a

Qθ(s, a), πθ(s) ∈ argmin
a

Qθ(s, a) (17)

In the following, we make a basic stability assumption on the parameterized terminal
cost Tθ and the terminal set Xf .

Assumption 3 For all s ∈ Xf , there exists an input a ∈ U, satisfying (s, a) ∈ Z,
f(s, a) ∈ Xf , and:

Tθ(f(s, a))− Tθ(s) ≤ −ℓ̂θ(s, a), ∀θ ∈ Θ (18)

Moreover, for all θ ∈ Θ, Tθ(se) = 0 and Tθ(s) > 0 for all s ∈ Xf \ {se}.
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Assumption 3 is a basic assumption in the MPC context, which allows one to discuss
the closed-loop stability of the resulting optimal policy when a finite horizon is used.
To satisfy (18) in the learning context, one needs to provide a generic non-negative
function approximator for the terminal cost Tθ. This assumption can be relaxed
completely by choosing the terminal set Xf = {se}. Such a terminal set, however,
reduces the feasibility domain of the solution in (13) [33]. Moreover, in [34] it has been
shown that for sufficiently large horizon N , the tracking MPC results in a stabilizing
policy for the closed-loop system without the terminal cost Tθ and the terminal set
Xf .

The following two functions will be used in the rest of the paper. We define ΨN
θ :

X→ R and ΛN
θ : X× U→ R as:

ΨN
θ (s) :=min

u
Tθ(xN ) +

N−1∑

k=0

ℓ̂θ(xk,uk)

s.t. (13b), (13c) (19a)

ΛN
θ (s, a) :=ℓ̂θ(s, a) + ΨN−1

θ (f(s, a)) (19b)

From (13) and (16), one can observe that:

Vθ(s) = −λθ(s) + ΨN
θ (s) (20a)

Qθ(s) = −λθ(s) + ΛN
θ (s, a) (20b)

The following Lemma on the monotonicity property of ΨN
θ with respect to the horizon

N will be useful in the next theorem.

Lemma 1 Under Assumptions 1-3, the following inequality holds:

ΨN+1
θ (s) ≤ ΨN

θ (s), ∀N ∈ I≥0 , ∀θ ∈ Θ, ∀s ∈ X. (21)

Proof: Let us assume that u⋆
0, x⋆

0 = s, . . ., u⋆
N−1, x⋆

N−1, x⋆
N is the solution of

(19a), then the sequence u⋆
0, x⋆

0 = s, . . ., u⋆
N−1, x

⋆
N−1, x

⋆
N , uN , xN+1 is a feasible

candidate solution for ΨN+1
θ , where uN is a control input such that f(x⋆

N ,uN ) ∈ Xf

and (x⋆
N ,uN ) ∈ Z and xN+1 := f(x⋆

N ,uN ). Note that such an input uN exists under
Assumption 3 because x⋆

N ∈ Xf . Then we have:

ΨN+1
θ (s) ≤ Tθ(xN+1) + ℓ̂θ(x

⋆
N ,uN ) +

N−1∑

k=0

ℓ̂θ(x
⋆
k,u

⋆
k)

= Tθ(xN+1) + ℓ̂θ(x
⋆
N ,uN )− Tθ(x

⋆
N ) + Tθ(x

⋆
N ) +

N−1∑

k=0

ℓ̂θ(x
⋆
k,u

⋆
k)

= ΨN
θ (s) + Tθ(xN+1) + ℓ̂θ(x

⋆
N ,uN )− Tθ(x

⋆
N ) ≤ ΨN

θ (s) (22)
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Note that we used Assumption 3 in the last inequality since uN has been selected
according to Assumption 3. ■

The following theorem provides one of the main results of the paper and states that
if Qθ captures the optimal action-value function Q⋆ for some parameters θ⋆ then the
storage function λθ? satisfies the strict dissipativity inequality with respect to supply
rate ℓ.

Theorem 1 Under Assumptions 1-3, if there exists a θ⋆ ∈ Θ such that:

Qθ?(s, a) = Q⋆(s, a) , ∀(s, a) ∈ Z. (23)

Then system (1) is strictly dissipative with respect to supply rate ℓ and storage function
λθ? satisfies strict dissipativity inequality (5).

Proof: If (23) holds, we have:

Vθ?(s) = min
a

Qθ?(s, a) = min
a

Q⋆(s, a) = V ⋆(s) (24)

and:

Q⋆(s, a) = Qθ?(s, a)
(20b)
= −λθ?(s) + ΛN

θ?(s, a)

(19b)
= −λθ?(s) + ℓ̂θ?(s, a) + ΨN−1

θ? (f(s, a)) (25)

Moreover, from (9), (23) and (13), we have:

Q⋆(s, a) = ℓ(s, a) + V ⋆(f(s, a)) = ℓ(s, a) + Vθ?(f(s, a))

= ℓ(s, a)− λθ?(f(s, a)) + ΨN
θ?(f(s, a))

≤ ℓ(s, a)− λθ?(f(s, a)) + ΨN−1
θ? (f(s, a)) (26)

where we used (21) in the last inequality. From (25) and (26), we have:

λθ?(f(s, a))− λθ?(s) ≤ −ℓ̂θ?(s, a) + ℓ(s, a) ≤ −α1(∥s− se∥) + ℓ(s, a) (27)

for all (s, a) ∈ Z. Then system (1) is strictly dissipative with respect to supply rate
ℓ. ■

Theorem 1 requires a universal function approximator for the continuous action-value
function Qθ? in order to satisfy (23). In the tracking MPC-based context, we can
achieve a universal action-value approximator by choosing a generic function for the
storage function, the terminal cost, and the stage cost satisfying Assumptions 1-3.
In this paper, we will use RL techniques to find the optimal parameters θ⋆ fulfilling
(23). In Section 5.1, we will detail Q-learning as a classic tool to attain the optimal
parameters θ⋆ that best estimate the optimal action-value function Q⋆. In practice,
we may not be able to provide such an approximator for the MPC scheme. In this
case, the learning algorithm will find the optimal parameters that have the best
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approximation of the optimal action-value function Q⋆. We will detail this case in
Section 5.

Condition (23) is valid only for strictly dissipative problems. However, tracking MPC
(13) always results in a stabilizing policy, regardless of whether the problem is strictly
dissipative or strictly non-dissipative. The next proposition states the stability of the
closed-loop system under policy (15).

Proposition 1 Under Assumptions 1-3, the closed-loop system sk+1 = f(sk,πθ(sk)),
with policy πθ, resulting from tracking MPC scheme (13), is asymptotically stable for
all θ ∈ Θ, with respect to the optimal steady state se.

Proof: This is a standard result given in, e.g., [7]. ■

As a consequence of Proposition 1, under Assumptions 1-3, parameterized policy πθ

resulting from tracking MPC scheme (13) is stabilizing in closed-loop with system
(1) for both dissipative and non-dissipative problems. However, for a non-dissipative
problem, there are no parameters θ⋆ ∈ Θ that satisfy (23). The next corollary
formalizes this statement.

Corollary 1 For a strictly non-dissipative problem, there exists no θ⋆ ∈ Θ such that
(23) holds.

Proof: Let us assume that there exists a θ⋆ ∈ Θ such that (23) holds. Then from
Theorem 1, system 1 is strictly dissipative with respect to supply rate ℓ. By contra-
diction, we conclude that there exists no such θ⋆ ∈ Θ for a strictly non-dissipative
problem. ■

Note that, for non-dissipative problems, the best estimation of the optimal action-
value function of the ENMPC will have an error. Therefore, this will be the key to
characterizing non-dissipative problems.

In Section 5, we will introduce Q-learning as a method to find the best approximation
of the exact optimal action-value function in the Least-Square (LS) sense. In the next
section, we will detail the discounted setting of the ENMPC scheme.

4 Discounted ENMPC

Discounted optimal control has attracted wide attention in e.g. economic applica-
tion [35], and social science [36]. In the discounted setting, the stage costs are weighted
by a factor γk, where γ ∈ (0, 1) is labelled discount factor, and k is the physical time
index in discrete-time systems. A discounted infinite-horizon objective function is
often the preferred setting in both Dynamic Programming (DP) and RL to formulate
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well-posed Markov Decision Processes (MDPs). The contraction property of the DP
operator has been shown in [37] for discounted optimal control, while it needs more
requirements for the undiscounted setting.

Let us consider the discounted optimal policy π⋆
γ as the solution of the following

discounted infinite-horizon problem:

V ⋆
γ (s) = min

π

∞∑

j=0

γjℓ(xj ,π(xj)) (28a)

s.t. ∀j ∈ I≥0 xj+1 = f (xj ,π(xj)) (28b)
(xj ,π(xj)) ∈ Z, x0 = s , (28c)

where V ⋆
γ is the discounted optimal value function. Note that under Assumption (1)

the stage cost is bounded on the compact set Z and a discounted sum of bounded
stage costs results in a bounded value function.

The dissipativity theory for discounted formulations is more involved than for the
undiscounted setting. In the former case, the discount factor γ has a central role to
establish the closed-loop stability of the policy. It is shown in [38] that, unlike the
undiscounted setting, discounted strictly dissipativity with respect to supply rate ℓ
does not necessarily yield the stability of the closed-loop system under the optimal
policy π⋆

γ . It was shown that under mild assumptions on the value function, the
controllability of the system, and the detectability with respect to the stage cost,
there exists a γ⋆ < 1 such that (1) is practically asymptotically stable for any γ ∈
(γ⋆, 1]. Asymptotic stability requires an additional condition to the discounted strict
dissipativity conditions. Recently the dissipativity condition has been extended to the
discounted setting [39]. The resulting conditions on the tuple (f , ℓ, γ) are called Strong
Discounted Strict Dissipativity (SDSD). The SDSD conditions guarantee asymptotic
stability of the closed-loop dynamics f with the discounted optimal policy π⋆

γ .

In this section, we address the discounted optimal control problem and recall the
dissipativity condition in the discounted setting. We will show that a finite-horizon
undiscounted MPC scheme is still able to capture the optimal policy and optimal value
functions of the discounted setting. Then we will show that the storage function
resulting from the undiscounted tracking MPC parameterization (13) satisfies the
SDSD conditions if the parameterized action-value function based on the tracking
MPC (16) captures the optimal action-value function resulting from the discounted
ENMPC-scheme.

For the discounted setting (28), the action-value function Q⋆
γ is defined as follows:

Q⋆
γ(s, a) = ℓ(s, a) + γV ⋆

γ (f(s, a)) (29)

Then the Bellman equations read as:

V ⋆
γ (s) = min

π
Q⋆

γ(s,π(s)) (30a)

π⋆
γ(s) ∈ argmin

π
Q⋆

γ(s,π(s)) (30b)
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We next define the discounted dissipativity analogous to definition 1 (see e.g., [40]).

Definition 2 System (1) is discounted strictly dissipative with respect to supply rate
ℓ if there exists a continuous storage function λ : X→ R satisfying:

γλ(f(s, a))− λ(s) ≤− ρ(∥s− se∥) + ℓ(s, a) (31)

for the discount factor γ ∈ (0, 1), all (s, a) ∈ Z and some ρ(·) ∈ K∞.

We next recall Theorem 2 from [39] stating the SDSD conditions that result in asymp-
totic stability of the closed-loop system under the optimal policy π⋆

γ , resulting from
the discounted setting.

Theorem 2 The closed-loop system (1) with policy π⋆
γ is asymptotically stable if:

1. System (1) is discounted strictly dissipative with respect to supply rate ℓ.

2. The storage function satisfies:

ℓ(s, a) + λ(s)− λ(f(s, a)) + (γ − 1)V ⋆
γ (f(s, a)) ≥ ρ(∥s− se∥) (32)

for all (s, a) ∈ Z and for some ρ ∈ K∞.

Proof: See Theorem 2 in [39]. ■

Conditions 1 and 2 in Theorem 2 are called SDSD. In fact, condition (32) is added
to the discounted strictly dissipativity to ensure asymptotic stability. For γ = 1, the
two conditions in Theorem 2 coincide and yield the undiscounted strictly dissipativity
condition (5) with respect to supply rate ℓ.

In the following, we show that the resulting storage function from the tracking MPC-
based parameterization of action-value function (16) is a valid storage function that
satisfies SDSD conditions, even if the optimal action-value function is defined in the
discounted setting. To this end, first, we show that an undiscounted finite-horizon
optimal control problem is able to capture the optimal policy and optimal value
functions of a discounted infinite-horizon problem. I.e., there exists an undiscounted
finite-horizon MPC scheme that can capture the optimal policy and optimal value
functions of a discounted infinite-horizon setting. Next theorem, states this claim
formally.

Theorem 3 There exists a terminal cost T̂ : X→ R and a stage cost L̂ : X×U→ R
such that the following MPC-based value function V̂ N :

V̂ N (s) :=min
u

ĴN (s,u) := T̂ (xN ) +
N−1∑

j=0

L̂(xj ,uj) (33a)

s.t. (13b), (13c) (33b)
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and action-value function Q̂N :

Q̂N (s, a) :=min
u

(33a) (34a)

s.t. (16b), (16c) (34b)

yield the following identities, ∀γ:

1. π̂N (s) = π⋆
γ(s), ∀N > 0

2. V̂ N (s) = V ⋆
γ (s), ∀N ≥ 0

3. Q̂N (s, a) = Q⋆
γ(s, a), ∀N > 0

where π̂(s) = u⋆
0(s) is the solution of (33), associated to the first input.

Proof: First, one can show that the following Bellman equations hold for the undis-
counted MPC:

V̂ N (s) = Q̂N (s, π̂N (s)) = min
a

Q̂N (s, a), (35a)

Q̂N (s, a) = L̂(s, a) + V̂ N−1(f(s, a)) (35b)

We choose the terminal cost T̂ and stage cost L̂ as follows:

T̂ (s) =V ⋆
γ (s) (36a)

L̂(s, a) =ℓ(s, a) + (γ − 1)V ⋆
γ (f(s, a)) = Q⋆

γ(s, a)− V ⋆
γ (f(s, a)) (36b)

For N = 0, we know that:

V̂ 1(s) = T̂ (s) = V ⋆
γ (s) (37)

Then (2) is trivial in this case. Let us consider N > 0. Using a telescopic sum, we
can rewrite the cost of (33) as follows:

ĴN (s,u) = T̂ (xN ) +
N−1∑

j=0

L̂(xj ,uj) = (38)

Q⋆
γ(s,u0) +

N−1∑

j=1

Q⋆
γ(xj ,uj)− V ⋆

γ (xj)

Note that from Assumptions 1, the optimal value function V ⋆
γ and the optimal action-

value function Q⋆
γ are bounded, because the stage cost ℓ is bounded on the compact set

Z and discounted infinite-horizon of bounded functions remains bounded. Therefore,
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there are input sequences (uj)
N−1
j=0 such that all terms in (38) are bounded on Z. From

(30), we have:

0 ≤ Q⋆
γ(xj ,uj)− V ⋆

γ (xj) , ∀j = 1, . . . , N − 1 (39a)

V ⋆
γ (s) ≤ Q⋆

γ(s,u0) (39b)

for all input sequence u0, . . . ,uN−1. A substitution of (39) into (38) yields:

V ⋆
γ (s) ≤ ĴN (s,u), ∀u (40)

Note that (40) is a tight inequality and the equality holds when:

u⋆ = col(π⋆
γ(x0), . . . ,π

⋆
γ(xN−1)) (41)

because this choice turns all inequalities in (39) into equalities. Indeed (41) is the
optimal solution of (33) and it reads:

V ⋆
γ (s) = min

u
ĴN (s,u)

(33)
= V̂ N (s) (42)

and it concludes (2). Moreover, from (41) we have:

π̂N (s) = u⋆
0(s) = π⋆

γ(s) (43)

it results in (1), and:

Q̂N (s, a) =L̂(s, a) + V̂ N−1(f(s, a)) = Q⋆
γ(s, a)− (44)

V ⋆
γ (f(s, a)) + V̂ N−1(f(s, a))

(42)
= Q⋆

γ(s, a) ,

completes the proof. ■

Note that condition (32) can be seen as a standard (undiscounted) dissipativity con-
dition when the stage cost L̂ in (36b) is used. In fact, the dissipativity condition
of undiscounted MPC-scheme (33) with stage cost (36b) is equal to condition (32).
Then, similar to Section 2, it can be shown that if a problem satisfies SDSD, then
undiscounted MPC (33) can be reformulated as an equivalent tracking MPC with the
same optimal policy and optimal value functions. Therefore, a discounted ENMPC
has an equivalent undiscounted tracking MPC for the problems that satisfy SDSD
conditions.

Theorem 3 allows us to use an undiscounted MPC-scheme (13) and (16) as a function
approximator for the value function V ⋆

γ and action-value function Q⋆
γ , respectively,

independently of the discount factor γ. The next theorem extends theorem 1 to
the undiscounted setting and SDSD conditions. Indeed, using undiscounted tracking
MPC (13) to capture the optimal action-value function Q⋆

γ is key to establishing the
SDSD conditions.
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Theorem 4 Under Assumptions 1-3, if there exists a θ⋆ ∈ Θ such that:

Qθ?(s, a) = Q⋆
γ(s, a), ∀(s, a) ∈ Z, (45)

then the storage function λθ? satisfies the SDSD conditions.

Proof: First, one can observe that:

Vθ?(s) = min
a

Qθ?(s, a) = min
a

Q⋆
γ(s, a) = V ⋆

γ (s) (46)

Then we show that the storage function λθ? satisfies (32). Using (45):

Q⋆
γ(s, a) (47)

= Qθ?(s, a)
(20b)
= −λθ?(s) + ΛN

θ?(s, a)

(19b)
= −λθ?(s) + ℓ̂θ?(s, a) + ΨN−1

θ? (f(s, a))

(21)

≥ −λθ?(s) + ℓ̂θ?(s, a) + ΨN
θ?(f(s, a))

(20a)
= −λθ?(s) + ℓ̂θ?(s, a) + λθ?(f(s, a)) + Vθ?(f(s, a))

= −λθ?(s) + ℓ̂θ?(s, a) + λθ?(f(s, a)) + V ⋆
γ (f(s, a))

then we have:

ℓ(s, a) + γV ⋆
γ (f(s, a))

(29)
= Q⋆

γ(s, a) (48)
(47)

≥ −λθ?(s) + ℓ̂θ?(s, a) + λθ?(f(s, a)) + V ⋆
γ (f(s, a))

(14)

≥ −λθ?(s) + α1(∥s− se∥) + λθ?(f(s, a)) + V ⋆
γ (f(s, a))

By rearranging the terms in (48), we have:

ℓ(s, a) + λθ?(s)− λθ?(f(s, a)) + (γ − 1)V ⋆
γ (f(s, a)) ≥ α1(∥s− se∥) (49)

which results in (32). In order to show the discounted strict dissipation inequality,
we use that Tθ(·) ≥ 0 in Assumption 3. Then Assumption 2 holds, cost function of
ΨN

θ? in (19a) will be non-negative, i.e., ΨN
θ?(·) ≥ 0 and :

0 ≤ ΨN
θ?(f(s, a)) = λθ?(f(s, a)) + Vθ?(f(s, a))

= λθ?(f(s, a)) + V ⋆
γ (f(s, a)) (50)

By rearranging and multiplying both sides by the positive factor 1− γ:

− (1− γ)V ⋆(f(s, a)) ≤ (1− γ)λθ?(f(s, a)) (51)

or equivalently

(γ − 1)V ⋆(f(s, a))− λθ?(f(s, a)) ≤ −γλθ?(f(s, a)) (52)
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By adding ℓ(s, a) + λθ?(s) to the both sides of (52), we have:

ℓ(s, a) + λθ?(s)− γλθ?(f(s, a))
(52)

≥ ℓ(s, a) + λθ?(s)− λθ?(f(s, a))+

(γ − 1)V ⋆
γ (f(s, a))

(49)

≥ α1(∥s− se∥) (53)

which shows the discounted strictly dissipativity with respect to supply rate ℓ. ■

Theorem 4 states that for a discounted optimal control problem, a parameterized
undiscounted tracking MPC-scheme can be used to capture the optimal-action value
function Q⋆

γ , independent of the discount factor γ. Then if the parameterization is
rich enough, for the optimal parameters θ⋆, the storage function λθ? satisfies SDSD.
In fact, the use of undiscounted parameterization (16) is the key to obtaining a storage
function satisfying SDSD conditions.

The next section details the parameterization of stage costs ℓ̂θ to satisfy Assumption
2. We will introduce Q-learning as a practical way to attain the optimal parameters
θ⋆ that satisfy conditions (23) and (45) asymptotically.

5 Practical Implementation

In this section, we first recall Q-learning, and detail how it can be used to find the
optimal parameters θ⋆ that fulfill conditions (23) and (45). Then we present two
methods to ensure that the parameterized stage cost ℓ̂θ is lower-bounded by a K∞
function (see (14)) in the learning context.

5.1 Q-learning

In this section, we detail the use of Q-learning in order to approach conditions (23)
and (45) in practice. Q-learning is a well-known RL method that attempts to capture
optimal action-value function Q⋆

γ (or Q⋆) via tuning the vector of parameters θ of the
function approximator Qθ. For deterministic systems, Q-learning uses the following
Least-Square (LS) problem for the parameters θ (see e.g. [26]) in the discounted
setting (and the undiscounted setting when Q⋆

γ ← Q⋆):

min
θ∈Θ

Es0

[
1

M

M−1∑

k=0

[
Qθ(sk,ak)−Q⋆

γ(sk,ak)
]2
]
, (54)

where M is the episode length at each RL-step and the expectation Es0 is taken over
the initial conditions s0 if they are randomly distributed, or can represent fixed initial
conditions. the input ak is selected according to the corresponding parametric policy,
defined in (30b), with the possible addition of small random exploration. Note that
the random initial condition increases the visited state-input pair domain and results
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in a better approximation in the Q-learning [41]. The solution of θ in (54) yields the
optimal parameters θ⋆ that asymptotically capture the optimal action-value function
Q⋆

γ (or Q⋆) in LS sense. For dissipative problems, the LS fitting in (54) will result in
a zero cost (satisfying (23) and (45)) if the parameterization is rich enough, provided
by universal costs in Qθ, and the number of data M is large enough. Moreover, the
data must cover the state input space sufficiently, e.g., using a random initial state.
However, these conditions may not hold in practice. We will detail the case Qθ? ̸= Q⋆

γ

(or Qθ? ̸= Q⋆) later.

Temporal-Difference (TD) learning is a common way to tackle (54) [26]. More specifi-
cally, a basic TD-based learning step uses the following update rule for the parameters
θ at time instance k in the discounted setting (and the undiscounted setting when
γ = 1):

δk = ℓ(sk,ak) + γVθ(sk+1)−Qθ(sk,ak) (55a)
θk+1 = θk + ξδk∇θQθ(sk,ak) (55b)

where scalar ξ > 0 is the learning step-size, δk is labelled the TD error and the
gradient ∇⊤

θ Qθ(sk,ak) is calculated at θk. This algorithm generates a sequence of
the parameters θk that converge to the parameters that have the best estimation of
the exact optimal action-value function. From (29) and (45), one can easily verify
that θ⋆ in Theorems 1 and 4 is a fixed point of (55), i.e., δk = 0 for θ = θ⋆. The
convergence conditions for the Q-learning method can be found in e.g., [42]. Note
that there are more advanced methods to tackle (54) in the literature, but this aspect
is not the focus of this paper [26].

5.2 Satisfaction of Assumption 2

In this section, we detail how to satisfy Assumption 2 while using the Q-learning
method. In the following, we provide two techniques for the parameterization of
tracking MPC (13) in the Q-learning context in order to ensure that the stage cost
ℓ̂θ remains lower-bounded by a K∞ function.

I. Satisfaction of Assumption 2 by construction

In this section, we propose a generic parameterization of the stage cost ℓ̂θ that satisfies
Assumption 2 by construction for all parameters θ.

A well-known method to provide a universal function approximation is to use Neural
Networks (NNs) and Deep Neural Networks (DNNs). We parameterize the stage cost
ℓ̂θ such that it is zero at steady-state and strictly positive otherwise for all θ ∈ Θ.
More specifically, let us consider the following parameterization:

ℓ̂θ(s, a) = N2
θ (s− se,a− ae) + ϵ∥s− se∥ (56)
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where ϵ is a small enough positive constant and Nθ is an NN-based function with
weights θ such that:

Nθ(0,0) = 0 (57)

holds. In order to satisfy (57) by construction, one can use an activation function
that has zero output for zero inputs without bias neurons in the hidden layers.

The next lemma expresses the universal function approximator theory that we will
use in the next theorem.

Lemma 2 (Universal function approximator) A standard multilayer feedfor-
ward network Nθ(r) can approximate any continuous function g(r) on the compact set
Z arbitrarily accurately with respect to the uniform distance, provided that sufficiently
many hidden units are available, and if a continuous, bounded and non-constant ac-
tivation function is used. More specifically, there exists an NN-based function Nθ(r)
with weights θ such that:

∥∥∥g(r)−Nθ(r)
∥∥∥
p
:=

[∫

Z

∣∣∣g(r)−Nθ(r)
∣∣∣
p

dr

] 1
p

≤ ϵ1 (58)

for all 1 ≤ p <∞ and all ϵ1 > 0, where r is the input of the functions.

Proof: The proof can be found e.g. in Theorem 2 of [43]. ■

The following Lemma will be used in the next theorem.

Lemma 3 For every functions f and g, the following inequality holds for all 1 ≤ p <
∞:

∥f2 − g2∥p ≤ ∥f − g∥22p + 2∥f∥2p∥f − g∥2p (59)

Proof:From the Hölder’s inequality, we have:

∥f2 − g2∥s ≤ ∥f − g∥q∥f + g∥r (60)

for 1/s = 1/q + 1/r. Using (60) for q = r = 2p and s = p, we have:

∥f2 − g2∥p ≤ ∥f − g∥2p∥f + g∥2p (61)

then from the Minkowski inequality, (61) reads as:

∥f − g∥2p∥f + g∥2p = ∥f − g∥2p∥g − f + 2f∥2p (62)

≤ ∥f − g∥2p(∥g − f∥2p + 2∥f∥2p) = ∥f − g∥22p + 2∥f∥2p∥f − g∥2p
Note that we have used that ∥αf∥p = |α|∥f∥p for α ∈ R. ■

Next theorem states that the stage cost ℓ̂θ, defined in (56), provides a universal
approximation of the stage costs that satisfy Assumption 2.
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Theorem 5 1. If (57) holds, the parameterized stage cost ℓ̂θ(s, a) in the form of
(56) satisfies Assumption 2.

2. For every continuous stage costs ℓ̂ : X×U→ R that satisfy the following condi-
tions:

α1(∥s− se∥) ≤ ℓ̂(s, a), 0 = ℓ̂(se,ae), ∀(s, a) ∈ Z, (63)

for some α1 ∈ K∞ with compact set Z and a given (se,ae), there exists an
NN-based function Nθ, parameters θ and ϵ such that:

∥∥∥ℓ̂(s, a)− (N2
θ (s− se,a− ae) + ϵ∥s− se∥)︸ ︷︷ ︸

(56)
= ℓ̂θ(s,a)

∥∥∥
p
≤ ϵ0 (64)

for all ϵ0 > 0, ∀(s, a) ∈ Z and 1 ≤ p ≤ ∞.

Proof: First statement can be easily verified by choosing α1(∥s − se∥) = ϵ∥s − se∥
and using N2

θ (·, ·) ≥ 0 and N2
θ (0,0) = 0. For the second statement, we define function

g(s, a) :=

√
ℓ̂(s, a). Note that this function exists and it is continuous because the

function ℓ̂(s, a) is non-negative and continuous. One can observe that g(se,ae) = 0.
Then using Lemma 2, there exists an NN-based function Nθ that satisfies:

∥∥∥g(s, a)−Nθ(s− se,a− ae)
∥∥∥
2p
≤ ϵ1 (65)

for some parameters θ, all (s, a) ∈ Z and all ϵ1 > 0, where Nθ(0,0) = 0. By
substitution of (56) in (64), we have:

∥∥∥g2(s, a)−N2
θ (s− se,a− ae)− ϵ∥s− se∥

∥∥∥
p
≤ (66)

∥∥∥g2(s, a)−N2
θ (s− se,a− ae)

∥∥∥
p
+ ϵ

∥∥∥∥s− se∥
∥∥∥
p
≤

∥∥∥g(s, a)−Nθ(s− se,a− ae)
∥∥∥
2

2p
+ ϵ

∥∥∥∥s− se∥
∥∥∥
p
+

2
∥∥∥g(s, a)

∥∥∥
2p

∥∥∥g(s, a)−Nθ(s− se,a− ae)
∥∥∥
2p

Note that we have used the Minkowski inequality in the first inequality and Lemma
3 in the second inequality. From Assumption (1), there exist positive constants M0

and L0 such that:
∥∥∥g(s, a)

∥∥∥
2p
≤M0,

∥∥∥∥s− se∥
∥∥∥
p
≤ L0, (67)

for all (s, a) ∈ Z. From (65) and (67), (66) reads:
∥∥∥g(s, a)−Nθ(s− se,a− ae)

∥∥∥
2

2p
+ ϵ

∥∥∥∥s− se∥
∥∥∥
p
+ (68)

2
∥∥∥g(s, a)

∥∥∥
2p

∥∥∥g(s, a)−Nθ(s− se,a− ae)
∥∥∥
2p
≤ ϵ2p + ϵL0 + 2ϵ1M0
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For a given ϵ0, we select ϵ1 and ϵ such that the following inequalities hold:

ϵ1 ≤
√

ϵ0
2

+M2
0 −M0, ϵ ≤ ϵ0

2L0
(69)

Then (69) reads the following inequalities:

ϵ1 +M0 ≤
√

ϵ0
2

+M2
0 ⇒ ϵ21 + 2ϵ1M0 ≤

ϵ0
2

(70a)

ϵL0 ≤
ϵ0
2

(70b)

Summing inequalities (70a) and (70b) yields:

ϵ21 + ϵL0 + 2ϵ1M0 ≤ ϵ0 (71)

Then (66), (68) and (71) result in (64). ■

Note that (56) is one way of representing the functions that are lower-bounded by a
K∞ function. A more generic representation can be written as follows:

ℓ̂θ(s, a) = ρ(|Nθ(s− se,a− ae)|) + ϵ∥s− se∥ (72)

where ρ is an arbitrary class K∞ function.

II. Ensuring Assumption 2 by constrained RL steps

In this method, we assume that the parameterized stage cost ℓ̂θ is polynomial, and in
order to enforce Assumption 2, at each learning step, we use Sum-of-Squares (SOS)
programming. More specifically, for a polynomial parameterized stage cost ℓ̂θ, the
positivity of the stage cost can be represented as the following linear matrix inequality:

0 ≺ R(θk), ∀k ∈ I≥0 (73)

where ℓ̂θ(s, a) has the following form:

ℓ̂θ(s, a) = m⊤(s− se,a− ae)R(θk)m(s− se,a− ae) (74)

and where m is a vector of monomials of s − se and a − ae without bias (constant)
value to satisfy ℓ̂θ(se,ae). In this case, Q-learning (54) can be seen as minimizing an
LS cost subject to constraint (73) in the parameters, more specifically:

min
θ∈Θ

Es0

[
1

M

M−1∑

k=0

[Qθ(sk,ak)−Q⋆(sk,ak)]
2

]
(75a)

s.t. 0 ≺ R(θ) (75b)
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Note that (75) provides the Q-learning steps that satisfy the requirement (73). In
the TD-learning case, the update rule (55) can be seen as minimizing a quadratic
cost subject to some constraints in the parameters taking the form of the following
Semi-Definite Program (SDP):

min
∆θ

1

2
∥∆θ∥2 − ξδk∇⊤

θ Qθ(sk,ak)∆θ (76a)

s.t. 0 ≺ R(∆θ + θk) (76b)

where the gradient ∇⊤
θ Qθ(sk,ak) is calculated at θk. Then the parameter updates

are then obtained from θk+1 = ∆θ + θk. In fact, if constraint (76b) is inactive, then
(76) will be equivalent to (55), otherwise, SDP (76) delivers parameter steps that
enforce constraint (73).

Note that using an SOS method in the Q-learning steps has less complexity and more
accuracy in the storage function than when solving (5) directly using the SOS method
as is proposed in, e.g., [19]. Indeed, to solve dissipativity (5) using SOS one needs
to approximate the exact stage cost ℓ and the dynamics f by polynomials, and the
obtained storage function is based of these approximations and may have an error
compared to the exact storage function [19]. However, to solve (75), one only needs
to provide a polynomial MPC stage cost ℓ̂θ in the function approximator, while the
terminal cost and the storage function have not such requirement. Using a generic
approximator for the storage function and terminal cost, Q-learning will be able to
find the best polynomial stage cost and capture the optimal action-value function.
Indeed, Unlike SOS method, in this method, the exact stage cost ℓ and dynamics f
do not need to be approximated by polynomials.

We ought to stress here that in this paper, we have not enforced convexity for the
parameterized action-value function resulting from MPC scheme (13) with respect to
the parameter θ. Then Q-learning may converge to the local optimal parameters in
set Θ. Providing a convex parameterized MPC scheme with respect to the parameters
could be a direction of future investigations.

5.3 The case that (23) and (45) do not hold

In practice, if the parameterization is not rich or the problem is not dissipative (con-
ditions (23) and (45) do not hold for any θ), Qθ will not necessarily converge to Q⋆.
In this case, LS (54) does not yield a perfect fitting, and Q-learning will find the best
parameters among the set of functions provided by the parameterization selected.
Then one can check the dissipativity inequality (5) (or (31)) for the optimal learned
parameters. If it holds, then the problem is dissipative, otherwise, the algorithm is
inconclusive, i.e. either the parameterization is not rich enough or the problem is
not dissipative. In order to check the dissipativity, we define the following auxiliary
functions at the optimal parameters θ⋆ as follows:
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ℓ̄γθ?(s, a) := ℓ(s, a) + λθ?(s)− γλθ?(f(s, a)) (77a)
Hγ

θ?(s, a) := ℓ(s, a) + λθ?(s)− λθ?(f(s, a)) + (γ − 1)Vθ?(f(s, a)) (77b)
ℓ̄θ?(s, a) := ℓ(s, a) + λθ?(s)− λθ?(f(s, a)) (77c)

Then one can check if ℓ̄γθ? and Hγ
θ? are lower-bounded by a K∞ function, then the

discounted problem is SDSD. Moreover, if ℓ̄θ? is lower-bounded by a K∞ function,
then the undiscounted problem is strictly dissipative. In order to check whether a
function, defined in a compact set, is lower-bounded by a K∞ function or not, one
can grid the entire state-input space. If the function is continuous, zero at the steady
state and strictly positive otherwise, then it is lower-bounded by a K∞ function (see
See Lemma A.1.2 of [44]).

Note that the method still delivers a stabilizing policy regardless of the dissipativity
of the problem or the way of parameterization if Assumptions 1-3 hold.

Remark 1 One of the best advantages of using the tracking MPC-scheme (13) as
a function approximator is the closed-loop stability under the extracted parameterized
policy πθ. In fact, πθ, defined in (15), is a stabilizing policy for the closed-loop system
f(s,πθ(s)) for either discounted and undiscounted setting and for both dissipative and
non-dissipative problem. For dissipative problems if θ⋆ satisfies (45) then πθ?(s) =
π⋆

γ(s) for discounted problem, because:

πθ?(s) = argmin
a

Qθ?(s, a) = argmin
a

Q⋆
γ(s, a) = π⋆

γ(s) (78)

and similar statements are valid for the undiscounted setting. Note that other function
approximators, e.g., DNNs, for the optimal action-value function do not provide a
stabilizing policy necessarily.

Remark 2 For non-dissipative problems, although there exists no θ⋆ that captures the
exact optimal-value function and optimal policy of the ENMPC-scheme, the resulting
policy πθ from the tracking MPC-scheme is a stabilizing policy for the closed-loop
system f(s,πθ(s)) (see Proposition 1). In fact, for non-dissipative problems the Q-
learning algorithm is not able to deliver a perfect fitting of the optimal action-value
function of the ENMPC scheme, and the resulting policy, at the convergence, is a
sub-optimal policy πθ?(s) ̸= π⋆

γ(s) (or πθ?(s) ̸= π⋆(s)) under the closed-loop stability
constraints.

The proposed approach for the discounted setting is summarized in the Algorithm
1. A similar algorithm can be used for the undiscounted setting. Note that for an
undiscounted problem, we do not need to check SDSD, and the strict dissipativity
property leads to asymptotic stability directly.
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Algorithm 1: Q-learning to evaluate storage function and verify the dissi-
pativity.

Input: Parameterize λθ, Tθ, and ℓ̂θ Initialize θ0

1 while converge do
2 Update θ from (75) (or (76)) if ℓ̂θ if has a SOS form, or update from (54)

(or (55)) if ℓ̂θ is lower-bounded by K∞ by construction e.g. in form of
(72)

3 if Converge then
4 Compute rotated storage function ℓ̄γθ? and Hγ

θ? from the learned storage
function λθ?

5 if ℓ̄γθ? > ϵ∥s− se∥2 for small enough ϵ > 0 then
6 System is (discounted) strictly dissipative and λθ? is a valid storage

function
7 if Hγ

θ? > ϵ∥s− se∥2 for small enough ϵ > 0 then
8 System (1) is SDSD and the closed-loop is asymptotically stable

under optimal policy π⋆
γ .

9 else
10 Inconclusive

11 else
12 Inconclusive

6 Simulation

In this section, we provide four numerical examples in order to illustrate the efficiency
of the proposed method.

6.1 The LQR case

First, we look at a trivial Linear dynamics, Quadratic stage cost, regulator (LQR)
problem with an indefinite stage cost. LQR is a well-known problem because the exact
optimal policy and the optimal value functions are obtainable using other techniques,
e.g., the Riccati equation. Consider the following linear dynamics with a quadratic
economic stage cost:

sk+1 = 2sk − ak , L(s, a) = s2 + a2 + 4sa ⩾̸ 0 (79)

The optimal steady state is (ss, as) = (0, 0). We consider X = U = [−ζ, ζ] with
a large enough constant ζ. Note that these constraints satisfy assumption 1. The
storage function λθ, terminal cost Tθ and stage cost approximations ℓ̂θ are selected
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as follows:

λθ(s) = θ1s
2 , Tθ(s) = θ2s

2 (80a)

ℓ̂θ(s) =

[
s
a

]⊤ [
θ3 θ4
θ5 θ6

] [
s
a

]
(80b)

where θ = {θ1, . . . , θ6} is the set of parameters adjusted by Q-learning. The RL
steps are restricted to making ℓ̂θ lower-bounded by a K∞ function. Moreover, Tθ is
restricted to provide positive values, i.e., θ2 > 0.

We initialize θ0 = [0.1, 1, 1, 0, 0, 0]⊤. Fig. 1 shows the convergence of the parameters
resulting from Q-learning during 50 episodes. As can be seen in Fig. 2, after 50
iterations Q-learning is able to capture the optimal value and optimal policy functions.
The learned storage function is λθ?(s) = −0.4456s2. From (77c) the learned rotated

Figure 1: Parameters update using Q-learning.

stage cost satisfies the strict dissipativity inequality:

ℓ̄θ?(s, a) = s2 + a2 + 4sa− 0.4456s2 + 0.4456(2s− a)2 ≥ ρs2 (81)

for 0 < ρ ≤ 2.3286.
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Figure 2: (Left) Value function and (Right) Policy function during the learning.

6.2 Non-dissipative dynamics

We provide next an example of non-dissipative dynamics and stage cost. Consider
the following dynamics and economic stage cost:

sk+1 = ak , L(s, a) = −2s2 + a2 + sa+ s2a2 (82)

the optimal steady-state is (se, ae) = (0, 0). In the Appendix, it is shown that there
is no storage function for this example, that satisfies (5) with respect to supply rate
L, i.e., (82) is non-dissipative. Similar to the previous example, a quadratic stage
cost, terminal cost, and storage function with adjustable parameters are used for the
simulation. Fig. 3 shows the learned rotated stage cost after convergence. It can be
seen that Q-learning does not manage to learn a positive definite rotated stage cost.
Note that since the tracking MPC scheme satisfies the stability conditions, then the
policy provided by the MPC scheme is stabilizing for all parameters θ. Q-learning will
find the best local parameters such that the resulting action-value function has the
minimum error with respect to the optimal action-value function in the LS sense [31].

6.3 Non-polynomial case

In this example, we consider the non-polynomial case. Consider the following dynam-
ics with a non-polynomial economic stage cost:

sk+1 = ak , L(s, a) = − ln(5s0.34 − a), (83)

and the following compact state and input spaces:

X = [0, 10], U = [0.01, 10] . (84)

This model is a benchmark optimal investment problem, where s denotes the invest-
ment in a company and the term 5s0.34 is the return from this investment after one
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Figure 3: Rotated stage cost according to the learned storage function.

period. Then 5s0.34 − a is the amount of money that can be used for consumption in
the current time period. Then the objective is to maximize the sum of the logarithmic
utility function. The optimal steady-state point is se = ae = 2.2344. In [19], it is
shown that a storage function in the form

λθ(s) = θ(s− se), (85)

is valid for this problem and the SOS approach delivers an approximated storage
function (θ = 0.23) using an order-3 Taylor approximation for the stage cost. The
analytical solution can be obtained for θ (see [19]). We use the approximated storage
function obtained from SOS as an initial guess for λθ and apply the proposed learning
method. The following stage cost is used in the simulation:

ℓ̂θ(s, a) = L(s, a)− L(se, ae) + θ(s− a) , (86)

and we use a long horizon N = 100 without terminal cost. Fig. 4 shows the update
of the parameter θ over the 100 episodes. As can be seen, the learning-based storage
function converges to the analytical solution, while the parameter θ resulting from
the SOS method has a bias. As it can be seen, the learning method can improve
the storage function estimation by about 60% after 10 learning steps with respect to
the Sum-of-Square method, while the improvement is 99.5% after 50 learning steps.
Note that this example is simple and the bias issue is not significant, but for a more
complex problem in practice, the SOS method may lead to a storage function that
has a significant bias with the true storage function. Fig. 5 illustrates the rotated
stage cost from the learned storage function.
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Figure 4: Learning of the storage function parameter.

Figure 5: Rotated stage cost according to the learned storage function.

The discounted setting for (83) with discount factor γ has the following analytical
storage function solution [40]:

λ(s) =
0.34 −0.66

√
1.7γ

1− 0.34γ
(s− se) (87)

where:

se = ae =
0.66
√
1.7γ (88)

is the optimal steady-state state. Fig. 6 shows the convergence of the parameter of
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storage function λθ(s) = θ(s− se) for discounted setting with γ = 0.99. Fig. 7 (right)

Figure 6: Learning of the storage function parameter for the discounted setting.

shows the rotated stage cost and verifies the discounted strictly dissipativity. Fig. 7
(left) verifies the second SDSD condition.

Figure 7: Right: Discounted rotated stage cost, Left: SDSD condition.
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6.4 CSTR process

We next provide a nonlinear numerical example in the chemical engineering context.
Continuously Stirred Tank Reactor (CSTR) is a common ideal reactor in chemical
engineering, usually used for liquid-phase or multiphase reactions with fairly high
reaction rates. We consider a non-isothermal reactor where an elementary, exother-
mic second-order reaction takes place that, converting the reactant A to the desired
product B (see Fig. 8).

Figure 8: The Continuously Stirred Tank Reactor.

The CSTR nonlinear dynamics can be written as follows [45]:

ĊA =
F

VR
(CA0 − CA)− k0e

−E/RTC2
A (89)

Ṫ =
F

VR
(T0 − T )− ∆Hk0

ρRCp
e−E/RTC2

A +
q

ρRCpVR
,

where T denotes the temperature of the reactor contents, CA is the concentration of
A in the reactor, F is the flow rate, and q is the heat rate. The remaining notation
definitions and process parameter values are given in Table 1.

Then s = [CA , T ]⊤ and a = [F , q]⊤ is the state and the input of the system,
respectively. The input a satisfies the following inequality:

[0 , −2e5]⊤ ≤ a ≤ [10 , 2e5]⊤ (90)

An economic stage cost is defined as follows:

L = −αF (CA0 − CA)︸ ︷︷ ︸
:=r

+βq (91)
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Table 1: Parameter definitions and values of CSTR.
Symbol Description Value
CA0 Feed concentration of A 3.5kmol/m3

T0 Feedstock temperature 300K
VR Reactor fluid volume 1.0m3

E Activation energy 5.0e4kJ/kmol
k0 Pre-exponential rate factor 8.46e6m3/kmolh
∆H Reaction enthalpy change -1.16e4kJ/kmol
Cp Heat capacity 0.231kJ/kgK
ρR Density 1000kg/m3

R Gas constant 8.314kJ/kmolK

where α and β are positive constant, and r is the production rate. This cost maximizes
the production rate and minimizes the energy consumption of the production (the
second term). For α = 1.7e4 and β = 1 the production rate and energy consumption
will be almost balanced. Sampling time 0.02h is used to discretize the system (89) to
the form (1). Using (3), the optimal steady-state pair is:

se = [0.7572 , 497.71]⊤ , ae = [10.00 , 1.38557e5]⊤ (92)

A Deep Neural Network (DNN) is used to approximate the storage function λθ, as
shown in Fig. 9. This DNN is a fully connected Multi-Layer Perceptron (MLP) with
tanh(.) as the activation functions.

Figure 9: Approximation of the storage function.

Then, the input-output relation for the two hidden layers MLP can be written as
follows:

λθ(s) = W2 (tanh (W1 (tanh (W0(s− se))))) (93)

where W0,W1 and W2 are the weight matrices with appropriate dimension and tanh
is applied element-wise. Note that we used this activation function without bias
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parameters to preserve λθ(se) = 0. For the simulation, an MLP with two hidden
layers and 16 neurons per hidden layer is used. The following stage and terminal cost
are used in the simulation:

ℓ̂θ(s, a) =
∥∥∥col(s− se,a− ae)

∥∥∥
Wℓ

+ ϵ∥s− se∥ (94a)

Tθ(s) = ∥s− se∥WT
(94b)

where ϵ is a small positive constant and matrices Wℓ and WT are the weights of the
vector norm and MPC horizon is N = 10. Q-learning steps are restricted to deliver a
positive definite Wℓ and WT using SDP. Then the parameters vector θ read as:

θ = {W0,W1,W2,Wℓ,WT } (95)

Note that in order to use the SOS method for this example, one needs to approxi-
mate the dynamics with polynomials. Then the dissipativity can be discussed locally
only in a neighborhood of the optimal steady state. Moreover, it results in a poly-
nomial storage function that satisfies dissipativity approximately. In contrast, our
approach can deliver a DNN-based general storage function without approximating
the dynamics.

Fig. 10 shows the trajectories of the states and inputs for the different episodes, while
the initial state is chosen randomly. As can be seen, the states and inputs trajectories
are stable and they converge to their steady-state point.

Figure 10: Time response of state-input for the different episodes starting from a
random initial state.

Fig. 11 illustrates the closed-loop performance over RL steps. The closed-loop per-
formance refers to the summation of stage costs over episodes. As the initial state
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is selected randomly, the closed-loop performance is noisy. The moving average of
the performance is improving during the learning and Q-learning tries to find the
optimal parameters among the provided functions. Fig. 12 illustrates min ℓ̄θ(s, a)
along the closed-loop trajectories over the learning steps. Note that min here is taken
with respect to time at each episode, i.e., the minimum of observed stage cost at each
episode, or RL-step, is stored. Then we plot these minimums over RL steps. As it
can be seen, RL tries to push ℓ̄θ to be positive definite while in the first few steps
ℓ̄θ is negative in some points. Note that, since the initial state is selected randomly,
then these noises and fluctuations in min ℓ̄θ are expected.

Figure 11: Closed-loop Performance over RL-steps.

Figure 12: Minimum of the rotated stage cost along the closed-loop trajectories.
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7 Discussion

In this paper, we presented the use of parameterized tracking MPC scheme with an
additional parametrized storage function as a function approximator of the optimal
action-value function for the ENMPC scheme. We enforced the closed-loop stability
of the system for all sets of parameters by Assumptions 2 and 3. Therefore, this
scheme provides a stabilizing policy for the closed-loop system regardless of whether
the problem is dissipative or not and discounted or not. We used Q-learning to
adjust the parameters toward the parameters that have the best approximation of
the optimal action-value function. We applied the proposed method in the previous
section.

First, an LQR example was considered. A parameterized quadratic stage cost, ter-
minal cost, and storage function have been selected. The parameters are restricted
to fulfill the stability assumptions. Therefore we solved a constrained Q-learning as
detailed in (75) and (76). For an LQR problem, this parameterization is rich enough,
and we showed that the Q-learning method is able to learn the optimal policy and
action-value function. Moreover, the resulting storage function satisfies the strict
dissipativity inequality.

Next, a non-dissipative problem was investigated. In this example, we showed that
the proposed method delivers a rotated storage function that is not lower-bounded
by a K∞ function after the convergence in the learning.

Then we detailed a non-polynomial case where the SOS method struggles to deliver
an accurate result. We showed that our method is able to learn the storage function
more accurately than the SOS method in both discounted and undiscounted cases.
In fact, in this method, we do not need to approximate system and stage costs by
polynomials. One only may need to provide a parameterized stage cost in the function
approximator to use the SOS method in the learning steps. Then a generic storage
function and terminal cost would accurately approximate the optimal action-value
function.

Finally, we considered a nonlinear chemical reactor system. This system was non-
polynomial with an economic stage cost. We used neural networks in the stage cost,
terminal cost, and storage function to approximate the optimal action-value function.
We showed that the method is able to improve the closed-loop economic performance
of the system. Moreover, the learning steps push the rotated stage cost to be lower-
bounded by a K∞ function. Note that the MPC scheme delivers a stabilizing policy
during the learning.
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8 Conclusion

This paper presented the use of tracking MPC-based function approximator of the
optimal action-value function to evaluate the storage function and verify the dissipa-
tivity in the ENMPC for general discrete-time dynamics and cost for both discounted
and undiscounted optimal control problems. We showed that, under some conditions,
the MPC-based function approximator will be able to deliver a valid storage function
for a dissipative problem at the optimal parameters. For non-dissipative problems,
however, the resulting policy is stabilizing, but the tracking MPC scheme can not
capture the optimal action-value function. Then we proposed the use of Q-learning
to tune the parameters of the parameterized MPC. This method tries to estimate the
optimal action-value function in the Least-Square sense. Moreover, we proposed two
methods to ensure the tracking stage cost remains lower-bounded by a K∞ function,
in the learning context. The need for complex neural networks for general nonlinear
problems and heavy computations, local optimum point issues for non-convex prob-
lems, and the need for an exact deterministic model of the system for theoretical
analysis can be considered as limitations of the present work. The efficiency of the
method was illustrated in the different case studies. Combining this method with
SOS, addressing the convexity in the ENMPC scheme and global optimality of the
Q-learning method, and applying it for the noisy data and stochastic systems can be
considered in future research.
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Appendix. Non-dissipativity of the Example 6.2

Let us assume that the system-stage cost described in (82) is dissipative. Then there
exists a storage function λ(s) and 0 < ρ that satisfies the following inequality:

λ(a)− λ(s) ≤ −2s2 + a2 + sa+ s2a2 − ρs2, (A.1)
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and λ(0) = 0. For s = 0 we have:

λ(a) ≤ a2 ⇒ λ(s) ≤ s2, (A.2)

where we changed the variable name a → s in the last inequality. For a = 0, (A.1)
reads as:

−λ(s) ≤ −2s2 − ρs2
0<ρ
==⇒ 2s2 ≤ λ(s), (A.3)

the contradiction from (A.2) and (A.3) shows that the storage function does not exist
and the system is non-dissipative.
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Equivalence of Optimality Criteria for Markov Deci-
sion Process and Model Predictive Control

Arash Bahari Kordabad1, Mario Zanon2, and Sebastien Gros1

1Department of Engineering Cybernetics, Norwegian University of Science and Technology
(NTNU), Trondheim, Norway.
2IMT School for Advanced Studies Lucca, Italy.

Abstract: This paper shows that the optimal policy and value functions of a Markov Decision
Process (MDP), either discounted or not, can be captured by a finite-horizon undiscounted
Optimal Control Problem (OCP), even if based on an inexact model. This can be achieved
by selecting a proper stage cost and terminal cost for the OCP. A very useful particular
case of OCP is a Model Predictive Control (MPC) scheme where a deterministic (possibly
nonlinear) model is used to reduce the computational complexity. This observation leads us to
parameterize an MPC scheme fully, including the cost function. In practice, Reinforcement
Learning algorithms can then be used to tune the parameterized MPC scheme. We verify the
developed theorems analytically in an LQR case and we investigate some other nonlinear
examples in simulations.

Keywords: Markov Decision Process, Model Predictive Control, Reinforcement Learning,
Optimality

1 Introduction

Markov Decision Processes (MDPs) provide a standard framework for the optimal control
of discrete-time stochastic processes, where the stage cost and transition probability depend
only on the current state and the current input of the system [1]. A control system, described
by an MDP, receives an input at each time instance and proceeds to a new state with a given
probability density, and in the meantime, it gets a stage cost at each transition. For an MDP, a
policy is a mapping from the state space into the input space and determines how to select the
input based on the observation of the current state. This policy can either be a deterministic
mapping from the state space [2] or a conditional probability of the current state, describing
the stochastic policy [3]. This paper focuses on deterministic policies. Solving an MDP refers
to finding an optimal policy that minimizes the expected value of a total cumulative cost as a
function of the current state. The cumulative cost can be either discounted or undiscounted
with respect to the time instant. Therefore, different definitions for the cumulative cost yields
different optimality criteria for the MDPs. Dynamic Programming (DP) techniques can be
used to solve MDPs based on the Bellman equations. However, solving the Bellman equations
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is typically intractable unless the problem is of very low dimension [4]. This issue is known
as “curse of dimensionality” in the literature [5]. Besides, DP requires the exact transition
probability of MDPs, while in most engineering applications, we do not have access to the
exact probability transition of the real system.

Reinforcement Learning (RL) [6] and approximate DP [7] are two common techniques that
tackle these difficulties. RL offers powerful tools for tackling MDP without having an accurate
knowledge of the probability distribution underlying the state transition. In most cases, RL
requires a function approximator to capture the optimal policy or the optimal value functions
underlying the MDP. A common choice of function approximator in the RL community is
to use a Deep Neural Network (DNN) [8]. DNNs can be used to capture either the optimal
policy underlying the MDP directly or the action-value function from which the optimal policy
can be indirectly extracted. However, the formal analysis of closed-loop stability and safety
of the policies provided by approximators such as DNNs is challenging. Moreover, DNNs
usually need a large number of tunable parameters and a pre-training is often required so that
the initial values of the parameters are reasonable.

Model Predictive Control (MPC) is a well-known control strategy that employs a (possibly
inaccurate) model of the real system dynamics to produce an input-state sequence over a given
finite-horizon such that the resulting predicted state trajectory minimizes a given cost function
while explicitly enforcing the input-state constraints imposed on the system trajectories [9].
For computational reasons, simple models are usually preferred in the MPC scheme. Hence,
the MPC model often does not have the structure required to correctly capture the real
system dynamics and stochasticity. The idea of using MPC as a function approximator for
RL techniques was justified first in [10], where it was shown that the optimal policy of a
discounted MDP can be captured by a discounted MPC scheme even if the model is inexact.
Recently, MPC has been used in different systems to deliver a structured function approximator
for MDPs (see e.g., [10–12]) and partially observable MDPs [13]. Stability for discounted
MPC schemes is challenging, and for a finite-horizon problem, it is shown in [14] that even
if the provided stage cost, terminal cost and terminal set satisfy the stability requirements,
the closed-loop might be unstable for some discount factors. Indeed, the discount factor
has a critical role in the stability of the closed-loop system under the optimal policy of the
discounted cost. The conditions for the asymptotic stability for discounted optimal control
problems have been recently developed in [15] for deterministic systems with the exact model.
Therefore, an undiscounted MPC scheme is more desirable, where the closed-loop stability
analysis is straightforward and well-developed [9].

The equivalence of MDPs criteria (discounted and undiscounted) has been recently discussed
in [16] in the case an exact model of MDP is available. However, in practice, the exact
probability transition of the MDP might not be available and we usually have a (possibly
inaccurate) model of the real system. This work extends the results of [16] in the sense of the
model mismatch and while extends also the results of [10] to the case of using undiscounted
MPC scheme to capture a (possibly discounted) MDP. More specifically, we show that, under
some conditions, an undiscounted finite-horizon Optimal Control Problem (OCP) can capture
the optimal policy and the optimal value functions of a given MDP, either discounted or
undiscounted, even if an inexact model is used in the undiscounted OCP. We then propose to
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use a deterministic (possibly nonlinear) MPC scheme as a particular case of the theorem to
formulate the undiscounted OCP as a common MPC scheme. By parameterizing the MPC
scheme, and tuning the parameters via RL algorithms one can achieve the best approximation
of the optimal policy and the optimal value functions of the original MDP within the adopted
MPC structure.

The paper is structured as follows. Section 2 provides the formulation of MDPs under
discounted and undiscounted optimality criteria. Section 3 provides formal statements showing
that using cost modification in a finite-horizon undiscounted OCP one is able to capture the
optimal value function and optimal policy function of the real system with discounted and
undiscounted cost even with a wrong model. Section 4 presents a parameterized MPC
scheme as a special case of the undiscounted OCP, where the model is deterministic (i.e.
the probability transition is a Dirac measure). Then the parameters can be tuned using RL
techniques. Section 5 provides an analytical LQR example. Section 6 illustrates different
numerical simulation. Finally, section 7 delivers the conclusions.

2 Real System

In this section, we formulate the real system as Markov Decision Processes (MDPs). We
consider an MDP on a continuous state and input spaces over Rn and Rm, respectively, with
stochastic states sk ∈ X ⊆ Rn in the Lebesgue-measurable set X and inputs ak ∈ U ∈ Rm.
The triple (Ω,F , ρ) defines the probability space associated with a Markov chain, where
Ω = Π∞k=0X , with associated σ-field F and ρ is the probability measure. We then consider
stochastic dynamics defined by the following conditional probability measure:

ρ [sk+1|sk,ak] , (1)

defining the conditional probability of observing a transition from a given state-action pair sk,
ak to a subsequent state sk+1. The input a applied to the system for a given state s is selected
by a deterministic policy π : X → U . We denote sπ0,1,... the (possibly stochastic) trajectories
of the system (1) under policy π, i.e., sπk+1 ∼ ρ [·|sπk ,π(sπk )], starting from sπ0 = s, ∀π.
We further denote the measure associated with such trajectories as τπk in the same space
as ρ. More specifically, τπ0 (·) = ρ0(·), ∀π, where ρ0(·) is the initial state distribution and
τπk+1(·) :=

∫
X ρ [·|s,π(s)] τπk (ds) , k > 0.

2.1 Discounted MDPs

In the discounted setting, we aim to find the optimal policy π?, solution of the following
discounted infinite-horizon OCP:

V ?(s) := min
π
V π(s) := Eτπ

[ ∞∑

k=0

γk`(sπk ,π (sπk ))

]
, (2)
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for all initial states sπ0 = s, where V ? : X → R is the optimal value function, V π is the
value function of the Markov Chain in closed-loop with policy π, ` : X × U → R is the stage
cost function of the real system and γ ∈ (0, 1] is the discount factor. The expectation Eτπ is
taken over the distribution underlying the Markov Chain (1) in closed-loop with policy π, i.e.,
sk ∼ τπk (·) for k > 0. The action-value function Q?(s,a) and advantage function A?(s,a)
associated to (2) are defined as follows:

Q?(s,a) := `(s,a) + γEρ
[
V ?(s+)|s,a

]
, (3a)

A?(s,a) := Q?(s,a)− V ?(s). (3b)

Then from the Bellman equation, we have the following identities:

V ?(s) = Q?(s,π?(s)) = min
a
Q?(s,a), ∀s ∈ X , (4a)

0 = min
a
A?(s,a), π?(s) ∈ arg min

a
A?(s,a), ∀s ∈ X . (4b)

2.2 Undiscounted MDPs

Undiscounted MDPs refer to MDPs when γ = 1. In this case V ? is in general unbounded and
the MDP is ill-posed. In order to tackle this issue, alternative optimality criteria are needed.
Gain optimality is one of the common criteria in the undiscounted setting. Gain optimality is
defined based on the following average-cost problem:

V̄ ?(s) := min
π

lim
N→∞

1

N
Eτπ

[
N−1∑

k=0

`(sπk ,π (sπk ))

]
, (5)

for all initial states sπ0 = s, ∀π, where V̄ ? is the optimal average cost. We denote the
optimal policy solution of (5) as π̄?. This optimal policy is called gain optimal. The gain
optimal policy π̄? may not be unique. Moreover, the optimal average cost V̄ ? is commonly
assumed to be independent of the initial state s [17]. This assumption e.g. holds for unichain
MDPs, in which under any policy any state can be reached in finite time from any other state.
Unfortunately, the gain optimality criterion only considers the optimal steady-state distribution
and it overlooks transients. As an alternative, bias optimality considers the optimality of the
transients. Precisely, bias optimality can be formulated through the following OCP:

Ṽ ?(s) = min
π

Eτπ

[ ∞∑

k=0

(`(sπk ,π (sπk ))− V̄ ?)
]
, (6)

where Ṽ ? is the optimal value function associated to bias optimality. Note that (6) can be seen
as a special case of the discounted setting in (2) when γ = 1 and the optimal average cost V̄ ?

is subtracted from the stage cost in (2). Therefore, for the rest of the paper we will consider the
discounted setting (2). Without loss of generality we assume that V̄ ? = 0 in the case γ = 1.
This choice yields a well-posed optimal value function in the undiscounted setting. Clearly, if
this does not hold, one can shift the stage cost to achieve V̄ ? = 0.
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3 Model of the system

In general, we may not have full knowledge of the probability transition of the real MDP
(1). One then typically considers an imperfect model of the real MDP (1), having the state
transition:

ρ̂ [sk+1|sk,ak] . (7)

in the same space as ρ. In order to distinguish it from the real system trajectory, let us denote
ŝπ0,1,... the (possibly stochastic) trajectories of the state transition model (7) under policy π, i.e.,
ŝπk+1 ∼ ρ̂ [·|ŝπk ,π(ŝπk )], starting from ŝπ0 = s, ∀π. We further denote the measure associated
with such trajectories as τ̂π . In general, ·̃ refers to the notations related to the imperfect model
of the system in this paper. It has been shown in [18] that proving closed-loop stability of
the Markov Chains with the optimal policy resulting from an undiscounted OCP is more
straightforward than a discounted setting [16]. This observation is well-known in MPC of
deterministic systems [19]. Therefore, in this paper, we are interested in using an undiscounted
OCP for the model (7) in order to extract the optimal policy and optimal value functions of the
real system (1), as this allows us to enforce stability guarantees.

3.1 Finite-horizon OCP

While MPC allows one to introduce stability and safety guarantees, it also requires a model of
the real system which is bound to be imperfect, and it optimizes the cost over a finite horizon
with unitary discount factor. In other words, MPC is an MDP based on the imperfect system
model (7) which we will formulate in (8). In this section we will prove that these differences
between the MPC formulation and the original MDP formulation do not hinder the ability to
obtain the optimal policy and the optimal value functions of the real system through MPC.
Consider the following undiscounted finite-horizon OCP associated to model (7):

V̂ ?N (s) = min
π

V̂ πN (s) :=Eτ̂π

[
T̂ (ŝπN ) +

N−1∑

k=0

L̂(ŝπk ,π (ŝπk ))

]
, (8)

with initial state ŝπ0 = s, where N ∈ N is the horizon length, T̂ , L̂, V̂ ?N and V̂ πN are the
terminal cost, the stage cost, the optimal value function and the value function of the policy
π associated to model (7), respectively, and where N is the set of natural numbers. The
expectation Eτ̂π in (8) is taken over undiscounted closed-loop Markov Chain (7) with policy
π. We denote π̂?N the optimal policy resulting from (8). Moreover, the action-value function
Q̂?N associated to (8) is defined as follows:

Q̂?N (s,a) := L̂(s,a) + Eρ̂
[
V̂ ?N−1(s+)|s,a

]
, V̂ ?0 (s) := T̂ (s) (9)

The next assumption expresses a requirement on the boundedness of V ? under model trajecto-
ries ŝπ0,1,... with the optimal policy π? which allows us to develop the theoretical results of
this paper.
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Assumption 1. The following set is non-empty for a given N̄ ∈ N.

S =:
{
s ∈ X

∣∣∣
∣∣∣Eτ̂π?

[
V ?(ŝπ

?

k )
]∣∣∣ <∞, ∀ k ≤ N̄

}
(10)

Assumption 1 requires that there exists a non-empty set S such that for all trajectories starting
in it, the expected value of V ? is bounded at all future times under the state distribution given
by the model in finite time under the optimal policy. This assumption plays a vital role in the
derivation of our main result. We will further detail this assumption in Section 5.1.

The next theorem provides theoretical support to the idea that one can recover the optimal
policy and value functions by means of an MPC scheme which is based on an imperfect model
and has an undiscounted formulation over a finite prediction horizon.

Theorem 1. Suppose that Assumption 1 holds for N̄ ≥ N . Then, there exist a terminal cost
T̂ and a stage cost L̂ such that the following identities hold, ∀ γ, N ∈ N and s ∈ S:

(i) π̂?N (s) = π?(s),

(ii) V̂ ?N (s) = V ?(s),

(iii) Q̂?N (s,a) = Q?(s,a), for the inputs a ∈ U such that |Eρ̂ [V ?(s+)|s,a]| <∞

Proof. We select the terminal cost T̂ and the stage cost L̂ as follows:

T̂ (s) = V ?(s) (11a)

L̂(s,a) =

{
Q?(s,a)− Eρ̂ [V ?(s+)|s,a] If |Eρ̂ [V ?(s+)|s,a]| <∞

∞ otherwise
(11b)

Under Assumption 1, the terminal and stage costs in (8) have a finite expected value for all
ŝπ

?

0 ∈ S . By substitution of (11) in (8) and using telescopic sum, we have:

V̂ πN (s) = Eτ̂π

[
T̂ (ŝπN ) +

N−1∑

k=0

L̂(ŝπk ,π (ŝπk ))

]

(11)
= Eτ̂π

[
V ?(ŝπN ) +

N−1∑

k=0

(
Q?(ŝπk ,π (ŝπk ))− V ?(ŝπk+1)

)]

= Q?(s,π(s)) + Eτ̂π

[
N−1∑

k=1

(Q?(ŝπk ,π (ŝπk ))− V ?(ŝπk ))

]

= Q?(s,π(s)) + Eτ̂π

[
N−1∑

k=1

A?(ŝπk ,π (ŝπk ))

]
, (12)

where ŝ0 = s. From (4a) and (4b), we know that:

π?(·) = arg min
π
A? (·,π (·)) = arg min

π
Q? (·,π (·)) (13)
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then from (12):

π?(s) = arg min
π
V̂ πN (s) (14)

= arg min
π
Q?(s,π(s)) + Eτ̂π

[
N−1∑

k=1

A?(ŝπk ,π (ŝπk ))

]

Note that π? minimizes all terms in the cost above, i.e., A? and Q?, such that is must also
minimize V̂ πN . This proves (i), i.e.,

π?(s) = π̂?N (s).

In turn, this proves (ii), since

V̂ ?N (s) = V̂ π
?

N (s) = Q?(s,π?(s)) + Eτ̂π




N∑

k=1

A?(ŝπ
?

k ,π?
(
ŝπ

?

k

)
)

︸ ︷︷ ︸
(4b)
= 0

∣∣∣∣ŝ0 = s




= Q?(s,π?(s))
(4a)
= V ?(s). (15)

Moreover, from (9) and (11b), for any inputs a ∈ U such that |Eρ̂ [V ?(s+)|s,a]| < ∞, we
have:

Q̂?N (s,a) = L̂(s,a) + Eρ̂
[
V̂ ?N−1(s+)|s,a

]
(16)

(11b)
= Q?(s,a) + Eρ̂

[
V̂ ?N−1(s+)− V ?(s+)|s,a

]
= Q?(s,a),

where the last inequality is obtained by noting that (ii) for N > 1 and V̂ ?0 (s) = T̂ (s) = V ?(s)
for N = 1. This directly yields (iii). �

Theorem 1 states that, independent of the discount factor γ, it is possible to find a finite-
horizon OCP cost function that provides the optimal policy and optimal value functions of a
discounted MDP if an inexact model is used in the finite-horizon OCP. We observe that the
setup of this paper has been analyzed in [16], under the assumption of a perfect model, i.e.,
ρ̂[·|s,a] = ρ[·|s,a]. In that case (11b) reads:

L̂(s,a) = `(s,a) + (γ − 1)Eρ[V ?(s+)|s,a], ∀s ∈ S, (17)

which corresponds to the cost modification discussed in [16].

3.2 Infinite-horizon OCP

In this section, we investigate the case N →∞ for which, under some conditions, the terminal
cost can be dismissed. In this case, we first make the next additional assumption.
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Assumption 2. We assume that the optimal value function converges to a constant and finite
value with model (7) under the optimal policy π?. I.e.:

−∞ < lim
N→∞

Eτ̂π?

[
V ?(ŝπ

?

N )
]

= v̂∞ <∞ (18)

Assumption 2 can be interpreted as some forms of the stability condition on the model
dynamics under the optimal policy π?. We will explain this assumption in Section 5.1. In this
section, we consider the following undiscounted value function without terminal cost:

V̂ ?∞(s) := min
π
V̂ π∞(s) := lim

N→∞
Eτ̂π

[N−1∑

k=0

L̂(ŝπk ,π (ŝπk ))

]
(19)

with initial state ŝπ0 = s. We denote the optimal policy solution of (19) as π̂?∞(s). We then
define the optimal action-value function Q̂?∞ associated to (19) as follows:

Q̂?∞(s,a) = L̂(s,a) + Eρ̂
[
V̂ ?∞(s+)|s,a

]
, (20)

We are now ready to state the equivalent of Theorem 1 in case of an infinite horizon without a
terminal cost.

Theorem 2. Suppose that Assumptions 1 and 2 hold, then the following hold ∀s ∈ S, ∀γ:

(i) π̂?∞(s) = π?(s)

(ii) V̂ ?∞(s) = V ?(s)− v̂∞

(iii) Q̂?∞(s,a) = Q?(s,a)− v̂∞, for the inputs a ∈ U such that |Eρ̂ [V ?(s+)|s,a]| <∞

if the stage cost L̂ is selected according Equation (11b).

Proof. Using stage cost L̂ in (11b), we have:

V̂ π∞(s) = lim
N→∞

Eτ̂π

[N−1∑

k=0

Q?(ŝπk ,π (ŝπk ))− Eρ̂
[
V ?(ŝπk+1)|ŝπk ,π (ŝπk )

] ]

= lim
N→∞

Eτ̂π

[N−1∑

k=0

Q?(ŝπk ,π (ŝπk ))− V ?(ŝπk+1)

]

= Q?(s,π(s)) + lim
N→∞

Eτ̂π

[
− V ?(ŝπN ) +

N−1∑

k=1

Q?(ŝπk ,π(ŝπk ))− V ?(ŝπk )

]

= Q?(s,π(s)) + lim
N→∞

Eτ̂π

[
− V ?(ŝπN ) +

N−1∑

k=1

A?(ŝπk ,π(ŝπk ))

]
(21)
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where ŝπ0 = s. By (4a) and (4b) we know that the policy π(s) = π?(s) minimizes all terms
A?(·,π(·)) and Q?(·,π(·)), such that it also minimizes V̂ π∞(s), i.e.,:

π̂?∞(s) = arg min
π
V̂ π∞(s) = π?(s) , (22)

which proves (i). Moreover:

V̂ π
?

∞ (s) = V ?(s)− lim
N→∞

E
[
V ?(ŝπ

?

N )
]
. (23)

Using (18) we have:

V̂ ?∞(s) = V̂ π
?

∞ (s) = V ?(s)− v̂∞. (24)

For the inputs a ∈ U such that |Eρ̂ [V ?(s+)|s,a]| <∞:

Q̂?∞(s,a) = L̂(s,a) + Eρ̂
[
V̂ ?∞(s+)|s,a

]
(25)

= Q?(s,a)− Eρ̂
[
V ?(s+)|s,a

]
+ Eρ̂

[
V̂ ?∞(s+)|s,a

]

= Q?(s,a)− Eρ̂
[
V ?∞(s+)− V̂ ?(s+)|s,a

]
= Q?(s,a)− v̂∞,

which completes the proof. �

Theorem 2 extends Theorem 1 to the case of an infinite horizon with zero terminal cost.
Assumption 2 is necessary in order to be able to remove the terminal cost. In the next section
we will detail the use of the theorems in practice and reformulate OCP (8) as a Model Predictive
Control (MPC) scheme.

4 MPC as a function approximator for RL

As it was shown in the previous section, the optimal policy and value functions of any
MDP with either discounted or undiscounted criteria can be captured using a finite-horizon
undiscounted OCP (8) even if the model is not accurate. Since the equivalence only holds at the
initial state, if one is interested in recovering the optimal MDP policy, the finite-horizon OCP
needs to be solved from scratch for each initial state. In practice, this amounts to deploying
the finite-horizon OCP in an MPC framework, i.e., in a closed-loop.

As discussed above, the equivalence is only obtained if a properly modified stage and terminal
costs are introduced for the finite-horizon undiscounted MPC scheme. However, finding such
costs requires knowledge about the optimal value functions of the real MDP. In this section, we
detail how the theorems we provided in the previous sections can be used in practice to exploit
MPC as a structured function approximator of the optimal policy and value functions of the real
MDP. One of the main advantages of MPC is that it allows us to straightforwardly introduce
state and input constraints in the policy. We parameterize the MPC scheme with parameter
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vector θ such that RL methods can be deployed to tune θ in order to achieve the equivalence
yielding the optimal policy and value functions of the real system and, consequently, the best
possible closed-loop performance.

As the MPC model is not required to capture the real system dynamics exactly, for the sake of
reducing the computational burden, and due to the (relative) simplicity of the resulting MPC
scheme, a popular choice of model ρ̂ [s+|s,a] is a deterministic model, i.e.:

ρ̂
[
s+|s,a

]
= δ

(
s+ − fθ(s,a)

)
(26)

where δ(·) is the Dirac measure and fθ(s,a) is a parameterized deterministic (possibly
nonlinear) model. We approximate the modified costs L̂ and T̂ by parametric functions Lθ
and Tθ, respectively. Due to the mismatch between the model and the real system, hard
constraints in the MPC scheme could become infeasible. This is a well-known issue in the
MPC community and one simple solution consists in formulating the state constraints as soft
constraints [20]. We therefore formulate the MPC finite-horizon OCP as:

V̂ θN (s) = min
â,ŝ,σ

− λθ(ŝ0) + Tθ(ŝN ) + µ>f σN +

N−1∑

k=0

Lθ(ŝk, âk) + µ>σk (27a)

s.t. ŝk+1 = fθ(ŝk, âk), ŝ0 = s, (27b)
âk ∈ U , 0 ≤ σk, 0 ≤ σN , (27c)

hθ(ŝk, âk) ≤ σ?k, hf
θ(ŝN ) ≤ σ?N , (27d)

where V̂ θN is the MPC-based parameterized value function, hθ(s,a) is a mixed input-state
constraint, hf

θ(s) is the terminal constraint, σk and σN are slack variables guaranteeing the
feasibility of the MPC scheme and µ and µf are constant vectors that ought to be selected
sufficiently large [20]. Note that these constants allow the MPC scheme to find a feasible
solution, but penalize constraint violations enough to guarantee that a feasible solution is
found whenever possible. While alternative feasibility-enforcing strategies, e.g., robust MPC,
do exist, an exhaustive discussion on the topic is beyond the scope of this paper. Function
λθ parameterizes the so-called storage function, which has been added to the cost in order to
enable the MPC scheme to tackle the case of so-called economic problems. Such situations
arise when the MDP stage cost is not positive definite, while the MPC stage cost is forced to
be positive definite in order to obtain a stabilizing feedback policy. Note that since the term
−λθ(ŝ0) only depends on the current state, it does not modify the optimal policy. For more
details, we refer the interested readers to [10, 21].

While Theorem 1 states that one can find suitable stage and terminal costs for any given model,
adjusting the model parameters is not essential from the theoretical perspective. However, in
practice, the stage and the terminal cost parameterization may not capture L̂ and T̂ exactly.
Since L̂ and T̂ are (implicitly) functions of the model, using a parameterized model fθ
introduces extra degrees of freedom to bring L̂ and T̂ closer to the functions that can be
represented by Lθ and Tθ . In turn, this can yield a better approximation of the optimal policy
and value function. The MPC parameterized policy can be obtained from (27) as follows:

π̂θN (s) = â?0(θ, s), (28)
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where â?0 is the solution of (27), corresponding to the first input â0. Moreover, the parameter-
ized action-value function based on MPC scheme (27) can be formulated as follows:

Q̂θN (s,a) := min
â,ŝ,σ

(27a) , s.t. (27b)− (27d) , â0 = a . (29)

Then one obtains the following identities:

V̂ θN (s) = min
a
Q̂θN (s,a), π̂θN (s) ∈ arg min

a
Q̂θN (s,a) . (30)

We can use RL techniques, such as Q-learning and policy gradient method to tune the pa-
rameters θ of parameterized MPC scheme (27) and approach the optimal parameter θ?. For
instance, at each learning step, Q-learning based on Temporal difference (TD) method uses
the following update rule for θ:

δk := `(sk,ak) + γV̂ θN (sk+1)− Q̂θN (sk,ak) (31a)

θ ← θ + ζδk∇θQ̂θN (sk,ak) (31b)

in order to capture the optimal value function Q̂θ
?

N ≈ Q? for the optimal parameters θ?, where
the scalar ζ > 0 is the learning step-size, δk is labelled the TD error. The use of RL for the
tuning the MPC scheme can be found e.g., in [10, 22].

5 Analytical Case Study

We consider a Linear Quadratic Regulator (LQR) example in order to obtain the corresponding
optimal value functions analytically and verify Theorem 2. The real system state transition
and stage cost are given as follows:

s+ = As+Ba+ e, `(s,a) =

[
s
a

]> [
T N
N> R

] [
s
a

]
, (32)

where e ∼ N (0,Σ) with the discount factor γ. One can verify the following optimal value
functions:

V ?(s) = s>Ss+ v̂∞, (33)

Q?(s,a) = v̂∞ +

[
s
a

]> [
T + γA>SA N + γA>SB
N> + γB>SA R+ γB>SB

] [
s
a

]
,

where v̂∞ = γ
1−γTr(SΣ) and S is obtained from the following Riccati equations:

T + γA>SA = S + (N + γA>SB)
(
K?
γ

)>
, (34a)

(R+ γB>SB)K?
γ = N> + γB>SA. (34b)
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Then π?(s) = −K?
γs and π̄?(s) = π̃?(s) = −K?

1s, where K?
1 = limγ→1K

?
γ . We then

consider a linear deterministic model:

s+ =Âs+ B̂a, (35)

and an undiscounted OCP with the following stage cost, defined according to Equation (11b)
as:

L̂(s,a) = Q?(s,a)− V ?(ŝ+) (36)

(33)
=

[
s
a

]> [
T + γA>SA N + γA>SB
N> + γB>SA R+ γB>SB

] [
s
a

]

− (Âs+ B̂a)>S(Âs+ B̂a) :=

[
s
a

]> [
T̂ N̂

N̂> R̂

] [
s
a

]
.

The Riccati equations for the undiscounted problem with the model (35) read as:

T̂ + Â>ŜÂ = Ŝ + (N̂ + Â>ŜB̂)
(
K̂?
)>

, (37a)

(R̂+ B̂>ŜB̂)K̂? = N̂> + B̂>ŜÂ. (37b)

with the optimal policy π̂?∞(s) = −K̂?s and the optimal value function V̂ ?∞(s) = s>Ŝs.
From (36), we have:

T + γA>SA− Â>SÂ = T̂ , (38a)

N + γA>SB − Â>SB̂ = N̂ , (38b)

R+ γB>SB − B̂>SB̂ = R̂. (38c)

Equivalently, this entails that T̂ , N̂ and R̂ must satisfy

T̂ + Â>SÂ = T + γA>SA, (39a)

N̂ + Â>SB̂ = N + γA>SB, (39b)

R̂+ B̂>SB̂ = R+ γB>SB. (39c)

Then:

T̂ + Â>SÂ
(39a)

= T + γA>SA
(34a)

= S+ (40)

S(N + γA>SB)
(
K?
γ

)> (39b)
= S + (N̂ + Â>SB̂)

(
K?
γ

)>
,

and

(R̂+ B̂>SB̂)K?
γ

(39c)
= (R+ γB>SB)K?

γ (41)

(34b)
= N> + γB>SA

(39b)
= N̂ + Â>SB̂.

Equations (40) and (41) show that Ŝ = S and K̂? = K?
γ satisfy the undiscounted Riccati

equations (37). Then it reads that π?(s) = π̂?∞(s) and V ?(s) = V̂ ?∞(s) + v̂∞.
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Figure 1: The blue area shows all Â and B̂ in the linear model such that the resulting trajectory
and optimal value function remain bounded for the given optimal policy π?(s) = −K?

γs.

5.1 Satisfying the assumptions

Regarding Assumption 1, the value function will remain bounded in the finite horizon predic-
tion for every bounded initial condition s0 and every linear model in form (35) for a given
control policy π?(s) = −K?

γs or π̄?(s) = π̃?(s) = −K?
1s. For Assumption 2, the linear

model matrices Â and B̂ must be chosen such that ρ(Â− B̂K?
γ) ≤ 1 in order to guarantee

boundedness of the optimal value function (33). For instance, for a scalar dynamics, the
locus of Â and B̂ is shown in Figure 1. Inspired by this example, we ought to point out here
that for linear systems Assumption 1 is automatically obtained if the model is stabilized by
the optimal policy, though the converse might not be true (e.g., if the cost is 0). Note that,
the systems without constraint satisfying Assumption 1 is fairly straightforward while in the
presence of the system constraints, the model also must not violate those constraints. To
satisfy Assumption 2, a model must be adopted whose trajectory does not diverge under the
optimal policy of the real system and satisfy the system constraint. It is clear that the closer
the model is to the real system the more likely it is to satisfy this assumption. This model can
be obtained based on offline system identification. In [23], the authors proposed to use robust
MPC in order to ensure constraint satisfaction. A deeper discussion of these assumptions can
be found in [10] and [16].

6 Numerical Examples

6.1 Non-quadratic stage cost

In this example, we provide a benchmark optimal investment problem with a non-quadratic
stage cost. Consider the following dynamics and stage cost [24]:

sk+1 = ak , `(s, a) = − ln(Asα − a), (42)
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Figure 2: (Left:) Optimal value functions (Right:) and optimal policy resulting from the
discounted real system and undiscounted MPC scheme with the wrong model.

where A and 0 < α < 1 are given constants. It is known that for the discount factor γ,
the optimal value and policy functions are V ?(s) = B + C ln(s) and π?(s) = γαAsα,
where [25]:

B =
ln((1− αγ)A) + γα

1−γα ln(αγA)

γ − 1
, C =

α

αγ − 1
. (43)

We then consider a model of the dynamics with ŝk+1 = µâk and, based on this model,
we construct a finite-horizon undiscounted MPC with the costs according Equation (11) in
Theorem 1 and N = 10. In this example we have considered A = 5, α = 0.34, µ = 0.8 and
γ = 0.9. Figure 2 compares the optimal value and policy functions from the discounted real
system (42) and from the MPC scheme with a wrong model. As predicted by Theorem 1,
one can see that they match perfectly. Note that the results are valid for every discount factor
0 < γ < 1, every horizon length and for other values of the constants A, α, and µ.

6.2 Inverted pendulum with process noise

We consider the following discrete-time stochastic dynamics, representing an inverted pendu-
lum with a random support excitation:

sk+1 = sk +

[
sk(2)

( gl + ξ) sin(sk(1))

]
δt+

[
0
δt
ml2

]
ak (44)

where g = 9.81, l = 0.3, m = 0.5 and δt = 0.1 are constants representing the gravity, mass,
length and the sampling time of the discrete dynamics. Disturbance ξ ∼ U [−0.5, 0.5] has a
uniform distribution and sk := [sk(1), sk(2)]> is the system state and ak is the system input.
We consider `(s,a) = s>s+ a2 as a stage cost with the discount factor γ = 0.95. We first
aim to find an approximate solution for the optimal policy and the optimal value functions
using Dynamic Programming (DP). We consider the state constraints −1 ≤ sk(1) ≤ 1,
−1 ≤ sk(2) ≤ 1 and the input constraint −0.8 ≤ ak ≤ 0.8. Figure 3 shows the optimal value
function and the optimal policy function resulting from DP for the discounted infinite-horizon
MDP.
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Figure 3: Optimal Value (left) and policy (right) functions resulting from ADP.

We build an undiscounted finite-horizon OCP with a wrong model in order to capture the
optimal value and the optimal policy functions of the discounted infinite horizon MDP. To do
this, we consider an MPC scheme with a deterministic linearized form of the dynamics as a
model of the real system as follows:

ŝk+1 = fθ(ŝk, âk) = ŝk +

[
ŝk(2)
g
θl
ŝk(1)

]
δt+

[
0
δt
mθ2l

]
âk (45)

where ŝk := [ŝk(1), ŝk(2)]> and âk are the model state and input. Moreover, we consider
an uncertain l with a adjustable parameter θl, with an initial value 0.25. We consider the
parameterized MPC scheme with the horizon length N = 10 and the following parameterized
quadratic stage and terminal cost:

Tθ(s) = s>Gs, Lθ(s,a) =

[
s
a

]>
H

[
s
a

]
(46)

where G and H are parametric positive definite matrices. Then the parameters vector θ
gathers all the adjustable parameters as θ = {θl, G, H}. We use the Q-learning method
in order to update the parameters θ to achieve the optimal solutions of the real system and
improve the closed-loop performance. Figure 4 shows the difference between the MPC value
V̂ θN and policy π̂θN functions with their optimal solutions computed by DP. The blue and
red surfaces represent this difference at the beginning of the learning and after 500 learning
steps, respectively. As it can be seen, the results are getting closer to zero as the learning
proceeds. Note that the stage and terminal costs yielding a perfect match of V ? and π?, as per
Theorem 1, do not have a quadratic form, hence the selected MPC formulation cannot capture
them exactly. The green surfaces in Figure 4 have been obtained by computing these stage and
terminal costs numerically and shows the corresponding V̂ ?N − V ? and π̂?N −π?. As expected
the difference is zero, modulo tiny numerical inaccuracies.

Finally, Figure 5 illustrates the closed-loop performance of the system under the MPC policy
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Figure 4: The difference between the MPC based parameterized value (left)\policy (right) and
their optimal solutions for the beginning of the learning (blue) and after 500 learning steps
(red) and the exact cost modification from theorem 1 (green).

Figure 5: The MPC-based value function V̂ θN (s0) during the learning.

π̂θN . As the closed loop cost decreases, this demonstrates that RL can be effective in tuning
the MPC parameters so as to achieve the best closed-loop performance.

6.3 Learning based MPC: Tracking stage cost

In this section, we consider the cart-pendulum balancing problem shown in Figure 6 in order
to illustrate the proposed method in a constrained tracking problem. The dynamics are given
by:

(M +m)ẍ+
1

2
mlφ̈ cosφ =

1

2
mlφ̇2 sinφ+ u, (47a)

1

3
ml2φ̈+

1

2
mlẍ cosφ = −1

2
mgl sinφ, (47b)

where M and m are the cart mass and pendulum mass, respectively, l is the pendulum length
and φ is its angle from the vertical axis. Force u is the control input, x is the cart displacement
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m, l

x

M

u

gφ

Figure 6: The cart-pendulum system. We use M = 0.5kg, m = 0.2kg, l = 0.3m and
g = 9.8m/s2 for the simulation.

Figure 7: The closed-loop performance of the MPC scheme over RL-steps.

and g is gravity. We use the Runge-Kutta 4th-order method to discretize (47) with a sampling
time dt = 0.1s and cast it as s+ = f(s,a) + ξ, where s = [x, ẋ, φ, φ̇]> is the state, a = u is
the input, ξ is a Gaussian noise and f is a nonlinear function representing (47) in discrete time.
We consider the state constraint x ≥ 0, discount factor γ = 0.95 and the following MDP stage
cost to stabilize the system at the origin while penalizing the system constraint:

`(s,a) =

[
s
a

]> [
I4 0
0 0.01

] [
s
a

]
+ λmax(−x, 0), (48)

where λ is a large constant value introduced to model the state constraint as a soft constraint.
In the MPC scheme, we use the linear model s+ = Âs + B̂a obtained by linearizing
f at the origin. We provide a parametrized quadratic stage and terminal cost and select
prediction horizon N = 20. We use the deterministic policy gradient method to minimize the
performance function J(θ) := Es0 [V̂ θN (s0)], and we run a simulation for 1000 learning steps
of the policy gradient method. Figure 7 shows the value function over the learning steps for a
fixed initial state. This illustrates that RL successfully manages to reduce J throughout the
iterates, therefore tuning MPC as desired.

Figure 8 shows the states and input trajectories of the real system corresponding to the 1000th

learning step of the policy gradient method. The MPC scheme with the positive definite stage
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Figure 8: States and input trajectories of the real system for the last learning step.

cost and other stability conditions in the terminal cost, terminal constraint is able to deliver
the stabilizing policy for the closed-loop system for the small enough model error [9]. Note
that the terminal cost and constraint conditions can be relaxed for the large enough MPC
horizon [26]. Figure 9 compares the state constraint violation for x ≥ 0 in the first and the
last (1000th) learning step. As one can see, RL reduces the state constraint violation. Note
that, we have used a common MPC formulation as (27) in this example. However, one can use
robust MPC to avoid constraint violation as shown in [23].

6.4 Learning based MPC: Economic stage cost

In this example, we investigate an economic cost in the real system with bias optimality
criterion. We use a parameterized MPC scheme with a parameterized storage function as
a function approximator in the Q-learning algorithm. Continuously Stirred Tank Reactor
(CSTR) is a common ideal reactor in chemical engineering, usually used for liquid-phase or
multiphase reactions with fairly high reaction rates. The CSTR nonlinear dynamics can be
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Figure 9: Violation of the state constraint x ≥ 0 in the first step (red) and the last step (blue).

written as follows (see [27]):

ĊA =
F

VR
(CA0 − CA)− k0e−E/RTC2

A (49)

Ṫ =
F

VR
(T0 − T )− ∆Hk0

ρRCp
e−E/RTC2

A +
q

ρRCpVR
,

where T denotes the temperature of the reactor contents, CA is the concentration of A in
the reactor, F is the flow rate, and q is the heat rate. The remaining notation definitions and
process parameter values are given in e.g., [28]. Then s = [CA , T ]> and a = [F , q]> are the
state and input of the system, respectively. The input a must satisfy the following inequality:

[0 , −2e5]> ≤ a ≤ [10 , 2e5]> (50)

An economic stage cost is defined as follows:

`(s,a) = −η F (CA0 − CA)︸ ︷︷ ︸
:=r

+βq (51)

where η and β are positive constants, and r is the production rate. This cost maximizes the
production rate and minimizes the energy consumption of the production (the second term).
We consider η = 1.7e4 and β = 1 for the simulation. Sampling time 0.02h is used to discretize
the system (49). We use an MPC scheme with a neural network-based storage function and
parameterized stage cost and terminal cost and we denote the adjustable parameters by θ.
Then we use Q-learning in order to update the parameters θ. Figure 10 (left) illustrates the
value function V̂ θN (s0). It can be seen that the parameterized value function is decreasing
during the learning. Figure 10 (right) shows the convergence of the parameters.

7 Conclusion

In this paper, we showed that a finite-horizon OCP can capture the optimal policy and value
functions of any MDPs with either discounted or undiscounted cost even if we use an inexact
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Figure 10: (Left:) The MPC-based value function V̂ θN (s0) during the learning .(Right:)
Convergence of the norm of the parameters during the Q-learning steps.

model in the OCP. We showed that an MPC scheme can be interpreted as a particular case
of the OCP where we use a deterministic model to avoid computational complexity. In
practice, we proposed the use of a parameterized MPC scheme to provide a structured function
approximator for the RL techniques. RL algorithms then can be used in order to tune the
MPC parameters to achieve the best closed-loop performance. We verified the theorems in an
LQR case and investigated some nonlinear examples to illustrate the efficiency of the method
numerically.
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Abstract: In this paper, we address the chance-constrained safe Reinforcement Learning
(RL) problem using the function approximators based on Stochastic Model Predictive Control
(SMPC) and Distributionally Robust Model Predictive Control (DRMPC). We use Conditional
Value at Risk (CVaR) to measure the probability of constraint violation and safety. In order to
provide a safe policy by construction, we first propose using parameterized nonlinear DRMPC
at each time step. DRMPC optimizes a finite-horizon cost function subject to the worst-
case constraint violation in an ambiguity set. We use a statistical ball around the empirical
distribution with a radius measured by the Wasserstein metric as the ambiguity set. Unlike
the sample average approximation SMPC, DRMPC provides a probabilistic guarantee of the
out-of-sample risk and requires lower samples from the disturbance. Then the Q-learning
method is used to optimize the parameters in the DRMPC to achieve the best closed-loop
performance. Wheeled Mobile Robot (WMR) path planning with obstacle avoidance will be
considered to illustrate the efficiency of the proposed method.

Keywords: Safe Reinforcement Learning, Model Predictive Control, Distributionally Robust
Optimization, Chance constraint, Conditional Value at Risk, Q-learning

1 Introduction

Enforcing safety in the presence of uncertainty and stochasticity of nonlinear dynamical
systems is a challenging task [1]. Chance constraints are a common way of mathematical
modeling of safety that requires a user-specified upper bound for the probability of the
constraint violation [2]. However, it is challenging to handle a chance constraint from the
computational point of view due to its nonconvexity. Conditional Value at Risk (CVaR) [3] is
a convex risk measure that has received considerable attention in decision-making problems,
such as Markov Decision Processes (MDPs) [4, 5].

The theory of stochastic optimal control typically assumes that the probability distribution of
the disturbance is fully known. However, this assumption may not hold in many real-world
applications, and one needs to estimate the probability distribution. However, stochastic
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optimization is challenging to solve, especially for non-convex problems [6]. In data-driven
stochastic optimization, Sample Average Approximation (SAA) is a fundamental way to
estimate the probability distribution of the random variables [7]. SAA typically needs quite an
extensive data set to fulfill risk constraints accurately. Distributionally Robust Optimization
(DRO) is an alternative that overcomes this problem. DRO tackles stochastic optimization by
considering the worst-case distribution in an ambiguity set. There are several ways to con-
struct ambiguity sets, e.g., moment ambiguity [8], Prohorov-based ball [9], Kullback–Leibler
divergence-based ball [10] and Wasserstein-based ball [11]. The Wasserstein-based ball is a
statistical ball in the space of probability distributions around the empirical distribution such
that the radius of this ball is measured using Wasserstein distance. Then the radius of the ball
represents the conservatism of the DRO problem. Unlike the SAA method, Wasserstein DRO
provides a probabilistic guarantee based on finite samples in a tractable formulation [12].

Model Predictive Control (MPC) is an optimization-based control approach operating with
a receding horizon [13]. MPC employs a (possibly inaccurate) model of the real system
dynamics to produce an input-state sequence over a given finite horizon. The resulting
trajectory optimizes a given cost function while explicitly enforcing the system constraints. The
optimization problem is solved at each time instance based on the current system state, and the
first input of the optimal solution is applied to the system. Due to the finite-horizon scheme and
(possibly) model mismatch, MPC usually delivers a reasonable but suboptimal approximation
of the optimal policy. This paper uses the DRO in the chance-constrained nonlinear MPC.
This approach has been known as Distributionally Robust MPC (DRMPC) [14].

Reinforcement Learning (RL) is a technique for solving problems involving MDPs. RL
typically requires a function approximator to approximate the optimal policy, value function,
or action-value function. For instance, Q-learning has been used in [15] for unmanned vehicle
applications. In [16], the comparison of MPC and RL has been studied in the distributed
setting. Recently, MPC has been used as a structured function approximator for RL algorithms.
In this method, a parameterized MPC scheme is used in order to generate policy and/or value
functions of the real system. Then RL algorithms can be used to adjust the MPC parameters to
achieve the best closed-loop performance. The combination of MPC and RL has been proposed
and justified in [17], where it is shown that an MPC scheme can theoretically generate the
optimal policy and value functions for a given system even if the MPC model is inaccurate.
Recent research have further developed and demonstrated this approach [18, 19].

Related works. In [14], the authors have proposed to use DRMPC to utilize its benefits for
motion control. A DRMPC has been applied to the multi-area dynamic optimal power flow in
[20] to better hedge the uncertainties of distributed generation and loads. For the Gaussian
processes, a learning-based DRMPC has been proposed in [21]. A learning-Based DRMPC has
been developed for chance-constrained Markovian switching systems with unknown switching
probabilities in [22]. The authors have shown that this framework provides mean-square
stability of the system without requiring explicit knowledge of the transition probabilities. In
[23], a DRO has been proposed for chance-constrained data-enabled predictive control with
stochastic linear time-invariant systems. In [24], a DRMPC algorithm has been presented for
spacecraft circular orbital rendezvous and docking problems. A soft-constrained DRMPC has
been proposed for linear systems in [25].
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A robust MPC scheme has been used as a function approximator for safe RL in [26]. Control
Barrier Functions (CBF) have been used in the safe RL context in [27]. A safe RL-CBF frame-
work has been developed to guarantee safety and improve exploration in [28]. Probabilistic
safety in learning-based control methods has been provided in [29] based on probabilis-
tic model predictive safety certification. In [30], the safe RL problem is formulated as a
constrained MDP. Then a Lyapunov approach has been proposed to solve it.

Contributions. There are a limited number of data from uncertainties and disturbances
available in many real stochastic systems. Therefore, traditional methods such as SAA cannot
accurately estimate the distribution of these random variables. An accurate distribution may
be more important for safety-critical systems to design a safe controller for the system. In this
paper, we propose to use a parameterized nonlinear DRMPC based on the Wasserstein metric
as a function approximator for RL in order to generate a family of policies that are safe by
construction. DRMPC is subject to the chance constraint, approximated by the CVaR risk
measure. We reformulate Wasserstein DRMPC as a tractable optimization. Then we use the
Q-learning technique to optimize the parameters of the DRMPC scheme to achieve the best
closed-loop performance among the safe policies.

Organization. The paper is structured as follows. Section 2 details safe RL and chance
constraints. Section 3 provides safe policies based on the SMPC scheme, evaluated using the
SAA method. Moreover, we formulate CVaR as a convex approximator of chance constraints.
Section 4 formulates a tractable DRMPC scheme and provides out-of-sample guarantees.
Section 5 details Q-learning as an efficient way to optimize the parameters of the DRMPC
scheme. Section 6 provides a numerical simulation and section 7 delivers a conclusion.

Notation. We denote the set of real numbers, non-negative real numbers, extended real
numbers, non-negative integers, and natural numbers by R, R≥0, R̄ := R ∪ {−∞,∞}, Z
and N, respectively, while Ii:j refers to the set {i, i + 1, . . . , j}. Vectors in Rn are denoted
by the bold letters, e.g., a. ⟨x,y⟩ := x⊤y denotes the usual inner product for given vectors
x,y. A function f : Rn → R̄ is proper if f(x) < +∞ for at least one x and f(x) > −∞ for
every x in Rn. The conjugate function of a function f : Rn → R is denoted by [f ]⋆(y) :=
supx∈Rn⟨x,y⟩ − f(x). Support function of set W is defined as ΞW(x) := sup ∈W⟨x,y⟩.
For scalar a, we define (a)+ := max{a, 0}.

2 Safe Reinforcement Learning

In this section, we formulate safe Reinforcement Learning (RL) using chance constraints. Let
us consider the following (possibly) nonlinear discrete-time stochastic dynamical system:

sk+1 = f(sk,ak,wk) (1)

where k ∈ Z is the time index, sk ∈ X ⊆ Rn is the system state, ak ∈ U ⊆ Rm is the control
input, wk ∈ W ⊂ Rd is a random variable representing the stochastic disturbance of the
system and f : Rn+m+d → Rn is a Borel-measurable function. Note that the notation in (1)
is standard in the literature of control, while the RL literature typically uses the conditional
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probability notation P[sk+1|sk,ak] for the state transition. We then make the following
assumption onW.

Assumption 1. The disturbance setW is convex and closed.

We will use this assumption in the rest of the paper to reformulate DRO as finite convex
programming.

A deterministic policy π : X→ U maps the state space to the input space and determines how
to choose input ak at each state sk. We aim to find the optimal safe policy π⋆, given by the
solution of:

π⋆ ∈ argmin
π

Es0∼µ0 [V
π(s0)] (2)

where µ0 is the probability distribution of the initial state s0 and V π : X → R is the value
function associated with the policy π, defined as follows:

V π(s0) :=Ew

[ ∞∑

k=0

γkL(sk,π(sk))

]
, (3a)

s.t. sk+1 = f(sk,π(sk),wk), ∀k ∈ Z (3b)
P[sk+i ∈ S|sk] ≥ α, ∀i ∈ I1:I , ∀k ∈ Z (3c)

where L : X × U → R is the stage cost, γ ∈ (0, 1] is the discount factor, S ⊆ X is a safe
set and α ∈ (0, 1) is a user-chosen confidence level. The chance-constraint (3c) guarantees
probabilistic safety of state trajectories sk+i for a finite-horizon with length I ∈ N given
state sk at each time instance k. In fact, we generalize the common chance constraint in the
literature not only to be satisfied for one step ahead but also to be satisfied for a finite horizon
ahead at every time instance. This paper provides such policies using both an SMPC scheme
and a DRMPC scheme with horizon I .

The safe set S can be defined as follows:

S = {s ∈ X|hj(s) ≤ 0, ∀j ∈ I1:J} (4)

where hj : X → R specifies a state constraint and J is the number of constraints. For the
sake of simplicity and in order to avoid the complexity of joint constraints, we consider the
following individual constraint:

P[max
j
hj(sk+i) ≤ 0|sk] ≥ α, ∀i ∈ I1:I (5)

Then one can verify that using (4), (5) implies (3c).

Assumption 2. Each function −hj is proper, convex and lower semi-continuous functions.

In the next section, we will use an SMPC scheme in order to provide a family of safe policies.
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3 Stochastic MPC-based Policy

In the RL context, we consider a family of the parameterized policy given byπθ with parameter
vector θ ∈ Rp and seek the best parameters θ⋆ that provide the best closed-loop performance.
More specifically, (2) is reformulated as:

θ⋆ ∈ argmin
θ

Es0∼µ0 [V
πθ (s0)] (6)

Instead of solving (3) directly, we use a function approximator based on the MPC scheme to
extract policy πθ that satisfies (3c) by construction for all parameters θ.

More specifically, consider the following parameterized SMPC at time instant k:

min
a,s

E

[
Tθ(sI+k|k) +

I−1∑

i=0

lθ(si+k|k,ai+k|k)
∣∣∣ sk|k

]
, (7a)

s.t. si+k+1|k = f(si+k|k,ai+k|k,wi), ∀i ∈ I0:I−1 (7b)
P[max

j
hj(sk+i|k) ≤ 0] ≥ α, ∀i ∈ I1:I (7c)

ai+k|k ∈ U, sk|k = sk, (7d)

where Tθ : X → R and lθ : X × U → R is the parameterized terminal cost and stage
cost, respectively. This parameterization allows one to provide a family of policies that
are safe for all θ ∈ Rp. Then by tuning the parameters θ and reshaping the cost function
and MPC-scheme, one can achieve the best closed-loop performance. Decision variables
a = {ak|k, . . . ,aI+k−1|k} and s = {sk|k, . . . , sI+k|k} are the input and state sequence,
respectively. Then the parameterized policy πθ at time instance k is extracted as follows:

πSMPC
θ (sk) = a⋆

k|k(θ, sk) (8)

where a⋆
k|k is the solution of SMPC (7) corresponding to the first input ak|k.

The use of parameterized MPC scheme as a function approximator in order to capture the
optimal policy and value function was proposed and justified in [17]. Moreover, the authors
showed that RL methods such as Q-learning and policy gradient can be used in order to adjust
the MPC scheme parameters and achieve the best closed-loop performance.

We ought to stress here that MPC scheme (7) provides a family of safe policy for all parameters
θ based on the best state-input sequence that minimizes a finite-horizon parameterized cost
function of an MPC scheme. Obviously, a richer parameterization in the stage cost and
terminal cost provides a more extensive set of policies. Then tuning the parameters θ leads us
to get the optimal policy among the provided policy families. We will detail Q-learning as a
practical way of adjusting the parameters in Section 5.

In order to tackle the chance constraint (7c), a natural measure of risk is value-at-risk VaR.
For a random variable r and confidence level α, VaRα is defined as follows:

VaRα(r) := min{η ∈ R |P(r ≤ η) ≥ α} (9)
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In fact, VaR represents the worst-case loss with probability α. Then one can show that:

VaRα(r) ≤ 0⇔ P(r ≤ 0) ≥ α (10)

Unfortunately, VaR is, in general, non-convex, and optimizing models involving VaR are
numerically intractable for high-dimensional, non-normal distributions.

An alternative measure of risk is conditional value-at-risk CVaR, defined as follows:

CVaRα(r) := min
η∈R

E
[
η +

(r − η)+
1− α

]
(11)

Indeed, CVaR is a coherent risk measure that satisfies conditions such as convexity and
monotonicity [3]. Risk management with CVaR functions can be done quite efficiently. CVaR
can be formulated with convex and linear programming methods, while VaR is comparably
complicated to optimize. Detailed benefits and concepts of CVaR can be found in, e.g., [31].

It can be shown that for α→ 1, CVaR can approximate VaR more accurately. i.e.:

lim
α→1

CVaRα(r)−VaRα(r) = 0 . (12)

Note that in engineering applications, we often are interested in a very low probability of
failure (α→ 1). Then using CVaR, with the numerical and mathematical benefits, imposes a
very low conservative on the problem. Using CVaR, MPC (7) can be approximated as follows:

min
a,s

E

[
Tθ(sI+k|k) +

I−1∑

i=0

lθ(si+k|k,ai+k|k)
∣∣∣ sk|k

]
, (13a)

s.t. si+k+1|k = f(si+k|k,ai+k|k,wi), ∀i ∈ I0:I−1 (13b)
CVaRα(max

j
hj(sk+i|k)) ≤ 0, ∀i ∈ I1:I (13c)

ai+k|k ∈ U, sk|k = sk, (13d)

At each time k we first consider Ns , independent and identically distributed (i.i.d.) samples
of the disturbance wi and we denote these samples by wm

i , i ∈ I1:I m ∈ I1:N . Then Ns

scenarios are described as follows:

smk+i|k = f(smk+i−1|k,a
m
k+i−1|k,w

m
i ) (14)

where smk+i|k and am
k+i|k are the predicted state and input formth scenario at time k+ i given

time k. We then define auxiliary variables xmi for i ∈ I1:I ,m ∈ I1:N 
in order to approximate

CVaR, in (13c), in the following tractable Linear Programming (LP), ∀i ∈ I1:I :

CVaRα(max
j
hj(sk+i|k)) ≈ (15a)

min
ηi,xi

ηi +
1

(1− α)Ns

N ∑

m=1

xmi (15b)

s.t. max
j
hj(s

m
k+i|k)− ηi ≤ xmi , ∀m ∈ I1:N (15c)

0 ≤ xmi , ∀m ∈ I1:N (15d)
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where xi = {xmi }N 
m=1 and ηi ∈ R. In [32], it has been shown that for Ns → ∞ the

approximation in (15) will converge to its exact value with probability one.

Substitution of (15) into (13) and using SAA, SMPC (13) reads as:

min
s,a,η,x

1

Ns

N ∑

m=1

(
Tθ(s

m
k+I|k) +

I−1∑

i=0

lθ(s
m
k+i|k,a

m
k+i|k)

)
(16a)

s.t. smk+i|k = f(smk+i−1|k,a
m
k+i−1|k,w

m
i ),

∀m ∈ I1:N 
, ∀i ∈ I1:I (16b)

ηi +
1

(1− α)Ns

N ∑

m=1

xmi ≤ 0, ∀i ∈ I1:I (16c)

max
j
hj(s

m
k+i|k)− ηi ≤ xmi , ∀m ∈ I1:N 

, ∀i ∈ I1:I (16d)

am
i+k|k ∈ U, 0 ≤ xmi , smk|k = sk,

∀m ∈ I1:N 
, ∀i ∈ I1:I (16e)

where η = {ηi}Ii=1, x = {xi}Ii=1.

From a theoretical point of view, SMPC (16) requiresNs →∞ in order to provide an accurate
approximation of the original MPC (13). In the next section, we will introduce DRMPC
scheme to overcome this problem.

4 Distributionally Robust MPC-based Policy

In order to tackle the limited distributional information issue with finite-many sampling, we use
Distributionally Robust Optimization (DRO) in the chance constraint of the MPC scheme. In
this section, we suppress the subscript i, denoting the horizon index, to simplify the notations.

The core idea of the theoretical developments in this section was proposed in [12] for general
optimization problems. For the sake of clarity, in the context of learning-based MPC, we detail
these developments in this section.

We use the Wasserstein metric to define an ambiguity set as a ball around the empirical
distribution P̂ . Then the optimization will be solved with respect to the worst-case distribution
in the ambiguity set. Empirical distribution P̂ , evaluated fromNs i.i.d. samples {wm}N 

m=1, is
defined as follows:

P̂ =
1

Ns

N ∑

m=1

δwm (17)

where δw is the Dirac measure concentrated at w. Then we define the Wasserstein ball D
around the empirical distribution P̂ as the ambiguity set as follows:

D := {P ∈ P(W) | dW(P , P̂) ≤ ϵ} (18)
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where P(W) denotes the set of Borel probability measures on the support W, ϵ ≥ 0 is the
radius of the ball and dW : P(W) × P(W) → R≥0 is the Wasserstein metric, defined as
follows:

dW(P1,P2) := min
κ∈P(W2)

{∫

W2

∥w1 −w2∥dκ(w1,w2)

∣∣∣Πlκ = Pl, l = 1, 2

}
(19)

for all distributions P1,P2 ∈ P(W) where Πlκ denotes the lth marginal of the transportation
plan κ for l = 1, 2 [33]. Indeed, the Wasserstein distance of P1 and P2 can be interpreted
as the minimum transportation cost for moving the probability mass from P1 to P2. Then
distributionally robust optimization minimizes the worst-case cost over all the distributions in
the ambiguity set. Distributionally robust constraint (13c) can be written as follows:

sup
P∈D

CVaRP
α (max

j
hj(s)) ≤ 0 (20)

For the sake of simplicity, we define a new variable c := maxj hj(s). We then recall the
definition of CVaR:

CVaRP
α (c) = min

η
EP

[
η +

1

1− α (c− η)+
]

(21)

We then use the minimax inequality for (20):

sup
P∈D

CVaRP
α (c) ≤min

η
sup
P∈D

EP
[
η +

1

1− α (c− η)+
]

=min
η
η +

1

1− α sup
P∈D

EP [(c− η)+] (22)

on the other hand:

sup
P∈D

EP [(c− η)+] = sup
P∈P(W)

EP [(c− η)+]

s.t. dW(P , P̂) ≤ ϵ (23)

then using the Lagrangian function for the constrained optimization (23):

sup
P∈D

EP [(c− η)+] =

sup
P∈P(W)

inf
λ≥0

{
EP [(c− η)+] + λ(ϵ− dW(P , P̂))

}
(24)
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where λ ∈ R is the Lagrange multiplier. Using Theorem 1 in [34]:

sup
P∈P(W)

inf
λ≥0

{
EP [(c− η)+] + λ(ϵ− dW(P , P̂))

}
(25)

= inf
λ≥0

{
λϵ+ sup

P∈P(W)

{EP [(c− η)+]− λdW(P , P̂)}
}

= inf
λ≥0

{
λϵ+

1

Ns

N ∑

m=1

sup
w∈W

{
(c− η)+ − λ∥w −wm∥

}}

In fact, the first equality in (25) follows from the strong duality that has been shown in [34],
and the second equality holds because P(W) contains all the Dirac distributions supported on
W.

Introducing a new auxiliary variable ym, we can rewrite (25) as follows:

inf
λ, 

λϵ+
1

Ns

N ∑

m=1

ym (26a)

s.t. sup
w∈W
{(c− η)+ − λ∥w −wm∥} ≤ ym, ∀m ∈ I1:N 

(26b)

0 ≤ λ (26c)

where y = {ym}N 
m=1. From the definition of dual norm, we decompose the expression inside

(·)+ in constraint (26b) as follows [12]:

sup
w∈W

{
min

 ξm1  ?≤λ
−⟨ξm1 ,w −wm⟩

}
≤ ym (27a)

sup
w∈W

{
min

 ξm2  ?≤λ
−⟨ξm2 ,w −wm⟩+ c

}
− η ≤ ym (27b)

where ∥·∥⋆:= sup ξ ≤1 ⟨·, ξ⟩ is the dual norm. Since {ξ | ∥ξ∥⋆≤ λ} is a convex set, we use
the minimax inequality, and (27) reads:

min
 ξm1  ?≤λ

sup
w∈W
{− ⟨ξm1 ,w −wm⟩} ≤ ym (28a)

min
 ξm2  ?≤λ

sup
w∈W
{− ⟨ξm2 ,w −wm⟩+ c} − η ≤ ym (28b)

Then optimization (26) can be written as follows:

inf
λ, ,ξ1,ξ2

λϵ+
1

Ns

N ∑

m=1

ym

s.t. sup
w∈W
{− ⟨ξm1 ,w −wm⟩} ≤ ym, ∀m ∈ I1:N (29a)

sup
w∈W
{− ⟨ξm2 ,w −wm⟩+ c} − η ≤ ym, ∀m ∈ I1:N 

(29b)

∥ξm1 ∥⋆≤ λ, ∥ξm2 ∥⋆≤ λ, ∀m ∈ I1:N (29c)
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where ξl = {ξml }N 
m=1 for l = 1, 2. Changing ξml to −ξml , we have:

inf
λ,y,ξ1,ξ2,v

λϵ+
1

Ns

N ∑

m=1

ym (30a)

s.t. − ⟨ξm1 ,wm⟩+ ΞW(ξm1 ) ≤ ym, ∀m ∈ I1:N 
(30b)

[−c]⋆(ξm2 − vm) + ΞW(vm)− ⟨ξm2 ,wm⟩
− η ≤ ym, ∀m ∈ I1:N 

(30c)
∥ξm1 ∥⋆≤ λ, ∥ξm2 ∥⋆≤ λ, ∀m ∈ I1:N 

(30d)

where [−c]⋆ is the conjugate of−c that is calculated at ξm2 −vm. Note that under assumptions
1 and 2, (30) is a finite convex program [12]. Restoring the index i, the DRMPC scheme based
on the Wasserstein metric reads as follows:

min
s, a, η,
λ,  , ξ, v

1

Ns

N ∑

m=1

(
Tθ(s

m
k+I|k) +

I−1∑

i=0

lθ(s
m
k+i|k,a

m
k+i|k)

)
(31a)

s.t. smk+i|k = f(smk+i−1|k,a
m
k+i−1|k,w

m
i ),

∀m ∈ I1:N 
, ∀i ∈ I1:I (31b)

ηi +
1

1− α

[
λiϵi +

1

Ns

N ∑

m=1

ymi

]
≤ 0, ∀i ∈ I1:I (31c)

−
〈
ξmi,1,w

m
i

〉
+ ΞW(ξi,1) ≤ ymi ,

∀m ∈ I1:N 
, ∀i ∈ I1:I (31d)

[
−max

j
hj

]⋆
(ξmi,2 − vm

i ) + ΞW(vm
i ) (31e)

−
〈
ξmi,2,w

m
i

〉
− ηi ≤ ymi , ∀m ∈ I1:N 

, ∀i ∈ I1:I
∥ξmi,1∥⋆≤ λi, ∥ξmi,2∥⋆≤ λi, ∀m ∈ I1:N 

, ∀i ∈ I1:I (31f)

am
i+k|k ∈ U, smk|k = sk, ∀m ∈ I1:N 

, ∀i ∈ I1:I (31g)

where ξ = {ξi,1, ξi,2}Ii=0. Then the parameterized safe policy πDRMPC
θ based on DRMPC

scheme at time instance k is extracted as follows:

πDRMPC
θ (sk) = a⋆

k|k(θ, sk) (32)

where a⋆
k|k is solution of DRMPC (31) corresponding to the first input ak|k. Note that all the

optimal solutions of am
k|ks are identical since the random samples are generated based on the

first given state smk|k = sk and the uncertainty cannot be anticipated [35]. Then we select one
of the optimal solutions of am

k|ks as ak|k.
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4.1 out-of-sample guarantee

Unlike the SAA method, Wasserstein DRMPC provides a probabilistic guarantee on the
out-of-sample performance with finitely many samples. More specifically, let us consider the
following inequality:

CVaRP
α (max

j
hj(s

⋆
k+i|k)) ≤ 0 (33)

where s⋆k+i|k is the optimal solution of (31) and P is an unknown arbitrary distribution. Then
it is worth fulfilling inequality (33) with high probability, i.e.:

P
{
CVaRP

α (max
j
hj(s

⋆
k+i|k)) ≤ 0

}
≥ 1− β (34)

where β is a user-specified confidence level. It has been shown in [12], if the Wasserstein
radius ϵi is chosen as follows:

ϵi =





(
log(c1β

−1)
c2N 

) 1
max{d,2}

if Ns ≥ log(c1β
−1))

c2(
log(c1β

−1)
c2N 

) 1
a

if Ns <
log(c1β

−1))
c2

(35)

then (34) holds, where c1, c2 are positive constants. In fact, we have assumed that the measure
concentration inequality holds [36], i.e., B = EP [exp ∥w∥a] ≤ ∞ for a > 1 (Light-tailed
distribution), then c1, c2 depend on a,B and the disturbance dimension.

We must emphasize here that in practice, analysis and (probabilistic) finite sampling guarantees
are essential in the context of RL and stochastic optimization because, in practice, there is
typically limited access to real system data. This analysis can include various criteria in the
context of RL, such as convergence rate [37], regret analysis [38], and performance [39].

The next Proposition summarizes the theoretical development of this section.

Proposition 1. Under assumptions 1 and 2, DRMPC has a tractable reformulation as (31) and
the extracted policy πDRMPC

θ , based on finite Ns i.i.d. samples, satisfies (34) ∀k ∈ Z, ∀i ∈
I1:I , ∀θ ∈ Rp, for a user-specified β and α and any distributions P , if ϵi is selected from (35).

4.2 Feasibility pre-filtration

As discussed, satisfying a state-depend hard constraint with α = 1 is generally impossible.
The same problem exists when the required α is higher than the problem nature requirement.
This problem arises in solving (31) when no solution is found. This problem is known as the
infeasibility of optimization. A common way to solve the feasibility issue is to soften the
constraints using slack variables. The slack variables are positive decision variables that allow
inequalities to violate. However, the violation is penalized in the cost function.

A common way to use slack variables is by adding them to the original cost function. However,
in this case, finding proper positive coefficients is still challenging. Another way to use slack
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variables is to build an optimization as a pre-filtration to find the feasible slack variables and
then apply them to the original optimization problem. More specifically, we consider the
following optimization problem:

min
s, a, η, λ,  , ξ, v, σ

I∑

i=0

σ2
i (36a)

s.t. (31b)

ηi +
1

1− α

[
λiϵi +

1

Ns

N ∑

m=1

ymi

]
≤ σi,

0 ≤ σi, ∀i ∈ I1:I (36b)
(31d)− (31g) (36c)

with the optimal solutions σ⋆
i . We then replace constraint (31c) with the following constraint

∀i ∈ I1:I :

ηi +
1

1− α

[
λiϵi +

1

Ns

N ∑

m=1

ymi

]
≤ σ⋆

i (37)

Then the DRMPC scheme always has a feasible solution. Note that inverting the procedure of
obtaining DRMPC (31), we can see DRMPC (31) with the feasible constraint (37), equivalent
to the following robust constraint:

sup
P∈D

CVaRP
α (max

j
hj(s)) ≤ σ⋆

i (38)

while (20) may yield an infeasible solution. Note that DRMPC scheme provides a family
of safe policies πDRMPC

θ for all tuning parameters θ. Therefore, in the next stage, it is
necessary to update the parameters to achieve the best performance. The next section details
the Q-learning method as a practical way of updating the parameters θ to achieve the best
closed-loop performance.

5 Q-learning based on DRMPC scheme

Q-learning is a powerful, well-known, and popular method in the field of RL, whose use
is practical due to relatively low-cost computational efforts, especially in engineering and
economic applications [40]. In fact, Q-learning is a classical model-free RL algorithm that
tries to capture the optimal action-value function Qθ ≈ Q⋆ via tuning the parameters vector
θ where Qθ is the parameterized action-value function, and Q⋆ is the optimal action-value
function [41]. The optimal action-value function Q⋆ is defined as follows:

Q⋆(sk,ak) = L(sk,ak) + γmin
π

E[V π(sk+1)|sk,ak] (39)
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The parameterized action-value function Qθ(sk,ak) based on DRMPC scheme (31) can be
formulated as follows:

Qθ(sk,ak) = min
s, a, η, λ,  , ξ, v

(31a) (40a)

s.t. (31b), (37), (31d)− (31g) (40b)
ak|k = ak, (40c)

while the approximation of the value function Vθ can be extracted from (40) when constraint
(40c) is removed. Then one can verify that the MPC-based action-value function and value
function satisfy the fundamental Bellman equations [17]. Q-learning solves the following
Least Square (LS) problem:

min
θ

E
[
(Qθ(sk,ak)−Q⋆(sk,ak))

2
]
. (41)

In order to solve (41), Temporal-Difference (TD) method uses the following update rule for
the parameters θ at state sk [42]:

δk = L(sk,ak) + γVθ(sk+1)−Qθ(sk,ak) (42a)
θ ← θ + ζδk∇θQθ(sk,ak) (42b)

where the scalar ζ > 0 is the learning step-size, δk is labelled the TD error, and the input ak

is selected according to the corresponding parametric policy πDRMPC
θ (sk) with the possible

addition of small random exploration such that it preserves the safety. The gradient ∇θQθ

required in (42) can be obtained by a sensitivity analysis on the DRMPC scheme (40) as
detailed in [17] for generic MPC schemes.

In order to generate ak, we first add a small exploration noise to the policy, i.e.:

ae
k(θ, sk,ρk) = πDRMPC

θ (sk) + ρk (43)

where ρk ∈ E is a random variable providing the exploration. One can easily observe that
ae
k may not deliver a safe input. Therefore a safety filtration based on the DRMPC scheme

is needed to provide safe exploration, more specifically consider the following parametric
DRMPC scheme with the additional parameter ρk:

min
s, a, η, λ,  , ξ, v

∥ak|k − ae
k(θ, sk,ρk)∥ (44a)

s.t. (40b) (44b)

Then ak(θ, sk,ρk) = a⋆
k|k(θ, sk,ρk) delivers a safe input after exploration where a

⋆
k|k is the

optimal solution of (44) for the first input. Fig. 1 illustrates the safe exploration based on the
DRMPC scheme. DRMPC safe set is defined as follows:

DRMPCsafe set := {ak|k | ∃ s,a,η,λ,y, ξ,v : (40b)}
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In the policy gradient method, the projection technique results in a bias in the gradient of the
performance function [43]. Roughly speaking, this is because the safe exploration set may
not be a centered ball, as shown in fig. 1. We have proposed a robust MPC scheme in [44] to
solve the bias issue. The proposed method can be easily applied to the DRMPC scheme for
the policy gradient method, but applying it is out of the focus of the current work.

Fig.2 illustrates the proposed safe learning method using the DRMPC scheme.
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Figure 1: The illustration of the safe exploration for the Q-learning method in a 2-input
system. Safe exploration input ak ∈ safe exploration set, while ae

k ∈ Exploration set and
πDRMPC
θ (sk) ∈ DRMPC Safe set.

Remark 1. The proposed method can be applied to the general nonlinear stochastic dynamics
with an unknown distribution of stochasticity. Obviously, the computational efforts are
increased as the dimension and complexity of the dynamics grow.

Remark 2. In this paper, we do not focus on the convergence of the learning method. It is
well-known that under the mild assumptions, the Q-learning technique generates a sequence
of the parameters θ that converge to the parameters that best estimate the exact optimal
action-value function. Then the extracted policy is an optimal policy among the provided safe
policies. The convergence conditions for the Q-learning method can be found in, e.g., [45].

Remark 3. Closed-loop stability of the policy for the nominal model used in the MPC scheme
resulting from an MPC scheme is straightforward under some mild assumptions on the stage
cost and terminal cost and constraints. However, these conditions are not painless for general
stochastic systems and stochastic and robust MPC. This aspect is not the main scope of
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Figure 2: Schematics of the proposed safe RL using DRMPC scheme.
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Fig. 1. The illustration of the safe exploration for the Q-learning method in a
2-input system. Safe exploration input ak ∈ safe exploration set, while ae

k ∈
Exploration set and πDRMPC

θ (sk) ∈ DRMPC Safe set.

the following parametric DRMPC scheme with the additional
parameter ρk:

min
s, a, η, λ, y, ξ, v

‖ak|k − ae
k(θ, sk,ρk)‖ (44a)

s.t. (40b) (44b)

Then ak(θ, sk,ρk) = a?k|k(θ, sk,ρk) delivers a safe input
after exploration where a?k|k is the optimal solution of (44) for
the first input. Fig. 1 illustrates the safe exploration based on
the DRMPC scheme. DRMPC safe set is defined as follows:

DRMPC safe set := {ak|k | ∃s,a,η,λ,y, ξ,v : (40b)}

In the policy gradient method, the projection technique
results in a bias in the gradient of the performance function [43].
Roughly speaking, this is because the safe exploration set may
not be a centered ball, as shown in fig. 1. We have proposed
a robust MPC scheme in [44] to solve the bias issue. The
proposed method can be easily applied to the DRMPC scheme
for the policy gradient method, but applying it is out of the
focus of the current work.

Fig.2 illustrates the proposed safe learning method using
DRMPC scheme.

Remark 1. The proposed method can be applied to the general
nonlinear stochastic dynamics with an unknown distribution of
stochasticity. Obviously, the computational efforts are increased
as the dimension and complexity of the dynamics grow.

Remark 2. In this paper, we do not focus on the convergence
of the learning method. It is well-known that under the mild
assumptions, the Q-learning technique generates a sequence
of the parameters θ that converge to the parameters that best
estimate the exact optimal action-value function. Then the
extracted policy is an optimal policy among the provided safe
policies. The convergence conditions for the Q-learning method
can be found in, e.g., [45].

Remark 3. Closed-loop stability of the policy for the nominal
model used in the MPC scheme resulting from an MPC
scheme is straightforward under some mild assumptions on
the stage cost and terminal cost and constraints. However,
these conditions are not painless for general stochastic systems
and stochastic and robust MPC. This aspect is not the main
scope of the current work. However, in the functional space,
the closed-loop stability properties are recently addressed in
[46] for general stochastic systems (MDP).

Algorithm 1: Using DRMPC based Q-learning to
provide optimal safe policy.
Input :α, β, I, γ, parameterize lθ , Tθ

1 Initialize : s0,θ0
2 while θ converges do
3 for k=0,. . . , K (end of the mission) do
4 Initialize :smk|k = sk,
5 run feasibility pre-filtration (36) to get σ?i ,
6 run DRMPC (31) with the parameters θk and

relaxed constraint (37) to get safe policy
πDRMPC
θ (sk),

7 apply the safe exploration using (43) and (44)
to get the input ak,

8 apply the input ak to the dynamics (1) to get
sk+1,

9 update parameters θk+1 ← θk using
Q-learning technique, e.g., (42) (εis are among
the parameters),

10 Save the last parameters θ0 = θK+1,

11 end

The proposed approach has been summarized in Algorithm
1.

The next section provides a numerical case study for the
proposed method.

VI. NUMERICAL SIMULATION

In this section, we consider Wheeled Mobile Robot (WMR)
path planning while avoiding static obstacles. The stochastic
nonlinear dynamics can be considered as follows:

sk+1 =

te cos(φk) 0
te sin(φk) 0

0 te

ak + sk +wk (45)

where sk = [xk, yk, φk]>, ak = [vk, ψk]> and ‖wk‖∞≤ 0.1
are the system state, input and disturbance, respectively. xk
and yk are the position of the robot in two dimensions and
φk ∈ [−π, π] is the orientation angle. Sampling time te is
selected 0.2sec for the simulation. The control inputs vk and
ψk are the linear and angular velocities, respectively. The
control input is restricted as follows:[

0
−1

]
≤ ak ≤

[
0.5
1

]
(46)

For simplicity, we consider obstacles of elliptic shape. Hence,
the condition for obstacles avoidance can be seen as the
following inequality:

hj(s) = 1−
(
x− ox,j
rx,j

)2

−
(
y − oy,j
ry,j

)2

(47)

where (ox,j , oy,j) and (rx,j , ry,j) are the center and radii of
the jth ellipse (j = 1, . . . , J), respectively, and J is number
of obstacles.

First, we simulate SMPC with CVaR constraints based on
Sample average approximation and DRMPC, and we compare

the current work. However, in the functional space, the closed-loop stability properties are
recently addressed in [46] for general stochastic systems (MDP).

The proposed approach has been summarized in Algorithm 1.

The next section provides a numerical case study for the proposed method.

6 Numerical Simulation

In this section, we consider Wheeled Mobile Robot (WMR) path planning while avoiding
static obstacles. The stochastic nonlinear dynamics can be considered as follows:

sk+1 =



te cos(ϕk) 0
te sin(ϕk) 0

0 te


ak + sk +wk (45)

where sk = [xk, yk, ϕk]
⊤, ak = [vk, ψk]

⊤ and ∥wk∥∞≤ 0.1 are the system state, input,
and disturbance, respectively. xk and yk are the position of the robot in two dimensions and
ϕk ∈ [−π, π] is the orientation angle. Sampling time te is selected 0.2sec for the simulation.
The control inputs vk and ψk are the linear and angular velocities, respectively. The control
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input is restricted as follows:
[
0
−1

]
≤ ak ≤

[
0.5
1

]
(46)

For simplicity, we consider obstacles of elliptic shape. Hence, the condition for obstacles
avoidance can be seen as the following inequality:

hj(s) = 1−
(
x− ox,j
rx,j

)2

−
(
y − oy,j
ry,j

)2

(47)

where (ox,j , oy,j) and (rx,j , ry,j) are the center and radii of the jth ellipse (j = 1, . . . , J),
respectively, and J is number of obstacles.

First, we simulate SMPC with CVaR constraints based on Sample average approximation and
DRMPC, and we compare them with deterministic MPC. As shown in figure 3, there are some
constraint violations in the MPC scheme. As the probability level α increases, the distance
from the path and obstacle increases in SMPC. As mentioned, this method usually requires a
large number of data to capture the chance constraint accurately. Moreover, as shown in figure
3, the planned path using DRMPC is farther from the obstacle. We then consider the following
stage cost for the RL:

L(s,a) = ∥a∥+|ϕ|+ (48)

|x− 8|+|y|−1

τ
log

(
1

2

(
|max

j
hj(s)|−max

j
hj(s)

)
+ ω

)

︸ ︷︷ ︸
r(x,y)

where τ and ω are small positive constants. Since hj only depends on x, y, function r also
depends on x, y. Note that the logarithmic barrier function has been inspired by the constrained
optimization context [47]. Moreover, this function allows us to compute the logarithm for
every s, while it has a large value when the constraints violate. Figure 4 illustrates r(x, y).
We include the radius of the Wasserstein ball in the DRMPC parameters to tune it using
Q-learning. Figure 5 shows the average stage costs during each mission. As can be seen, the
average stage costs are decreasing in five missions in both SMPC and DRMPC. However,
DRMPC has lower average costs, and Q-learning is more effective in the DRMPC scheme
than in the SMPC scheme. The better improvement in the DRMPC scheme is due to the more
freedom and parameters in the provided policies, such as the radius of the Wasserstein ball
around the empirical distribution, whereas in the standard SMPC scheme, there is no such
parameter. Obviously, tuning the radius of the Wasserstein ball and, consequently, adjusting
the conservatism of the safe policy positively impacts the improvement of the closed-loop
performance.

7 Conclusion

In this paper, we proposed to use a tractable Distributionally Robust MPC (DRMPC) scheme
in order to provide safe policy for Reinforcement Learning (RL) by construction. DRMPC
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Figure 3: Sample average approximation of SMPC and DRMPC with CVaR constraints.

optimized the cost function subject to the worst-case distribution in a given statistical ball
around the empirical distribution. The radius of this ball was measured using the Wasserstein
metric. Moreover, Conditional Value at Risk (CVaR) was used as a convex approximator of
chance constraints in the DRMPC scheme. We used Q-learning to update the parameters of the
DRMPC scheme. We showed the efficiency of the method in the path planning of a Wheeled
Mobile Robot (WMR). Considering model mismatch, joint chance-constrained and Neural
Network based cost functions in the DRMPC scheme will be the directions of future works.
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Figure 4: The function r(x, y) for τ = 0.2 and ω = 10−4.

Figure 5: Average costs of five missions during Q-learning from SMPC and DRMPC.
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Abstract: Recent publications have laid a solid theoretical foundation for the combination of
Reinforcement Learning and Model Predictive Control, in view of obtaining high-performance
data-driven MPC policies. Early practical results, both in simulation and in experiments have
shown the potential of this combination, but also revealed certain challenges. In addition,
the technical complexity of these results makes it difficult for interested readers to gather the
fundamental ideas and principles behind this combination. This paper aims at providing a
coherent and more accessible picture of these results, but also significantly deeper and more
mature insights into their meaning than has been proposed before. It also aims at identifying
the current challenges in the field.

Keywords: MPC, Reinforcement Learning, Learning for MPC, Learning for MPC, Stability
& Safety

1 Introduction

Model Predictive Control (MPC) is a successful control strategy that employs a (possibly
inaccurate) model of the real system dynamics to generate input-state sequences that minimize
a certain cost, possibly under some constraints [1]. The MPC problem is solved at every
time instant, in a receding-horizon fashion, delivering a policy for the real system. For many
applications, the building an MPC model able to capture the real system dynamics accurately is
very difficult, especially if the real system is stochastic. For these applications, the performance
of the MPC scheme can be severely affected by this lack of accuracy. This is especially the case
if the objective of the MPC scheme is not to bring the real system to a specific reference state
(a.k.a. tracking objective), but rather to minimize a generic cost (a.k.a. economic objective).

Recent research focus on alleviating this issue by integrating techniques from Machine
Learning (ML). The most classic and obvious approach is to use ML techniques to develop
more accurate data-driven MPC models [2, 3]. While this paradigm has a clear value, it does
not circumvent the issues related to model inaccuracies. Indeed, the performance of a policy
delivered by an MPC scheme integrating an ML-based model is still only as good as the
ML-based model is, and therefore limited by the structure and choices made in the ML tools.
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Besides, for many applications, a higher model accuracy can only be achieved through a higher
model complexity. Because complex MPC models tend to yield complex MPC schemes, the
ML-based MPC paradigm tends to bind the MPC performance to its complexity.

A core issue with ML-based MPC is that the modelling is not directly related to the control
objectives. Indeed, the ML-based model is constructed to deliver the best possible predictions,
in the hope that this will turn into the best possible MPC performances. But the development
of the ML-based model is not easily tied to the MPC closed-loop performance they will result
in. Model-free MPC techniques are sometimes described as building MPC predictions that are
tailored to the MPC objectives. However, this description is not formally supported. Indeed,
if using the ideal class of regularization, these techniques are equivalent to building an MPC
model using subspace system identification, and are therefore very classic. If using different
regularizations, they can produce significantly suboptimal MPC policies. It is easy to produce
examples where this effect occurs [4]. RL for MPC can be used in the context Model-Free

Reinforcement Learning (RL) focuses on optimizing the closed-loop performance of policies
using data obtained on the real system, without necessarily relying directly on a model of
that system. In the RL context, MPC can be construed as a tool generating highly structured
policies. RL then offers a rich toolbox for adjusting the MPC scheme from data, in view of
improving its closed-loop performance. The combination of RL and MPC is therefore unique
in the field of learning-based MPC, insofar as it does not focus on improving the MPC model
for more accurate predictions, but ties the MPC tuning directly to the closed-loop optimality
of the resulting policy. This uniqueness is, e.g., illustrated in examples where RL sacrifices
the MPC model accuracy to improve the MPC closed-loop performance [5].

This paper provides critical insights on the fundamentals of RL and MPC that have been
recently detailed in the literature, as well as on the known challenges. Section 2 provides some
background. Section 3 some fundamental theoretical results on RL and MPC, and insights
on their consequences. Section 4 provides a discussion on RL methods for MPC, and the
associated challenges. Section 5 and 6 discuss the use of RL for MPC with stability and safety
requirements.

2 Background

Markov Decision Processes (MDP) provide a generic framework for the class of problems
at the center of MPC. An MDP operates over given state and action (aka input) spaces S,A,
respectively. These spaces can be both discrete (i.e. integer sets), continuous, or mixed. An
MDP is defined by the triplet (L, γ, ρ), where L is a stage cost, γ ∈ (0, 1] a discount factor
and ρ a conditional probability (measure) defining the dynamics of the system considered, i.e.
for a given state-action pair s,a ∈ S ×A, the successive state s+ is distributed according to

s+ ∼ ρ(·|s,a) (1)
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Note that (1) is a generalization of the classic dynamics, deterministic or not, often considered
in MPC, usually cast as

s+ = F (s,a,w) , w ∼W (2)

where w is a random disturbance from distribution W . In the special case w = 0, (2) simply
yields deterministic dynamics. An MDP is then the problem of finding the optimal policy
π? : S → A solution of:

π? = arg min
π

J(π) where (3a)

J(π) = E

[ ∞∑

k=0

γkL (sk,ak)

∣∣∣∣∣ ak = π (sk)

]
, (3b)

and the expected value operator E[.] is taken over the (possibly) stochastic closed loop
trajectories of the system. Discussing the solution of MDPs is often best done via the Bellman
equations defining implicitly the optimal value function V ? : S → R and the optimal
action-value function Q? : S ×A→ R as

V ? (s) = min
a

Q? (s,a) (4a)

Q? (s,a) = L (s,a) + γE [V ? (s+) | s,a ] (4b)

The optimal policy then reads as:

π? (s) = arg min
a

Q? (s,a) (5)

2.1 Reinforcement Learning

The fundamental goal of Reinforcement Learning (RL) is to use data to deliver an approx-
imation of the optimal policy π?. The field can be coarsely divided in two large classes
of approaches. The first class, generically labelled Q-learning, approximates the optimal
action-value function Q? via a parametrized function approximator Qθ . The parameters θ are
then adjusted using data such that Qθ ≈ Q? is some sense. An approximation of the optimal
policy π? can then be obtained using:

π̂? (s) = arg min
a

Qθ (s,a) (6)

The second class approximates π? directly via a parametrized policy πθ, and adjust the
parameters θ from data so as to minimize J(πθ). This can, e.g., be done by estimating policy
gradients∇θJ(πθ), or by building surrogate models of J(πθ), used to adjust θ.
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2.2 Model Predictive Control

For a given system state s, MPC produces control policies based on repeatedly solving an
optimal control problem on a finite, receding horizon, often cast as:

min
x,u

T (xN ) +

N−1∑

k=0

L (xk,uk) (7a)

s.t. xk+1 = f (xk,uk) , x0 = s (7b)
h (xk,uk) ≤ 0, uk ∈ A, (7c)

for a given system state s, problem (7) produces a complete profile of control inputs u? =
{u?

0, . . . ,u
?
N−1} and corresponding state predictions x = {x?

0, . . . ,x
?
N}. Only the first

element u?
0 of the input sequence u? is applied to the system. At the next physical sampling

time, a new state s is received, and problem (7) is solved again, producing a new u? and a
new u?

0. MPC hence yields a policy:

πMPC (s) = u?
0, (8)

with u?
0 solution of (7) for s given. For γ ≈ 1, policy (8) can provide a good approximation

of the optimal policy π? for an adequate choice of prediction horizon N , terminal cost T and
if the MPC model f approximates the true dynamics (1) sufficiently well. In that context, the
latter is arguably the major weakness. Indeed, many systems are difficult to model accurately.
Furthermore, within a modelling structure, selecting the model f that yields the best closed-
loop performance J(πMPC) is very difficult. Indeed, there is in general no guarantee that the
model f that best fits the data collected from the real system is the best model in terms of
J(πMPC).

3 Fundamentals of RL and MPC

The combination of RL and MPC can address the issues raised above. In this section, we
provide the central result supporting that statement. To that end, it is useful to construe MPC
as a (possibly local) model of the action-value function Q?. Indeed, consider an MPC-based
policy

πθ(s) = u?
0 (9)

where u?
0 is part of the solution of:

x?,u? = arg min
x,u

Tθ (xN ) +
N−1∑

k=0

Lθ (xk,uk) , (10a)

s.t. xk+1 = fθ (xk,uk) , x0 = s, (10b)
hθ (xk,uk) ≤ 0, uk ∈ A. (10c)
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This MPC formulation is identical to (7), but the cost, constraints and dynamics underlying the
MPC scheme are now all parametrized in θ, to the exception of the input constraint uk ∈ U .
This choice is motivated below. An MPC-based model of Q? is then provided by:

Qθ(s,a) = min
x,u

(10a), (11a)

s.t. (10b)− (10c), u0 = a, (11b)

where a constraint u0 = a on the initial input has been added to (10). MPC (11) is a valid
model of Q? in the sense that it satisfies the relationships (4) and (5), i.e.:

πθ (s) = arg min
a
Qθ(s,a), Vθ(s) = min

a
Qθ(s,a), (12)

where Vθ(s) is the optimal cost resulting from solving MPC (10). One can then readily verify
that if the MPC parameters θ are such that Qθ = Q?, then MPC scheme (10) delivers the
optimal policy π? through (9), i.e. πθ = π?. An important question, then, is how effective
can an MPC scheme be at approximating Q?, at least in a neighborhood of a = π? (s). The
main concern here is arguably the MPC model fθ again, for the reasons already raised in
Sec. 2.2. In addition, Q? is typically built from a discounted sum of the stage costs L, while
undiscounted MPC formulations are typically preferred.

The Theorem reported below addresses these concerns and provides the central justifica-
tion for considering the MPC parametrization (10) in learning-based MPC. It establishes
that under some mild conditions, (11) is able to provide an exact model of Q? even if
its predictive model (10b) is inaccurate. This in turn entails that MPC (10) can achieve
optimal closed-loop performances even if the MPC model is inaccurate.

Theorem 1. Suppose that the parameterized stage cost, terminal cost and constraints in
(10) are universal function approximators with adjustable parameters θ. Then there exist
parameters θ? such that the following identities hold, ∀γ:

1. Vθ?(s) = V ?(s), ∀s ∈ S
2. πθ?(s) = π?(s), ∀s ∈ S
3. Qθ?(s,a) = Q?(s,a), ∀s ∈ S , for the inputs a ∈ A such that |V ?(fθ?(s,a))| <∞

if the set

S =:
{
s ∈ S

∣∣∣ |[V ?(x?
k)]| <∞, ∀ k ≤ N

}
(13)

is non-empty.

Proof. We select the parameters such that the following holds:

Tθ?(s) = V ?(s) (14a)
Lθ?(s,a) = (14b)
{
Q?(s,a)− V ?(fθ?(s,a)) If |V ?(fθ?(s,a))| <∞

∞ otherwise
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The proof then follows from [5, 6]. �

Theorem 1 states that, for a given MDP, an MPC scheme with a possible inaccurate model can
deliver the optimal value functions and the optimal policy of the original MDP. This can be
achieved by selecting the proper stage cost, terminal cost, and constraints. Theorem 1 extends
to robust MPC, stochastic MPC, and Economic MPC (EMPC), all discounted or not. The
assumption in (13) can be interpreted as some form of the stability condition on fθ? under the
optimal trajectory x?. More specifically, this assumption requires the existence of a non-empty
set such that the optimal value function V ? of the predicted optimal trajectories x? based on
the system model is finite with a unitary probability for all initial states starting from this set.

3.1 Role of RL in Learning-based MPC

Many recent learning-based MPC methods focus on learning a predictive model for the MPC
scheme from the data, using Machine Learning (ML) or other data-driven techniques. In
these methods, only (10b) is parametrized in the MPC scheme (10), and adjusted in view of
providing as accurate predictions as possible. It is then important to clarify why an approach
centred purely on adjusting the model is not necessarily sufficient for achieving the highest
possible performances. While adjusting the MPC model alone from data has a high practical
value, two issues stand in the way of obtaining optimal policies from that alone.

First, if the objective of the MPC scheme is optimality in the sense of J(πθ), then adjusting
the MPC model fθ for delivering better predictions is a very indirect proxy for minimizing
J(πθ). Indeed, if the true system dynamics (1) do not belong to the set of dynamics that fθ
can represent, then there is no guarantee that adjusting the MPC model fθ to better fit (1) will
reduce J(πθ). In fact, it is straightforward to propose trivial counter-examples where model
fitting worsens the closed-loop performance, see [5].

Second, Theorem 1 shows that a modification of not only the MPC model but also of the cost
and constraints in the MPC formulation is conducive of obtaining the optimal policy π? from
the MPC scheme, even if the MPC model cannot predict the real system dynamics accurately.
However, learning techniques focusing on fitting the MPC model to the real system provide
no indication as to how one ought to adjust the MPC cost and constraints for performance.
This issue stems from the fact that there is no simple relationship between the predictive
performance of the MPC model and the closed-loop performance J(πθ).

In the light of these observations, while fitting the MPC model to the real system trajectories
has practical value, it is not sufficient if closed-loop performance is targeted.

Indeed, performance-oriented learning-based MPC ought to consider a full parametriza-
tions of the MPC scheme as per (10), and integrate learning tools that aim at minimizing
J(πθ), or at achieving Qθ ≈ Q? from the data. The role of RL in that context is to
provide these learning tools.
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3.2 Role of the Model in RL for MPC

Theorem 1 suggests that if using the complete parametrization (10a), the MPC model is less
important than normally thought. Indeed, it suggests that under some mild assumptions, cost
and constraints modifications can compensate for the model error and produce an optimal
policy and value functions.

This observation ought to trigger the natural question as to what is then the role of the
MPC model if it does not need to be accurate. This central question has not been properly
discussed in the literature so far, we propose four central insights next.

The first and most obvious insight lies in the core assumption of Theorem 1. This assumption,
while arguably mild, forbids the use of any model in the MPC scheme, and requires that it
satisfies a requirement akin to—but less demanding than–stability of the model under the
optimal policy. This assumption is clearly very impractical to verify in practice. Fortunately,
RL for MPC can be deployed without verifying this assumption, through the methods presented
in Sec. 5.

The second less obvious insight stems from the observation that the cost and constraints
modifications (14) required by Theorem 1 can be difficult to approximate in practice, and
difficult to use in an MPC scheme. Indeed, these modifications can require fairly complex and
possibly very non-convex functions. They may require very rich function approximations (e.g.
large DNNs), and their complexity and non-convexity can make their use in an MPC scheme
impractical. In that context, one can readily observe from (14b) that being able to adjust the
MPC model introduces extra degrees of freedom in how the cost and constraints modifications
can be shaped, allowing one, in turn, to impose certain restrictions on these modifications.
These restrictions can be related to the simplicity of the function approximations used, and/or
in imposing convexity in the resulting cost and constraints. This approach is used in [7], and
further elaborated in Sec. 5.2.

A third insight is in the use of Robust MPC to build safe policies in RL, see Sec. 6. In that
context, the role of the model is to predict the worst-case scenario with respect to safety-
critical constraints that the real system ought not to violate. The model must then “fit" the
real system in the sense of predicting these worst cases, where the “fitting" is performed via
set-membership identification [8].

The last insight lies in the explainability of the policy delivered by MPC. Because MPC
proposes a full prediction of the actions that it plans to take on the system, and of the
expected system response, it can be considered a more explainable policy than generic function
approximations, such as DNN. In that context, if the MPC model is a very poor match for the
real system, that explainability is lost.
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4 RL methods for MPC

RL offers two main classes of methods, which either target a direct minimization of J(πθ)
over the parameters θ, or a fitting of the action-value function model Qθ to the optimal one
Q?, see Sec. 2.1. We aim at providing next further insights as to how these two different
families operate in the context of RL for MPC.

4.1 Q learning

Basic Q learning aims at achieving Qθ ≈ Q? via solving a fitting problem, typically in the
form:

min
θ

E
[
(Q? (s,a)−Qθ(s,a))

2
]

(15)

where the expected value E[.] is taken over the system trajectories and actions a. Because
Q? is unknown, (15) is commonly replaced by an approximation e.g. based on iterating the
temporal difference problem:

min
θ+

E
[(
L (s,a) + γmin

a′
Qθ(s+,a

′)−Qθ+
(s,a)

)2]
(16)

until θ+ = θ. In the RL for MPC context, Qθ is delivered by (11) and mina′ Qθ(s,a′) =
Vθ(s) is delivered by (12), i.e. by the optimal cost of MPC (10) solved at state s.

In Q learning, two MPC schemes need to be solved for each state transition, i.e at each
time instant if RL is performed “online". This can be done in parallel. The action a used
in (11) ought to (at least regularly) differ from the MPC policy πθ, so as to introduce
exploration. Exploration satisfying the MPC constraints by construction is discussed in
Sec. 6.1.

4.2 Policy Gradient Methods & Direct Policy Search

An alternative to Q learning is to treat the MPC as a policy (9) whose parameters θ ought to be
adjusted to minimize J(πθ) directly. Two broad classes of approaches can be distinguished
here. Policy gradient methods estimate the “policy gradient"∇θJ(πθ) from data and use it to
update the parameters θ in a gradient descent fashion. Alternatively, a direct policy searches
builds a surrogate model of J(πθ) from data, and uses it to propose new policy parameters θ.
However, direct policy search tends to scale poorly with the size of the policy parameters.

Policy gradient methods can e.g. use the deterministic approach, whereby the policy gradient
is evaluated via:

∇θJ(πθ) = E [∇θπθ (s)∇aQπθ
(s,πθ(s))] (17)
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Here πθ is delivered by MPC (10). The “critic" Qπθ
is typically built separately using a

generic function approximator and policy evaluation techniques.

An inconvenient of the policy gradient approach is that an approximation structure must
be selected for the critic Qπθ

, e.g. as a DNN. The design of that approximator is not
obvious, making the method less straightforward than Q learning, see Sec. 4.1. This
difficulty has been recently alleviated in [9].

4.3 NLP sensitivities & Smoothness

Many RL methods, including Q learning and policy gradient methods, require the sensitivities
of the function approximators πθ, Qθ, and Vθ. When provided by an MPC scheme, these
approximators are typically continuous but only piecewise smooth.However, when the MPC
achieves Linear Independence Constraint Qualification (LICQ) and Second Order Sufficient
Condition (SOSC), then non-smooth points correspond to weakly active constraints in the
MPC. For a well-formulated MPC scheme, these points form a set of zero measures. Because
RL methods always use the sensitivities inside expected value operators, their contribution to
the learning then disappears.

Hence, while the non-smoothness of MPC schemes may superficially appear as an issue,
in most cases it is fortunately not. In practice, this question can be simply ignored when
the MPC response is continuous.

The arguments above do not necessarily hold anymore if the MPC can lose SOSC, possibly
producing discontinuous policies, e.g. having a “bang-bang" response. This situation can
occur if, e.g., the MPC is a Linear Program. In that context, while Qθ and Vθ typically remain
continuous and piecewise smooth, allowing Q learning to be used, the deterministic policy
method briefly discussed in Sec. 4.2 becomes problematic. This issue has been discussed in
[10], and an early solution has been proposed. However, it deserves further attention.

4.4 Feasible exploration

RL methods require exploration, i.e. actions a 6= πθ(s) must be (regularly) applied to the
real system in order to gather information to improve the policy. In the presence of constraints
(10c) on the system evolution, a natural question is how to generate exploration that does not
jeopardize the MPC feasibility.

In the context of MPC-based policies, feasible exploration can be trivially achieved,
without adding complexity in the RL methods nor in the MPC scheme.

Indeed, in the MPC context, one can simply add a disturbance in the MPC cost, e.g. in the
form of a gradient over the initial action u0, in order for the MPC action to differ from the
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policy. More specifically, we can consider:

φθ (s,d) = min
x,u

d>u0 + Tθ (xN ) +

N−1∑

k=0

Lθ (xk,uk) (18a)

s.t. (10b), (10c) (18b)

where d ∈ Rm is a vector of the size of the action, possibly selected randomly. Because only
the MPC cost is modified, the solution of (18) is feasible for (10). MPC (18) can be used to
produce feasible exploration for policy gradient methods, but it can also generate action-value
functions for Q learning, see Sec. 4.1. In that context, (18) produces a feasible action with
exploration a = u?

0 where u?
0 is solution of (18) and depends on d. The optimal cost φθ of

(18) delivers the action-value function:

Qθ (s,a) = φθ (s,d)− d>u?
0 (19)

This principle has been further detailed in [11]. However, while the exploration generated by
(18) respects the MPC constraints (10c), the real system dynamics may not, due to stochasticity
and model error. This issue can be addressed via safe exploration, see Sec. 6.1.

4.5 Current Challenges

A challenge identified in using RL methods on MPC is related to performing the learning on
existing “big data". Learning from existing data is performed via taking numerous “sweeps"
(a.k.a. experience replay) through the data using the methods detailed above. This requires a
large number of evaluations of πθ, Qθ, Vθ and of their sensitivities. Classical RL function
approximators such as DNNs have dedicated computational tools such as GPUs for fast
evaluation and differentiation. Hence, big data can be efficiently processed via DNNs. Function
approximations from MPC schemes are inexpensive to differentiate, but often expensive to
evaluate because they require solving the MPC problem. Excellent tools exist to solve MPC
schemes in real-time such that performing RL “online", i.e. while the system is running, is not
an issue. However, performing RL for MPC on existing big data can be impractical due to the
amount of computational time required. This issue has received some attention in [12], but
more work is required to fully address this question.

5 Learning Stable Policies via MPC

A benefit of MPC as a function approximator in RL is the existence of a strong theory
establishing properties such as safety and stability. The nominal stability of the closed-
loop system with a policy is crucial in the control context. The stability of MPC schemes
for deterministic systems is relatively straightforward to establish if the MPC stage cost is
lower-bounded by a class-K∞ function, see [1]. If a generic (a.k.a. economic) stage cost is
considered, asymptotic stability requires the extra dissipativity conditions:

L (s,a)− λ (s) + λ (fθ (s,a)) ≥ α (‖s− s̄‖) (20)
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to hold for some bounded storage function λ and some α ∈ K∞, where s̄ is a steady state point.
Condition (20) is difficult to interpret and verify. However, it simply entails the existence of
an MPC scheme

min
x,u

− λ (s) + T̃ (xN ) +
N−1∑

k=0

L̃ (xk,uk) (21a)

s.t. (7b), (7c) (21b)

with L̃ lower-bounded by a class-K∞ function, which delivers the same policy and value
function as (7). This simple observation opens the door for enforcing (nominal) stability by
design in RL for MPC. We detail that next.

5.1 Stability by verification vs. stability in learning

In the literature, dissipativity is typically considered a property to verify rather than to enforce.
This verification is unfortunately fairly complex to perform, see e.g. [13]. When adjusting an
MPC scheme (10) via the MPC model (10b) only, one has to incur that complexity.

However, when combining RL and MPC in the fully parametrized form (10), the stability
question can be approached as a fairly simple a priori design requirement rather than a
complex a posteriori verification.

Indeed, using a parametrized form for (21):

min
x,u

− λθ (s) + Tθ (xN ) +
N−1∑

k=0

Lθ (xk,uk) (22a)

s.t. (10b), (10c) (22b)

and requiring the modified stage cost Lθ to fulfil:

Lθ (s,a) ≥ α (‖s− s̄θ‖) , ∀s,a = πθ(s) (23)

for some steady state s̄θ, ensures that the parametrized MPC scheme (22) is (nominally)
dissipative. The added storage function in (22) is required if one wants the MPC scheme (10)
to be able to approximate correctly the value functions in addition to the optimal policy. MPC
(22) can then be treated via the RL methods detailed in Sec. 4, to the addition of restriction
(23) on the MPC parameters proposed by RL. In [14], it has been shown that treating the
parameterized MPC scheme in (22) yields a valid storage function that satisfies the dissipativity
condition.

5.2 What cost function parametrization?

Two points are then useful to clarify here. First, if the baseline cost L does not satisfy condition
(23), then it cannot be used as an initial guess for Lθ , i.e. the initial MPC parameters θ need to
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yield an initial Lθ that is possibly very different than L. It is then not obvious how to select a
meaningful initial MPC stage cost Lθ to the learning tools. Fortunately, a simple approximate
approach can be used here. Indeed, in a learning context where the MPC model (10b) is not
accurate and where a fully parametrized MPC (10) is considered, it is arguably not necessarily
productive to compute a modified cost Lθ and storage function λθ that leaves the MPC policy
and value functions perfectly unchanged. Instead, one can e.g. provide a quadratic stage cost
as an initial guess for Lθ, which produces the same policy and value function as the original
MPC scheme in a neighborhood of the closed-loop steady state, see [15]. RL can then improve
on that guess without jeopardizing stability.

The second point to clarify here is that requirement (23) is not necessarily easy to satisfy in
practice because it yields a semi-infinite constraint on the parameters θ.

A simpler approach is to adopt a parametrization of the cost Lθ that satisfies (23) by
construction, e.g. using a strictly convex cost parametrization, see [7]. Such a choice has
the additional advantage of making the MPC scheme significantly easier to solve than if
using a non-convex stage cost.

Unfortunately, choosing a convex parametrization of the cost Lθ is more restrictive than the
original requirement (23), which can then prevent MPC (22) from reaching the optimal policy
and value functions. It can then become important to be able to adjust the MPC model (10b) to
alleviate this potential issue. A currently open question is how rich the model parametrization
ought to be in order for MPC (22) to reach the optimal policy and value functions with a
convex cost parametrization.

5.3 Current Challenges

The observations provided above apply to the nominal stability of the MPC scheme, i.e. to the
stability of the MPC if applied in closed-loop to its own model. While nominal stability is
clearly a highly desirable property, it does not discuss closed-loop stability in the presence of
stochasticity in the real dynamics (1) and model error. These issues can arguably be addressed
through Robust MPC techniques, see Sec. 6. However, Robust MPC adopts conservative
approaches, which can degrade the closed-loop performance. Another intriguing approach is
the use of the functional dissipativity theory presented in [16], which extends dissipativity to
MDPs and hence to stochastic problems. However, this concept has not been explored yet in
the context of learning.

6 Learning Safe Policies via MPC

The application of RL in safety-critical applications is drawing research attention. Safety is
easiest defined through a set of critical constraints on the state of the real system, which should
not be violated. A classic approach to safe RL is to learn the policy in silico, on a “pessimistic"
model of the real system, in the sense that the model ought to overestimate the probability of
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violating critical constraints. The in silico learning can then be performed by assigning high
penalties to violations of the critical constraints, e.g. through the use of barrier functions [17].
RL will then naturally adjust the policy to avoid these penalties.

In the context of MPC, the use of a pessimistic model of the system naturally finds its place in
the context of Robust MPC (RMPC). From a pessimistic model, RMPC builds a safe policy
by ensuring that the worst-case predictions satisfy the critical constraints at all future time.
The deterministic model (10b) is then replaced by a model that describes the evolution of sets
enclosing all possible future trajectories, e.g. in the form:

Xk+1 = fθ(Xk,πc(Xk,xk,uk))⊕Wθ (24)

where πc is a policy “managing" the growth of the sets Xk, usually operating on their deviation
from a reference trajectory xk. Set Wθ accounts for the possible process noise aimed at
capturing the prediction uncertainties. Learning (24) from is done through set-membership
identification. The satisfaction of the constraints (10c) is then enforced for all points in these
sets, either explicitly of implicitly. An explicit construction can take the form:

min
x,u,X

Tθ (xN ) +
N−1∑

k=0

Lθ (xk,uk) (25a)

s.t. xk+1 = fθ (xk,uk) , (24) (25b)
hθ (Xk,πc(Xk,xk,uk)) ≤ 0, (25c)
πc(Xk,xk,uk) ∈ A (25d)
XN ∈ Tθ, x0 = s, X0 = s (25e)

MPC (25) generates a safe policy πθ = u?
0 by construction for Tθ adequately chosen and if

(24) accounts for the worst case situations observed in the data, see [1]. The use of RL to adjust
RMPC schemes has been proposed in [18]. In the context of RL for RMPC-based policies, it
is useful to stress that there is a “hard" separation between learning for safety and learning
for closed-loop performance. Indeed, safety is learned via set-membership identification on
(24) and then enforced in the RMPC scheme by construction. Closed-loop performance is
optimized using RL in parallel [18]. This echoes the remarks proposed in Sec. 3.2.

In safe RL based on RMPC, the role of the model becomes clear and plain again: it
consists in ensuring the safety of the policies generated by MPC, and the “fitting" of the
model to the real system ought to be seen in the sense of set-membership identification.

For the sake of clarity, we ought to underline that the adjustment of the constraints (25c) in
the RMPC scheme and of set Wθ ought to be done with care in order to preserve safety. In
particular, the adjustment of set Wθ must ensure that model (24) accounts for all past data
points, in the set-membership sense. Arguably, safety-critical constraints in (25c) ought not to
be modified.
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6.1 Safe Exploration

Safe exploration is difficult to produce without a model of the system in the form (24), which
can predict the worst-case evolution of the system, and assess the impact of the exploration
on the system safety. However, even with a model (24) of the system, it can be expensive to
verify the safety of an input differing from the safe policy, and even more expensive to build
the set of safe inputs.

Fortunately, the use of RMPC as a tool to generate a safe policy offers a straightforward
way to generate safe exploration, which does not require more computations than solving
the RMPC itself.

Indeed, the feasible exploration approach detailed in Sec. 4.4 can be readily applied to the
RMPC formulation (25). Then, because only the RMPC cost is modified, the resulting solution
is feasible for (25), and therefore if (25) yields safe policy, then a safe exploration is produced.
This principle has been further detailed in [18].

6.2 Safe Policies and Safe Learning

An important question when performing safe learning online on a running system, either in
a batch fashion (i.e. by collecting a certain amount of data before computing a parameter
update) or not (i.e. performing a parameter update at every time step), is whether safety is
preserved through the parameter updates or not. Indeed, while taking actions from a safe and
stable policy ensures the stability and safety of the system, taking actions from a sequence of
safe and stable, but changing policies may not. That is because a sequence of policies does not
necessarily inherit the properties of the individual policies.

Hence if stability and safety are of importance for the system at hand, and the parameter
updates are performed while the system is running, specific conditions ought to be
satisfied for a parameter update to be implemented.

These conditions are detailed in [8].

6.3 Current challenges

RMPC provides a solid methodology to provide policies that are formally safe. RMPC is
fairly straightforward to use if the selected MPC model fθ is linear in the states and inputs,
and if set W is “simple" (e.g. polytopic or ellipsoidal). However, RMPC remains difficult
to implement formally if the MPC model is nonlinear. This restricts the use of RMPC for
generating formally safe policies for specific classes or problems, i.e. those where a linear
MPC model can perform reasonably well. RMPC for generic problems can be deployed, e.g.
using scenario-based approaches [19], or set integrators [20]. However, while effective in
practice, the former approach does not provide formal guarantees of safety. The latter approach
can be fairly complex to use. Even in the case of RMPC using a linear model, adjusting (24)
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for closed-loop performance while ensuring that it captures the worst-case situations observed
in the data is difficult on big data sets. This difficulty is further discussed in [18].

7 Conclusion

This paper made a general and coherent review of the foundations, theories, and essential
results that recently have developed in the context of RL based on MPC. We also expressed
the applications and challenges ahead. We reviewed how a parameterized MPC scheme can
learn the optimal policies and the value functions of a given MDP, even if the model used
in the MPC scheme cannot capture the real system. We showed how RL algorithms and
concepts such as exploration and sensitivity could be formulated in the context of MPC. Some
advantages of the method, such as the nominal stability of the closed-loop system and safety,
were summarized.
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Abstract: In the literature of Economic Model Predictive Control (EMPC) and undiscounted
Optimal Control Problem (OCP), the optimal steady-state point is an equilibrium point with
the minimum stage cost. If the Economic MPC is discounted, this property does not hold,
and the optimal steady-state point is not the same as the one obtained from the undiscounted
EMPC. Therefore the discounted steady state point does not yield minimum stage cost and has
a bias with respect to the undiscounted one. In this paper, we propose a cost modification in
the discounted MPC that results in the undiscounted optimal steady-state point, i.e., the steady-
state point that leads to the best stage cost. Moreover, we will show that this modification
does not affect the closed-loop system behavior. We will illustrate the proposed method with a
numerical example.

1 Introduction

One of the central objectives in control engineering, especially in chemical processes, power
networks, etc [1, 2], is to steer the closed-loop trajectories of a given system to a steady point
that has the minimum stage cost. Mathematically, the optimal steady-state problem can be
formulated as a constrained optimization problem, where the cost function is the stage cost,
and its constraint is the equilibrium of the point. This concept also appears in Economic Model
Predictive Control (EMPC) problems, where the purpose is not tracking but to minimize a
generic stage cost, such as time, energy and etc [3].

MPC schemes are generally formulated in an undiscounted setting. However, in some cases, it
is reasonable to introduce a discount factor in the objective [4, 5]. Discounted OCP has drawn
wide attention in, e.g., economic application [6] and social science [7]. In the discounted
setting, the stage costs are weighted by a factor γk, where γ ∈ (0, 1) is labeled discount factor,
and k is the physical time index in discrete-time systems. Hence, the discount factor gives
more importance to the present than the future and yields a well-posed value function [8].
A discounted infinite-horizon objective function is often the preferred setting in dynamic
programming [8, 9] and reinforcement learning [10, 11].
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The optimal steady state, resulting from the discounted OCP, differs from the optimal steady-
state obtained from the undiscounted OCP. Although the discounted optimal steady-state is
optimal in the sense of discounted OCP, the discounted optimal steady-state point does not
result in the minimum one-step stage cost [12]. The bias between the discounted optimal
steady-state and the undiscounted optimal steady-state depends on the discount factor, and
tends to zero as the discount factor tends to one.

Recently, theories have been developed that explain the equivalency between discounted and
non-discounted OCP in both deterministic [12] and stochastic systems [13]. These theories
state that by modifying the stage cost in OCPs, one can establish equivalency of the discounted
and undiscounted settings. I.e., they provide the same optimal policy and optimal value
function. It should be noted that this modification requires knowing the exact optimal value
function of the original problem [5].

Unfortunately, in some cases, the optimal value function of an undiscounted OCP is not
well-posed, especially for stochastic systems. Even if it exists, the exact optimal value function
of the original problem is difficult to compute for high-dimensional systems [14].

In this paper, we provide an inexpensive approximated cost modification using a second-order
Taylor expansion of the optimal value function at the optimal steady state. We provide simple
tools to compute the gradient and curvature needed for the approximation. Moreover, it will
be shown that the approximated cost modification preserves the stability of the closed-loop
system locally.

The paper is structured as follows. Section 2 provides the optimal steady-state problems
in both undiscounted and discounted settings. Section 3 recalls the equivalency theorem of
the discounted and undiscounted settings and provides the exact cost modification. Section
4 details the main contribution of the current paper and provides the approximated cost
modification. This section states how the optimal policy based on the approximate stage cost
does not invalidate the original closed-loop system stability locally. Section 5 illustrates a
numerical example and Section 6 delivers a conclusion.

2 Problem Formulation

In this section, we will provide the problem formulation and detail the optimal steady-state
optimization in both the discounted and undiscounted settings. Consider the following discrete-
time deterministic dynamical system:

x+ = f(x,u) (1)

where x is the state, u is the input, f is the dynamics, and x+ is the successive state. During
this transition, the system receives a scalar stage cost L(x,u). This stage cost may reflect an
economic cost, often corresponding to the energy, the time or the financial cost of running a
system [15]. Furthermore, the system is subject to the state and constraints as follows:

(x,u) ∈ Z := {(x,u) |h(x,u) ≤ 0} . (2)
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The following standard assumption is essential in the OCP context, and will be used in the rest
of the paper.

Assumption 1. The stage cost L(·) and the dynamics f(·) are continuous and at least twice
differentiable functions. Moreover, set Z is compact.

2.1 Undiscounted Optimal Steady-State

An infinite-horizon undiscounted OCP based on the stage cost L is defined as follows:

V ⋆(x) = min
π

∞∑

k=0

L(xk,π(xk)) (3a)

s.t. xk+1 = f(xk,π(xk)) , (3b)
(xk,π(xk)) ∈ Z, x0 = x , (3c)

where policy π is a map from the state space to the input space and V ⋆ is the optimal value
function. In some cases, the undiscounted optimal value function V ⋆ might not be well-
posed necessarily, especially for stochastic systems, but in this paper, we assume that V ⋆ is
well-posed.

We then denote the optimal policy solution of (3) by π⋆.

An optimal steady-state pair with respect to the economic stage cost L is defined as follows:

(x⋆,u⋆) ∈ arg min
(x,u)∈Z

L(x,u) (4a)

s.t. x = f(x,u) (4b)

Assumption 2. Without loss of generality, we assume that L(x⋆,u⋆) = 0. If this does not
hold, one can shift the stage cost to achieve L(x⋆,u⋆) = 0. Moreover we assume that (x⋆,u⋆)
is an interior point of Z.

Next Lemma provides a classic result that we will use in the paper.

Lemma 1. Under Assumptions 1 and 2, the following identities hold:

π⋆(x⋆) = u⋆, V ⋆
x (x

⋆) = λ⋆ (5)

where (·)x is the gradient of (·) w.r.t. x and λ⋆ is the optimal Lagrange multiplier of (4).

Proof. Since (x⋆,u⋆) is an interior point of Z, the Lagrangian of (4) reads:

L(x,u,λ) = L(x,u) + λ⊤(f(x,u)− x); (6)

for (x,u) ∈ Z. The Necessary Conditions of Optimality (NCO) of (4) reads:

Lx(x
⋆,u⋆,λ⋆) = Lu(x

⋆,u⋆,λ⋆) = 0, x⋆ = f(x⋆,u⋆) (7)
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where

Lx(x,u,λ) = Lx(x,u) + fx(x,u)λ− λ (8a)
Lu(x,u,λ) = Lu(x,u) + fu(x,u)λ (8b)

and where (·)u is the gradient of (·) w.r.t. u.
On the other hand, consider the Bellman equation associated with (3):

V ⋆(x) = min
u

L(x,u) + V ⋆(f(x,u)) (9)

for all x with the solution u = π⋆(x). Taking the derivation from both sides of (9), we have:

V ⋆
x (x) = Lx(x,u) + fx(x,u)V

⋆
x (f(x,u)) (10a)

0 = Lu(x,u) + fu(x,u)V
⋆
x (f(x,u)) (10b)

for all x with u = π⋆(x), specifically at x⋆ with unknowns π⋆(x⋆) and V ⋆
x (x

⋆). One can
verify that, using (7) the following choice:

π⋆(x⋆) = u⋆, V ⋆
x (x

⋆) = λ⋆ (11)

solves (10). ■

Note that under Assumption 2 and using Lemma 1, one can verify that V ⋆(x⋆) = 0.

2.2 Discounted Optimal Steady-State

In the discounted setting, the stage cost at the current time takes a greater weight than the
stage cost at future times. The discounted OCP can be defined as follows:

V γ,⋆(x) = min
π

∞∑

k=0

γkL(xk,π(xk)) (12a)

s.t. (3b), (3c) , (12b)

where γ ∈ (0, 1) is the discount factor and V γ,⋆ is the optimal value function in the discounted
setting. We then denote the discounted optimal policy solution of (12) by πγ,⋆.

The optimal steady point, resulting from the discounted setting, is given by [12]:

(xγ,⋆,uγ,⋆) ∈ arg min
(x,u)∈Z

L(x,u) + (γ − 1)V ⋆,γ(x) (13a)

s.t. x = f(x,u) (13b)

From the optimality of (4), one can verify that:

L(x⋆,u⋆) ≤ L(xγ,⋆,uγ,⋆) (14)
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I.e. the undiscounted optimal steady-state (x⋆,u⋆) results in better performance than the
discounted optimal steady-state (xγ,⋆,uγ,⋆) at the steady state, by definition.

In this paper, we aim to find a modified stage cost L̄ such that the associated discounted OCP
delivers the undiscounted optimal steady-state point (x⋆,u⋆) and hence corrects the bias
between (xγ,⋆,uγ,⋆) and (x⋆,u⋆). Consider the following discounted setting:

V̄ γ,⋆(x) = min
π

∞∑

k=0

γkL̄(xk,π(xk)) (15a)

s.t. (3b), (3c) , (15b)

where V̄ γ,⋆ is the modified optimal value function and L̄ is the modified stage cost. The
optimal policy of (15) is denoted by π̄γ,⋆. In the next section, we provide the modification L̄
based on the theorems developed in [12, 13].

3 Exact Cost Modification

In this section, we provide the exact stage cost modification of the discounted OCP in order
to correct the bias in the optimal steady-state and get the undiscounted optimal steady-state
point. We use the idea, developed in [12, 13], which states the equivalency between discounted
OCP and undiscounted OCP using cost modification. Before expressing this idea, we need to
introduce the concept of dissipativity [16, 17].

The closed-loop stability of systems with economic (i.e. generic) stage costs function requires
that a dissipation inequality is satisfied [18, 19]. For the undiscounted setting, system (1) with
the stage cost L is (undiscounted) dissipative if there exists a continuous storage function µ
satisfying:

L(x,u) + µ(x)− µ(f(x,u)) ≥ α(∥x− x⋆∥) (16)

for all (x,u) ∈ Z and some α ∈ K∞. Note that adding a constant in the storage function does
not invalidate (16). Hence, we can assume that µ(x⋆) = 0 without loss of generality.

The stability and dissipativity condition for discounted OCP is more involved than for the
undiscounted setting, and has been recently established [12]. In the discounted case, the
discount factor γ has a central role in establishing the closed-loop stability of the system.

For system (1) with stage cost L̄ and the discount factor γ, the resulting dissipativity conditions
are called Strong Discounted Strict Dissipativity (SDSD). The SDSD conditions guarantee
asymptotic stability of the closed-loop dynamics f with the discounted optimal policy π̄⋆,γ .
More specifically, the tuple (f , L̄, γ) is SDSD if there exists a continuous storage function µ
satisfying:

L̄(x,u) + µ(x)− γµ(f(x,u)) ≥ α(∥x− x⋆∥) (17a)
L̄(x,u) + µ(x)− µ(f(x,u)) + (γ − 1)V̄ ⋆,γ(f(x,u)) ≥ α(∥x− x⋆∥) (17b)
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for all (x,u) ∈ Z and some α ∈ K∞.

Next Lemma states the exact cost modification of the discounted setting L̄ in order to get the
optimal value function and the optimal policy of the undiscounted setting.

Lemma 2. Suppose that Assumptions 1 and 2 hold, if the system f with the stage cost L is
dissipative, then the following identities hold:

π̄γ,⋆(x) = π⋆(x), V̄ γ,⋆(x) = V ⋆(x) , (18)

if we select the modified stage cost as follows:

L̄(x,u) = L(x,u) + (1− γ)(V ⋆(f(x,u))) (19)

Moreover, the tuple (f , L̄, γ) is SDSD if and only if the system f with the stage cost L is
dissipative.

Proof. First, we prove the second argument. If the system f with the stage cost L is dissipative,
then we define:

LR(x,u) := L(x,u) + µ(x)− µ(f(x,u)) ≥ α(∥x− x⋆∥) (20)

Substitution of (19) into (20) implies:

L̄(x,u) + (γ − 1)V ⋆(f(x,u)) + µ(x)− µ(f(x,u)) ≥ α(∥x− x⋆∥) (21)

We then aim to show that:

V ⋆(x) + µ(x) ≥ 0 (22)

From the definition of V ⋆ in (3) and using a telescoping sum:

V ⋆(x) =
∞∑

k=0

L(xπ?

k ,π⋆(xπ?

k )) = −µ(x) + µ(xπ?

∞ ) +
∞∑

k=0

LR(xπ?

k ,π⋆(xπ?

k ))

= −µ(x) +

∞∑

k=0

LR(xπ?

k ,π⋆(xπ?

k )) (23)

where xπ?

∞ := limk→∞ xπ?

k = x⋆. Then from µ(x⋆) = 0, we have:

V ⋆(x) + µ(x) =
∞∑

k=0

LR(xπ?

k ,π⋆(xπ?

k )) ≥ α(∥x− x⋆∥) (24)

By multiplying both sides of (22) by the positive factor 1− γ:

(1− γ)V ⋆(f(x,u)) + (1− γ)µ(f(x,u)) ≥ 0 (25)

and summing (25) and (19):

L̄(x,u) + µ(x)− γµ(f(x,u)) ≥ α(∥x− x⋆∥) (26)
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which results in SDSD for (f , L̄, γ). If (f , L̄, γ) is SDSD then:

L̄(x,u)+(γ − 1)V ⋆(f(x,u)) + µ(x)− µ(f(x,u)) ≥ α(∥x− x⋆∥) (27)

and substitution of (19) into (27), we have:

L(x,u) + µ(x)− µ(f(x,u)) ≥ α(∥x− x⋆∥) (28)

which results in dissipativity for the system f and stage cost L. The first argument can be
directly obtained from the second argument and Theorem 3 in [12]. ■

This Lemma shows that the cost modification in (19) produces a discounted optimal policy and
optimal value functions that are the same as the undiscounted case. Moreover, the closed-loop
stabilities are equivalent. One of the main consequences is then that this cost modification
steers the system trajectories to the undiscounted steady state (x⋆,u⋆) for any γ.

Unfortunately, the cost modification in (19) requires the exact optimal value function V ⋆.
In most cases, due to the curse of dimensionality, evaluating the optimal value function is
extremely expensive [14]. We will then provide an inexpensive approximate cost modification
that resolves these difficulties. We detail this in the next section.

4 Approximate Cost Modification

In this section, we provide an approximation of the cost modification that does not require
the optimal value function V ⋆. More specifically, we are looking for an approximated stage
cost L̃ ≈ L̄ without knowledge of the optimal value function V ⋆ such that the resulting
optimal policy of discounted OCP steers the system trajectory to the undiscounted optimal
steady-state (x⋆,u⋆) for any γ. Moreover, we show that this approximation preserves the
(local) closed-loop stability.

In order to provide the approximate stage cost L̃, we will approximate the exact cost modifica-
tion in (19), using a second-order Taylor expansion of the optimal value function V ⋆ around
the optimal steady-state (x⋆,u⋆). This takes the form:

L̄(x,u) ≈L̃(x,u) := (29)

L(x,u) + (1− γ)
(
V ⋆
x (x

⋆)⊤g(x,u) +
1

2
g⊤(x,u)V ⋆

xx(x
⋆)g(x,u)

)
,

where g(x,u) = f(x,u) − x⋆, with g(x⋆,u⋆) = 0. Using Lemma 1 and the notation
definition V ⋆

xx(x
⋆) := S⋆, (29) reads as:

L̃(x,u) =L(x,u) + (1− γ)
(
(λ⋆)⊤g(x,u) +

1

2
g⊤(x,u)S⋆g(x,u)

)
, (30)

Taking derivation of (10a) at x⋆, S⋆ satisfies the following equality:

S⋆ = Lxx(x
⋆,u⋆) + fxx(x

⋆,u⋆)λ⋆ + f⊤
x (x

⋆,u⋆)S⋆fx(x
⋆,u⋆) , (31)
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We then define the following discounted OCP based on the approximated modified stage cost
L̃:

Ṽ γ,⋆(x) = min
π

∞∑

k=0

γkL̃(xk,π(xk)) (32a)

s.t. (3b), (3c) , (32b)

where Ṽ γ,⋆ is the approximated optimal value function and we denote the optimal policy
solution of (32) by π̃γ,⋆.

Next Lemma shows that the gradient and curvature of the discounted optimal value function
Ṽ γ,⋆ based on the approximated stage cost L̃ are identical to the gradient and curvature of
the undiscounted optimal value function V ⋆, at the optimal steady-state x⋆, i.e., λ⋆ and S⋆,
respectively. Moreover, we will show that the optimal policy π̃γ,⋆ admits the undiscounted
optimal steady-state (x⋆,u⋆) as an equilibrium point.

Lemma 3. The following identities hold:

π̃γ,⋆(x⋆) = u⋆, Ṽ γ,⋆
x (x⋆) = λ⋆, Ṽ γ,⋆

xx (x⋆) = S⋆, (33)

Proof. The Bellman equation associated with (32) reads:

Ṽ γ,⋆(x) = min
u

L̃(x,u) + γṼ γ,⋆(f(x,u)) (34)

with the optimal solution π̃γ,⋆(x). Using (30) and NCO for (34):

Ṽ γ,⋆
x (x) =Lx(x,u) + (1− γ)

(
gx(x,u)λ

⋆+ (35a)

gx(x,u)S
⋆g(x,u)

)
+ γfx(x,u)Ṽ

γ,⋆
x (f(x,u))

0 =Lu(x,u) + (1− γ)
(
gu(x,u)λ

⋆+ (35b)

gu(x,u)S
⋆g(x,u)

)
+ γfu(x,u)Ṽ

γ,⋆
x (f(x,u))

for all x with u = π̃γ,⋆(x), specifically at (x⋆, π̃γ,⋆(x⋆)). By selecting π̃γ,⋆(x⋆) = u⋆, we
have:

Ṽ γ,⋆
x (x⋆) = Lx(x

⋆,u⋆) + (1− γ)gx(x
⋆,u⋆)λ⋆ + γfx(x

⋆,u⋆)Ṽ γ,⋆
x (x⋆) , (36a)

0 = Lu(x
⋆,u⋆) + (1− γ)gu(x

⋆,u⋆)λ⋆ + γfu(x
⋆,u⋆)Ṽ γ,⋆

x (x⋆) , (36b)

using the fact that fx = gx and fu = gu and selecting Ṽ γ,⋆
x (x⋆) = λ⋆, one can easily verify

(36) using Lemma 1.

For the curvature of Ṽ γ,⋆, taking derivation of (35a) at x⋆ and using the fact that g(x⋆,u⋆) =
0, we have:

Ṽ γ,⋆
xx (x⋆) = L̃xx(x

⋆,u⋆) + γfxx(x
⋆,u⋆)λ⋆ + γf⊤

x (x
⋆,u⋆)Ṽ γ,⋆

xx (x⋆)fx(x
⋆,u⋆) (37)
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where

L̃xx(x
⋆,u⋆) =Lxx(x

⋆,u⋆) + (1− γ)(gxx(x
⋆,u⋆)λ⋆ + g⊤

x (x
⋆,u⋆)S⋆gx(x

⋆,u⋆))

Using (31) and fxx = gxx and fuu = guu, one can see that the solution Ṽ γ,⋆
xx (x⋆) = S⋆

satisfies (37). ■

This Lemma shows that the optimal policy resulting from the approximated cost modification
admits the undiscounted steady state as an equilibrium point. In the following, we show that
this optimal policy stabilizes the closed-system trajectories locally if the original system is
dissipative.

To establish the local closed-loop stability, first, we use Lemma 2 to construct the undiscounted
equivalence setting of (32). More specifically, the system f with the stage cost L̃ and discount
factor γ is SDSD if and only if the system f is (undiscounted) dissipative with the following
stage cost:

L̃γ(x,u) := L̃(x,u) + (γ − 1)Ṽ γ,⋆(f(x,u)) (38)

Note that in (38), we have used a reverse argument of (19), i.e., we built an equivalent stage
cost L̃ which its undiscounted OCP results in the same optimal policy and optimal value
function of undiscounted OCP with the stage cost L̃. Therefore the stability of the policy π̃γ,⋆

turns into the (undiscounted) dissipativity of the system with the stage cost L̃γ . Next theorem
states this relationship.

Theorem 1. Under Assumptions 1 and 2, if the system f with the stage cost L is dissipative,
then the system is locally dissipative with the stage cost L̃γ with policy π̃γ,⋆.

Proof. If the system f with the stage cost L is dissipative, then there exist µ and α ∈ K∞
such that:

L(x,u) + µ(x)− µ(f(x,u)) ≥ α(∥x− x⋆∥) (39)

Then the aim is to show that the following inequality holds locally:

L̃γ(x,u) + µ(x)− µ(f(x,u)) ≥ α̃(∥x− x⋆∥) (40)

for some α̃ ∈ K∞ and u = π̃γ,⋆(x). Using (38) and (30), (40) can be written as follows:

L(x,u) + (γ − 1)h(x,u)+µ(x)− µ(f(x,u)) ≥ α̃(∥x− x⋆∥)

where

h(x,u) := Ṽ γ,⋆(f(x,u))− (λ⋆)⊤g(x,u)− 1

2
g⊤(x,u)S⋆g(x,u) (41)

From Lemma 3 and the Taylor theorem, we have the following:

h(x,u) ∼ O(∥f(x,u)− x⋆∥3) (42)
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Under assumption 1 and along the optimal policy π̃γ,⋆, we have:

h(x,u) ∼ O(∥x− x⋆∥3) (43)

for u = π̃γ,⋆(x). It has been shown in [20] that every EMPC is locally equivalent to an LQR
for dissipative problems. It yields that, locally, the stage cost L and storage function µ can
be represented in the quadratic form. Then α ∈ K∞ has also quadratic form locally, i.e.,
α(∥x− x⋆∥2) = κ∥x− x⋆∥2 for some positive constant κ for all x in some neighbourhood.
More specifically, (39) can be written as follows:

L(x,u) + µ(x)− µ(f(x,u)) ≥ κ∥x− x⋆∥2 (44)

From (43) and along the optimal policy trajectory, there exists a neighbourhood around x⋆

such that the following holds:

− κ

2(1− γ)
∥x− x⋆∥2 ≤ h(x, π̃γ,⋆(x)) ≤ κ

2(1− γ)
∥x− x⋆∥2 (45)

or:

−κ

2
∥x− x⋆∥2 ≤ (γ − 1)h(x, π̃γ,⋆(x)) , (46)

summing (44) and (46) yields:

L(x,u) + (γ − 1)h(x,u)+µ(x)− µ(f(x,u)) ≥ κ

2
∥x− x⋆∥2

for u = π̃γ,⋆(x) and some neighborhood around x⋆. Selecting α̃(·) = κ
2 ∥·∥2 yields (41) and

it completes the proof. ■

This theorem shows that under some mild assumptions on the smoothness of the dynamics
f and stage cost L, the approximated cost modification L̃ based on the second-order Taylor
approximation results in the optimal policy π̃γ,⋆ that is stabilizing for the undiscounted optimal
steady-state (x⋆,u⋆) locally even if the OCP setting is discounted.

In the next section, we propose an example in order to illustrate the theoretical developments.

5 Numerical Example

In this section, we provide a benchmark optimal investment problem to verify the proposed
method [21]. Consider the following dynamics with a non-polynomial economic stage cost:

xk+1 = uk , L(x, u) = − ln(Axα − u), (47)

where x is the state, u is the input, and A and 0 < α < 1 are the constants. The state x denotes
the investment in a company and the term Axα is the return from this investment after one
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period. Then Axα − u is the amount of money that can be used for consumption in the current
time period. Then the objective is to maximize the sum of the logarithmic utility function.

The (undiscounted) optimal steady-state is:

x⋆ = u⋆ = (αA)
1

1−α (48)

In the discounted setting, it is known that for the discount factor γ, the optimal value and
policy functions are V γ,⋆(x) = B + C ln(x) and πγ,⋆(x) = γαAxα, where (see, e.g., [22,
23]):

B =
ln((1− αγ)A) + γα

1−γα ln(αγA)

γ − 1
, C =

α

αγ − 1
(49)

while the discounted steady state is:

xγ,⋆ = uγ,⋆ = (γαA)
1

1−α (50)

The Lagrangian function is:

L(x, u, λ) = − ln(Axα − u) + λ(u− x); (51)

with

Lx =
−αAxα−1

Axα − u
− λ, Lu =

1

Axα − u
+ λ (52)

Then using NCO, one can verify that:

−αA(x⋆)α−1

A(x⋆)α − x⋆
= λ⋆ (53)

While the gradient of the optimal value function in the undiscounted setting is:

V ⋆
x (x

⋆) =
α

x⋆(α− 1)
(54)

Then one can see that (53) and (54) are same at x⋆ = (αA)
1

1−α . The second-order derivation
can be obtained similarly. The exact modified stage cost and approximated modified stage
cost can be written as follows:

L̄(x, u) =L(x, u) +
α(1− γ)

α− 1
ln(u) (55a)

L̃(x, u) =L(x, u) +
α(1− γ)

α− 1

( 1

u⋆
(u− u⋆)− 1

2(u⋆)2
(u− u⋆)2

)
(55b)

Figure 1 shows closed-loop trajectories with the different optimal policies, including exact
and approximated modified stage costs. As it can be seen, the trajectory with πγ,⋆ converges
to the discounted optimal steady-state xγ,⋆, while the trajectories with π̄γ,⋆ and π̃γ,⋆ converge
to the undiscounted optimal steady-state x⋆.
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Figure 1: Closed-loop trajectories using different optimal policies and discounted and undis-
counted optimal steady-state for A = 5, α = 0.34 and γ = 0.8.

6 Conclusion

This paper provided an exact and approximated stage cost modification that the resulting
optimal policy based on the discounted OCP steers the closed-loop system trajectories to the
undiscounted optimal steady-state. The exact cost modification requires the knowledge of
the optimal value function, while the approximated cost modification does not need such a
requirement. We used the second-order Taylor expansion of the optimal value function to
construct this approximated modified cost. We showed that this modification preserves the
closed-loop stability and dissipativity property locally. We illustrated the proposed method in
a benchmark example.
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